DOI: 10.17344/acsi.2015.1478 Acta Chim. Slov. 2015, 62, 775-783 775 Scientific paper Application of "Click" Chemistry in Solid Phase Synthesis of Alkyl Halides Diparjun Das, Tridib Chanda and Lalthazuala Rokhum* Department of Chemistry, National Institute of Technology Silchar, Silchar-10, Assam, India * Corresponding author: E-mail: lalthazualarokhum@gmail.com Tel.: +91 3842 242915; fax: +91 3842-224797 Received: 28-02-2015 Abstract A convenient and highly selective microwave assisted procedure for the conversion of allylic, benzylic and aliphatic alcohols to their corresponding halides using polymer-bound triphenylphosphine and iodine is presented. In case of symmetrical diols, mono-iodination product is obtained in very high yield. Additionally, highly regioselective behavior is observed in our procedure. Simplicity in operation, no column chromatography required for the purification of the products, recyclability of the reagents used, short reaction times and good to excellent yields are the advantages of our protocol. Most functional groups remain unaffected under our reaction condition. Keywords: Iodination, polymer-bound triphenylphosphine, solid phase synthesis, benzylic alcohols, aliphatic alcohols, site-selective. 1. Introduction Symmetrical diols are important synthons in organic synthesis and selective halogenation of one of the two chemically-equivalent hydroxyl groups of the diols with general formula HO-(CH2)n-OH remains an exciting challenge for synthetic organic chemistry. Ironically, in spite of its immense importance, only a limited number of such protocols are reported.1 Frequently, though unfortunately, treatment of these diols with a stoichiometric amount of reagents aimed at forming the derivative of one hydroxyl functionality always results in the formation of a 1/2/1 mixture of unreacted diol, the mono- and bis-halogenation products, respecti-vely.2 To overcome the problem associated with statistical distribution, a large excess of the starting diol is often used. This process substantially reduces the amount of bis-haloge-nated product, but one is then faced with the problem of separating the desired product from the bulk of unreacted di-ols. Another method which has been devised to surpass this inherent problem is the 'high dilution' technique where a huge amount of solvent is required. But this method is neither economically nor environmentally viable as it involves a lot of waste of solvents which are discarded in the environment. Therefore, a mild and green method which requires only stoichiometric reagents and minimum solvent in the process of iodination remains highly desirable. Alkyl halides are indispensable intermediates and important building blocks that can be easily converted into a variety of other functional group through functional group manipulation.3 Both alkyl bromides and iodides serve as intermediates in a wide variety of reactions which make the conversion of alcohols into the corresponding halides a very important transformation in organic synthe-sis.4'5 The most common precursors to alkyl halides are alcohols, and their conversion into alkyl halides is a frequently encountered functional group-transformation reaction. Among the halides, iodides are the most reactive, and often show unique reactivity pattern.6 Numerous methods for the transformation of alcohols into its corresponding iodides were reported in literature, including use of BF3-Et2O/NaI,7 P2I4,8 P4/I2,9 Cl2SO-DMF/KI,10 MgI2,11 HI,12 ClSiMe3/NaI,13 R3PI2-Et2O, or C6H6/HMPA,14 PPh3/DDQ/ R4N+X-,15 KI/BF3 E220,16 CsI/BF3 ■ Et2O,17 KI/SSA,18 NaI/Amberlyst,19 polymer-bound triphenylphosphine reagent systems.20 The existing reported methods suffer from drawbacks such as high temperature,21 long reaction times,22 low yields, drastic conditions, non-commercially available materials and tedious work-up procedures.23 Thus introducing new methods taking place under mild conditions with higher efficiency and selectivity, lesser toxicity of reagents, shorter reaction times, easy handling and also using inexpensive and commer- cially available materials are still a challenge for the synthetic organic chemists. The increased demand for microwave assisted organic synthesis reactions is due to their short reaction times and expanded reactivity range. Microwave heating is very convenient to use in organic reactions. The heating is very specific and instantaneous. The beauty of the reaction is that it does not require any contact between the reaction vessel and the energy source. It can be concluded that all the previous conventionally heated reaction can be easily performed by microwave heating.24 Many microwave assisted solid phase reactions have been reported in recent years which may include cellular uptake, and cytotoxicity studies of cymantrene-peptide bioconjugates,25 solid-phase synthesis of 5-arylhistidines via a microwave-assisted Suzuki-Miyaura cross-coupling,26 synthesis of 1,2,4-oxa-diazoles using polymer-bound triphenylphosphine rea- gent.27 Recently solid-phase organic syntheses (SPOS) is evolving as a means to facilitate the manipulation of compound libraries via combinatorial chemistry.28 The important features of solid-phase synthesis such as purification of the product by simple filtration of the polymer matrix, easy handling, low moisture susceptibility, minimum side reaction, and recyclability of the polymer matrix for repeated use have drawn huge attention from industry and academia.29 Although triphenylphosphine is considered one of the worst atom-economic reagents due to its high carbon content, polymer-bound triphenylphosphine is getting a lot of applications in recent years mainly because of the