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Abstract

We introduce a new practical and more general definition of local symmetry-preserving
operations on polyhedra. These can be applied to arbitrary embedded graphs and result in
embedded graphs with the same or higher symmetry. With some additional properties we
can restrict the connectivity, e.g. when we only want to consider polyhedra. Using some
base structures and a list of 10 extensions, we can generate all possible local symmetry-
preserving operations isomorph-free.
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1 Introduction
Symmetry-preserving operations on polyhedra have a long history – from Plato and Archi-
medes to Kepler [11], Goldberg [9], Caspar and Klug [4], Coxeter [6], Conway [5], and
many others. Notwithstanding their utility, until recently we had no unified way of defining
or describing these operations without resorting to ad-hoc descriptions and drawings. In
[2] the concept of local symmetry-preserving operations on polyhedra (lsp operations for
short) was introduced. These are operations that are locally defined – on the chamber level,
as explained in the next section – and therefore preserve the symmetries of the polyhedron
to which they are applied. This established a general framework in which the class of all
lsp operations can be studied, without having to consider individual operations separately.
It was shown that many of the most frequently used operations on polyhedra (e.g. dual,
ambo, truncate, . . . ) fit into this framework.

But of course we sometimes do want to examine the operations individually, e.g. to
check conjectures on as many examples as possible before we try to prove them, or to
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find operations with certain properties. We can do this for a few operations by hand, but
a computer can do this a lot faster, and in a systematic way such that no operations are
missed.

In this paper we shall slightly extend the definition of lsp operation so it can be applied
to any graph embedded on a compact closed surface1, and at the same time provide a
reformulation of these operations as decorations, which will turn out to be easier to use in
practice.

2 Decorations and lsp operations
Every embedded graph G has an associated chamber system CG [7]. This chamber system
is obtained by constructing a barycentric subdivision of G by adding one vertex in the
center of each edge and face of G, and edges from each center of a face to its vertices and
centers of edges. These vertices can be chosen invariant under the symmetries of G. In
CG, each vertex has a type that is 0, 1, or 2, indicating the dimension of its corresponding
structure in G. Each edge has the type of the opposite vertex in the adjacent triangles. In
Figure 1, the chamber system of the plane graph of a cube is given. The original graph
consists of the edges of type 2 in the chamber system.

Figure 1: The barycentric subdivision of the plane graph of a cube. Edges of type 0 are red,
edges of type 1 are green and edges of type 2 are black.

We use the drawing conventions from Figure 1 for the types of the edges in all figures.
Since the vertex types can be deduced from the edge types, we do not display them in the
figures.

Definition 2.1. A decoration D is a 2-connected plane graph with vertex set V and edge
set E, together with a labeling function t : V ∪ E → {0, 1, 2}, and an outer face which
contains vertices v0, v1, v2, such that

1. all inner faces are triangles;

2. for each edge e = (v, w), {t(e), t(v), t(w)} = {0, 1, 2};
1All graphs in this paper are embedded graphs, and a subgraph has the induced embedding.
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3. for each vertex v with t(v) = i, the types of incident edges are j and k with {i, j, k} =
{0, 1, 2}. Two consecutive edges with an inner face in between can not have the same
type;

4. for each inner vertex v

t(v) = 1 ⇒ deg(v) = 4

t(v) 6= 1 ⇒ deg(v) > 4

for each vertex v in the outer face and different from v0, v1, v2

t(v) = 1 ⇒ deg(v) = 3

t(v) 6= 1 ⇒ deg(v) > 3

and

t(v0), t(v2) 6= 1

t(v1) = 1 ⇒ deg(v1) = 2

t(v1) 6= 1 ⇒ deg(v1) > 2.

Note that condition 3 implies that all inner vertices have an even degree.
For all {i, j, k} = {0, 1, 2}, the k-side of a decoration D is the path on the border of

the outer face between vi and vj that does not pass through vk.
We can fill each triangular face of a chamber system CG with a decoration, by identi-

fying the vertex of type i with vi for i ∈ {0, 1, 2} and identifying corresponding vertices
on the boundary. This results in a new chamber system CG′ of a new graph G′, as can be
seen in Figure 2.

