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Abstract
In this paper, we present the demanding task of a hu-

manoid bipedal robot Talos getting up from a squat pos-
ture by finding the optimal force applied to the robot’s
end-effector by pulling it. The corresponding force acts
together with the Talos’ own torque in the joints. First, we
recorded demonstrations of sit-to-stand motions from hu-
man subjects using the Optitrack motion capture system
and mapped the demonstrated motions to the humanoid
robot. We derived a cost function that was minimized
using fmincon and a genetic algorithm. The results are
presented in the simulation using Matlab and MuJoCo.
The work is part of the Switch project, whose goal is to
enhance robot learning performance by role reversal be-
tween robots and humans, and to implement complex hu-
man dynamics into robot behavior. The first step is that
the human helps the robot stand up, and the second step
is for the robot to help the human to stand up. In this
paper, the first procedure is elucidated.

1 Introduction
We humans are able to perform dynamic and dexterous
movements with relative ease: walking, jumping, and
dance are just one of a few examples. Standing up from
a chair is one of these everyday tasks that appears to be
easy, but is actually quite complex and dynamic and can
become challenging and dangerous as we age. The suc-
cess of this task requires whole body coordination, bal-
ance and high fidelity control. In the field of robotics,
we are interested in movements such as standing up and
seek to better understand their complexities, as this al-
lows us to improve current state-of-the-art robotic sys-
tems. Traditional robots require users to possess pro-
gramming skills, which makes robots inaccessible to the
general public [1]. On the other hand, future generations
of home and service robots, including humanoid robots,
are expected to perform tasks in more natural and highly
dynamic environments created for humans, which is why
it is necessary for us to study the natural human move-
ment and how to implement it into robot control systems.

One such method is learning from demonstration
(LfD), which has been used to help robots independently
implement manipulation behavior by observing move-
ment performed by human demonstrators as seen in [2].
In LfD applications, example trajectories can be captured

in various ways, e.g. kinesthetic demonstration, motion-
sensor demonstration, teleoperation, and methods like vi-
sual observation [3] [4]. After example trajectories are
recorded, Inverse kinematics is often used to calculate the
joint angles [3], however such operations need relatively
high computational cost. In [5] a particle filter is used
for joint angle imitation instead, in order to realize a real-
time imitation of a humanoid robot through observation
of human demonstration.

Figure 1: The concept of humanoid helper robot in house-
hold environment.

In general, to achieve robot learning from demonstra-
tion, we need to address three challenges: the problem
of correspondence, generalization, and robustness against
perturbation [6]. The problem of correspondence occurs
due to the robots and human differences in kinematics,
i.e. they do not have links and joints in the same place.
Due to this, learning by demonstration is only feasible
when the demonstrated movement can be generalized, for
instance with different target positions. However, accu-
rate repetition of the observed movement is unrealistic in
a dynamic environment, in which obstacles can suddenly
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appear [1]. Due to this fact, in LfD robustness against
perturbation is needed.

With all the studies mentioned the robots in human-
physical collaboration are still facing a shortcoming due
to their limitations in observing and adapting to human
dynamics. The goal of the Switch project is to develop
methods that can address these known limitations and al-
low the robot to efficiently observe human dynamics in
real-time and learn anticipatory models from demonstra-
tion. The first step achieving this goal is for the robot to
be able to observe a human picking it up, before switch-
ing the roles. Due to safety precautions however, we must
first find out the amount of force needed to safely pickup
the robot. This is why the goal of this paper is to find the
external forces needed to lift the Talos on its feet.

To do so, we use two Matlab optimization methods
by first recording the movements of humans standing
up from chairs and later transferring the recorded move-
ments to the humanoid robot Talos. The paper is orga-
nized as follows. The section 2 presents the kinematics
of Talos and the methods used. It is also explained how
the cost function is derived. Section 3 shows the results
obtained. Furthermore, the discussion follows in Section
4 after the result.

2 Methods
2.1 Humanoid bipedal robot Talos
The robot used in this study was the bipedal humanoid
robot Talos. Its kinematics is explained in this chap-
ter so as to better understand the difference between hu-
man. The bipedal humanoid TALOS, built by the com-
pany PAL-Robotics, has 32 degrees of freedom, of which
two are in the head, seven per each arm, one per hand,
two in the waist and six per each leg. TALOS is fully
torque-controllable thanks to the torque sensor feedback
in all joints, which enables powerful sensing and multi-
contact motions. The closed loop torque control can be
used for whole-body control inverse dynamics and safe
interaction with the environment [7]. Figure 2 shows the
kinematics of Talos.

Figure 2: Kinematics of TALOS

2.2 Optimization
Force profile: In this section is described the process
of finding the optimal force applied to the robot’s end-
effector by pulling the Talos from its sitting position. To
describe a force we used a parametric description. In this
description, force is defined as a linear combination of
radial basis functions (RBF). As proposed in [8], among
many possible radial basis functions, those with Gaussian
kernels were used. They are defined as:

Ψ(x) = e−
(x−c)2

2σ , (1)

where c defines the center, σ defines the width of the ker-
nel function and x is the phase parameter (see [8] for de-
tails).

To describe a force trajectory we use a parametric de-
scription:

f(x) =

∑m
j=1 wjΨj(x)∑m
j=1 Ψj(x)

, (2)

where m is the number of kernel functions, and wj are
the weights that define the path.

