
ELEKTROTEHNIŠKI VESTNIK 78(3): 153–158, 2011
ENGLISH EDITION

Chess Program Umko

Borko Bošković, Janez Brest
University of Maribor, Faculty of Electrical Engineering and Computer Science,
Smetanova ulica 17, 2000 Maribor, Slovenia
E-mail: borko.boskovic@uni-mb.si

Abstract. Umko is a strong open-source chess program developed to collect good concepts from literature and
other open-source projects. Using these concepts, we want to implement an optimally chess program. To do this,
Umko has implemented a bitboard representation, move generator, parallel search algorithm, multiple principal
variation search, transposition table, universal chess interface, evaluation function, usage of endgame tablebases
and usage of the opening book. The paper provides details of these concepts.
Umko is a program running on several platforms inside different graphical user interfaces and using the modern
processor technology. It has a parallel search algorithm allowing its program to simultaneously use more
processors or cores and the new SSE4.2 CPU instruction set. Both the parallel search algorithm and the new
instruction set enable the program to be a faster and stronger player. Having been tested on different independent
rating lists, the program is rated among the top ten open-source chess programs.

Key words: chess program, bitboard representation, evaluation function, search algorithm, move generator,
transposition table, endgame tablebases, opening book

1 INTRODUCTION

Computer chess has a long history of research in the
field of artificial intelligence. With computer strength
ever growing to a remarkable degree, we are witnessing
more and more matches between computers and humans
where computers usually win. The reasons for this are
mainly hardware improvements and chess algorithm
optimizations. The first computer that won against a
human world champion chess player was Deep Blue
which defeated Garry Kasparov in 1997 [12]. In 2006
the Deep Fritz 10 computer program which runs on a
PC, defeated world champion Vladimir Kramnik [18].
In 2005 the Rybka chess program surprised everyone
with its strength. It was top-rated on all notable chess
program rating lists and the first chess program that
obtained a rating over 3000 rating points [9]. Moreover,
open-source and free programs are becoming stronger,
some of them even stronger than their commercial
counterparts. Currently, Stockfish is the top open-source
chess program that has been rated over 3200 rating
points on most chess rating lists. In 2010 the free chess
program Houdini became a new top ranked. Its strength
was approximately 50 rating points ahead of Rybka and
70 rating points ahead of Stockfish.

So why are developers trying to improve the already
very strong chess programs even further? Many pro-
fessional human chess players use chess programs to
improve their own playing skills. Chess programs are

Received 6 June 2010
Accepted 15 July, 2011

also very useful in correspondence and freestyle chess.
Matches between programs are also gaining popularity.
As far as artificial intelligence is concerned, chess is re-
garded as a very useful environment for testing different
approaches.

We, too, want to develop a strong chess program.
In order to do this, we collected good concepts from
literature and open-source projects. According to these
sources, Umko has implemented a bitboard representa-
tion, move generator, parallel search algorithm, multiple
principal variation search, transposition table, universal
chess interface, evaluation function, usage of endgame
tablebases inside the search algorithm and usage of the
opening book. It has a parallel search algorithm allowing
the program to use more processors or cores at the same
time. On the other hand, it can use the new SSE4.2 CPU
instruction set. Both the parallel search algorithm and the
new instruction set enable the program to use the new
processor technology and become a faster and stronger
player.

Our program, being based on open-source projects,
is published under the GNU General Public License
version 3 on the following SourceForge web sites
http://umko.sourceforge.net/. SourceForge is one of the
largest open-source software development web site. It
provides free services that help people to build soft-
ware and share it with a global audience. Umko is
implemented with the C++ programming language thus
enabling us to compile it with the GNU C++ compiler
for Linux, Android, Mac OS X and Windows operating
systems for the i586, x64 and ARM architectures.



154 BOŠKOVIĆ, BREST

The paper is organized as follows. Introduction is
following by Section 2 describing our chess program
in more detail. Our experimental results and obtained
ratings are presented in Section 3 and our conclusions
are given in Section 4.

