Acta Silvae et Ligni 135 (2024), 53–63 53 Original scientific article / Izvirni znanstveni članek THE EFFECT OF FOREST GAPS ON THE DIVERSITY AND COMPOSITION OF BACTERIAL COMMUNITIES IN MIXED-TYPE FOREST SOILS ACROSS THE CARPATHIAN MOUNTAINS VPLIV GOZDNIH VRZELI NA PESTROST IN SESTAVO BAKTERIJSKIH ZDRUŽB V TLEH MEŠANIH GOZDOV KARPATOV Nejc SUBAN¹, Olivera MAKSIMOVIĆ2,, Nataša ŠIBANC3, Tijana MARTINOVIĆ4,5, Eva DARENOVA6, Matjaž ČATER7,8, Tine GREBENC9 (1) Slovenian Forestry Institute, Department of forest physiology and genetics, nejc.suban@gozdis.si (2) Slovenian Forestry Institute, Department of forest physiology and genetics, olivera.maksimovic@gozdis.si (3) Slovenian Forestry Institute, Department of forest physiology and genetics, natasa.sibanc@gozdis.si (4) Slovenian Forestry Institute, Department of forest physiology and genetics, tijana.martinovic@gozdis.si (5) Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Czech Republic, tijana. martinovic@biomed.cas.cz (6) Global Change Research Institute CAS, Czech Republic, darenova.e@czechglobe.cz (7) Department of Silviculture, Faculty of Forestry and Wood Technology, Mendel University, Czech Republic, matjaz.cater@mendelu.cz (8) Slovenian Forestry Institute, Department of forest physiology and genetics, matjaz.cater@gozdis.si (9) Slovenian Forestry Institute, Department of forest physiology and genetics, tine.grebenc@gozdis.si ABSTRACT Mixed forests of European beech (Fagus sylvatica L.) and silver fir (Abies alba Mill.) play a vital ecological role in Central and South-Eastern Europe. This study investigates the diversity and composition of soil bacterial communities in these forests, focusing on rhizosphere and bulk soils under varying canopy structures. Soil samples were collected from eight sites along the Carpathian Mountains, including managed forests and the remnants of old growth. Metabarcoding of bacterial communities revealed that alpha diversity (species richness, Shannon index, and evenness) was significantly affected by sampling location but not by forest canopy structure or soil type (rhizosphere and bulk soil). The lowest bacterial diversity was found in the old-growth forest of the Beskidy region, while the highest was recorded in managed forest in Vrancea. Beta diversity analy- ses showed minimal variation between rhizosphere and bulk soil bacterial communities, with geographic distance being the strongest predictor of community composition. Actinobacteriota and Proteobacteria were the dominant phyla across all sites, with higher relative abundance of Actinobacteriota in all rhizosphere samples compared to bulk soil. Complex combinations of various environmental conditions at each sampling location, including soil parameters (mainly pH and C:N ratio), the age of forest gaps, the type and intensity of disturbances, and species composition of above-ground vegetation, can strongly affect soil bacterial communities. A closer examination of additional environmental variables would be necessary to better explain the observed differences in the diversity and composition of bacterial communities. Key words: forest gaps, forest management, soil microbiome, soil, rhizosphere, Carpathians, temperate forest IZVLEČEK Mešani gozdovi navadne bukve (Fagus sylvatica L.) in bele jelke (Abies alba Mill.) so eden najpomembnejših ekosistemov na ob- močju srednje in jugovzhodne Evrope. S pristopom molekularne identifikacije smo analizirali diverziteto in sestavo talnih bakte- rijskih združb na osmih lokacijah vzdolž Karpatov. Metagenomska analiza bakterijskih združb je pokazala, da je na alfa diverziteto (bogastvo vrst, Shannonov indeks in enakomernost) pomembno vplivala le lokacija vzorčenja, ne pa tudi struktura gozdne krošnje ali vrsta tal (rizosfera in zemlja, oddaljena od vpliva korenin). Najmanjšo bakterijsko vrstno pestrost smo potrdili v pragozdnem rezervatu Beskidy, največjo pa v gospodarskem gozdu v Vranceji. Analiza beta diverzitete je pokazala minimalne razlike med bak- terijskimi združbami rizosfere in zemlje zunaj rizosfere, pri čemer je bila geografska oddaljenost glavni dejavnik vpliva na sestavo bakterijske združbe. Actinobacteriota in Proteobacteria sta bila prevladujoča rodova bakterij na vseh analiziranih lokacijah, pri čemer je bila relativna pojavnost rodu Actinobacteriota v vseh vzorcih rizosfere višja kot v zemlji zunaj območja rizosfere. Kom- binacije različnih okoljskih razmer, predvsem pH tal in razmerje med C in N, ter drugih dejavnikov, kot so starost gozdne vrzeli, intenziteta in vrsta motnje, ki je povzročila njen nastanek, ter vrstna sestava vegetacije na vzorčenih lokacijah, lahko pomembno vplivajo na mikroorganizme v tleh. Da bi bolje pojasnili razlike v pestrosti in sestavi bakterijskih združb, bi bilo treba v analize vključiti dodatne spremenljivke. Ključne besede: gozdne vrzeli, gospodarjenje z gozdom, mikrobna združba tal, tla, rizosfera, Karpati, gozdovi zmernega klimatskega pasu UDC 181.351(045)=111 Received / Prispelo: 21. 10. 2024 DOI 10.20315/ASetL.135.5 Accepted / Sprejeto: 29. 11. 2024 54 Suban N., Maksimović O., Šibanc N., Martinović T., Darenova E., Čater M., Grebenc T.: The effect of forest gaps on the ... 