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Povzetek

To delo se ukvarja z izbranimi problemi modeliranja moé¢no ograjenih tekocekristalnih
sistemov: z urejanjem molekul in povrsinskim sidranjem v plasti nematika, z molekul-
sko dinamiko in ucinki zunanjih polj v nematskih kapljicah, ter z urejanjem, ki ga
vsiljujejo v nematiku dispergirane polimerne mreze pravilne ali nepravilne oblike.
Modeliranje teh sistemov sloni na fenomenoloskem Landau-de Gennesovem opisu in
na simulacijah vrste Monte Carlo v okviru mikroskopskih mreznih modelov. Posebna
pozornost je posvecena vzpostavitvi povezave med rezultati simulacij in eksperimen-
talnimi opazljivkami, kot so spektri 2H NMR, elektri¢na kapacitivnost in intenziteta
skozi vzorec prepuscene svetlobe. Rezultati studija urejanja v plasti nematika kazejo,
da spreminjanje stopnje nematske ureditve ob povr§ini privede do pojava elasti¢ne
deformacije, ki jo spremlja prispevek k notranjemu sidranju. Pri §tudiju nematskih
kapljic je bila razvita nova metodologija za napoved spektrov 2H NMR iz rezultatov
simulacij Monte Carlo, ki pravilno opiSe gibanja molekul v vzorcu. Metodologija
je bila preizkuSena pri obravnavi fluktuacij dolgih osi molekul, translacijske difuzije
in uc¢inkov zunanjega elektricnega ali magnetnega polja. Na koncu so predstavlje-
ne simulacije nematikov z dispergiranimi polimernimi mrezami. Te kazejo, da so
vlakna mreze sposobna urediti nematik, ki jih obdaja, cetudi je njihova povrsina
dokaj groba. Poleg tega lahko zunanje polje povzroci strukturne prehode, prikazane
v preprostem faznem diagramu, pri ¢emer igra pomembno vlogo sama topografija
mreze. Nad temperaturo prehoda v izotropno fazo je v sistemu moc¢ opaziti tudi
paranematsko urejanje. Rezultati simulacij so omogo¢ili tudi vpogled v notranjo
strukturo topoloskih defektov v nematski ureditvi, do katerih lahko pride v primerno
ograjenih sistemih.

Kljuéne besede: nematski tekoci kristal, ograditev, polimerne disperzije, elastic-
nost, sidranje, topoloski defekti, zunanje polje, mrezni modeli, simulacije Monte
Carlo, 2H NMR, kapacitivnost, prepus¢anje svetlobe

PACS: 61.30.Cz, 61.30.Gd






Abstract

This thesis addresses selected topics in the field of strongly confined nematic liquid
crystals: molecular ordering and surface anchoring in a nematic slab, dynamical
and external field effects in nematic droplets, and the orienting ability of regular
or irregular polymer networks dispersed in liquid crystals. The modeling of these
composite systems is based both on phenomenological (Landau-de Gennes) and mi-
croscopic simulation (lattice model Monte Carlo) approaches. A special attention
is paid to establishing a relation between the simulation output and experimental
observables, in particular 2H NMR line shapes, electric capacitance, and transmit-
ted light intensity. In the simple nematic slab geometry, a subsurface variation in
the degree of nematic order is shown to result in a subsurface elastic deformation,
accompanied by an intrinsic contribution to surface anchoring. The section on ne-
matic droplets presents a novel methodology for the calculation of 2H NMR line
shapes from the output of Monte Carlo simulations, pointing out the importance
of translational diffusion, molecular fluctuations, and external magnetic or electric
field effects. Finally, simulations of nematics with dispersed polymer networks indi-
cate that the networks are capable of aligning the surrounding liquid crystal even
if their surface is fairly rough. In a regular fiber array external field-induced struc-
tural transitions are studied in detail, presenting a stability phase diagram for the
observed structures. The topography of the network itself is seen to be intimately
related to the characteristics of the external field-driven molecular switching process.
Moreover, above the nematic-isotropic transition temperature paranematic ordering
is detected in the system. Eventually, suitable topological constraints can lead to
the formation of defects in nematic ordering. The inner defect structure could then
be resolved from molecular simulations.

Keywords: nematic liquid crystal, confinement, polymer dispersions, elasticity, an-
choring, topological defects, external field, lattice models, Monte Carlo simulations,
2H NMR, capacitance, light transmission

PACS: 61.30.Cz, 61.30.Gd
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Razsirjeni povzetek

Uvod

Na prvi pogled se morda zdi, da izraz tekoci kristali vsebuje neskladje, saj se hkrati
sklicuje na tekocnost in kristalini¢nost snovi. V resnici gre pri tekoc¢ih kristalih za
organske snovi, ki jih sestavljajo molekule mo¢no anizotropne oblike, in ¢eprav so ob
primernih pogojih tekoéi, oblika molekul botruje anizotropiji njihovih makroskop-
skih lastnosti: lomnega koli¢nika, dielektricne konstante, magnetne susceptibilnosti
in drugih. Prav zato so tekocekristalni materiali danes izjemno razsirjeni v indus-
triji opticnih naprav, kot so hitre zaslonke ali tekocekristalni zasloni, pogosto pa jih
srecujemo tudi v vsakdanjem zivljenju. Prve tekocekristalne snovi so bile odkrite
ze pred ve¢ kot sto leti [1,2] in kaj kmalu se je izkazalo, da gre za novo agre-
gatno stanje med navadno (izotropno) tekoéino in trdnino. Danes je znanih mnogo
tekocekristalnih faz, od katerih se bomo tukaj omejili na najpreprostejSo izmed njih,
nematske (“nitaste”) tekoce kristale [3]. Sestavljajo jih podolgovate molekule, ki se
v velikem vzorcu v povprecju uredijo v doloceni smeri. To smer oznac¢imo z enotskim
vektorjem n in ga imenujemo direktor [4]. Pri tem sta smeri +n in —n enakovredni,
teziS¢a molekul pa so razporejena nakljuéno po prostoru kot pri navadni tekocini
(slika 1). Ponavadi je porazdelitev molekul okoli n osno simetri¢na: nematik je
tedaj enoosen. Ce to ne drzi, govorimo o dvoosnem nematiku. 7 visanjem tem-
perature stopnja ureditve okoli n postopoma pojema, konéno pa pride do faznega
prehoda v navadno (izotropno) tekoé¢insko fazo, ki je §ibko nezvezen.

Obnasanje nematikov postane veliko bolj zanimivo, ée jih ogradimo — z njimi
zapolnimo drobne (mikroskopske) kapljice ali pore (slika 1) [5]. Pojem moéne ogra-
ditve se pri tem nanaSa na sisteme z visokim razmerjem povrSine in prostornine.
Pomemben je pojav sidranja tekocekristalnih molekul na ograjujo¢i povrsini [6],
pri katerem se molekule lahko urejajo vzdolz povrsine (planarno sidranje [7-10]),
pravokotno nanjo (homeotropno sidranje [11-13]), ali pa poSevno [14]. Red, ki ga
vsiljuje povr§ina, lahko ob stenah obstaja tudi nad temperaturo faznega prehoda
v izotropno fazo (paranematski red). Mocno ograditev lahko zagotavljajo tudi v
tekocem kristalu razprSene (dispergirane) polimerne mreze [15]. Podobno je mo¢
(raz)urejujoCe ucinke pricakovati tudi na prosti povrSini nematika [16,17], ¢emur
pravimo notranje sidranje (za razliko od zunanjega, ki zadeva urejanje ob trdni
povrsini).

V ograjenih sistemih postane direktor krajevno odvisen, n = n(r). Vsako odsto-
panje od homogenega direktorskega profila z n # n(r) predstavlja elasticno deforma-
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cijo, ki jo spremlja prispevek k prosti energiji [18-20]. Tudi vsakrsno odstopanje od
smeri, ki jo predpisuje sidranje, povi§a prosto energijo [21,22]. Zaradi anizotropije v
elektri¢ni in magnetni susceptibilnosti je na orientacijo molekul (in n) mogoce vpli-
vati tudi z zunanjim poljem [4,20]. Ravnovesni n(r) potem najdemo z minimizacijo
celotne proste energije. V dolocenih primerih ograditve naletimo na mesta v vzorcu,
kjer n iz topologkih razlogov ni definiran. To so lahko tocke, ¢rte ali stene, ki jim
pravimo topoloski defekti [4,23,24].

Danes so na voljo najrazlinejse vrste ograditev: nematske plasti (celice), mem-
brane z mikronskimi valjastimi porami (27|, nematske kapljice v polimerni matri-
ki (PDLC) [28], v teko¢em kristalu dispergirane polimerne mreZe nanometrskih
vlaken [26,30,31] in podobno. Te in podobne sisteme so v preteklosti razisko-
vali z razlicnimi pristopi. S teoreticne plati prednjacijo fenomenoloski pristopi,
temeljeci na teoriji Landaua in de Gennesa [16,32], ki jim sledijo studije z gos-
totnim funkcionalom [33-35]. 7 razvojem hitrih ra¢unalnikov je dozivelo razcvet
podroéje simulacij molekularne dinamike [36] in simulacij vrste Monte Carlo [37]).
Oba pristopa sta zasnovana na parskih interakcijah med molekulami in omogocata
povezavo med mikroskopskimi in makroskopskimi lastnostmi sistema. Izmed eks-
perimentalnih metod je bila za Studij teko¢ih kristalov prva uporabljena polari-
zacijska mikroskopija [1,2,26,38]. Sledile so ji ostale metode: meritve elektriéne
kapacitivnosti [39], devterijeva jedrska magnetna resonanca (*H NMR) [5,40,41],
podvajanje frekvence svetlobe (SHG) [42,43], elipsometrija [44], dinamiéno sipanje
svetlobe [45,46|, kalorimetrija [47] in Se Stevilne druge.

Slika 1 Ureditev molekul v nematski fazi, n oznacuje direktor (a). Primer
ograjenega nematika v kapljici (b).

V tem doktorskem delu se bomo dotaknili modeliranja izbranih problemov s
podro¢ja mocéno ograjenih tekocih kristalov. Pri tem se bomo posvetili dvema ci-
ljema: (i) boljSemu razumevanju urejanja molekul v blizini ograjujoc¢ih povrsin in
(ii) opisu nematskega urejanja v primerih kompleksne (tudi nepravilne) ograditve.
Temu poglavju bo sledil kratek pregled nekaterih pojmov, potrebnih za opis ne-
matskega urejanja in za razumevanje modeliranja, ki bo predstavljeno v nadalje-
vanju.

Prvi izmed problemov, ki se ga bomo lotili, bo nematsko urejanje v tanki plasti
tekocCega kristala. Posebna pozornost bo posvecena spremembam stopnje ureditve
ob povrsini, ki jih spremljajo notranje sidranje in elasticne deformacije, opazene
tudi eksperimentalno [43,48-51]. Hkrati so bile podobne deformacije napovedane
tudi teoreticno v okviru fenomenoloskega Landau-de Gennesovega opisa z elasti¢no
konstanto K3 [52,53]. Deformacije, do katerih tak opis privede, so moc¢ne [54-58]
in zato v neskladju z uporabo kontinuumske teorije [59—61]. Hkrati novejSe analize
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(tudi z uporabo gostotnega funkcionala) kazejo, da za stopnicast profil gostote in
stopnje ureditve ob ravni povrs§ini velja K3 = 0 [62-65]. To sicer navidez sicer resi
omenjeni problem, a kljub temu pusca odprto vpraSanje obstoja eksperimentalno
opazenih deformacij. Elasti¢ne deformacije je mozno zaslediti, kadar profil gostote
ni stopnicast in lahko variira tudi stopnja nematske urejenosti [66,67]. V tem delu
se bomo najprej lotili planarne ureditve z namenom podrobno raziskati posledice
variacij stopnje reda ob povrsini [68], pri ¢emer v deformacijski prosti energiji ¢lena
s konstanto K73 ne bomo izrecno upostevali. Studijo bomo na koncu raz8irili Se na
neravninske zvojne deformacije [71].

Pojav notranjega sidranja, ki pomembno vpliva na ureditev blizu povrsine ne-
matskega vzorca [17,72], bomo v plasti nematika obdelali tudi z mikroskopskega
staliS¢a. Fenomenoloski opis bo nadomestil preprost model s Sestkotnisko mrezo,
temelje¢ na prostorsko anizotropni interakciji med induciranimi dipoli. Problema
se bomo lotili s simulacijami Monte Carlo pri kon¢nih temperaturah. Glavni na-
men te Studije je izmeriti jakost notranjega sidranja in njeno temperaturno odvis-
nost. V preteklosti je bilo nanizanih ze ve¢ mikroskopskih studij sidranja ob prostih
povrsinah nematika ali za nematik v stiku s trdno steno: psevdomolekulski konti-
nuumski pristop z elipsastimi molekulami [73], simulacijske §tudije v sistemih Gay-
Berneovih delcev [74-78] ter Studije sistemov trdih elipsoidov [79,80]. Nekatere
simulacije molekularne dinamike z Gay-Berneovimi delci kazejo tudi na plastovito
urejanje v blizini povrSine, kar vodi do znatne modulacije v profilu molekulske gos-
tote [84-87] in je bilo opazeno tudi v eksperimentih [88,89]. Ponavadi so v simulaci-
jah doloc¢ene energije sidranja veliko vi§je od eksperimentalnih vrednosti [6].

Sledila bo obravnava krogelnih (PDLC) nematskih kapljic premera pod 1pum, ki
bo omejena na radialne [38,40] in bipolarne [38,40,90] kapljice, prve s homeotrop-
nim sidranjem, druge s planarnim (slika 1). V aplikativne namene so posebej za-
nimivi primeri, ko kapljice postavimo v zunanje polje [40,90]. Eksperimentalno
so kapljice preucevali z 2H NMR [40,90] in polarizacijsko mikroskopijo [38], teo-
reti¢no pa fenomenolosko (Landau-de Gennesov opis) [5,25] in s simulacijami Monte
Carlo [91,92]. Do sedaj predstavljene simulacije praviloma temeljijo na mreznem
modelu Lebwohla in Lasherja [93] in so se izkazale kot koristne tudi pri napove-
dovanju eksperimentalnih opazljivk: stati¢nih spektrov ?H NMR in slik polariza-
cijske mikroskopije [91,94]. Tukaj se bomo posvetili razvoju nove metodologije za
racunanje dinami¢nih spektrov ?H NMR v prisotnosti molekulskega gibanja — fluk-
tuacij dolgih osi molekul in translacijske difuzije [95] — ter jo preizkusili tudi v
primeru nehomogene difuzije [96,97]. Vhodne podatke za izra¢un spektrov bodo
priskrbele simulacije Monte Carlo, izvedene v modelskem sistemu Lebwohla in Lash-
erja. Obravnavo kapljic bomo zakljucili s podrobnim studijem ucinkov zunanjega
polja [98-100], ki jih bomo spet spremljali predvsem skozi razvoj spektrov 2H NMR.

Naslednje poglavje bo zadevalo nematike z dispergiranimi polimernimi mrezami,
kar bo tudi najkompleksnejsa od vseh obravnavanih ograditev. Tudi ti sistemi so
obetavni za aplikacije, ki v glavnem temeljijo na preklapljanju orientacije molekul
iz smeri, ki jo dolo¢ajo polimerna vlakna, v smer zunanjega polja. Nenaden prek-
lop molekulskih orientacij je mo¢ zaznati preko sprememb v kapacitivnosti, opti¢ni
prepustnosti ali z 2H NMR spektroskopijo [31,39]. Dogajanje v procesu preklaplja-
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nja je mocno odvisno tako od pogojev sidranja na povrsini, kot tudi od topografije
same mreze, kar lahko oboje reguliramo med njenim nastankom [15,101]. Obstojece
eksperimentalne Studije ponavadi spremljajo fenomenologke analize [5,26,31,39], med-
tem ko je bilo za te sisteme storjenega izjemno malo na podro¢ju molekulskih si-
mulacij. Zaradi vsega navedenega bo najprej predstavljena temeljita mikroskopska
studija orientacijske sklopitve med polimernimi vlakni in tekoc¢im kristalom, ki jih
obdaja. Kot v primeru kapljic bomo uporabili mrezni model Lebwohla in Lash-
erja, in sicer za vlakna z dobro definirano povpre¢no smerjo. Obravnavali bomo
primere z razli¢no grobostjo povrsine vlaken [102], pa tudi take, pri katerih pride
do tvorbe topoloskih defektov [103]. Pri slednjih bomo notranjo zgradbo defektov
primerjali s fenomenologkimi napovedmi [104,105]. Simulirali bomo $e proces prek-
lapljanja v zunanjem polju, pri tem pa bomo posebej pozorni na vplive nepravilnosti
v topografiji polimerne mreze. Stabilnost opazenih direktorskih struktur v primeru
pravilne polimerne mreze bo prikazana v preprostem faznem diagramu. Na koncu bo
preucena Se moznost paranematskega urejanja nad temperaturo prehoda v izotropno
fazo. Rezultati simulacij bodo predstavljeni tudi v obliki izbranih eksperimentalnih
opazljivk: spektrov 2H NMR, kapacitivnosti in intenzitete skozi vzorec prepuséene
svetlobe.

V zakljucku bodo predstavljeni glavni dosezki, ki so bili predstavljeni v tem delu,
pa tudi Se odprta vprasanja in mozne usmeritve za prihodnost.

Teoreticno ozadje

Fenomenoloski opis nematske ureditve

Fenomenoloski Landau-de Gennesov opis nematika temelji na uvedbi simetrijskim
lastnostim nematika primernega parametra urejenosti, ki ga uporabimo za zapis
proste energije sistema. Ravnovesno stanje nato najdemo z iskanjem njenega mini-
muma.

Orientacijsko urejanje dolgega dosega v enoosnem nematiku opiSemo s tenzor-
skim parametrom urejenosti (zaradi enakovrednosti +n vektorski ne bi bil primeren)

Q=35Bn®@n—1], (1)

kjer | pomeni idenititeto [4]. Vpeljali smo S = (3(3cos? 0 — 1)), skalarni parameter
urejenosti, kjer je cosf = n - u, enotski vektor u dolo¢a trenutno orientacijo dolge
osi posamezne molekule in (...) pomeni ansambelsko povprecje ¢ez ve¢ molekul. V
primeru idealne nematske ureditve imamo S = 1, v neurejeni izotropni fazi pa S = 0.
Enakovreden opis daje tudi ureditvena matrika

Q=;Bueu) 1. (2)

V njeni lastni vrednosti z najve¢jo absolutno vrednostjo prepoznamo S, v pripa-
dajocem lastnem vektorju pa direktor n. Iz razlike preostalih lastnih vrednosti je
mogoce sklepati na stopnjo dvoosnosti orientacijske porazdelitve molekul, P.
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Ureditev, ki jo opisuje Q, se odraza tudi na makroskopskih opazljivkah. Tako
lahko tenzor magnetne susceptibilnosti x v enoosnem primeru zapiSemo v obliki
X = %xaQ + x;l, kjer pomeni y, najvecjo anizotropijo susceptibilnosti v idealno
urejenem nematiku, y; pa njeno vrednost v izotropni fazi.

(a)
(b)
bt \
%)
T<T Vol
s Lo, T

Slika 2 Prehod med nematsko in izotropno fazo: (a) prosta energija F' kot
funkcija parametra urejenosti S in (b) ravnovesna vrednost S pri razliénih
temperaturah.

Nezvezni fazni prehod med izotropno (S = 0) in nematsko (S # 0) fazo v okviru
Landauove teorije v blizini faznega prehoda opiSemo z analiticnim razvojem gostote
proste energije fy po tistih invariantah parametra urejenosti Q, ki so v soglasju s
simetrijo manj urejene faze [32]

fo(S,T) = fi(T) + 3a(T — T.)S? — 1BS® + L84, (3)

Tukaj predstavljajo a > 0, B > 0 ter C' > 0 fenomenoloske snovne paramet-
re, f;(T) gostoto proste energije izotropne faze in T, najnizjo mozno temperaturo
njene podhladitve. Potek proste energije F' = [ fo(S,T)dV je prikazan na sliki 2,
prav tako pa tudi temperaturna odvisnost ravnovesnega parametra urejenosti, ki jo

dobimo pri minimizaciji F: S(T) = Z[1 + \/1 —BI(T—-T,)] pri T < T, (ne-
matska faza) in S(7) = 0 pri 7" > T, (izotropna faza). Temperaturo faznega
prehoda T, in najnizjo temperaturo podhladitve izotropne faze T, povezuje zveza
T, = T, + 2B?/9aC. MozZna so tudi metastabilna stanja s pregretim nematikom,
vendar le v ozkem obmocju pod T, = T, +B2/4a0. Ponavadi velja T, —T, ~ 1 K in
T.. —T. ~ 0.1 K. Ker je prehod §ibko nezvezen, ga pri 7, spremlja gostota utajene
toplote @ = £aT.5(T.)?% ki je ponavadi velikostnega reda 10% J/m?.

