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A B S T R A C T	   A R T I C L E   I N F O	

The	availability	analysis	plays	a	significant	part in both	the	design	and	opera‐
tions	 management	 of	 production	 lines.	 In	 this	 paper,	 a	 method	 combining	
discrete	event	simulation	(DES)	and	surrogate	model	is	presented	to	predict	
the	 availability	 of	 production	 lines	 with	 unreliable	 workstations	 and	 finite	
intermediate	buffers.	The	DES	can	conduct	computer	experiments	for	produc‐
tion	 lines	 with	 the	 help	 of	 design	 of	 experiments	 (DOE)	 under	 the	 Matlab	
environment.	 The	 surrogate	 model	 is	 constructed	 by	 using	 Kriging	 model	
integrated	with	 Latin	 hypercube	 sampling	 (LHS),	 which	 can	 predict	 the	 re‐
sponses	based	on	a	limited	set	of	simulation	results.	The	major	advantages	of	
the	proposed	approach	are	 its	 flexibility	and	convenience.	Also,	 it	 is	the	first	
time	 to	 investigate	 Kriging	 opportunities	 in	 predicting	 the	 performance	 of	
production	 lines.	 Finally,	 an	 application	 in	 a	 crankshaft	 production	 line	 is	
presented,	 and	 the	 results	 indicate	 that	 the	 proposed	 approach	 can	 achieve	
higher	prediction	accuracy	than	the	other	methods.	
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1. Introduction 

A	production	line,	also	known	as	a	transfer	line	or	a	flow	line,	is	one	of	the	most	important	and	
common	types	of	manufacturing	systems	employed	 for	high‐volume	 low‐variety	production	of	
industrial	 components.	 Unlike	 flexible	 manufacturing	 systems	 (FMS)	 or	 manufacturing	 cells	
(FMC),	production	 lines	play	a	significant	role	 in	processing	 the	main	products	of	a	plant,	and	
usually	 require	 high	 capital	 investment.	 They	 are	 often	 organized	 with	 a	 predetermined	 se‐
quence	of	equipment	[1]	and	intermediate	buffers	arranged	in	a	serial	structure	and	connected	
by	a	material	handling	system.	Because	of	high	sensibility	to	failures,	the	improvement	of	pro‐
duction	 lines’	 availability	 is	 an	 important	 issue	 for	 the	designers	 or	 operators	 to	 resolve.	 It	 is	
therefore	necessary	to	research	the	methods	for	evaluating	or	predicting	the	availability	of	pro‐
duction	lines.	

A	review	focusing	on	availability	analysis	techniques	of	production	lines	is	given	as	follows,	
which	can	be	divided	into	three	groups:	exact	analytical	methods,	approximate	analytical	meth‐
ods	and	simulation.	Exact	analytical	methods,	which	are	generally	on	the	basis	of	queueing	mod‐
els	and	Markov	chain	[2],	can	obtain	the	exact	solutions	of	steady‐state	probability,	thus	provid‐
ing	 insight	 into	 the	qualitative	performance	of	production	 lines.	But	 they	are	only	suitable	 for	
small	lines	(no	more	than	three‐stage)	because	of	the	state	explosion	problem.	

Based	on	the	two‐stage	exact	models,	approximate	analytical	methods	are	developed	for	lines	
with	more	machines.	The	most	representative	methods	are	decomposition	and	aggregation	ap‐
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proaches.	The	common	intention	of	decomposition	methods	is	to	decompose	an	N‐machine	sys‐
tem	into	a	cluster	of	N‐1	subsystems	which	contain	two	pseudo‐machines	and	one	original	buff‐
er,	and	to	get	the	result	by	solving	simultaneous	equations	[3].	Gershwin	[4]	developed	an	effi‐
cient	decomposition	method	for	synchronous	lines	and	it	can	get	accurate	results	with	the	help	
of	the	Dallery‐David‐Xie	(DDX)	algorithm	[5].	Afterwards,	Burman	[6]	modified	the	continuous	
model	 for	 asynchronous	 lines	 and	 presented	 a	 new	 accelerate	 DDX	 (ADDX)	 algorithm.	 Other	
extensions	 of	 decomposition	 method	 can	 be	 found	 in	 [7‐9].	 Compared	 with	 decomposition	
methods,	 aggregation	 methods	 are	 more	 straightforward	 and	 simpler.	 The	 general	 idea	 is	 to	
aggregate	 the	original	 line	 into	one	unique	equivalent	machine	by	 iteratively	 replacing	a	 two‐
machine	one‐buffer	subline	[10].	Meerkov	and	his	group	have	obtained	some	achievements	on	
aggregation	methods.	Detailed	descriptions	are	summarized	 in	 [11],	and	a	corresponding	soft‐
ware	called	PSE	Toolbox	is	developed.	Although	approximate	analytical	methods	have	been	fully	
investigated,	there	is	a	limitation	for	wide	application:	all	the	distributions	have	to	be	limited	to	
special	forms,	such	as	geometric	or	exponential.		

