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DMFA – ZALOŽNIŠTVO
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Preface

We are continuing our popular Mini-Workshops on hadronic physics. The tra-
ditional meeting issues such as production and decays of baryon and meson
resonances have been augmented this year by an interdisciplinary topic: the in-
terplay between Lattice QCD and few-body techniques used for hadronic spec-
troscopy, aimed at what knowledge the quark modelists can adopt from Lattice
QCD experts and, conversely, what Lattice QCD practitioners can learn from
quark-model wave-functions.

First, lattice derivations of hadronic properties, also for excited hadrons, were
introduced. There have been proposals on how bare quarks evolve into dressed
quarks as quasi-particles of QCD. Chiral extrapolations in Lattice QCD can im-
prove the calculation of nucleon mass but the convergence turned out to be ques-
tionable. Can suitable propagators lead to gluon condensate? Important issues
of quantum field theory, QCD vacuum, string picture, as well as the choice of
appropriate correlators and interpolating fields in Lattice QCD were discussed.

New rounds of experiments at Mainz and JLab have advanced the understanding
of the electromagnetic and spin structure of the nucleon. The important role of
the pion cloud was re-confirmed in the Roper and other P11 and P33 resonances.
Incorporation of chiral dynamics and relativistic recoil corrections are important
to reproduce the experimental nucleon-nucleon scattering phase shifts. Isospin
breaking was analysed in the parity-violating asymmetry of electron scattering
on 4He, and the strange-quark contribution to the proton charge and magnetism
was precisely determined.

The baryonic decay widths computed in various quark models remain too nar-
row in spite of improved treatment of relativity and current conservation. The
approximate degeneracy of highly excited mesons and baryons calls for a more
fundamental understanding of chiral symmetry restoration and ordering of chi-
ral multiplets. The classification of scalar mesons is still controversial: it is unclear
whether they can be understood as quasi-bound states of two mesons and what
is their role in nuclear forces.

In cases where authors preferred not to duplicate the material published else-
where, only the title and/or abstract is included.

We have witnessed unusually fruitful discussions which we hope will initiate
further cross-fertilization of the fields. It was our pleasure to be the host at Bled
and to edit the Proceedings as a testimony to these exciting developments.

Ljubljana, November 2007 M. Rosina
B. Golli
S. Širca
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Renormalisation in quantum mechanics

Michael C. Birse

Theoretical Physics Group, School of Physics and Astronomy

The University of Manchester, Manchester, M13 9PL, U.K.

Abstract. This lecture provides an introduction to the renormalisation group as applied to

scattering of two nonrelativistic particles. As well as forming a framework for constructing

effective theories of few-nucleon systems, these ideas also provide a simple examplewhich

illustrates general features of the renormalisation group.

1 Effective theories

As particle and nuclear physicists, we are familiar with renormalisation in quan-
tum field theory. We meet it first as a trick to get rid of mathematically unpleas-
ant divergences. Later we learn to see it as part of a larger structure based on
scale-dependence: the renormalisation group (RG). This is also how it appears in
condensed-matter physics, in the context of critical phenomena [1].

The same ideas can also be used to study scale dependence in much simpler
systems: just two or three nonrelativistic particles. They are of particular inter-
est in nuclear physics, where we are trying to construct systematic effective field
theories of nuclear forces (see [2] for recent reviews). They can also be applied
to systems of cold atoms in traps, where magnetic fields can be used to tune the
interactions between the atoms. In addition, these applications provide tractable
examples of RG flows. Without the complications of a full field theory, the equa-
tions can often be solved exactly while still illustrating all of the general features
of these flows [3].

Effective field theories describe only the low-energy degrees of freedom of
some system and so they are not “fundamental”. In general they are not renor-
malisable and so they contain an infinite number of terms. This is potentially a
disaster for their predictive power, but not if we can find a systematic way to or-
ganise these terms. Then, at any order in some expansion, only a finite number of
terms will contribute. Having determined the coefficients of these by fitting them
to data (or to simulations of the underlying physics), we can use them to predict
other observables.

This works provided there is a good separation of scales, as illustrated in
Fig. 1. Here Q generically denotes the experimentally relevant low-energy scales
and Λ0 the scales of the underlying physics. In the case of nuclear physics, the
low scales include particles’ momenta and the pion mass, while the high scales
include the scale of chiral symmetry breaking, 4πfπ, and the masses of hadrons
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like the ρmeson and nucleon. If these are well separated, we can expand observ-
ables in powers of the small parameter Q/Λ0. The terms in the effective theory
can then be organised according to a “power counting” in the low scales Q.

���������������
���������������
���������������
���������������

���������������
���������������
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0
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Fig. 1. Scales and the running cut-off.

The effective theory describes physics at low momenta. Short-range physics
is not resolved by it and so is just represented by contact interactions (δ-functions
and their derivatives). However scattering by these is ill-defined since they cou-
ple to virtual states with arbitrarily high momenta. The basic nonrelativistic loop
diagram (which is relevant for the rest of this talk) is shown in Fig. 2.

−p p

−p p

−q q

Fig. 2. The basic loop integral.

For S-wave scattering this integral is

M

∫
q2 dq

p2 − q2
∼ −M

∫
dq, for large q, (1)

and so contains a linear divergence. We therefore need to regulate the theory.
There are many ways to do this: dimensional regularisation [4], a simple momen-
tum cut-off [3], or adding a term to the kinetic energy to suppress high-energy
modes [5]. All of these are equivalent, but each introduces some arbitrary scale,
Λ. This is essentially the highest momentum that is included explicitly in the the-
ory. Physical predictions should be independent of Λ and this leads us to the RG.
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As we lower Λ, the couplings must run. This is because more and more
physics is “integrated out” (see Fig. 1) and so must be included implicitly in the
effective couplings. Ultimately we lose all memory of the underlying physics and
the only scale we have left is Λ. In units of Λ, everything is then just a number.
We have arrived at a fixed point of the RG – a scale-free system. These are the
end-points of the RG flow. Two are shown in Fig. 3. The one on the left is stable:
any nearby theory will flow towards it as the the cut-off is lowered. In contrast,
the one on the right has an unstable direction: the flow can take theories away
from the fixed point unless they lie on the “critical surface”.

Fig. 3. Fixed points.

Close to a fixed point, we can find perturbations that show a power-law de-
pendence on Λ and we can use this power counting to organise the terms in our
effective theory. They can be classified into three types:

• Λ−ν: relevant/super-renormalisable1,
for example mass terms in quantum field theories like QED;

• Λ0: marginal/renormalisable,
for example the couplings familiar in gauge theories like the StandardModel
(typically these show a logΛ dependence on the cut-off);

• Λ+ν: irrelevant/nonrenormalisable,
for example the interactions in Chiral Perturbation Theory.

2 RG equation for two-body scattering

Let us look at scattering of two non-relativistic particles at low enough energies
that the range of the forces is not resolved (for example, two nucleons with an en-
ergy below about 10MeV). This can be described by an effective Lagrangianwith
two-body contact interactions or, equivalently, a Hamiltonian with a δ-function
potential. In momentum space, the S-wave potential can be written

V(k ′, k, p) = C00 + C20(k2 + k ′2) + C02 p
2 · · · , (2)

where k and k ′ denote the initial and final relative momenta and the energy-
dependence is expressed in terms of the on-shell momentum p =

√
ME.

1 The term “relevant” is commonly used in condensed-matter physics, whereas “super-

renormalisable” is more usual in particle physics.
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Scattering can be described by the reactance matrix (K), defined similarly to
the scattering matrix (T ) but with standing-wave boundary conditions. This has
the advantage that it is real below the particle-production threshold. For S-wave
scattering, it satisfies the Lippmann-Schwinger equation

K(k ′, k, p) = V(k ′, k, p) +
M

2π2
P

∫Λ

0

q2dq
V(k ′, q, p)K(q, k, p)

p2 − q2
, (3)

where P denotes the principal value. This integral equation sums chains of the
bubble diagrams in Fig. 2 to all orders. On-shell (k ′ = k = p), the K-matrix is
related to the T -matrix by

1

K(p)
=

1

T(p)
− i

Mp

4π
= −

Mp

4π
cot δ(p), (4)

where δ(p) is the phase shift.

With contact interactions, the integral over the momentum q of the virtual
states is divergent and so we need to regulate it. Here I follow the method de-
veloped in [3] and simply cut the integral off at q = Λ. We can write the integral
equation in the schematic form

K = V + VGK. (5)

Demanding that the off-shell K-matrix be independent of Λ,

K̇ ≡ ∂K

∂Λ
= 0, (6)

ensures that scattering observables will be independent of the arbitrary cut-off.
Differentiating the integral equation gives

0 = V̇ + V̇GK+ VĠK, (7)

where Ġ implies differentiation with respect to the cut-off on the integral. Multi-
plying this by (1+GK)−1 and using the integral equation for K, we arrive at

V̇ = −VĠV. (8)

This equation has a very natural structure: as states at the cut-off, with q =

Λ, are removed from the loop integral in Fig. 2, their effects are added into the
potential to compensate. Written out explicitly, it is

∂V

∂Λ
=
M

2π2
V(k ′, Λ, p,Λ)

Λ2

Λ2 − p2
V(Λ, k, p,Λ). (9)

Note that the use of the fully off-shell K-matrix was essential to obtaining an
equation involving only the potential; a similar approach based on the half-off-
shell T -matrix yields an equation that still involves the scattering matrix [6].

This equation for the cut-off dependence of the effective potential is still not
quite the RG equation: the final step is to express all dimensioned quantities in
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units of Λ. Rescaled momentum variables (denoted with hats) are defined by
k̂ = k/Λ etc., and a rescaled potential by

V̂(k̂ ′, k̂, p̂, Λ) =
MΛ

2π2
V(Λk̂ ′, Λk̂, Λp̂,Λ). (10)

(The factorM in this corresponds to dividing an overall factor of 1/M out of the
Schrödinger equation.) This satisfies the RG equation

Λ
∂V̂

∂Λ
= k̂ ′ ∂V̂

∂k̂ ′
+ k̂

∂V̂

∂k̂
+ p̂

∂V̂

∂p̂
+ V̂

+V̂(k̂ ′, 1, p̂, Λ)
1

1− p̂2
V̂(1, k̂, p̂, Λ). (11)

The sum of logarithmic derivatives is similar to the structure of analogous RG
equations in condensed-matter physics; it counts the powers of low-energy scales
present in the potential. The boundary conditions on solutions to this equation are
that they should be analytic functions of k̂2, k̂′2 and p̂2 (since they should arise
from an effective Lagrangian constructed out of ∂/∂t and ∇2). For small values
of these quantities the potential should thus have an expansion in non-negative
integer powers of them.

3 Fixed points and perturbations

Having constructed the RG equation, the first thing we should do is to look for
fixed points – solutions that are independent of Λ. There is one obvious one: the
trivial fixed point

V̂ = 0. (12)

(Since there is no scattering, this obviously describes a scale-free system.)

To describe more interesting physics, we need to expand around the fixed
point, looking for perturbations that scale with definite powers of Λ. These are
eigenfunctions of the linearised RG equation. They have the form

V̂(k̂ ′, k̂, p̂, Λ) = Λνφ(k̂ ′, k̂, p̂), (13)

and they satisfy the eigenvalue equation

k̂ ′ ∂φ

∂k̂ ′
+ k̂

∂φ

∂k̂
+ p̂

∂φ

∂p̂
+ φ = νφ. (14)

Its solutions are
φ(k̂ ′, k̂, p̂) = C k̂′2l k̂2m p̂2n, (15)

with k, l,m ≥ 0 since only non-negative, even powers satisfy the boundary con-
dition. The corresponding eigenvalues are

ν = 2(l+m + n) + 1. (16)

These are all positive and so the fixed point is stable. The eigenvalues simply
count the powers of low-energy scales. (ν = d + 1 where d is the “engineering
dimension”, as in Weinberg’s original power counting for ChPT [7].)
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There are also many nontrivial fixed points, all of which are unstable. The
most interesting one is purely energy-dependent. To study it, I focus on potentials
of the form V(p,Λ). The RG equation for these simplifies to

Λ
∂V̂

∂Λ
= p̂

∂V̂

∂p̂
+ V̂ +

V̂(p̂, Λ)2

1− p̂2
. (17)

Since all terms involve just one function, we can divide by V̂2 to get

Λ
∂

∂Λ

(
1

V̂

)
= p̂

∂

∂p̂

(
1

V̂

)
−
1

V̂
−

1

1− p̂2
, (18)

which is just a linear equation for 1/V̂(p̂, Λ).

To find the fixed point, we set the LHS of this equation to zero. The resulting
ODE can then be integrated easily. The general solution is

1

V̂0(p̂)
= −

∫1

0

q̂2 dq̂

q̂2 − p̂2
+ Cp̂. (19)

The final term is not analytic in p̂2 and so the boundary condition requiresC = 0.
The fixed-point potential is thus

1

V̂0(p̂)
= −1+

p̂

2
ln
1+ p̂

1− p̂
. (20)

The precise form of this is regulator-dependent (for example, it is just a constant
for dimensional regularisation [4]), but the presence of a negative constant of
order unity is generic.

Since this potential has no momentum dependence, the integral equation for
the K-matrix simplifies to an algebraic equation. In rescaled, dimensionless form,
it can be written

1

K̂(p̂)
=

1

V̂0(p̂)
−

∫1

0

q̂2 dq̂

p̂2 − q̂2
. (21)

The integral here is just the negative of the one above in 1/V̂0 itself and so we get

1

K̂(p̂)
= 0. (22)

The corresponding T -matrix,

1

T̂(p̂)
=

1

K̂(p̂)
+ i

π

2
p̂, (23)

has a pole at p̂ = 0. The fixed-point therefore describes a system with a bound
state at exactly zero energy (another scale-free system).

More general systems can be described by perturbing around the fixed point.
In particular, energy-dependent perturbations can be found by substituting

1

V̂(p̂, Λ)
=

1

V̂0(p̂)
+ Λνφ(p̂) (24)



Renormalisation in quantum mechanics 7

into the RG equation. The functions φ(p̂) satisfy the eigenvalue equation

p̂
∂φ

∂p̂
− φ = νφ. (25)

The solutions to this are powers of the energy,

φ(p̂) = Cp̂2n, (26)

with eigenvalues
ν = 2n − 1. (27)

The RG eigenvalues for these perturbations have been shifted by −2 compared to
the simple “engineering” power counting. There is one negative eigenvalue and
so the fixed point is unstable.

-3

-2

-1

0

1

2

3

-2 -1.5 -1 -0.5 0 0.5 1

Fig. 4. RG flow of the potential V̂(p̂, Λ) = b0(Λ) + b2(Λ) p̂2 + · · · .

A slice through the RG flow is shown in Fig. 4. The two fixed points can
be seen, as well as the critical line through the nontrivial one. Potentials close
to this line initially flow towards the fixed point as we lower the cut-off but are
then diverted away from it. A potential to the right of the line is not quite strong
enough to produce a bound state. As Λ passes through the scale associated with
the virtual state, the flow turns to approach the trivial fixed point from the weakly
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attractive side. In contrast, a potential to the left of the critical line generates a
finite-energy bound state. This state drops out of our low-energy effective theory
when the cut-off reaches the corresponding momentum scale. As this happens,
the RG flow takes the potential to infinity and it then reappears from the right,
ultimately approaching the trivial fixed point from the weakly repulsive side.

Exercise:Repeat this analysis for a general number of space dimensions, in particular for
D = 1 and 2, and interpret your results.

Physical observables are given by the on-shell K-matrix. Returning to physi-
cal units, this is

1

K(p)
=
M

2π2

∞∑

n=0

Cn p
2n, (28)

where the Cn are the coefficients of the RG eigenfunctions in 1/V̂ . Comparing
this with

1

K(p)
= −

Mp

4π

(
−
1

a
+
1

2
rep

2 + · · ·
)
, (29)

we see that this expansion is, in fact, just the effective-range expansion (first ap-
plied to the nucleon-nucleon interaction by Bethe in 1949 [8]). Note that the terms
in the expansion of our effective theory have a direct connection to scattering ob-
servables. This is as it should be: effective theories are systematic tools to analyse
data, not fundamental theories that aim to predict everything in terms of a small
number of parameters.