Kadarkoli se lotimo obravnave ograjenih sistemov, lahko postane stopnja uredit-
ve S krajevno odvisna. V takem nehomogenem primeru je potrebno gostoti proste
energije (3) dodati ¢len oblike 3L(VS)? (tudi L je snovna konstanta) in variacij-
sko najti ravnovesni profil S = S(r). Znacilno dolzino sprememb S — korelacijsko
dolzino — doloca zveza

3L
= 4
¢ \/Qa(T —T,) — 4BS, + 6CS2’ 4)
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kjer pomeni S, ravnovesno vrednost ureditvenega parametra v velikem homogenem
vzorcu, ki jo dolo¢imo z minimizacijo izraza (3). Dolzina £ narasca, ko se priblizu-
jemo faznemu prehodu, a tam ne divergira: £(7;) ~ 10 nm.

V ograjenem sistemu je ponavadi poleg stopnje ureditve S(r) tudi povprecna
smer ureditve — direktor n(r) — od kraja odvisna. V tem primeru je prikladno
gostoto proste energije izraziti z od kraja odvisnim tenzorskim parametrom ure-

jenosti Q(r) (1)

F) = HT) + Sall  T)nQE — QP+ AP +
+ 501 QijnQijk + 5 L2 Qij jQuk s + 5 L3 QijrQinj» (5)

kjer smo vpeljali krajevne odvode Q) = 0Q;;/0xy [4,107], Ly, Ly in L3 pa so
elasti¢ni snovni parametri. V primeru, ko S # S(r) = S, lahko prepisemo neho-
mogeni del izraza (5) v obliki

fr(r) =1 {Kn [V 0]’ + Kp[n- (V x )] + Ks3 [n x (V x n)]*}
—KyyV-n(V-n)+nx(Vxn)], (6)

imenovan tudi Frankova gostota proste energije [18], s tremi elasti¢nimi konstantami,
ki predstavljajo razlicne deformacijske nacine: Ki; pahljacno, Ko zvojno in Ksg
upogibno deformacijo (slika 3). Zadnji, divergenéni ¢len pripada sedlasto-pahljacni
deformaciji. Pridemo lahko do naslednjih zvez: K3 = Kj3 = %Sf(QLl + Ly + Ls),
Ky = gS,?Ll in Ky, = %Sg(QLl + L3). V primeru, ko je Ly + Ly = 0, velja Ky =
Ky = K33 = K, ¢emur pravimo priblizek z eno konstanto. Ponavadi velja K ~
5 x 10712 N, kar je mogoCe izmeriti na primer s preuc¢evanjem elasti¢nih deformacij
v zunanjem polju [108,109]. Velja tudi Koy ~ K [110].

(a) (b) ()
\
NB Wiprrme RN

Slika 3 Frankovi nagini elasti¢ne deformacije: pahljaca (a), zvoj (b) in upo-

gib (c).

Divergenénemu ¢lenu s Koy, ki pri iskanju ravnovesnega direktorskega profila
vpliva le na robne pogoje, je podoben tudi pahljacno-upogibni prispevek oblike K13V -
[n (V- n)] [52,53]. Od ¢lena s Ky, se razlikuje po tem, da vsebuje tudi druge odvode
n in kot tak povroca tezave pri matematic¢ni formulaciji variacijskega problema. Tudi
po njihovi odpravi napoveduje (pre)mocne elasti¢ne deformacije ob povrsini [55-58],
vendar novejSe analize kazejo, da je vpraSanje pravzaprav brezpredmetno in da za
idealno ravno povrsino velja Kj3 = 0 [62,65,111]. Zaradi navedenih nejasnosti se
bomo v nadaljevanju ¢lenu s konstanto K3 izognili.

V okviru fenomenoloskega opisa interakcije nematika z ograjujoco trdno povrsino
— imenovane tudi zunange sidranje — povrsina vsiljuje dolo¢eno smer (ng) in stop-
njo ureditve (Sp). Oboje lahko zajamemo v tenzorskem parametru Qq, povrsinsko
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gostoto interakcijske proste energije pa modeliramo z [22]
fa = %Wetr(Qs - Qo)Q, (7)

kjer Qs opisuje dejansko ureditev ob povrsini (n, in S;). Kadar vzamemo S = konst.,
se zgornji izraz poenostavi v Rapini-Papoularjevo formulo f&° = —1W cos? a [21],
ki pogosto predstavlja dovolj dober priblizek. V njej a pomeni kot odstopanja ng
od predpisane smeri ng (cos @ = ny - ng), energija W = %WeSg pa jakost sidranja.
Znagilne vrednosti zanjo so od 1076 J/m? do 10~* J/m? [6]. Bolj nazorna je izrazava
s Kléman-de Gennesovo ekstrapolacijsko dolzino K/W (slika 4) [4], ki pri navedenih
vrednostih K in W niha med 50 nm and 5 pm. Jakost sidranja merijo na mnogo
nac¢inov: s povzrocitvijo elasticne deformacije z zunanjim poljem [6], z analizo direk-
torskih struktur v kapljicah in porah [112,113], ali pa s studijem fluktuacij direktorja
v ograjenih sistemih [45,46].

#(0)

K/'w 0 z
Slika 4 Direktorski profil ¢(z) v deformirani plasti nematika in definicija
ekstrapolacijske dolzine K/W [4]. Ograjujo¢a povrsina se nahaja pri z = 0.

Ce nematik izpostavimo zunanjemu polju (na primer magnetnemu jakosti H),
to nanj deluje z navorom, do cesar pride zaradi anizotropije tenzorja magnetne
susceptibilnosti x (ali dielektri¢ne konstante € v elektri¢nem primeru). Pripadajoéi
prispevek k prosti energiji je

Jm = _%,UOXaSH2 cos B, (8)

kjer S pomeni kot med n in H (cosf = n-H/H), x, anizotropijo molekulske
susceptibilnosti, po pa indukcijsko konstanto (analogen izraz je mo¢ zapisati tudi
za urejanje v elektri¢nem polju). V primeru, ko je x, > 0, se molekule nematika
uredijo v smeri zunanjega polja, ki ga na ta nacin lahko izkoristimo za krmiljenje
povprecne smeri molekul v vzorcu. Ta pojav za svoje delovanje izkorisca velik del
tekocekristalnih opti¢nih naprav.

V ograjenem nematiku neizbezno pride do nesoglasij med ureditvenimi teznjami
zunanjega polja in ograjujocih sten. Pri¢akovati je, da se bodo molekule nematika
dovolj dale¢ od sten usmerile vzdolz smeri polja, blizu sten pa bo nematik zaradi
povrsinskega sidranja deformiran (slika 5). Debelino te deformirane plasti v grobem
doloca koherencna dolZina, ki jo v primeru magnetnega polja zapiSemo takole:

| K
Em = LoXaSH? (9)



viii Razsirjeni povzetek

Ce imamo potemtakem opravka z ograjenimi sistemi, katerih znaé¢ilna dimenzija je
manjSa od &,,, zunanje polje na ureditev sploh ne bo vplivalo. Za znacilen tekoci
kristal v magnetnem polju gostote 1 T znasa & ~ 10 pum. Ce zvisamo jakost
zunanjega polja tako dale¢, da zatne veljati &, < K/W, se zunanje sidranje ne
more veC upirati premoc¢nemu zunanjemu polju in dopusti, da se molekule nematika
obrnejo v smer polja tudi tik ob steni. Pri tem gre za zvezni strukturni prehod, ki
ga imenujemo tudi saturacijski prehod (slika 5) [6].

(a) H=0 (b) H (©) H
D0 o 000N | &= S
IKREAN =
7,037 7,1\ RSt ==
Wodsphe,  Yezm= YE====

Slika 5 Polneskonéni vzorec nematika s planarnim sidranjem v zunanjem polju
H, usmerjenem pravokotno na steno vzorca: nedeformirana (a), deformira-
na (b) in zasi¢ena struktura (c).

Nekoliko drugace se obnasSa celica debeline d, v kateri je nematik med dvema
vzporednima ploS¢ama s planarnim sidranjem in je zunanje polje — kot prej — us-
merjeno pravokotno nanju. Za razliko od polneskoncénega vzorca dobimo elasti¢no
deformiran direktorski profil Sele nad dolo¢eno vrednostjo poljske jakosti, pod njo pa
ureditev doloca planarno zunanje sidranje. V primeru neskon¢no moc¢nega sidranja
se ta zvezni prehod — imenovan Fréederickszov [108,109] — dogodi, ko &, =
d/m [4], medtem ko pri §ibkem sidranju in K/W < d do njega pride ze v nekoliko
sibkejsem zunanjem polju, ko &, = (d/7)(1 + 2K/Wd) [6]. Pri nadaljnjem viSanju
jakosti polja lahko spet pricakujemo saturacijski prehod. Oba prehoda sta bila
podrobno preucevana v preteklosti [115]. Omenimo Se to, da omogoca opazovanje
Fréederickszovega prehoda meritev elasti¢nih konstant [116] in jakosti sidranja [6].
Poleg tega lahko dovolj mo¢no zunanje polje vpliva na stopnjo ureditve S in celo
premakne prehod med nematsko in izotropno fazo [117,118].

Kadar imamo opravka z makroskopskim vzorcem, izjemno redko naletimo na
homogen direktorski profil, ampak na kopico domen, od katerih ima vsaka svojo
usmeritev. Na mejah med njimi lahko opazimo topoloske defekte, ki jih sprem-
ljajo elasti¢ne deformacije, zmanjSanje stopnje urejanja S, pa tudi nezanemarljiva
dvoosnost. Na defekte naletimo tudi v primerno ograjenih sistemih.

Nekaj primerov defektov je prikazanih na sliki 6. Razlikujejo se po moci m,
ki jo v dvodimenzijskih primerih (defektne linije) dolo¢imo tako, da jedro defekta
obkrozimo po zaprti zanki, pri tem pa Stejemo obrate direktorja n. Izkaze se, da
je prosta energija, ki jo pripisemo defektu moc¢i m, v grobem sorazmerna m?, kar
pomeni, da je tvorba defektov visoke moci malo verjetna [24]. Podobno lahko defekti
dolocene moci razpadejo na ve¢ defektov, in sicer tako, da se vsota moci ohrani
(defekt moé¢i —1 na primer v par defektov moci —%) Mogoce je pokazati tudi to, da
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Slika 6 Direktorska polja, ki obdajajo topoloske defekte razlicnih moci m.

se defekti z moémi istega predznaka odbijajo, tisti razlicnimi pa privlacijo (in celo
anihilirajo).

Molekulske simulacije in mrezni modeli

V primerih, ko se v sistemu pojavijo nehomogenosti na razdaljah, ki so primerljive z
velikostjo molekul, parametri urejenosti — ti vsebujejo ansambelsko povpreéje (...)
— vec¢ niso dobro definirani. Isto velja v blizini faznih prehodov zaradi nezane-
marljivih fluktuacij. Takrat je primerno uporabiti mikroskopske pristope, temeljece
na parskih interakcijah med molekulami. Primerni so vedno tudi tedaj, kadar zelimo
povezati mikroskopske parametre sistema z makroskopskimi opazljivkami.

Na molekulski ravni sta dve skupini interakcij sposobni privesti do tvorbe ne-
matske faze: odbojne sile med podolgovatimi trdimi delci (po Onsagerju) [119] in
anizotropne van der Waalsove sile (po Maierju in Saupeju) [120,121]. Narava obojih
je taksna, da vzpodbuja vzporedno urejanje dolgih osi molekul, kar posnema tudi
preprost mrezni model Lebwohla in Lasherja [93,122]. Prednost mreznih modelov
je zlasti v tem, da pri simulacijah ne zahtevajo previsoke racunske moci.

V okviru modela Lebwohla in Lasherja (LL) so enoosni delci (molekule) nematika
vrtljivo vpeti na mrezne tocke kubi¢ne mreze z mrezno konstanto a (slika 7), pri
¢emer orientacijo itega delca doloca tridimenzijski enotski vektor u;. Delce si je
mo¢ predstavljati tudi kot tesno zlozene skupke do 10 molekul [94,100] (tedaj a S
5 nm). Kljub mrezni poenostavitvi model dovolj dobro opiSe orientacijsko urejanje
nematika. Energijo interakcije med sosednjima delcema ¢ in j modeliramo z

Uiy = —e 3wy - 3], (10)

kjer je € pozitivna konstanta velikostnega reda ~0.02 eV. Pri obravnavi velikih
sistemov je potrebno uporabiti periodi¢ne robne pogoje [93,122,123] ali njihove
izboljsave [124]. Po drugi strani, ¢e zelimo simulirati ograjene sisteme, ponavadi
izrabimo del nematskih delcev (delce “duhove”), da preko njihovih zamrznjenih
orientacij predpisemo robne pogoje — sidranje [91,125]. Konstanta e za interak-
cije med delci “duhovi” in delci nematika ni nujno enaka tisti za interakcije med
delci nematika samimi. Na ta nacin lahko spreminjamo jakost zunanjega sidranja.
Simulacije Monte Carlo so pokazale, da LL model zadovoljivo opiSe Sibko nezvezen
fazni prehod med nematsko in izotropno fazo (v velikem vzorcu pri T* = kgT'/e =
1.1232) [93,123], ki je manj izrazit v mo¢no ograjenih vzorcih, na primer nematskih
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Slika 7 Mrezni model Lebwohla in Lasherja: nematski delci u; so pripeti na
kubi¢no mrezo.

kapljicah [126,127]. Predstavljena je bila tudi razli¢ica modela z dvoosnim poten-
cialom [128]. V model je preprosto vkljuciti tudi sklopitev delcev u; z zunanjim
poljem (elektri¢nim ali magnetnim)

Ul = —en [%(uZ )% — l} ; (11)

2

kjer f pomeni enotski vektor v smeri zunanjega polja, n = x,VoB?/3uee pa je kon-
stanta, ki meri mo¢ sklopitve (izpisana za primer magnetnega polja). Tukaj pomeni
B ~ ugH gostoto magnetnega polja, x, mikroskopsko anizotropijo magnetne sus-
ceptibilnosti in Vj prostornino, ki jo pripisemo delcu u; [99] (podobno storimo v
elektricnem primeru). Poljska jakost je sorazmerna /7.

Teorija Maierja in Saupeja [120,121] sloni na anizotropnih van der Waalsovih
silah in priblizku povpre¢nega polja, ki je gotovo upravicen globoko v vzorcu in
vodi do vzporednega urejanja delcev (kot tudi model LL). Ob povrs§ini vzorca pa
tak priblizek ve¢ ni popolnoma neoporecen in lahko pride tudi do bolj zapletenih
vzorcev urejanja. V primeru, ko je elektri¢na polarizirnost molekul nematika moc¢no
anizotropna, lahko energijo interakcije med najblizjima sosedoma u; in u; zapiSemo
kot

Uij = —6’ [ui u; — 31/(uz- . I'*)(U.j . I'*)]2 s (12)

kjer je € > 0, r* pa predstavlja enotski vektor, ki povezuje oba delca. Parameter v
nadzira prostorsko anizotropijo interakcije: za v = 0 dobimo izotropno interakcijo,
ki je neodvisna od r* (kot v modelu LL), za v = 1 pa anizotropno interakcijo med
induciranimi dipoli. Ce je interakcija anizotropna (v # 0), se na povrsini vzorca
pojavijo ureditveni u¢inki ali notranje sidranje [17,81]. Poleg tega za v = 0 model
ustreza priblizku z eno elasti¢no konstanto, sicer pa ne [129].

Uporaba prostorsko anizotropnih potencialov skupaj s kubi¢no mrezo privede
do pojava preferen¢nih smeri urejanja tudi globoko v vzorcu, zaradi cesar postane
model neuporaben za Studij sicer teko¢inskih nematikov [81]. Izkaze pa se, da
Sestkotniska mreza (slika 8) te hibe nima, ¢e orientacije delcev u; omejimo na ravnino
Sestkotnikov [17]. Namesto Sestih imamo zdaj osem sosedov, enotski vektorji u; pa
so le dvodimenzijski. Da se v celoti izognemo obstoju periodi¢nih resitev, ki so pos-
ledica mreznega priblizka in anizotropnega potenciala (12), je potrebno zahtevati Se
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v 5 0.3 [17]. Ker imamo s tem v # 0, je notranje sidranje ob povrsini Se vedno
prisotno, sicer pa se delci najraje urejajo tako, da so njihove dolge osi vzporedne
(slednje sre¢amo tudi v sistemih Gay-Berneovih delcev [130]).

-
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Slika 8 Model s Sestkotnisko mrezo.

Mrezni modeli so znacilni primeri, v katerih je primerno uporabiti simulacije vrste
Monte Carlo (MC) za iskanje ravnovesja v sistemu in za izra¢un termodinami¢nih
povprecij. Dinamika metode Monte Carlo ne temelji na reSevanju enacb gibanja,
ampak na Metropolisovem postopku, ki si ga bomo ogledali v nadaljevanju. Naravne
dinamike v mreznih sistemih pravzaprav sploh nima smisla simulirati, saj jim zZe po
definiciji manjka del sicer naravnih prostostnih stopenj.

Termodinamiéno povprecje spremenljivke A v sistemu N delcev je definirano z

_ [duM A(u") e AHM™)
[ dul e FH@EY)

(A)

(13)

kjer je 31 = kT (kg Boltzmannova konstanta, T absolutna temparatura), u” pa
dolg vektor, ki doloca orientacije u; vseh IV delcev in tako opisuje stanje N-del¢nega
sistema v faznem prostoru. Poleg tega predstavlja H hamiltonko sistema, ki je ses-
tavljena iz vsote vseh interakcijskih energij med pari sosedov, pa tudi iz prispevkov
njihove sklopitve z zunanjim poljem. Metoda Monte Carlo omogoca izra¢un ansam-
belskega povprecja (A), ki je v ergodic¢nih sistemih enakovredno ¢asovnemu pov-
pre¢ju A, dobljenemu iz simulacij molekularne dinamike, kjer sistemu sledimo v
casu.

Pri metodi Monte Carlo gre za primerno utezen nakljuéni sprehod po faznem
prostoru, pri katerem v vsakem koraku vzor¢imo koli¢ino A. Nakljuéni sprehod
sledi Metropolisovemu postopku [37], ki ga lahko strnemo v naslednje predpise:

1. Vzemi staro konfiguracijo u?¥ (s); izratunaj njeno energijo H(u¥) = H(s).

2. Nakljuéno izberi enega od delcev iz stare konfiguracije s; zasuci ga nakljucno,
da dobis novo poskusno konfiguracijo u'V (n); izracunaj energijo nove konfi-
guracije H(u'N) = H(n).

3. Sprejmi premik u¥ — u’" (s — n) z verjetnostjo min [1, 6*5[7{(")*”(5)]].

4. Vrni se k 2. koraku tega postopka.

Mogoce je pokazati, da privede zgornji postopek do kanoni¢ne porazdelitve z dob-
ro dolo¢eno temperaturo, ki smo jo predpostavili pri definiciji povprecja (A) (13).
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Zanesljivost ocene za povpreéje (A) je tem vecja, ¢im ve¢ delcev sodeluje v simulaciji
in ¢im dlje je simulacija tekla. Ce velja A o« N, se relativna napaka povpreéja manjsa
kot 1/v/NM, kjer M oznacuje Stevilo korakov simulacije.

Naslednje vprasanje zadeva tvorbo poskusnih konfiguracij u’V. V modelu LL
ponavadi uporabljamo tehniko Barkerja in Wattsa [131]: najprej nakljuéno izbere-
mo eno izmed treh kartezi¢nih osi laboratorijskega koordinatnega sistema in nato
okoli nje zavrtimo naklju¢no izbrano molekulo za naklju¢no izbran kot. Najveéji
mozni kot zasuka (amplitudo) lahko med simulacijo spreminjamo. Ce so namre¢
zasuki preveliki, je mozno, da nova konfiguracija sploh ne bo sprejeta. Ce pa so, po
drugi strani, zasuki premajhni, Metropolisov postopek obis¢e premajhen del faznega
prostora, da bi ocena za (.A) bila kolickaj dobra. Ponavadi se amplitudo zasuka pri-
lagaja dinamicno, in sicer tako, da je vselej sprejeta okoli polovica vseh nameravanih
zasukov. V primeru modela s Sestkotnisko mrezo, kjer so vektorji u; le dvodimenzij-
ski, se zgornji postopek poenostavi v preprosto vrtenje znotraj ravnin Sestkotnikov.
Vcasih je pomembna tudi izbira zacetne konfiguracije. V ergodi¢nih sistemih bi
morali rezultati simulacije naceloma biti od nje neodvisni, vendar je treba biti pre-
viden zlasti v blizini metastabilnih stanj, Se posebej, ¢e simulacija ni tekla dovolj

dolgo.
Na koncu je treba dolociti Se koli¢ino A, ki jo zelimo povpreéiti. To so lahko
komponente ureditvene matrike @, ureditveni parametri Py = 2(3(v - u;)* — 1);,

kjer predstavlja v neko fiksno smer, ali pa orientacijske korelacijske funkcije. Se
bolj zanimive so eksperimentalne opazljivke, na primer spektri 2H NMR, elektri¢na
kapacitivnost ali intenziteta prepuscene svetlobe. Tem se bomo posvetili v nadalje-
vanju.