Compared	with	analytical	approaches,	simulation	can	build	the	models	of	production	lines	at	
any	requested	level	of	detail	[12]	without	being	restricted	by	assumptions	such	as	specified	dis‐
tributions.	Consequently,	discrete	event	simulation	(DES)	has	been	proved	to	be	 the	 ideal	 tool	
for	exhibiting	the	dynamics	of	complex	manufacturing	process,	and	meanwhile,	the	accuracy	can	
be	controlled.	Because	of	the	applicability	and	practicability,	DES	has	been	widely	used	for	pre‐
dicting	and	optimizing	the	performance	of	production	lines	[13‐15].	Furthermore,	some	authors	
[16‐18]	 investigated	 the	 real	production	 lines	by	means	of	 case	studies.	A	comprehensive	dis‐
cussion	of	many	important	aspects	of	discrete	event	simulation	is	given	by	Law	[19]	from	fun‐
damentals	to	applications.	In	addition,	many	commercial	software	packages	(e.g.,	Flexsim,	Wit‐
ness,	 Plant	 Simulation,	Arena,	 etc.)	 have	been	designed	 specifically	 to	 simulate	manufacturing	
systems,	thus	increasing	the	popularity	of	simulation	in	recent	years.	Despite	the	modelling	flex‐
ibility	 and	 great	 ease	 of	 use,	 DES	 is	 usually	 time‐consuming,	 particularly	 at	 the	 initial	 design	
stage	when	lots	of	system	parameters	are	indeterminate.	Although	high‐performance	computers	
are	developed,	a	 lot	of	 computing	 time	and	resources	are	still	necessary	 to	obtain	statistically	
significant	results.	

To	overcome	the	limitations	of	the	above	methods,	an	integrated	simulation‐surrogate	model	
methodology	 is	presented	 to	predict	 the	availability	of	production	 lines	 in	 this	paper.	For	rea‐
sons	 of	 generality,	 our	 research	 is	 limited	 to	 the	 analysis	 of	 discrete	 serial‐parallel	 lines	with	
unreliable	workstations	 and	 finite	 intermediate	buffers.	The	 rest	of	 the	article	 is	 organized	 as	
follows.	Production	 line	description,	assumptions	and	symbols	are	described	 in	Section	2.	Sec‐
tion	 3	 proposes	 a	 general	 DES	 to	 simulate	 the	 production	 process	 and	 obtain	 the	 production	
lines’	availability.	Section	4	outlines	a	surrogate	model	combined	with	LHS	and	Kriging	model	
for	prediction.	An	application	in	a	rough	machining	production	line	for	crankshaft	is	presented	
in	Section	5.	Finally,	conclusions	and	prospects	close	the	paper	in	Section	6.	

2. Production line model, assumptions and symbols 

2.1 Production line description 

A	discrete	production	line	is	often	organized	with	workstations	connected	in	product‐flow	lay‐
out	and	separated	by	intermediate	buffers.	A	workstation	may	be	composed	of	several	machines	
in	series/parallel	or	 just	one	machine	(in	 this	case	 the	terms	“workstation”	and	“machine”	are	
used	 interchangeably).	 The	 graphical‐based	 structural	model	 of	 an	N‐workstation	 production	
line	is	given	in	Fig.	1,	where	workstations	are	represented	by	squares	and	buffers	are	represent‐
ed	 by	 circles.	 In	 a	 production	 line,	 workpieces	 from	 outside	 enter	 the	 system	 from	 the	 first	
workstation	WS1.	Each	workpiece	is	processed	by	WS1	within	operation	time	T1,	after	which	it	is	
transferred	to	the	first	buffer	B1.	Then	it	moves	in	the	direction	of	arrows	until	it	is	finished	by	
the	last	workstation	WSN,	and	exits	the	system.	
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Fig.	1	The	block	diagram	of	an	N‐workstation	production	line	

In	 the	 real	 production	 operations,	 the	 machines	 always	 experience	 random	 breakdowns.	
Consequently,	failure	of	one	workstation	may	affect	all	other	workstations	upstream	and	down‐
stream.	 This	 complex	 phenomenon	 is	 generally	 regarded	 as	 perturbation	 propagation	 [11],	
which	makes	the	analysis	of	the	production	line	difficult.	To	limit	the	propagation	of	disruptions,	
buffers	are	usually	placed	between	workstations.	In	fact,	buffers	are	capable	to	provide	continui‐
ty	 by	 means	 of	 saving	 parts	 from	 the	 upstream	 subsystem	 and	 releasing	 parts	 to	 the	 down‐
stream	subsystem.	The	buffer	inventory	can	provide	a	period	of	isolation	time	[20]	for	mainte‐
nance	actions	before	the	buffer	becomes	empty	or	full	without	bringing	down	the	entire	system	
immediately.	From	 this	point	of	view,	buffers	alleviate	 this	mutual	 interference	by	decoupling	
adjacent	workstations	from	“rigid”	connection	to	“elastic”	connection.	