1 INTRODUCTION 1 UVOD European beech (Fagus sylvatica L.) and silver fir (Abies alba Mill.) are crucial components of Central and South-Eastern European forest ecosystems and are ex- pected to remain key species in mid- and high-altitude European forests (Leuscher, 2009; Dobrowolska et al., 2017). European beech exhibits high adaptability and ecological plasticity, thriving primarily in temperate regions due to its sensitivity to drought and high tem- peratures (Jump et al., 2006; Colin et al., 2017; Levanič et al., 2023). It plays a vital role in providing ecosystem services such as timber production, carbon sequestra- tion, biodiversity preservation, and maintaining soil fertility, soil stability, and water resources (Duncker et al., 2012). In contrast, silver fir is predominantly found in colder temperate regions, particularly in the Alps and Carpathians, where lower elevations have recently seen declines in growth due to climatic extremes, air pollution, and subsequent pest and pathogen attacks (Bošela et al., 2018; Čater and Levanič, 2019; Čater et al., 2024). While trees are key drivers of atmospheric carbon uptake, soil microbial communities are fundamental to ecosystem function, stability, and productivity (van der Heijden et al., 2008; Baldrian et al., 2017a, 2017b; Mercado-Blanco et al., 2018). Microbes, as pathogens, symbionts, mutualists, and decomposers, regulate car- bon cycling, as well as nutrient cycling and availability through processes such as litter decomposition, min- eral weathering, nitrogen fixation, and nutrient uptake (Uroz et al., 2013; Lladó et al., 2017). Fungi, particu- larly in temperate and boreal forests, are the primary decomposers of recalcitrant organic matter (Voríšková et al., 2013; Kohout et al., 2021). The role of bacte- ria, however, is less clear, varying between taxa that rely on low molecular weight carbon compounds and those capable of decomposing complex biopolymers (Lladó et al., 2017; Algora et al., 2022) since complexi- ty of lignocellulose demands that no single enzyme or bacterial strain is able to fully degrade plant biomass (López-Mondéjar et al., 2019). Forest tree species in- fluence soil microbial communities through root exu- dates, litter deposition, and fine root turnover, affect- ing community composition and related ecosystem services (Martinović et al., 2022). The Carpathian Mountains, one of the largest for- ested mountain chains in Central Europe, feature di- verse forest types dominated by beech and mixed coni- fer stands at elevations between 500 and 1450 meters (Dinca et al., 2022; Knorn et al., 2013). This region, un- derexplored in terms of soil biodiversity and ecosys- tem functions (Guerra et al., 2020), has been largely excluded from large-scale soil sampling efforts, such as the LUCAS survey (Labouyrie et al., 2023). Comple- mentary to Dařenova et al. (2024), who studied the drivers of soil CO2 efflux in beech-silver fir forests, this study analyzes bacterial community diversity in the rhizosphere and bulk soil under varying forest canopy structures in mixed forests of European beech and sil- ver fir along the Carpathian Mountains. Using the same sampling design, we employed metabarcoding of soil environmental DNA to assess the diversity of selected bacterial taxa (Vasar et al., 2022). Trees under the open and closed canopy show dif- ferential growth rates (Orman et al., 2021; Čater et al., Fig. 1: Sampling locations along the Carpathian arc (adapted from Čater et al., 2024) Slika 1: Lokacije vzorčenj vzdolž karpatske gorske verige (prilagojeno po Čater et al., 2024) Acta Silvae et Ligni 135 (2024), 53–63 55 2024), and the understorey vegetation community is different (Dařenova et al., 2024). A higher amount of solar radiation and precipitation reaching the ground under open forest canopy, as opposed to a closed one, presents more favourable conditions for soil microbi- al activity (Jianxin et al., 2016; Chen and Yang, 2015). However, the area under open canopy receives a smal- ler input of organic matter due to lower root density and litterfall from trees (Griffiths et al., 2010; Kohout et al., 2018) while receiving more organic matter from herbaceous plants that usually develop abundantly un- der canopy openings. We hypothesized that bacterial beta diversity would differ significantly between soils under open and closed canopies, as well as between bulk and rhizosphere samples. In a study across Euro- pean countries (Labouyrie et al., 2023), microbial ri- chness and diversity were found to increase from less disturbed (i.e. woodlands) to more managed areas (i.e. grasslands and croplands). We hypothesized that bac- terial alpha diversity would be significantly lower in the protected old-growth forests (Buzau and Beskidy) compared to managed sites. 2 METHODS 2 METODE 2.1 Study sites and research design 2.1 Območja raziskave in zasnova raziskave A total of 48 soil samples was collected from eight sites along the Carpathian arc in Romania, Slovakia, and the Czech Republic (Adamič et al., 2023; Čater et al., 2024) (Fig. 1). All sites were located above 800 m on Cambisols and were selected for their favorable climate and soil conditions for beech and fir regene- ration (Dařenova et al., 2024). Following the approach of Han et al. (2020) and Lyu et al. (2022), three plots of different light intensities were selected per site, ca- tegorized as closed canopy, forest edge, and open gap (Dařenova et al., 2024; Čater et al., 2024). Two sites (Buzau and Beskidy) were unmanaged old-growth forest remnants, while the others had been managed with low-intensity silvicultural systems for over a cen- tury (Adamič et al., 2023). In each plot, three bulk soil and three rhizosphere samples (top 10 cm) were col- lected using standardized probes (Grebenc and Krai- gher, 2007). The soil samples were kept at 4°C during transport to the institute’s laboratory. Bulk soil and root samples were then separated under a binocular microscope, and roots were washed under tap water to remove soil particles (Mrak et al., 2019). Samples were freeze-dried and stored at -20°C until further analyses. Mean monthly temperature and precipitation data from 1901 to 2020 were obtained via kriging from the Royal Netherlands Meteorological Institute’s Cli- mate Explorer web page (http://climexp.knmi.nl) to calculate mean annual temperature and precipitation (Dařenova et al., 2024). 