Eksperimentalne opazljivke

Prva izmed obravnavanih opazljivk bodo spektri devterijeve jedrske magnetne reso-
nance (*H NMR). Ta tehnika je primerna zlasti za raziskave devteriranih nematikov
v mikroskopskih votlinah razseznosti pod 1 um, ko opti¢ne metode odpovedo. 2H
NMR daje informacije o orientacijskem urejanju v vzorcu, pa tudi o dinamiki molekul
— fluktuacijah dolgih osi in translacijski difuziji [25,40,132,133].

V izotropni fazi v spektru devteriranega nematika vidimo eno samo érto pri
Zeemanovi frekvenci wz. Ko vzorec ohladimo v nematsko fazo, se pojavi kvadrupolni
razcep wg, zaradi ¢esar vidimo v spektru dve ¢rti. Razcep wg znaSa v primeru
enoosne ureditve [5,134,135])

wg = £owg 55 [3cos? 6 — 1] (14)

ter je odvisen od kota # med zunanjim magnetnim poljem NMR spektrometra in
direktorjem n, pa tudi od stopnje ureditve S. Znacilna velikost razcepa je dwg ~
21 x 40 kHz. V ograjenem sistemu sta n in S od kraja odvisna, posledi¢no pa tudi
wg = wg(r). Na ta nalin je mogoce iz spektrov razbrati, za katero izmed moznih
direktorskih struktur v vzorcu gre. Razpoznavanje postane tezavno zlasti v drobnih
votlinah, ko translacijska difuzija obliko spektralnih ért zaznavno popaéi [136].
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Za pravilno obravnavo molekulskih gibanj z znacilno ¢asovno skalo krajSo od
znacilne skale spektroskopije NMR (ty & 27 /dwg ~ 2.5 x 10° s) je potrebno upora-
biti polklasi¢ni pristop s ¢asovno odvisno hamiltonko devterijevih spinov [135]. V
okviru tega pristopa je najprej potrebno generirati relaksacijsko funkcijo

G(t) = expliwst){exp i [ ' Qalri(t), £]de)) (15)

3
kjer je Qq[ri(t),t] = £0wg 3 [3(u; - B/B)? — 1] “trenutni” kvadrupolni razcep (pov-
precje po fluktuacijah u; tu Se ni opravljeno), oklepaji (...); pa pomenijo ansambelsko
povprecje po delcih. Gibanje molekul (fluktuacije ali difuzija) vstopa v G(t) skozi
¢asovno odvisne u;. Spekter (w) izra¢unamo potem s Fourierovo transformacijo
I(w) = [e*'G(t)dt. Znacilna Casovna skala fluktuacij molekulskih dolgih osi je
okrog tp ~ 1078 s in je kot taka znatno krajsa od ¢, [41]. Tudi znacilni ¢as, ki je
potreben za difuzijski premik molekule priblizno za svojo dolzino (1 nm), je v tem
obmodgju: tp ~ 1078 s [41]. Vsekakor pa je pri difuzijskem procesu bolj merodajen
cas t}, ki ga molekula potrebuje za premik v podrocje z znatno drugacnim wg.
Spektri so tako vedno izpovpreceni preko fluktuacij dolgih osi u;, preko difuzijskega
gibanja pa le v primeru moc¢ne ograditve.

Naslednja izmed eksperimentalnih metod za Studij urejanja nematikov je meritev
elektri¢ne kapacitivnosti [39]. Temelji na dejstvu, da je dielektri¢na konstanta € v
nematikih anizotropna. Zamislimo si plast nematika v ploScatem kondenzatorju,
¢igar normalo oznac¢imo za os z (zy potem predstavlja ravnino plos¢). V poeno-
stavljeni sliki si plast zamislimo razdrobljeno na mnozico drobnih kondenzatorjev,
katerih kapacitivnosti so sorazmerne z lokalno dielektri¢no konstanto. Ta je na mestu
itega delca z orientacijo u; enaka €(z,y, z) = €1 + (e — €L)(u; - 2)?, kjer pomeni z
enotski vektor v smeri osi 2, €, in € pa lastni vrednosti molekulskega dielektricnega
tenzorja. Kondenzatorje si zdaj predstavljamo vezane zaporedno vzdolz osi z, tako
nastale verige pa vzporedno po vsej ravnini zy. Celotno kapacitivnost plasti velikosti
a X b X d potem izracunamo iz zveze

Czeo/oadx/obdy</oddfvfi#z)>l, (16)

kjer pomeni ¢, influen¢no konstanto. Kapacitivnost potemtakem predstavlja nazor-
no merilo za orientacijo molekul nematika in je kot taka uporabna tudi za opazovanje
pojava preklapljanja v zunanjem polju [39].

Tretjo in zgodovinsko najstarejSo skupino metod za raziskave nematikov pred-
stavljajo opti¢ne metode [1,2]. Podobno kot stati¢na dielektri¢na konstanta € je tudi
visokofrevencna €*° v nematikih anizotropna, z njo pa tudi lomni koli¢nik. Nematiki
so opticno anizotropna enoosna sredstva, v katerih lokalna smer optiéne osi sov-
pada z lokalnim direktorjem n. Pri razSirjanju elektromagnetnega valovanja skozi
nematik imamo tako dva zarka z razlicnima polarizacijama in hitrostjo razsirjanja
(lomnim koli¢nikom): rednega in izrednega. Polarizacija prvega je hkrati pravokotna
na opti¢no os in na smer razsirjanja valovanja k, lomni koli¢nik pa je enak n, = /€.
Polarizacija drugega je pravokotna na k, hkrati pa lezi v ravnini, ki jo dolocata k in
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opticna os. Ustrezni lomni koli¢nik n, je odvisen od kota € med k in opti¢no osjo,
pri ¢emer velja [137]

1 cos’@  sin®0

n? € €

(17)
e
Povsod v zgornjih izrazih oznacujeta € in € lastni vrednosti matrike €.

Pri preucevanju razsirjanja polarizirane svetlobe skozi nehomogen opti¢no ani-
zotropen nematik si lahko pomagamo s formalizmom Jonesovih vektorjev. Zamis-
limo si enako geometrijo kot pri meritvah kapacitivnosti, svetlobni zarek pa naj se
raz§irja v smeri osi z. Vzorec najprej razdelimo na majhna obmocja z dobro dolo¢eno
lokalno opti¢no osjo — ta naj sovpada kar z orientacijo posameznega delca u;. Nato
razcepimo vpadno polarizacijo na redno in izredno komponento, ki se potem vsaka
zase razSirjata skozi plast, in ta postopek ponavljamo, dokler ne pridemo skozi ves
vzorec. Pri tem zanemarimo lom, uklon in sipanje. Na drugi strani vzorca lahko me-
rimo intenziteto svetlobe, prepuscene skozi analizator, ki ga postavimo pravokotno
na smer polarizacije vhodne svetlobe. V primeru, da je kot med opti¢no osjo celot-
nega vzorca in vhodnega polarizatorja enak g, imamo za intenziteto [138]

I = Iysin®(2¢pp) sin?(A®/2), (18)

kjer je Iy intenziteta vhodne svetlobe, A® = (27/)) [&¥[ne(z) — no)dz pa razlika v
fazi med rednim in izrednim zarkom po potovanju skozi vzorec (A pomeni valovno
dolzino svetlobe). O¢citno je, da bo I najvecja za ¢y = m/4. Taksna eksperimen-
talna postavitev je bila uporabljena za meritev elasticnih konstant [116], jakosti
sidranja [6] in za opazovanje paranematskega urejanja [26].

Do tod smo si ogledali glavna orodja in pristope, potrebne za izpolnitev zadanih
si ciljev: preucitve urejanja molekul v blizini povrSine tanke plasti nematika in
nematskega urejanja v zapletenejsih ograditvah — kapljicah in sistemih polimernih
mrez. V poglavjih, ki sledijo, bodo predstavljeni najpomembnejsi rezultati omenje-
nih §tudij.

Plast nematika

Fenomenoloski opis tanke plasti

V tem poglavju se bomo lotili obravnave plasti nematika, e zlasti v blizini sten.
Radi bi raziskali vpliv variacij stopnje nematske ureditve — neizbeznih v blizini
vsake ograjujocCe povrSine — na smer nematskega direktorja. Sprva se bomo posvetili
ravninskim deformacijam, pri katerih lahko direktor parametriziramo z n = n(z) =
(sin ¢(z), 0, cos ¢(z)), stopnjo urejenosti pa opisuje profil S(z) (pri tem os z sovpada
s ploskovno normalo sten vzorca). Ko nato tenzorski parameter urejenosti Q (1)
izrazimo z S(z) in ¢(z), zapiSemo Landau-de Gennesovo gostoto proste energije (5)
v obliki f = fo(S,T) + f1(6,S") + f2(¢', S) + f3(o, ¢', S, S"), kjer je homogeni ¢len
fo(S,T) dolocen z izrazom (3), ostali trije pa z

R o)) CONCD
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f(¢,8) = L8521+ Laflalg? i (20)
f3(0,¢',5,8) = —2(Ly+ Ls)sin(2¢) ¢'SS'". (21)

Crtica povsod pomeni odvod glede na z. Prvi ¢len da pozitivni prispevek, kadar
imamo opravka s spremembami stopnje urejenosti (S’ # 0) in je za Ly + L3 # 0
odvisen tudi od kota ¢. Drugi ¢len predstavlja Frankov prispevek (6) (prispevek
Ky, je v izbrani geometriji enak ni¢). Tretji ¢len je od ni¢ razlicen le za Ly + L3 # 0
— kadar ne upostevamo priblizka z eno konstanto — in sklaplja variacije stopnje
urejenosti in kota ¢.

Denimo, da imamo polneskon¢no plast nematika in da stena predpisuje stopnjo
ureditve Sy ter kot ¢y. Dovolj dale¢ od stene je vrednost S enaka S, in jo dolo¢imo
z minimizacijo fo(S,T) (3). Variacija v profilu S(z) se dogodi na razdalji, ki je blizu
korelacijski dolzini £ (4) in jo moremo tako smatrati za povrsinski pojav. Izkaze se,
da sta prav zato tudi W = [;° fi1(z)dz in G = [;° f3(2)dz energijska prispevka, ki ju
lahko pripiSemo povrsini. Prvi zaradi odvisnosti od kota ¢ predstavlja prispevek k
notranjemu sidranju, ¢igar jakost ocenimo z

Wi & 3|Ly + La|(Sy — So)2(\*) ™" = 3| Kuy — Ko (M) (1 - £2)°, (22)
preferen¢éna smer urejanja pa je lahko bodisi planarna (za Ly + Lz > 0) bodisi
homeotropna (za Ly + Ly < 0). Pri tem pomeni A\* dolzino velikostnega reda &.
Podobno je mo¢ uvideti, da ima drugi ¢len (G) enako kotno odvisnost, kot bi jo v
obravnavani geometriji imel ¢len s K3 [52,53], ki pa ga v razvoju proste energije (5)
nismo izrecno upostevali, saj smo povsod zapisali le prve krajevne odvode Q. Iz
podobnosti lahko sedaj izlus¢imo kvazi pahljacno-upogibno elasticno konstanto

Ry = —3(Ls + Ls)(SE — S8) = 1Ko — Ku)[1 - ()], (23)
ki ima drugacen izvor kot prava K3 in kot taka ne povzroca tezav pri reSevanju
variacijskega problema. K3 # 0 dobimo le v primeru, ko S, # Sy in L, +
Ls # 0. Se vedno pa preko sklopitve S’ in ¢ ¢len f3 privede do elasti¢ne defor-
macije A¢ ob povr§ini, ki se obnasa podobno kot v primeru prave Ki3: A¢ =
—(K13/2K) sin 2¢ [149).

Da bi podrobno preucili pojav notranjega sidranja in deformacij ob povrsini, si
zdaj oglejmo popolno numeri¢no minimizacijo proste energije v kon¢ni plasti ne-
matika. Steni vzorca naj bosta vzporedni in naj se nahajata pri z = ig. V prosti
energiji upostevajmo prostorninske ¢lene (5), prispevek zunanjega sidranja pa mo-
delirajmo z izrazom (7). Minimizacija privede do Euler-Lagrangeovih ena¢b in us-
treznih robnih pogojev, njihovo resevanje pa do resitev ¢(z) in S(z), prikazanih na
sliki 9.

Opazimo lahko, da so variacije S(z) dejansko omejene na tanko povrsinsko plast
(debeline okoli 10 nm) in da jih v plasti iste debeline spremlja deformacija v odvis-
nosti ¢(z). Predznak deformacije A¢ se obnasa skladno z zgornjo napovedjo in je
odvisen od predznakov Lo+ L3 ter Sy—Sp. Ob primerjavi dejanskih povrsinskih vred-
nosti qﬁ(:l:g) S ¢g, ki ga vsiljuje stena, lahko razberemo tudi ucinke zZe napovedanega
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Slika 9 Plast nematika: profili ¢(z) in S(z) za ¢9 = 0.1(180°/7) ~ 5.73°
(preferen¢na smer zunanjega sidranja), Sp = 0.3747 in Ly + Ly = +L1,0,—L;
[primeri (a), (b) in (c)]. Razurejujoca (Sy = 0.35, levo) in urejujoa povrsina
(So = 0.4, desno). Debelina vzorca je enaka d = 1 um, a = 0.13 x 106 J/m3K,
B =1.6x10% J/m3, C = 3.9x10% J/m? (podatki za 5CB [148]), T—T. = 0.4 K
in Ly =~ 107" N.

notranjega sidranja. Znacilna razdalja vseh variacij je nekoliko odvisna tudi od
predznaka Lo + L3, saj se s tem spreminja tudi vloga stabilizirajo¢ih prispevkov v
prosti energiji (5). Jakost celotnega (notranjega in zunanjega) sidranja je mogoce
oceniti s poskusom v zunanjem magnetnem polju, kjer molekule v vzorcu porav-
namo v smeri polja, hkrati pa opazujemo odstopanja od te smeri v blizini stene
zaradi sidranja. Ta so potem merilo za njegovo jakost in s tem za ekstrapolacijsko
dolzino K/W (slika 4). Iz tako doloGenih K /W ter iz analiti¢ne ocene (22) lahko
sklepamo, da A\* ~ 6 —7 nm, kar je pri izbranih podatkih dejansko blizu korelacijske
dolzine £. Pri tistih izbirah jakosti sklopitve s povr§ino W, v enacbi (7), ki Se
dajo realisticne vrednosti za K/W (100 nm in vec), so variacije v profilih S(z) in
¢(z) sibke: za w, = Wod/Li = 5, So = 0.5, Sy = 0.3747 in ¢g = 7/4 dobimo
do/dz ~ 3 x 107*/py < 1/py (po ~ 1 nm pomeni velikost molekule nematika)
in [S(£%) — Sb]/S» ~ 0.01. Oboje pomeni, da so variacije ¢ in S Sibke in da je
v obravnavanem primeru uporaba kontinuumske teorije upravicena. Hkrati pa to
pomeni tudi, da z obstoje¢im modelom ni mo¢ pojasniti veliko mocnejsih variacij v
nematskem urejanju, ki so bile opazene eksperimentalno [43,48-51]. V ta namen se
je povrsinskega urejanja treba lotiti na molekulski ravni.

Moznost obstoja iz spreminjanja S izvirajoce lokalizirane variacije v direktorskem
profilu lahko preuc¢imo tudi v neravninski geometriji za zvojne deformacije. V tem
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primeru je n parametriziran z dvema kotoma. Poleg nagiba ¢ imamo zdaj Se zvojni
kot w, merjen glede na os x: n(z) = (sin ¢(z) cos w(z), sin ¢(z) sin w(z), cos #(z)). V
gostoti proste energije edina sprememba nastopi v Frankovem ¢lenu

(6,8, 8) = 20,82 { (1 + 52) ¢ + sin? 6 (1 + = cos? ) w'?} (24)

kjer smo vpeljali L, = Ly + L;. Ze njegova zgradba sama napoveduje, da v zvoj-
nem profilu w(z) ne smemo pricakovati deformacij, kakrsne povzroci prispevek f3 v
odvisnosti ¢(z), saj nikjer ne najdemo ¢lenov oblike S'w’.

Oglejmo si resitev problema v limiti moc¢nega sidranja za (b(:l:g) = 7/2, ko ni
pricakovati nikakrsnih deformacij v profilu ¢(z). Hkrati zahtevajmo w(—%) =
in w(g) = 7/4, kar privede do zvojne deformacije, ki se razsirja po vsem vzorcu.
Ce predpostavimo, da Sy = S, in tako S # S(z), je profil zvojnega kota w(z)
preprosta linearna funkcija z. V nasprotnem primeru — ¢e imamo variacijo AS =
Sy — So # 0 v plasti debeline A\* (kot zgoraj za ¢) — dobimo za A\* < d blizu
stene (z = +%) w(z) & w(—%) + Aw(Z + 3) F dwo{l — exp[(+z — )/N]}. Iz
zapisane zveze lahko izlo¢imo amplitudo dodatne variacije v zvojnem kotu w, do
katere pride zaradi spreminjanja S, dwg ~ 2(A\*/d)(AS/Sy)Aw, kjer smo vpeljali
Aw = w(%) — w(—%). Dodatna deformacija dwp je oitno prisotna samo takrat, ko
imamo AS # 0 in je zvojna deformacija v sistemu Ze prisotna (Aw # 0). Taksno
obnasanje napovedujejo tudi numeri¢no izra¢unane odvisnosti w(z), ki so prikazane
na sliki 10. Tudi amplituda dwy je majhna: za Aw = 7/4, \* = 0.01d (d = 1um),
AS = 0.025 in S, ~ 0.375 ocenimo dwy ~ 0.06°, kar se v grobem ujema tudi z
numeri¢no resitvijo (slika 10).

g
o)

N
~

o(z) (°)

0
-0.5 -0.495 -0.49 -0.485 -0.48
z/d

Slika 10 Odvisnosti w(z) zvite nematske plasti z lokalizirano variacijo S ob
povrsini. Parametri: ¢(+%) = 7/2, S, = 0.375, AS ~ 0.025, 0, -0.025 (zgor-
nja, srednja in spodnja ¢rta), w(—%) =0, w(%) = w/4; Ly = 0. Vrednosti a,
B, C, T —T, in L1 so enake tistim pri sliki 9.

Na koncu je potrebno povedati, da dodatna zvojna deformacija, ki se pojavi
zaradi sprememb S ob povrSini, nima istega izvora kot tista v kotu ¢ pri planarnih
deformacijah: namesto ¢lena f3 je njen izvor navadni Frankov elasti¢ni ¢len fs.
Deformacijo s tem povzrocajo spremembe elasti¢nih konstant, pa Se to le v primeru,
ko je zvojna deformacija v vzorcu ze prisotna.
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Mikroskopski opis tanke plasti

Zdaj zelimo obravnavati urejanje v plasti nematika Se na molekulski ravni. Posebno
pozornost bomo posvetili pojavu notranjega sidranja in ga modelirali v okviru mode-
la s Sestkotnisko mrezo in anizotropno interakcijo med induciranimi dipoli (12) [17].
Se zlasti se bomo zanimali za temperaturno odvisnost ekstrapolacijske dolzine K /W,
ki so jo ze poskusali dolo¢iti za zunanje sidranje [152]. Eksperimentalna opazanja
namrec kazejo, da jakost sidranja W s temperaturo pada, vendar ni videti splosnega
pravila za odvisnost W (S) [46,112,143,153,154]. Tako lahko poskusi kazejo celo na
W oc S* [46], medtem ko nekateri modelski sistemi napovedujejo le W oc S [157,158].
V prvem primeru ob blizanju faznemu prehodu z upostevanjem K o< S? zaznamo
povecanje K/W, v drugem pa zmanjSanje. Se pred samo meritvijo temperaturne
odvisnosti K/W bo potrebno preu¢iti sam fazni prehod med nematsko in izotropno
fazo (prehod NI).