Finally, I should make a brief comment about momentum-dependent per-
turbations around the nontrivial fixed point, which I have not discussed above.
These terms change the off-shell dependence of the scattering matrix, without
affecting physical observables. Their explicit forms can be found in Ref. [3]. In
contrast to the expansion around the trivial fixed point, momentum- and energy-
dependent terms appear at different orders. Specifically, the momentum-depen-
dent perturbations around the nontrivial point have even RG eigenvalues. Each
term is one order higher in the expansion than the corresponding energy-depen-
dent one. This means that using them to eliminate energy dependence will leave
an effective potential without an obvious power counting (like the potential ob-
tained in Ref. [6]).

4 Extensions

Here I have discussed only the application of the RG to systems where the range
of the forces is not resolved and the interactions can all be represented by contact
terms. There are many other systems with known long-range forces, for example:
Coulomb, pion exchange, dipole-dipole or van der Waals interactions. Similar
RG methods can be applied to the unresolved short-range forces accompanying
these [9,10]. The resulting expressions are either distorted-wave Born expansions
or distorted-wave versions of the effective-range expansion. (In the case of the
Coulomb potential, it was again Bethe who first wrote this expansion down [8].)
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Another important application is to the 1/r2 potential that arises in three-
body systems with attractive short-range forces [11]. If the two-body scatter-
ing length is infinite, the Efimov effect leads to a tower of geometrically-spaced
bound states [12]. This is the origin of the limit cycle that has been found in the
RG flows for these systems [13] (one of the few known examples of such a cycle).
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Abstract. We explore the role of the 〈A2〉 gluon condensate in matching Regge models to
the operator product expansion of meson correlators.

This talk is based on Ref. [1], where the details may be found. The idea of im-
plementing the principle of parton-hadron duality in Regge models has been dis-
cussed in Refs. [2–8]. Here we carry out this analysis with the dimension-2 gluon
condensate present. The dimension-two gluon condensate, 〈A2〉, was originally
proposed by Celenza and Shakin [9] more than twenty years ago. Chetyrkin, Nar-
ison and Zakharov [10] pointed out its sound phenomenological as well as the-
oretical [11–15] consequences. Its value can be estimated by matching to results
of lattice calculations in the Landau gauge [16,17], and their significance for non-
perturbative signatures above the deconfinement phase transition was analyzed
in [18]. Chiral quark-model calculations were made in [19] where 〈A2〉 seems
related to constituent quark masses. In spite of all this flagrant need for these un-
conventional condensates the dynamical origin of 〈A2〉 remains still somewhat
unclear; for recent reviews see, e.g., [20,21].

For large Q2 and fixed Nc the modified OPE (with the 1/Q2 term present)
for the chiral combinations of the transverse parts of the vector and axial currents
is

ΠT
V+A(Q2) =

1

4π2

{
−
Nc

3
log

Q2

µ2
−
αS

π

λ2

Q2
+
π

3

〈αSG
2〉

Q4
+ . . .

}

ΠT
V−A(Q2) = −

32π

9

αS〈q̄q〉2
Q6

+ . . . (1)

On the other hand, at large-Nc and any Q2 these correlators may be saturated by
infinitely many mesonic states,

ΠT
V (Q2)=

∞∑

n=0

F2
V,n

M2
V,n +Q2

+ c.t., ΠT
A(Q2)=

f2

Q2
+

∞∑

n=0

F2
A,n

M2
A,n +Q2

+ c.t. (2)

⋆ Talk delivered by Wojciech Broniowski
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The basic idea of parton-hadron duality is to match Eq. (1) and (2) for both large
Q2 andNc (assuming that both limits commute). We use the radial Regge spectra,
which are well supported experimentally [22]

M2
V,n = M2

V + aVn, M2
A,n =M2

A + aAn, n = 0, 1, . . . (3)

The vector part, ΠT
V , satisfies the once-subtracted dispersion relation

ΠT
V (Q2) =

∞∑

n=0

(
F2

V,n

M2
V + aVn+Q2

−
F2

V,n

M2
V + aVn

)
. (4)

We need to reproduce the logQ2 in OPE, for which only the asymptotic part of the
meson spectrum matters. This leads to the condition that at large n the residues
become independent of n, FV,n ≃ FV and FA,n ≃ FA. Thus all the highly-excited
radial states are coupled to the current with equal strength! Or: asymptotic de-
pendence of FV,n or FA,n on n would damage OPE. Next, we carry out the sum
explicitly (the dilog function is ψ(z) = Γ ′(z)/Γ(z))

∞∑

n=0

(
F2

i

M2
i + ain +Q2

−
F2

i

M2
i + ain

)
=
F2

i

ai

[
ψ

(
M2

i

ai

)
−ψ

(
M2

i +Q2

ai

)]

=
F2

i

ai

[
−log

(
Q2

ai

)
+ψ

(
M2

i

ai

)
+
ai − 2M2

i

2Q2
+
6M4

i − 6aiM
2
i + a2

i

12Q4
+. . .

]
, (5)

where i = V,A. ΠV−A satisfies the unsubtracted dispersion relation (no logQ
2

term), hence

F2
V/aV = F2

A/aA. (6)

This complies to the chiral symmetry restoration in the high-lying spectra [23,24].
Further, we assume aV = aA = a, or FV = FA = F, which is well-founded
experimentally, as

√
σA = 464MeV,

√
σV = 470MeV [22].

The simplest model we consider has strictly linear trajectories all the way
down,

ΠT
V−A(Q2) =

F2

a

[
−ψ

(
M2

V +Q2

a

)
+ψ

(
M2

A +Q2

a

)]
−
f2

Q2

=

(
F2

a
(M2

A −M2
V ) − f2

)
1

Q2
+

(
F2

2a
(M2

A −M2
V)(a −M2

A −M2
V)

)
1

Q4
+ . . .

Matching to OPE yields the two Weinberg sum rules:

f2 =
F2

a
(M2

A −M2
V), (WSR I)

0 = (M2
A −M2

V)(a −M2
A −M2

V). (WSR II)
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The V + A channel needs regularization. We proceed as follows: carry d/dQ2,
compute the convergent sum, and integrate back overQ2. The result is

ΠT
V+A(Q2) =

F2

a

[
−ψ

(
M2

V +Q2

a

)
− ψ

(
M2

A +Q2

a

)]
+
f2

Q2
+ const.

= −
2F2

a
log

Q2

µ2
+

(
f2 + F2 −

F2

a
(M2

A +M2
V)

)
1

Q2

+
F2

6a

(
a2 − 3a(M2

A +M2
V) + 3(M4

A +M4
V)

) 1

Q4
+ . . .

Matching of the coefficient of logQ2 to OPE gives the relation

a = 2πσ =
24π2F2

Nc

, (7)

where σ denotes the (long-distance) string tension. From the ρ → 2π decay one
extracts F = 154MeV [25] which gives

√
σ = 546 MeV, compatible to the value

obtained in lattice simulations:
√
σ = 420MeV [26]. Moreover, from theWeinberg

sum rules

M2
A = M2

V +
24π2

Nc

f2, a = M2
A +M2

V = 2M2
V +

24π2

Nc

f2. (8)

Matching higher twists fixes the dimension-2 and 4 gluon condensates:

−
αSλ

2

4π3
= f2,

αS〈G2〉
12π

=
M4

A − 4M2
VM

2
A +M4

V

48π2
. (9)

Numerically, it gives −αSλ2

π
= 0.3 GeV2 as compared to 0.12GeV2 from

Ref. [10,20]. The short-distance string tension is σ0 = −2αsλ
2/Nc = 782 MeV,

which is twice as much as σ. The major problem of the strictly linear model is
that the dimension-4 gluon condensate is negative forMV ≥ 0.46 GeV. Actually,
it never reaches the QCD sum-rules value. Thus, the strictly linear radial Regge
model is too restrictive!

We therefore consider a modified Regge model where for low-lying states
both their residues and positions may depart from the linear trajectories. The
OPE condensates are expressed in terms of the parameters of the spectra. A very
simple modification moves only the position of the lowest vector state, the ρme-
son.

MV,0 = mρ, M
2
V,n = M2

V + an, n ≥ 1
M2

A,n =M2
A + an, n ≥ 0. (10)

For the Weinberg sum rules (we use Nc = 3 from now on)

M2
A = M2

V + 8π2f2, a = 8π2F2 =
8π2f2

(
4π2f2 +MV

2
)

4π2f2 −mρ
2 +MV

2
. (11)
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�!!!!
Σ @GeVD

-0.002

0.002

0.004

0.006

Fig. 1. Dimension-2 (solid line, in GeV2) and -4 (dashed line, in GeV4) gluon condensates

plotted as functions of the square root of the string tension. The straight lines indicate

phenomenological estimates. The fiducial region in
√
σ for which both condensates are

positive is in the acceptable range compared to the values of Ref. [22] and other studies.

We fixmρ = 0.77 GeV, and σ is the only free parameter of the model. Then

M2
V =

−16π3f4 + 4π2σf2 −mρ
2σ

4f2π− σ
, −

αSλ
2

4π3
=
16π3f4 − πσ2 +mρ

2σ

16f2π3 − 4π2σ
,

αS〈G2〉
12π

= 2π2f4 − πσf2 +
3σ

(
mρ

2σ

(σ−4f2π)2 − 2π
)
mρ

2

8π2
+
σ2

12
. (12)

The window for which both condensates are positive yields very acceptable val-
ues of σ. The consistency check of near equality of the long- and short-distance
string tensions, σ ≃ σ0, holds for

√
σ ≃ 500MeV. The magnitude of the conden-

sates is in the ball park of the “physical” values. The value ofMV in the “fiducial”
range is around 820MeV. The experimental spectrum in the ρ channel is has states
at 770, 1450, 1700, 1900∗, and 2150∗ MeV, while the model gives 770, 1355, 1795,
2147 MeV (for σ = (0.47 GeV2). In the a1 channel the experimental states are at
1260 and 1640 MeV, whereas the model yields 1015 and 1555 MeV.

We note that the V − A channel well reproduced with radial Regge mod-
els. The Das-Mathur-Okubo sum rule gives the Gasser-Leutwyler constant L10,
while the Das-Guralnik-Mathur-Low-Yuong sum rule yields the pion electromag-
netic mass splitting. In the strictly linear model with M2

A = 2M2
V and MV =√

24π2/Ncf = 764 MeV we have
√
σ =

√
3/2πMV = 532 MeV, F =

√
3f =

150 MeV, L10 = −Nc/(96
√
3π) = −5.74 × 10−3(−5.5 ± 0.7× 10−3)exp, m2

π± −

m2
π0

= (31.4 MeV)2 (35.5MeV)2
exp. In our second model with σ = (0.48 GeV)2

we find L10 = −5.2 × 10−3 andm2
π± −m2

π0
= (34.4MeV)2.
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To conclude, let us summarize our results and list some further related stud-
ies.

• Matching OPE to the radial Reggemodels produces in a natural way the 1/Q2

correction to the V and A correlators. Appropriate conditions are satisfied by
the asymptotic spectra, while the parameters of the low-lying states are tuned
to reproduce the values of the condensates.

• In principle, these parameters of the spectra are measurable, hence the infor-
mation encoded in the low-lying states is the same as the information in the
condensates.

• Yet, sensitivity of the values of the condensates to the parameters of the spec-
tra, as seen by comparing the two explicit models considered in this paper,
makes such a study difficult or impossible at a more precise level.

• Regge models work very well in the V − A channel. In [28] it is shown how
the spectral (in fact chiral) asymmetry between vector and axial channel is
generated via the use of ζ-function regularization for each channel separately.

• We comment that effective low-energy chiral models produce 1/Q2 correc-
tions (i.e. provide a scale of dimension 2), e.g., the instanton-based chiral quark
model gives [19]

−
αS

π
λ2 = −2Nc

∫
du

u

u+M(u)2
M (u)M′ (u) ≃ 0.2 GeV2

. (13)

• In the presented Regge approach the pion distribution amplitude is constant,
φ(x) = 1, at the low-energy hadronic scale, similarly as in chiral quarkmodels
[27].
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In order to form a more perfect fluid . . .

Is there a fundamental bound on η/s for fluids?

Thomas D. Cohen

Department of Physics, University of Maryland, College Park, MD 20742-4111

The talk presented at Bled 2007, dealt with an issue superficially very far from
the main thrust of the workshop—namely the question of whether or not there is
a lower bound on the ratio of the shear viscosity (η) to the entropy density has
a fundamental lower bound. However, surprisingly the properties of hadrons in
a controlled limit of QCD play an essential role. The context of this problem is a
remarkable result based on the famed AdS/CFT correspondence in which all it is
shown that all theories which have a supergravity dual when taken in the large
Nc and infinite ‘t Hooft coupling limits have η/s = (4π)−1. It is very plausible
within this class of theory that the ratio goes up one moves from the infinite ‘t
Hooft coupling limit. Motivated by this, a conjecture was proposed by Kovtan,
Son and Starinets (KSS): namely that (4π)−1 was a lower bound for η/s for all
fluids. However, it is readily apparent that one can construct theoretical systems
in nonrelativistic quantum mechanics which violate the conjectured bound. This
is done by making a system with verymany species of particles so that the Gibbs
mixing entropy becomes large while the viscosity remains essentially the same
as for few species. One might try to evade such a counter example by arguing
that bound is not a consequence of quantum mechanics but rather of quantum
field theory. However, what was shown in this talk was that a system based a
well-defined quantum field theory also violates the bound. The system is a gas
of heavy mesons in a very carefully constructed generalization of QCD. In this
generalization the number of heavy flavors, the number of colors and the mass of
the heavy quark all scale are all taken to be large (in a particular controlled way)
while the temperature and density of the system are taken to be small (also in a
controlled way). The fluid constructed in this way is metastable but can be made
arbitrarily long lived. Thus, one concludes that quantum field theory alone does
not imply the KSS bound—at least for metastable fluids. The issue is discussed in
detail in two papers (T.D. Cohen Phys. Rev. Lett. 99 021602 (2007) and A. Cher-
man, T.D. Cohen, P.M. Hohler, arXiv:0708.4201); the reader is referred there for
details.



BLED WORKSHOPS
IN PHYSICS
VOL. 8, NO. 1
p. 17

Proceedings of the Mini-Workshop
Hadron Structure and Lattice QCD

Bled, Slovenia, July 9-16, 2007

Does nucleon parity doubling implyUA(1) symmetry

restoration?⋆
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Abstract. We examine the role of UA(1) symmetry and its breaking/restoration in two

complete chiral multiplets consisting of the nucleon and the Roper and their two “chiral

mirror” odd-parity resonances. We base our work on the recent classification of the chiral

SUL(2) × SUR(2) transformation properties of the two (Ioffe) independent local tri-quark

nucleon interpolating fields in QCD [1].

1 Introduction

Over the past five years there has been considerable activity on the question if
the chiral UA(1) symmetry restoration is in any way related to the (purported)
parity doubling in the nucleon spectrum [2,3]. In the previous additions to the
literature [2], following an old and to a large extent formal example by Ben Lee
[4], it was assumed that the nucleons admitted only certain specific linear non-
Abelian chiral transformation properties - no assumptions were made about the
Abelian ones, however.

Rather than guess at the chiral properties of the nucleon, we use the results of
our study [1] of the SUL(2)×SUR(2) andUA(1) (the non-Abelian and the Abelian
chiral symmetries, respectively) transformations of the over-complete set of (five)
three-quark non-derivative (local) nucleon interpolating fields. We showed that
the two independent nucleon fields form two different irreducible UA(1) repre-
sentations: one with the axial baryon number minus one (the Abelian “mirror”
field), and another with three (the Abelian triply “naive” nucleon in the parlance
of Ref. [5]).

For odd-parity nucleons, on the other hand, the inclusion of at least one
space-time derivative is natural. Once we allow for a derivative to exist in the
interpolating field, we find two nucleon fields with chiral properties opposite to
the non-derivative ones, e.g. the non-Abelian chiral properties of the derivative
fields are “mirror” compared to the “naive” non-derivative ones. Thus, altogether
we have four independent nucleon fields constructed from three quarks with or

⋆ Talk delivered by V. Dmitrašinović
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without one derivative. They can be classified as being non-Abelian “naive” or
“mirror” and similarly for the Abelian chiral transformation properties.

As an illustrative example, we identify these four specific nucleon fields with
the four lowest-lying nucleon resonances: the nucleon-Roper even-parity pair
and the N∗(1535), N∗(1650) pair of odd-parity resonances, and construct an ef-
fective Lagrangian with the UA(1) and SUL(2) × SUR(2) symmetries. We show
that, after spontaneous symmetry breakdown to SU(2)V , the mass splitting in-
duced by this effective interaction can reproduce all four nucleon’s masses even
without explicit UA(1) symmetry breaking. This is an explicit counter-example to
the statement in the literature that the parity doubling in the nucleon spectrum is
related to the restoration of the UA(1) symmetry.