2.2 Molecular analysis 2.2 Molekularna analiza DNA was extracted from 250 mg of soil adjacent to roots (rhizosphere soil) and bulk soil using the DNeasy Plant Mini Kit (Qiagen, Hilden, Germany). Bacterial metabarcoding was conducted using the 341f/805r primer pair, with PCR conditions as follows: 94°C for 5 min, followed by 30 cycles of 94°C for 30 s, 56°C for 30 s, and 72°C for 30 s, with a final extension of 7 min at 72°C. DNA was purified, quantified, and sequenced on an Illumina MiSeq platform (350 bp paired-end) (Unuk Nahberger et al., 2019). 2.3 Bioinformatics and statistical analysis 2.3 Bioinformatika in statistična analiza Raw sequences were processed with SEED v2.1.2 (Větrovský et al., 2013), with minimum quality thresh- olds set at 30 for sequences and 12 for base pairs. Chimeric sequences were removed using USEARCH Table 1: Regions of each sampling location, with corre- sponding geographical coordinates, altitude, average annual air temperature, and total annual precipitation Preglednica 1: Območja vzorčnih lokacij s pripadajočimi zem- ljepisnimi koordinatami, nadmorsko višino, povprečno letno temperature in povprečno skupno letno količino padavin Plot number Region Altitude (m) Longitude Latititude Average annual air temperature (°C) Total annual precipitation (mm) 1 Gorj 985 22.916944° 45.169444° 4.7 1073 2 Arges 995 24.651111° 45.460278° 7.4 812 3 Buzau 1038 26.228889° 45.614167° 6.8 744 4 Vrancea 830 26.603889° 46.001389° 8.3 603 5 Neamt 950 26.168333° 46.854167° 5.8 704 6 Suceava 850 25.683333° 47.468333° 5.4 738 7 Bardejov 880 21.016562° 49.254738° 7.2 758 8 Beskidy 820 18.416805° 49.402483° 7.1 744 56 Suban N., Maksimović O., Šibanc N., Martinović T., Darenova E., Čater M., Grebenc T.: The effect of forest gaps on the ... (Edgar, 2010), and sequences were clustered at a 97% similarity threshold using VSEARCH (Rognes et al., 2016). BLAST analysis was performed against UNITE (Kõljalg et al., 2013) and NCBI databases, with an e- value cutoff of 1e-50 and 92% similarity. The sequenc- es are deposited in the data repository of the Slovenian forestry institute. Statistical analyses were conducted in R (v. 4.3.2) using the phyloseq, vegan, ggplot2, multcomp, indic- species, and pairwiseAdonis packages. Alpha diversity indices (species richness, Shannon index, and even- ness) were compared between regions, forest stand types, and soil sample types using one-way ANOVA and Tukey HSD tests. Homogeneity of variance was assessed with Levene’s test. Beta diversity was as- sessed using pairwise PERMANOVA on Bray-Curtis dis- tance matrices (number of permutation = 999), with Hellinger transformation for standardization. Commu- nity composition was visualized via NMDS ordinations. We used a statistical approach developed by De Cáceres et al. (2012) to identify indicator species at the given locations. The relative abundances of the OTUs at each sampling site were calculated from the phloseq object by dividing the number of each respective OTU by the sum of all OTU counts at the location as described in McMurdie and Holmes (2013). The soil parameter values are extracted from the study by Dařenova et al. (2024) since the analyses were preformed on the same soil samples used in our metagenomic study. 3 RESULTS 3 REZULTATI ANOVA and subsequent Tukey HSD tests indicated that only the sampling location (region) had a stati- stically significant effect (p<0.05) on bacterial rich- ness, evenness, and Shannon diversity index (results are presented in Fig. 2; the p-values from the ANOVA test are presented in Table 1 in Supplementary Data). Levene’s test confirmed the homogeneity assumpti- on of variance across the groups of the region varia- ble (p=0.031). A total of 73,038 OTUs were identified with sequence similarity greater than 82%, and 52,987 OTUs with similarity greater than 92%. The lowest di- versity was observed in the Beskidy region, where the mean species richness (a) and its standard deviation was 3,117 ± 888.6, the mean Shannon index (b) was 6.5 ± 1, and the mean evenness index (c) was 0.81 ± 0.1. In contrast, the highest diversity was recorded in Vrancea, with a mean species richness (a) of 5,656 ± Fig. 2: Species richness (a), Shannon index (b), and evenness (c) values, along with grouping of these values by Tukey’s HSD test of statistical significance for bacterial communities in soil samples collected from eight sites along the Carpathi- an arc Slika 2: Ocene vrstnega bogastva (a), Shannonovega indeksa (b) ter indeksa enakomernosti (c) za bakterijske združbe v tleh. Vrednosti so združene v skupine glede na statistično značilnost razlik med posameznimi lokacijami, ocenjeno s HSD Tukeyevim testom variance. Acta Silvae et Ligni 135 (2024), 53–63 57 234.3, a mean Shannon index (b) of 8.1 ± 0.1, and a mean evenness index (c) of 0.83 ± 0.01. Tukey’s HSD test revealed statistically significant differences (adju- sted p-value<0.05) in