Simulacije, predstavljene v tem razdelku, so sledile metodi Monte Carlo (gle;
prejsnje poglavje). Razdelitev Sestkotniske mreze na tri podmreze je omogocila vek-
torizacijo in s tem pospesSitev racunalniskega algoritma. Prehod NI je bil preucen
v vzorcu velikosti 30 x 30 x 30 delcev s periodi¢nimi robnimi pogoji v vseh treh
smereh, K /W pa je bila merjena v plasti velikosti 48 x 48 x 46 delcev s periodi¢nimi
robnimi pogoji v smereh x in y, prosto povrsino pri z = 0 in trdno steno pri z = d.
Za uravnovesanje je bilo izvedenih po 2 x 10> MC korakov (v enem koraku pride na
vrsto za morebitno reorientacijo vsak izmed delcev), e nadaljnjih 10° pa za izracun
povprecij. Za zacetno konfiguracijo je bila izbrana tista z nakljuc¢nimi orientacijami
delcev u;, lahko pa tudi ze uravnoveSena konfiguracija pri temperaturi ne predalec¢
od obravnavane. Poleg notranje energije predstavlja pomembno opazljivko dvodi-
menzijska ureditvena matrika, ki jo po analogiji z izrazom (2) lahko vpeljemo kot

v Thr T° ¢ (a)
0.05 1375 £0.025 13 155+£1
1.2 13+£1
1.1 13+£1
0.1 | 1.225 + 0.025 1.175 442
1.1 o+1
1.0 ox1
0.2 10950 £0.025 09 —-1x+£05
0.8 +1+£0.5
0.7 +1+£05
0.3 | 0.675 £ 0.025 0.6 —4+ 1
0.5 -4+ 1
0.4 -4+ 1

Tabela 1 Temperaturna odvisnost ekstrapolacijske dolzine notranjega sid-
ranja £ (merjena v enotah mreze a) za razlitne v in pripadajote reducirane
temperature faznega prehoda Ty;.
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q = 2(u; ® w;); — | in iz nje po diagonalizaciji dolo¢imo direktor n ter dvodimen-
zijski skalarni parameter urejenosti s = (2(u; - n)2 — 1);. Direktor lahko ponovno
parametriziramo z n = n(z) = (sin ¢(z), 0, cos ¢(z)).

Temperaturo faznega prehoda T'y; je mogoce dolociti iz temperaturnih odvisnosti
notranje energije. Rezultati v reducirani skali 7° = kgT' /¢ so za razlicne vrednosti
parametra anizotropije v zbrani v tabeli 1. Opazimo, da T, z rastocim v pada, kar
je v skladu z upadanjem Frankove elasti¢ne konstante pri povecevanju v [129].

Meritev ekstrapolacijske dolzine je bila izvedena v plasti, podobni hibridni celici.
Na prosti povrini (z = 0) deluje notranje sidranje, ki je za v S 0.3 homeotropno.
Pri z = d imamo moc¢no planarno sidranje, ki v vzorcu zadostne debeline privede
do elasti¢ne deformacije [114]. To lahko vidimo tudi iz odvisnosti ¢(z), prikazanih
na sliki 11 za v = 0.05, razen v primeru, ko se je zaradi blizine prehoda v izotropno
fazo nematik v celici stalil — slednje je razvidno tudi iz profilov s(z). Z ekstra-
polacijo direktorskega profila, kot je nakazana na sliki 4, dobimo dolzino ¢, ki je
ekvivalentna K/W le v primeru dovolj §ibkega sidranja, ko £ 2 & [ oznacuje ko-
relacijsko dolzino (4)]. Iz tabele 1 je razvidno, da je razen za v = 0.05 ¢ mikroskopska
dolzina (reda nekaj a) in da se ve¢a z manjSanjem parametra anizotropije v. Poleg
tega vidimo, da je za v 2 0.2 sidranje tako moc¢no, da postane ekstrapolirana ¢
zaradi zanemarjenih sprememb stopnje urejenosti s negativna in zato ne predstavlja
K /W [143]. Zdi se tudi, da je temperaturna odvisnost ¢ le §ibka in slabo izrazena,
razen za v = (.05, kjer £ ob blizanju prehodu v izotropno fazo blago naraste. V
grobem torej kaze, da imamo v priéujocem sistemu W o< S° z § ~ 2.

L't =005 1
0.8
7°=1.1 ‘é
3 0.6f & =10 s
= N a P
@ \; 0.4 “ = 7°=1.3 _‘.,..-";'
< ~ s
0.2} < nae
— et
0|~ y=0.05 0 e T0=1 35
0 10 20 30 40 50 0 10 20 30 40 50
z/a 2a

Slika 11 Temperaturni odvisnosti ¢(z) in s(z) za v = 0.05. Iz ektrapolacije
profilov ¢(z) proti levi lahko dolo¢imo £ notranjega sidranja. Pri temperaturah
blizu faznega prehoda se nematik v vzorcu stali, zmanjSa stopnjo urejenosti
s in se s tem izogne upogibni deformaciji. Hkrati v bliZini trdne stene vedno
opazimo poviSanje s.

Kaze, da je ujemanje ¢ z eksperimentalnimi vrednostmi (100 nm in ve¢) mogoce
doseci le za dovolj majhne v. V takih primerih medmolekulski potencial (12) vzpod-
buja pretezno vzporedno ureditev molekul, kot jo, na primer, tudi stericne odbojne
interakcije med podolgovatimi delci, ki jih nismo nikjer izrecno upostevali. Osta-
li neupostevani pojavi zajemajo Se dipolne in kvadrupolne interakcije, prisotnost
necisto¢ [161], krajevne spremembe v gostoti nematika [66,67], elektrostatske in-
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terakcije zaradi selektivne adsorpcije ionov [160] in grobost trdne povrsine (zadnja
pojava le v primeru sidranja na trdni podlagi).

Nematske kapljice

V tem poglavju se bomo ukvarjali z nematskim urejanjem v nekoliko zapletenejsi
geometriji: v podmikronskih kapljicah. Najdemo jih v sistemih PDLC, kjer so ujete
v polimerno matriko. Obdelali bomo primer s homeotropnim sidranjem — radialno
kapljico — ter taksnega s planarnim — bipolarno (slika 12). Stevilne fenomenologke,
simulacijske in eksperimentalne Studije so v preteklosti privedle do precej dobrega
poznavanja teh sistemov [5,91]. Tukaj se bomo lotili Se ne v celoti obdelanega
vprasanja razlage rezultatov simulacij Monte Carlo skozi spektre 2H NMR, vkljuéno
z dinamiko molekul in urejujo¢imi ucinki zunanjih polj.
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Slika 12 Povrsinska plast delcev “duhov”, ki pripadajo polimerni matriki in
doloé¢ajo robne pogoje: (a) radialna in (b) bipolarna kapljica (pus€ica oznacéuje
bipolarno simetrijsko os). Ureditev molekul v vsaki izmed kapljic je prikazana
tudi shemati¢no.

Simulacije urejanja v kapljicah (vrste Monte Carlo) so bile izvedene v okviru
Lebwohl-Lasherjevega modela (glej poglavje o simulacijah). Kapljice s polmerom
R = 12a in zahtevanimi robnimi pogoji so bile izzagane iz kubi¢ne mreze, kot
kaze slika 12. Jakost interakcije ¢ med nematskimi delci — pri izbranem R jih
je 5832 — je bila enaka jakosti interakcij delcev nematika z delci, ki pripadajo
polimerni matriki (teh je skupaj 1352). Za zacetek vsake simulacije je bila privzeta
konfiguracija, ki ustreza idealni ureditvi v skladu z izbranimi robnimi pogoji, ali
pa ze uravnoveSena konfiguracija pri bliznji temperaturi, ¢emur je sledila uporaba
Metropolisovega postopka z Barker-Wattsovo tehniko. Sistem delcev je bil urav-
novesan skozi vsaj 5 x 10* korakov, potem pa je bilo zajetih 1024 konfiguracij, iz
katerih so bila izrac¢unana vsa povprecja in spektri ?H NMR. V nadaljevanju bodo
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vse temperature izrazene v brezdimenzijski skali, dolo¢eni s T* = kgT/e. Simulacije
v nematski fazi so bile tako izvedene pri 7" = 0.8, v izotropni pa pri 7% = 1.2.
Za izratun spektrov 2H NMR je bil uporabljen pristop s ¢asovno odvisno spin-
sko hamiltonko (glej poglavje o eksperimentalnih opazljivkah), ki omogoca pravilno
upostevanje procesov, kot sta translacijska difuzija in fluktuacije dolgih osi molekul.
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Slika 13 Simulirani spektri 2H NMR za eno bipolarno kapljico v nematski fazi
pri T* = 0.8 in za razlicne jakosti zunanjega polja (o< /7); brez difuzije (a), s
hitro difuzijo (b). Kvadrupolni razcep narasca z 7.

Za zatetek si oglejmo kapljice v odsotnosti zunanjih polj (n = 0), najprej bipo-
larno. Od zunanjih polj imejmo edino polje NMR spektrometra, potrebno za meritev
spektrov, vendar naj bo tako Sibko, da ne vpliva na molekulsko ureditev v kapljicah
[R < &n; &y oznatuje magnetno koherencéno dolzino (9)]. Poleg tega se zaenkrat
posvetimo limiti brez translacijske difuzije, katere veljavnosti je zadosceno za R >
V6Dty (D pomeni efektivno difuzijsko konstanto, t, pa znaéilni ¢as spektroskopije
NMR) — torej v dovolj velikih kapljicah. Edina gibanja, s katerimi imamo zdaj
opravka v vzorcu, so fluktuacije dolgih osi molekul u;, ki dolo¢ajo S in n. Izkaze se,
da tovrstne fluktuacije sicer nenaravna dinamika metode Monte Carlo opiSe dovolj
dobro. Ureditev v bipolarni kapljici je taksna, da je velik del molekul usmerjen
priblizno v smeri bipolarne osi. Ce usmerimo magnetno polje spektrometra vzdolz
te smeri (tega se bomo drzali do nadaljnjega), naletimo v spektru na dobro izrazena
vrhova pri priblizno wyz + Séwg (slika 13). Iz njune lege je tako mogoce priblizno
dolociti S =~ 0.73 + 0.01. Do ocene za S lahko pridemo tudi neposredno iz simu-
lacijskih podatkov z diagonalizacijo lokalnih ureditvenih matrik @ (2), ki jih potem
povprecimo po vsej kaplji: S ~ 0.76£0.04. Pripomniti je treba Se, da imamo v real-
nem vzorcu z mnogo kapljicami porazdelitev po smereh bipolarnih osi. Primer, kot
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ga obravnavamo tukaj, srecamo le, ¢e Ze sam proces nastajanja kapljic (na primer
fazna separacija [28]) poteka v zunanjem polju, ki usmeri vse bipolarne osi v isto
smer [40]. Poleg tega je bilo za glajenje spektrov potrebno izvesti konvolucijo z
jedrom Sirine 0.040w.

Kadar velja R < 1/6Dt, (na primer v majhnih kapljah), posamezna molekula
zaradi difuzije v ¢asu ¢y prepotuje dolzino, primerljivo z R. Zato se wg zaradi S =
S(r) in n=n(r) v tem Casu znatno spremeni. V takih primerih dobimo v spektru dva
vrhova pri povpreéni frekvenci wy + (wg), kjer {(wo) = +dwg 3(S(r) [3 cos? §(r) — 1])
in gre povprecje (...) po difuzijskih gibanjih molekul. Pri ra¢unanju spektrov je
tovrstno gibanje bilo modelirano s preprostim postopkom naklju¢nega sprehoda po
kubi¢ni mrezi, in sicer ob predpostavki, da je difuzijski proces izotropen in pros-
torsko homogen. Na sliki 13 vidimo, da sta v spektru Se vedno prisotna dva vrhova,
vendar je razcep manjSi kot v primeru brez difuzije: (wg) = (0.61 £ 0.02) dwy.
Do tega pride, ker direktor v blizini sten odstopa od smeri bipolarne osi (in s tem
polja spektrometra). Povpre¢no frekvenco (wgq) se da izracunati tudi iz podatkov
simulacije: 0.59 dwg.

Urejanje v kapljici lahko preu¢imo tudi tako, da jo razdelimo na koncentri¢ne
lupine in izraCunamo primerne parametre urejenosti kot funkcijo razdalje od sredisca
kapljice. Prvi izmed parametrov je lahko Ze ra¢unani S (dobljen iz diagonalizacije
@), drugi pa (P,) g, ki meri stopnjo ureditve glede na vnaprej doloceno smer. Vpelje-
mo ga kot (P2) g = (5[3(f-u;)>—1]);, kjer je f enotski vektor v smeri magnetnega polja
spektrometra, povprecje (...); pa tece preko delcev v doloceni plasti. Iz odvisnosti
na sliki 14 lahko razberemo, da so v srediscu kapljice molekule vecidel usmerjene
vzdolz bipolarne osi in da prihaja do odstopanj od te smeri le v blizini sten. Poleg
tega je tam stopnja nematske ureditve poviSana.
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Slika 14 Parametri urejenosti za bipolarno kapljico pri 7% = 0.8: (a) S in
(b) (P2)p kot funkcija razdalje od sredis¢a kapljice (r). Krivulje so narisane
zan =1, n=05,1n=0.2inn = 0 (od zgoraj navzdol). Zunanje polje
povisa stopnjo nematske urejenosti (a), pa tudi velikost vzdolz polja urejene
sredice (b).

V primeru radialnih kapljic (§e vedno brez dodatnega zunanjega polja; n = 0)
je orientacijska porazdelitev skoraj prostorsko izotropna, zato je s stalisSca NMR
enakovredna polikristalinicnemu vzorcu, pri katerem v spektru naletimo na Pakeov
vzorec: dva nesimetri¢na vrhova pri wy + %S dwg in rameni, ki segata do wy £ Sowg.
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Simulacije v primeru brez translacijske difuzije dejansko dajo opisanemu podoben
spekter (slika 15), ki spet omogo¢a doloc¢itev S iz polozaja vrhov in ramen (S =
0.72 + 0.02), pa tudi iz podatkov simulacije (S = 0.73 + 0.10). Kadar je difuzija
hitra, dobimo v spektru zaradi izotropnosti orientacijske porazdelitve en sam vrh pri
wg ~ 0, iz podatkov Monte Carlo pa (wg) =~ 0.03 dwg. Kot kaze, je v obeh limitah
(z in brez difuzije) s primerjavo spektrov vedno mogoce razlikovati med radialno in
bipolarno kapljico. Razlika v obnasanju spektrov je Se posebej nazorna, ¢e vzorec
obrac¢amo v polju spektrometra: za razliko od spektrov bipolarne kapljice se spektri
radialne pri tem ne spreminjajo.

Slika 16 prikazuje radialno odvisnost parametrov S in (Py)g. Za n = 0 opazimo,
da je v sredis¢u radialne kapljice — kjer pricakujemo topoloski defekt — stopnja
ureditve S dejansko znatno nizja kot v zunanjih delih kapljice, kjer je radialno
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Slika 15 Simulirani spektri 2H NMR radialne kapljice v nematski fazi za
T* = 0.8 in razli¢ne n; (a) brez difuzije, (b) s hitro difuzijo. S povetevanjem
7 pride do prehoda med radialno strukturo in strukturo z vec¢ino molekul
usmerjenih vzdolz zunanjega polja.
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urejanje jasno izrazeno.

Namignili smo ze, da je difuzija pomembna zlasti v majhnih kapljah. Ce vza-
memo dwg =~ 27 X 40 kHz, D =~ 4 x 107" m?/s in S ~ 0.8 (v povprecju),
lahko ocenimo, da so spektri kapljic s polmeri pod R = 60 nm znatno difuzijsko
izpovpreceni. Po drugi strani simulacije sprektrov kazejo, da pri istih podatkih v
kapljicah polmerov nad R ~ 330 nm ucinki difuzije niso ve¢ zaznavni. Zaradi ome-
jitve z velikostjo vzorca (R = 12a in ¢ S 5 nm) so v predstavljenih simulacijah
realisti¢ni predvsem primeri z R S 60 nm, ko smo Ze v limiti hitre difuzije.

Do zdaj smo predpostavljali, da je difuzija prostorsko homogena. Hkrati eks-
perimenti kazejo, da je lahko v blizini ograjujocih sten znatno upocasnjena, to pa
je posebej opazno v mo¢no ograjenih sistemih [96,166]. Tedaj so izra¢unani spektri
sestavljeni iz superpozicije difuzijsko izpovprecenega prispevka notranjosti kapljic in
prispevka povrsinske plasti, kjer difuzija ne igra pomembne vloge [97]. Ce pasi poleg
tega ogledamo Se vzorec z mnogimi bipolarnimi kapljami, katerih simetrijske osi so
usmerjene po prostoru nakljuéno, ponovno naletimo na spekter Pakeove vrste [97].
Vzorec je namre¢ makroskopsko izotropen, ¢eprav posamezne kapljice niso. Tudi
hitra difuzija Pakeov spekter ohrani, le da je ta nekoliko 0zji kot v primeru brez
difuzije.
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Slika 16 Parametri urejenosti za radialno kapljico pri 7% = 0.8: (a) S in
(b) (P2)p kot funkcija razdalje od sredi§¢a r. Krivulje so narisane za n = 1,
n=0.5,1n7=0.2,7=0.05 7n7=0.03, n =0.02 in n = 0 (od zgoraj navzdol).
Jedro defekta se z viSanjem poljske jakosti pretvori v strukturo, urejeno v
smeri polja.

Prikljucimo sedaj zunanje polje, ki naj bo dovolj mo¢no, da dodatno uredi ne-
matik v kapljicah (R > &,,). V simulaciji sklopitev nematskih delcev z zunanjim
poljem opisuje izraz (11), ki za n > 0 privede do urejanja delcev v smeri polja
f. V primeru bipolarnih kapljic je prvi u¢inek zunanjega polja reorientacija bipo-
larnih osi, ki se obrnejo v smer polja [25,90]. Tukaj bomo obravnavali primer, ko
je f ze vzporeden bipolarnim osem. Tako spektri (slika 13) kot profili parametrov
urejenosti (slika 14) kazejo, da zunanje polje povzroc¢i dodatno urejanje molekul
v smeri polja, hkrati pa tudi povisa stopnjo urejenosti S [117]. Oboje se odraza
v povecanju kvadrupolnega razcepa, kar opazimo ne glede na stopnjo difuzijske
izpovprecenosti spektrov. Zavedati pa se moramo, da so obravnavana zunanja polja
izjemno mocna, saj so tudi simulirane kapljice relativno majhne. Tako imamo v
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magnetnem primeru pri 7 = 0.2 za znacilen nematik (¢ = 0.023 eV, xS ~ 107°
in V5 &~ 100 nm®) B =~ 150 T, kar je precej nad trenutnimi eksperimentalnimi
zmoznostmi. Na podobne tezave naletimo tudi pri uporabi elektri¢nih polj.

V primeru radialnih kapljic so spremembe, ki jih povzroc¢i zunanje polje, bolj
dramaticne: defektno strukturo v srediscu kaplje polje razbije in delce uredi v smeri
f. Urejeno jedro obkroza defektna linija moci %, ki se z viSanjem 7 razteza, medtem
ko je v plasteh ob povrSini za ne prevelik 1 radialno urejanje Se vedno prisotno
(slika 16). Taksno obnaSanje lahko razberemo tudi iz izrac¢unanih spektrov (slika 15),
ki jih v odsotnosti difuzije utezeno sestavljata prispevek urejene sredice in Pakeov
vzorec. V primeru hitre difuzije se spekter z enim vrhom pri wg ~ 0 v dovolj
mocnem polju prelevi v dvovrhega.

Ce dvignemo temperaturo do 7* = 1.2 nad temperaturo prehoda v izotropno
fazo, opazimo Ze v odsotnosti zunanjega polja (n = 0) ob steni kapljice urejeno
paranematsko fazo. Ce poleg tega vkljuéimo §e moéno zunanje polje, se nematsko
urejanje razsiri po vsej kapljici [118], to pa ponovno privede do znatnega kvadrupol-
nega razcepa. Ta pojav je lahko opazen zlasti zato, ker je — kot Ze reCeno — jakost
zunanjega polja izjemno visoka.

Kljub temu, da predstavljena metodologija za izracun spektrov dobro opise di-
namiko molekul in vplive zunanjih polj, pa sedanji rezultati za bolj natan¢no kvan-
titativno primerjavo z eksperimentalnimi Se niso zreli: zaradi relativno majhnega
Stevila delcev v simulaciji so spektri precej zasumljeni, konvolucije pa jih sicer zgla-
dijo, a s tem tudi nekoliko prizadenejo njihovo obliko.