speed and simplicity in the operation.30 The commonly encountered problems in solution-phase chemistry involving triphenylphosphine, such as removal of excess triphenylphosphine, triphenylphosphine complexes, and the by-product triphenylphosphine oxide can be overcome easily with polymer-bound triphenylphosphine. Moreover, for the reactions where polymer-bound triphenylp-hosphine acts as an oxygen-acceptor, the byproduct trip-henylphosphine oxide can be reduced to triphenylphosp-hine by treatment with trichlorosilane.31 2. Results and Discussion Continuing of our ongoing research interest in developing novel methodologies in organic synthesis, in particular, solid phase synthesis32 and keeping in mind the irony of the existing literature for the synthesis of alkyl halides, especially mono-halogenation, herein, we report a simple and efficient procedure for the iodination of alcohols using a combination of polymer-bound triphenylp-hosphine and iodine assisted protocol employing 'click' chemistry (Scheme 1). We have used organic polymers in order to simplify product isolation, so that reactions require only filtration, extraction and solvent removal for product purification. R-OH -R-X CH3CN/ MW R = allylic, benzylic or other 1° group X = I, Br Scheme 1. Synthesis of alkyl halide The iodination of benzyl alcohol was selected for optimization of the reaction conditions. Initially, the conversion of benzyl alcohol to benzyl iodide with polymer bound triphenylphosphine and iodine assisted by microwave in the presence of various solvents such as diethyl ether, ethyl acetate, n-hexane, acetone and dichlorometha-ne at reflux temperature was studied. Among the various solvents tested for the reactions, acetonitrile was found to be the best solvent for these transformations. Henceforth, the iodination of various benzylic, allylic and aliphatic alcohols in the presence of polymer-bound triphenylphosp-hine (PB-TPP) and iodine in anhydrous acetonitrile was studied further. A variety of alcohols were smoothly converted to the corresponding iodides using this approach. The generality of the method was examined using aryl, al-lyl, alkyl alcohols and the results of the iodination reactions are summarized in Table 1. It was observed that benzylic alcohols are highly reactive under our reaction conditions and yields were relatively less dependent on the substitution pattern on the phenyl rings (Table 1, entries 1-14, 22 and 26). However, we observed that primary alcohols converted to their corresponding iodides at a faster rate as compared to the secondary alcohols (Table 1, entries 23-25). Under the optimized conditions we also tried chemoselective conversion of butan-1,3-diol to its corresponding iodide. To our pleasure, the reaction gave exclusively 4-iodobutane-2-ol leaving one alcoholic group intact (Table 1, entry 21). Furthermore, 2-methylpent-2,4-diol gave 4-iodo-2-methyl-pentan-2-ol (Table 1, entry 24) which clearly showed the preference of secondary over tertiary substitution. Next, to test the scope and limitation of this methodology, we employed this reagent system in bromination by replacing the iodine with bromine. We were pleased to obtain the desired bromides in excellent yields within a very short time (Table 1, entries 9, 12). But, ironically, our attempt to convert phenol to its corresponding iodide bears no fruit (Table 1, entry 27). Selectivity of the reaction system is always a subject of interest for synthetic organic chemist in contemporary chemistry. Since the invention of solid-phase chemistry by Merrifield in 1963,33 initially for peptide synthesis, numerous literature reported that in solid phase synthesis site-selective reaction is very much feasible without any requirements for dilution of reaction mixture as the polymer beads are discrete (site-isolated) and reactions between Table 1. Microwave-assisted conversion of alcohols to halidesab ®4> PP\\2! X2 R-OH R-X CHgCN/ MW R = allylic, benzylic or other 1° group X = [. Br Entry R Product Time (min) Yield (%)b 1. 2. 93 93 3. 96 4. 91 5. 89 79 96 92 91 10. 95 11. 85 12. 13. 14. 15. 92 85 87 81 Entry R Product Time (min) Yield (%)b 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 18 79 92 79 87 84 91 79 76 85 b Unless otherwise mentioned reactions were carried out at 120 °C under MW c Yields refer to pure isolated products, which were characterized by comparison of their physical and spectral data (IR, 1H and 13C NMR, MS) with authentic samples. two polymer beads are impossible, thereby addressing the problem of polymerization.34 This concept stemmed from the hyperentropic character (high dilution principle) of the solid-phase method.35 Recently, Firouzabadi et al.36 has reported a highly selective method for the iodination of alcohol using ZrCl4/NaI system obtaining as high as 97% mo-no-iodination product, whereas a similar reaction conduc- ted in the presence of CeCl3-7H2O/NaI produced the same product in 83% yield after 48 h as described by Deo et al3 However, to the best of our knowledge, there is no report in literature of a selective mono-iodination of symmetrical diols in solid phase synthesis. Taking the high dilution theory into account, we assumed that if the in situ formation of activated oxo-phosphonium interme- Table 2. Mono-iodination of diolsa,b Entry R Product Time (min) Yield (%)c 2. 3. 4. 5. 6. 7. 