01

2

Figure 2: The decoration ambo applied to the cube of Figure 1. The resulting graph G′ is
the one in black.

This is very similar to the lsp operations of [2]. We are constructing graphs by sub-
dividing the chambers of the chamber system. One key difference is that we impose no
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restrictions on the connectivity. This means that we can apply decorations to arbitrary em-
bedded graphs, but when applied to a polyhedron – i.e. a 3-connected plane graph – it is
possible that the result has a lower connectivity. We will address this problem later with
additional restrictions on decorations.

For now, we will repeat Definition 5.1 of [2] without the restrictions on the connectivity.

Definition 2.2. Let T be a connected periodic tiling of the Euclidean plane with chamber
system CT , that is given by a barycentric subdivision that is invariant under the symmetries
of T . Let v0, v1, v2 be points in the Euclidean plane so that for 0 ≤ i < j ≤ 2 the line Li,j

through vi and vj is a mirror axis of the tiling.
If the angle between L0,1 and L2,1 is 90 degrees, the angle between L2,1 and L2,0 is 30

degrees and consequently the angle between L0,1 and L0,2 is 60 degrees, then the triangle
v0, v1, v2 subdivided into chambers as given by CT and the corners v0, v1, v2 labelled with
their names v0, v1, v2 is called a local symmetry-preserving operation, lsp operation for
short.

The result O(G) of applying an lsp operation O to a connected graph G is given by
subdividing each chamber C of the chamber system CG with O by identifying for 0 ≤ i ≤
2 the vertices of O labelled vi with the vertices labelled i in C.

An lsp operation is called k-connected for k ∈ {1, 2, 3} if it is derived from a k-con-
nected tiling T . So the original definition was for 3-connected lsp operations only. In order
to correctly determine the connectivity, we first need to identify which chamber systems
correspond to k-connected graphs. To decide whether a graph G is k-connected based on
its chamber system CG, we can look at the type-1 cycles in CG. A type-1 cycle is a cycle in
the subgraph of CG that consists of the type-1 edges only. A type-1 cycle is empty if there
are no vertices on the inside or on the outside of the cycle in this type-1 subgraph. Note
that in the graph CG these cycles are not necessarily empty.

Lemma 2.3. A plane graph G is

1. 2-connected if and only if CG contains no type-1 cycles of length 2;

2. 3-connected if and only if G is 2-connected and CG contains no non-empty type-1
cycles of length 4.

Proof.

1. Suppose CG contains a type-1 cycle of length 2. This cycle contains one type-0
vertex v, incident to at least one type-2 edge inside the cycle and at least one type-2
edge outside the cycle (see Figure 3a), because CG is a barycentric subdivision. It is
clear that v has to be a cut-vertex of G.

Conversely, if G has a cut-vertex v, there is a face of G for which v occurs at least
two times in its border. In CG this face corresponds with a type-2 vertex, incident
with at least two type-1 edges to v. These edges form a type-1 cycle in CG.

2. Suppose CG contains a non-empty type-1 cycle of length 4, as can be seen in Fig-
ure 3b. This cycle contains two type-0 vertices v and w, with incident type-2 edges
at both sides of the cycle. Removing v and w from G results in a disconnected graph.

If G is 2-connected but not 3-connected, there are two vertices v and w that discon-
nect G when removed. So there are two non-empty subgraphs of G that are only
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connected by v and w, as in Figure 3b. This means that there is a non-empty type-1
cycle in CG.

(a) not 2-connected (b) 2-connected but not 3-connected

Figure 3: Two graphs with type-1 cycles. The gray area contains the graph. Only the type-1
edges of the chamber system are shown. The type-0 vertices are red and the type-2 vertices
are black.

Note that this theorem only holds for plane graphs, since the proof relies on the Jordan
curve theorem. A counterexample to an equivalent theorem for embedded graphs of higher
genus is the dual of a 3-connected graph on the torus, which can have a 2-cut (see [1]).

Since we introduced a more general definition of lsp operations, we can also formulate
a more general version of Theorem 5.2 in [2].

Theorem 2.4. If G is a k-connected plane graph with k ∈ {1, 2, 3}, and O is a k-connected
lsp operation, then O(G) is a k-connected plane graph.