Our method applies equally well to any, and not just the low-lying, UA(1)

chiral quartet, i.e., pair of nucleon parity doublets. Of course, this result is subject
to the assumption of three-quark nature of the corresponding nucleon states.

2 Three-quark nucleon interpolating fields

We start by summarizing the transformation properties of various quark trilin-
ear forms with quantum numbers of the nucleon as shown in Ref. [1]. It turns
out that every nucleon, i.e., spin- and isospin 1/2 field, besides having same non-
Abelian transformation properties, comes in two varieties: one with “mirror” and
another with “triple-naive” Abelian chiral properties. This allows us to address

the old (Ioffe) problem of duplication/ambiguity of nucleon fields: For JP = 1
2

+

nucleons there is only one non-Abelian representation allowed, the (1
2
, 0)⊕(0, 1

2
),

but with the two afore-mentioned Abelian chiral properties, thus lending phys-
ical distinction to Ioffe’s two nucleon fields: the nucleon ground state, the two
odd-parity resonances and the Roper are the four mutually orthogonal admix-
tures of the Abelian “mirror”- (so called Ioffe current), the Abelian “triple naive”-
and their non-Abelian mirror fields.

Table 1. The Abelian axial charges (+ sign indicates “naive”, - sign “mirror” transformation

properties) and the non-Abelian chiral multiplets of JP = 1
2

+
nucleon interpolating fields

in the Lorentz group representation D( 1
2
, 0) without derivatives. In the last column we

show the Fierz identical fields, see [1].

UA(1) SUA(2) SUV (2) × SUA(2) Fierz identical

N1 −N2 −1 +1 ( 1
2
, 0) ⊕ (0, 1

2
) N3, N4

N1 +N2 +3 +1 ( 1
2
, 0) ⊕ (0, 1

2
) N5

We can construct nucleon fields with “opposite” chiral transformations to
those shown above by replacing γµ with i∂µ: for example we may use the follow-
ing two nucleon interpolating fields involving three quarks and one derivative

N
′−
1 = ǫabci∂µ(q̃aqb)γµγ5qc, (1)

N
′−
2 = ǫabci∂µ(q̃aγ

5qb)γµqc. (2)
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They are odd-parity, spin 1/2 and isospin 1/2 fields, i.e. they describe (some)
nucleon resonances. A prime in the superscript implies that the fields contain a
derivative, and we show below that therefore they have opposite, i.e., “mirror”
non-Abelian chiral transformation properties to those of the corresponding non-
derivative fields.

Taking the symmetric and antisymmetric linear combinations of two nucleon

fields N
′−
1,2 as the new canonical fields

N
′−
m =

1√
2
(N

′−
1 +N

′−
2 ) (3)

N
′−
n =

1√
2
(N

′−
1 −N

′−
2 ), (4)

their Abelian chiral transformation properties read

δ5N
′−
m = −3iaγ5N

′−
m (5)

δ5N
′−
n = iaγ5N

′−
n , (6)

whereas the non-Abelian ones remain “mirror”

δ5N
′−
m,n = −iγ5τ · aN ′−

m,n. (7)

In summary, we have explicitly constructed four independent nucleon fields: two
fields with “naive” and two fields with “mirror” Abelian and non-Abelian chiral
transformation properties. In the present paper, we identify these fields with the
nucleon ground state N(940) and its resonances N(1440), N(1535) and N(1650).
We summarize the properties of the four fields in Table.2. With these fields we
can construct the “naive-mirror” interactions.

Table 2. The axial charges of the nucleon fields.

Interpolating fields UA(1) SUA(2) Assigned states

Nm −1 +1 N(940)

Nn +3 +1 N(1440)

N′

n +1 −1 N(1650)

N′

m −3 −1 N(1535)

3 TheUA(1) symmetry in baryons

The UA(1) symmetry’s explicit breaking due to the triangle anomaly and topo-
logically non-trivial configurations in QCD has only a few firmly established
observable consequences, all of which are in the flavor-singlet spin-less meson
sector, see Ref. [11] and references therein, with lots of recent speculation about
its role in the baryon sector (“parity doubling”), especially with regard to its al-
leged/purported “restoration high up in the hadron spectrum” Ref. [2]. This sce-
nario has effectively been disproven in the meson case in Refs. [2].
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The baryon case is much more difficult to handle, due to, inter alia, a funda-
mental lack of knowledge of the baryon chiral transformation properties. In the
baryon sector, the empirically observed parity doubling has been quantitatively
analyzed by Jaffe et. al. [3], who proposed that the physics behind that might be
the (explicitly broken) UA(1) symmetry. In the absence of direct lattice measure-
ments the best one can do is resort to chiral models.

Lee, DeTar, Kunihiro, Jido, Oka and others [4,5] have developed a Lagran-
gian formalism based on one pair of “naive” and “mirror” opposite-parity nu-
cleon fields. They did not consider theUA(1) symmetry, however. Christos [8] has
shown that there are two independent cubic interactions for each parity doublet
that preserve both UA(1) and SU(2)L × SU(2)R symmetry. However Christos did
not include Abelian chiral mirror fields, so he obtained vanishing off-diagonal
πNN∗ couplings. Our strategy was first to construct the SUL(2) × SUR(2) chi-
ral invariant interaction(s) for two pairs of nucleon (N+

m,n and N
′−
m,n) fields; and

then to include the UA(1) symmetry [12]. We have classified these terms accord-
ing to the power of the meson fields. We found that besides the linear (in meson
fields) interactions there are also quadratic and cubic ones. The form of these in-
teractions is uniquely dictated by the UA(1) symmetry; higher-order terms may
appear only as products of these three lower-order ones. That allows altogether
six interactions: four diagonal ones in the two doublets and two “inter-doublet”
ones. Furthermore, we included all quadratic terms allowed by the non-Abelian
“mirror” properties of the baryons. Then we found that one does not need any
UA(1) symmetry breaking to describe the nucleon mass spectrum, provided one
uses a complete set of interactions.

4 Results

In the following discussion, it is convenient to group the four nucleon fields as fol-
lows; Ψ = (N+

m, N
′−
n ) for the pair of the single Abelian charge (the single-Abelian

doublet), and Φ = (N+
n , N

′−
m ) for that of the triple Abelian charge (the triple-

Abelian doublet).We emphasize that the two nucleons in each of these pairs are in
”mirror” relations to each other, with regard to both the Abelian and non-Abelian
chiral symmetries. Manifestly, the identification of fields, or their admixtures,
with actual resonances viz.N(940), R(1440),N∗(1535) andN∗(1650) is not unique.
In this brief review we consider only one choice; another scenario is considered
in Ref. [12]. A substantial body of QCD sum rule evidence is pointing towards
N(940) being the “Ioffe current” N+

1m. Together with the lowest negative parity
nucleon N(1535) in the partner of the parity doublet, we have Ψ = (N+

m, N
′−
n ) =

(N(940), N(1535)) and consequently Φ = (N+
n , N

′−
m ) = (N(1440), N(1650)).

The nucleon mass matrix is already in a simple block-diagonal form when
the nucleon fields form the following 1×4 row/column “vector”:

(Ψ,Φ) = (N+
m, N

′−
n , N+

n , N
′−
m ) → (N+

m, γ5N
′−
n , N+

n , γ5N
′−
m ) ,
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lim
UA(1)symm.

M =




g1fπ m12γ5 0 g5fπγ5

m12γ5 g2fπ g6fπγ5 0

0 g6fπγ5 g3fπ m34γ5

g5fπγ5 0 m34γ5 g4fπ


 . (8)

Note that only the parity-changing interaction g5,6 mixes these two new equal
parity doublets. Without inter-doublet interactions (g5,6 = 0) one can immedi-
ately read off the eigenvalues following Ref. [5]. We determine the coupling and
mass parameters and show them in Table 3 and Fig. 1.

Table 3. Coupling constants obtained from the nucleon masses with doublets

(N(940), N∗(1535)), (R(1440), N∗(1650)) and the decay widths N∗(1535) → πN(940) and

N∗(1650) → πR(1440).

constant g1 g2 m12 g3 g4 m34

value 10.4 16.8 270 MeV 14.6 16.8 503 MeV
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Fig. 1. The nucleon masses as functions of 〈σ〉0 .

Manifestly, the good UA(1) symmetry limit is sufficient to reproduce the nu-
cleon spectrum. Thence ourmain conclusion: the mass degeneracy of opposite-parity
nucleon resonances is not a consequence of the explicit UA(1) symmetry (non) breaking.
This conclusion was also reached by Christos [8], albeit for one parity doublet and
without mirror fields, which means that his N∗(1535) can not decay into N(940)

by π emission.

5 Summary and Discussion

We have analyzed the UA(1) symmetry in the nucleon-Roper-two-odd-parity-
nucleon-resonances system, under the assumption that the above four nucleon
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states are described by a particular set of independent interpolating fields. The
four nucleon fields naturally split into two “parity doublets” due to their UA(1)

symmetry transformation properties.

Our analysis has been based on the Born approximation: Higher-order (one-,
two-, etc. meson loop) corrections belong to the O(1/Nc) corrections, that have
been studied only intermittently in chiral quark models of the nucleon and then
only in certain simple models with one kind of nucleon. In principle, instanton
effects are expected to vanish in the large-Nc limit, which justifies our assumption
of good UA(1) symmetry, ex post facto. The extracted value of the “bare mirror”
nucleon mass (m12=270 MeV, see also Ref. [6]) is something that can be checked
on the lattice, now that the interpolating fields have been specified for the mirror
nucleons.

The insight that the nucleon and the Roper fields may form two different
representations of the UA(1) symmetry, and that their mass difference can be
viewed as a consequence of UA(1) symmetry conservation and not of the sym-
metry breaking, are the main results of this work. A corollary of this result is that
the parity-doublet mass splittings are not entirely determined by the UA(1) sym-
metry breaking, as was conjectured in the literature [3]. Moreover, the nucleon-
Roper mass difference in some calculations, such as the one of Ref. [10] in the NJL
model, are not a consequence of the broken UA(1) symmetry in that model.

UA(1) symmetry in nucleon spectra has been discussed before, most notably
by Christos [8], who used only one parity doublet (N(940) and N∗(1535)), how-
ever. He argued that the parity doublet mass difference is proportional to a par-
ticular ηNN∗ coupling constant, which is in close agreement with our results. He
did not try to relate other mass differences, such as the Roper-nucleon one, to this
mechanism, as he did not know of an alternative (“mirror”) set of fields, which
is a novel feature/contribution of our paper. Consequently his N∗(1535) can not
decay into N(940) by π emission, in blatant conflict with experiment.
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Abstract. We discuss some aspects of our relativistic framework for the few-nucleon sys-

tems (Ref. [1] to which we refer for further details), which were discussed at theWorkshop,

particularly the issue of renormalization.

The understanding of the few-nucleon systems based on Chiral Perturbation The-
ory (ChPT, see Ref. [2] for a review), provides the link of nuclear physics with
QCD: as a matter of fact the low-energy constants, in terms of which the chiral
nuclear forces are expressed, are QCD Green functions, in principle calculable on
the lattice. The ChPT setting is perturbative, in the sense that it is a low-energy
expansion, the small parameter being the typical momentum p divided by the
hadronic scale. This type of ordering is the only justification, from first principles,
of the hierarchy of nuclear forces. Indeed ChPT predicts that 3-nucleon forces are
suppressed by a factor O(p2) compared to 2-nucleon forces, 4-nucleon forces by
a factor O(p4), and so on. In order to mantain the power counting a non rel-
ativistic expansion of the ChPT Lagrangian is usually performed, referred to as
heavy baryon ChPT (HBChPT).Moreover, in the originalWeinberg’s definition of
a nucleon-nucleon effective potential, a non relativistic setting was used, based on
old-fashioned (time ordered) perturbation theory. By these two steps relativistic
corrections and chiral corrections get mixed together and are treated on the same
footing. However relativity and chiral symmetry are symmetries on a completely
different status: chiral symmetry (which is always approximate) can be useful
in this context as an ordering criterium, whereas Poincaré invariance is required
by Nature. There are several instances where one might want to have relativity
exactely. Most importantly, a relativistic scheme would allow to describe parti-
cle production, which is out of the scope of non-relativistic quantum mechanics.
Our aim is therefore to devise a scheme which satisfies all requirements of rela-
tivity and use chiral symmetry merely as a bookkeeping device to order terms,
in order to have a systematic expansion. This is why we have considered the
point-form formulation of relativistic quantum mechanics proposed in [3]. It re-
lies on a Bakamjian-Thomas construction, which is a way (although not the most

⋆ Talk delivered by L. Girlanda
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general one) to solve Dirac’s covariance problem in the construction of a dynam-
ical theory of interacting particles. The problem constists of finding expressions
for the generators of the Poincaré group, H, P, J and K in terms of the coordi-
nates of the particles. In the usual formulation (instant-form of the dynamics) the
interactions are contained in the Hamiltonian H and in the boost generators K,
while the other operators are said kinematical, they are the same as in the non-
interacting theory. In the point-form the interactions are contained in all compo-
nents of the four-momentum, whereas Lorentz transformations are kinematical.
In the Bakamjian-Thomas construction this is accomplished by introducing aux-
iliary operators, the mass operatorM0 =

√
P

µ
0 P0µ and a four-velocity operator

Vµ such that Pµ
0 = M0V

µ (the subscripts 0 refer to the non-interacting theory);
one then adds the interactions only to the mass operatorM = M0 +MI, and re-
constructs the interacting four-momentum as Pµ =MVµ. Poincaré commutation
relations are then satisfied provided the interacting mass operator is a Lorentz
scalar which commutes with the four-velocity Vµ. It is therefore particularly con-
venient to consider the “velocity states” |v〉 [3]: these are linear combinations of
multiparticle momentum states which are eigenstates of the four-velocity opera-
tor. However, starting from a quantum-field theoretical Lagrangian the interact-
ing four-momentum is

P
µ
I =

∫
d4x

∂F(x)

∂xµ
δ(F(x) − τ2)HI(x), (1)

where in the point-form F(x) = x2. This operator is not diagonal in the four-
velocity,

〈v|Pµ
I |v ′〉 = 〈v|HI(0)|v

′〉
∫
d4xδ(x2 − τ2)2xµθ(x0)e−i(mv−m ′v ′)x (2)

and therefore it is not of the Bakamjian-Thomas type. In order to enforce that,
one has to introduce a velocity-conserving delta-function by hand, such that the
interacting four-momentum has matrix elements of the form

〈v|Pµ
I |v ′〉 = (2π)3δ3(v − v ′)vµ f(m,m

′)√
m3m ′3

〈v|HI(0)|v
′〉. (3)

The form factor f(m,m ′), depending on the relativistic energies, is meant to com-
pensate somehow for the neglect of the off-diagonal elements in the velocity, and
also to regulate the ultraviolet behaviour. The square-root factor in the denomi-
nator is included so that one recovers the quantum-field theoretical result when
v = v ′ and m = m ′ with f = 1. We have taken for f a real symmetric function
of its arguments, further specified as a Gaussian function centered around zero
with cutoff Λ,

f(m,m ′) = exp

[
−

(m −m ′)2

2Λ2

]
ξ. (4)

The cutoff Λ is to be understood as the scale at which new physics starts to be-
come relevant. Therewill be one such form factor for each vertex of the interaction
Hamiltonian. For some vertices the gaussian alone is not enough to regulate all
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integrals, so one has to include an additional cutoff ξ, function of the relativistic
invariants.

For illustration purposes, we consider the simple case of a scalar nucleon
field Ψ interacting with a pion field φ, with the interactions provided by a Hamil-
tonian density of the form H(x) = gΨ†(x)Ψ(x)φ(x). Creation of nucleon-anti-
nucleon pairs is neglected and a truncation of the Fock space to a given maximum
number of pions is considered from the beginnning. In the 1-nucleon sector, trun-
cating the states containing two or more pions, the mass operator takes the form

M =

(
mN + δren1 gK

gK† D1+1

)
, (5)

where mN is the physical nucleon mass, and D1+1 is the relativistic 1-nucleon +
1-pion free particle energy. The counterterm δren1 is needed for the mass renormal-
ization. Due to the form of H(x), the interactions show up as off-diagonal entries
in the mass operator. The nucleon mass renormalization and pion-nucleon scat-
tering are described as eigenvalue-eigenvector problems for this mass operator.
For instance, for the eigenvalue mN, the physical nucleon mass, one finds an
equation for the counterterm

δren1 = g2K†(D1+1 −mN)−1K, (6)

with D1+1 = ωk +ωπ
k , having defined ωk ≡

√
m2

N + k2 and ωπ
k =

√
M2

π + k2.