92 88 93 90 89 93 91 8 a Molar ratio of alcohol/ PB-TPP/I2 = 1: 1.2 : 1 b Unless otherwise mentioned reactions were carried out at 120 °C under MW Yields refer to pure isolated products and were characterized by comparison of their physical and spectral data (IR, 1H and 13C NMR, MS) with authentic samples. Scheme 2. Plausible mechanism for the mono-iodination of alcohols under optimized conditions diate is followed by the nucleophilic attack by iodide anion would give us exclusively mono-iodide product without any requirement for dilution of the reaction system (Scheme 2). We first tested the iodination of 1,4-buta-nediol under our optimized conditions. To our contentment, the desired mono-iodide product was obtained in 92% yield (Table 3, entry 1). Inspired by this finding, we tried several mono-iodinations of symmetrical diols as given in Table 2. 3. Conclusions In conclusion, a simple and highly chemoselecti-ve, site-selective process for the iodination of benzylic, allylic and aliphatic alcohols using polymer-bound trip-henylphosphine in anhydrous acetonitrile assisted by microwave has been demonstrated. Use of polymer-supported reagents greatly simplifies product isolation requiring only simple filtration and solvent removal, whe- c reas otherwise tedious column chromatography techniques are needed. Additionally, mono-halogenation products are obtained in high yield without any requirement of dilution of reaction mixture, which otherwise are very difficult to achieve. The mild reaction conditions, short reaction times, good to excellent yields and operational simplicity of the protocol are the advantages of this method. 4. Experimental 4. 1. General Milestones' Start SYNTH microwave was used for all the reactions. IR spectra were recorded on a Perkin-El-mer Spectrum One FTIR spectrometer. 1H and 13C NMR spectra were recorded on a Bruker (500 MHz and 400 MHz) spectrometer using TMS as internal reference. Chemical shifts for 1H NMR spectra are reported (in parts per million) relative to internal tetramethylsilane (Me4Si, 5 = 0.0 ppm) with CDCl3 as solvent. 13C NMR spectra were recorded at 125 MHz and 100 MHz. Chemical shifts for 13C NMR spectra are reported (in parts per million) relative to internal tetramethylsilane (Me4Si, 5 = 0.0 ppm) with CDCl3 as solvent. 1H NMR data are reported in the order of chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, dd = doublet of doublet, and m = multiplet), number of protons, and coupling constant in hertz (Hz). Mass spectra were obtained from Waters ZQ 4000 mass spectrometer by the ESI method, while the elemental analyses of the products were performed on a Perkin-Elmer-2400 CHN/S analyzer. TLC plates were visualized by exposing in iodine chamber, UV-lamp or spraying with KMnO4 and heating. 4. 2. Typical Procedure for Iodination of Alcohol To a suspension of polymer-bound triphenylphosp-hine (1.2 mmol) in anhydrous acetonitrile (10 mL) were added iodine (1 mmol) and 1,6-hexanediol diol (1 mmol). The reaction mixture was irradiated in microwave reactor at 120 °C for 3 min. The reaction mixture was filtered over a filter paper and washed with chloroform. The filtrate was extracted with aqueous sodium thiosul-fate solution and dried with anhydrous sodium sulfate. Thereafter, solvent was removed under reduced pressure to obtain 6-iodohexan-1-ol (30) in 93% yield. 1H NMR (500 MHz, CDCl3) 5 3.65 (t, J = 5 Hz, 2H), 3.20 (t, J = 5 Hz, 2H), 2.05 (s, 1H), 1.84 (q, J = 5 Hz, 2H), 1.58 (q, J = 10 Hz, 2H), 1.42 (m, J = 5 Hz, 4H). 13C NMR (125 Hz, CDCl3) 5 62.79, 33.41, 32.48, 30.25, 24.74, 7.04. IR (KBr) v 3021, 2400, 1898, 1598, 1422, 1381, 1128, 993, 932, 813, 561, 455 cm-1. ESI-MS m/z 228.05 (M+). Anal. Calcd for C6H13IO: C 31.60, H 5.75. Found: C 31.58, H 5.77. 4. 2. 1. Spectroscopic Data of the Compounds Benzyl iodide (1) Yellow crystalline solid, mp 22-23 °C (lit.17 mp 21-23 °C). 1H NMR 5 7.34 (d, J = 4.8 Hz, 2H), 7.27 (t, J = 4.8 Hz, 2H), 7.20 (t, J = 2.68 Hz, 1H), 4.42 (s, 2H); 13C NMR 5 139.34, 128.89, 128.82, 127.95, 77.47, 76.04, 5.94. IR (KBr) v 2917, 1589, 1147, 1050, 830, 639 cm-1. ESI-MS m/z 217.95 (M+). Anal. Calcd for C7H7I: C 38.56, H 3.24. Found: C 38.55, H 3.25. 4-Methyl benzyl iodide (2) Pale yellow liquid, 1HNMR (CDCl3, 400 MHz) 5 7.26 (d, J = 8 Hz, 2H), 7.08 (d, J = 8 Hz, 2H), 4.45 (s, 2H), 2.30 (S, 3H). 13C NMR (CDCl3, 100 MHz) 5 137.81, 136.28, 129.54, 128.63, 21.25, 6.22. IR (KBr) v 3020, 2920, 1590, 1455, 1148, 1049, 832, 641 cm-1. ESI-MS m/z 231.95 (M+). Anal. Calcd for C8H9I: C 41.41, H 3.91. Found: C 41.43, H 3.89. 4-Methoxybenzyl iodide (3) Pale yellow solid, mp 25-26 °C (lit.17 mp 25-27 °C). 1H NMR (400 MHz, CDCl3) 5 3.72 (s, 3H), 4.49 (s, 2H), 7.35 (d, J = 4.8 Hz, 2H), 7.63 ( d, J = 4.8 Hz, 2H). 13C NMR (100 MHz, CDCl3) 5 6.19, 55.19, 113.35, 128.49, 131.62, 158.13. IR (KBr) v 3022, 2915, 1591, 1478, 1284, 1221, 1127, 811, 710 cm-1. ESI-MS m/z 247.97 (M+). Anal. Calcd for C8H9IO: C 38.74, H 3.66. Found: C 38.76, H 3.64. 4-Chlorobenzyl iodide (8) Colorless crystalline solid, mp 58-59 °C (lit.17 mp 58-60 °C). 1H NMR (500 MHz, CDC-l3) 5 7.31 (d, J = 10 Hz, 2H), 7.26 (d, J = 5 Hz, 2H), 4.41 (s, 2H). 13C NMR (125 Hz, CDCl3) 5 137.87, 133.62, 129.48, 128.29, 4.19. IR (KBr) v 3010, 2915, 1605, 1505, 1490, 1410, 1205, 1150, 1080, 825, 665 cm-1. ESI-MS m/z 251.89 (M+). Anal. Calcd for C7H6ClI: C 33.30, H 2.41. Found: C 33.28, H 2.39. 4-Bromobenzyl iodide (11) Crystalline white solid, mp 58-59 °C (lit.21 mp 57-59 °C). 1H NMR (500 MHz, CDC-l3) 5 7.43 (d, J = 5 Hz, 2H), 7.25 (d, J = 10 Hz, 2H), 4.41 (s, 2H). 13C NMR (125 Hz, CDCl3) 5 138.39, 132.01, 130.42, 121.78, 4.46. IR (KBr) v 3015, 2893, 1600, 1510, 1475, 1398, 1212, 1131, 1067, 776, 651, 532, 469 cm-1. ESI-MS m/z 295.81 (M+). Anal. Calcd for C7H6BrI: C 28.31, H 2.04. Found: C 28.31, H 2.06. (2-Iodoethyl)benzene (15) Yellow liquid, 1H NMR (400 MHz, CDCl3) 5 7.22 (m, 3H), 7.16 (t, J = 6.8 Hz, 2H), 3.30 (t, J = 8 Hz, 2H), 3.13 (t, J = 7.6 Hz, 2H). 13C NMR (100 MHz, CDCl3) 5 140.67, 128.49, 128.08, 127.14, 126.92, 126.59, 40.40, 5.80; ESI MS m/z 231.96 (M+). Anal. Calcd for C8H9I: C 41.41, H 3.91. Found: C 41.42, H 3.90. 