alpha diversity indices between Beskidy and the other regions (Bardejov, Buzau, Suce- ava, Neamt, and Vrancea), while Gorj and Arges were only found to be statistically different from Suceava, Vrancea, and Neamt in terms of species richness (Fig. 2; p-values from Tukey’s HSD test are presented in Ta- ble 2 in the Supplementary Data). The NMDS stress values (0.104) suggested a relia- ble representation of the NMDS dissimilarity matrix. The first NMDS plot (Fig. 3a), depicting communities under different forest canopy types, showed no discer- nible clustering along the axes. However, the second plot (Fig. 3b) exhibited a slight clustering of rhizo- sphere samples along the NMDS2 axis within the more widely scattered bulk soil data points. PERMANOVA results revealed that sample type had a statistically significant effect (p<0.001; see Table 3 in Supplemen- tary Data) although it explained only 4.4% of the vari- ance, whereas geographic distance, expressed through a space variable consisting of three significant PCNM vectors, explained the largest proportion of variation (13.2%) (Table 3 in Supplementary Data). Bar plots of OTU relative abundance at each sam- pling location (Fig. 4) showed that Actinobacteriota was the dominant phylum across all sampling loca- tions, followed by Proteobacteria. Other important phyla included Planctomycetota, Verrucomicrobiota, Firmicutes, Chloroflexi, Acidobacteriota, Myxococcota, Gemmatimonadota, and Bacteroidota. Notably, Actino- Fig. 3: NMDS graphs of bacterial community composition at each sampling location. a) bacterial community composition under different forest canopy types; b) bacterial community composition from different soil sample types (rhizosphere soil and bulk soil). Slika 3: Grafi NMDS ordinacije vrstne sestave bakterijskih združb na posameznih vzorčnih lokacijah. a) sestava bak- terijskih združb v tleh pod različno pokrovnostjo drevesnih kroženj; b) sestava bakterijskih združb glede na tip tal (rizos- ferna tla in zemlja, oddaljena od korenin). Fig. 4: Relative abundance of bacterial phyla at each sam- pling location (a) and sample type (b) Slika 4: Relativna pojavnost bakterijskih filogenetskih debel na posameznih lokaciji (a) ter v obeh tipih tal (b) 58 Suban N., Maksimović O., Šibanc N., Martinović T., Darenova E., Čater M., Grebenc T.: The effect of forest gaps on the ... bacteriota exhibited higher relative abundance in the rhizosphere compared to bulk soil. However, the relati- ve abundance of bacterial indicator genera in both the rhizosphere and bulk soil was extremely low (0.08% and 0.015%, respectively). 4 DISCUSSION 4 RAZPRAVA Our findings suggest that soil bacterial communi- ty composition does not differ significantly between closed and open forest canopies. This may be due to the limited variation in environmental conditions ob- served at the sampling sites, as reported by Dařenova et al. (2024). For example, soil temperature increases from closed canopy plots to gap edges and open cano- py areas, but statistically significant differences were only observed at site 1 (Gorj) in 2022 and site 5 (Ne- amt) in 2023, with the highest temperatures recorded at forest edges. Soil water content was generally higher under open canopies, though the pattern varied among plots. Furthermore, the content of carbon (C) and ni- trogen (N), as well as the C:N ratio, showed no signi- ficant trends across plots or sites, and pH values also lacked consistent patterns (Dařenova, 2024). Given the importance of soil properties, particularly pH and the C:N ratio, in predicting bacterial richness, diversity, and composition (Lauber et al., 2008, 2009; Wang et al., 2022; Labouyrie et al., 2023), these results likely explain the lack of pronounced differences in bacteri- al community structure between forest canopy types. Recent studies have shown that higher soil pH increa- ses both bacterial richness and Shannon index values, while higher calcium carbonate content and C:N ratios have the opposite effect (Labouyrie et al., 2023). Bac- terial beta diversity is similarly influenced by pH, follo- wed by the C:N ratio (Labouyrie et al., 2023). Our hypothesis that alpha diversity indices would be lowest in unmanaged old-growth forests (Buzau and Beskidy) was not fully supported by the data. Whi- le alpha diversity was significantly lower in the Beski- dy region, the Buzau site grouped with regions exhi- biting the highest diversity. This incongruence may be attributed to factors such as above-ground species composition, forest gap age and size, and the intensity of disturbance events, which can influence microbial diversity (Urbanová et al., 2015; Yang et al., 2017; Chen et al., 2022; Labouyrie et al., 2023). Variation in these factors across sites may also explain the lack of signi- ficant differences in bacterial community composition between closed and open forest canopies. Post-distur- bance forest development, characterized by increasing tree biomass and shifts in ground vegetation compo- sition, can alter microbial activity, biomass, and com- munity composition (Wang, 2022; Chauvat et al., 2003; Lucas-Borja and Delgado-Baquerizo, 2019). Our results indicate no significant differences in bacterial alpha diversity between bulk soil and rhizo- sphere samples. While some studies on herbaceous plants have reported higher bacterial diversity in rhi- zosphere soils compared to bulk soils (Laurent and Aragno, 1999; Wei et al., 2023), our findings are more consistent with a study conducted