Nematiki z dispergiranimi polimernimi mrezami

Zadnje poglavje bo obravnavalo simulacije nematskega urejanja v sistemih z dispergi-
ranimi polimernimi mrezami. Te sestavljajo tanka (nanometrska) polimerna vlakna
ali nekoliko debelejsi snopici vlaken. Topografija mrez je lahko precej nepravilna,
zato predstavljajo najzapletenejso vrsto v tem delu obravnavanih ograditev [15,101].
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Slika 17 Shematski prikaz polimerne mreze (desno) in simulacijska $katla z
valjastim vlaknom in eno izmed valjastih plasti (levo). Oznaéena je tudi smer
zunanjega polja E.
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Najpomembnejsa znacilnost mrez je ta, da lahko ze pri nizki koncentraciji ure-
dijo okoligki tekoci kristal [5,26,39] in so kot take zanimive za uporabo v razli¢nih
opti¢nih elementih. V nadaljevanju si bomo ogledali u¢inke grobosti povr§ine na
ureditveno sposobnost mreze [102], topoloske defekte [103], pojav preklapljanja ori-
entacije molekul v zunanjem polju pri razlicnih mreznih topografijah in parane-
matsko urejanje nad prehodom v izotropno fazo. Navedene pojave bomo spremljali
tudi skozi opazljivke, kot so 2H NMR, elektri¢na kapacitivnost in opti¢na prepust-
nost.

Kot prvi korak k modeliranju polimerne mreze si oglejmo valjasto vlakno v simu-
lacijski skatli s periodi¢nimi robnimi pogoji, kot kaze slika 17. Na ta nacin dobimo
pravilno mrezo ravnih in vzporednih vlaken. Simulacije so bile — podobno kot v
prejsnjem poglavju za kapljice — izpeljane v okviru modela Lebwohla in Lasherja.
Povrsino vlakna tudi tukaj modeliramo z zamrznjenimi delci “duhovi”, robni pogoji
pa zajemajo planarno sidranje (vzdolz smeri vlaken, z), homeotropno (pravokotno na
lokalno povrsino) in delno ali v celoti neurejeno (groba povrsina). Stopnjo grobosti
povrsine lahko kvantitativno podamo s parametrom urejenosti (P,),, ki predstavlja
po absolutni vrednosti najvecjo lastno vrednost ureditvene matrike @, izracunane
za spine “duhove”. (P,), =1 tako ustreza idealnemu planarnemu urejanju, (P), =
—0.5 idealnemu homeotropnemu, (P;), ~ 0 pa popolnoma naklju¢ni orientacijski
porazdelitvi (merjeno vsaki¢ glede na z). Vmesne vrednosti ustrezajo delno urejeni
— grobi — povrS§ini.

Pri izbranem polmeru vlakna R = 5a in velikosti Skatle 30 x 30 x 30 delcev imamo
v sistemu 24600 nematskih delcev in 840 povrsinskih delcev “duhov”. Simulacije
so bile zagnane iz popolnoma naklju¢nih konfiguracij in uravnoveSane vsaj 6 x 10*
korakov na enak naéin kot v primeru PDLC kapljic. Nato je bilo 6.6 x 10* zaporednih
konfiguracij uporabljenih za izrac¢un povrecij. Ta zajemajo komponente ureditvene
matrike @) in parameter (P§) = 3 [3((u; - z)?) — 1], ki opisuje stopnjo ureditve glede
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Slika 18 Pravilna mreZa ravnih in vzporednih vlaken debeline R = ba:

odvisnost (P§) od r (razdalje do sredi$¢a simulacijske $katle); (a) nematska
(T* = 1.0) in (b) izotropna (T* = 1.2) faza. Krivulje od zgoraj navzdol:
(P2)g =~ 1.0 (idealno planarno urejanje), 0.75, 0.50, 0.25 in 0 (naklju¢na ori-
entacijska porazdelitev).
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na smer vlaken z.

Slika 18 prikazuje radialne odvisnosti parametra urejenosti (P§) za razli¢ne stop-
nje grobosti povrsine. V nematski fazi pri 7* = 1.0 za (P,), = 1 je direktor usmer-
jen vzdolz z, vrednost (P§) pa sovpada s skalarnim parametrom urejenosti, S (pri
izbrani 7* = 1.0 enaki S ~ 0.6). Vidimo lahko, da je S ob vlaknu rahlo povisan. V
primeru delnega nereda (P), < 1 stopnja ureditve ob vlaknu upade, vendar je vlak-
no Se vedno sposobno urediti nematik vzdolz z. Zdi se, da to zmoznost izgubi Sele
za (Py), ~ 0, saj direktor takrat ve¢ ni vzporeden z. Pri vi§ji temperaturi 7% = 1.2
(nad T%;) tudi v sistemu vlaken opazimo paranematsko urejenje, ki je tem Sibkejse,
¢im bolj grobo je vlakno. Vse spremembe v stopnji urejenosti ob vlaknu se dogajajo
na razdalji korelacijske dolzine £ (4), ki je reda velikosti nekaj a. Zgornje ugotovitve
potrjujejo tudi spektri 2H NMR, ki jih lahko izraéunamo po metodologiji, razviti za
nematske kapljice.

Do podobnih izsledkov glede grobosti vlakna in sposobnosti urejenja pridemo
tudi za (P), < 0, homeotropno sidranje. V idealno homeotropnem primeru postane
nematska ureditev Se posebej zanimiva: v blizini vlakna pride v sistemu do tvorbe
topoloskih defektov (pravzaprav linij, ki tecejo vzdolz vlakna). Levi del slike 19
prikazuje direktorsko polje v na vlakno pravokotni ravnini, skupaj s pripadajoco
stopnjo urejenosti S (oboje dobimo z diagonalizacijo lokalnih ureditvenih matrik
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Slika 19 Nematsko urejanje v ob ravnem homeotropnem vlaknu. Levo: prerez
direktorskega polja n(z,y) (n predstavljen s tokovnicami). Stopnja osencenos-

ti predstavlja skalarni parameter urejenosti S(z,y) (temna obmocja ustrezajo
1
2
reza. Desno: lastne vrednosti ureditvene matrike @ (Q1, Q2 in Q3), narisane

nizkemu S). Par defektov mo¢i —3 se pojavi blizu diagonale prikazanega pre-
skozi levega izmed obeh defektov vzdolz osi y. Zgornji del slike prikazuje pri-
padajoca poteka parametra urejenosti S in stopnje dvoosnosti P. Nesimetrijo
glede na jedro defekta (to lezi priy/a = 20) povzroca prisotnost vlakna. Ostali
parametri: 7* = 1.0 in R/a = 5.
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Q). Desni del slike 19 kaZe obnasanje lastnih vrednosti @, ko preckamo defekt.
Vidimo, da je dale¢ od jedra defekta urejanje enoosno. Ko se blizamo jedru, za¢ne
stopnja urejenosti S padati, hkrati pa naraste dvoosnost P. V samem jedru je
ureditev ponovno enoosna, vendar s S < 0, pri ¢emer je direktor usmerjen vzdolz
smeri vlakna, z. To obnaSanje je v skladu s fenomenoloskimi napovedmi [104,105].
Med drugim opazimo tudi, da do tvorbe defektov vselej pride blizu ene od diagonal
simulacijske Skatle. To lahko pripisSemo zlasti odboju med defektoma, deloma pa
tudi kolektivnim fluktuacijam v kockasti simulacijski skatli [168]. Topolosko je v
obravnavanem sistemu dopustna tudi ena sama defektna linija moc¢i —1, vendar ni
stabilna [24].

Oglejmo si $e pojav preklapljanja orientacije molekul z zunanjim poljem. Sidranje
naj bo idealno planarno vzdolz vlaken (osi z), zunanje polje E pa naj bo usmerjeno
pravokotno nanje (vzdolz osi y) — slika 17. ObnaSanje pravilnega sistema vzpored-
nih vlaken v zunanjem polju je podobno obnasanju nematske celice (glej poglavje o
fenomenoloskem opisu nematika): pri visanju poljske jakosti do Fréederickszovega
prehoda opazimo homogeno strukturo (h) z n||z, nad njim deformirano strukturo
(d), nad saturacijskim prehodom pa zasi¢eno strukturo (s) z molekulami usmerje-
nimi v smeri polja n||E||y. Ker sta kriti¢ni poljski jakosti za oba prehoda odvisni
od jakosti sidranja, si bomo ogledali primere z razlicnim w = ¢,/e. Tukaj €, pomeni
jakost interakcije med molekulami nematika in polimernega vlakna, ¢ pa jakost in-
terakeij med molekulami nematika samimi [enacba (10)].
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Slika 20 Pravilna mreza vzporednih vlaken in preklapljanje v zunanjem polju:
(a) strukturni fazni diagram za T* = 1.0 in R/a = 5; ng pomeni tocko
Fréederickszovega prehoda pri w = 5. (b) Primerljiv fazni diagram za navadno
plast nematika (iz [115]); h je sorazmerna jakosti polja.

Simulacije so bile izvedene pri 7" = 1.0 v sistemu 30 x 30 x 30 delcev s polmerom
vlakna R = 5a. Pri danem w je bilo pri vsaki vrednosti n potrebnih 1.2 x 10°
korakov za uravnoveSanje in nadaljnjih 1.2 x 10° za izra¢un opazljivk. Simulacije so
potekale tako, da je vrednost n narascala postopoma od n = 0 do najvisje vrednosti
(onstran saturacijskega prehoda), nato pa postopoma padala nazaj k n = 0, kar
naj bi omogocilo razkritje morebitnih pojavov histereze. Pricakovana strukturna

1

prehoda lahko iS¢emo z opazovanjem parametra Py = $[3((u; - y)?) — 1]: ¢e tece

povprecje (...) preko vsega vzorca, je Py ob¢utljiv na Fréederickszov prehod, ¢e pa
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le po tanki plasti tik ob povrsini vlakna, pa na saturacijskega. Se bolj zanesljivo je
opazovanje pripadajocega efektivnega odmika o¥, saj fluktuacije P§ ob strukturnih
prehodih opazno narastejo.

S slike 20 lahko razberemo obmocja stabilnosti treh napovedanih struktur, za
primerjavo pa je prikazan enakovreden diagram za plast nematika [115]. Kvalita-
tivno ujemanje med obema je dobro. V Sibkem polju vselej opazimo homogeno
strukturo h, v zelo mo¢nem pa zasiceno strukturo s. Med njuni obmocji stabilnosti
se vriva obmocéje deformirane strukture d, ki postane pri sibkem sidranju (majhni
w) zelo ozka. Kljub temu kaze, da neposrednega prehoda h <+ s ni, s tem pa tudi
ne trojne tocke v diagramu. Poleg tega ni opaziti histereze, iz ¢esar sklepamo, da
sta oba prehoda zvezna.

Kot kazejo slike elektronske mikroskopije [26,39], je topografija polimernih mrez
precej bolj nepravilna, kot smo jo bili zmozni opisati s preprostim modelom s slike 17
(imenujmo ga “vzorec A”). Vlakna so lahko zavita in nakljuéno razporejena po
prostoru, vendar s Se vedno dovolj dobro dolo¢eno povprecno smerjo. Prvi korak
k taksni topografiji mreze predstavljajo ravna in vzporedna vlakna, ki so razpore-
jena nakljuéno po nekoliko povecani simulacijski §katli (“vzorec B”). Tudi v takem
primeru pride v zunanjem polju do Fréederickszovega prehoda, vendar pri nizji
poljski jakosti kot pri pravilni mrezi z enako debelino in koncentracijo vlaken. Vzrok
za tak premik je najti v porazdelitvi razdalj med vlakni, saj do Fréederickszovega
prehoda pride, ko postane koheren¢na dolzina zunanjega polja &, primerljiva z naj-
daljso izmed njih. Zaradi tega prihaja do preklapljanja molekulskih orientacij v
vzorcu postopoma, in sicer najkasneje v podrocjih, kjer so vlakna razporejena nad-
povprecno gosto.

Slika 21 Polimerna mreza z neravnimi vlakni (vzorec C): delci “duhovi” pred-
stavljajo togo mrezo. Sidranje na povr§ini vlaken je planarno.
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Najzapletenejsi od vzorcev s polimernimi mrezami — “vzorec C” — vkljucuje
neravna vlakna in je prikazan na sliki 21. Kot pri vzorcu B so bile simulacije
izvedene v vzorcu 50 x 50 x 50 delcev z osmimi vlakni premera R = 3a (usmerje-
nimi v povprecju vzdolz z) ter s planarnim sidranjem jakosti w = 1 vzdolz lokalne
tangentne smeri vlaken. Zdaj si bomo ponovno ogledali pojav preklapljanja v zu-
nanjem polju, pri tem pa primerjali obnaSanje topografsko razli¢nih vzorcev A, B
in C s priblizno enakimi koncentracijami polimernih vlaken (9%). V vzorcih B in
C je bilo narejenih 8 x 10* simulacijskih korakov za uravnovesanje in 6.6 x 10* za
ratunanje povpreé¢ij, v manjSem vzorcu vrste A (velikosti 18 x 18 x 18 delcev) pa
je bilo uravnovesanje skrajsano na 6 x 10* korakov. Rezultate bomo predstavili v
obliki izbranih eksperimentalnih opazljivk.
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Slika 22 Preklapljanje orientacije molekul v zunanjem polju: meritve ka-
pacitivnosti (levo) in intenzitete skozi vzorec prepusCene svetlobe (desno, I
oznacuje intenziteto vpadne svetlobe); vzorec A (majhne pike), vzorec B (vegje
pike) in vzorec C (najvecje pike). V desni sliki puséice oznacujejo kriti¢ne
vrednosti 7, kot jih odberemo z leve.

Zacnimo z elektricno kapacitivnostjo C,, opazovano vzdolz smeri zunanjega polja
(E|ly) — glej poglavje o eksperimentalnih opazljivkah. Slika 22 prikazuje odvisnost
Cy(logn). V primeru idealne ureditve delcev bi dobili Cy /ey = €, za ureditev vz-
dolz smeri vlaken (z) in Cy/ey = €| za ureditev vzdolz zunanjega polja, iz Cesar
sledi, da lahko iz vedenja kolic¢ine C) izlus¢imo informacijo o orientaciji molekul v
vzorcu. Tukaj pomenita €, in € lastni vrednosti molekulskega dielektri¢nega ten-
zorja (v pricujoci simulaciji €, = 6.1 in ¢ = 29.8). S slike 22 lahko razberemo lego
Fréederickszovega prehoda — ta zajame veliko Stevilo delcev — za vsakega izmed
treh vzorcev, medtem ko saturacijskega prehoda C, ne more razkriti. Fréederickszov
prehod na prikazanih grafih sovpada s tocko, kjer C, ob¢utno naraste [39]. Ocenjene
kriticne vrednosti so n4 = 0.02240.01 za vzorec A, ng = 0.013+0.01 za vzorec B in
Nc = 0.010 £+ 0.01 za vzorec C. Kot ze omenjeno, velja ng < n4 zaradi porazdelitve
efektivnih razdalj med vlakni. Nadalje imamo nc < np, kar izvira iz dejstva, da
v vzorcu C delci pri nizkih 7 niso usmerjeni natanko vzdolz z in deluje magnetni
navor nanje ze za poljubno majhen 7. Zaradi tega v vzorcu C pravzaprav ne smemo
govoriti o ostrem Fréedrickszovem prehodu. Preklapljanje je najpocasnejSe v vzorcu
B (krivulja Cy najpoloznejsa), kjer se nematik v delih vzorca z visoko gostoto vlaken
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uredi v smeri polja Sele pri zelo visokih 7. Povedati je treba, da je tudi tukaj zunanje
polje zelo mocno (glej oceno v prejsnjem poglavju) in da gre narascéanje C, pri naj-
vi§jih 7 na racun povecevanja stopnje ureditve S [117], ne pa na racun reorientacije
molekul.

Vzorec lahko postavimo tudi med prekrizana polarizator in analizator in merimo
intenziteto prepuséene svetlobe (I), kot je bilo nakazano v poglavju o eksperimen-
talnih opazljivkah. Intenziteta I je sorazmerna sin’(A®/2) (18), kjer A® pomeni
razliko med fazama rednega in izrednega zarka, ki se nabere, ko prepotujeta vzorec.
Ce v izbrani geometriji svetimo vzdolz smeri zunanjega polja, se koli¢ina A® spre-
meni s konéne vrednosti pri n = 0 do zelo majhne vrednosti za velike n, kar vodi
do nihajotega obnasanja v odvisnosti I(n) takoj, ko v vzorcu pride do preklaplja-
nja molekulskih orientacij [116]. Tako obnasanje zares opazimo tudi na sliki 22,
ki nudi enake zakljucke glede kriti¢nih poljskih jakosti in hitrosti preklapljanja kot
opazovanje Cy. Krivulje so bile simulirane za svetlobo valovne dolzine 632 nm,
efektivno debelino vzorca 10 pym in lomna koli¢nika nematika 1.5270 za redno po-
larizacijo ter 1.7445 za izredno (najveéja mozna vrednost). Omenimo le Se to, da
se tudi izracunani spektri 2H NMR dobro ujemajo z rezultati obeh predstavljenih
eksperimentov.
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Slika 23 Paranematsko urejanje v vzorcu C: difuzijsko izpovpreceni spektri
2H NMR v odvisnosti od T* za razli¢ne jakosti sidranja: w = 0.1 (levo),
w = 0.5 (sredina) in w = 0.1 (desno).
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Zadnji od predstavljenih pojavov bo paranematsko urejanje nad temperaturo
prehoda v izotropno fazo, ki ga povzroca povrSina. Opazili smo ga ze v vzorcu A
[slika 18 (b)], tu pa si bomo ogledali simulacije v vzorcu C (slika 21). Parametri si-
mulacije so bili enaki kot v primeru preklapljanja, le da je bila izvedena za planarno
sidranje z razliénimi vrednostmi w, brez zunanjega polja (n = 0) in za razli¢ne tem-
perature nad T5%; = 1.1232. Kot smo ze opazili na sliki 18 (b), imamo blizu vlaken
nezanemarljivo stopnjo nematske ureditve, ki pade proti ni¢ na korelacijski razdalji
¢ = ba. Ta red lahko zaznamo z opti¢nimi metodami (med prekrizanima polariza-
torjem in analizatorjem kakor zgoraj) [26] ali pa z 2H NMR (slika 23). Spektri so
bili racunani v limiti hitre difuzije, polje spektrometra pa je bilo usmerjeno vzdolz
z. Dvovrhi spektri so posledica urejanja ob vlaknih, kvadrupolni razcep pa je tem
veéji, ¢im visja je stopnja ureditve. Vidimo, da razcep pada z viSanjem temperature
in z nizanjem jakosti sidranja, saj se s tem zmanjSuje tudi stopnja urejenosti. Do
podobnih opazanj pridemo tudi pri simulacijah intenzitete prepuscene svetlobe.

Zakljucki

V zakljucku preglejmo glavne rezultate pri¢ujocega dela, skupaj s §e odprtimi vpra-
Sanji in nekaterimi smernicami za prihodnost. V delu smo se dotaknili izbranih
problemov modeliranja ograjenih tekocekristalnih sistemov, v ta namen pa upora-
bili fenomenoloski Landau-de Gennesov opis in, v 8e ve¢jem merilu, mikroskopsko
simulacijsko metodo Monte Carlo.

Izzvani z eksperimenti, ki kazejo na znatne elasticne deformacije ob povrsini ne-
matika, smo najprej obdelali urejanje ob stenah nematske plasti. V okviru Landau-
de Gennesovega pristopa smo pokazali, da spreminjanje stopnje urejenosti ob povrsi-
ni lahko vodi do pojava lokaliziranih elasti¢nih deformacij, hkrati pa tudi do no-
tranjega prispevka k povrsinskemu sidranju (oboje le takrat, ¢e Frankove elasti¢ne
konstante niso vse enake). Omenjene lokalizirane deformacije smo opazili le pri ome-
jitvi na ravninske deformacije, ne pa tudi pri neravninskih zvojnih, in ne izvirajo iz
spornega ¢lena s pahlja¢éno-upogibno elasti¢no konstanto. Ce sklopitev nematika z
ograjujoco povrsino prilagodimo tako, da ekstrapolacijska dolzina zunanjega in not-
ranjega sidranja doseze znacilne eksperimentalne vrednosti okoli 100 nm, postanejo
deformacije ob povrsini tako Sibke, da z njimi ne moremo pojasniti eksperimentalno
opazenih.

Zgornjo fenomenolosko §tudijo smo nato dopolnili z mikroskopsko, temelje¢o na
metodi Monte Carlo in modelu s Sestkotnisko mrezo ter prostorsko anizotropnimi
interakcijami med induciranimi dipoli. Glavni namen te Studije je bil podrobneje
raziskati notranje sidranje, ki je pri dovolj nizkih stopnjah interakcijske anizotropije
homeotropno in tudi takrat Se vedno precej mocno: pripadajoce ekstrapolacijske
dolzine ¢ so mikroskopske — reda nekaj molekulskih razseznosti. Poleg tega za raz-
liko od eksperimentov v realisti¢nih sistemih ¢ ne kaze znatne temperaturne odvis-
nosti, ko se blizamo prehodu v izotropno fazo. Navedena opazanja je moc¢ pri-
pisati preprostosti modela: nadaljnji koraki bi lahko zajemali opustitev mreznega
priblizka, kar bi omogocilo vkljuc¢itev spreminjanja gostote blizu povrsine, ter opis



Razsirjeni povzetek xxxiii

grobih povrsin. Od obojega je pricakovati znizanje jakosti sidranja.