Taking the expectation value of the above equation between 1-nucleon states and
inserting a complete set of velocity states in the subspace of 1-nucleon + 1-pion
states one arrives at the nucleon mass renormalization due to the “pion cloud”,

δren1 =
g2

2mN

∫
d3k

(2π)3

1

4ωkω
π
k

|f(1)(mN,ωk +ωπ
k )|

2

ωk +ωπ
k −mN

. (7)

The superscript (1) refers to the sector of the Fock space with baryon number 1:
the mass operator commutes with the baryon number, and there is the freedom
to choose a different structure function f for each sector of the Fock space.

In the 2-nucleon sector, an analogous equation describes the deuteron,

(D2 + δren2 )φD
2 + g2K†(mD −D2+1)−1KφD

2 = mDφ
D
2 , (8)

where φD
2 is a state vector in the subspace of 2-nucleon states, and the operators

D2 and D2+1 are respectively the relativistic 2-nucleon and 2-nucleon + 1-pion
energy. As in the 1-nucleon sector, a counterterm δren2 is introduced in the corre-
sponding diagonal element of themass operator, in order to properly renormalize
the 2-particle states. By left-multiplying Eq. (8) with the bra 〈v,k,−k| represent-
ing a 2-nucleon state with four velocity v and relative momentum (in the center-
of-mass system) 2k, one arrives, after insertion of a complete set of states in the
subspace of 2-nucleon + 1-pion states, to an eigenvalue wave equation for the
center-of-mass wave function φD

2 (k) = 〈v = (1, 0),k,−k|φD
2 〉,

(2ωk + δren2 (k))φD
2 (k)+2ωkA(k)φD

2 (k)+

∫
d3q

(2π)3
B(k,q)φD

2 (q) = mDφ
D
2 (k), (9)
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The term proportional to A(k) represents a wave function renormalization of the
two-nucleon state: it describes diagrams in which the nucleon lines are discon-
nected and dressed with pion loops. Its explicit expression reads

A(k) =

∫
d3q

(2π)3






g2

16ω2
kωqω

π
k+q

∣∣∣f(2)(2ωk,ωk +ωq +ωπ
k+q)

∣∣∣
2

mD −ωk −ωq −ωπ
k+q

+ q↔ −q





.

(10)
We can choose the counterterm δren2 so as to cancel the disconnected kernel,
δren2 (k) = −2ωkA(k). Correspondingly, the NN scattering is described by the
Lippmann-Schwinger equation for the scattering amplitude,

T(q,k) = V(q,k) +

∫
ωp

d3p

(2π)3

V(q,p)T(p,k)√
s − 2ωp + iǫ

, (11)

where the potential consists only of the connected kernel B,

V(q,k) = g2〈v,q,−q| K†
[√
s −D2+1

]−1
K

∣∣∣
conn

|v,k,−k〉 = B(q,k). (12)

The renormalization of the 2-nucleon lines describing NN scattering, realized by
the choice of the counterterm δren2 (k) = −2ωkA(k), and of the 1-nucleon line,
Eq. (7), correspond to the same physical processes, as can be seen diagrammat-
ically. Physical considerations would require that, when the two nucleons are
far apart and at rest, their energies should be renormalized as their respective
masses. This implies the condition

δren2 (0) = 2δren1 , (13)

which can be regarded as the manifestation of the cluster decomposition princi-
ple in the simple case of two particles. We can see by direct inspection, replacing
in Eq. (10) mD by

√
s = 2mN, since we are considering the case of two widely

separated nucleons at rest, that the equation is fulfilled provided f(1) = f(2) = f,
with f depending on m −m ′ as in Eq. (4), independently of the baryon number
sector. Notice that this would not happen had we chosen the original formula-
tion of Ref. [3]: the crucial point was the inclusion of a different normalization for
the matrix elements of the interacting mass operator, Eq. (3), which in turn was
dictated by a proper matching to the quantum field theory. The cluster decom-
position principle, satisfied by local quantum field theories, could in general be
violated by a truncation of the full quantum field theory to a relativistic quantum
mechanics. In view of the above consideration, we can drop the superscripts and
use the same structure function f for all sectors of the Fock space.

Having identified the general features of the construction of the interacting
mass operator from a vertex Lagrangian, one can proceed to make full use of
the constraints given by chiral symmetry. Most importantly, the Goldstone theo-
rem requires that the coupling between pion and nucleons be of derivative type
(suppressed at low energy). This provides a power-counting justification for the
truncation of the Fock space, since the creation of pions brings more and more
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powers of momentum. The complete combined analysis of πN and NN systems
at the leading order of the chiral counting can be found in Ref. [1]. By comparison
with the non relativistic limit (realized in our framework as mN → ∞), the (all
order) relativistic effects are found to be smaller than the NLO chiral corrections,
in the NN case, while they are sizeable in the πN case.

I thankMitja Rosina, Bojan Golli and Simon Sirca for the very niceWorkshop.
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Recent developments for chiral and U(1)A restorations in excited baryons and
more generally in hadrons are reviewed.We discuss predictions of the chiral sym-
metry restoration scenario for axial charges and couplings to Goldstone bosons.
Strict chiral restoration in a given baryon predicts that its axial charge must be
zero and it must decouple from the pion. It is unclear, however, how to mea-
sure these quantities. Using very general chiral symmetry arguments it is shown
that strict chiral restoration in a given excited nucleon forbids its decay into the
Nπ channel. We confront this prediction with the N∗Nπ coupling constants ex-
tracted from the decay widths and observe a 100 % correlation of these data with
the spectroscopic parity doublet patterns. These results suggest that the lowest
approximate chiral parity doublet is the N(1440) − N(1535) pair. In the meson
sector we discuss predictions of the chiral symmetry restoration for still miss-
ing states and a signature of the higher symmetry observed in new p̄p data. The
observed large degeneracy might be understood if, on top of chiral restoration, a
principal quantum number N=n+J existed. We conclude with the exactly solvable
chirally symmetric and confining model that can be considered as a generaliza-
tion of the 1+1 dimensional ’t Hooft model to 4 dimensions. Complete spectra of
q̄qmesons demonstrate a fast chiral restoration with increasing J and a slow one
with increasing n.
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Abstract. A central issue in quantum field theory and in particular QCD is to find the

physical vacuum state. Point form quantum field theory provides a useful setting in which

to model the physical vacuum state. In this note the defining equations and elementary

properties of the physical vacuum are discussed in the context of the point form. A simple

model is presented which illustrates some of the general ideas.

In point form relativistic quantum mechanics [1] all interactions are in the four-
momentum operator Pµ and Lorentz transformations are kinematic. The equa-
tions that express the relativistic content of a point form theory are

[Pµ, Pν] = 0 (1)

UΛPµU
−1
Λ = (Λ−1)ν

µPν, (2)

where UΛ is the unitary operator representing the Lorentz transformation Λ on
some model Hilbert or generalized Fock space.

Given a four-momentum operator, the goal is to solve the eigenvalue prob-
lem

Pµ|Ψp > = pµ|Ψp > (3)

and from this get the physical vacuum, bound and scattering states.

There are several ways of generating four-momentum operators Pµ that sat-
isfy the point form equations. One, called the Bakamjian-Thomas method [2], is
relevant for finite degree of freedom systems. The other, integrating free fields
over the forward hyperboloid [3], is of primary interest in this paper.

If a four-momentum operator is constructed that satisfies the above point
form equations, solving the vacuum problem means finding a vector |Ω > in a
suitable space such that

Pµ|Ω > = 0 (4)

UΛ|Ω > = |Ω > . (5)

Here it should be noted that, unlike the situation in nonrelativistic quantum me-
chanics, where eigenvalues of a Hamiltonian are only defined up to a constant,
and only energy differences are observable, it is not possible to add constants
to the four-momentum operator and still maintain Lorentz covariance; that is, if
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Pµ → P
′

µ = Pµ + cµI, where the c’s are constants and I is the identity operator,

then P
′

µ will not satisfy Eq.(2).

Just as aHamiltonian can bewritten as the sum of free and interactingHamil-
tonians, so also the four-momentum operator can be written as the sum of free
and interacting four-momentum operators. If there are no interactions and Pµ =

P
µ
fr, then the well known solution to the vacuum problem is the Fock vacuum.
If an interaction is added, so that Pµ = P

µ
fr + αP

µ
I , then the vacuum solution,

Eq.(4) must reduce to the Fock vacuum when the bare coupling constant α = 0.
Conversely, since it is not possible to add constants to the four-momentum op-
erator, the solution to the vacuum problem, Eq.(4) entails the possibility of fine
tuning the coupling constant α. A simple model of such a possibility is given in
the following paragraphs.

To investigate the vacuum structure it suffices to analyze only the zero com-
ponent of Eq.(4), for if |Ω > is Lorentz invariant, Eq.(5), it follows that

UΛP
0|Ω > = UΛP

0U−1
Λ UΛ|Ω > (6)

= ((Λ0
0)−1P0 + (Λ0

i )−1Pi)|Ω >

= (Λ0
i )−1Pi|Ω >

= 0, (7)

which implies that the momentum operator acting on the physical vacuum also
gives zero, as required. Thus, in the following we will look only at the ground
state eigenvalue problem for the energy operator P0.

The purpose of this contribution to the Bled Workshop is to look at a single
mode ”approximation” to the energy operator of a full infinite degree of freedom
system. Thus, let ai, bi, ck denote respectively bare fermion, antifermion, and
boson annihilation operators where the indices include both space-time (four-
velocity v = p

m
and spin projections) and internal variables such as charge or

isospin. Then the free four-momentum operator can be written as

Pµ(fr) : = m
∑ ∫

dvvµ(a
†
iai + b

†
ibi + κc

†
kck), (8)

where dv := d3v
v0
is the Lorentz invariant measure in four-velocity space, κ is

a dimensionless relative bare boson mass parameter and m is a constant with
the dimensions of mass; its value is determined by relating a physical mass such
as the nucleon mass to the dimensionless eigenvalue of the corresponding stable
particle. Because of the transformation properties of the creation and annihilation
operators inherited from the one particle states, the free four-momentum opera-
tor, as defined in Eq.(8), satisfies the point form equations (1) and (2).

Interactions are obtained by integrating vertices, products of free fields, over
the forward hyperboloid[3][4]. The fundamental vertex is the trilinear vertex,
which is bilinear in fermion-antifermion creation and annihilation operators, and
linear in boson creation and annihilation operators. That is, such vertices have
the general form V ∼ (a† +b)(a+b†)(c+c†) = (a†a+bb†+a†b† +ba)(c+c†) so,
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as shown in reference [4] the interacting four-momentum operator for trilinear
vertices can be written as

Pµ(I) = α
∑∫

dv(A(X
µ
k )ck + A(X

µ
k)†c

†
k), (9)

where A(X
µ
k) := (a

†
i1
, bi1

)(X
µ
k)i1i2

(ai2
, b

†
i2

)T , and the X’s depend on the type of
fermionic-bosonic coupling.

The zeroth component of the eigenvector equation, Eq.(3), is

P0
F(fr) +

∑ ∫
dv(κv0c

†
kck

+αA(X0
k)ck + αA(X0

k)†c
†
k))|Ψλ > = λ|Ψλ > (10)

To distinguish between the continuum energy operator in Eq.(10) and its fi-
nite approximation, the fundamental operator to be diagonalized is ( a Hamilto-
nian) denoted byH, made out of creation and annihilation operators with a finite
number of modes, whose form mimics Eq.(10):

H =
∑

ei(a
†
iai + b

†
ibi + κc

†
kck) + α

∑
A(Xk)ck + A(X

†
k)c

†
k (11)

=
∑

ei +
∑

ei(a
†
iai − bib

†
i + κc

†
ici) + α(A(Xi)ci + A(X

†
i)c

†
i) (12)

=
∑

ei + A(E) + κ
∑

eic
†
ici + α

∑
(A(Xi)ci + A(X

†
i)c

†
i), (13)

E : = diag(e1, e2, ..., eN,−e1,−e2, ...,−eN), (14)

where the discrete ”energy” ei =

√
1+ v2

i

Reference [4] shows that for a large choice of the X’s, the ground state for
the Hamiltonian in Eq.(13) goes as −|constant|α for α≫ 1. Therefore there is no
ground state solution equal to zero other than the free field solution.

One possibility is to add boson selfcoupling interactions. Consider a sim-
ple one mode Hamiltonian model, in which the selfcoupling is generated by the
quartic anharmonic oscillator:

H =
1

2
(x2 + p2) + α2x4

= c†c+ α2(c+ c†)4 (15)

References [4] and [5] show how the boson Lie algebra is given as the con-
traction limit of a compact Lie algebra (of the group U(2)) whose Hamiltonian
is

HM = J1 + α2(J̃+ + J̃−)4 (16)

=
M − Jz

2
+ α2ρ4J4x (17)

=
M + Jx

2
+
α2

M2
J4z, (18)

and in the contraction limit, in which the Lie algebra contraction parameter ρ → 0

asM → ∞, such that ρM2 = 1, the eigenvalues of HM, Eq.(18) converge to the
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eigenvalues ofH, Eq.(15). In Eq.(17) the Lie algebra basis of U(2) has been written
in a U(1)xSU(2) basis, and in Eq.(18), the contraction parameter has been elimi-
nated by writing ρ = 1

M2 . The goal is to numerically find the lowest eigenvalues
for fixed coupling as M, the U(2) irrep label, gets large. Using an SU(2) Lie alge-
bra automorphism to interchange the x and z generators generates a tridiagonal
matrix in the basis given in Eq.(18). Reference [4] shows that the true eigenvalue
is approached for M about 100.

Next consider a one mode system coupling fermions and bosons, with no
quartic boson selfcoupling. The Hamiltonians are now

H = 1+ (a†a− bb†) + c†c+ α(A(X)c + A(X†)c†) (19)

= 1+ A(E) + c†c+ α(A(X)c + A(X†)c† ; (20)

HM = 1+ A(E) + J1 + α(A(X)J− + A(X†)J+) (21)

E =

[
1 0

0 −1

]
, X =

[
1 1

1 1

]
. (22)

For one mode the fermion space is two dimensional (|0 > and a†b†|0 >)
and the boson space is M+1 dimensional. When HM is diagonalized, the lowest
eigenvalue linearly decreases with respect to the bare coupling constant α, for
α≫ 1. Reference [4] shows this behavior of the ground state holds even for many
mode systems.

Finally, if the boson selfcoupling term, the anharmonic term in Eq.(17) is
added to the Hamiltonian, Eq.(21), the result is a model of trilinear coupling with
a quartic boson selfcoupling, a simple ”QCD” one mode model:

H
QCD
M = 1+ A(E) + J1 + α(A(X)J− + A(X†)J+)

+α2(J− + J+)4; (23)

the lowest eigenvalue for small values of M, as a function of the bare coupling
parameter have been numerically calculated. The ground state eigenvalue as a
function of the bare coupling parameter starts at zero, becomes negative and then
rises, passing through zero; if such behavior presists in the large mode limit, this
raises the possibility of fine tuning the bare coupling parameter.
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In my presentation in Bled I gave an overview on lattice QCD and the chal-
lenge of implementing chiral symmetry for the quarks. Emphasis was put on
the Bern-Graz-Regensburg (BGR) results with the so-called Chirally Improved
(CI) fermions. These are realized as truncated solutions to the GW equations for
a general ansatz for the Dirac operator [1,2]. For each site this fermion action in-
cludes several hundred neighbors with distances ranging up to three links.

Extensive quenched calculations have demonstrated good chiral as well as
good scaling behavior [3]. Within the Bern-Graz-Regensburg (BGR) collaboration
we have obtained results for the hadron spectrum and mesonic low energy con-
stants in quenched simulations. These included several lattice spacings and vol-
umes and three valence quarks. Emphasis in these studies has been put on deriv-
ing sophisticated techniques to analyze excited hadron states [4–6] and we expect
to utilize that experience for full QCD configurations.

Our results for the excited hadrons were obtained with the so-called vari-
ational method and I discussed results for baryons and mesons for a quenched
simulation with three light (u, d, s) valence quarks. The u- and d- mass were
assumed degenerate and the s-mass fixed by the K-meson mass. In the meson
sector we find good ground state masses and also excitations extrapolating for
smaller quark masses towards the experimental values [4]. The only exception is
the isovector scalar a0 which comes out too high, extrapolating to the a0(1450).
The even parity baryons tend to have too high excitation masses, in particular the
notorious problematic Roper state. In the odd parity sector we find values close
to the experimental ones [5].