1-Iodooctadecane (16) White crystalline solid, mp 105-107 °C. 1H NMR (400 MHz, CDCl3) 5 0.81 (t, J = 6.6 Hz, 3H), 1.19 (m, 24H), 1.32 (m, 2H), 1.75 (m, 2H), 3.10 (t, J = 7.04 Hz, 2H). 13C NMR (100 MHz, CDCl3) 5 7.01, 14.20, 22.77, 28.65, 29.46, 29.65, 30.61, 32.01, 33.66. IR (KBr) v 2912, 2817, 1438, 1376, 983, 846, 752, 683 cm-1. ESI-MS m/z 380.20 (M+). Anal. Calcd for C18H37I: C 56.83, H 9.80. Found: C 56.84, H 9.79. 1-Iodooctane (17) Colorless liquid, 1H NMR (400 MHz, CDCl3) 5 3.17 (t, J = 6.8 Hz, 2H), 1.78 (m, 2H), 1.36 (t, J = 6.4 Hz, 2H), 1.27 (s, 4H), 0.87 (t, J = 6.8 Hz, 3H). 13C NMR (100 MHz, CDCl3) 5 33.57, 30.52, 29.71, 29.10, 28.52, 22.64, 14.10, 7.39. IR (KBr) v 2421, 1822, 1573, 1454, 1214, 944, 913, 863, 712, 452 cm-1. ESI-MS m/z 240.02 (M+). Anal. Calcd for C8H17I: C 40.02, H 7.14. Found: C 40.01, H 7.15. 1-Iododecane (18) Colorless liquid, 1H NMR (500 MHz, CDCl3) 5 3.18 (t, J = 10 Hz, 2H), 1.81 (q, J = 10 Hz, 2H), 1.55 (s, 2H), 1.38 (m, J = 5 Hz, 10H), 0.87 (t, J = 5 Hz, 3H). 13C NMR (125 Hz, CDCl3) 5 33.59, 31.91, 30.52, 29.70, 29.62, 29.55, 29.43, 29.34, 28.55, 22.69, 14.13, 7.36. IR (KBr) v 2422, 1812, 1577, 1455, 1217, 947, 915, 865, 710, 458 cm-1. ESI-MS m/z 296.13 (M+). Anal. Calcd for C12H25I: C 48.65, H 8.51. Found: C 48.64, H 8.49. Citronellyl iodide (19) Colorless liquid, 1H NMR (400 MHz, CDCl3) 5 0.94 (d, J = 7.5 Hz, 3H), 1.21 (m, 2H), 1.56 (m, 1H), 1.62 (s, 3H), 1.70 (s, 3H), 1.87 (m, 2H), 2.06 (m, 2H), 3.18 (t, J = 1.0 Hz, 2H), 5.10 (t, J = 1.3 Hz, 1H). 13C NMR (100 MHz, CDCl3) 5 5.33, 18.70, 18.79, 24.56, 25.34, 33.90, 36.51, 40.92, 124.49, 131.38. IR (KBr) v 2931, 2411, 1513, 1423, 1353, 1278, 994, 766, 701 cm-1. ESI-MS m/z 266.06 (M+). Anal. Calcd for C10H19I: C 45.13, H 7.20. Found: C 45.14, H 7.19. Iodocyclohexane (25) Light yellow semi liquid, 1H NMR (400 MHz, CDCl3) 5 4.27 (m, 1H), 2.15 (d, J = 9.6 Hz, 2H) 2.00 (d, J = 14.4 Hz, 2H), 1.92 (t, J = 12.8 Hz, 2H), 1.60 (t, J = 20 Hz, 2H), 1.39 (d, J = 8 Hz, 2H). 13C NMR (100 MHz, CDCl3) 5 39.60, 32.85, 27.32, 25.20. IR (KBr) v 2419, 1820, 1575, 1455, 1224, 954, 916, 865, 715, 455 cm-1. ESI-MS m/z 210.00 (M+). Anal. Calcd for C6H11I: C 34.31, H 5.28. Found: C 34.33, H 5.26. Diphenylmethyl iodide (26) Colorless crystalline solid; mp 68-70 °C, (lit.17 mp 69-70 °C). 1H NMR (400 MHz, CDCl3) 5 7.25 (t, J = 7.2 Hz, 5H), 7.16 (d, J = 7.6 Hz, 5H), 3.96 (s, 1H). 13C NMR (100 MHz, CDCl3) 5 141.16, 128.99, 128.83, 128.52, 126.12, 125.80, 41.98. IR (KBr) v 3031, 2911, 1663, 1308, 1191, 1019, 745, 702 cm-1. ESI-MS m/z 293.97 (M+). Anal. Calcd for C13H11I: C 53.09, H 3.77. Found: C 53.10, H 3.78. 5-Iodopentan-1-ol (29) Yellow liquid, 1H NMR (400 MHz, CDCl3) 5 3.51 (t, J = 7.6 Hz, 2H), 3.17 (t, J = 6.8 Hz, 2H), 2.05 (s, 1H), 1.81 (m, 2H), 1.48 (m, 2H), 1.25 (m, 2H). 13C NMR (100 MHz, CDCl3) 5 63.05, 33.52, 30.47, 25.70, 7.45. IR (KBr) v 3612, 2431, 1834, 1563, 1445, 1210, 949, 918, 868, 718, 457 cm-1. ESI-MS m/z 213.99 (M+). Anal. Calcd for C5H11IO: C 28.06, H 5.18. Found: C 28.04, H 5.20. 10-Iododecan-1-ol (34) Colorless liquid, 1H NMR (400 MHz, CDCl3 TMS) 5 5.28 (s, 1H), 3.62, (t, J = 6.8 Hz, 2H), 3.17 (t, J = 6.8 Hz, 2H), 1.78 (m, 2H), 1.52 (m, 2H), 1.29 (d, J = 2.8 Hz, 12H). 13C NMR (100 MHz, CDCl3) 5 63.05, 33.52, 32.75, 30.47, 29.47, 29.36, 29.33, 28.51, 25.70, 7.45. IR (KBr) v 3611, 3011, 2405, 1888, 1598, 1425, 1391, 1129, 998, 945, 815, 564, 458 cm-1. ESI-MS m/z 284.07 (M+). Anal. Calcd for C10H21IO: C 42.27, H 7.45. Found: C 42.26, H 7.45. 5. Acknowledgements The authors gratefully acknowledge Science and Engineering Research Board (SERB)-DST, Govt. of India, New Delhi for financial supports (sanctioned no: SB/FT/CS-103/2013, SB/EMEQ-076/2014). The analytical services provided by Sophisticated Analytical Instrumentation Facility (SAIF), Indian Institute of Technology Madras, India is highly appreciated. D. D. thanks NIT Silchar for providing research fellowship. 6. References 1. (a) F. L. M. Pattison, J. B. Stothers, R. G. Woolford, J. Am. Chem. Soc. 1956, 78, 2255-2259. http://dx.doi.org/10.1021/ja01591a062 (b) S.-K. Kang, W.-S. Kim, B.-H. Moon, Synthesis 1985, 12, 1161-1162. http://dx.doi.org/10.1055/s-1985-31464 2. N. Gupta, G. L. Kad, J. Singh, J. Mol. Catal. A: Chem. 2009, 302, 11-14. http://dx.doi.org/10.1016/j.molcata.2008.11.040 3. (a) R. Bohlmann. In Comprehensive Organic Synthesis; B. M. Trost, I. Fleming, Eds.; Pergamon Press: Oxford, 1991; Vol. 6, pp 203-223. http://dx.doi.org/10.1016/B978-0-08-052349-1.00157-8 (b) R. D. Chambers, S. R. James. In Comprehensive Organic Chemistry; D. Barton, W. D. Ollis, Eds.; Pergamon Press: Oxford, 1979; Vol. 1, pp 493-575. (c) M. -D. Su, S. Y. Chu, J. Am. Chem. Soc. 1999, 121, 10451058. http://dx.doi.org/10.1021/ja9831148 4. K. C. Nicolaou, N. Winssinger, D. Vourloumis, T. Ohshima, S. Kim, J. Pfefferkorn, J.-Y. Xu, T. Li, J. Am. Chem. Soc. 1998, 120, 10814-10826. http://dx.doi.org/10.1021/ja9823870 5. W. Peng, B. S. J. Blaggs, Org. Lett. 2006, 8, 975-978. http://dx.doi.org/10.1021/ol060022b 6. J. Villieras, C. Bacquet, J. F. Normant, Bull. Chem. Soc. Fr. 1975, 1797. 7. Y. D. Vankar, C. T. Rao, Tetrahedron Lett. 1985, 26, 27172720. http://dx.doi.org/10.1016/S0040-4039(00)98145-0 8. M. Lauwers, B. Regnier, M. V. Eenoo, J. N. Denis, A. Krief, Tetrahedron Lett. 1979, 20, 1801-1804. http://dx.doi.org/10.1016/S0040-4039(01)86222-5 9. M. E. Jung, P. L. Ornstein, Tetrahedron Lett. 1977, 31, 26592662. http://dx.doi.org/10.1016/S0040-4039(01)83039-2 10. I. Fernandez, B. Garcia, S. Munoz, J. R. Pedro, R. Salud, Synlett 1993, 489-490. http://dx.doi.org/10.1055/s-1993-22501 11. A. G. Martinez, R. M. Alvarez, E. T. Vilar, A. G. Fraile, J. O. Barnica, M. R. Hanack, L. Subramanian, Tetrahedron Lett. 1987, 28, 6441-6442. http://dx.doi.org/10.1016/S0040-4039(00)96882-5 12. H. Stone, H. Shechter, Org. Synth. 