Proof. It is clear that O(G) is a plane graph. For k = 1, we know that T and G are
connected, and it follows easily that O(G) is connected. For k = 3, the proof is given
in [2]. For k = 2, we will prove that there is no cut-vertex in O(G).

A type-1 cycle of length 2 in CO(G) is either completely contained in one chamber of
CG

2, or it is split between two chambers of CG (see Figure 4). Both cases cannot appear,
as for any chamber (resp. any pair of adjacent chambers) there is an isomorphism between
this chamber (resp. these two chambers) and the corresponding area in T , and according to
Lemma 2.3 T has no type-1 cycles of length 2.

This implies that CO(G) contains no type-1 cycles of length 2, and thus, invoking once
again Lemma 2.3, O(G) contains no cut-vertices.

Figure 4: The different situations where type-1 cycles of length 2 can occur.

2With a chamber of CG in CO(G), we mean the area that was a chamber of CG before it was subdivided
by O.
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We can prove similar properties for decorations, but it is easier to use the correspon-
dence between lsp operations and decorations. Although the way they are defined is rather
different, in reality they are the same thing. The triangle v0, v1, v2 of an lsp operation that
is derived from a tiling has exactly the properties of a decoration, and each decoration can
be derived as an lsp operation from a tiling.

Theorem 2.5. Each decoration defines an lsp operation and vice versa.

Proof. It is straightforward that the graph defined by an lsp operation is unique and satisfies
the conditions of Definition 2.1. We still have to prove that each decoration defines an lsp
operation.

Given a decoration D, we can take the hexagonal lattice H and use D to decorate each
chamber of the chamber system CH . The result will be a chamber system CT of a tiling T .

We will first prove that the type-2 subgraph of D is connected, by induction on the
number of triangles. There is always at least one triangle in D that shares one or two edges
with the outer face. We remove these edges, and call the result D′. It is clear that D′ still
satisfies properties 1–3 of Definition 2.1, and by induction its type-2 subgraph is connected.
If one of the removed edges has type 2, it is connected to D′ by a vertex of type 0 or 1 with
degree at least 3, and therefore it is connected to the type-2 subgraph of D′.

Given vertices u and v in the type-2 subgraph of CT , there exists a sequence of cham-
bers C0, . . . , Cn of H such that two consecutive chambers Ci and Ci+1 share one side, and
u is contained in C0 and v in Cn. Since there are at least two vertices on each side of D,
and they are not both of type 2, at least one of them is in the type-2 subgraph of CT . Thus,
there is a type-2 path between u and v that passes through all chambers in the sequence
C0, . . . , Cn, and the type-2 subgraph of CT is connected. It follows immediately that T is
connected too.

We can choose the vertices of one chamber of CH in T as v0, v1 and v2. This satisfies
the properties of Definition 2.2, and it is clear that the decoration defined by the triangle
v0, v1, v2 is equal to D.

This correspondence can be further extended to 2-connected and 3-connected opera-
tions.

Definition 2.6. A 2-connected decoration is a decoration with

1. no type-1 cycles of length 2;

2. no internal type-1 edges between two vertices on a single side.

Definition 2.7. A 3-connected decoration is a 2-connected decoration with

1. no type-1 edge between sides 0 and 2;

2. no non-empty type-1 cycles of length 4.

Note that, when seen as a graph, a decoration is always at least 2-connected.

Theorem 2.8. Each 2-connected decoration D defines a 2-connected lsp operation and
vice versa.
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Proof. A 2-connected decoration is a decoration, so it follows from Theorem 2.5 that D
defines an lsp operation. We still have to prove that the corresponding tiling T is 2-con-
nected. If T is not 2-connected, there is a type-1 cycle of length 2 in CT . If this cycle is
completely contained in the triangle v0, v1, v2, there is a cycle of length 2 in D too, which
is impossible. The only other possibility is that the cycle of length 2 is cut in half by Lij ,
but then there would be an internal type-1 edge between 2 vertices on Lij , which is a side
of D.

A 2-connected lsp operation with corresponding tiling T defines a decoration D ac-
cording to Theorem 2.5. We still have to prove that the extra conditions of Definition 2.6
are satisfied. If there is a type-1 cycle of length 2 in D, this cycle occurs in CT too, and
T would not be 2-connected. If there is an internal type-1 edge between 2 vertices on the
same side, this will result in a cycle of length 2 in T because this side lies on a mirror axis
of T .