We have now implemented the CI fermions dynamically, i.e., full QCD (with
a pair of mass degenerate light quarks). First results were presented in the Bled-
meeting as well as in [7]. We identify an a0 compatible with the ground state
a0(980).

I want to thank my colleagues (see references) for a fruitful and enjoyable
collaboration.
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Abstract. In this talk we analyse possible descriptions of the gluonic cloud around quarks

both analytically and on a lattice. This includes clarifying the role of Gribov copies in

confinement and the construction of a class of such copies. In the perturbative sector we

review the infra-red problem and difficulties with the Lee Nauenberg theorem.

1 Charges in Gauge Theories

Electrons are detected via the electric and magnetic fields around them. Only
these composite systems, matter plus electromagnetic field, are physical [1].Dress-
ing a matter field

Ψ := h−1[A]ψ. (1)

produces a locally gauge invariant system if under a gauge transformation

h−1[AU] = h−1[A]U where ψU = Uψ. (2)

This minimal requirement is fulfilled by

Ψ = exp

[
− ie

∂iAi

∇2

]
ψ , (3)

which using the equal time commutator with the electric field can be seen to
have the Coulomb electric field. It also couples correctly to photons and has much
improved infra-red (IR) properties compared to on-shell Green’s functions with
matter fields [2].

In QCD the colour charge operator is not locally gauge invariant but it can
be shown to be invariant on physical states (obeying the non-abelian Gauss law).
However, the allowed gauge transformations must at spatial infinity tend to a
constant in the centre of the group. From this important restriction, it can be
shown that it is impossible to non-perturbatively construct a gauge invariant
quark with well defined colour. Essentially this is because the transformation (2)
above could be used to produce a gauge fixing (for the dressing in (3) it would
be Coulomb gauge) and with the above condition on gauge transformations it is
known that there is no good gauge fixing due to the Gribov ambiguity [3].

There are very few explicit constructions of Gribov copies in the literature
(see [3] and references therein). Starting in Coulomb gauge we have shown how a
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wide class of spherically symmetric solutions may be constructed. Configurations
of the form

Ac
i (x) =

a(r) − 1

r
ǫicb

xb

r
(4)

are in Coulomb gauge and gauge transforming with

U(x) = cosgu(r) − i singu(r)
σcxc

r
(5)

one has two degrees of freedom: u(r) and a(r). Demanding that the transformed
field is in Coulomb gauge generates a differential equation for u(r) given a(r).
The trick is to reverse the procedure and having chosen u(r) which satisfies con-
ditions like finite energy and any desired boundary conditions solve the equation
for a(r). There are very many choices of u and they generate a(r) for us! For ex-
ample,

u(r) =
r

1+ r3
, ⇒ a(r) =

2r(−7r3 + r6 + 1)

(1 + r3)3 sin
(

2gr
1+r3

) + 1−
1

g
. (6)

The factors of 1/g betray the non-perturbative nature of the Gribov problem.

Having seen the non-perturbative obstruction to the construction of con-
stituent quarks with well defined colour charge, we would like to see how far
it is possible to describe quarks. The perturbative extension in QCD of the static
dressing in (3) can be shown to generate the anti-screening glue around quarks
while a separately gauge invariant structure is responsible for the screening by
glue [4]. This has been studied in part up to NNLO. These perturbative studies of
the interquark potential have more recently been complemented by simulations
on the lattice [5].

Wilson loops correspond to the time evolution of a gauge invariant state
formed by two fermions linked by a string. In the large (Euclidean) time limit,
this yields the interquark potential due to the state’s non-zero overlap with the
true ground state. It is known that smearing the Wilson loop improves this over-
lap and we interpret this as due to the unsmeared string being narrower than the
true flux tube.

Instead of the string-like state it is possible, by rotating the links into Coulomb
gauge, to construct a state made of two gauge invariant fermions. This construc-
tion is of course only possible up to the Gribov copies.

Fitting to the potential

V(r) = V0 −
α

r
+ σ r , (7)

the Coulombic state yields a good fit to the potential for shorter separations, r, as
might be expected. However, we find a lower string tension using the Coulombic
description which implies it has a better overlap with the ground state even for
larger separations. Below are some fits [5] for SU(2) on a 164 lattice with β = 2.4:

V0 α σa2 χ2
V/dof

Coulomb 0.510(2) 0.217(1) 0.0807(4) 6.5

String 0.501(3) 0.212(2) 0.0847(8) 4.7
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It is interesting to note that in the Coulomb gauge simulations the interquark
potential is non-zero at large separations despite the impact of Gribov copies. We
have shown that summing over such copies does not change the slope of the
potential although they do alter the intercept [5].

2 The Infra-Red is Still a Problem

We now review the IR problem and will see that there are many unsolved diffi-
culties [7]. To be explicit we consider Coulomb scattering in QED. For electrons
with smallmasses,m, there are two kinds of divergences: soft divergences (mani-
fest as 1/ǫ poles in dimensional regularisation) and collinear divergences (factors
of ln(m)). The main practical response is to only calculate quantities free of IR
divergences (e.g., F2(q2) rather than F1(q2)), however, the Lee Nauenberg (LN)
theorem [6] is supposed to tell us how to deal with them. This quantum mechan-
ical argument indicates that one should sum over all possible initial and final
state degeneracies (indistinguishable processes). Such inclusive cross-sections, it
is argued, will be finite.

The standard approach to Coulomb scattering would be to use the Bloch Nord-
sieck (BN) trick to deal with the soft divergences: i.e., sum over emission of soft
(unobservable) photons with energy less than some scale ∆. Then one uses the
LN approach to collinear divergences: i.e., sum over outgoing photons which are
collinear to the outgoing matter field and have energy greater than ∆ and addi-
tionally sum over incoming collinear photons which have energy greater than ∆.
It is crucial to note that outgoing soft photons are included (via the BN trick) but
incoming soft photons, whether collinear or not, are not included at all. Two nat-
ural questions are: why are incoming collinear photons only included if they are
not soft and why are all outgoing soft photons included but no incoming ones?

In fact these artificial divides are not safe. One finds that terms like ∆ ln(m)

arise when one integrates over collinear photons with a minimum energy ∆.
These collinear divergences have no counterpart in virtual loops where energy
resolutions play no role. For the outgoing photons these terms can be cancelled
(one integrates over outgoing soft photons too), but for the incoming photons
the only way1 to cancel them is to include incoming soft photons. This removes
the above ∆ ln(m) type divergences, but at the price of also reintroducing soft
divergences.

To kill the soft divergences left from combining virtual loop diagrams, pho-
ton emission and photon absorbtion, it is natural to include emission and absorb-
tion processes such as:

1 It would be wrong to say that ∆ can be set to zero. Firstly, experiments have non-

vanishing resolutions and secondly it is known that the BN prediction for the cross-

section vanishes as ∆ → 0 .
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For this to contribute to the cross-section at lowest order (e4) one needs, see Ap-
pendix D of [6], interference with a disconnected photon as in (a) below. This can
then produce a connected contribution at the level of the cross-section, see (b).

(a)
(b)

Adding together such diagrams plus the connected interference contribution to
the cross section from diagrams like (c) below

(c) (d)

produces a finite answer (see [7] and references therein). However, at order e4

there are infinitely many such diagrams! One can include arbitrarily many dis-
connected photons, see e.g., (d), and still have a connected contribution to the
cross-section.

In fact it turns out [7] that the combinatorics are such that this infinite series
(at a fixed order of perturbation theory) does not converge. The connected contri-
bution to the cross-section is exactly the same from the diagrams with three hun-
dred disconnected photons as it is for those with one disconnected photon. This
infinite oscillating series is mathematically ill-defined and there is no physical
reason to truncate the series of diagrams. Thus there is no meaningful prediction
for the overall result.

3 Conclusions

We have seen that describing a gauge invariant quark is impossible outside of
perturbation theory due to the Gribov ambiguity. It was possible to construct a
wide class of explicit Gribov copies which clarify why colour cannot be observed
and the non-perturbative nature of the Gribov problem.
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The interquark potential offers a way to probe the glue around quarks. Per-
turbative calculations reveal the different gluonic structures underlying screen-
ing and anti-screening while lattice results show the importance of including the
width of the flux tube linking heavy quarks in any model of a meson.

Finally, it was shown that nobody knows how to deal with the IR divergences
in any problem with initial and final state charged particles. This is a very serious
problem which urgently deserves further study.

Acknowledgments: I thank the organisers for making this such an interesting
and enjoyable workshop and my collaborators on the work reported here, Emili
Bagan, Tom Heinzl, Anton Ilderton, Kurt Langfeld and David McMullan.
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Combining the recent lattice calculation of a0(1450) and σ(600) mesons with the
overlap fermion in the chiral regime with the pion mass less than 300 MeV, the
quenched lattice calculation of the scalar glueball, and the phenomenological
study of themixing of isoscalar scalarmesons f0(1710), f0(1500), f0(1370), through
their decays, a simple pattern for the light scalar mesons begins to emerge. Below
1 GeV, the scalar mesons form a nonet of tetraquark mesoniums. Above 1 GeV,
the nonent qq̄mesons are made of an octet with largely unbroken SU(3) symme-
try and a fairly good singlet which is f0(1370). f0(1710) is identified as an almost
pure scalar glueball with a ∼ 10 %mixture of qq̄.
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Abstract. Theories with non-commutative space-time coordinates represent alternative

candidates of grand unified theories. We discuss U(1) gauge theory in 2 dimensions on

a lattice with N sites. The mapping to a U(N) one-plaquette model in the sense of Eguchi

and Kawai can be used for computer simulations. We are discussing the formulation and

evaluation of topological objects. We performed quantum Monte Carlo simulations and

calculated the topological charge for different matrix sizes and several values of the cou-

pling constant. We constructed classical gauge field configurations with large topological

charge and used them to initialize quantum simulations. It turned out that the value of the

topological charge is decreasing during a Monte Carlo history. Our results show that the

topological charge is in general suppressed. The situation is similar to lattice QCD where

quantum gauge field configurations are topologically trivial and one needs to apply some

cooling procedure on the gauge fields to unhide the integer number of the instantons. A

few recent analyses are added to this paper.

1 Motivation

In non-commutative geometry, where the coordinate operators x̂µ satisfy the com-
mutation relation [x̂µ, x̂ν] = iθµν, a mixing between ultraviolet and infrared de-
grees of freedom takes place [1]. Lattice simulations are a promising tool to get
deeper insight into non-commutative quantum field theories. In this work we
have studied non-commutative U(1) gauge theory on a two-dimensional torus.
The advantage of this theory is that there exists an equivalentmatrixmodel which
makes numerical calculations feasible [2].

The main topic of the underlying contribution is to study the topological
charge in two-dimensional non-commutative U(1) gauge theory. The instanton
configurations carry a topological charge q which can be non-integer in this case
[3]. We performed Monte Carlo simulations with different values of the coupling
constant β and looked at the topological charge q in the equilibrium [4].

⋆ Talk delivered by H. Markum
⋆⋆ Thanks to the organizers of the Mini-Workshop 2007 on Hadron Structure and Lattice

QCD in Bled.
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2 Topology and instantons in QCD

The Lagrangian of pure gluodynamics (the Yang-Mills theory with no matter
fields) in Euclidean spacetime can be written as

L =
1

4g2
Ga

µνG
a
µν (1)

where Ga
µν is the gluon field strength tensor

Ga
µν = ∂µA

a
ν − ∂νA

a
µ + fabsAb

µA
c
ν (2)

and fabs are structure constants of the gauge group considered. The classical ac-
tion of the Yang-Mills fields can be identically rewritten as

S =
1

8g2

∫
dx4(Ga

µν ± G̃a
µν)2 ∓ 8π2

g2
Q (3)

where Q denotes the topological charge

Q =
1

32π2

∫
dx4Ga

µνG̃
a
µν (4)

with

G̃a
µν =

1

2
ǫµναβG

a
αβ . (5)

3 Topological charge in two dimensions

3.1 Lattice regularization of non-commutative gauge theory

The lattice regularized version of the theory can be defined by an analog of Wil-
son’s plaquette action

S = −β
∑

x

∑

µ<ν

Uµ(x) ⋆Uν(x+ aµ̂) ⋆Uµ(x + aν̂)† ⋆Uν(x)† + c.c. (6)

where the symbol µ̂ represents a unit vector in the µ-direction and we have in-
troduced the lattice spacing a. The link variables Uµ(x) (µ = 1, 2) are complex
fields on the lattice satisfying the star-unitarity condition. The star-product [1] on
the lattice can be obtained by rewriting its definition within non-commutative
derivatives in terms of Fourier modes and restricting the momenta to the Bril-
louin zone.

Let us define the topological charge for a gauge field configuration on the
discretized two-dimensional torus. In the language of fields, we define the topo-
logical charge as

q =
1

4πi

∑

x

∑

µν

ǫµνUµ(x) ⋆Uν(x + aµ̂) ⋆Uµ(x+ aν̂)† ⋆Uν(x)† (7)

which reduces to the usual definition of the topological charge in 2d gauge theory

q =
1

4π

∫
d2x ǫµνGµν (8)

in the continuum limit.
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3.2 Matrix-model formulation

It is much more convenient for computer simulations to use an equivalent formu-
lation, in which one maps functions on a non-commutative space to operators so
that the star-product becomes nothing but the usual operator product, which is
non-commutative. The action (6) can then be written as

S = −Nβ
∑

µ6=ν

tr
{
Ûµ (ΓµÛνΓ

†
µ) (ΓνÛ

†
µΓ

†
ν) Û†

ν

}
+ 2βN2 (9)

= −Nβ
∑

µ6=ν

Zνµtr
(
Vµ Vν V

†
µ V

†
ν

)
+ 2βN2 (10)

where Vµ ≡ ÛµΓµ is a U(N) matrix with N the linear extent of the original lat-
tice. An explicit representation of Γµ in the d = 2 case shall be given in Sec. 5.
This is the twisted Eguchi-Kawai (TEK) model [5], which appeared in history as
a matrix model equivalent to the large N gauge theory [6]. We have added the
constant term 2βN2 to what we would obtain from (6) in order to make the abso-
lute minimum of the action zero.

By using the map between fields and matrices, the topological charge (7) can
be represented in terms of matrices as

q =
1

4πi
N

∑

µν

ǫµνtr
{
Ûµ (ΓµÛνΓ

†
µ) (ΓνÛ

†
µΓ

†
ν) Û†

ν

}
(11)

=
1

4πi
N

∑

µν

ǫµνZνµtr
(
Vµ Vν V

†
µ V

†
ν

)
. (12)

4 Numerical results for the TEK model

We have computed the topological content of gauge field configurations pro-
duced by quantum Monte Carlo simulations. In Fig. 1 we display scatter plots
of the action S without a factor of β in its definition Eq. (10) and the topolog-
ical charge q performing a cold start. The size of the matrix is N = 25 and
the values of the coupling β are chosen to yield a non-commutativity parame-
ter θ = 2.55, 1.27, 0.63, respectively. One observes a decrease of the action with
increasing β due to stronger coupling of the matrices in analogy to lower tem-
perature in an Ising model. The importance sampling of the system with smaller
action generates smaller values of its topological content. This can also be seen
from the distributions of the topological charge in Fig. 2 where the peaks become
narrower with increasing β. Similar plots have been obtained for a larger matrix
size N = 35, for more results see Ref. [4]. To compare the topology-action dia-
grams on the same scale, we display in Fig. 3 our simulation for N = 25 with all
β-values considered in a single plot.
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Fig. 1. Scatter plots of the action S divided by β (x-axis) and the topological charge q (y-

axis) for a Monte Carlo simulation (cold start) at N = 25 and β = 0.78125, 1.5625 and

3.125.

Fig. 2. Distribution P of the topological charge q in the Twisted Eguchi-Kawai model for

N = 25 and β = 0.78125, 1.5625 and 3.125.
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Fig. 3. Scatter plots of the action S divided by β (x-axis) and the topological charge q (y-

axis) for the Monte Carlo simulations at N = 25 and β = 0.78125, 1.5625 and 3.125, com-

bining different couplings.

5 Classical solutions

The classical equation of motion can be obtained from the action (10) as [7,3]

V†
µ(W −W†)Vµ =W −W† (13)

where the unitary matrixW is defined by

W = ZνµVµ Vν V
†
µ V

†
ν (14)

The general solutions to this equation can be brought into a block-diagonal form
[7]

Vµ =




Γ
(1)
µ

Γ
(2)
µ

. . .