Zatem so bile obravnavane kompleksnejSe vrste ograditev: nematske kapljice in
nematiki z dispergiranimi polimernimi mrezami. Obeh smo se lotili s preprostim
mikroskopskim mreznim modelom Lebwohla in Lasherja, spet z uporabo metode
Monte Carlo.

V primeru kapljic — najdemo jih v sistemih PDLC — smo obravnavali radialne
in bipolarne robne pogoje ter se posvetili zvezi med numeri¢nimi rezultati simulacij
in spektri 2H NMR kot eni izmed moznih eksperimentalnih opazljivk. Razvita je bila
metodologija za napoved spektrov v prisotnosti znatnega gibanja molekul — fluk-
tuacij molekulskih dolgih osi ter translacijske difuzije (homogene in nehomogene),
kvalitativno ujemanje z eksperimenti pa je dobro. Tudi urejujoci uc¢inki zunanjega
polja se jasno odrazajo v racunanih spektrih: zunanje polje molekule reorientira, a
tudi zviSa stopnjo urejenosti nematika. V poljih visoke jakosti pride do nematskega
urejanja celo dale¢ nad temperaturo prehoda v izotropno fazo.

Zadnjo in najkompleksnejso izmed obravnavanih ograditev so predstavljali ne-
matiki z vkljucki polimernih mrez. Sprva smo se posvetili pravilni mrezi ravnih
in med seboj vzporednih vlaken ter vplivu grobosti njihove povrSine na ureditvene
sposobnosti take mreze. Rezultati kazejo, da mreza ohrani svojo sposobnost ure-
janja nematika tako dolgo, dokler povrSina vlaken ni popolnoma neurejena. V
primeru gladkih vlaken in homeotropnega sidranja v sistemu opazimo topoloske
defekte, katerih notranjo strukturo smo lahko razbrali iz rezultatov simulacij: jedro
defekta obdaja prstan dvoosne ureditve, v kateri je stopnja urejenosti S zmanjSana,
v samem jedru pa je ureditev enoosna, toda z negativnim S. Nadaljevali smo s
studijami preklapljanja molekulskih orientacij z zunanjim poljem. ObnaSanje pravil-
nega sistema vzporednih vlaken v zunanjem polju smo predstavili v faznem dia-
gramu, iz katerega lahko razberemo premikanje Fréederickszovega in saturacijskega
prehoda s spreminjajoco se jakostjo zunanjega sidranja. ObnaSanje je podobno
kot v navadni nematski plasti. Ogledali smo si tudi preklapljanje v vzorcih z bolj
zapleteno topografijo mreze, kjer so bila ravna ali neravna vlakna nameScena po
prostoru naklju¢no. Preklapljanje smo spremljali z opazovanjem simuliranih spek-
trov 2H NMR, elektri¢ne kapacitivnosti in intenzitete prepuscéene svetlobe. Vse
navedene opazljivke kazejo, da igra topografija mreze polimernih vlaken pri procesu
preklapljanja izjemno pomembno vlogo. Za konec smo si ogledali Se paranematsko
urejanje nad temperaturo prehoda v izotropno fazo. Nekatere od zgornjih zakljuckov
lahko prenesemo tudi v sorodne kompleksne sisteme: nematske gele in koloide.

Na koncu lahko recemo, da je simulacijski del postregel s stevilnimi sicer ze zna-
nimi pojavi, vendar je pomembnost predstavljenih rezultatov in metod zlasti v tem,
da so omogocili vzpostavitev povezave med podrobnostmi na mikroskopski ravni
in makroskopskim obnaSanjem vzorca. Zaradi majhnosti obravnavanih sistemov
iskanje kvantitativnega ujemanja z eksperimenti za zdaj ni prav uspesno, kar pa se
bo z narascanjem razpolozljive racunalniske moci s casom gotovo spremenilo.

R S ¢
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Introduction

To those not familiar with the subject, the expression liquid crystals may at first seem
somewhat self-contradictory. Indeed, the term refers both to liquid and solid-like
properties of matter, and appears to suggest that in a liquid-crystalline substance
both are manifested simultaneously. Without usually being aware of the very subtle
nature of these complex materials, most people regularly use liquid crystal-based
devices in everyday life. These devices mainly comprise various types of displays,
ranging from simple seven-segment watch displays that became operational already
in the early 1970s, to sophisticated color displays built into up-to-date laptop com-
puters. The smallness and low energy consumption were the features that made
such displays suitable for mass production, resulting in a subsequent boom in elec-
tronic industry. Other related applications are switchable windows and rapid light
shutters, the latter being very promising in the field of optical telecommunications.
Despite this vast development over the last decades, a conventional cathode-ray
tube display (still cheaper than a state-of-the-art liquid-crystal display of compara-
ble performance) was used to display results of the research presented in this thesis,
and, eventually, also for typing it.

Figure 1.1 Structural formula of 4'-pentyl-4-cyanobiphenyl (5CB), an elon-
gated molecule showing liquid-crystalline behavior.

Roughly speaking, liquid crystals are anisotropic fluids made up of rodlike or dis-
cotic organic molecules. While the main liquid-like property is the ability to flow,
the solid-like character comprises anisotropies of dielectric, magnetic, and optical
properties, which all originate in the strong anisotropy of the effective molecular
shape. The first liquid-crystalline compound — cholesteryl benzoate — was stud-
ied by the botanist Reinitzer [1] as early as in 1888, followed by Lehmann a year
later [2]. Performing polarizing microscopy experiments, Reinitzer observed two
first-order phase transitions upon heating the solid compound: first it melted into
an unusual turbid fluid state, which at a higher temperature transformed into a clear
liquid. Studying the intermediate turbid phase, Lehmann realized that it is bire-
fringent, i.e., optically anisotropic, and called it liquid crystal. Today a rather wide
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collection of different liquid-crystalline phases is known and, as they are dwelling
in between the ordinary solid and liquid phases, the preferred common description
for them is mesophases. The mesophases can be divided into two broad categories,
thermotropics and lyotropics. Thermotropics are one-component systems and have
temperature-dependent phase behavior, while lyotropics are solutions of a liquid-
crystalline solute in a solvent (e.g., water) and exhibit concentration-dependent
phase behavior.

The simplest of all thermotropics are the nematic liquid crystals (nematics), ow-
ing their name to a translation from the Greek word vnua (“thread”) by Friedel who,
in the early 1900s, observed the threadlike appearance of topological defects under
a microscope between crossed polarizers [3]. Nematics consist of rodlike molecules
whose elongated and rigid torso is typically formed by two or more aromatic rings,
while the flexible limbs are usually made of alkyl chains (Fig. 1.1). Macroscopically,
a nematic sample is fluid and, like in an ordinary liquid, there is no positional order
in center of mass positions. There is, however, significant long-range orientational
order in orientations of molecular long axes, and in a large (bulk) sample nematic
molecules on the average align along a well-defined (but arbitrary) direction, de-
noted by a unit vector, the director n (see Fig. 1.2) [4]. Note that in ordinary
nematics states described by n and —n cannot be distinguished. Moreover, at finite
temperatures the ordering along n is not perfect. The corresponding degree of order
decreases with increasing temperature. In absence of severe external constraints,
such as confinement and electric or magnetic fields, the orientational distribution
of molecules around n is uniform, corresponding to uniaxial symmetry. The optical
axis in such uniazial nematics then also coincides with n. Under strong external con-
straints, however, the uniaxiality in ordering may be lost and a second characteristic
direction occurs in the mesophase, now called biazial.
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Figure 1.2 Molecular ordering in the isotropic (a), nematic (b), and one of
the possible smectic phases (c). n denotes the nematic director.

When in a nematic sample temperature is increased far enough, a first-order
phase transition takes place. The long-range orientational order is now lost and
the resulting isotropic phase behaves as an ordinary liquid. If, on the other hand,
temperature is decreased, either a direct transition to a solid or to one of the smec-
tic mesophases can follow, depending on the exact nature of the liquid-crystalline
species. On the average, in smectics molecular centers of mass are arranged into
parallel layers (see Fig. 1.2), thereby exhibiting one-dimensional positional order, in
addition to orientational order present already in nematics. The term “smectic” is
common to a rich variety of mesophases and comes from the Greek expression for
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soap (oueyua), a substance also capable of forming thin molecular layers. In gen-
eral, smectic phases possess two characteristic directions and are therefore optically
biaxial. In this thesis, however, the emphasis will be given to thermotropic nemat-
ics. One of the reasons for this lies in the fact that it is mostly nematic materials
that are currently being used for applicative purposes, while other mesophases are
primarily a matter of fundamental research.

The behavior of nematics (as well as other mesophases) becomes even more in-
teresting if they are confined to microcavities like droplets and pores [5], or simply
in between two parallel plates. In such systems, the aligning tendency of solid sub-
strates significantly affects the equilibrium molecular ordering, especially in strongly
confined systems with a high surface-to-volume ratio. Solid substrates can impose
different types of alignment or anchoring, the possibilities being planar, homeotropic,
and tilted [6]. Close enough to the substrates surface-induced paranematic phase can
persist even above the nematic-isotropic transition temperature. Planar alignment
in the plane of the confining substrate can be achieved by unidirectional rubbing
of the clean or coated substrate [7-10]. Homeotropic alignment (normal to the
substrate), on the other hand, can be provided by treating the substrate with a sur-
factant [11-13], while tilted anchoring conditions can be achieved through oblique
evaporation of silicon oxide onto glass plates [14]. Alternatively, directionless evap-
oration can result in a substrate with irregular surface topography, acting disorderly
rather than orderly. Similar completely or partially random topography can be
encountered on polymer surfaces, and depends sensitively on the polymerization
parameters [15]. Analogous (dis)ordering effects can be expected also at a free ne-
matic surface, or at the nematic-isotropic interface [16]. Indeed, in a liquid crystal
intermolecular interactions are highly anisotropic, and missing-neighbor effects can
account for the aligning tendencies at such interfaces [17]. The actual preferred
orientation (the easy azis) is intimately related to individual properties and molec-
ular structure of the given nematic species. The free-surface orienting effects are
an intrinsic property of the nematic and are therefore often referred to as intrinsic
anchoring (as opposed to the solid substrate-imposed external anchoring discussed
above).

Under strong confinement, different easy axes at the opposing substrates (as in
a slab) or more complex geometric constraints (in droplets and pores) give rise to
a conflict in determining the average molecular orientation. In other words, the
director becomes spatially dependent, n = n(r), in order to meet all boundary con-
ditions imposed by the confining substrates. Any deviation from the homogeneous
bulk director profile with n # n(r) represents an elastic deformation, accompanied
by an increase in the deformation free energy [18-20]. In addition, if the actual
surface molecular orientation is to deviate from the local anchoring easy axis, this is
also penalized by an increase in free energy [21,22]. Then, the equilibrium director
profile is the one minimizing the total free energy. Unlike in solids, the elasticity
encountered in nematics is referred to as curvature elasticity. While still being able
to flow (and thus unable to resist shear deformations), nematics are able to trans-
mit substrate-imposed torques through the curvature of the director field. There
is no characteristic length scale associated with such elasticity: the elastic distor-
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tion spreads smoothly throughout the sample. In certain geometries, however, the
director field may contain places where the director — for topological reasons —
cannot be defined. Such point, line, or wall-like singularities, accompanied by a
strong variation in the degree of ordering, are called topological defects [4,23,24].

A further consequence of the non-spherical molecular shape is the anisotropy in
the dielectric and magnetic susceptibility tensor of nematics. Consequently, in an
external (electric or magnetic) field an orienting torque acts on nematic molecules,
thereby allowing for a controllable variation of the director orientation [4,20]. At
the same time, the orientation of the optical axis (n) is varied as well, which is the
main effect liquid-crystalline optical devices are based on. Inevitably, external fields
conflict with confining substrates, and — unless extremely strong — they are unable
to reorient the nematic in the very vicinity of the confining wall. The thickness of
this region is given by the electric or magnetic coherence length and decreases with
increasing field strength [4].

Figure 1.3 Scanning electron microscopy pictures taken after removal of the
nematic. (a) PDLC sample with nematic droplets [25], (b) polymer networks
dispersed in nematics [26].

The simplest type of confinement can be encountered in every nematic cell,
including displays, where the liquid crystal is sandwiched between two flat (usu-
ally parallel) plates, or in any thin (also free-standing) liquid crystal film. How-
ever, more recent developments in material science have provided novel confining
matrices, which are attractive both for basic research, as well as for applicative
purposes. Nucleopore and Anopore membranes are thin membranes penetrated by
channels providing cylindrical confinement, the channel radii being of the order of
1 pm [27]. Polymer-dispersed liquid crystals (PDLCs) consist of roughly spherical
nematic droplets, with typical radii from a few hundred Angstrém to well above a
micron, embedded in a polymer matrix [see Fig. 1.3 (a)] [28]. They can be used to
design switchable windows, projection devices, reflective holographic displays [29]
etc. Low concentration polymer networks consist of thin polymer fibers (even nano-
metric in diameter), or of somewhat thicker fiber bundles [see Fig. 1.3 (b)]. They
are capable of orienting the surrounding liquid crystal [30], being useful in building
bulk-stabilized optical switches [31], and even allow for the formation of parane-
matic order [26]. Other types of complex confinement include also filled nematics
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and aerogels, where agglomerates of nanometric silica particles are dispersed in a
nematic host, dividing it into several domains, each with its own local order [5].

Until now, confined systems have been studied extensively both theoretically and
experimentally. Theoretically, most widespread are the analyses performed within
the phenomenological Landau-de Gennes theory, which is based on describing the
rather complex molecular ordering by introducing a macroscopic order parameter.
Then a free energy functional is constructed [16,32] and minimized with respect to
order parameter profiles for the given boundary conditions. The second class of ap-
proaches stems from the statistical mechanics-based density functional theory. Here
the molecular ordering is described in terms of the density and orientational distri-
bution function profiles, the equilibrium being found by minimizing the grand poten-
tial with respect to these profiles [33-35]. Unlike the phenomenological Landau-de
Gennes theory, this approach includes microscopic intermolecular interactions and
is therefore somewhat more fundamental.

With the advent of fast computing machines in the late 1940s, the field of molec-
ular simulations began to burgeon. Indeed, from then on it was possible to simulate
an ensemble of particles with microscopic degrees of freedom, such as particle po-
sition and orientation, and express the simulation output in terms of macroscopic
thermodynamic averages and experimental observables. In such studies, the sys-
tem evolution can be provided either from integrating Newton’s equations of mo-
tion (molecular dynamics simulations [36]), or performing an appropriately weighted
random walk in phase space (Monte Carlo simulations [37]). Both approaches are
based on intermolecular interactions and are in ergodic systems supposed to yield
equivalent results for thermodynamic averages.

Experimentally, polarizing microscopy was one of the first tools used for the
study of liquid crystals [1,2], whereby the sample is put between two crossed po-
larizers and the transmitted light pattern (or just the intensity) is analyzed. The
method relies on the birefringence of the liquid-crystalline material, in particular
on its molecular orientation-dependent index of refraction. It has been successfully
applied, e.g., to distinguish between different director structures in supramicron con-
fined systems [38], to detect paranematic order in a system with dispersed polymer
networks [26], as well as for investigations of defects [23], to name just a few ex-
amples. Similarly, capacitance measurements reckon on the anisotropy of the static
dielectric constant of the material and can therefore give information on significant
molecular reorientation in the sample, such as director switching in an external
field [39]. Yet another experimental technique is the deuterium nuclear magnetic
resonance (*H NMR) [5]. It is extremely powerful for the recognition of nematic
structures, especially in submicron cavities not accessible to optical techniques due
to limitations set by the light wavelength [40]. The method can provide information
on molecular ordering either through spectra governed by the molecular orienta-
tion and order-dependent quadrupolar splitting, or through nuclear spin relaxation
phenomena [5,41]. A further optical technique is the second harmonic generation
(SHG) which is a non-linear optical phenomenon and — contrary to the previous
“bulk” techniques — gives information on molecular ordering in a thin subsurface
layer [42]. Therefore, combined with conventional “bulk” methods, it is suitable for
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investigations of possible subsurface variations in molecular orientation [43]. Sim-
ilar information on molecular alignment in thin films can be extracted also from
the characteristics of reflected or transmitted polarized light in ellipsometry mea-
surements [44]. Information on surface anchoring strength can be deduced from
dynamic light scattering experiments, analyzing the light scattered by collective di-
rector fluctuations in a nematic confined to a cell [45] or to cylindrical pores [46].
Further, calorimetry (i.e., measurements of the heat capacity) has been applied to
study phase transitions, also in confined systems [47].

This thesis aims at covering some selected modeling problems in the physics of
strongly confined liquid crystals. Two main objectives will be followed: (i) a better
understanding of mechanisms driving the nematic ordering close to an interface (still
not fully understood as of now) and (ii) gaining more insight into nematic ordering
in complex (even irregular) types of confinement. The geometries treated here will
include a simple nematic slab [to cover objective (i)], nematic droplets (as encoun-
tered in ordinary and holographic PDLCs, covering objective (ii)], and nematics
with dispersed polymer networks [objective (ii); related systems comprising colloids
and gels|. Especially the two latter confinement types are particularly interesting
also for applicative purposes, as already mentioned. In the analysis, phenomenolog-
ical Landau-de Gennes-type modeling and simple large-scale molecular simulations
will be combined. Therefore, the next Chapter will be devoted to these approaches,
as well as to methods used for calculating selected experimental observables from
the simulation data.

Starting with the simplest type of confinement, Chapter 3 will be dealing with
molecular ordering in a thin nematic slab, giving particular emphasis to variations
of the degree of nematic order, as well as to the resulting intrinsic anchoring and
subsurface deformations. In fact, a number of experimental investigations [43,48-51]
shows that liquid crystal molecules in the surface layer can have an orientation dif-
ferent from that in the bulk material. In some cases this can be attributed to the
variation of nematic order [50,51] and biaxiality [43]. On the other hand, theoretical
predictions about subsurface deformations have been published by different groups,
mainly in connection with the splay-bend (K;3) elastic constant introduced long ago
in the Landau-de Gennes phenomenological description [52,53]. As the splay-bend
contribution to the elastic free energy can be shown not to be bounded from be-
low [54], an additional higher-order term is to be included in the free energy density
for stabilization [55-58], producing a strongly localized (but finite) subsurface defor-
mation. Based on elastic theory and yielding strong deformations, this description
raised many questions and was followed by alternatives avoiding the strong de-
formations [59-61]. Possible variations of the nematic order were not taken into
account, and tacitly the scalar order parameter was assumed constant. More recent
macroscopic considerations indicate that for an ideal flat nematic interface with a
step-like density profile and no order variation K;3 = 0 holds [62-65]. This then
apparently solves the problem of strong subsurface deformations in the macroscopic
description, but does not specify the microscopic source of deformations observed
experimentally. However, a nonzero K3 is recovered if one allows either for a vari-
ation of density close to the nematic interface, or for a variation in the degree of
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nematic order [66,67]. The analysis presented in this Chapter will first focus on
planar deformations, allowing for order (but not density) variations [68], aiming to
explore the coupling between subsurface order variations and elastic deformations
similar to those induced by the splay-bend elastic contribution in case of constant
nematic order. For this purpose, the free energy will be expanded only up to first
spatial derivatives of the order parameter, thereby explicitly avoiding the controver-
sial splay-bend constant. Complementary analyses in a similar system have been
performed also by other authors [50,51,69,70]. In addition, the present analysis will
be extended to twist deformations [71].

The second part of Chapter 3 will still be concerned with the nematic slab, how-
ever, omitting the phenomenological description used in the first part and replacing
it with a simple microscopic hexagonal lattice model presented in Ref. [17]. Accord-
ing to Ref. [17], the essential mechanism in aligning nematic molecules close to an
interface seems to be the competition between intrinsic and external anchoring, the
same conclusion coming also from the density functional approach [72]. Therefore,
in this Chapter intrinsic anchoring will be investigated in some more detail. Like
in Ref. [17], the simple hexagonal lattice model will be considered, which — com-
bined with the spatially anisotropic induced dipole-induced dipole interaction —
can reproduce the intrinsic anchoring at a nematic interface. The current analysis
will be extended to nonzero temperatures, performing Monte Carlo simulations in
the abovementioned model system. In particular, the intrinsic anchoring strength,
including its temperature dependence, will be estimated by imposing a bend defor-
mation in a hybrid cell-like system. In the past, intrinsic anchoring has been studied,
e.g., in a pseudomolecular continuum approach with ellipsoidal molecules [73], ana-
lyzing a nematic-vapor or nematic-isotropic interface for Gay-Berne particles [74-78],
and considering a system of hard ellipsoids in contact with a hard wall [79,80]. The
anchoring energy (if reported) mostly shows that anchoring reproduced by these
model systems is rather strong, exceeding experimental values [6] by one or two or-
ders of magnitude. Moreover, simulations in similar systems yield different anchoring
easy axes for intrinsic anchoring [75,76], depending sensitively on parameters enter-
ing the intermolecular potential [78]. A number of other (zero-temperature) lattice
or continuum approaches has also been devised, mainly to study subsurface defor-
mations in nematics [81-83]. Further, molecular dynamics simulations of particles
interacting via the Gay-Berne potential show a substrate-induced spatial variation
of the nematic scalar order parameter, accompanied by density modulations and
smectic ordering [84-87], seen also experimentally [88,89].