Figure 5: The different situations where non-empty type-1 cycles of length 4 can occur.

Theorem 2.9. Each 3-connected decoration D defines a 3-connected lsp operation and
vice versa.

Proof. A 3-connected decoration defines a 2-connected lsp operation. If T is not 3-con-
nected, there is a non-empty type-1 cycle of length 4. If this cycle is completely contained
in the triangle v0, v1, v2, there is a type-1 cycle of length 4 in D. If the cycle is cut in half
by Lij , there is an internal type-1 path of length 2 between 2 vertices on Lij , which is a
side of D. If the cycle is cut in four, as in Figure 5, there is a type-1 edge between sides 0
and 2.

A 3-connected lsp operation with corresponding tiling T defines a 2-connected decora-
tion D. If there is a type-1 cycle of length 4 in D, this cycle occurs in CT too, and T would
not be 3-connected. If there is an internal type-1 path of length 2 between 2 vertices on the
same side, or a type-1 edge between sides 0 and 2, this will result in a cycle of length 4
in T .

3 Predecorations

The generation of all decorations will be split into two phases. In the first phase, we will
construct the type-1 subgraph, consisting of all edges of type 1.

Let nA be the number of vertices in the type-1 subgraph of degree 1 with a neighbouring
vertex of degree 2, nB the number of remaining vertices of degree 1, and nC the number
of quadrangles with three vertices of degree 2.
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(a) nA (b) nB (c) nC

Figure 6: The subgraphs counted as nA, nB and nC .

Lemma 3.1. Let D be a decoration. The type-1 subgraph D1 of D has the following
properties:

1. all inner faces are quadrangles;

2. each inner vertex has degree at least 3;

3. nA ≤ 2 and nA + nB + nC ≤ 3.

Proof. It follows immediately from the properties of a decoration (Definition 2.1) that the
inner faces of D1 are quadrangles and the inner vertices have degree at least 3.

Each area bounded by a quadrangle in D1 contains one vertex of type 1 in D. The only
other difference between D and D1 is in the outer face of D1, where type-1 vertices of
degree 3 in D (a 3-completion), and at most one of degree 2 in D (a 2-completion), can be
present in D. If there is a type-1 vertex of degree 2, then that vertex is v1. An example can
be seen in Figure 7.

The subgraph in Figure 6c can only occur if the rightmost vertex v of degree two is v0,
v1 or v2, or if v1 is a type-1 vertex of degree 2 connected to this vertex. Each of the three
vertices of degree 2 in this subgraph of D1 corresponds to v0, v1, v2 or a vertex of degree
at least 4 in D. The inner edges of the quadrangle in D contribute exactly one to the degree
of these vertices. This implies that either there is a 2-completion here (in which case v1 is
connected to v), or there are two 3-completions which do not involve v (in which case v is
v0, v1 or v2).

The subgraph in Figure 6b can only occur if the rightmost vertex v is v0, v1 or v2. This
vertex of degree 1 in D1 corresponds to a vertex of degree at most 3 in D, which is only
possible in v0, v1 or v2.

The subgraph in Figure 6a can only occur if the rightmost vertex v is v0 or v2. There
are two neighbouring cut-vertices of D1 in this subgraph, which do not correspond to cut-
vertices in D. This is only possible if both of these vertices are the middle vertex of a
3-completion. This increases the degree of v in D to 2, which is only possible in v0 or
v2. The degree of v can be 3 if there is a 2-completion too, but then v1 is contained in this
2-completion and v still has to be v0 or v2.

We find that nA ≤ |{v0, v2}| = 2 and nA + nB + nC ≤ |{v0, v1, v2}| = 3.

Definition 3.2. A predecoration is a connected plane graph with an outer face that satisfies
the properties of Lemma 3.1.