1963, 4, 323. 13. G. A. Olah, S. C. Narang, B. G. B. Gupta, R. Malhotra, J. Org. Chem. 1979, 44, 1247-1251. http://dx.doi.org/10.1021/jo01322a012 14. R. K. Haynes, M. Holden, Aust. J. Chem. 1982, 35, 517-524. http://dx.doi.org/10.1071/CH9820517 15. N. Iranpoor, H. Firouzabadi, G. Aghapour, A. R. Vaez zadeh, Tetrahedron 2002, 58, 8689-8693. http://dx.doi.org/10.1016/S0040-4020(02)01089-X 16. B. P. Bandgar, V. S. Sadavarte, L. S. Uppalla, Tetrahedron Lett. 2001, 42, 951-953. http://dx.doi.org/10.1016/S0040-4039(00)01953-5 17. S. Hayat, Atta-ur-Rahman, K. M. Khan, M. I. Choudhary, G. M. Maharvi, Zia-Ullah, E. Bayer, Synth. Commun. 2003, 33, 2531-2540. http://dx.doi.org/10.1081/SCC-120021844 18. A. R. Hajipour, A. Zarei, A. E. Ruoho, Synth. Commun. 2006, 36, 1039-1050. http://dx.doi.org/10.1080/00397910500503421 19. M. Tajbakhsh, R. Hosseinzadeh, Z. Lasemi, Synlett 2004, 635-638. http://dx.doi.org/10.1055/s-2004-815445 20. (a) G. Anilkumar, H. Nambu, Y. Kita, Org. Proc. Res. Dev. 2002, 6, 190-191. (b) L. Rokhum, C. Vanlalveni, R. Lalfak-zuala, IJETCAS 2013, 4, 370-376. http://dx.doi.org/10.1021/op010094c 21. A. R. Hajipour, A. R. Falahati, A. E. Ruoho, Tetrahedron Lett. 2006, 47,4191-4196. http://dx.doi.org/10.1016/j.tetlet.2006.04.036 22. P. J. Garegg, R. Johansson, C. Ortega, G. J. Samuelsson, Chem. Soc., Perkin Trans 1. 1982, 681-683. http://dx.doi.org/10.1039/p19820000681 23. P. Tundo, P. Venturello, Synthesis 1979, 952-954. http://dx.doi.org/10.1055/s-1979-28885 24. P. Lidström, J. Tierney, B. Wathey, J. Westman, Tetrahedron 2001, 57, 9225-9283. http://dx.doi.org/10.1016/S0040-4020(01)00906-1 25. H. W. P. N'Dongo, I. Ott, R. Gust, U. Schatzschneider, J. Or-ganomet. Chem. 2009, 694, 823-827. http://dx.doi.org/10.1016/jjorganchem.2008.07.031 26. V. Cerezo, M. Amblard, J. Martinez, P. Verdie, M. Planas, L. Feliu, Tetrahedron 2008, 64, 10538-10545. http://dx.doi.org/10.1016/j.tet.2008.08.077 27. Y. Wang, R. L. Miller, D. R. Sauer, S. W. Djuric, Org. Lett. 2005, 7, 925-928. http://dx.doi.org/10.1021/ol050007r 28. (a) U. Boas, J. Brask, K. J. Jensen, Chem. Rev. 2009, 109, 2092-2118. http://dx.doi.org/10.1021/cr068206r (b) A. A. Thompson, J. A. Ellman, Chem. Rev. 1996, 96, 555-572. http://dx.doi.org/10.1021/cr9402081 (c) P. H. H. Hermkens, H. C. J. Ottenheim, D. Rees, Tetrahedron 1996, 53, 5643-5678. (d) F. Balkenhohl, C. von dem Bussche-Hünnefeld, A. Lansky, C. Zechel, Angew. Chem., Int. Ed. Engl. 1996, 35, 2288-2337. http://dx.doi.org/10.1002/anie.199622881 http://dx.doi.org/10.1016/S0040-4020(97)00279-2 29. (a) J. J. Araya, G. Montenegro, L. A. Mitscher, B. N. Timmermann, J. Nat. Prod. 2010, 73, 1568-1572. http://dx.doi.org/10.1021/np100465h (b) A. M. Harned, S. Mukherjee, D. L. Flynn, P. R. Hanson, Org. Lett. 2003, 5, 15-18. http://dx.doi.org/10.1021/ol0270327 (c) S. Mothana, N. Chahal, S. Vanneste, D. G. Hall, J. Comb. Chem. 2007, 9, 193-196. http://dx.doi.org/10.1021/cc060149s (d) J. P. Nandy, M. Prakesch, S. Khadem, R. P. Thirupathi, U. Sharma, P. Arya, Chem. Rev. 2009, 109, 1999-2060. http://dx.doi.org/10.1021/cr800188v 30. (a) S. S. Michaelidou, P. A. Koutentis, Tetrahedron 2009, 65, 8428-8433. http://dx.doi.org/10.1016/j.tet.2009.07.064 (b) C. Delvare, C. S. Harris, L. Hennequin, P. Koza, C. Lambert-van der Brempt, J. Pelleter, O. Willerval, ACS Comb. Sci. 2011, 13, 449-452. http://dx.doi.org/10.1021/co200062n (c) A. El-Dahshan, Ahsanullah, J. Rademann, Pept. Sci. 2010, 94, 220-228. http://dx.doi.org/10.1002/bip.21378 (d) I. C. Christoforou, A. S. Kalogirou, P. A. Koutentis, Tetrahedron 2009, 65, 9967-9972. http://dx.doi.org/10.1016/j.tet.2009.10.003 (e) A. C. Comely, S. E. Gibson, N. J. Hales, Chem. Commun. 2000, 305-306. http://dx.doi.org/10.1039/a909462h (f) A. R. Tunoori, D. Dutta, G. I. Georg, Tetrahedron Lett. 1998, 39, 8751-8754. http://dx.doi.org/10.1016/S0040-4039(98)01988-1 (g) B. Classon, Z. Liu, J. Org. Chem. 1988, 53, 6126-6130. http://dx.doi.org/10.1021/jo00261a032 (h) T. Holletz, D. Cech, Synthesis 1994, 789-791. http://dx.doi.org/10.1055/s-1994-25575 31. S. L. Regen, D. P. Lee, J. Org. Chem. 1975, 40, 1669-1670. http://dx.doi.org/10.1021/jo00899a042 32. (a) L. Rokhum, G. Bez, J. Chem. Sci. 2011,124, 687-691. http://dx.doi.org/10.1007/s12039-012-0241-5 (b) L. Rokhum, G. Bez, Canadian J. Chem. 2013, 91, 300-306. http://dx.doi.org/10.1139/cjc-2012-0164 (c) L. Rokhum, G. Bez, Tetrahedron Lett. 2013, 54, 5500-5509. http://dx.doi.org/10.1016/j.tetlet.2013.07.146 (d) G. Pathak, L. Rokhum, ACS Comb. Sci. 2015, 17, 483-487. http://dx.doi.org/10.1021/acscombsci.5b00086 33. R. B. Merrifield, J. Am. Chem. Soc. 1963, 85, 2149-2154. http://dx.doi.org/10.1021/ja00897a025 34. (a) B. M. Trost, R. W. Warner, J. Am. Chem. Soc. 1982, 104, 6112-6114. http://dx.doi.org/10.1021/ja00386a045 (b) K. C. Nicolaou, J. Pastor, N. Winssinger, F. Murphy, J. Am. Chem. Soc. 1998, 120, 5132-5133. http://dx.doi.org/10.1021/ja980675q 35. (a) J. I. Crowley, H. Rapoport, J. Am. Chem. Soc. 1970, 92, 6363-6365. http://dx.doi.org/10.1021/ja00724a059 (b) J. I Crowley, H. Rapoport, Acc. Chem. Res. 1976, 9, 135-144. http://dx.doi.org/10.1021/ar50100a003 36. H. Firouzabadi, N. Iranpoor, M. Jafarpour, Tetrahedron Lett. 2004, 45, 7451-7454. http://dx.doi.org/10.1016/j.tetlet.2004.08.056 37. M. Di Deo, E. Marcantoni, E. Torregiani, G. Bartoli, M. C. Bellucci, M. Bosco, L. Sambri, J. Org. Chem. 2000, 65, 2830-2833. http://dx.doi.org/10.1021/jo991894c Povzetek Predstavljamo uspešno in visokoselektivno metodo za pretvorbo alilnih, benzilnih in alifatskih alkoholov v ustrezne