in mountain forest ecosystems, which found no significant differences in alpha diversity between rhizosphere and bulk soils (Cui et al., 2019). However, PERMANOVA did reveal a si- gnificant effect of soil sample type on bacterial commu- nity composition, aligning with results from temperate mixed forests in Europe. For instance, Uroz et al. (2016) found that bacterial communities differed between rhizosphere and bulk soils regardless of tree species, while other studies have noted shifts in Acidobacterial taxa linked to preferences for leaf or needle litter from beech, spruce, or fir trees (Urbanová et al., 2015; Nacke et al., 2016). Consistent with European soil studies (La- bouyrie et al., 2023), including soils in mixed-forests dominated by European beech Proteobacteria, Actino- bacteria, and Acidobacteria were among the most abun- dant phyla in our samples. However, the unusually high abundance of Planctomycetota in our samples, compa- red to previous studies where this phylum was found in much lower abundances (Siles and Margesin, 2016; Bárta et al., 2017; Baćmaga et al., 2022), may indicate a methodological or technical bias in our data. 5 SUMMARY 5 POVZETEK Mešani gozdovi zmerno toplega podnebnega pasu, v katerih prevladujeta navadna bukev (Fagus sylvatica L) in bela jelka (Abies alba Mill.), so na območju srednje in jugovzhodne Evrope ekonomsko najpomembnejši in geografsko najbolj razširjeni gozdni ekosistemi. Vse bolj pogosta sušna obdobja in visoke temperature ne- gativno vplivajo na naravno obnovo in uspešnost preži- vetja omenjenih vrst, predvsem jelke in smreke, na niž- jih nadmorskih višinah. Poleg dreves, ki imajo ključno vlogo pri kroženju ogljika v naravi, vplivajo mikrobne združbe v tleh na vse bistvene biogeokemijske proce- se, omogočajo kroženja hranil in energije ter delovanje ekosistemov. Drevesa, z izločanjem produktov foto- sinteze prek koreninskega sistema in opada odmrlega rastlinskega materiala vplivajo na aktivnost mikrobnih združb in njihovo raznovrstnost. Biodiverziteta tal in delovanje mikrobnih združb sta na območju Karpatov pomanjkljivo raziskana. V raziskavi smo s pomočjo Acta Silvae et Ligni 135 (2024), 53–63 59 metagenomskih pristopov opisali bakterijske združbe v tleh ter s Shannonovim indeksom, indeksom vrstne pestrosti in enakomernosti ocenili njihovo diverziteto. Primerjali smo bakterijske združbe v rizosferi in ze- mlje zunaj območja korenin (bulk soil) ter bakterijske združbe odvzetih na območjih različne intenzitete za- stiranja matičnega sestoja. Vzorčenje smo opravili na osmih lokacijah vzdolž Karpatskega gorovja v Romuniji, na Slovaškem in Če- škem. Izbrane vzorčne lokacije so na nadmorskih viši- nah od 800 do 1100 metrov v mešanih gozdovih bukve in jelke. Iz pridobljenih podatkov sekvenciranja vzor- cev zemlje smo identificirali 73.038 delovnih operacij- skih enot (OTU) s podobnostjo sekvence (similarity), večje od 82 % glede na referenčno sekvenco, in 52.987 delovnih operacijskih enot s podobnostjo, večjo od 92 % baznih parov. S testom ANOVA smo pokazali, da le prostorska razporeditev vzorcev statistično značilno vpliva na vrednosti indeksov alfa diverzitete (vrstno bogastvo, Shannonov indeks in enakomernost združ- be). Največ bakterijskih vrst smo zaznali v gospodar- skem gozdu na vzorčni lokaciji Vrancea, najmanj vrst pa na najbolj severni lokaciji Beskidy. Z analizo beta diverzitete združb smo ocenili, da tip talnega vzorca statistično značilno pojasni le manjši del variance v vrstni sestavi bakterijske združbe (4,4 %), medtem ko je vpliv zemljepisne širine med lokacijami veliko večji (13,2 %). V vseh vzorcih so bili najpogosteje zastopa- ne vrste iz rodu Aktinobacteria, njihova pogostost pa je večja v rizosfernih tleh kot v prostih tleh. Drugi pre- vladujoči taksoni so vključevali Proteobacterie, Planc- tomycetota, Verrucomicrobiota in Acidobacteriota. V raziskavi mikrobnih združb na območju Karpa- tov nismo odkrili značilnih razlik med bakterijskimi združbami v tleh pod zastorom krošenj ali na odprtem, čemur je morebiti botroval zelo majhen razpon vre- dnosti okoljskih spremenljivk med različnimi lokacija- mi. Razlike v povprečnih letnih temperaturah in sku- pnih količinah padavin niso statistično značilno vpli- vale na indekse diverzitete ter tudi talni parametri (pH in razmerje C:N), izmerjeni in testirani v sklopu študije Dařenove et al. (2024), niso sledili trendom geografske širine med vzorčnimi lokacijami. Predvidevali smo, da bo vrstno bogastvo najmanjše na lokacijah pragozdnih rezervatov, kar smo potrdili na eni izmed lokaciji (Be- skidy), medtem ko je bila bakterijska združba druge lokacije (Buzau) pestra in vrstno bogata. Vrstna sesta- va rastlin, način gospodarjenja z gozdom ter razlike v intenziteti in vrsti motenj, ki so botrovale nastanku vrzeli, so nekateri od dejavnikov, ki lahko vplivajo na nekatere neskladnosti izsledkov naših analiz. Tudi pri- merjave alfa diverzitete med rizosfero in prostimi tle- mi niso pokazale pomembnih razlik med združbami, čeprav lahko rastline s svojimi koreninskimi eksudati ustvarjajo razmere za specifično bakterijsko združbo, ki se razlikuje od tiste v prostih tleh. Z analizo tekso- nomske pestrosti in pojavnosti smo ocenili, da največji delež zastopanosti v celotni združbi ponazarjata sku- pini Actinobacteriota in Proteobacteriota. Zaznali smo tudi velik deležih skupine Planctomycetota, ki v drugih primerljivih študijah nikoli ni bila prepoznana s toli- kšno pojavnostjo, kar pripisujemo bodisi specifičnim rastiščnim