Except	the	failures	of	machines,	another	reason	for	line	inefficiency	is	the	workstations’	inter‐
ference:	 starvation	 and	 blocking.	 A	 workstation	 is	 called	 starved	 when	 its	 upstream	 buffer	 is	
empty	(buffer	inventory	is	0).	It	is	said	to	be	blocked	when	its	downstream	buffer	is	full	(buffer	
inventory	is	its	maximum	capacity	Cn).	Taking	WSn	as	an	example,	starvation	is	the	phenomenon	
that	when	WSn	has	finished	a	workpiece	it	is	forced	to	wait	because	Bn‐1	is	empty.	When	a	work‐
station	is	up,	it	is	said	to	be	busy	when	it	is	processing	a	workpiece,	and	is	said	to	be	idle	when	it	
is	either	starved	or	blocked.	Generally,	uptimes	(including	busy	times	and	idle	times)	and	down‐
times	exhibit	statistical	regularity,	and	can	be	expressed	as	independent	and	identically	distrib‐
uted	random	variables.	Thus,	the	state	is	summarized	as	follows:	

the	state	of	WSn ൌ ൞up		 ൝
	busy																				

idle	 ቄstarved
blocked

		

down																												

	

As	mentioned	above,	the	parallel	machines	are	simplified	to	one	workstation	in	this	research	
(see	Fig.	1).	They	are	generally	used	to	balance	the	production	line,	and	have	the	same	operation	
as	well	as	configuration	in	most	situations.	They	are	therefore	assumed	to	have	identical	opera‐
tion	time	as	well	as	parameter	distributions.	Thus	the	workstation’s	operation	time	equals	to	the	
machines’	 operation	 time	 divided	 by	 the	 number	 of	 parallel	machines.	Moreover,	we	 defined	
“degradation	 ratio”	 as	 the	 production	 capacity	 coefficient	 of	 the	workstation	when	one	 of	 the	
parallel	machines	is	down.	For	example,	the	degradation	ratio	is	2/3	when	the	workstation	con‐
tains	three	parallel	machines.	Without	loss	of	generality,	let	it	be	0	in	the	series	case.	

2.2 Assumptions 

The	following	additional	assumptions	are	also	used:	

(a) As	the	supply	and	storage	of	production	line	are	beyond	the	scope	of	this	research	and	
they	are	considered	to	be	infinite.	In	other	words,	WS1	is	never	starved	and	WSN	is	never	
blocked.	

(b) Scheduled	downtimes	such	as	breaks,	meetings,	 and	preventative	maintenance	are	not	
concerned	in	this	paper.	

(c) Operation	time	of	each	workstation	which	contains	transfer	time	and	setup	time	is	con‐
stant	 because	 most	 gantry	 robots	 and	 machines	 are	 controlled	 by	 predetermined	 NC	
code.	

(d) Failures	 don’t	 destroy	workpieces.	 Therefore,	 the	workpieces	 remain	 at	 the	machines	
during	maintenance,	and	processing	resumes	when	the	machines	are	up.	
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(e) The	two‐parameter	Weibull	distribution	is	employed	to	model	uptimes	and	downtimes.	
Although	 the	proposed	DES	model	 is	appropriate	 for	any	distributed	workstations,	 the	
Weibull	distribution	 is	one	of	 the	most	common	distributions	 in	reliability	engineering	
and	can	be	conveniently	transformed	into	exponential	distribution,	which	is	widely	used	
in	analytical	approaches.	

2.3 Symbols of system parameters 

It	 is	necessary	to	present	a	summary	of	 the	symbols	as	well	as	 their	explanations	used	 in	 this	
research.	The	system	input	and	output	parameters	are	listed	in	Table	1	and	Table	2,	respectively.	