Γ
(k)
µ




(15)

by an appropriate SU(N) transformation, where Γ
(k)
µ are nk×nk unitary matrices

satisfying the ’t Hooft-Weyl algebra

Γ (j)
µ Γ (j)

ν = Z(j)
µνΓ

(j)
ν Γ (j)

µ (16)

Z
(j)

12 = Z
(j)∗

21 = exp

(
2πi

mj

nj

)
(17)

mj =
nj + 1

2
(18)

An explicit representation is given, for instance, by the clock and shift operators,
Q and P

Γ
(j)

1 = Pnj
, Γ

(j)

2 = (Qnj
)mj (19)
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For each solution, the action and the topological charge can be evaluated as

S = 4Nβ
∑

j

nj sin
2

{
π

(
mj

nj

−
M

N

)}
(20)

q =
N

2π

∑

j

nj sin

{
2π

(
mj

nj

−
M

N

)}
(21)

Note that the topological charge q is not an integer in general. If we require the
action to be less than of orderN, however, the argument of the sine has to vanish
for all j. In that case the topological charge approaches an integer

q ≃ N




∑

j

mj −M


 (22)

which is actually a multiple ofN.

6 QuantumMonte Carlo versus classical solutions

In the following analysis we compare the classical topological charges taken from
Ref. [3] with our quantum Monte Carlo simulation at N = 25. In Fig. 4 we plot
our data for a cold start from Fig. 3 together with the classical solutions. One sees
from the scatter plots that the quantum simulation reaches only small topologi-
cal numbers. This brings the situation of QCD into mind where one has to apply
some cooling or smoothing procedure to damp the quantum fluctuations and get
in touch with the integer-valued topological charges. Since a configuration from
a cold start is topologically trivial, we constructed classical solutions and started
with them. In Fig. 5 we overlay the Monte Carlo histories at β = 1.5625 starting
with q = −25 and q = −50, respectively, to the scatter plots of the classical topo-
logical charges from Ref. [3]. One observes that the equilibrium configurations
tend to smaller values of q. Remarkably, the equilibration seems to proceed along
a “classical branch”.

7 Analyses for large topological charge

The question was how to produce start configurations with different large values
of q. One idea was to apply some “cooling procedure” to the topological charge
in contrast to the action, being the imaginary part instead of the real part of the
plaquette, respectively. The topological charge q is now forced to become larger or
smaller every stepwithout posing a condition on the action. In Fig. 6 we start with
an equilibrium configuration of q = −15.7034. It turns out that the negative value
of q is decreasing and configurations of higher action are preferred. In principle,
one could use those configurations with different values of q to start a Metropolis
Monte Carlo simulation [8].

Another idea was to look at random gauge field configurations. This leads
to an ensemble with a large spread in q and large action. In Fig. 7 we present
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Fig. 4. Scatter plots of the action S divided by β (x-axis) and the topological charge q (y-

axis) for Monte Carlo histories atN = 25with cold starts being topologically trivial, q = 0.

The numbers of the classical topological charges are superimposed.
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Fig. 5. Scatter plots of the action S divided by β (x-axis) and the topological charge q (y-

axis) for Monte Carlo histories at N = 25 and β = 1.5625 with starts at q = −25 and −50.

The numbers of the classical topological charges are superimposed.

several Metropolis Monte Carlo simulations which were initialized with topolog-
ical charges in the range −60 < q < 60. This preliminary plot is taken from our
ongoing research [9].

8 Conclusion and outlook

The diagram of the classical topological charges and the corresponding action
from Ref. [3] allows for large values of q. The equilibrium configurations visit
only a small part of this charge-action diagram. Thus we constructed classical
gauge field configurations with large topological charge and used them as start
configuration for quantum simulations. It turned out that the value of the topo-
logical charge is decreasing during a Monte Carlo history, preferably along the
classical minima. To summarize, our results show that the topological charge is
in general suppressed.

The situation is reminiscent of lattice QCD where quantum gauge field con-
figurations are topologically trivial and one needs to apply some smoothing pro-
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Fig. 6. Scatter plots of the action S divided by β (x-axis) and the topological charge q (y-

axis) for “cooling” of the topological charge, starting with an equilibrium configuration at
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Fig. 7. Scatter plots of the action S divided by β (x-axis) and the topological charge q (y-

axis) for Monte Carlo histories at N = 25 and β = 1.5625, starting with several values

−60 < q < 60. The numbers of the classical topological charges are superimposed.

cedure on the gauge fields to unhide instantons. We adapted cooling techniques
known from QCD to the two-dimensional non-commutative U(1) theory. We fur-
ther performed quantum Monte Carlo simulations for large topological charges.
It is desirable to tackle the four-dimensional non-commutative gauge theory in
order to obtain a realistic comparison of its topological content with the well-
studied topological objects like instantons and monopoles in QCD.
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Abstract. A number of papers recently have used fourth-order chiral perturbation theory

to extrapolate lattice data for the nucleon mass; the process seems surprisingly successful

even for large pion masses. In this talk I explored the effect of including the fifth-order

term in the expansion.

Over the last few years there has been an explosion of activity in the field of
chiral extrapolations of lattice QCD data. However for many quantities of interest
unquenched calculations have typically only been performed at relatively high
quark masses, the pion mass is 500 MeV or more. There are real questions about
the convergence of chiral expansions in this region.

One quantity for which the chiral expansion has seemed to work surpris-
ingly well is the nucleon mass. Various groups have looked at the O(p4) (techni-
cally N3LO) expansion of the nucleon mass in heavy baryon chiral perturbation
theory (HBχPT) and found good agreement with unquenched lattice data up to
pionmasses of 800MeV ormore. Of course the results are quite sensitive to the in-
put parameters which include some rather poorly known low-energy constants,
but when these are used as fit parameters the results agree well with other deter-
minations. The most thorough investigation of this type was done by Procura et
al [1] (see also Musch [2]).

However there is no reason to do the fit atO(p4), as the O(p5) corrections to
the nucleon mass were calculated almost ten years ago [3]. There, it was found
that genuine two-loop contributions vanish, and almost all other contributions
could be absorbed in the renormalised pion-nucleon coupling constant, pionmass
and decay constant etc calculated at the physical pion mass. Only an extremely
small relativistic correction to the basic one-loop self-energy is left (and in fact this
piece was included by Procura et al ). However this is not relevant to a lattice ex-
trapolation where the running of the nucleon mass with the varying pion mass is
being explored; instead the original form expressed in terms of chiral limit quan-
tities is the relevant one. This was not given explicitly in Ref. [3] although enough
information was given to reconstruct it; for that reason we recently published a
paper in which the relevant expression was given in full, and its effects on the
chiral extrapolation were explored [4].

⋆ Talk delivered by Judith A. McGovern
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Unsurprisingly, the fifth-order terms are far from small for pion masses of
500 MeV and above. They depend on the value of the third-order LEC d16, which
is not well known but has been constrained by πN→ ππNscattering; however no
value, natural or unnatural, allows the fifth-order terms to be a small perturbation
on the fourth-order ones. (As there is both anm5

π and anm
5
π logmπ term, and the

latter is independent of LECs beyond those from the leading-order Lagrangian,
the total cannot be arranged to vanish over a significant range ofmπ.)
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Fig. 1. Best fits to the lattice data (constraint to pass through the physical point) for MN

(in GeV) versus m2
π (in GeV

2) below mπ = 600 MeV (unshaded region) at third- (blue,

long dashes), fourth- (red, short dashes) and fifth order (black, solid). (Note that the ap-

parent agreement of the fourth- and fifth-order curves at low m2
π masks very different

fitted values of the LEC e ′.)

As is shown in Fig. 1, it is possible to fit the fifth-order formula to the same
four lowest lattice points (plus the physical nucleon mass) as Procura et al did,
with as good a χ2. However the resulting third and fourth order LECs are grossly
unnatural and out of line with other determinations. Furthermore, whereas the
fourth-order curve is also a surprising good fit to the points at higher masses,
the fifth-order curve fails immediately beyond the points to which it was fit. (See
Ref. [2] for the selection of large-volume, SU(2), unquenched lattice data.)

The radius of convergence can be estimated by looking at the contributions
to various orders with fixed coefficients, as is done in Fig. 2. Since the fifth-order
fit is clearly not meaningful, while the LECs in the fourth-order fit are natural and
in line with other determinations, we use the latter and add in a band for the fifth-
order term using the spread of possible values of d16 quoted by Beane [5]. One
can deduce from Fig. 2 that the radius of convergence of the chiral extrapolation
might be about mπ = 300 MeV, a point made previously made by Bernard et
al [6]. Fortunately such masses no longer look as unobtainable with dynamical
quarks as they did until quite recently.
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Fig. 2. Curves up to second- (magenta, short dashes), third- (blue, long dashes), fourth-

(black, solid) and fifth- (green band) order with parameters taken from the fourth-order

fit each time, and the fifth-order band showing the spread with −2.6 ≤ d16 ≤ 2.4 and

l4 = 4.4 ± 0.3 See Ref. [4] for more details.
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We provide a review of the performance of relativistic constituent quark models
(RCQMs) in the low- and intermediate-energy physics of baryons. Three types of
models are considered, namely, the ones whose hyperfine interactions are based
on one-gluon-exchange (OGE) [1], on Goldstone-boson-exchange (GBE) [2], and
on instanton-induced (II) dynamics [3].

First, the invariant mass spectra of the RCQMs are recalled. The ground
states and resonances of all light and strange baryons below ≈ 2 GeV are fairly
well reproduced. The level orderings are correct only for the GBE RCQM. The
known problem with the Λ(1405) persists for all RCQMs. The extension of the
RCQMs to the charm sector works all right in view of the rather scarce data hith-
erto available [4].

Next, the covariant predictions for the electroweak nucleon structure are
summarized. The GBE RCQM, when treated within the point-form approach of
relativistic quantum mechanics employing a spectator-model current operator, is
able to reproduce all elastic electromagnetic and axial form factors of the nucle-
ons in surprisingly good agreement with experiment [5–7]. Similarly the electric
radii and magnetic moments are well described [8]. This holds true also with
regard to all other measured baryon ground states [8,9]. The predictions of the
OGE RCQM are rather similar, and the point-form results are basically consistent
with the findings by the Bonn group with their II RCQM treated along the Bethe-
Salpeter approach [10]. The analogous calculations in instant form cannot pro-
duce predictions close to experiment, however. The instant-form spectator model
in addition is not frame independent and consequently remains with a consid-
erable arbitrariness in the predictions [11]. Regarding the point-form spectator
model the magnitudes of the uncertainties in the results due to different possi-
ble choices of a normalization factor needed in the spectator current operator are
discussed [11,12].

Finally we report the results of a comprehensive study of all types of mesonic
decays of light and strange baryon resonances from a covariant point-form calcu-
lation [13–16]. The predictions for partial widths of π, η, and K decays calculated
with the OGE and GBE RCQMs produce a completely different pattern than has
been known hitherto from nonrelativistic or relativized approaches. In general,
the experimental decay widths are underestimated by the present theory. This



56 W. Plessas

hints to deficiencies in the decay mechanism and/or the description of resonance
states. Obviously a spectator model for the decay operator as used in refs. [13–16]
is not enough; in its nonrelativistic reduction it conforms to the simple elementary
emission model. Presumably more elaborate vertices, many-body contributions
as well as channel couplings are needed. In addition, the resonance states may
notably lack explicit contributions from configurations beyond {QQQ}. Never-
theless, the covariant results definitely demonstrate the importance of relativistic
effects. Furthermore, they can already provide useful insights for the assignments
of excited baryon states to SU(3) flavor multiplets [17].
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Abstract. In order to isolate the contribution of the nucleon strange electric form factor

to the parity-violating asymmetry measured in 4He(e, e′)4He experiments, it is crucial to

have a reliable estimate of the magnitude of isospin-symmetry-breaking (ISB) corrections

in both the nucleon and 4He. Isospin admixtures in the nucleon are determined in chiral

perturbation theory, while those in 4He are derived from nuclear interactions, including

explicit ISB terms. At the low momentum transfers of interest in recent measurements re-

ported by the HAPPEX collaboration at Jefferson Lab, it results that both contributions are

of comparable magnitude to those associated with strangeness components in the nucleon

electric form factor.

One of the challenges of modern hadronic physics is to determine, at a quanti-
tative level, the role that quark-antiquark pairs, and in particular ss̄ pairs, play
in the structure of the nucleon. Parity-violating (PV) electron scattering from nu-
cleons and nuclei offers the opportunity to investigate this issue experimentally.
The PV asymmetry (APV ) arises from interference between the amplitudes due
to exchange of photons and Z-bosons, which couple respectively to the electro-
magnetic (EM) and weak neutral (NC) currents. These currents involve different
combinations of quark flavors, and therefore measurements of APV , in combina-
tion with electromagnetic form factor data for the nucleon, allow one to isolate,
in principle, the electric and magnetic form factors Gs

E and G
s
M, associated with

the strange-quark content of the nucleon.

Experimental determinations of these form factors have been reported re-
cently by the Jefferson Lab HAPPEX [1] and G0 [2] Collaborations, Mainz A4
Collaboration [3], and MIT-Bates SAMPLE Collaboration [4]. These experiments
have scattered polarized electrons from either unpolarized protons at forward
angles [1–3] or unpolarized protons and deuterons at backward angles [4]. The
resulting PV asymmetries are sensitive to different linear combinations ofGs

E and
Gs

M as well as the nucleon axial-vector form factor G
Z
A. However, no robust evi-

dence has emerged so far for the presence of strange-quark effects in the nucleon.

Last year, the HAPPEX Collaboration [5,6] at Jefferson Lab reported on mea-
surements of the PV asymmetry in elastic electron scattering from 4He at four-
momentum transfers of 0.091 (GeV/c)2 and 0.077 (GeV/c)2. Because of the Jπ=0+

spin-parity assignments of this nucleus, transitions induced by magnetic and
axial-vector currents are forbidden, and therefore these measurements can lead to
a direct determination of the strangeness electric form factor Gs

E [7,8], provided
that isospin symmetry breaking (ISB) effects in both the nucleon and 4He, and
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relativistic and meson-exchange (collectively denoted with MEC) contributions
to the nuclear EM and weak vector charge operators, are negligible. A realistic
calculation of these latter contributions [8] found that they are in fact tiny at low
momentum transfers.

Recently, we have completed the first realistic calculations of the ISB and here
we will discuss their effect on the PV asymmetry (see Ref. [9] for details). The PV
asymmetry measured in (e, e′) elastic scattering from 4He is given by

APV =
GµQ

2

4πα
√
2

[
4 sin2 θW − 2

F(1)(q)

F(0)(q)
−

2G
/1
E −Gs

E

(G
p
E +Gn

E)/2

]
, (1)

where Gµ is the Fermi constant as determined from muon decays, and θW is the
Weinberg mixing angle. The term Gs

E(Q2) is the strange electric form factor of

the nucleon, while the termsG
/1
E and F

(1)(q)/F(0)(q) are the contributions toAPV ,
associated with the violation of isospin symmetry at the nucleon and nuclear
level, respectively.

The most accurate measurement of APV has been recently reported at four-
momentum transfer of Q2=0.077 (GeV/c)2 [6]:

APV = [+6.40 ± 0.23 (stat) ± 0.12 (syst)] ppm , (2)

from which one obtains

Γ ≡ −2
F(1)(q)

F(0)(q)
−

2G
/1
E −Gs

E

(G
p
E + Gn

E)/2
= 0.010± 0.038 (3)

at Q2 = 0.077 (GeV/c)2. This result is consistent with zero. In the following, we
discuss the estimates for the ISB corrections first in the nucleon and then in 4He,
respectively G

/1
E(Q2) and F(1)(q), at Q2=0.077 (GeV/c)2 (corresponding to q=1.4

fm−1).

For G
/1
E(Q2) we use the estimate obtained in Ref. [10], combining a leading-

order calculation in chiral perturbation theory with estimates for low-energy con-
stants using resonance saturation. At the specific kinematical point of interest

Q2 = 0.077 (GeV/c)2, it results that G
/1
E(Q2) = −0.0017 ± 0.0006, and with

G
p
E(Q2) = 0.799 andGn

E(Q2) = 0.027

[11], we obtain

−
2G

/1
E

(G
p
E +Gn

E)/2
= 0.008 ± 0.003 (4)

atQ2 = 0.077 (GeV/c)2.