razmeram bodisi morebitni pristranskosti uporabljene metode. ACKNOWLEDGEMENTS ZAHVALE This work was supported by Slovenian Research and Innovation Agency research projects J4-4547, J4- 3086, Research Core funding P4-0107 at the Slovenian Forestry Institute and the Czech Science Foundation (GAČR 21-47163L). NS was supported by a scholarship from the The Public Scholarship, Development, Disabi- lity, and Maintenance Fund of the Republic of Slovenia through call no. 327. No animals, plants, or fungi were damaged during this study. REFERENCES VIRI Adamič P.C., Levanič T., Hanzu M., Čater M. 2023. Growth response of European Beech (Fagus sylvatica L.) and Silver Fir (Abies alba Mill.) to climate factors along the Carpathian Massive. Forests, 14. https://doi.org/10.3390/f14071318 Algora C., Odriozola I., Human Z.R., Hollá S.A., Baldrian P., López- Mondéjar R. 2022. Specific utilization of biopolymers of plant and fungal origin reveals the existence of substrate-specific guilds for bacteria in temperate forest soils. Soil Biology and Biochemistry, 171, 108696. https://doi.org/10.1016/j.soil- bio.2022.108696 Baldrian P. 2017a. Microbial activity and the dynamics of ecosystem processes in forest soils. Current Opinion in Microbiology, 37: 128–134. Baldrian P. 2017b. Forest microbiome: diversity, complexity, and dynamics. FEMS Microbiology Reviews, 41, 1: 109–130. https:// doi.org/10.1093/femsre/fuw040 Bárta J., Tahovská K., Šantrůčková H., Oulehle F. 2017. Microbial com- munities with distinct denitrification potential in spruce and be- ech soils differing in nitrate leaching. Scientific Reports, 7, 9738. https://doi.org/10.1038/s41598-017-08554-1 Baćmaga M., Wyszkowska J., Borowik A., Kucharski J., Paprocki Ł. 2022. Role of forest site type in determining bacterial and bio- chemical properties of soil. Ecological Indicators, 135, 108557. https://doi.org/10.1016/j.ecolind.2022.108557 Bošela M., Lukac M., Castagneri D., Sedmák, R., Biber P., Carrer M., Konôpka B., Nola P., Nagel T.A., Popa I., Roibu C.C., Svoboda M., Trotsiuk V., Büntgen U. 2018. Contrasting effects of environmen- tal change on the radial growth of co-occurring beech and fir trees across Europe. Science of the Total Environment, 615: 1460–1469. https://doi.org/10.1016/j.scitotenv.2017.09.092 60 Suban N., Maksimović O., Šibanc N., Martinović T., Darenova E., Čater M., Grebenc T.: The effect of forest gaps on the ... Chen S., Jiang C., Bai Y., Wang H., Jiang C., Huang K., Guo L., Zeng S., Wang S. 2022. Effects of forest gap on soil microbial communi- ties in an evergreen broad-leaved secondary forest. Forests, 13, 12: 2015. https://doi.org/10.3390/f13122015 Chen S., Yang Y. 2015. Effects of gaps in the forest canopy on soil microbial communities and enzyme activity in a Chinese pine forest. Pedobiologia, 61: 51–60. https://doi.org/10.1016/j.pe- dobi.2017.03.001 Chauvat M., Zaitsev A.S., Wolters V. 2003. Successional changes of Collembola and soil microbiota during forest rotation. Oecolo- gia, 137: 269–276. Cui Y.X., Bing H.J., Fang L.C., Wu Y.H., Yu J.L., Shen G.T., Jiang M.,Wang X., Zhang X. 2019. Diversity patterns of the rhizosphere and bulk soil microbial communities along an altitudinal gradient in an al- pine ecosystem of the eastern Tibetan Plateau. Geoderma, 338: 118–127. https://doi.org/10.1016/j.geoderma.2018.11.047 Čater M., Levanič T. 2019. Beech and silver fir’s response along the Balkan’s latitudinal gradient. Scientific Reports, 9, 16269. https://doi.org/10.1038/s41598-019-52670-z Čater M., Adamič P.C., Dařenova E. 2024. Response of beech and fir to different light intensities along the Carpathian and Dinaric Mo- untains. Frontiers in Plant Science, 15. https://doi.org/10.3389/ fpls.2024.1380275 Dařenova E., Adamič P.C., Čater M. 2024. Effect of temperature, wa- ter availability, and soil properties on soil CO2 efflux in beech-fir forests along the Carpathian Mts. Catena, 240, 107974. https:// doi.org/10.1016/j.catena.2024.107974 De Cáceres M., Legendre P., Wiser S.K., Brotons L. 2012. Using speci- es combinations in indicator value analyses. Methods in Ecology and Evolution, 3, 6: 973-982. Dinca L., Marin M., Radu V., Murariu G., Drasovean R., Cretu R., Georgescu L., Timiș-Gânsac V. 2022. Which are the best site and stand conditions for silver fir (Abies alba Mill.) located in the Carpathian Mountains? Diversity, 14, 7, 547. https://doi. org/10.3390/d14070547 Dobrowolska D., Bončina A., Klumpp R. 2017. Ecology and silvicul- ture of silver fir (Abies alba Mill.): a review. Journal of Forest Research, 22, 6: 326–335. https://doi.org/10.1080/13416979. 2017.1386021 Duncker P., Barreiro S., Hengeveld G., Lind T., Mason W., Ambroży S., Spiecker H. 2012. Classification of forest management appro- aches: a new conceptual framework and its applicability to European forestry. Ecology and Society, 17, 4, 51. https://doi. org/10.5751/ES-05262-170451 Edgar R.C. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26, 19: 2460–2461. https://doi. org/10.1093/bioinformatics/btq461 Grebenc T., Kraigher H. 2007. Changes in the community of ec- tomycorrhizal fungi and increased fine root number under adult beech trees chronically fumigated with double ambient ozone concentration. Plant Biology, 9: 279–287. https://doi. org/10.1055/s-2006-924489 Griffiths R.P., Gray A.N., Spies T.A. 2010. Soil properties in old-gro- wth Douglas-fir forest gaps in the Western Cascade Mounta- ins of Oregon. Northwest Science, 84, 1: 33–45. https://doi. org/10.3955/046.084.0104 Guerra C.A., Heintz-Buschart A., Sikorski J. et al. 2020. Blind spots in global soil biodiversity and ecosystem function research. Nature Communications, 11, 3870. https://doi.org/10.1038/s41467- 020-17688-2 Han M., Tang M., Shi B., Jin G. 2020. Effect of canopy gap size on soil respiration in a mixed broadleaved-Korean pine forest: evidence from biotic and abiotic factors. European Journal of Soil Biology, 99, 103194. https://doi.org/10.1016/j.ejsobi.2020.103194 Jianxin X., Li X., Zhiyao S. 2016. Impacts of forest gaps on soil proper- ties after a severe ice storm in a Cunninghamia lanceolata stand. Pedosphere, 26: 408–416. https://doi.org/10.1016/S1002- 0160(15)60053-4 Jump A.S., Hunt J.M., Peñuelas J. 2006. Rapid climate change-re- lated growth decline at the southern range edge of Fagus syl- vatica. Global Change Biology, 12: 2163–2174. https://doi. org/10.1111/j.1365-2486.2006.01250.x Knorn J., Kuemmerle T., Radeloff V.C., Keeton W.S., Gancz V., Biriș I.A., Svoboda M., Griffiths P., Hagatis A., Hostert P. 2013. Continued loss of temperate old-growth forests in the Romanian Carpathi- ans despite an increasing protected area network. Environmen- tal Conservation, 40, 2: 182–193. https://doi.org/10.1017/ S037689291200035 Kõljalg U., Nilsson R.H., Abarenkov K. 2013. Towards a unified para- digm for sequence-based identification of fungi. Molecular Eco- logy, 22, 21: 5271–5277. https://doi.org/10.1111/mec.12481 Kohout P., Charvátová M., Štursová M., Mašínová T., Tomšovský M., Baldrian P. 2018. Clearcutting alters decomposition processes and initiates complex restructuring of fungal communities in soil and tree roots. ISME Journal, 12, 3: 692–703. https://doi. org/10.1038/s41396-017-0027-3 Kohout P., Charvátová M., Štursová M., Mašínová T., Tomšovský M., Baldrian P., Tedersoo L. 2021. Fungal communities in small fo- rest gaps respond variably to tree species, soil chemistry and their interactions. Fungal Ecology, 54, 101107. https://doi. org/10.1016/j.funeco.2021.101107 Levanič T., Ugarković D., Seletković I., Ognjenović M., Marušić M., Bogdanić R., Potočić N. 2023. Radial increment of beech (Fagus sylvatica L.) is under a strong impact of climate in the conti- nental biogeographical region of Croatia. Plants, 12, 13, 2427. https://doi.org/10.3390/plants12132427 Lladó S., Lopez-Mondejar R., Baldrian P. 2017. Forest soil bacteria: diversity, involvement in ecosystem processes, and response to global change. Microbiology and Molecular Biology Reviews, 81, 2. https://doi.org/10.1128/MMBR.00063-16 López-Mondéjar R., Algora C., Baldrian P. 2019. Lignocellulolytic sy- stems of soil bacteria: comparative omics analysis reveals unique and shared features across taxa. Applied and Environmen- tal Microbiology, 85, 3, e02495-18. https://doi.org/10.1128/ AEM.02495-18 Labouyrie M., Ballabio C., Romero F., Panagos P., Jones A., Schmid M.W., Mikryukov V., Dulya O., Tedersoo L., Bahram M., Lugato E., van der Heijden M.G.A., Orgiazzi A. 2023. Patterns in soil micro- bial diversity across Europe. Nature Communications, 14, 3311. https://doi.org/10.1038/s41467-023-37937-4 Laurent M., Aragno M. 1999. Phylogenetic diversity of bacterial com- munities differing in degree of proximity of Lolium perenne and Trifolium repens roots. Applied Soil Ecology, 13, 2: 127–136. https://doi.org/10.1016/S0929-1393(99)00028-1 Lucas-Borja M.E., Delgado-Baquerizo M. 2019. Plant diversity and soil stoichiometry regulates the changes in multifuncti- onality during pine temperate forest secondary succession. Science of The Total Environment, 697, 134204. https://doi. org/10.1016/j.scitotenv.2019.134204 Lyu Q., Luo Y., Dong Y., Xiang Y., Zhao K., Chen G., Chen Y., Fan C., Li X. 2022. Effects of forest gaps on the structure and diversity of soil bacterial communities in Weeping Cypress Forest Plan- tations. Frontiers in Microbiology, 13, 882949. https://doi. org/10.3389/fmicb.2022.882949 Martinović T., Mašínová T., López-Mondéjar R., Jansa J., Štursová M., Starke R., Baldrian P. 2022. Microbial utilization of simple and complex carbon compounds in a temperate forest soil. Soil Bio- logy and Biochemistry, 173, 108786. https://doi.org/10.1016/j. soilbio.2022.108786 Acta Silvae et Ligni 135 (2024), 53–63 61 McMurdie P.J., Holmes S. 2013. Phyloseq: An R package for repro- ducible interactive analysis and graphics of microbiome census data. PLoS one, 8, 4, e61217. https://doi.org/10.1371/journal. pone.0061217 Mercado-Blanco J., Abrantes I., Barra Caracciolo A., Bevivino A., Ciancio A., Grenni P., Hrynkiewicz K., Kredics L., Proença D.N. 2018. Belowground microbiota and the health of tree crops. Frontiers in Microbiology, 9, 1006. https://doi.org/10.3389/ fmicb.2018.01006 Mrak T., Štraus I., Grebenc T., Gričar J., Hoshika Y., Carreiro G., Paoletti E., Kraigher H. 2019. Different belowground responses to eleva- ted ozone and soil water deficit in three European oak species (Quercus ilex, Q. pubescens and Q. robur). Science of The Total En- vironment, 651, part 1: 1310–1320. https://doi.org/10.1016/j. scitotenv.2018.09.246 Nacke H., Goldmann K., Schöning I., Pfeiffer B., Kaiser K., Villamizar G.A.C. 2016. Fine spatial scale variation of soil microbial com- munities under European beech and Norway spruce. Fron- tiers in Microbiology, 7: 1-14. https://doi.org/10.3389/fmi- cb.2016.02067 Orman O., Wrzesiński P., Dobrowolska D. 2021. Regeneration growth and crown architecture of European beech and silver fir depend on gap characteristics and light gradient in the mixed monta- ne