Moving now to more complex confining geometries, Chapter 4 will cover nematic
ordering in spherical PDLC nematic droplets. The molecular ordering in such con-
fined systems is affected by the competition between ordering effects of the polymer
matrix (anchoring) and of external fields, plus by disordering temperature effects.
Depending on the polymer matrix and on the surface treatment methods, different
director structures — including topological defects — can be encountered inside
droplets. The discussion in this Chapter will be limited to radial [40,38] and bipolar
droplets [38,40,90] with homeotropic and planar anchoring conditions, respectively
(see Fig. 1.4). Applying an external electric or magnetic field, additional ordering ef-
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fects can be observed [40,90], and turn out to be of great importance for technical ap-
plications. Experimentally, deuterium nuclear magnetic resonance (?H NMR) [40,90]
and polarizing microscopy [38] are the usual techniques to study PDLCs. From the
theoretical point of view, however, Landau-de Gennes-type elastic continuum ap-
proaches [5] and Monte Carlo (MC) simulations [91] have been widely used to study
PDLC in a variety of physical situations, including ellipsoidal droplets [25,92]. The
simulations were mostly based on the simple Lebwohl-Lasher lattice model [93]. In
particular, the MC technique has proved to be a powerful method not only for in-
vestigating the thermodynamical behavior of confined nematics, but also for the
prediction of quantities directly observable in experiments. The observables simu-
lated to date include static 2H NMR spectra and polarizing microscopy patterns,
thereby bridging the gap between simulation and experiment [91,94]. Chapter 4 will
present a novel and widely applicable methodology for the calculation of 2H NMR
spectra that also starts from MC configurations, but takes into account dynamical
effects as well [95]. These include fluctuations of molecular long axes and transla-
tional molecular diffusion (also spatially inhomogeneous [96,97]). A many-bipolar
droplet sample will also be considered [97]. To conclude this Chapter, external field-
induced changes in spectra will be studied in great detail [98]. Note that analyses
presented in Refs. [99,100] already deliver thorough studies of external field effects in
radial and bipolar droplets, containing also the corresponding 2H NMR spectra, but
none of these studies presents a line shape calculation in the presence of significant
molecular motion.

Figure 1.4 Director configurations in a PDLC droplet: (a) radial, (b) bipolar.

The following Chapter 5 will be concerned with nematic samples containing
dispersed polymer networks. These can be topographically quite irregular and, con-
sequently, this is the most complex confinement type presented in the thesis. Having
a rather high surface-to-volume ratio, even at low network concentrations these com-
posite systems are similar to “ordinary” confined systems with “closed” cavities [5].
Again, apart from exhibiting a variety of interesting ordering and confinement-
related phenomena, composite materials like liquid crystal-dispersed polymer net-
works are promising also for the construction of novel bulk-stabilized electrooptical
devices, which are usually based on the switching phenomenon. This phenomenon
consists of changing the molecular orientation — initially imposed by the polymer
network — by applying an aligning external electric field. Above a certain threshold
the net molecular orientation changes, which can be observed through changes in
optical transmission, electric capacitance, or by 2H NMR spectroscopy [31,39]. Both
the nature of the switching process and the performance of electrooptical devices
are intimately related to the anchoring and ordering conditions at the fiber surface,
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as well as to the topography of the network. These properties can all be regulated
during the network formation process [15,101], and by surface treatment after the
network has been formed. The existing experimental studies were usually accompa-
nied by phenomenological (Landau-de Gennes-type) analyses [5,26,31,39], but so far
almost nothing has been done for such network-like confinement at the microscopic
level. For all these reasons here a thorough microscopic simulation study of the ori-
entational coupling between polymer fibers and the surrounding liquid crystal will
be presented. Again, the analysis will be based on the Lebwohl-Lasher model [93],
focusing on polymer networks with a well-defined fiber net direction (as in Fig. 1.3),
and on effects of roughness at the fiber surface [102]. Furthermore, for homeotropic
anchoring, due to topological constraints defects in nematic ordering can be expected
to form [103]. Their inner structure will then be explored and compared with the
existing phenomenological studies [104,105]. Moreover, the switching process in an
external field will be simulated and the role of network irregularities in switching
characteristics (threshold etc.) will be examined. For a regular polymer fiber ar-
ray (also applicable to model colloidal crystals), a simple stability phase diagram
will be derived for the director structures observed in an external field. Finally,
paranematic surface-induced ordering above the bulk nematic-isotropic transition
temperature will be explored in the system. For practical purposes, the simula-
tion output will be expressed in terms of selected experimental observables, that is
2H NMR spectra, electric capacitance, and transmitted intensity of polarized light.

The final Chapter — the Conclusion — will summarize the main achievements
and findings presented in the thesis, together with open problems and possible future
directions.
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Theoretical background

In this Chapter a brief review of theoretical and simulation approaches for treating
confined nematics will be given, together with selected experimental methodologies
applicable to these systems.

2.1 Phenomenological Landau-de Gennes theory

Unlike in rare gases or idealized solids, in liquids (including liquid crystals) a full
statistical mechanics treatment is highly nontrivial. On the other hand, with present
computing power also molecular simulation studies of macroscopic liquid samples are
still not within reach. In addition, very often the detailed microscopic description
of the system is not even necessary to predict its macroscopic properties sufficiently
well. Therefore, in such cases a phenomenological Landau-type description can be
suitable. Within this description type, an appropriate macroscopic order parameter
must be introduced first. The order parameter is supposed to reflect the micro-
scopic state of the system and should be in agreement with its symmetry. The
equilibrium state of the system is then searched for by minimizing the appropriate
thermodynamic potential with respect to the order parameter.

2.1.1 Nematic order parameter

An isotropic liquid possesses neither positional nor orientational order and has
thereby the highest possible symmetry. The nematic phase, on the other hand,
is orientationally ordered, while positional ordering is still absent. A smectic phase,
however, possesses both orientational and positional long-range order. In the fol-
lowing we are going to omit smectic phases and treat exclusively nematics. Conse-
quently, an order parameter containing information on solely orientational ordering
of molecules will be sufficient to characterize nematics and distinguish them from
isotropic liquids.

Nematics consist of elongated molecules whose orientations can be characterized
by unit vectors u along the molecular long axes. Due to rapid tumbling, the effective
molecular shape is cylindrically symmetric. For the same reason, the molecular
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“head” and “tail” also cannot be distinguished on the average, although the head-
tail symmetry is not an inherent property of such molecules. Consequently, nematic
molecules can be regarded as directionless objects with a well-defined orientation
(note that terms direction and orientation are not used as synonyms here). In a
reference frame where the z-axis is chosen to coincide with the director n, molecular
orientations u for each molecule can be defined by the polar and azimuthal angles, 6
and ¢, respectively, with cos# = n-u. Then the state of molecular alignment can be
described by an orientational distribution function f(6, ¢), giving the probability to
find molecules oriented within a solid angle d2, Q' [ f(0, #)dS2. The distribution
f(0, ¢) should be normalized so that Q! [ f(6, ¢)dQ2 = 1, if integrated over the whole
solid angle. In an unconstrained sample f(#, ¢) is uniazial — axially symmetric with
respect to n — and hence ¢-independent. In such uniaxial nematics f = f(6) can
be expanded as

f(0) = i fuPr(cos), (2.1)

where P,(z) is the nth Legendre polynomial and f, = (2n+1)Q~" [ f(0) P, (cos §)dQ
are the expansion coefficients. The monopole term is a constant, fy = 1, and there-
fore not sensitive to any type of orientational molecular ordering. Hence, higher-
order terms are to be considered in the quest for an appropriate order parameter.
Given the head-tail symmetry of the nematic phase, f(6) = f(m — 6) holds, which
results in f,, = 0 if n is odd and in f, # 0 otherwise. The first nonzero contribution
thus comes from the quadrupolar term

fo =507 / £(8) Py(cos 0)d2 = 5(Py(cos 0)) = 58, (2.2)

defining the scalar order parameter S = (3(3cos®@ — 1)), where the average (...)
is to be performed over an ensemble of molecules. The order parameter defined in
this way is able to quantify the degree of nematic ordering with respect to n: in a
perfectly aligned nematic with u||n one has S = 1, while in the isotropic phase with
f(6) uniform also in 8, (cos?#) = 3 holds and the order parameter vanishes, i.e.,
S = 0. A meaning can be assigned also to negative values of S; S = —% corresponds
to perfect ordering in the plane perpendicular to n. Up to the first nontrivial term
the orientational distribution can now be rewritten as

55

f(@) = 145SPy(cosf) =1+ = [3(n u)? — 1]

(assuming summation over repeated indices), where Q given by
S
Q=§[3n®n—l] (2.4)

is the tensorial order parameter [4] — the quadrupolar moment of the orientational
distribution f(f) — and | the identity matrix. The Q-tensor contains the infor-
mation both on the average molecular orientation n and on the degree of order S.
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Alternatively, nematic ordering can be described also in terms of the symmetric and
traceless ordering matriz [4],

Blu®u) - 1], (2.5)

DO |

Q=

where the eigenvalue with the largest absolute value can be identified as S and the
corresponding eigenvector as n. In the uniaxial case, the other two eigenvalues are
then both equal to —%S and the eigenvectors perpendicular to n.

Under external constraints such as electric and magnetic fields, or severe con-
finement, elastic deformations can break the cylindrical symmetry of the f(6, )
distribution function assumed so far. In addition to the director n, two additional
characteristic directions appear in the system, e; and e,, forming an orthonormal
triad together with n. In such biazial nematics the tensorial order parameter be-
comes somewhat more complicated and reads

S P
Q=3 Bnen-l+Fleoe -—eoel (2:6)

introducing P = %(sin2 0 cos2¢) as the biaziality. Diagonalizing the ordering ma-
trix (2.5) now gives three eigenvalues that are different, S, —2(S+P), and —3(S—P),
the respective eigenvectors being n, e, and e;. The ordering matrix and the Q ten-
sor both consist of nine elements, but are symmetric and traceless by construction,
hence only five out of nine elements are independent. This agrees with the fact that
five parameters are enough to determine the orientational distribution f(6,¢) (up
to the quadrupolar term): the two angles defining n, the scalar order parameter S,
one further angle to determine e; (or, alternatively, e), and the biaxiality P.

The microscopic order represented by the order parameter Q (or by the ordering
matrix) is also reflected in macroscopic quantities like dielectric or magnetic sus-
ceptibility x, as well as in the index of refraction. In an anisotropic medium like
nematics, x is a tensorial quantity and is closely related to the order parameter Q.
Denoting the eigenvalues of x by X1, X2, and x3 (the corresponding eigenvectors
coinciding with e;, e;, and n), one can write

2 S P
x=x|;6nen-n|+xlsE e —eoe)|tu @)
Here x, = x4 — 3(X} + x4) is the anisotropy of the molecular susceptibility, i.e.,
the anisotropy for a perfectly ordered nematic (S = 1), where x}S = xx (recall
that x, are macroscopic parameters obtained at finite temperatures and S < 1).
Further, x, = x{ — x4 is nonzero in case of biaxial ordering (x}P = xx) and
Xi = %(xl + X2 + x3) denotes the average susceptibility, i.e., its isotropic part.

2.1.2 Nematic-isotropic phase transition

In phase transitions matter undergoes changes in microstructure and symmetry. A
phase transition is accompanied by an abrupt change of a macroscopic observable
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like density, electric or magnetic polarization, or similar. While the relevant ther-
modynamic potential — determining the equilibrium state in a system for given
parameters (e.g., free energy F for well-defined temperature, volume, and particle
number) — remains continuous across the transition, its derivatives may not. Phase
transitions characterized by a discontinuity in, e.g., entropy & = —(0F/dT)y, are
referred to as discontinuous (or first-order), while the ones with no discontinuity in S
are called continuous (or second-order). As opposed to continuous phase transitions,
discontinuous transitions present also a discontinuity in the aforementioned macro-
scopic observable playing the role of the order parameter. In addition, the possible
discontinuity in entropy, AS, results in an exchange of latent heat Q@ = T.AS, where
T, stands for the transition temperature. Moreover, metastable states can be found
in the vicinity of discontinuous transitions.

(a)
(b)

AN
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Figure 2.1 Nematic-isotropic transition: free energy vs. order parameter at
different temperatures (a), equilibrium order parameter vs. temperature (b).

The macroscopic observable sufficient to characterize uniaxial ordering in a bulk
nematic sample is the scalar order parameter S introduced in the previous Sec-
tion. Experimental studies have shown that the nematic-to-isotropic transition is
accompanied both by a discontinuous drop in S and by absorption of latent heat [4].
Moreover, metastable supercooled isotropic and superheated nematic phase could
be observed as well. These findings all indicate that the nematic-isotropic (NI) tran-
sition is discontinuous. Following the Landau description of phase transitions, the
free energy density of the system is to be written in terms of the order parameter
in form of a simple polynomial expansion [32]. Close enough to the transition this
expansion converges and may hence contain a small number of lowest-order terms,
that is

fo(S,T) = fi(T) + %a(T —T,)S8* — %BS?’ + 3054 (2.8)
Here a > 0, B > 0, and C > 0 are positive phenomenological material constants,
while 7 is the lowest temperature still allowing for the existence of the supercooled
isotropic phase. Typically, a is of the order of 10° J/m®K, while B and C range
around few times 10° J/m3. Further, f; denotes the free energy density of the
isotropic phase. The expression (2.8) ensures with C' > 0 that F' is bounded from
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below and agrees with the symmetry of the order parameter S. In particular, odd-
order S3-term is allowed because of the non-equivalence of S and —S, while the
linear S-term is prohibited so as to obtain S = 0 in the isotropic phase if external
fields are absent. Unlike constants B and C, the proportionality constant of the
S2-term a(T — T,) is taken to be temperature-dependent and therefore plays an
important role in driving the phase transition. The equilibrium in the system is
then found by minimizing the free energy F'(S,T) = [ fo(S,T)dV [see Fig. 2.1 (a)]
at fixed temperature with respect to S, yielding

0, T>T,,
S(T) = Z(1+1-%(T-T)), T<T. (29)

B2

The full S(T')-dependence is shown in Fig. 2.1 (b). Analyzing the stability of the
solutions given in Eq. (2.9) leads to the following relations: the phase transition
temperature T, is related to T, via T, = T,+2B?/9aC, while the highest temperature
of the superheated nematic phase T, is given by T,, = T, + B2 /4aC'. Therefore,
below T, only the nematic phase can exist. For T, < T' < T, the nematic phase is
stable and the isotropic metastable, and the opposite for T, < T < T,,. Above T,
only the isotropic phase is stable. The stability range for metastable phases is with
T.— T, ~ 1K and T,, — T, ~ 0.1 K relatively narrow, therefore the NI transition
is said to be weakly first-order. Finally, for a transition at 7, from the difference
in entropies of both phases the latent heat is found to be @ = T,AS = %aTCVSE,
where S, = S(T,) and V denotes the sample volume. For a typical liquid crystal Q
is of the order of 10% J/m3, which roughly amounts to only 0.3 % of the latent heat
for ice melting. This is, however, in agreement with the weakly first-order transition
character.

The phenomenological Landau approach [32] relies on a well-defined phenomeno-
logical order parameter. Representing an ensemble average over a certain number of
molecules, due to thermal (spatial and temporal) fluctuations the order parameter
may deviate from its average value. If neither the correlation length of such fluc-
tuations, nor their amplitude is too large, the average value of the order parameter
used for the free energy expansion still seems to provide an adequate description of
the system. Following the more quantitative Ginzburg criterion [106], in a three-
dimensional system order parameter fluctuations are insignificant either far enough
from the phase transition temperature, or in systems involving long-range interac-
tions. In the phenomenological part of this thesis the phase transition will never be
approached and the Landau approach will be applied without any reservation.

2.1.3 Inhomogeneous phases and curvature elasticity

In a confined system, the effect of the solid substrate or a free surface is to impose a
degree of order typically different from the equilibrium bulk value given by Eq. (2.9),
and, as a consequence, S becomes spatially-dependent. If the characteristic length
associated with S-variations is larger than the molecular dimension (typically 1 nm),
the continuum picture of the system is adequate. In other words, the sample can
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be divided into mesoscopic “bins” containing a sufficient number of molecules to
still allow for a reliable definition of the order parameter profile, S = S(r). In such
inhomogeneous samples the free energy density also becomes spatially-dependent
and contains additional gradient terms penalizing variations of S. The simplest
generalization with first-order gradients only (valid for weak enough variations) is
given by

F(r) = Fo(S,T) + SL(VS), (210)
where L is another material constant (L ~ 107'! N). To find the equilibrium S-
profile, the total free energy functional F = [ f(r)dV has to be minimized with
respect to S(r), yielding the Euler-Lagrange differential equation %(%) = (%).
Consider now a simple one-dimensional case where the surface degree of order is
fixed, e.g., to Sy by a single planar wall, while the equilibrium bulk value is denoted
by Sy # Sp. The z-axis is taken to be the wall normal. Writing S(z) = S, + 05(2),
retaining only lowest-order terms in the correction 6S(z) < Sp, and solving the
resulting Euler-Lagrange equation yields 65(z) = (Sy—S,)e~%/¢, thereby introducing
the characteristic length of the S-variation, the correlation length £&. Note that S(z)

is a monotonic function of z. From this calculation, £ is given by

3L
&= \/m(T —T.,) —4BS, + 6CS?’

(2.11)

with S, = 0 in the isotropic phase (" > T.) and S, # 0 following Eq. (2.9) in the
nematic phase (7' < T,). The correlation length £ increases on approaching the tran-
sition temperature 7, from either side, but does not diverge. For a typical nematic,
& can be evaluated to be of the order of ~ 10 nm at 7.. A similar characteristic
length can be derived for biaxiality (P) variations as well.

As soon as the average molecular orientation is subject to spatial variations,
too, it is more convenient to write the free energy density in terms of the tensor
order parameter Q and its gradients. For simplicity, only uniaxial cases will be
treated here, and Q will be given by Eq. (2.4). As free energy is a scalar quantity,
scalar invariants have to be constructed from the Q tensor, the candidates being
the trace and the determinant. At the same time, the free energy expression must
be invariant to all symmetry operations allowed in the high-symmetry (isotropic)
phase possessing full symmetry, including invariance to rotations and reflections.
The tensor trace is then the only scalar meeting these invariance requirements. For
this reason, the homogeneous part of the free energy density (2.8) can be written
in terms of traces of powers of Q, i.e., trQ* = 25%, trQ® = 353, and (trQ?)? = 25%.
Note that the first-order term trQ is absent because it is zero by definition, and that
another fourth-order term is possible, trQ?*, but is just proportional to (trQ?)2. In
absence of external fields, the free energy density for a homogeneous (undeformed)
sample fy (2.8) in tensor notation then reads

£(Q.T) = f(T) + %a(T CT)trQ? — gBter" + %C(trQQ)Z. (2.12)
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In inhomogeneous phases, the Q-tensor components become spatially-dependent. In
the weak deformation (continuum) limit the first-order derivatives Q;;, = 0Q;;/0x
are small quantities. They can be used to construct additional scalar invariants
with proper symmetry, representing free energy contributions associated with elastic
distortions. The free energy density in a deformed sample can now be written
as [4,107]

1 1 1
f(r)=fo(QT)+ §L1Qij,inj,k + §L2Qij,jQik,k + §L3Qij,ink,ja (2.13)

where Ly, Ly and L3 are the “elastic parameters” entering this phenomenological
Landau-de Gennes model. For a deformed state f > fo(Q,T) is expected, therefore
in Eq. (2.13) there are no linear terms in the first-order derivative of Q;;, and,
further, all terms quadratic in Q;;, are assumed to be positive definite. This yields
the following restrictions: Ly > 0 and Ly + L3 > —%Ll [107].