Given a predecoration P , we can try to add edges, vertices and labels to get a decoration
with P as its type-1 subgraph. We will have to add one type-1 vertex in each inner face of
P , as in Figure 7. Then we can add type-1 vertices in the outer face, and connect them to
three consecutive vertices of P . Finally, we can add a type-1 vertex in the outer face and
connect it to two consecutive vertices of P . This vertex has to be v1.
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Figure 7: A predecoration with a possible completion. The edges of type 0 and 2 are both
shown in black.

By definition, the type-1 subgraph of a decoration D is a predecoration. Unfortunately,
not each predecoration corresponds to a type-1 subgraph of some decoration. This is e.g.
the case if there are too many cut-vertices, as in Figure 8.

Figure 8: A predecoration that cannot be completed.

4 Construction of predecorations
All predecorations can be constructed from the base decorations K2 and C4 (see Figure 9)
using the 10 extension operations shown in Figure 10. We will prove this by showing that
each predecoration, with the exception of K2 and C4, can be reduced by the inverse of one
of the extension operations. We will then use the canonical construction path method [12]
to generate all predecorations without isomorphic copies.

Figure 9: The base predecorations.

Given a predecoration P , we will choose a canonical parent of P . This is a predeco-
ration obtained by applying one of the reductions to P . We will always use the reduction
with the smallest number among all possible reductions. It is possible that there is more
than one way to apply this reduction to P , and if P has non-trivial symmetry, some of these
can result in the same parent. If we choose one special edge in the subgraph that is affected
by the reduction operation, each way to apply this reduction corresponds to an edge of
P . We can choose an orbit of edges under the symmetry group of P by constructing a
canonical labeling of the vertices – similar to [3] – and choosing the orbit of the edge with
the lowest numbered vertices. The canonical parent of P is then obtained by applying the
corresponding reduction.

During the construction, we will try each possible extension in all possible ways, and
then check if it is the inverse of the reduction used to get the canonical parent of the result-
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1. 2. 8.

3. 5. 9.

4. 6. 10.

7.

Figure 10: The extensions. In the first row, the subgraphs before the extension is applied
are given. New edges and vertices are green, and vertices that are broken apart in two new
vertices are red. The outer face is always on the outside, and shadowed parts contain at
least one vertex.

ing predecoration. If that is the case, we can continue to extend this predecoration.
It is possible to construct all predecorations with fewer extensions, but it is important

that a canonical reduction always results in a valid predecoration. The order of extensions
1–4 ensures that a canonical reduction never increases nA, and extensions 5–7 ensure that
a canonical reduction never increases nA+nB +nC . Extensions 8–10 are necessary when
none of the other reductions are possible, so that each predecoration different from the base
decorations has a possible reduction. We will prove this in Lemma 4.2 and Theorem 4.3.

Lemma 4.1. An extension applied to a predecoration results in another predecoration if it
keeps nA ≤ 2 and nA + nB + nC ≤ 3. Only extensions 1, 2 and 5 possibly violate this
condition.

Proof. It is easy to see that each extension can only create new inner faces that are quad-
rangles, and inner vertices with degree at least 3.

The only extensions that can increase nA are extensions 1 and 2. The only extension
that can increase nB is extension 2. The only extension that can increase nC is extension 5.

This makes it easier to keep count of nA, nB and nC during the construction.

Lemma 4.2. Let P be a predecoration different from the base predecorations. By applying
one of the reductions from Figure 10, P can be reduced to a graph containing fewer vertices
or a graph containing the same number of vertices but fewer edges.
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Furthermore, if we apply the reduction with the smallest number among all possible
reductions, the resulting graph is again a predecoration.

Proof. For the first part, it is clear that each reduction results in a ‘smaller’ graph, so we
only need to verify that at least one reduction can be applied. If P contains at least one
quadrangle, there is at least one quadrangle Q with an edge in the outer face. Since P is
not C4, there is at least one other vertex not contained in Q in the graph, and reduction 10
is possible. If there is no quadrangle in P , reduction 1 is possible.

For the second part, it is immediately clear that all reductions preserve the properties
that all inner faces are quadrangles and that all inner vertices have degree at least 3. It
remains to be proven that for the new graph nA ≤ 2 and nA + nB + nC ≤ 3.

Some reductions can increase nA, nB or nC , but only if another reduction with a
smaller number can also be applied. This is the reason that we need so many extension
operations in that particular order. In Table 1, all these situations are given.