2 DESCRIPTION OF THE PROGRAM

Umko does not have its own graphical user interface
(GUI). It is a console application that communicates
with a GUI via a standard universal chess interface
(UCI). The GUI runs our program as an external process
and according to the UCI protocol with standard I/O
streams it manages our program. To communicate with
the GUI and to analyze a specific position at the same
time, our program has at least two threads. One is
responsible for communication while the other one or
more of them are used for analyzing specific positions
and searching for the best move. Wanting to develop
a program for Windows and Unix-based operating sys-
tems, we use the POSIX and Windows threads. At the
compile time, the compiler detects the target operating
system according to which, the corresponding threads or
libraries are used to build a program.

The basic components of modern chess programs are:
representation of the game, search algorithm, move gen-
erator, transposition table, evaluation function, opening
book, and endgame tablebases. Representation of the
game enables the program to manage positions and
moves. It also affects the speed of a chess program.
The move generator is a mechanism that generates
legal moves as fast as possible. The search algorithm
is responsible for finding the best move according to
the evaluation-function values. The evaluation function
contains chess knowledge which enables it to evalu-
ate positions. The transposition table (TT) enables the
search algorithm to avoid multiple searches of the same
position. The opening book enables the chess program to
use knowledge and experiences of human and computer
chess players in the opening-phase game. Similarly,
endgame tablebases enable strong move choices in the
final stage of the game.

Chess games are time-limited. This means that in
deciding which move is the best in a specific position,
the chess program is time-limited. Therefore, the chess
program has to be as fast as possible thus enabling the
search algorithm to examine more positions in a given
time and consequently the program becomes a better
chess player. On the other hand, the chess program con-
tains chess knowledge that also affects the speed. More
knowledge makes the program slower and vice versa,
less knowledge makes the program faster. Therefore,
chess program developers have to balance the amount
of chess knowledge and the speed to get a strong chess
program.

2.1 Game representation
The game representation enables the chess program to

manage positions and moves. It affects the speed of the
move generator, evaluation function and generally the
speed of almost any other component. There are many
different ways of representing positions and moves. A
chess position has information about the piece place-
ment, player on turn, castling availability, en-passant
target square, number of half-moves since the last pawn
advanced or piece captured and number of all moves
that have been played to reach this position. The most
important for game representation is the piece placement
or board representation. To represent the board, we used
the bitboard data structure. Bitboard is a 64-bit unsigned
integer where each bit presents a square of a chess
board. Because chess contains different pieces, a set
of bitboards is needed, one bitboard for each piece-
type and color. The main advantage of the bitboard is
its enabling fast calculation of moves and evaluation
function expressions [11], [19], [4], [3].

Move representation is also important. Moves change
positions and as such they are used inside the search
algorithm where they are also stored in a transposition
table. Therefore, move representation must be compact.
We used a 16-bit unsigned integer for move repre-
sentation. Inside this integer, the following data are
coded: move type, square from and square to. According
to these data, the search algorithm can do and undo
moves. In the chess program, it is also important to
calculate a unique number for each position that enables
comparison between them. To do this, we used the
Zobrist keys [24] that are almost unique numbers for
any chess position. These keys are also used in the
transposition table and opening book.

2.2 Search algorithm
Due to the complicated nature of the chess game,

there is no way to make a program that will play
a perfect chess. However, it is possible to develop a
search algorithm and an evaluation function [23] which
together enable a chess program to become a strong
chess player. The evaluation function is responsible for
evaluating positions statically while the search algorithm
is responsible for evaluating positions dynamically and
selecting moves which will be played.

Generally, search algorithms of chess programs are
based on the minimax or alpha-beta algorithm. In our
program, we implemented the Principal Variation Search
(PVS) algorithm [17], [2], [3] which is an improved
version of the alpha-beta algorithm. Its main idea is
to separate search nodes (positions) to the principal
variation nodes (PV-nodes) and non PV-nodes. The PV-
nodes are searched with a specific window while the
non PV-nodes are searched with the minimal window.
The window is defined with the alpha and beta argu-
ments. For a minimal window difference between these



CHESS PROGRAM UMKO 155

arguments is one. We used this algorithm for enabling
different pruning techniques between the PV-nodes and
the non PV-nodes. The principal variation will probably
be played and it is better to use less aggressive pruning
techniques under the PV-nodes and more aggressive
pruning techniques under the non PV-nodes.