We define Φ as a row vector with components:

Φj(x) =
Ψj(x)∑m
j=1 Ψj(x)

, (3)

which yields:

f(x) = Φ(x)w, (4)

where w is a vector with elements wj .
The corresponding weights can be found by solving

Eq. (4) using pseudoinverse:

w = (Φ̂
T
Φ̂)−1Φ̂

T
f̂ , (5)

where f̂ are the path values and Φ̂ basis vectors for all
path steps.

To get the optimal force profile the weights of radial
basis functions need to be optimized. This is done by
optimizing the cost function. If not stated otherwise we
used m = 6 RBF functions.

Cost function: The cost function used in this study
was composed of four quadratic functions. It is defined
as:

J =

m∑
n=1

Knfn, Kn ≥ 0, (6)

where fn denotes the quadratic loss functions, Kn are
the weights, which determine the importance of each
quadratic loss function, and m is the number of quadratic
loss functions.

The first quadratic loss function takes the sum of all
the positions of the Talos’ head in time and tries to bring
them to the desired position. This ensures that in the end,
the robot stands upright. Talos’ positions and orientations
were obtained in simulation during its movement, using
MuJoCo dynamic library. The first quadratic loss func-
tion is defined as:
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f1 =

tm∑
t=0

(pH − pH,d)2, (7)

where tm denotes the total time during getting up, pH is
the measured head position, and pH,d is the desired head
position.

To increase the stability of the robot, a second
quadratic loss function was used to ensure that the pitch
angle of the Talos’ feet is minimal, or ideally zero,
throughout the standing up process. Accordingly, the sec-
ond quadratic loss function is derived as:

f2 =

tm∑
t=0

θ2, (8)

where θ is the pitch angle of the robot’s feet.
Similarly, the third quadratic loss function minimizes

the velocity of the torso, which as well increases the sta-
bility of the robot and is defined as:

f3 =

tm∑
t=0

˙pT
2, (9)

where ṗT is the torso velocity.
The last part of the cost function finds the weights of

the Gaussian kernel functions and is defined as:

f4 =

m∑
j=1

wj
2, (10)

where w is the vector with the weights of Gaussian ker-
nel functions, which is found through the optimization
process.

Finally, with the values of the weights wn from the
Eq. 6 adjusted, the lower and upper bounds of optimiza-
tion and the initial guess defined, the optimization prob-
lem was solved by finding the solution vector w that min-
imizes the cost function value fval, defined as:

fval = min
w

J(w). (11)

The cost function was optimized using two different
Matlab functions: fmincon and the genetic algorithm.
Fmincon finds a constrained minimum of a function of
several variables through an iterative process. In our case,
the ’active-set’ algorithm was set in options. On the other
hand, genetic algorithm generates a population of points
at each iteration and modifies a population of individ-
ual solutions. Here, the best point in the population ap-
proaches an optimal solution [9].

Movement of human subject’s six joints during sit-to-
stand motion were captured using Optitrack motion cap-
ture system. These angles were mapped to the six joints
of the humanoid robot: ankle, knee, hip, torso, shoulder,
and elbow. The human subject was about the same height
as the robot. This enabled the robot to imitate natural hu-
man movement during standing up as close as possible.
The force applied to the robot’s arms can be understood
as an external perturbation force that acts on the robot’s

end-effector and helps it to stand up. The Talos’ joints
are controlled in position mode.

The resulting force calculated with the optimization
is applied to the end effector of the Talos robot, i.e., the
hands. By multiplying the force by the rotation matrix,
we ensure that the direction of the force is aligned with
the robot arms.

3 Results
When using fmincon solver, the value of the cost function
converges faster compared to the genetic algorithm which
we can see in Figure 3. By analyzing the time required for
each method to find the optimal solution, we have found
that fmincon takes about 41 seconds, while the genetic al-
gorithm takes 4922 seconds on a typical desktop pc with
i7 processor.

Figure 3: Comparison of convergence between the fmin-
con solver and the genetic algorithm.

The resulting optimized force profiles found using
fmincon and genetic algorithm methods are shown in Fig-
ure 4. For comparising we also show the results of force
optimization with m = 20 RBFs.

Figure 4: Optimized forces with different solvers and
number of RBFs

Figure 5 shows the result of Talos standing up in sim-
ulation environment.
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Figure 5: Talos robot in MuJoCo in sitting position (top)
and standing position (bottom)

4 Discussion
In this paper, we presented a way to find the optimal force
path needed to lift the bipedal mobile robot Talos to the
standing position by pulling its hands, using two differ-
ent optimization methods in Matlab. The results of the
experiment show that the bipedal mobile robot Talos is
able to stand up successfully using the methods proposed
in this paper. If at least the approximate trajectory of the
force is not known before real-life experiments, it could
be a potential safety hazard.

Analyzing the graphs, we can see that both the fmin-
con solver and the genetic algorithm resulted in very
similar solutions (force profile) when the weights of 6
RBFs were optimized. However, increasing the number
of RBFs resulted in overfitting and more profile curva-
ture, as can be seen in Figure 4.

We also found that the fmincon method takes less
time to find the minimal solution compared to the genetic

algorithm. This is to be expected since fmincon uses the
local gradient to tune the parameters, which means it is
faster, but it might get stuck in a local minimum, while
the genetic algorithm generates a random trial and then
shuffles them to generate a new generation that ends up
finding a global optimum.

In general, both methods can be used for similar op-
timization problems, but in our case, due to the fact that
both methods gave the same result, fmincon can be con-
sidered as the preferred method.

The work presented in this paper is an important step
to get a first impression about the shape and amplitude of
the profile. This allows us to gain an approximation of
the force profile needed to safely lift Talos from a seated
position in real life. With this knowledge, Talos will be
able to help a person stand up in the future.
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