We now turn to F(0)(q) and F(1)(q), the isoscalar and isovector form factors
of 4He, respectively. The form factor F(1)(q) is very small because 4He is predomi-
nantly an isospin T = 0 state, but it contains also tiny T = 1 and 2 components. We
have computed such components using a variety of Hamiltonianmodels, in order
to have an estimate of the model dependence. We have considered: i) the AV18
NN potential [12]; ii) the AV18 plus Urbana-IX 3N potential [13] (AV18/UIX); iii)
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the CD Bonn [14] NN plus Urbana-IXb 3N potentials (CDBonn/UIXb); and iv)
the chiral N3LO [15] NN potential (N3LO). The Urbana UIXb 3N potential is a
slightly modified version of the Urbana UIX (in the UIXb, the parameterU0 of the
central repulsive term has been reduced by the factor 0.812), designed to repro-
duce, when used in combination with the CD Bonn potential, the experimental
binding energy of 3H.

The form factors F(0)(q) and F(1)(q) calculated with the AV18/UIX Hamil-
tonian model, are displayed in Fig. 1, where the effect of inclusion of meson-
exchange contributions (MEC) is also shown. The dashed curves are the calcu-
lations including only the one-body operators, while the solid curves have been
obtained including the relativistic one-body and MEC [8] in the electromagnetic
charge operators. The experimental data are from Refs. [16]. From the figure it is
evident that for q ≤ 1.5 fm−1, the effect of MEC in both F(0)(q) and F(1)(q) is
negligible.

In the inset of Fig. 1, we also show the the model dependence of the ratio
|F(1)(q)/F(0)(q)| (all calculations include MEC). The various Hamiltonian models
give predictions quite close to each other; the remaining differences reflect the
different percentages of the T=1 component in the 4He wave function.
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Fig. 1. The F(0)(q) and F(1)(q) form factors for the AV18/UIX Hamiltonian model. The

F(0)(q) is comparedwith the experimental 4He charge form factor [16]. The dashed curves

are the calculations including only one-body operators. The solid curves include alsoMEC.

The ratio |F(1)(q)/F(0)(q)| (all calculations include MEC) is shown in the inset for the four

Hamiltonian models considered in this paper.

The calculated ratios F(1)(q)/F(0)(q) at Q2=0.077 (GeV/c)2 are of the order
of −0.002. The value corresponding to the N3LO is somewhat larger than for
the other models, as can be seen in Fig. 1, reflecting the larger percentage of T=1
admixtures predicted by the N3LOpotential. The inclusion of 3N potentials tends
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to decrease the magnitude of F(1)/F(0), and relativistic andMEC are, at this value
of Q2, negligible.

Therefore, at Q2=0.077 (GeV/c)2, both contributions F(1)/F(0) and G
/1
E are

found of the same order of magnitude as the central value of Γ in Eq. (3). Using
in this equation the value F(1)/F(0) ≈ −0.00157 obtained with the Hamiltonian

models including 3N potentials, and the chiral result for G
/1
E = −0.0017 ± 0.0006,

one would obtain Gs
E

[
Q2 = 0.077 (GeV/c)2]

= −0.001 ± 0.016 thus suggest-
ing that the value of Γ is almost entirely due to isospin admixtures. Of course,
the experimental error on Γ is still too large to allow us to draw a more def-
inite conclusion. A recent estimate of Gs

E using lattice QCD input obtains [17]

Gs
E(0.1 (GeV/c)2

) = +0.001 ± 0.004 ± 0.003. An increase of the experimental ac-
curacy of one order of magnitude would be necessary in order to be sensitive to
Gs

E at low values ofQ
2. Indeed, if the lattice QCD prediction above is confirmed,

the present data would suggest that the leading correction to the PV asymmetry
is from isospin admixtures in the nucleon and/or 4He.
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Abstract. We apply the coupled channel formalism for the K-matrix to the calculation of

the P11 and P33 scattering amplitudes in the region the N(1440) and ∆(1600) resonances.

1 Introduction

In this work [1] we extend the coupled channel formalism for the K matrix de-
rived in [2] using the static approximation to take into account the correct rela-
tivistic kinematics of the meson-baryon system. We apply this method that has
been used in [2] to explain the peculiar behaviour of the scattering amplitudes in
the energy range of the Roper resonance to the calculation of the ∆(1600) reso-
nance, the Roper’s counterpart in the P33 partial wave.

In quark models these two resonances are assumed to have a similar spa-
tial structure, this similarity is however not reflected in the scattering ampli-
tudes. While in the P11 partial wave the phase shift reaches 90 degrees around
W ∼ 1500 MeV the phase shift in the P33 case shows no sign of resonanant be-
haviour in the energy range of W ∼ 1600 and above, which is a strong signal of
the important role of inelastic channels. This is further supported by the unusual
behaviour of the inelasticity which in the P11 case rapidly rises from zero to unity
and remains close to this value in a broad energy region, while in the P33 case it
rises rather slowly and reaches the unitarity limit only at much higher energies.

We show that these features can be explained by assuming that in this energy
range the inelastic channels are dominated by the two and three-pion decays pro-
ceedingmainly through two channels: (i) in the π∆ channel the resonance first de-
cays into the pion and the∆ isobar of invariantmassM,MN+mπ < M < W−mπ,
and (ii) the σ channel in which the resonance first decays into the σ-meson mim-
icking two pions in the relative s-state and either the nucleon (in the P11 case) or
the ∆ isobar (in the P33 case).

⋆ Talk delivered by B. Golli
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2 Coupled-channel K-matrix formalism

We consider a class of chiral quark models in which mesons (the pion and the
sigma meson in our case) couple linearly to the quark core:

Hmeson =

∫
dk

∑

lmt

{
ωk a

†
lmt(k)almt(k) +

[
Vlmt(k)almt(k) + V

†
lmt(k)a

†
lmt(k)

]}
,

where a†lmt(k) is the creation operator for a meson with angular momentum l

and the third components of spin m and isospin t. In the case of the pion, we
include only l = 1 pions, and

Vmt(k) = −v(k)

3∑

i=1

σi
mτ

i
t (1)

is the general form of the pion source, with the quark operator, v(k), depending
on the model. It includes also the possibility that the quarks change their radial
function which is specified by the reduced matrix elements VBB ′ = 〈B||V(k)||B ′〉,
where B are the bare baryon states (e.g. the bare nucleon, ∆, Roper, . . .) In the case
of the σmesons we assume only l = 0mesons, coupled to the quark core with

Ṽµ(k) = Gσ

k√
2ωµk

wσ(µ) , wσ(µ)2 ≈ 1

π

1
2
Γσ

(µ−mσ)2 + 1
4
Γ2
σ

. (2)

Here ω2
µk = k2 + µ2 and wσ(µ) is the mass distribution function modeling the

resonant decay into two pions. In this workwe take the values consistent with the
recent analysis of Leutwyler [5],mσ = 450MeV and Γσ = 550MeV. The strength
parameter Gσ in (2) is a free parameter of the model.

Chew and Low [4] have shown that in such models it is possible to find the
exact expression for the T matrix (and consequently for the K matrix) without
explicitly specifying the form of asymptotic states. In the basis with good total
angular momentum J and isospin T , in which the K and T matrices are diagonal,
it is possible to express the Kmatrix for the elastic channel in the form:

KJT
πNπN(k,W) = −πNN〈ΨN

JT (W)||V(k)||ΨN〉 ,

whereW is the invariant mass of the meson-baryon system. In the inelastic chan-
nels we find

KJT
π∆πN(k,W,M) = −πN∆〈ΨN

JT (W)||V(k)||Ψ̃∆(M)〉 ,
KJT

π∆π∆(k,W,M ′,M) = −πN∆〈Ψ∆
JT (W,M)||V(k)||Ψ̃∆(M ′)〉 ,

where Ψ̃∆(M) is the intermediate ∆ state with invariant mass M normalized as
〈Ψ̃∆(M ′)|Ψ̃∆(M)〉 = δ(M −M ′). The matrix elements of the K matrix involving
the σN channel in the P11 case read

K
1
2

1
2

σN(k,W, µ) = −πNσN 〈ΨN
1
2

1
2
(W)|Ṽµ(k)|ΨN〉 ,

K
1
2

1
2

σ∆ (k,W, µ,M) = −πNσN 〈Ψ∆
1
2

1
2

(W,M)|Ṽµ(k)|ΨN〉 ,

K
1
2

1
2

σσ (k,W, µ, µ ′) = −πNσN 〈Ψσ
1
2

1
2
(W,µ ′)|Ṽµ(k)|ΨN〉 ,
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and those involving the σ∆ channel in the P33 case:

K
3
2

3
2

Nσ(k,W,M,µ) = −πNσ∆ 〈ΨN
3
2

3
2
(W)|Ṽµ(k)|Ψ̃∆(M)〉 ,

K
3
2

3
2

∆σ (k,W, µ,M,M ′) = −πNσ∆ 〈Ψ∆
3
2

3
2
(W,M ′)|Ṽµ(k)|Ψ̃∆(M)〉 ,

K
3
2

3
2

σσ (k,W, µ,M,µ ′,M ′) = −πNσ∆ 〈Ψσ
3
2

3
2
(W,µ ′,M ′)|Ṽµ(k)|Ψ̃∆(M)〉 ,

whereNB =
√
ωEB/kW, NσB =

√
ωµEB/kµW, ω is the energy of the scattering

pion, k =
√
ω2 −m2

π, andωµ is the energy of the scattering σ-meson of invariant

mass µ, kµ =
√
ω2 − µ2. Here ΨH

JT is the principal value state for which we use
the following ansatz that takes into account the proper relativistic kinematics and
replaces the similar expression in [2] derived in the static (no-recoil) approxima-
tion:

|ΨH
JT (W,mH)〉 = NH

{∑

B

cH
B (W,mH)|ΦB〉 + [a†(kH)|Ψ̃H〉]JT

+

∫
dk

χNH
JT (k,W,mH)

ωk + EN(k) −W
[a†(k)|ΨN(k)〉]JT

+

∫
dM

∫
dk
χ∆H

JT (k,W,M,mH)

ωk + E(k) −W
[a†(k)|Ψ̃∆(M)〉]JT

+

∫
dµ

∫
dk
χσH

JT (k,W, µ,mH)

ωµk + E(k) −W
b†(k)|Ψ̃JT 〉

}
. (3)

Here H stands for either the πN, π∆, σN or the σ∆ channel, mH is the invariant
mass of the corresponding intermediate hadron in the inelastic channels, E(k) is
the energy of the recoiled baryon (nucleon or∆). The first term consists of the sum
over bare tree-quark states ΦB, involving different excitations of the quark core,
the next term corresponds to the free meson (pion or σ-meson) and the baryon
(N or ∆) and defines the channel, the next two terms represent the pion cloud
around the nucleon and the ∆ isobar, respectively, and the last term the σ-meson
cloud around the nucleon (for JT = 1

2
1
2
) or the ∆ (for JT = 3

2
3
2
), here b† is the

creation operator for the σ-meson.
The on-shell meson amplitudes χH ′H

JT , describing the corresponding meson
clouds around the nucleon and the ∆ are proportional to corresponding matrix
elements of the on-shell K matrix

KH ′H = πNH ′NH χ
H ′H
JT (kH ′ , kH) .

From the variational principle for the K matrix it is possible to derive the inte-
gral equation for the amplitudes which is equivalent to the Lippmann-Schwinger
equation for the K matrix.
Using a simplified ansatz for the principal value states in which the terms in-

volving the integrals are neglected amounts to taking only the non-homogeneous
part of the corresponding Lippmann-Schwinger equation. Such an approxima-
tion is widely used in phenomenological analysis of scattering amplitudes and is
known as the Born approximation for the K matrix.
The T matrix is calculated from the K matrix through the Heitler equation:

T = −K+ iKT .
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3 Results for the scattering amplitudes in the Cloudy Bag
Model

We illustrate the method by calculating scattering amplitudes for the P11 and
the P33 partial waves. Though the expressions derived in the previous sections
are general and can be applied to any model in which mesons linearly couple to
the quark core, we choose here the Cloudy Bag Model, primarily because of its
simplicity. In this model, the matrix element of the pion source (1) between the
model 3-quark states can be written as

〈ΦB ′ ||V(k)||ΦB〉 = rq v(k) 〈JB ′ , TB ′ = JB ′ ||

3∑

i=1

σi
mτ

i
t||JB, TB = JB〉 ,

where

v(k) =
1

2f

k2

√
12π2ωk

ωMIT

ωMIT − 1

j1(kRbag)

kRbag

and

rq =






1 for B = B ′ = (1s)3 configuration

rω =

[
ω1
MIT(ω

0
MIT−1)

ω0
MIT(ω

1
MIT−1)

]1/2

= 0.457 for B = (1s)3, B ′ = (1s)2(2s)1

2
3

+ r2ω for B = B ′ = (1s)2(2s)1

.

In this work we use Rbag = 0.9 fm, f = 76MeV yielding the correct value for the
πNN coupling constant. Similar results are obtained for 0.85 fm < Rbag < 1.0 fm.
In addition, the energies of the 3-quark states in different excited states are also
taken as free parameters.
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Fig. 1. The P11 (left panel) and P33 (right panel) phase shifts. The corresponding thin line

in the P33 case represent the phase shift for the pion scattering on the ∆. The data points

in this and subsequent figures are from the SAID πN → πN partial-wave analysis [6] The

model parameters areMR = 1510 MeV,M∆ = 1232 MeV,M∆∗ = 1700MeV

The results in the simplest approximation, the Born approximation for the
K matrix without background, are displayed in Figure 1. This approximation is
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equivalent to keeping only the the first term in the ansatz (3). By increasing the
πN∆ interaction strength by 60 % and the πNRoper by 80 % with respect to the
above model values, the widths of the N(1440) and ∆(1232) are reproduced. This
simplified approach explains why the resonant behaviour of the phase shift is not
observed for the ∆(1600) (≡ ∆∗) in the elastic channel: in this energy region, the
matrix element π∆∆∗ becomes stronger than πN∆∗ in which case the resonance
disappears in the πN → πN but appears is the non-observable π∆ → π∆ channel.

Including the background in the the Born approximation for the K matrix

through the term [a†(kH)|Ψ̃H(M)〉]JT in (3) we obtain almost perfect agreement
of the calculated scattering amplitudes compared to the amplitudes extracted in
the partial-wave analysis but still at the expense of considerably larger πN∆ and
πNRoper interaction strength compared to those predicted by the quark model.
This inconsistency is resolved when solving the Lippmann-Schwinger equation
for the pion amplitudes; it turns out that for our particular choice of the bag ra-
dius we are able to reproduce the experimental scattering amplitudes starting
from the bare values as predicted by the Cloudy Bag Model (see Fig. 2).
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Abstract. We continue the study of a schematic quasispin model similar to the Nambu –

Jona-Lasinio model. The model is characterized by a finite number of quarks occupying

a finite number of states in the Dirac sea as well as in the valence space (due to a sharp

momentum cutoff and a periodic boundary condition). This allows the use of first quan-

tization and an explicit wavefunction. Most low-lying states in the excitation spectrum

can be interpreted as multi-pion states and one can deduce the effective pion-pion interac-

tion and scattering length. However, the intruder states can be recognized as sigma-meson

excitations or their admixtures to multi-pion states.

1 Introduction

In the Mini-Workshop Bled 2006 [1] we presented a soluble two-level quasispin
model of spontaneous chiral symmetry breaking, inspired by the Nambu – Jona
Lasinio model. It is the hadronic analogue of the Lipkin model in nuclear physics
[2].

In our schematic model we enclose N = N quarks in a periodic box V and
use a sharp momentum cutoff Λ, leading to a finite number N = NcNfVΛ3/3π2

of states in the Dirac sea and the same number of states in the valence “shell”. We
further simplify the one-flavour Nambu – Jona-Lasinio Hamiltonian by taking all
quark kinetic energies equal to 3

4
Λ and by neglecting the interaction terms which

change the individual quark momenta:

H =

N∑

k=1

(
γ5(k)h(k) 3

4
Λ+m0β(k)

)

−
2G

V

( N∑

k=1

β(k)

N∑

l=1

β(l) +

N∑

k=1

iβ(k)γ5(k)

N∑

l=1

iβ(l)γ5(l)

)

Here h = σ ·p/p is helicity and γ5 and β are Dirac matrices. We use the pop-
ular model parameters close to [3,4],Λ = 648MeV, G = 40.6MeV fm, m0 = 4.58

⋆ Talk delivered by M. Rosina
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MeV, which yield the phenomenological values of quark constituent mass, quark
condensate and pion mass both in full Nambu – Jona-Lasinio model as well as
in our quasispin model (using in both cases the Hartree-Fock + RPA approxima-
tions). It has been shown in [1] that in the large N limit the exact results of our
quasispin model tend in fact to the Hartree-Fock + RPA values.