Quiescence search (QS) is used to evaluate leaf nodes
of the search tree. The purpose of this technique is to
avoid the horizon effect [22]. This means that if the
algorithm stopped searching when reaching the leaf node
and if its position were evaluated, the evaluation value
might be considerably erroneous. This can happen when
the last move in the search tree branch is a capture move
and the next possible move is a recapture. Therefore,
in leaf nodes the quiescence search continues to search
and tries to avoid the horizon effect and to evaluate the
obtained position correctly.

Extensions and pruning techniques implemented in
our search algorithm are: futility pruning [10], null
move pruning [6], late move reductions [16], transpo-
sition table [5], singular extensions [1], internal iterative
deepening, single move extensions, check extensions,
passed pawns extensions and recapture extensions. Fu-
tility pruning is a technique that prunes nodes close to
leaf nodes of the tree search according to their evaluation
values. Null move search makes a null move (changes
the player on the move) and by minimising the search
depth recognizes the nodes that can be pruned. Late
move reductions is a technique that increases reduction
in the depth for quiet moves that are closer to the end of
the generated moves. The transposition table stores the
search data and enables the search algorithm to avoid
multiple searches of the same position. Internal iterative
deepening is a technique similar to iterative deepening
but it is used inside the search tree nodes. Singular
extensions is an extension technique when one move
seems to be a lot better than all other moves. Single
move extensions and check extensions are extensions
when only one legal move exists or king is in check. All
other extensions passed pawn extensions and recapture
extensions are self-explained.

The whole algorithm was implemented together with
iterative deepening, aspiration search and root search.
Iterative deepening is a technique that enables the pro-
gram to iteratively increment the search depth [15]. This
technique together with other chess program techniques,
such as transposition table and history heuristic, iter-
atively improve move ordering. Although some nodes
are examined repeatedly, efficiency of the whole search
algorithm is improved because the alpha-beta algorithm
is sensitive to move ordering. The aspiration search is a
technique that reduces the search space [14]. Instead of
searching the entire search space, the algorithm guesses
the evaluation of a position and searches around this
value with a specific window. If the evaluation is outside

this window, then an examine must be made around the
new guess value. This is repeated until the algorithm
returns the evaluation in the searched window. The root
search is a technique to search the root node. This search
returns the evaluation of the search algorithm as well
as the move which will be played. In our program, a
multiple principal variation search is included into the
root search. This means that the program can search
more principal variations at the same time. The principal
variation moves are searched as PV-nodes with less ag-
gressive pruning and are shown in the GUI via the UCI
protocol. This enables users to analyze more variants at
the same time and get differences of their evaluations.

To increase the search speed or search depth by using
additional processors or cores, our program implemented
“Young Brothers Wait“ search [7], [8]. This is a parallel
search algorithm. In its specific nodes the first move
is searched without parallelization and after that the
remaining moves can be searched in the parallel mode.
Because in the parallel search threads use the transpo-
sition table at the same time, data can be corrupted.
Therefore, the transposition table has to be adapted to
avoid this problem [13].

The techniques used in our program were improved
according to the open-source Toga II and Stockfish chess
programs.

2.3 Move generator
As mentioned above, the search algorithm is very sen-

sitive to move ordering. Good move ordering improves
efficiency of the search algorithm and also the strength
of the program. In our program we implemented a
magic bitboard move generator which is a technique that
generates moves for sliding pieces very fast [19]. With
only a few instructions it already enables the program to
calculate the index of a bitboard database with attacks of
both lines for pieces bishop and rook stored. To improve
the move ordering transposition table, static exchange
evaluation, killer moves and history heuristic are used
in the move generator.