ha-lide s pomočjo trifenilfosfina, vezanega na polimerni nosilec, ob prisotnosti joda pod pogoji obsevanja z mikrovalovi. V primeru simetričnih diolov, smo z visokimi izkoristki pripravili mono-jodirane produkte. Poleg tega smo pri našem postopku opazili visoko regioselektivnost. Odlike našega pristopa so enostavnost izvedbe, brez potrebe po kolonski kro-matografiji za čiščenje produktov, možnost recikliranja uporabljenih reagentov, kratki reakcijski časi in odlični izkoristki. Večina funkcionalnih skupin pri teh pretvorbah ostane nespremenjenih. SUPPLEMENTARY FILES Application of "Click" chemistry in solid phase synthesis of alkyl halides Diparjun Das, Tridib Chanda and Lalthazuala Rokhum* Department of Chemistry, National Institute of Technology Silchar, Silchar-10, Assam, India * Corresponding author. Tel.: +91 3842 242915; fax: +91 3842-224797; email address: lalthazualarokhum@gmail.com (L. Rokhum) General Remarks Milestones' Start SYNTH microwave was used for all the reactions. IR spectra were recorded on 1 13 a Perkin-Elmer Spectrum One FTIR spectrometer. H and C NMR spectra were recorded on a Bruker (500 MHz and 400 MHz) spectrometer using TMS as internal reference. Chemical shifts for 1H NMR spectra are reported (in parts per million) relative to internal tetramethylsilane (Me4Si 5= 0.0 ppm) with CDCI3 as solvents. 13C NMR spectra were recorded at 125 MHz and 13 100 MHz. Chemical shifts for 13C NMR spectra are reported (in parts per million) relative to internal tetramethylsilane (Me4Si 5 = 0.0 ppm) with CDCl3 as solvent. 1H NMR data are reported in the order of chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, dd = doublet of doublet, and m = multiplet), number of protons, and coupling constant in hertz (Hz). Mass spectra were obtained from Waters ZQ 4000 mass spectrometer by the ESI method, while the elemental analyses of the complexes were performed on a Perkin-Elmer-2400 CHN/S analyzer. TLC plates were visualized by exposing in iodine chamber, UV-lamp or spraying with KMnO4 and heating. BROKER AVANCF. II 400 IHR SpeGt-craEter SbIF PanJab University OiHTifiigflrti Carum t Data laoutca ■HIE Äprlß-2015 EXFM0 10 ПШСЛ) 1 Г2 — Д ■птптчп tinn 1аиакксЕЭ □ ate 2019041В ГЛЕ 13 02 пзган ПШЕШ 5 о 1 SEEG НВ- FÜ1FEÜG TD 65» 3 OL VOT СПСЗЗ ЖЗ 1« □ 3 2 ЗШ 12019.230 Ь nnuRÜ 0.103399 ь ч 2 -72СЭ4ТГ sc B£ 101 IIB +1*00 ■ВЕС DE «.00 ■ВЕС IE 294.9 E П1 1-00000000 КС ID0 1 ■ ШНЕ1 fi--- MUCI IH 11 10.90 ПЕС 111 -3.00 л SIDI 400 -1224710 IBs Г2 - lisce 31 3F ■чтяJ paiaBEtE 327*6 100.1300309 331 IB о 0.30 о 1-00 avrai: aaifpue^aliao.co.lii DifwonsrliliDO «шлтР-т-нчРалш с-Hu>i*o«ii>mu>o-to mnmiffihini^uiif СШШТРТРП'ВМВ'ФЮ UMDTP-n-n-HHHO« »<»<»Л{»П«<««>«11 С4{ЧФ«Ч<Ч<ЧН<4<>1Г| 'I.........I ' В 7 Fig: 1H NMR spectra of benzyl iodide, 1 BROKER AV4JIT. II 400 »St Spsmraneter SbIF Etenjab University Qiandigaiii Г1111 m L Ibta liiaKtzra пи ^tis-axi 13Ю 11 1 T2 Die .tLjв Ьокъ 2015041В 19.5В FTLFIDG ID Ш SS TT П1 ER 2 2D sljO »9 1» 1Я) UO Ш UO UD 130 120 Ilo LOO ЧН® «язе cucia 1*24 4 29741 _Ì04 Н> Л И4131 IT« 1-10105« зп 1*30 U.I0D юс С. 00 гас 29« .В К 2.OO0OOIOO 9 ЕС О-03000t00 9ЕС 1_В9»999В 9ЕС 1 Ш fi ===== IX 9. Ml use -2.00 dE 1Л0.С22В29В НА t £Z----- ■Jtili IH 00.00 me a.oo đB 14.31 dE IB. 00 dE «олаяоб Hb 3Z1«B 100-C12TÌ90 Ulb □I 0 1.00 ff* о 1.40 О wK arcar 3a±fEuRvahao.QO.±n Fig: 13C NMR spectra of benzyl iodide, 1 H H h h CO U) O CO OJ N H О CM о о J II А RUKE I Oü NAME 1H 18 EXPNO 1 PROCNO 1 Date_ 20151026 Time 11.12 INSTRUM spect PROBHD S ma BEO BB-1H PULPROG «9 TD 32768 SOLVENT CDC13 NS 16 DS 0 SWH 20000.000 Hz FIDRES 0.610352 Hz AO 0.8192500 sec RG 71.8 DM 25.000 usee DE 6.00 usee ТЕ 300.0 К Dl 1.00000000 se с TDO 1 ГН&ЫЫП fi nem NUCl ttlAnnCiL Li - = IH PI 11.50 usee PL1 -1.00 dB SFOl 400.1313760 MHz SI 16384 SF 400.1300072 MHz WDM EM SSB 0 LB 1.00 Hz GB 0 PC 1.00 10 ppm Fig: 1H-NMR spectra of 4-methylbenzyl iodide, 2 13C 18, CDC13, 26/10/15, SAIF, NEHU CO m r- CM H ОЭ n 00 CM in VD r- VO a> 00 го го CM CM \\ V tH r- 00 in ГО r-H n о > (RUKE I C^XJ NAME 13C 18 EXPNO 1 PROCNO 1 Date_ 20151026 Time 12.14 INSTRUM spect PROBHD 5 nil BBO BB-IH PULPROG zqpq TD 66560 SOLVENT CDC13 NS 740 DS 0 SWH 40760.871 Hz FIDRES 0.612393 Hz AQ 0.8165193 sec RG 362 DW 12.267 usee DE 6.00 usee ТЕ 300.0 К Dl 4.00000000 sec Dil 0.03000000 sec TDO 1 riUMNFI f i _.« NUC1 СПАПНЫ. LI — 13C PI 7.00 usee PL1 0.00 dB SFOl 100.6208180 MHz ........ CHANNEL f2 —■ ..... CPDPRG2 waltzl6 NUC2 1H PCPD2 80.00 usee PL2 -1.00 dB PL12 16.00 dB PL13 20.00 dB SF02 400.1320007 MHz SI 32768 SF 100.6127690 MHz WDW EM SSB 0 LB 0.30 Hz GB 0 PC 1.40 г 1 I 100 200 180 160 140 120 80 60 40 20 ppm Fig: 13C-NMR spectra of 4-methylbenzyl alcohol, 2 НоиШОтНлНтНЖЯВКЬгиНАи «rlrli-lrloaieshhhhkhhk »« H M И jjJ^U-JL LIJ. „JL BRDEER ÄViHTT TT 4ПП Ш ^ЖСЬИИЕЪеЕ fflIF Itenjab TMlverait^ QmiKügarh (mint Data houtEia ПНЕ iprl6-2015 EĐID » пюсю 1 F2 - Iqpiaitüa 1агак1 :егэ DatE_ 20190410 Г ìme 23.07 IKTBH ^ECt ПШЕШ 5 x> JIBEO EB- FUI ROG ig30 ТП «sat lOIVMT □ICH ■3 1« □3 2 ЗИ 12019.230 Ь ГЛШЕЗ 0.103399 Ь ч 2.72C34T7 КС KG 25* DB 41. <00 U3EU DE i.00 ■ВЕС TE 295.3 E Dl 1.00000000 КС IDO 1 : ОПК1 £1 =—= ■ULI IH 11 10.90 ■ВЕС 111 -3.00 Л SIDI 400.1324710 Hi Г2 - !шсе si зг ss IB ев 1С paiautc: 32746 400.13004« ] DI О 0.30 0 1.00 Fig: 1H NMR of 4-methoxy benzyl iodide, 3 ............flflQF-f lam«ллмммимм - - - - IMHHTIHTITITITITIH UHUIIC 4-1Ч1Ч I-I I-I I-I-ri-ri-ш-li-li-l I-I P-P-P-P-P Л Л H BROKER шна II 400 IHR Spectrometer SIF ten jab University Qiandigarfa burnt Ibb ЬпкЬз DE ri 6-2015 EX МО 51 13 - Äajni aitili и luaKtEia lbtE_ 201504 lì Iìk 0.0S ЛЛШ apct 11Ш S z> пиве ВБ- HTLVBOG ЧН» ID <55» »min CDClt ■3 1024 ИЗ * Я! 2Э7И_Э(И № ПКЕЗ 0.4541» № 1Q 1.10105« ЗЕС ВС 10» IB Ы.