Table 1: Table with possible reductions. Read this table as:
Reduction i can increase nX , but only if nY is decreased by the same amount.
Reduction i can increase nX , but only if reduction j/k can be applied too.

reduction nA nB nC

1 nA

2 1 1 nB

3, 4 1
5, 6, 7 1 1 3/4

8 2/5 5 6/7
9 2/8 8 8
10 2/9 9 9

It is impossible to increase nA with a reduction that has the smallest possible number.
Therefore, we still have nA ≤ 2 in the new graph.

Reduction 1 can increase nB , but only by removing a vertex of degree 2 neighbouring
a vertex of degree 1, i.e. by decreasing nA by the same amount. Therefore, we still have
nA + nB + nC ≤ 3 in the new graph.

Reduction 2 can increase nC , but only by decreasing nB by the same amount. There-
fore, we still have nA + nB + nC ≤ 3 in the new graph.

Theorem 4.3. The algorithm described in Algorithm 1 generates all predecorations.

Proof. This follows immediately from [12] and Lemma 4.2.

5 Construction of decorations
Now that we can construct all predecorations, we can use the homomorphism principle
[10] and complete each predecoration in all possible ways to get all k-decorations with
Algorithm 2. We first have to compute the symmetry group of the predecoration, in order
to avoid completions that result in the same decoration. After the first 4 steps, all symmetry
is broken by choosing v0, v1 and v2.
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Algorithm 1 Construction of predecorations
function EXTEND(P )

output P
for i = 1, . . . , 10 do

for O an orbit of edges in the outer face of P do
e← edge in O
P ′ ← apply extension i to edge e of P
if P canonical parent of P ′ then

EXTEND(P ′)

for G a base predecoration do
EXTEND(P )

Algorithm 2 Complete a predecoration in all possible ways

1. If nA > 0, label the corresponding vertices of degree 1 with v0 or v2 in all non-
isomorphic ways.

2. If nB + nC > 0, label the corresponding vertices with v0, v1 or v2 in all non-
isomorphic ways.

3. If v1 is not yet chosen, label an outer vertex with v1 or add a new type-1 vertex v1 of
degree 2 in the outer face in all non-isomorphic ways.

4. If v0 or v2 is not yet chosen, label two outer vertices with v0 and v2 in all non-
isomorphic ways.

5. Fill all inner quadrangles with a type-1 vertex.

6. Add type-1 vertices of degree 3 in the outer face in all possible ways, such that there
are no cut-vertices or vertices of degree 2 left.

7. Check whether the result is a k-decoration.
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We do not have to take isomorphisms into account, since two isomorphic decorations
will have isomorphic predecorations.

Note that it might not be possible to complete a predecoration in Step 6 such that there
are no cut-vertices left.

5.1 Connectivity

In Step 7, we will always obtain a decoration. The additional properties for 2-connected
decorations and 3-connected decorations have to be checked. The properties in the outer
face cannot be checked earlier in the construction process, because they depend on the cho-
sen completion. But we can prevent type-1 cycles of length 2 and cycles of length 4 during
the construction. It is clear that once a type-1 cycle is created during the construction, it
cannot be destroyed later. So we only have to avoid the creation of the first type-1 cycle of
length 2 or 4.

The only way to create a first type-1 cycle of length 2 is by applying extension 10 to
a predecoration with an outer face of size 4. This can easily be avoided. The only way to
create a non-empty type-1 cycle of length 4 is by applying extension 10 to a predecoration
with an outer face of size 6. We can avoid this too.

To check the other properties after the completion, we can loop over the outer face
of the decoration, and mark all vertices one inner edge away from side i with i. If we
encounter a vertex on side i that is marked with i, the decoration is not 2-connected. If a
vertex is marked two times with the same number, or a vertex on side 1 is marked with 0
or vice versa, the decoration is not 3-connected.

5.2 Inflation rate

As mentioned in [2], the impact of an operation on the size of a polyhedron can be measured
by the inflation rate. This is the ratio of the number of edges before and after the operation,
and is equal to the number of chambers in the decoration.

Although it is interesting to construct all possible decorations, we are more interested in
the decorations with a given inflation rate. Unfortunately, we cannot determine the inflation
rate before the predecoration is completed as decorations with different inflation rates might
have the same predecoration, but we can compute lower and upper bounds.