The implemented move generator has four schemes
that were taken from the Toga II chess program. Two
schemes are used for the PVS-nodes and two schemes
for QS-nodes. In the PVS-nodes, according to informa-
tion of check, one of the schemes is used. If a position
is not in check, the following scheme is used:

• transposition table move
• good capture (static exchange evaluation)
• killer moves
• quiet moves (history heuristic)
• bad captures (static exchange evaluation)

If a position is in check, the following scheme is used:
• transposition table move
• good evasion of check (static exchange evaluation)
• bad evasion of check (static exchange evaluation)



156 BOŠKOVIĆ, BREST

Similar schemes are used for the QS-nodes. If a position
is not in check, the following scheme is used:

• transposition table move
• good captures (static exchange evaluation)
• check moves (only if search depth is 0)

If a position is in check, the following scheme is used:

• transposition table move
• all evasions of check

The first technique to improve move ordering is the
transposition table. It is a hash table that contains some
data about positions. As mentioned above, these data are
used in the search algorithm to avoid a multiple search
of the same position. The good moves of earlier searches
are also stored in the transposition table. If a move exists
in the transposition table for a specific position, it will be
searched first and as such will improve move ordering.
The second technique that was used in our program to
improve move ordering is a static exchange evaluation.
It separates good and bad captures. The static exchange
evaluation is a technique evaluating the consequence of
a series of exchanges on a single square for a specific
move [20]. If this evaluation is greater than or equal
to 0, the given move is a good capture, otherwise the
given move is a bad capture. Killer moves are the third
technique used in the move generator to improve move
ordering. These moves were good quiet moves in nodes
of earlier branches in the search tree with the same
distance to the root. And the last technique that was
used in the move generator to improve move ordering
is a history heuristic [21]. This technique is used for
dynamic ordering of quiet moves. Through the search,
quiet moves are evaluated according to the number of
cutoffs and its search depth. These evaluations are then
used for ordering of quiet moves. The term cutoff, that
was mentioned above, is a situation when a specific
move is researched and the obtained evaluation is larger
than the upper bound of the searched window (argument
beta). This means the remaining moves do not need to
be searched.

2.4 Evaluation function

The evaluation function is an important part of chess
programs. It contains chess knowledge and statically
evaluates positions. These evaluations are integer num-
bers used in the search algorithm to evaluate the root
position. Our evaluation function takes most of its ideas
from the Toga II chess program updated with some ideas
from the Stockfish chess program. Therefore, our evalu-
ation function discovers the following chess knowledge:

• simple endgame positions (KK, KNK, KBK, KRK,
KQK, KNKN, KBKB, KRKR, KQKQ, KNNK,
KBBK, KBNK, KBKN, KRRK, KQQK, KQRK)

• patterns (trapped and blocked pieces)
• pieces (material, mobility, position values)

• king (storm of pawns, shelter squares, attack of
pieces)

• pawn structure (chain of pawns, doubled pawns,
isolated pawns, backward pawns, candidates for
promotion, passed pawns, unstoppable passed
pawns)

• threats (attack of pieces)
During evaluation, this knowledge is calculated for
opening and endgame phases. At the end of evaluation,
the final evaluation is calculated using interpolation
according to the game phase.

2.5 Opening book and endgame tablebases
A program that uses the opening book and endgame

tablebases is a stronger chess player. The opening book
contains human and chess program experiences and
knowledge of the opening game phase. That enables
the program to play stronger opening moves quickly.
Our chess program can use the Polyglot opening books.
These books for specific positions offer possible moves
and their corresponding probabilities. That means the
program selects offered moves with specific probabilities
and plays different opening variants. Without the open-
ing book, the program would play only a few opening
variants and it would be predictable.