Table	1	The	input	parameters	of	model	
Notations	 Explanation	of	the	notations	

N	 Total	number	of	workstations
Tn	 Operation	time	of	WSn,	and	T	= (T1,	T2,	···,	TN)T

Cn	 Maximum	capacity	of	Bn	(including	the	space	at	WSn+1),	and	C = (C1,	C2,	···,	CN‐1)T	
Dn	 Degradation	ratio	of	WSn,	and	D = (D1,	D2,	···,	DN)T,	Dn∈[0,	1)
utni	 Uptime	of	WSn	before	the	ith	failure,	and	UTn	= {utn1,	utn2,	···,	utni,	···}
dtni	 Downtime	of	WSn	during	the	ith failure,	and DTn	= {dtn1,	dtn2,	···,	dtni,	···}
αn	 Scale	parameter	of	Weibull	distribution	for	WSn,	and	α = (α1,	α2,	···,	αN)T

βn	 Shape	parameter	of	Weibull	distribution	for	WSn,	and	β = (β1,	β2,	···,	βN)T

tsim	 Simulation	time	
twarmup	 Warmup	period	
r	 Number	of	independent	replications	of	the	simulation

Table	2	The	output	parameters	of	model	
Notations	 Explanation	of	the	notations	
kn(t)	 Inventory	level	of	Bn	at	time	t,	and	0  kn(t)  Cn
ctn(t)	 Cumulative	busy	time	of	WSn	at	time	t
opn(t)	 Output	of	WSn	at	time	t	

sn(t)	
State	of	WSn at	time	t,	and	sn	= Dn during	downtime,	sn	= 1	during	busy	time,	sn	=	“starved”	or	“blocked”	
during	idle	time	

OP	 Total	amount	of	output,	and	OP = opN(tsim)
OPh(t)	 Hourly	output	of	system	at	time	t
MTBF	 Mean	time	between	failures,	and	MTBFn	=	utഥ n	
MTTR	 Mean	time	to	repair,	and	MTTRn	=	dtഥ n	

A	

Availability	of	the	whole	line,	defined	as	the	probability	of	system	being	processing.	Actually,	in	the	
steady	state,	if	no	failures	occur,	the	system	can	process	a	workpiece	in	every	bottleneck	operation	
time	Tmax,	which	is	the	maximum	operation	time	of	workstations.	Thus,	the	total	processing	time	of	
system	is	OP	×	Tmax,	and	A	=	OP	×	Tmax/tsim.	

3. Discrete event simulation 

In	this	section	a	general	DES	is	developed	under	Matlab	environment	to	simulate	the	manufac‐
turing	process	of	production	lines.	The	simulation	model	can	provide	real‐time	information	on	
operating	 characteristics,	 and	 evaluate	 the	 availability	 of	 production	 lines	 with	 various	 input	
parameters.	Meanwhile,	it	has	a	good	compatibility	with	subsequent	surrogate	model	programs.	

3.1 Simulation process 

The	flow	chart	of	the	proposed	DES	is	shown	in	Fig.	2	and	the	main	steps	are	described	as	fol‐
lows:	

(a) Set	the	input	parameters	for	the	DES	model:	N,	T,	C,	D,	tsim,	and	twarmup.	
(b) Initialization	of	kn(0),	ctn(0)	and	opn(0)	for	every	buffer	and	workstation	with	the	default	

values	all	zero.	
(c) Generate	sample	sets	UTn	and	DTn	with	required	distribution	by	Monte	Carlo	technique	

for	 every	workstation.	Accumulate	 and	 sort	 these	data	 in	 chronological	 order	until	tsim	
ends.	
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(d) Scan	the	real‐time	state	for	every	workstation	and	buffer	at	each	time	unit	by	means	of	a	
nested	 loop,	of	which	 the	outer	 loop	runs	 from	 t	=	1	 to	t	=	 tsim	and	 the	 inner	 loop	runs	
from	n	=	1	to	n	=	N.	In	this	process,	discriminate	WSn	between	up	and	down	according	to	
the	samples	obtained	from	step	(c).	If	WSn	is	up,	discriminate	WSn	between	busy	and	idle	
according	to	kn‐1(t‐1)	and	kn(t‐1).	Then	record	kn(t),	ctn(t),	opn(t)	and	sn(t).	

(e) Calculate	OP,	OPh	and	A	at	the	end	of	simulation.	

Set	input	parameters:	N,	T,	C,	D,	α,	β,	tsim	and	twarmup

Generate	UTn	and	DTn		using	Monte	Carlo,	and	sort	in	
chronological	order

Scan	the	system	state	at	each	time	unit	from	t=1	

kn‐1(t‐1)>0	and	kn(t‐1)<Cn	?

Initialize	kn,	ctn,	opn	for	every	buffer	and	workstation

WSn	being	busy,	
ctn(t)=ctn(t‐1)+sn(t)

Simulate	the	real‐time	state	of	each	workstation	from	n=1	

Finish	a	job？
mod(ctn(t),Tn)=0？

kn(t)=kn(t‐1)+1
kn‐1(t)=kn‐1(t‐1)‐1
opn(t)=opn(t‐1)+1

kn(t)=kn(t‐1)
kn‐1(t)=kn‐1(t‐1)
opn(t)=opn(t‐1)

kn‐1(t‐1)=0	?