Given a predecoration P , for each decoration that has P as its underlying predecoration,
each quadrangle of P corresponds to 4 chambers and each cut-vertex of which the removal
leaves k ≥ 2 components requires 2(k − 1) extra chambers. So

4 · (number of quadrangles) + 2 ·
∑

cut-vertices

(occurences in outer face− 1)

is a lower bound for the inflation rate. The maximal inflation rate of a predecoration is
reached by adding as much type-1 vertices as possible in the outer face. This will result
in exactly one chamber for each edge in the outer face. In combination with the 4 cham-
bers in each quadrangle, this results in 2 chambers (one at each side) for each edge of the
predecoration. So the maximal inflation rate is

2 · (number of edges).

If the lower bound for the inflation rate of a predecoration is already higher than the
desired inflation rate, we do not have to extend it further as it can only increase. If the
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upper bound is lower than the desired inflation rate, we have to extend it, but we do not
have to try to complete it.

Table 2: The number of k-connected decorations up to inflation rate 40. The number of
predecorations that can be completed to a decoration with given inflation rate are given too.
Not all of these predecorations are constructed for 2-connected or 3-connected decorations.

k-connected decorations

inflation rate k = 1 k = 2 k = 3 predecorations

1 2 2 2 1
2 2 2 2 1
3 4 4 4 1
4 6 6 6 2
5 6 6 4 2
6 20 20 20 4
7 28 28 20 7
8 58 58 54 8
9 82 82 64 7
10 170 168 144 19
11 204 200 132 16
12 496 492 404 50
13 650 640 396 42
14 1432 1400 1112 118
15 1824 1786 1100 109
16 4114 3952 2958 298
17 5078 4900 2769 300
18 11874 11150 7972 749
19 14808 14058 7560 782
20 33978 30998 21300 1902
21 41794 38964 20076 2056
22 97096 85976 56296 4893
23 118572 107784 52380 5419
24 277208 237482 148956 12615
25 337216 298546 138384 14153
26 788342 652236 392096 32665
27 953060 820960 362499 36953
28 2239396 1786222 1027488 84853
29 2697088 2250816 945612 96491
30 6350014 4875076 2687408 220646
31 7618068 6153604 2466156 251104
32 17972390 13262574 7007118 573547
33 21487746 16773086 6409664 654663
34 50805716 35985748 18222032 1491540
35 60573248 45592594 16623268 1706755
36 143425040 97394726 47287986 3878836
37 170530518 123628298 43038260 4446426
38 404413576 262983002 122451618 10085305
39 479711448 334473144 111200316 11582891
40 1139138344 708583784 316474370 26222191
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Table 3: All decorations with inflation rate r up to 8. The green lines are edges of type 1.
The black lines are edges of type 0 and 2. For each of the given decorations, the edges of
type 0 and 2 can be chosen in two different ways. All decorations except the symmetric
ones (marked with a star) can be mirrored. So each starred decoration represents two related
lsp operations, and the unstarred ones represent four related lsp operations.

r k = 2 k = 3

1

2

3

4

5

6

7

8
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6 Results
Using Algortihms 1 and 2, we implemented a computer program [8] to generate all k-
decorations with a given inflation rate. The results of this program are given in Table 2.
The decorations for inflation rates r ≤ 8 are given in Table 3.

The two lsp operations with inflation rate 1 are obviously identity and dual. The lsp
operations with inflation rate 2 are ambo and join, and the ones with inflation rate 3 are
truncate, zip, needle and kiss. Up to here, all lsp operations were already described by
Conway [5] or others. For the left decoration with inflation rate 4, only two of the 4 related
lsp operations (chamfer and subdivide) are already named. The first decoration for which
none of the related lsp operations (including dual and mirrored ones) are already named,
is the 2-connected lsp operation with inflation rate 5. The first unnamed 3-connected lsp
operations are the three leftmost decorations with inflation rate 6.

These results are verified for inflation rate up to 23 by an independent implementation
that constructs all triangulations, filters the decorations out, applies them to a polyhedron,
checks the connectivity and filters the isomorphic ones out.
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