Just as the opening book improves the strength of the
chess program in the opening game phase, the endgame
tablebases improve its strength in the endgame phase.
Those tablebases present databases of endgame positions
and enable the program to evaluate some positions
perfectly and consequently play stronger moves in the
endgame phase. In our program, the Gaviota’s tablebases
are used. Therefore, our chess program is able to play
perfect moves for positions which have only five or
less pieces. The tablebases are also used in the search
algorithm when the root position has more than five
pieces. This can happen if positions in the search tree
nodes have five or less pieces. In this way, tablebases
also help the search algorithm to select stronger moves,
even when positions contain more than five pieces.

3 RESULTS

3.1 Experimental results
Umko was also tested by solving test-position suites.

These tests were done on an Intel(R) Core(TM)2 CPU
6600 2.40GHz processor. The operating system was
Linux and two threads were used for the search al-
gorithm. The obtained results are shown in Table 1.
The first column shows names of test suites, the second
column shows the available time for solving the problem
in seconds, the third column shows the size and usage of
the transposition table. The average speed (the number
of nodes per second) is shown in the fourth column.
The obtained average search depth and average selective
depth (the maximum number of half moves from the root



CHESS PROGRAM UMKO 157

Table 1. Test-position suites (Umko 1.1b).
Test Suites Time Transposition

Table
Speed Depth Solved Rating

time
Rating

Win at Chess 5 64 (70.7%) 1.74e+06 26.1 (36.2) 294/300 54.8 -
1001 Winning Chess Sacrifices 5 64 (80.1%) 1.73e+06 21.7 (37.9) 872/1001 738.3 -
1001 Brilliant Ways to Checkmate 5 64 (7.8%) 1.34e+06 55.1 (16.1) 988/1001 89.4 -
Strategic Test Suite 10 128 (94.1%) 1.63e+06 18.0 (40.1) 996/1300 3752.6 -
Encyclopedia of Chess Middlegame 20 128 (94.0%) 1.68e+06 20.8 (47.0) 677/770 2429.0 -
Bratko-Kopec 60 256 (95.6%) 1.56e+06 23.8 (46.8) 18/24 404.0 -
LCT II 600 512 (98.0%) 1.75e+06 27.4 (65.6) 29/35 3777.3 2740
BT 2630 900 512 (96.7%) 1.67e+06 29.8 (69.7) 27/30 2889.4 2534
BS 2830 900 512 (96.1%) 1.54e+06 26.1 (71.6) 19/27 7847.6 2771
Nolot 3600 512 (99.8%) 1.54e+06 27.8 (83.4) 6/11 18935.7 -

8 rZbZka0s
7 ZpZnZpop
6 pZ0opm0Z
5 Z0Z0Z0AB
4 0ZqMPZ0Z
3 Z0M0Z0Z0
2 POPZ0OPO
1 S0ZQZRJ0

a b c d e f g h

Figure 1. Bronstein - Kotov, Budapest 1950.

node to the leaves) are shown in column five. The sixth
column shows the number of the solved positions and
the number of all positions in the test suite. The last two
columns show the rating time and the obtained rating.
Specific test suites according to the rating time and the
number of the solved positions enable rating calculation.

The way that the program works is shown the Table 2.
Position 4 (Figure 1) from the Nolot chess suite was
analysed. The first column in the table shows the search
depth and the selective search depth. The remaining
columns show evaluation, time in seconds, search speed
(million nodes per second), usage of transposition table
(percent), and selected move. As seen from the obtained
results, the program found the best move when the
search depth was 23. Evaluation was 1.04 or advantage
of one pawn for white. Reaching this move takes 370
seconds. The search speed was 1.5 million nodes per
second and the usage of the transposition table was
99.8%. The final search depth was 29 and evaluation
was increased to 2.11 (the value of two pawns).