2 What can we learn from the excitation spectrum?

It is very convenient to introduce the quasispin formalism using the fact that the
following operators obey (quasi)spin commutation relations

jx =
1

2
β , jy =

1

2
iβγ5 , jz =

1

2
γ5 ,

The (quasi)spin commutation relations are also obeyed by separate sums over
quarks with right and left helicity as well as by the total sum (α = x, y, z)

Rα =

N∑

k=1

1+ h(k)

2
jα(k) , Lα =

N∑

k=1

1− h(k)

2
jα(k) , Jα = Rα + Lα =

N∑

k=1

jα(k) .

The model Hamiltonian can then be written as

H = 2P(Rz − Lz) + 2m0Jx − 2g(J2x + J2y) . (1)

It commutes with R2 and L2 but not with Rz and Lz. Nevertheless, it is conve-
nient to work in the basis |R, L, Rz, Lz 〉.The Hamiltonian matrix elements can be
easily calculated using the angular momentum algebra. By diagonalisation we
then obtain the energy spectrum of the system.

Table 1. The spectrum of the quasispin model withN = 144, quantum numbers R+L = 36

and model parameters listed in the Introduction

Parity (E − E0)[MeV] n V̄ [MeV] A B C

+ 932 10 -9.5 -0.9 -0.0 0.3

− 803 9 -11.7

+ 771 8 -11.3 -0.0 -0.0 -0.0

− 767 7 -8.8

+ 646 6 -11.4 4.8 0.9 -2.2

+ 634 6 -12.2 0.3 0.1 -0.1

− 580 5 -10.0

+ 482 4 -10.5 -0.3 -0.2 -0.0

− 378 3 -10.1

+ 261 2 -10.3 3.5 2.3 -0.2

− 136 1

+ 0 0 -18.4 -18.4 -30.0
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The ground state is the vacuum. Most excited states can be interpreted as
multi-pion states while the intruder state is suggestive of the sigma mesons. Here
n is the guessed number of pions while other columns will be explained in the
following subsections where we discuss the harvest of the excitation spectrum.

2.1 Pion-pion scattering

Since we are working in a finite volume V with periodic boundary conditions we
cannot impose scattering boundary conditions. Instead of a continuous spectrum
of scattering states we obtain a discrete spectrum. Energy levels of n-pion states
can be interpreted to contain the average effective pion-pion potential V̄ given in
Table 1:

Enπ = nmπ +
n(n − 1)

2
V̄.

Let us repeat our results presented last year [1]. We calculate the s-state scat-
tering length in the first-order Born approximation

a =
mπ/2

2π

∫
V(r)d3r =

mπ

4π
V̄V . (2)

This formula was first quoted by M.Lüscher [5] in 1986 and 1991 and later by
many authors. It was derived in a much more sophisticated way, but in our con-
text it is just the first-order Born approximation.
In our example for N = 144 we have V̄ = −10.3MeV and V = π2N/Λ3 =

40 fm3 This gives

amπ =
m2

π

4π
V̄V = −0.0836. (3)

Since there are no experiments with one-flavour pions we compare with the
two-flavour value (I = 2). The chiral perturbation theory (soft pions) suggests
in leading order aI=2

0 mπ = −m2
π/16πf

2
π = −0.0445. The old analysis of Gasser

and Leutwyler gave -0.019 and the more recent analysis by Lesniak gave -0.034
(“non-uniform fit”) or -0.044 (“uniform fit”). We get about twice larger value in
our one-flavour model due to the artifact that we made up for the second flavour
by replacing G→ 2G.

2.2 The sigma meson

In the spectrum in Table 1 one can clearly distinguish the presence of the sigma
meson by noticing the doubling of the positive parity states at 634 and 646 MeV.
Moreover, the state at 646 MeV has strong transition matrix elements from the
ground state for positive parity one-body operators (see Table 2):

2Â = R+ + L− = Jx + i(Ry − Ly)

2B̂ = R− + L+ = Jx − i(Ry − Ly)

2Ĉ = Rz − Lz

On the other hand, the state at 634 MeV has much smaller transition matrix
elements. This is s a good argument that the state at 646 MeV is a rather pure
sigma meson. To conclude, we are still devising a method how to extract from
the spectrum the width of the sigma meson for the σ → ππ decay
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2.3 Comparison with different particle-hole methods

In particle-hole methods (=approximations) sigma meson is introduced as

|σ〉 = (a Â+ b B̂+ c Ĉ)|g〉 .

In Table 2. we present excitation energies as well as transition matrix ele-
ments A = 〈σ| Â |g〉 and similar for B and C.

Table 2. Excitation energies and transition matrix elements for various approximations

(E − E0)[MeV] A B C

Exact 646 4.8 0.9 -2.2

TD 555 5.8 1.8 -2.4

HOM 530 5.8 1.8 -2.4

RPA 668 5.6 1.0 -2.2

In the Tamm-Dancoff approximation (TD) the coefficients a, b, c are deter-
mined by diagonalizing the 3×3Hamiltonianmatrix in the corresponding particle-
hole space. Similarly, in the Hermitian Operator Method (HOM) [6] a = b and
one diagonalizes a 2×2 Hamiltonian matrix. IN The Random Phase Approxima-
tion (RPA) one solves the RPA equations assuming for O† = (a Â+ b B̂+ c Ĉ):

|σ 〉 = O†|Φ0 〉 , with O|Φ0 〉 = 0 , and |Φ0 〉 = |HF 〉.
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Abstract. The MAMI accelerator (Mainz, Germany) and the CEBAF at Jefferson Labora-

tory (Newport News, USA) are the world leading electron-scattering facilities in the sev-

eral 100MeV to several 1GeV energy range. A large fraction of the experimental program

in these laboratories has recently been focused on the electroweak properties of the nu-

cleon, its spin structure, and on nucleon resonance excitation. Latest results from MAMI

(A1 Collaboration) and Jefferson Lab (mostly Hall A) are described.

1 Electroweak properties of nucleons

The elastic form factors of the nucleon remain of prime interest. New measure-
ments of the proton electric-to-magnetic form-factor ratio have been performed
or are being planned in order to resolve the persistent discrepancy between the
double-polarization measurement [1] versus a precise Rosenbluth-separation de-
termination [2], which exhibit differentQ2-dependencies. Presently the main rea-
son for the disagreement is believed to be the two-photon correction to the elastic
scattering process, which contributes differently in both cases. One should also
mention the recent precise results at the other end of the spectrum, at very low
Q2 where pion-cloud effects play the dominant role. These were obtained by the
BLAST Collaboration at MIT-Bates [3].

An extension of the double-polarized measurement to about 9 (GeV/c)2 is
in progress at Jefferson Lab (Hall C), while a high-precision unpolarized (Rosen-
bluth) measurement of G

p
E and G

p
M at low Q

2 is being pursued at MAMI. Mea-
surements of G

p
E to as high as 15 (GeV/c)2 and G

p
M to 18 (GeV/c)2 are planned

with the 12 GeV-upgrade of CEBAF. There are also efforts in JLab Hall B which
are concentrated around the measurement of cross-section differences for elec-
trons versus positrons, which are an independent means of distinguishing the
role of the two-photon contributions.

An exciting development in the form-factor arena is the recent high-Q2 mea-
surement of the neutron charge form-factor GnE in Hall A. These measurements
are relevant both to explore the transition to pQCD (two-gluon exchanges) and
to test the importance of the handbag diagrams (from the perspective of gener-
alized parton distributions (GPDs)), as well as for nucleon spin (sum rules) and
lattice QCD. Preliminary results at intermediateQ2 have been reported at various
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conferences this Fall and indicate values of GnE which lie above the conventional
(Platchkov) parameterization.

The HAPPEX Collaboration at Jefferson Lab is dedicated to the determina-
tion of the strange-quark contributions to the distributions of charge (GsE) and
magnetization (GsM) within the proton. The parity-violating asymmetry on hydro-
gen is proportional to a linear combination of GsE and G

s
M, while it is proportional

toGsE only in the case of the spin-less
4He nucleus. Both targets have been used at

HAPPEX in different kinematical conditions. Most recent results have now been
published [5], and the results of this experiment only (i.e. without averaging over
other experiments) are

GsE = 0.002± 0.014 ± 0.007 ,
GsE + 0.09GsM = 0.007± 0.011 ± 0.006 .

Real-photon Compton scattering (RCS) and its virtual counterpart (VCS) are
being utilized to access further information on the electromagnetic structure of
the proton. The E99-114 experiment at Hall A has measured polarization transfer
in RCS off the proton at high momentum transfer [6]. Polarization transfer pa-
rameters KLL and KLS were extracted and were shown to be in disagreement with
the prediction of perturbative QCD based on a two-gluon exchange mechanism.
Specifically, the nonzero value of the ratio

KLS

KLL
∝ RT

RV
= 0.21 ± 0.11 ± 0.03

implies that the proton helicity is flipped in the RCS process (which is forbidden
in leading-twist pQCD). The RCS studies have been forwarded another step by
examining the scaling

dσ

dt
∝ f(θ)

sn

of the RCS cross-section (at a fixed angle), where pQCD predicts n = 6 based on
constituent scaling rules. In contrast to this expectation, a relatively precise value
of n = 8.0 ± 0.2 has been found [7]. The scaling result also disagrees with the
predictions based on the handbag reaction mechanism.

The OOPS Collaboration at MIT-Bates has finished analyzing the data from
experiments in virtual Compton scattering (VCS) off the proton at low Q2 [8].
The mean-square electric polarizability of the proton

〈r2α〉 = 2.16 ± 0.31 fm2

(basically the slope of the Q2-dependent electric polarizability α(Q2) at low Q2)
has been determined for the first time in a VCS process. The magnetic polar-
izability β(Q2), on the other hand, could not be determined well due to poor
statistics, although the data is consistent with β having a positive slope at ori-
gin, corresponding to a negative magnetic polarizability mean-square radius and
characteristic of a diamagnetic contribution from the pion cloud. Unfortunately,
the statistics and systematics of the data gathered over the years at MIT-Bates,
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MAMI and JLab, are still insufficient to allow for a reliable determination of the
Q2-dependence of the polarizabilities.

The VCS program on nucleon targets has recently evolved into a much broa-
der effort by including polarization degrees of freedom. Single-spin (beam) asym-
metries at low energies have been measured at MAMI/A1 on the proton [9], as
well as in the deep-inelastic regime (so-called deeply virtual Compton scatter-
ing, DVCS) at JLab Hall A on both the proton and the neutron. The analysis of
the Mainz experiment, the goal of which is to determine three different linear
combinations of generalized polarizabilities contained in the Ψ0, ∆Ψx0, and ∆Ψz0

structure functions is underway while the proton DVCS results from Hall A ap-
peared recently [10]. This is a first DVCS experiment in the valence-quark region
(large Bjorken x). Real and imaginary parts of twist-2 and twist-3 coefficients of
the angular expansion of the cross-section have been measured with great ac-
curacy. One of the conclusions was that perturbative scaling applies in DVCS,
indicating that the GPDs are in principle accessible already at modest values of
Q2 in this process.

2 Nucleon spin structure

The neutron DVCS experiment E03-106 utilizes the same (single-spin) technique
as the proton DVCS to constrain E , the least-known GPD, and as such comple-
ments nicely the proton case which predominantly depends on H and H̃. In ad-
dition, the neutron channel is particularly important because the of the nucleon
total angular momentum sum rule J = Jq + Jg = 1

2
(quarks plus gluons), where

Jq =
1

2
∆Σ+ Lq =

1

2

∫
dx x

[
H(x, ξ, 0) − E(x, ξ, 0)

]
.

While the spin part ∆Σ can be determined in DIS experiments (and Lg in ex-
periments like COMPASS), the nDVCS at high values of Bjorken x has a unique
opportunity to help determine the orbital contribution Lq. The analysis of the
neutron DVCS experiment is underway.

3 Nucleon resonances

The multipole character of the N→ ∆(1232) transition is being probed with ever
increasing accuracy and at varying kinematical conditions (in particular, at sev-
eral values of Q2 accessible at different laboratories). In fact, the experimental
methods have been improved to a degree that allows for a rather clear determi-
nation of the individual transition amplitudes, such that the model dependence
usually dominates the final uncertainties.

Sadly, professor Jim Kelly, the spokesperson and the spiritus agens of the
landmark N → ∆(1232) experiment in Hall A at Jefferson Lab, has passed away
this year. It is in respect and admiration that we look at the extensive paper on
that experiment [11] which he managed to bring to completion in the very last
weeks of his illness.



Exclusive processes on the nucleon... 73

The A1 Collaboration atMAMI has reported on new precise p(e, e ′p)π0mea-
surements at the peak of the ∆(1232) resonance at Q2 = 0.20 (GeV/c)2 [12]. The
new data are sensitive to both the electric (E2) and the Coulomb (C2) quadrupole
amplitudes of the N → ∆ transition. New precise values for the quadrupole to
dipole amplitude ratios

CMR = (−5.09 ± 0.28 (stat + sys) ± 0.30 (model))% ,

EMR = (−1.96 ± 0.68 (stat + sys) ± 0.41 (model))%

have been obtained, with a value for the dominant magnetic dipole amplitude

M1+ = (39.57± 0.75 (stat + sys) ± 0.40 (model)) · 10−3/m+
π .

The results are in disagreement with the predictions of the Constituent Quark
Model and in qualitative agreement with models that account for mesonic con-
tributions, including recent Lattice QCD calculations. They thus support the con-
jecture of deformation in hadronic systems with its origin in the dominance of
mesonic effects.
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Similar goals have been set by another experiment at MAMI [13], but at a
lower value of Q2 = 0.060 (GeV/c)2. Here, the reported ratios are even more
precise,

CMR = (−4.81 ± 0.27 (stat + sys) ± 0.26 (model))% ,

EMR = (−2.28 ± 0.29 (stat + sys) ± 0.20 (model))%

while the magnetic dipole amplitude is

M1+ = (40.33 ± 0.63 (stat + sys) ± 0.61 (model)) · 10−3/m+
π ,

with similar conclusions. A summary of the results from recent experiments at
low Q2, where pion cloud physics (long-range effects) is believed to play a most
prominent role, is given in Figure 1.

Polarization degrees of freedom have also been exploited in the measure-
ment of p(e, e ′p)π0 at Q2 = 0.35 (GeV/c)2 in the resonance region [14]. The
results (unpolarized and polarized structure functions) have been compared to
calculations based on dispersion relations for VCS and to the phenomenologi-
cal pion electroproduction model MAID. There is an overall good agreement be-
tween experiment and theoretical calculations. The remaining discrepancies have
been mostly attributed to imperfect parameterizations of non-resonant (back-
ground) multipoles, to which the measured beam-helicity asymmetry is partic-
ularly sensitive.

In another polarized experiment, both beam polarization and proton po-
larimetry have been utilized in an experiment inaugurating the MAMI-C accel-
erator with its new, 1.5GeV CW beam [15]. The beam-recoil polarization transfer
coefficients P ′

x and P
′
z as well as the (induced) recoil polarization Py were mea-

sured for the first time in the p(e, e ′p)η reaction at Q2 = 0.1 (GeV/c)2, with a
center of mass production angle of 120◦ and spanning a center of mass energy
range of 1500MeV < W < 1550MeV, thus covering the region of the S11(1535)
and D13(1520) resonances. The values obtained are

P ′
x = (−67.6 ± 3.2 (stat) ± 2.6 (sys))% ,

Py = (16.1 ± 3.2 (stat) ± 2.3 (sys))% ,

P ′
z = (−29.3 ± 2.6 (stat) ± 2.6 (sys))% .

The P ′
x and P

′
z are in good agreement with the phenomenological isobar model

(Eta-MAID), while Py shows a significant deviation, consistent with existing pho-
toproduction data on the polarized-target asymmetry from Bonn. However, if a
strong phase change between E0+ and (E2− +M2−)multipoles is applied, which
gives a good description of the Bonn polarized target data, the electroproduc-
tion data point is also in good agreement with the model. Such a strong phase
change is incompatible with a standard Breit-Wigner behavior of the S11(1535)
resonance. Indeed this appears to be yet another of the peculiarities of this reso-
nance, the most notable one being the remarkably slow Q2-falloff of the helicity
amplitude corresponding to η electroproduction seen in Hall B.
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