ВОС от IE «_Wi os IE 295.2 E Dl 2.0000000« IK öl 0.0300000« 9Н [EITI 1.6999999t эк IDI 1 WWtliHH цпДирийяиоЬи 1 JmLUJXf* ■w mrtiHiWt М1.Ш», ==== ci апвег HC2 КЛ2 m П32 Л12 зге П - Im SI sr 331 IE .....I........I.........I.........I.........I.........I........I.....""1.........1.........1.......1.........1.........1"" 210 ZLO ZOO 130 ISO ITO 160 1» 140 130 LIO 110 LOO SO TO во 30 40 34 20 LjO 1 £2 ===== iraltmtf IE BO.Ot икс -3.0(1 dE 14.31 dE 16.0(1 dE 400_131«0№ Vb 327it 1D0.C12BW Hb EV « 1.0(1 Di « 1.4t Fig: 13C NMR of 4-methoxy benzyl iodide, 3 Onn(>>CMeinnNNOI»-«00 N N' N Г"-' N N N N K N N N N Г»' N S Ч V - Ч> О "».Г«»! It fi К M/ N. « -1- 200 180 160 —i— 140 —i— 120 100 80 60 40 20 0 ppm Current Dala Parameters NAME NovW-2014 EXPNO 6 PROCNO 1 F2 - Acquisition Parameters Date_ 20141110 Time 0.20 INSTRUM sped PROBHD SmmPABBOBB-PULPROG zgpg30 TD 32768 SOLVENT CDCI3 NS 1024 DS 4 SWH 29761.904 Hz RDRES 0.908261 Hz AQ 0 S505524 sec RG 203 DW 16.800 usee DE 6.50 usee ТЕ 298.1 К DI 2.00000000 sec D11 0.03000000 sec TDO 1 ===== CHANNEL f1 ===== NUC1 13C P1 7.80 usee PL1 0.00 dB PL1W 70.83519745 W SF01 125.7703643 MHz ===== CHANNEL 12 == CPDPRG2 waltz 16 NUC2 1H PCPD2 80.00 usee PL2 0.00 dB PL12 17.51 dB PL13 18.00 dB PL2W 23.53637505 W PL12W 0.41757989 W PL13W 0.37302643 W SF02 500.1320005 MHz 13 Fig: C NMR spectra of 4-bromobenzyl iodide, 11 ФНСОГОФФОГ-О HOCO ЮТМОГ4 щ corofMcgcgojcsjHH Г-Г-Г^Г-Г^Г'Г'Г-Г' rH (M (V) T 1Л T (N О МЛ M О О fO H H H ГО ГО со го го <о о о 0 1 DO BRUKER ÜXJ А г NAME 1H 12 EXPNO 1 PROCNO 1 Date. 20151019 Time 14.43 INSTRUM spect PROBHD 5 mm BBO BB-1H PULPROG 29 TD 32768 SOLVENT CDC13 NS 16 DS 0 SWH 20000.000 Hz FIDRES 0.610352 Hz AQ 0.8192500 sec RG 51 DM 25.000 usee DE 6.00 usee TE 300.0 К Dl 1.00000000 sec TDO 1 ГНДЫМГТ fi anni NUCl IH PI 11.50 usee PL1 -1.00 dB SP01 400.1306362 MHz SI 16384 SF 400.1300288 MHz HDW EM SSB 0 LB 1.00 Hz GB 0 PC 1.00 "Т™ 10 ppm Fig: 1H-NMR spectra of (2-iodoethyl)benzene, 15 13C 12, CDC13, 19/10/15, SAIF, NEHU ЧГГ-ШГ-СОГ^Г-CN) hom^to^N^ kO r ^ n O H Ol |Л RUKER NAME 13C 12 EXPNO 1 PROCNO 1 Date_ 20151019 lime 15.16 INSTRUM spec t PROBHD 5 mm BBO BB-IH PULPROG zgpg ID 66560 SOLVENT CDC13 N5 370 DS 0 SWH 40760.871 Hz FIDRES 0.612393 Hz AQ 0.8165193 sec RG 256 DW 12.267 usee DE 6.00 usee ТЕ 300.0 К Dl 4.00000000 sec Dil о.озоооооо sec TDO 1 тштшяятш NUCl 13C PI 7.00 usee ры 0.00 dB SP01 100.6208180 MHz ........ CPDPRG2 waltzl6 NUC2 IH PCPD2 80.00 usee PL2 -1.00 dB PL12 16.00 dB Р1ДЗ 20.00 dB SF02 400.1320007 MHz SI 32768 SF 100.6127690 MHz WDW EM SSB 0 LB 0.30 Hz GB 0 PC 1.40 200 180 —I— 160 140 120 100 -г-80 60 -г-40 ~Г~ 20 ppm Fig: 13C-NMR spectra of (2-iodoethyl)benzene, 15 1-Iodooctadecane u> О гЧ ^ г- ю р> Ф г* О irt Ч» г-đifij [£: m. i-i (-g u> р^ с^ r> i5\ СЧ "»т гч à\ гт' 'A: [Ч IH »H m i^T- W гн di rlOO rr hrr ЛПМННШВГ V ^w Ut BEUKER AVANCE II 400 NMR Spectrometer SAIE Panjab University Chandigarh Current Data Parameters NAHE Aprl3-2015 EXPNO 1С РЙ0СЖ1 1 F2 - Acquisition Parameters Date_ Time INSIMM PROBED POLPMG TD SOLVENT N5 DS SDH FIDRES W RG DB DE 73 Dl TD О NOCI PI P LI SFOl 2015D418 22. Of. spect 5 mm PABBD BB-zq3D 65536 □ИЗ 16 2 12019.230 Hz 0.18339S Hi 2.7263477 sec 3! 41.600 usee 6.90 usee 295.5 К l.QOOODOOO sec 1 CHANNEL £1 ---- IB 1С. И usee -3.10 dB ■SOD. 1324710 ИВ z F2 - Processing parameters 51 32 7 SE 5F 40G.130D373 MBz HDD EM SSB 0 13 D.30 Hz GS 0 PC 1.10 ...... II III! ID 9 в 1 t : 1 3 1 0 ppm avtar_sai fpuSyahoo.со.in Fig: 1H-NMR spectra of 1-iodooctadecane, 16 !" r- ^ I 1 .....i.........i.........i.........i..... 110 ZIO IDO IBB "T" LED "4.........1.........1.........1.........1.........1.........1.........1..... ITD UD LiB л В 130 13 t 110 IDO тттртп SD тттрттт ID тттрж "1™ EC- mjnrr 1С mlmT 3C- HOOKER AVANCE II 4Q0 NMR 3 ре et г зеле ter SAIE1 Fanjab University Chandigarh Current D~ta Гагатстдгл ИННЕ Acri В ID15 EX7HD al гзоал : 72 - ActjI 5 lilcn rir.LiT'.cr: I-ita. TI IK тыапни ВИШНЕ FU LT ROG TD ECLVEIfT В db ew:H fidrks ад RjC □к LZ TZ :: dll ZZLIA TDCi 3BÜEDUE 23.02 apoct Б im FABRO Eli :qFr2Ci bSUi CDIT13 1UZA i 237Ù.MH H: 0.454L31 Nr 1.JD1I5U КС 1D30 l£_BOO uk: E.DO ия: 23Ъ.Ь И 2.0DD000D0 КС О _ С ЭОв D MX] кс 1.Ю9339Я КС L — — 7KANHE.L П . — . — УТ1С1 ".ЗС Г] З.ЁО -DCz ILI -Z.ĐO .U ВПН IDO- £27Я29Я Hi СВАНШЬ li .-.-.. CTDr-RlCL valili li MICI rc7s: 112 PL] 2 TL13 S7C1 T2 - EI EJ : Е£Э U IB 30. DO ия: 2.00 đ3 Li.31 13 15.00 <13 1№.Ш(№ ICH: ?r::ri!;:rq pa rumare 3ÌTÉ3 lDB.tl27éS0 CH: EH : 1.И Hz : I.4B avtar_saifpußyahco.cc. in Fig: 13C NMR Spectra of 1-iodooctadecane, 16 iH 1ЛГ-01ЛСХ)ОС\1^ЮСОГОГ-Г-Г^СМ1ЛО OOOr-l/)rO(MOCOr-OOVOr^O>OOVDO (NrHHCOCOCOCOr^inrOrOrOOJCOCOCO • ................о IHHriHOOO I A ) e>o BRUKER UXJ NAME IH 16 EXPNO 1 PROCNO 1 Date. 20151019 Time 11.04 1NSTRUM spec t PROBKD 5 mm BBO BB-IH PULPROG TD 32768 SOLVENT CDC13 NS 16 DS 0 SWH 20000.000 Hz FIDRES 0.610352 Hz AQ 0.8192500 sec RG 45.2 DW 25.000 usee DE 6.00 usee TE 300.0 К DI 1.00000000 sec TDO 1 NUC1 IH PI 11.50 usee PL1 -1.00 dB SFOl 400.1305068 MHz SI 16384 SF 400.1300025 MHz WDW EM SSB 0 LB 1.00 Hz GB 0 PC 1.00 10 ppm Fig: 1H-NMR spectra of 1-iodooctane, 17 13C 16, CDC13, 19/10/15, SAIF, NEHU rH 00 r- r- 1Л ГО ГО «H го см о г* Г* Г- Гг- г» г» г^ EXPNO 1 PROCNO 1 Date_ 20151019 Time 11.35 INSTRUM spect PROBHD 5 mm BBO BB-1H PULPROG zgpg ТВ 66560 SOLVENT CDC13 NS 310 DS 0 SWH 40160.811 Hz FIDRES 0.612393 Hz AQ 0.8165193 sec RG 256 DM 12.261 usee DE 6.00 usee TE 300.0 К Dl 4.00000000 sec Dil 0.03000000 sec IDO 1 CHANNEL fl ■■■■ NUCl 13C PI 1.00 usee PI/1 0.00 dB SFOl 100.6208180 MHz ........ CPDPRG2 ualtzl6 NUC2 IN PCPD2 80.00 usee PL2 -1.00 dB PL12 16.00 dB PL13 20.00 dB SF02 400.1320001 MHz SI 32168 SF 100.6121690 MHz WDW EM SSB 0 LB 0.30 Hz GB 0 PC 1.40 оо BRUKER IPinnNNNNHN / "V / \ ^Ч^У// LXJ 11|И 1 1 1 МАМГ 1 1Г ТС ММПСОНФЮО^ м^юмносдтосо ЮГ4 Н1ЛФН(Л .........