3.2 Obtained rating
Umko was tested and obtained different ratings on

different independent rating lists as shown in Table 3.1.
In this table, ratings with a 95% confidence interval
are shown. CCRL (Computer Chess Rating Lists) is

Table 2. Position analysis (Nolot: problem 4).
Depth Evaluation Time Speed TT Move
23 (43) 0.83 315 1.48e+6 99.8 h5e2
23 (50) 1.04 370 1.51e+6 99.8 d4e6
23 (52) 1.78 488 1.50e+6 99.8 d4e6
29 (65) 2.11 3003 1.47e+6 99.8 d4e6

a club of people inspired by watching computers play
chess. They also compare the strengths of different chess
programs. CCRL has two lists: 40/40 and 40/4. On the
first list 40 moves in 40 minutes repeatedly and on
the second list 40 moves in 4 minutes repeatedly time
control is used. Time control on both lists is adjusted to
the AMD64 X2 4600+ (2.4GHz). On both rating lists,
Umko is ranked as the 25th (June, 2011), while within
open-source programs it is ranked as the 6th on the 40/4
rating list and as the 7th on the 40/40 rating list.

Similar to CCRL, CEGT (Chess Engines Grand Tour-
nament) is a team that has fun to test chess programs
and share their results and information to all chess
enthusiasts with two lists: 40/4 and 40/20. IPON is a
rating list where programs play in a pondering mode
(thinking during its opponent’s time) and time control
is five minutes per game plus three seconds per move.
On this rating list Umko with the SSE4.2 instruction set
was tested and was ranked as the 20th.

Umko also plays games on an Internet Chess Server
(freechess.org) against humans and computers from all
over the world. On this server, Umko obtained blitz
rating of 2416 in 858 games, standard rating of 2500 in
911 games and lightning rating of 2619 in 155 games.
These ratings are obtained on the same computer as
mentioned above for solving test suites.

During this section, ratings of the Umko chess pro-

Table 3. Obtained ratings on different rating lists.
Rating list Program Rating
CCRL 40/4 Umko 1.1 64-bit 2CPU 2912±17
CCRL 40/40 Umko 1.0 64-bit 2908±29
CEGT 40/20 Umko 1.0 x64 4CPU 2848±62
CEGT 40/4 Umko 1.0 x64 1CPU 2811±13
IPON Umko 1.1 SSE42 2635±11



158 BOŠKOVIĆ, BREST

gram are shown and they are a bit different, because
rating is a relative strength of chess players. From the
presented results you can see three different versions
of Umko that were tested. All versions have similar
strength and the main differences are a few minor
improvements.

4 CONCLUSION

The paper presents the best Slovenian chess program
named Umko. It has implemented concepts and ideas
that were taken from literature or open-source projects. It
also uses technologies that have been included in modern
processors. It is able to use more cores or processors at
the same time and to use the new SSE4.2 processor
instruction set. It is developed as an open-source project
on the SourceForge web system. It is freely available and
can run on many platforms. We tested it on the Linux,
Android, Mac OS X and Windows operating systems.
According to the obtained results, it is a strong chess
player. It was ranked on independent rating lists among
the top 25 chess programs and among the top 10 open-
source chess programs. It is also interesting that Umko
outperforms some commercial chess programs such as
the well-known Chessmaster 11 chess program.

In future, we will try to add more chess knowledge
to the evaluation function and optimise the parallel
search algorithm. In order to improve the strength of
the whole chess program. We will also take an effort to
add new features that will enable the program to play
with different strengths. This way the program will be
interesting and useful for different chess players, from
beginners to the grand masters.

ACKNOWLEDGEMENTS

The authors would like to thank Thomas Gaksch and
Fabien Letouzey for the open-source chess program
Toga II, Tord Romstad, Marco Costalba, Joona Kiiski
for open-source chess program Stockfish, Miguel A.
Ballicora for endgame tablebases, Fabien Letouzey for
”UCI adapter“ Polyglot, CCRL, CEGT and IPON teams
and SourceForge web system.

REFERENCES

[1] Thomas Anantharaman, Murray S. Campbell in Feng-hsiung
Hsu. Singular extensions: adding selectivity to brute-force
searching. Artificial Intelligence, 43:99–109, 1990.

[2] Yngvi Björnsson. Selective Depth-First Game-Tree Search.
doktorska disertacija, University of Alberta, 2002.

[3] B. Bošković. Implementacija računalniškega šaha, 2004.
[4] B. Bošković, S. Greiner, J. Brest in V. Žumer. The Representation

of Chess Game. V Proceedings of the 27th International
Conference on Information Technology Interfaces, str. 381–386,
2005.