old-growth stands. Forest Ecology and Management, 482, 118866. https://doi.org/10.1016/j.foreco.2020.118866 Rognes T., Flouri T., Nichols B., Quince C., Mahé F. 2016. VSEARCH: a versatile open source tool for metagenomics. PeerJ, 4, e2584. https://doi.org/10.7717/peerj.2584 Siles J.A., Margesin R. 2016. Abundance and diversity of bacterial, archaeal, and fungal communities along an altitudinal gradient in Alpine forest soils: What are the driving factors? Microbial Ecology, 72: 207–220. https://doi.org/10.1007/s00248-016- 0748-2 Urbanová M., Šnajdr J., Baldrian P. 2015. Composition of fungal and bacterial communities in forest litter and soil is largely deter- mined by dominant trees. Soil Biology and Biochemistry, 84: 53–64. https://doi.org/10.1016/j.soilbio.2015.02.011 Unuk Nahberger T., Martinović T., Finžgar D., Šibanc N., Grebenc T., Kraigher H. 2019. Root-associated fungal communities from two phenologically contrasting Silver Fir (Abies alba Mill.) gro- ups of trees. Frontiers in Plant Science, 10, 214. https://doi. org/10.3389/fpls.2019.00214 Uroz S., Ioannidis P., Lengelle J., Cébron A., Morin E., Buée M. 2013. Functional assays and metagenomic analyses reveal differences between the microbial communities inhabiting the soil horizons of a Norway spruce plantation. PLoS one, 8, 2, e55929. https:// doi.org/10.1371/journal.pone.0055929 Uroz S., Oger P., Tisserand E. 2016. Specific impacts of beech and Norway spruce on the structure and diversity of the rhizosphe- re and soil microbial communities. Scientific Reports, 6, 27756. https://doi.org/10.1038/srep27756 Van Der Heijden M.G.A., Bardgett R.D., Van Straalen N.M. 2008. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters, 11: 296– 310. https://doi.org/10.1111/j.1461-0248.2007.01139.x Vasar M., Davison J., Sepp S.-K., Mucina L., Oja J., Al-Quraishy S., An- slan S., Bahram M., Bueno G., Cantero J., Decocq G., Fraser L., Hiiesalu I., Hodge A., Kohout P., Kukkurainen T., McKenzie S., Miettinen A., van der Heijden M.G.A., Tedersoo L. 2022. Global factors driving soil fungal diversity. Journal of Biogeography, 49, 4: 749–768. https://doi.org/10.1111/jbi.14395 Wang Z., Bai Y., Hou J., Li F., Li X., Cao R., Deng Y., Wang H., Jiang Y., Yang W. 2022. The Changes in Soil Microbial Communities across a Subalpine Forest Successional Series. Forests, 13, 289. https://doi.org/10.3390/f13020289 62 Suban N., Maksimović O., Šibanc N., Martinović T., Darenova E., Čater M., Grebenc T.: The effect of forest gaps on the ... SUPPLEMENTARY DATA DODATNI PODATKI Table 1: Adjusted p-values from Tukey’s HSD test for pair- wise comparisons of the alpha diversity index values at the sampling locations Preglednica 1: Prilagojene p-vrednosti HSD Tukeyevega tes- ta za primerjavo vrednosti indeksov alfa diverzitete za pare vzorčnih lokacij Richness Shannon Evenness 2_Arges-1_Gorj 0.997 1 1 3_Buzau-1_Gorj 0.137 0.497 0.822 4_Vrancea-1_Gorj *0.006 0.097 0.358 5_Neamt-1_Gorj *0.005 0.134 0.465 6_Suceava-1_Gorj *0.008 0.103 0.353 7_Bardejov-1_Gorj 0.310 0.540 0.787 8_Beskidy-1_Gorj 0.807 0.380 0.261 3_Buzau-2_Arges 0.459 0.590 0.719 4_Vrancea-2_Arges *0.037 0.133 0.264 5_Neamt-2_Arges *0.036 0.180 0.356 6_Suceava-2_Arges *0.049 0.140 0.259 7_Bardejov-2_Arges 0.734 0.633 0.678 8_Beskidy-2_Arges 0.381 0.302 0.355 4_Vrancea-3_Buzau 0.906 0.983 0.994 5_Neamt-3_Buzau 0.903 0.994 0.999 6_Suceava-3_Buzau 0.942 0.985 0.994 7_Bardejov-3_Buzau 1 1 1 8_Beskidy-3_Buzau *0.003 *0.003 *0.008 5_Neamt-4_Vrancea 1 1 1 6_Suceava-4_Vrancea 1 1 1 7_Bardejov-4_Vrancea 0.687 0.975 0.997 8_Beskidy-4_Vrancea *<0.001 *<0.001 *<0.001 6_Suceava-5_Neamt 1 1 1 7_Bardejov-5_Neamt 0.682 0.990 1 8_Beskidy-5_Neamt *<0.001 *<0.001 *0.001 7_Bardejov-6_Suceava 0.758 0.978 0.996 8_Beskidy-6_Suceava *<0.001 *<0.001 *<0.001 8_Beskidy-7_Bardejov *0.010 *0.004 *0.007 Table 2: Results of the one-way ANOVA test for statistical significance (expressed as p-values) of selected variables (region, sample, type, and stand type) in explaining alpha di- versity index values Preglednica 2: Rezultati enosmernega testa ANOVA za prever- janje statistične značilnosti učinka izbranih spremenljivk (reg- ije vzorčenja, tipa vzorčenja in vrste sestoja) na vrednosti in- deksov alfa diverzitete Richness Shannon Evenness Region *<0.001 *<0.001 *<0.001 Sample type 0.876 0.701 0.579 Stand type 0.146 0.096 0.095 Acta Silvae et Ligni 135 (2024), 53–63 63 Table 3: Results of PERMANOVA test on the explanatory ef- fect of the selected variables on bacterial species composi- tion at the given locations. The tested variables were region, sample, type, stand type, and a space variable consisting of three PCNM vectors. Preglednica 3: Rezultati testa PERMANOVA za ocenjevanje učinka izbranih spremenljivk pri pojasnjevanju sestave bakter- ijske združbe na vzorčnih lokacijah. Testirane spremenljivke vključujejo: regije vzorčenja, tipa vzorčenja, vrste sestoja ter prostorsko spremenljivko, sestavljeno iz treh PCNM-vektorjev. Degrees of freedom Sum of squares R2 F-statistic p-value Region Model 7 4.6856 0.27008 2.1144 *0.001 Residual 40 12.6631 0.72992 Total 47 17.3487 1 Sample type Model 1 0.7694 0.04435 2.1348 *0.001 Residual 46 16.5793 0.95565 Total 47 17.3487 1 Stand type Model 2 0.6464 0.03726 0.8707 0.925 Residual 45 16.7023 0.96274 Total 47 17.3487 1 Space Model 3 2.2928 0.13216 2.2336 *0.001 Residual 44 15.0559 0.86784 Total 47 17.3487 1 64 Suban N., Maksimović O., Šibanc N., Martinović T., Darenova E., Čater M., Grebenc T.: The effect of forest gaps on the ...