го rOHrHOCP>^OOfNJ*r • гогогогос\с\счсднг- 200 180 160 140 120 100 80 60 40 20 ppm Fig: 13C-NMR spectra of 1-iodooctane, 17 8! SSPtjSSSSKäSiS SSSR1S8 <м см ^ v co co co co h. m n en n n сч co co co q К ri H ci »-' ^ «-' г г т'о d d i Current Data Parameters NAME Novi 0-2014 EXPNO 9 PROCNO 1 F2 - Acquisition Parameters Date 20141110 Time 1.14 INSTRUM spect PROBHD SmmPABBOBB-PULPROG zg30 TD 32768 SOLVENT CDCI3 NS 32 DS 2 SWH 10330.578 Hz FIDRES 0.315264 Hz AO 1.5860212 sec RG 203 DW 48-400 usee DE 6.50 usee TE 296 8 К D1 1.00000000 sec TDO 1 — CHANNEL 11 ——: NUC1 1H P1 10.65 usee PL1 0.00 dB PL1W 23.53637505 W SF01 500.1330885 MHz F2 - Processing parameters SI 32768 SF 500.1300129 MHz WDW EM SSB 0 LB 0.30 Hz GB 0 PC 1.00 16 15 14 13 12 11 10 9 8 7 6 5 4 -1 -2 ppm Fig: 1H NMR spectra of 1-dodecyl iodide, 18 Current Data Parameters NAME Nov10-2014 EXPNO 10 PROCNO 1 n 01 in n 5 К K' K «i k к к NS 1024 DS 4 SWH 29761.904 Hz fìDRES 0.908261 Hz AO 0.5505524 sec RG 203 DW 16.800 usee DE 6.50 usee TE 297.6 К DI 2.00000000 sec D11 0.03000000 sec TDO 1 ------ CHANNEL 11 NUC1 13C P1 7.80 usee PL1 0.00 dB PL1W 70.83519745 W SF01 125.7703643 MHz __ r.HiHNFI П--- CPDPRG2 waltz 16 NUC2 1H PCPD2 80.00 usee PL2 0.00 dB PL12 17.51 dB PL13 18.00 dB PL2W 23.53637505 W PL12W 0.41757989 W PL13W 0.37302643 W SF02 500.1320005 MHz CMOgKoiinOittcosteo StSÖRÖim W88 ci^cioioioioioicdN^n^ F2 - Acquisition Parameters Date 20141110 Time 1.16 INSTRUM sped PROBHD SmmPABBOBB-PULPROG zg TD 327 SOLVENT CDCI3 I ' I ' I—'—I— I ■ i ■ I ' I —I— l'i' 200 180 160 140 120 100 60 60 40 20 0 ppm Fig: 13C NMR spectra of 1-dodecyl iodide, 18 O- и d» i ^ tì> if) -t O P- * NO DO шве Hir4 йг1 OON l/v IO m If> 1Л1Л rt 01 I/} ^ I- * u> Irt r-i ^ rtiip г-. Ч> Ю if n o r и Ù> 1Ж> H rt o » <ù ГчЛМЧг! В®® IÖIÖIC4 N rlrtr) ,-j H йП O BRÖKER AVANCE II 400 NMR ч^г^нг|>>ыннгялп1гщтн(мг DEeCEГОШЕ Ee1 " """ " saif Panjab University Chandigarh Currer.t Data Parameters SAME AprlS-2015 EXPNO 30 PROCNO 1 F2 - Acqui Date_ Tine INSTHIW rSOEHD 5 PQLPHOG 7D SOLVENT № DS SWH FIDGES AQ EG DH DE 7E DI 7D0 sition Parameters 2015041E 21.D5 spect лип PAEBD ЗБ-:g30 Ё&53Ё CDC13 Ih 2 12019, 230 Hi 0.1B33S3 Hi 2.1263471 sec 50.8 U. 6C3 usee fi.DO usee 295. 3 К l.OOOODODO sec 1 NOCI PL P LI 5F01 F2 -31 sr ига 5SE LB GB PC CHANNEL fl ---- 1H 1С.0 3 usee -3.D0 dB 400,1321110 MHl Processing paraireters 32%B 4O0.13O0ODO HHi EK 0 0.33 Hi 0 1 j DO I I 1 1 fill гт-р-г ppm avtar_saifpu(ü yahoo, со. in Fig: 1H NMR Spectra of citronellyl iodide, 19 I J ж .....i.........i.........i.........i.........i" 220 210 ZOO НС 160 ""I.........I.........I.........I.........I.........I.........I.........I..... .7D 1 SD 1:0 Hü 130 L2D 110 100 "T" 70 BRÖKER AVANCE II 400 NMR Spectrometer SAIF Panjab University Chandigarh Current Data Parameters NAME AprlS-2015 EKPNO 31 FROCWO 1 F2 - Acquisition Parareters DatE_ ' 2015Q41B rime 22,Dl INSI7UM spect PBCEHD Ъ ГЯ1 PAHBQ вв- PULPROG гдрдЗО TD 65635 SOHFEHT CDCL3 KS 1024 de ; SUH 29761,90a Hl FEDRCS B.Ì54131 Hl AO 1.101 DE« SEC EG 103D DM 16,600 usee DE S.OD ИЭЕС ТЕ 29Ь,7 К Dl 2,OOOOOOOD SEC dll 0,03000000 SEC DELIA 1.ШШ SEC TD0 1 --------CHANNEL fi-------- KUCl 13C PI 9.60 usee PLl -2. 00 dE SEOl 100.6223208 UHI --------CHANNEL F2-------- CPDPEC2 «alt Sit jrac2 Ih PCPD2 EO.00 U3EC PL2 -3,00 dE FL12 la.31 dE PLl3 13,00 dE SE02 aOO.lJlfOOS MHz F2 - Processing parameters EI 3276В SE 100,6127690 UHI J1Ш EH 5SH 0 LB 1,00 Hz тD 1.JÜ i fppc avtar_5aifpu@yahoo.co,in Fig: 13C NMR Spectra of citronellyl iodide, 19 Ю c\| O T ЮНЮО^ТОСОГ4 Ч* ^ Ц) Ф О 00 VD ^ СП г- r^m^rooov£>csjvDino»H(T>o СО ГО ГО OJ СМ rHiHOOCft^t^VDVOVOvrrO • ......................о T «T "T T Ч1 M(N(N(NHHHHHHHH I IRUKEI CJXJ NAME 1H 14 EXPNO 2 PROCNO 1 Date_ 20151019 Time 15.57 INSTRUM apect PROBHD 5 mm BBO BB-1H PULPROG zgcppr TD 3276B SOLVENT CDC13 NS 16 DS 2 SWH 20000.000 Hz FIDRES 0.610352 Hz AO 0.6192500 sec RG 71.8 DW 25.000 usee DE 6.00 usee ТЕ 300.0 К Dl 5.00000000 sec D12 0.00002000 sec TDO 1 NUCl 1H PI 11.50 usee PL1 -1.00 dB PL9 50.00 dB SF01 400.1305068 MHz SI 16384 SF 400.1300033 MHz WDW EM SSB 0 LB 1.00 Hz GB 0 PC 1.00 K ) 10 ppm Fig: 1H-NMR spectra of iodocyclohexane, 25 Г- 1Л CM 4" m CM CM О m см о г» I- р- Г- U5 г~ г* г~ ю см о оо m см СМ Г- 1Л о см см I/ mm m оо BRUKER mm NAME 13C 14 EXPNO 1 PROCNO 1 Date_ 20151019 Time 16.23 INSTRUM spect PROBHD 5 mm BBO BB-1H PULPROG Z9P9 TD 66560 SOLVENT CDC13 NS 740 DS 0 SWH 40760.871 Hz FI DRES 0.612393 Hz AO 0.8165193 sec RG 256 DW 12.267 usee DE 6.00 usee ТЕ 300.0 К Dl 4.00000000 sec Dil 0.03000000 sec TDO 1 NUC1 13C PI 7.00 usee PL1 0.00 dB SFOl 100.6208180 MHz ........ CPDPRG2 waltzl6 NUC2 1H PCPD2 80.00 usee PL2 -1.00 dB PL12 16.00 dB PL13 20.00 dB SF02 400.1320007 MHz SI 32768 SF 100.6127690 MHz WDW EM SSB 0 LB 0.30 Нг GB 0 PC 1.40 ~г т ~г ~г "Т 80 —т~ 60 I 40 200 180 160 140 120 100 20 ррт 13 Fig: C-NMR spectra of iodocyclohexane, 25 <7\ H V£> r-00 KD tO 00 VD NMNHH r- r* r* r- r- CTI IO m о о 0 1 .RÜKE. CXJ NAME IH 13 EXPNO i PR0CN0 i Date. 2015101» Time 15.20 INSTRUM speci PROBHD 5 m ВВО BB-IH PULPROG »9 TD 32768 SOLVENT CDC13 NS 16 DS 0 SWH 20000.000 Hz FIDRES 0.610352 Hz AQ 0.8192500 sec RG 71.8 DW 25.000 usee DE 6.00 usee ТЕ 300.0 К Dl l.OOOOOOOO sec TDO 1 NUC1 1H PI 11.50 usee PL1 -1.00 dB SF01 400.1306362 MHz SI 16384 SF 400.1300330 MHz WDW EM SSB 0 LB 1.00 Hz GB 0 PC 1.00 's ; T" 11 TTjrr 10 ррш Fig: 1H-NMR spectra of (iodomethylene)dibenzene, 26 (Iodomethylene)dibenzene OOHOHNH kO О» ГО (N C\) О H 0\ CO in rH 00 rH CD 00 00 vo m 4* CM (N (N (\| (N HHHHrlH M (J4 Г4 СЛ rH o> r-^ CN О |> r- r- r- vo c^ r^ r- чу O) л 00 00 u\ t- rH к üitie ö \ oo