[5] D.M. Breuker, J. W. H. M. Uiterwijk in H. J. Van Den Herik.
Replacement Schemes for Transposition Tables. ICCA Journal,
17:183–193, 1994.

[6] Omid David-Tabibi in Nathan Netanyahu. Extended Null-Move
Reductions. V H. van den Herik, Xinhe Xu, Zongmin Ma in
Mark Winands, uredniki, Computers and Games, volume 5131
of Lecture Notes in Computer Science, str. 205–216. Springer
Berlin / Heidelberg, 2008.

[7] R. Feldmann, P. Mysliwietz in B. Monien. A Fully Distributed
Chess Program. Advances in Computer Chess 6, 1991.

[8] Rainer Feldmann. Game Tree Search on Massively Parallel
Systems. doktorska disertacija, 1993.

[9] Harald Fietz. Beyond the 3000 Elo barrier A glance behind the
scenes of the Rybka chess engine. Chess, str. 18–21, 2007.

[10] E.A. Heinz. Extended Futility Pruning. 21(2):75–83, 1998.
[11] Ernst A. Heinz. How DarkThought Plays Chess. ICCA Journal,

(3):166–176, 1997.
[12] Feng-hsiung Hsu. IBM’s Deep Blue Chess Grandmaster Chips.

IEEE Micro, 19:70–81, 1999.
[13] Robert M. Hyatt in Timothy Mann. A lockless Transposition-

Table Implementation for Parallel Search. ICGA Journal,
25(1):36–39, 2002.

[14] Hermann Kaindl, Reza Shams in Helmut Horacek. Minimax
Search Algorithms With and Without Aspiration Windows. IEEE
Trans. Pattern Anal. Mach. Intell., 13:1225–1235, December
1991.

[15] Richard E. Korf. Depth-first Iterative-Deepening: An Optimal
Admissible Tree Search. Artificial Intelligence, 27:97–109, 1985.

[16] D. Levy, D. Broughton in M Taylor. The SEX algorithm in
Computer Chess. ICCA Journal, 12(1):10–21, 1989.

[17] T. A. Marsland in M. Campbell. Parallel Search of Strongly
Ordered Game Trees. ACM Computing Surveys, 14:533–551,
1982.

[18] Dylan Loeb Mcclain. Once Again, Machine Beats Human
Champion at Chess. New York Times, 2006.

[19] Fritz Reul. New Architectures in Computer Chess. doktorska
disertacija, Tilburg University, 2009.

[20] Fritz Reul. Static Exchange Evaluation with αβ-Approach.
ICGA Journal, 33(1):3–17, 2010.

[21] Jonathan Schaeffer. The History Heuristic. ICCA Journal,
6(3):16–19, 1983.

[22] Günther Schrüfer. A Strategic Quiescence Search. ICCA Journal,
12:3–9, 1989.

[23] C. Shannon. Programming a computer for playing chess.
Philosophical Magazine, 41(4):256, 1950.

[24] Albert Zobrist. A New Hashing Method with Application for
Game Playing. ICCA Journal, 13(2):69–73, 1970.

Borko Bošković received BS and PhD degrees in computer science
from the University of Maribor, Maribor, Slovenia, in 2004 and
2010. He is currently a teaching assistant at the Faculty of Electri-
cal Engineering and Computer Science, University of Maribor. His
research is focused on chess algorithms and evolutionary computing.
His areas of expertise also include programming languages, integrative
programming and natural language processing.

Janez Brest received BS, MSc, and PhD degrees in computer sci-
ence from the University of Maribor, Maribor, Slovenia, in 1995,
1998, and 2000, respectively. He is currently a full professor at the
Faculty of Electrical Engineering and Computer Science, University
of Maribor. His research interests include evolutionary computing,
artificial intelligence, and optimization. His fields of expertise embrace
also programming languages, web oriented programming, parallel and
distributed computing research.