WSn	being	up,	sn(t)്0?
WSn	being	completely	

down	sn(t)=0

WSn	being	
starved

kn(t‐1)=Cn	?
WSn	being	
blocked

t=t+1

n=n+1

n<N	?

t<tsim	?

Calculate	the	output	parameters:	OP,	OPh,	A	for	whole	line

Record	kn(t),	opn(t)	and	state	of	WSn	at	time	t

N

Y
N

N

N

N

Y

Y

N

N

Y

Y

Y

Y

	
Fig.	2	The	flow	chart	of	DES	model	for	production	lines 

3.2 Validation 

The	validation	of	proposed	DES	model	was	conducted	by	comparing	the	results	with	Plant	Simu‐
lation	software	in	different	lines.	We	investigated	4	cases	as	follows,	with	the	configuration	de‐
tails	in	Table	3:	

Case	1:	Synchronous	series	line	with	same	workstations;	
Case	2:	Synchronous	series	line	with	different	workstations;	
Case	3:	Asynchronous	series‐parallel	line,	also	be	described	in	Section	5;	
Case	4:	Asynchronous	series‐parallel	line	with	different	buffers	and	Weibull	workstations.	

We	performed	r	=	100	independent	repeated	trials	with	each	of	simulation	length	tsim	=	1440	h	
(3	m	×	30	d	×	16	h).	The	average	results,	which	are	summarized	in	Table	4,	indicate	that	the	per‐
centage	errors	of	OP	are	extremely	small.	That	means	the	proposed	DES	model	is	practicable.	
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Table	3	Configuration	details	of	4	cases	
Parameters	 Case	1	 Case	2 Case	3 Case	4	

N	 5 5 5 5	
T	(s)	 (200,200,200,200,200)	 (200,200,200,200,200) (180,200,190,180,190) (180,200,190,180,190)
K	 (10,10,10,10)	 (10,10,10,10) (10,10,10,10) (10,15,10,15)
D	 (0,0,0,0,0)	 (0,0,0,0,0) (0,0,0.5,0,0) (0,0,0.5,0,0)

UT	(h)	
α	 (400,400,400,400,400)	 (400,600,350,300,450) (400,600,350,300,450) (400,600,350,300,450)
β	 (1,1,1,1,1)	 (1,1,1,1,1) (1,1,1,1,1) (1.2,0.8,1.2,0.8,1.2)

DT	(h)	
α	 (2,2,2,2,2)	 (1.5,2,2.5,3,1.5) (1.5,2,2.5,3,1.5) (1.5,2,2.5,3,1.5)
β	 (1,1,1,1,1)	 (1,1,1,1,1) (1,1,1,1,1) (0.8,1.2,0.8,1.2,0.8)

Table	4	Simulation	results	of	Plant	Simulation	and	the	DES	in	proposed approach	

Parameters	
Case	1	 	 Case	2	 Case	3	 	 Case	4	

Matlab	 PS	 Error,	%	 	 Matlab PS	 Error,	% Matlab PS	 Error,	% 	 Matlab	 PS	 Error,	%
OP	 25351	 25369 ‐0.0710	 	 25294 25301 ‐0.0277 25480 25486 ‐0.0235 	 25505	 25511	 ‐0.0235

3.3 Warm‐up 

The	start‐up	or	initial	transient	problem	is	a	common	problem	in	simulation	process.	In	order	to	
ensure	 that	observations	can	represent	steady‐state	behaviour,	 the	warming	up	or	 initial‐data	
deletion	technique	is	often	suggested.	In	this	research,	a	graphical	procedure	proposed	by	Welch	
is	employed	to	choose	the	warm‐up	period	(see	[19]).	This	procedure	can	smooth	out	the	plot	of	
observations	based	on	ݎ	independent	replications	of	the	simulation	and	moving	average	with	w	
(where	w	 is	 the	window,	 a	parameter	 to	adjust	 the	 smoothness).	Output	parameters	OPh(t)	 is	
selected	as	the	observation,	because	A	is	closely	related	to	OP.	Taking	case	3	as	an	example,	the	
moving	averages	for	OPh(t)	with	w	=	50	h	are	shown	Fig.	3.	From	the	plot	we	chose	a	warmup	
period	of	twarmup	=	80	h	(5	d	×	16	h).	

	
Fig.	3	Moving	averages	for	OPh(t)	with	w	=	50	h	

4. Prediction based on Surrogate Model 

To	increase	the	efficiency,	design	of	experiments	(DOE)	[21]	technique	is	usually	integrated	into	
the	simulation,	which	also	be	referred	 to	as	computer	experiments	or	 simulation	experiments	
[22].	This	technique	can	help	us	to	explore	the	relationship	between	input	parameters	(factors)	
and	performance	measures	(responses)	with	the	least	amount	of	simulating.	Another	use	of	DOE	
is	 to	 construct	 a	 surrogate	model,	 also	 known	as	metamodel	 or	 response	 surfaces,	which	 is	 a	
simplified	model	of	the	simulation	model	for	representing	the	quantitative	relationship	between	
factors	and	responses	[23].	Fig.	4	illustrates	the	relationship	of	different	models.	Surrogate	mod‐
el	provides	one	approach	 to	predict	 the	responses	 from	a	 limited	set	of	 simulated	 factor‐level	
configurations.	In	this	section,	a	prediction	method	based	on	surrogate	model,	which	combines	
Latin	hypercube	 sampling	 (LHS)	 and	Kriging	model,	 is	 presented	 to	predict	 the	 availability	 of	
production	lines.	
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Fig.	4	The	relationship	of	different	models	

4.1 Latin hypercube sampling 

As	 a	 kind	 of	 space	 filling	 design,	 LHS	 is	 widely	 used	 for	 computer	 experiments	 because	 its	
stratification	property	allows	it	to	cover	the	input	domain	uniformly	in	a	relatively	small	sample	
size.	A	LHS	with	p	sample	points	in	q	dimensions	is	written	as	an	p	×	q	matrix	X	=	[࢞ଵ,	࢞ଶ,	···,	࢞]T,	
in	which	 each	 column	 represents	 a	 factor	 and	 each	 row	࢞	=	 	[ሺሻݔ	,···,ሺଶሻݔ	,ሺଵሻݔ] represents	 a	
sample.	Firstly,	a	LHS	divides	each	dimension	into	p	equal	levels	and	gets		grids.	Then	select	p	
of	them	to	make	that	exactly	one	is	selected	at	each	level.	Finally,	generate	one	point	randomly	in	
every	grid	and	get	p	sample	points.	To	get	better	uniformity,	various	criterions	are	available	to	
optimize	the	design.	

In	this	paper,	the	LHS	experiment	plan	was	created	by	Matlab	function	lhsdesign	with	maxmin	
criterion	 (maximize	 minimum	 distance	 between	 points)	 in	 40	 iterations.	 For	 example,	 Fig.	 5	
shows	a	LHS	with	100	sample	points	for	variation	of	workstations’	reliability	parameters,	which	
is	in	the	range	of	MTBF	∈	[‐200,	200]	h	and	MTTR	∈	[‐1,	1]	h.	

	 	
Fig.	5	A	100	×	2	LHS	experiment	plan 

4.2 Kriging model 

Kriging	 is	a	popular	 interpolation	methodology	 for	computer	experiments	 to	construct	a	 cost‐
effective	model	as	a	surrogate	to	the	tedious	and	time‐consuming	engineering	simulation.	Actu‐
ally,	the	Kriging	is	the	best	linear	unbiased	interpolation	and	has	the	ease	of	immediate	valida‐
tion	by	measuring	its	uncertainty	[24].	Compared	with	traditional	polynomial	regression,	Kriging	
can	give	better	global	predictions	because	it	assumes	that	the	prediction	errors	are	correlated,	
i.e.,	gives	more	weight	to	‘neighbouring’	observations	[25].	

In	Kriging	model,	the	simulation	output	at	design	point	࢞	is	defined	as:	

ܻሺ࢞ሻ ൌ ࣅሻ࢞ሺ࢈  ܼሺ࢞ሻ	 (1)
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This	model	is	built	by	adding	up	two	terms:	The	first	term,	which	represents	the	global	trend,	is	
a	linear	combination	where	࢈ሺ࢞ሻ	is	a	vector	of	given	basis	functions	of	࢞,	and	ࣅ	is	a	vector	of	un‐
known	coefficients	need	to	be	estimated	from	the	simulation	results.	The	second	one	ܼሺ࢞ሻ	is	a	
local	bias	expressed	by	a	second‐order	stationary	random	process	with	mean	zero	and	covari‐
ance	Covሾܼሺ࢞ሻ, ܼሺ࢞ᇱሻሿ ൌ ࢞‖ଶܴሺߪ െ ;‖ᇱ࢞ 	,ሻࣂ where	ߪଶ	can	 be	 elucidated	 as	 the	 variance	 of	ܼሺ࢞ሻ	
for	all	࢞,	and	R	is	the	spatial	correlation	function	(SCF)	that	depends	on	the	‘distances’	‖࢞ െ 	‖ᇱ࢞
(Euclidean	 norm).	 For	 simplification,	 the	 form	ܴሺ‖࢞ െ ;‖ᇱ࢞ ሻࣂ ൌ ∏ ܴ൫หݔሺ௩ሻ െ ሺ௩ሻݔ

ᇱ ห; ሺ௩ሻ൯ߠ

௩ୀଵ 	is	

used	 for	 studying	 q‐dimensional	 problems.	 The	 parameters	ߪଶ	and	ࣂ	are	 estimated	 from	 the	
experimental	data.	

There	are	two	steps	to	build	a	surrogate	model	by	Kriging:	modelling	and	prediction.	Firstly,	
model	ܻሺ࢞ሻ,	 i.e.,	 estimate	 the	 unknown	 parameters	 based	 on	 the	 simulated	 points.	 Secondly,	
predict	the	availability	of	production	lines	for	given	points.	We	performed	these	tasks	by	using	a	
Matlab	 toolbox	 called	 DACE	 (Design	 and	 Analysis	 of	 Computer	 Experiments)	 [26].	 The	 basis	
functions	࢈ሺ࢞ሻ	are	 commonly	 expressed	 as	 polynomials	 of	 orders	 d	=	 0,	 1	 or	 2.	 For	 SCF,	 the	
toolbox	provides	seven	types	and	we	choose	three	of	them:	exponential,	Gaussian	and	spherical,	
which	are	defined	as	follows,	respectively:	

ܴୣ୶୮ሺ|ݔ െ ;|′ݔ ሻߠ ൌ expሺെݔ|ߠ െ 	ሻ|′ݔ (2)

ܴୋୟ୳ୱୱሺ|ݔ െ ;|′ݔ ሻߠ ൌ expሺെݔ|ߠ െ 	ଶሻ|′ݔ (3)

ܴୱ୮୦ሺ|ݔ െ ;|′ݔ ሻߠ ൌ 1 െ ଶߦ1.5  ,ଷߦ0.5 ߦ ൌ minሼ1, ݔ|ߠ െ 	ሽ|′ݔ (4)

4.3 Prediction accuracy 

The	goodness	of	prediction	fit	for	different	models	is	measured	by	their	mean	absolute	percent‐
age	error	(MAPE),	root‐mean‐square	error	(RMSE)	and	R‐square	(R2),	expressed	as:	

ܧܲܣܯ ൌ
1

 ቤ

ݕ െ ොݕ
ݕ

ቤ


ୀଵ
ൈ 100%	 (5)

ܧܵܯܴ ൌ ඨ
1

 ൫ݕ െ ො൯ݕ

ଶ

ୀଵ
	 (6)

ܴଶ ൌ 1 െ
∑ ൫ݕ െ ො൯ݕ

ଶ
ୀଵ

∑ ൫ݕ െ ത൯ݕ
ଶ

ୀଵ

	 (7)

where	ݕ	is	the	simulated	value	and	ݕො	is	the	forecast	value.	For	the	first	two	indicators,	a	value	
closer	to	zero	means	a	better	fit.	With	respect	to	R2,	it	can	take	any	value	between	zero	and	one,	
and	the	higher	the	value,	the	better	accuracy	of	predictions	will	be.	

5. Case study 

In	 this	 section,	 a	 rough	machining	production	 line	before	heat	 treatment	 for	 car	 crankshaft	 is	
given	 to	 illustrate	 application	 of	 the	 proposed	method.	 It	 is	 organized	with	 five	workstations,	
among	which	the	third	one	is	composed	of	two	parallel	machines	(see	Fig.	6).	The	operating	con‐
tent	is	described	in	Table	5,	and	the	design	parameter	is	the	same	as	Case	3	in	Section	3.2.	

WS1 WS2B1 B2

M3a

M3b

WS4B3 B4 WS5

180	s 10 200	s 10 10 10180	s 190	s

380	s

380	s

	
Fig.	6	The	block	diagram	of	crankshaft	production	line	
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Table	5	The	operating	content	of	crankshaft	production	line	
No.	 Operating	content
OP1	 Milling	two	end	faces	and	location	seam,	drilling	center	hole		
OP2	 Turning	rear	and	front	journals
OP3	 Finishing	turning	rear	and	front	journals,	main	journals	and	undercuts	
OP4	 Milling	pin	journals,	undercuts	and	outer	rings	of	balancers	
OP5	 Drilling	vertical/oblique	oil	holes	and	chamfers

To	investigate	how	equipment	management	influences	the	performance	of	the	whole	line,	the	
availability	was	predicted	at	different	levels	of	workstations’	reliability	and	maintainability.	We	
made	r	=	100	independent	replications	of	the	proposed	DES	with	tsim	=	1440	h	and	twarmup	=	80	h	
for	p	=	100	sample	points	obtained	via	experiment	plan	in	Section	4.1.	These	average	simulated	
values	of	ܣ	are	 shown	by	black	 scatter	points	 in	Fig.	 7.	Then	we	built	 the	Kriging	model	 from	
above	simulation	result,	and	made	predictions	for	grid	points	with	step	sizes	of	MTBF	=	40	h	and	
MTTR	=	0.2	h.	Another	simulation	was	performed	for	these	grid	points	as	verification	group	by	
Plant	Simulation	software.	Fig.	7	displays	the	predictions	obtained	from	Kriging	model	with	sec‐
ond‐order	basis	functions	and	Gaussian	correlation	function.	We	can	see	that	the	surface	basical‐
ly	 overlaps	 that	 of	 simulated	 values,	which	 demonstrates	 that	 the	 prediction	 accuracy	 is	 high	
enough.	Meanwhile,	the	response	surface	proves	that	A	is	an	increasing	function	of	MTBF	and	a	
decreasing	function	of	MTTR.		

	
Fig.	7	Response	surface	of	availability	A 

We	also	compared	various	Kriging	models	with	four	other	methods	to	show	the	accuracy	of	
the	proposed	method.	They	are	moving	least	square	(MLS)	method	with	Gaussian	weight	func‐
tion	[27],	Matlab	function	griddata	with	v4	method,	aggregation	approximate	method	[11]	and	
semi‐analytical	simulation	[28].	The	first	two	methods	interpolate	the	same	sample	points	and	
act	like	Kriging	model.	The	results	(listed	in	Table	6)	indicate	that	Kriging	models	have	the	low‐
est	MAPE,	RMSE	and	the	highest	R2,	which	means	that	the	proposed	method	provides	better	pre‐
dictions	than	the	other	four	methods.	The	methods	combining	simulation	and	surrogate	model	
are	generally	better	than	analytical	methods.	Furthermore,	for	Kriging	models,	Gaussian	correla‐
tion	 function	delivers	better	performance,	 and	 the	other	 two	perform	basically	 the	 same.	 The	
ideal	basis	function	is	second‐order	polynomial.	

Table	6	Prediction	accuracy	of	availability	A	

Method	
MAPE	(×	10‐2)	 RMSE	(×	10‐4)	 R2	

d	=	0	 d	=	1	 d	=	2	 d	=	0	 d	=	1	 d	=	2	 d	=	0	 d	=	1	 d	=	2	
Exponential	Kriging	 6.9253	 6.7465	 5.4850	 10.835	 9.4687	 7.2949	 0.99034	 0.99262	 0.99562
Gaussian	Kriging	 4.2619	 4.3389	 4.1437 5.8173	 5.9956	 5.7200 0.99721	 0.99704	 0.99731
Spherical	Kriging	 6.6904	 6.3328	 5.6112	 10.596	 8.7454	 7.3571	 0.99076	 0.99370	 0.99554
Gaussian	MLS	 46.527	 17.823	 6.5864	 67.015	 23.145	 8.8208	 0.63028	 0.95590	 0.99359
Griddata	with	v4	 8.5439	 12.922	 0.98625	
Aggregation	approximate	 65.843	 76.846	 0.51385	
Semi‐analytical	simulation	 11.139	 15.356	 0.98059	
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6. Conclusion and further research 
In this paper, a new procedure has been proposed to predict the availability of discrete produc-
tion lines with unreliable workstations and finite buffers. The main advantages are its flexibility 
and property that it is not restricted by specified distributions. This procedure consists of two 
phases: DES and surrogate model. The first phase involves conducting computer experiments to 
obtain the availability of production lines under different system parameters with the help of 
DOE. These input parameters can describe production lines with different structures, operation 
times, uptimes, downtimes and buffer capacities. The second phase aims to predict the availabil-
ity based on the simulated results by surrogate model. It is constructed by combining Kriging 
model and LHS.  

A case study of crankshaft production line has shown that the proposed method was practi-
cal. It provided better predictions than other interpolation methods, approximate analytical 
method and semi-analytical simulation. For Kriging model, Gaussian correlation function and sec-
ond-order basis function predicted with the best performance. We also got the response surface 
of whole line availability versus workstations’ MTBF and MTTR. The main contribution of this 
paper are developing a new DES under Matlab environment and importing Kriging model to the 
domain of modeling the availability of production lines. Although the proposed method was flex-
ible and accurate, the downside is that its efficiency is still lower than analytical methods. Since 
the method is based on DES, the time-consuming problem will inevitably emerge. Even though 
LHS and Kriging help a lot, there is still room for improvement, especially for the long lines. 

In the future, we will investigate the prediction of other performance measures with more in-
put parameters for higher dimensions, such as speed losses, defect losses or process failure. 
Moreover, sensitivity analysis methods should be helpful to gain a deeper understanding of the 
relationships between factors and responses. It would also be interesting to observe the perfor-
mance of other DOE techniques and surrogate models. 
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