Using the definition of Q (2.4) and taking into account that n is normalized
(n-n =1 and hence n;n; ; = 0), it is possible to rewrite f(r) given by Eq. (2.13) in
terms of the director n and the scalar order parameter S. In the resulting expression
the variations of S and n are highly coupled. Neglecting for the moment variations
of S to treat only curvature elasticity (setting V.S =0 and S = S;), one is left with

f(r) = fo(S,T) + ngQ[(QLl + Ly + L3){(V-n)’ + (n x (V x n))*} (2.14)
+2L;(n- (V xn))’ = (2L + L3)V- (n(V -n) + n x (V x n))]’

or, equivalently, f(r) = fo(Ss,T) + fr(r). Here

LK [V 0]+ Ko In - (V x m)” + K [ x (V x m)]*)

fr(r) =5
—KoyV-n(V-n)+nx(Vxn)] (2.15)

is the standard Frank elastic free energy density [18], and K7j;, Ka, and K3j are
the Frank elastic constants for the corresponding deformation modes: Ki; for splay
with (V - n)? # 0, Ky, for twist with (n- (V x n))? # 0, and K33 for bend with
(nx (Vxn))? # 0; see Fig. 2.2. The last divergence term belongs to the saddle-splay
deformation and is nonzero if n depends on more than one Cartesian coordinate,
introducing the Ky, elastic constant.

(a) (b) (c)
\%OO /ﬂ%
N R cadll /N
Figure 2.2 Frank elastic deformation modes: splay (a), twist (b), and
bend (c).

Comparing Egs. (2.14) and (2.15), following relations are found: K3 = K33 =
2 S2(2L1+ Lo+ L), Koo = 257 L1, and Koy = $5Z(2L1+L3), showing that within this
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approach the splay and bend constants are equal and different from the twist elastic
constant. Only in the special case with L, + L3 = 0, all three Frank elastic constants
have the same value Kj; = Koo = K33 = K = %SZLl (one-constant approzimation),
while the value of the saddle-splay Ky, elastic constant is still different. The typical
magnitude of Frank elastic constants is K ~ 5 x 1072 N. They can be measured
reliably, e.g., by studying elastic distortions in an external field (described in more
detail later) [108,109]. The Ky, constant, on the other hand, can be deduced, e.g., by
investigating three-dimensional structures in capillaries [110], its magnitude being
similar to that of Frank elastic constants.

Mathematically, the saddle-splay contribution is a divergence term and there-
fore does not contribute to the bulk Euler-Lagrange equations, while it modifies the
surface boundary conditions. Another divergence term derived in the past together
with the Ky4 term was the splay-bend term fi3(r) = K13V -[n(V - n)] [52,53]. Unlike
the Ky, term, it explicitly contains second-order derivatives of n and could therefore
not be recovered from Eq. (2.13) containing first derivatives only. It is unbounded
from below unless an additional higher-order stabilizing contribution is added to
the bulk free energy density. In this case it induces a strong subsurface variation of
n [55-58]. More recent studies show that for a step-like nematic density profile at a
flat interface it is canceled by the spontaneous splay contribution K;(V - n) [111],
which is prohibited in the bulk due to inversion symmetry, but allowed in a thin sub-
surface layer whose thickness is related to the range of intermolecular forces [62,65].
Due to its controversy coming from the strength of the subsurface deformation it
produces, the K3 contribution is usually excluded from considerations of confined
Systems.

2.1.4 External anchoring

Phenomenologically, the effect of the bounding interface is to impose a certain degree
of ordering and a preferred average molecular orientation, the easy axis (or, alter-
natively, the “easy” Q-tensor denoted by Qp). Any deviations from the interface-
imposed ordering are penalized by a surface contribution to free energy, which can
— similarly as in the bulk case — be written in terms of appropriate scalar invari-
ants. These are now constructed from the tensor Q; — Qo measuring the deviation of
the actual surface ordering Q, from Qq. The corresponding bulk free energy density
reads

falr) = 5 [t(Qu = Q)* + n{tr(@, - Q)*} ] 8 - ro). (2.16)

Often it is enough to consider the first contribution only, setting p = 0 [22]. Since
the close-packing and van der Waals forces (mainly) responsible for anchoring effects
are relatively short-ranged, f, is regarded as a purely contact term, ry representing
the locus of points defining the interface. The quantity W, has units of energy and
is related to the strength of anchoring. For uniaxial nematics with Qy = %SO (3ny ®
ny—1) and Q, = 15,(3n,®n, —1) the lowest-order term in expression (2.16) reduces
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to a surface free energy density

_ oW,
8

[%Sf + §S§ ~ 25,50{(n, - mp)? - %}] (2.17)

fs

Now ng and Sy stand for the direction of the easy axis and for the surface-induced
value of S, respectively, while n; and S, are their actual surface values. In cases
without S-variation, i.e., for Sg = S; = Sp, the above expression simplifies to

fEP = —% cos? o, (2.18)
retaining the term with angular dependence only. This Rapini-Papoular form [21]
often represents a simple and a good enough approximation for the anchoring en-
ergy. Here cosa = ng - ng has been introduced and « is the angular deviation of
the surface director n, from the easy axis ny. Further, the anchoring strength W
has been introduced as W = 2W,SZ. Typically, values of W range from 10~¢ J/m?
to 107 J/m? [6]. Expressed in terms of the Kléman-de Gennes extrapolation length
K /W (where K is the effective Frank elastic constant) [4], this translates into K /W
between 50 nm and 5 pym. There are several method types for measuring the an-
choring strength, mostly relying on tilting the actual molecular surface orientation
away from the easy axis (for an extensive review see Ref. [6]). This is usually ac-
complished in a cell by applying an external electric or magnetic field, or through
antagonistic boundary conditions at the opposite surface. Other indirect methods
include, e.g., the stability analysis of director structures in nematic droplets [112]
and pores [113], or the study of fluctuation modes in confined systems [45,46].

N

7 9(0)

—> >
Kw 0 z
Figure 2.3 Definition of the Kléman-de Gennes extrapolation length K/W [4].

Imagine now a nematic slab of thickness d, with the z-axis along its normal,
and ¢ denoting the angle between the director n and the sample normal z. Assume
further that the z = 0 surface promotes homeotropic alignment with ¢y = 0 and a
finite anchoring strength, and that the anchoring at the opposite (z = d) surface
is infinitely strong with a different easy axis. In a thick enough sample such a
set-up induces an elastic deformation [114] and the deviation of the actual surface
tilt ¢(0) from the easy axis ¢g = 0 at z = 0 will yield an information on the
anchoring strength. Then, in terms of the ¢(z) profile the total [bulk (2.15) plus
surface (2.18)] free energy per unit surface is given by F = [I fu(2)dz + f, =
L [E K¢?dz + 1 W sin? $(0) (in the one-constant approximation and assuming the
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degree of order not to vary, i.e., S = Sp), the prime ' denoting derivation with respect
to z. Minimizing F with respect to ¢(z), the solution of the Euler-Lagrange equation
d%(%ﬁj) = K¢" = 0 is found to be a linear director profile ¢(z) = C1z + Cp, the
constants C; to be determined from the boundary conditions at both sample walls.
At the z = 0 wall the boundary condition reads (%)zzo = 6‘;—{% or (do/dz),—o =
1(W/K) sin 2¢(0) and represents the surface torque balance condition. This relation
enables one to deduce K /W from estimated (d¢/dz),—o and ¢(0). Note that for small
#(0) (i.e., strong enough anchoring) the above condition simplifies to (d¢/dz),—¢ =
(W/K)$(0) and makes it possible to determine K /W simply by extrapolating the
profile ¢(z) graphically across the sample boundary to ¢ = 0 corresponding to the
homeotropic easy axis (see Fig. 2.3). Note also that if the degree of nematic order
is allowed to vary — which usually is the case near confining boundaries — the
profile ¢(z) may deviate from the linear behavior predicted above. In this case the
extrapolation of the profile towards the surface must be performed from far enough

in the bulk where the order parameter profile is constant.

2.1.5 External fields

If nematic molecules are exposed to an external field, an additional contribution
appears in the bulk free energy density. In the following, the derivation will be per-
formed for magnetic fields, but the procedure for an electric field would be identical.

Denoting the external field strength by H, the resulting magnetization can be
written as M = xH, with the magnetic susceptibility tensor x given by Eq. (2.7). In
case of uniaxial ordering (P = 0) x has only two different eigenvalues, x3 = x5S =
X|| and x12 = X125 = X1, corresponding to directions parallel to the director n
and perpendicular to it. Splitting the field strength into components parallel and
perpendicular to n, one has H; =n(H-n) and H;, = H—n(H-n). Consequently,
the magnetization reads

M=x.H+ (x| —xv)(n-H)n. (2.19)

In an experiment performed in an external field with strength fixed, the additonal
free energy density contribution reads f,, = —uo fOH M - dH (uo standing for the
permittivity of the vacuum) and, taking into account (2.19), becomes

Fu(r) = —% [ H? + () = x0) (- H)?). (2.20)

The second term is orientation-dependent and shows that for positive xS = x| — X
the field free energy is smallest when the director is aligned along H, the field
direction. Similarly, x, < 0 would have resulted in an alignment perpendicular
to H. This orienting mechanism stems exclusively from the nonzero anisotropy x,
and is not present in media where the molecules (and the tensor x) are isotropic.

Denoting the angle between n and H with 3 (cos 8 = n-H/H), Eq. (2.20) can be
simplified to

n(r) = S(H) = SpoxaS H? cos? 5, (221)
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where the orientation-independent term has been denoted by f° (H). Analogously,
in an external electric field E directed at an angle S with respect to n, the field free
energy contribution is given by

fo(r) = fA(E) — %eoeaSE2 cos® 3, (2.22)

where €, = (¢) — €1)/S is the dielectric constant anisotropy and ¢, the dielectric
constant of the vacuum. Note that both f,, and f. are position-dependent through
the 8 = B(r) dependence.

Liquid crystals are — like most organic molecules — diamagnetic: nematic
molecules usually contain aromatic rings capable of carrying magnetic field-induced
currents (see Fig. 1.1). Consequently, both x| and x, are negative and small,
with typical absolute values around 10~7 — 1075, and the macroscopic anisotropy
XaS = X| — x. is also in this range [4]. In the magnetic case one usually has
Xa > 0. On the other hand, in the electric field case the anisotropy of the dielectric
constant comes from the anisotropic molecular polarizability, as well as from per-
manent dipoles associated with strongly polar (e.g., cyano) groups — Fig. 1.1. The
typical values for the dielectric constant are of the order of ~ 5, with ¢, ~ 0.2 (mag-
nitude and sign strongly dependent on the chemical structure of the given nematic
species) [4].

(a) H=0 (b) H (©) H
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Figure 2.4 Semi-infinite nematic sample with planar anchoring in an external
field H applied along the surface normal: undeformed zero-field structure (a),
deformed structure (b), and saturated structure (c).

Imagine now a semi-infinite nematic sample (as shown in Fig. 2.4) whose sub-
strates promote planar molecular alignment, the z-axis being the substrate normal.
Let further ¢ denote the angle between n and the z-axis. In absence of external fields,
one has ¢ = 7/2 throughout the sample [Fig. 2.4 (a)]. However, once an external field
is applied along z, the conflict between the field and the confining substrate produces
an in-plane elastic deformation [Fig. 2.4 (b)]. The minimization of the Frank (2.15)
plus field (2.21) free energy F = [¢° f(2)dz = £ [{°[K ¢ + poXaSs sin® ¢]dz (written
per unit surface in one-constant approximation, again assuming that S = S is con-
stant) yields the Euler-Lagrange equation i(%) = (gé). This equation, if solved
for infinitely strong surface anchoring (i.e., no deviations from the surface easy axis
¢y = m/2 are allowed), gives the director profile ¢(z) = 2arctan(e~%/ém). Hereby
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the characteristic length of the distortion

K
=\ xS 222

called also magnetic coherence length, has been introduced [4]. For z > &, nematic
molecules are aligned along the field and &, can be regarded as the thickness of
the deformed layer. Note that the thickness &, is inversely proportional to the field
strength H: the stronger the field, the smaller &,. In a 1 T magnetic field for a
typical nematic &, can be estimated to be of the order of 10 ym, which means that in
order to align the nematic in submicron cavities external fields of extreme strength
are required. Similarly, the electric counterpart of &, — the electric coherence length
— is given by & = (K/epe,SpE?)V/2.

In cases where the anchoring strength W is finite [and modeled, e.g., by the
Rapini-Papoular form (2.18)], the qualitative character of ¢(z) profiles remains un-
changed (except for the angular deviation from the surface easy axis). Increasing
the field strength, at first the deformed layer gets thinner (§,, decreases), but once
&m drops below the extrapolation length K /W, the anchoring cannot oppose the
aligning effect of the field any longer and the nematic aligns along the field (¢ = 0)
also in the vicinity of the substrates [see Fig. 2.4 (c¢)]. The structural transition
from the deformed to field-aligned structure is continuous and is called saturation
transition [6].

Note that in the semi-infinite sample already an arbitrarily weak external field
can induce the elastic deformation. In a cell with planar anchoring where the ne-
matic is sandwiched between two flat and parallel substrates, however, in weak
fields applied along the cell normal the nematic remains undeformed. The defor-
mation then appears only above a certain threshold field strength that is inversely
proportional to the sample thickness d [108,109], which is a phenomenon known as
the Fréedericksz transition. It is a continuous structural transition whose threshold
can be estimated by studying the stability of the ¢(z) = 7/2 zero-field solution
with respect to small perturbations. Decomposing these into Fourier components,
the component with the largest possible wavelength is found to be destabilized first
(i.e., at the lowest field strength). Expressed in terms of coherence length, for strong
anchoring the Fréedericksz transition occurs at &£ = d/m [4]. For finite anchoring,
however, the threshold shifts towards lower field strengths. For K/W < d, & is
modified to & = (d/7)(1 + 2K/Wd) [6]. Like in a semi-infinite sample, at high
enough field strengths the saturation transition takes place. A full stability phase
diagram for the undeformed, deformed, and saturated structure has been derived
for the slab geometry numerically in Ref. [115].

Choosing an appropriate geometrical set-up (anchoring and field direction), cells
with strong anchoring can be used to measure all three Frank elastic constants
(recall that they also enter £). The switching of the molecular orientation can
be monitored, e.g., by polarizing microscopy and allows for a reliable estimation of
the elastic constants [116]. In cells with weak anchoring, the Fréedericksz switching
experiment was commonly used also to measure the anchoring strength W (a review
of these studies can be found in Ref. [6]).
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Finally, note that even in a large and undistorted bulk sample the external
field modifies the expression for the homogeneous free energy density (2.8). The
additional term is given by Eq. (2.21), and, having set 8 = 0, one ends up with
—% toXaSsH?. Note that this contribution is proportional to Sy, whereby the equi-
librium value of Sj, can be altered by the field [117] and the existence of the nematic
phase can be enforced even above the NI transition temperature [118]. Both effects
can be seen also experimentally.

2.1.6 Topological defects

In a real unconstrained macroscopic sample one almost never encounters the per-
fect homogeneous (undeformed) director pattern, but typically finds a distribution
of arbitrarily oriented nematic domains instead. Wherever these domains meet,
topological defects can emerge. These are points, lines, or walls where there is a
singularity in the director field — the director is not well-defined. The vicinity of
defects is usually characterized by a considerable distortion in the director field,
accompanied both by a significant decrease in the degree of nematic ordering (5) to
avoid the high deformation free energy cost, and by non-negligible biaxiality (P).
Defect-rich configurations in bulk unconstrained samples can be regarded as long-
lived excitations whose free energy is higher than that of the perfectly homogeneous
“ground state”. On the other hand, the formation of defects can be enforced also
by appropriate confinement.

Consider now a two-dimensional case where the director n = n(z,y) is lying
in the zy-plane. Within this plane, let the director be parametrized by the angle
0(z,y), leading to n = (cos@,sinf). The following analysis can be applied without
modifications also to straight defect lines (disclinations). Suppose further that the
defect is located at the origin of the coordinate system. Now imagine a closed loop
encircling the defect. Moving along this loop, the local n rotates and, after having
encircled the defect once, satisfying the continuity requirement for n one finds that
O(o + 2m) = 0(p) + 27m (p here denotes the polar angle in the zy-plane). Here
m is an integer or half-integer number, also called defect strength. Note that the
shape of the closed loop may be completely arbitrary and that no length scale has
been introduced in the problem so far. Therefore, the director field must depend
only on the polar angle ¢ and not on the distance r from the defect center. As a
consequence, n can be parametrized solely by 6 = 6(¢p).

To find the actual director field surrounding the defect, one has to consider the
corresponding free energy contributions. Assuming that far from the defect core the
degree of nematic ordering is almost constant, in the one-constant approximation the
bulk elastic free energy associated with the director field distortion (2.15) is given by
Fy = £ [dV(V#)2. Minimizing F,; with respect to 6(y) yields the Euler-Lagrange

2
equation V20 = 0, whose solution, choosing §(0) = 0, is

0(p) = mo, m=0,+,+1,4+3, .. (2.24)

agreeing also with the continuity requirement for #. The above choice for 6(0) merely
defines the orientation of the coordinate system. Director fields for some defect types
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Figure 2.5 Director fields surrounding topological defects of different strength
m.

are shown in Fig. 2.5. Then, in the polar coordinate system F,; (per unit length)
can be calculated as

K (R o 1 (do\> ,. R
Fd— E/ro TdT/O 7’_2 (@) d(,O—ﬂ'Km 10gga (225)

where R is a characteristic dimension of the confined system and rq the radius of
the defect core where the degree of order cannot be assumed constant. Note that —
ignoring the possible m-dependence in 7, — the elastic free energy of the director
field distortion caused by the defect is proportional to m?2.

In a simplified picture, the core of the defect can be regarded as a tiny region of
a molten-down nematic, i.e., as a completely isotropic liquid. The core free energy
F, per unit length can then be estimated as F, = nr2Af, where Af is the difference
between the free energy densities of the isotopic and nematic phase (2.8). Now the
quantity 7o can be estimated by minimizing F;+ Fy, leading to ro = |m|(K/2Af)/2.
Note that also the core size depends on the defect strength m and that within the
present simple estimate the core free energy is also proportional to m?. Taking into
account the m-dependence in g, the total (distortion plus core) free energy can be
written as [24]

Pb+ﬁ}:wk%f(bg#%—%%) (2.26)
where & is the correlation length associated with the variation of the degree of
order (2.11). In large enough samples with R > £, the core energy can be ignored
in comparison with the elastic contribution. Note that in this case and for low (and
relevant) values of m the total energy Fy + F, is an increasing function of m and
that, consequently, high strength-defects are less likely to form.

If there are two (or more) defects positioned at different locations in the sample,
the overall director field is a linear combination of director fields obtained for sepa-
rate defects (this follows from the linearity of the Euler-Lagrange equation). Then
the free energy for the director field deformation for, e.g., two defects of strength
my and my separated by b is given by [24]

R
ﬂ:ﬁ+ﬁ+%mwmm€, (2.27)
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where F} + F7 is the distortion energy of the isolated defects and the last term
is the “interaction” term. From (2.27) it follows that defects of opposite strength
sign attract (and, eventually, annihilate), while those of equal strength sign repel.
This attraction/repulsion is mediated by the long-range curvature elasticity of the
director field.

Moreover, defects of given strength can split into several lower-strength ones,
thereby maintaining the total defect strength m = >, m;. For example, a —1
strength defect can split into two —3 strength ones. Combining Eqgs. (2.25)-(2.27)
gives

Fy = 1K (m; +my)? logrE —2rKmims logrﬂ (2.28)
0 0

for the deformation free energy of two interacting defects and implies that a pair of,
e.g., —% strength defects indeed is more stable than a single —1 strength one [24].
Here, however, both the defect core free energy and difference in core sizes were
ignored, but more detailed analyses still suggest that it is favorable for a defect of
higher strength to split into several lower strength-ones. Very often a simple “rule
of thumb” for the defect stability analysis is used, according to which the leading
contribution in the corresponding free energy is simply proportional to m?.

2.2 Molecular simulations and lattice models

The second class of approaches addressed in this thesis will be based on simple
microscopic models of the nematic, starting from a given interparticle pairwise in-
teraction law. Such approaches become inevitable if one is interested, e.g., in per-
forming detailed studies of phase transitions accompanied by significant fluctuations
of the phenomenological order parameter, studying cases where the order parameter
shows spatial variations too strong to be accommodated within continuum theories,
or, simply, if one is merely interested in relating a certain parameter entering the
intermolecular potential with macroscopic observables.

2.2.1 Lebwohl-Lasher model

On the molecular level, two main interaction types are responsible for the formation
of the nematic phase. The first type is the pure steric intermolecular repulsion,
with no long-range attraction. In fact, if the particle density in a system of strongly
elongated molecules is increased, following Onsager a nematic-to-isotropic transition
takes place [119]. On the other hand, a temperature-driven first-order nematic-to-
isotropic transition was shown to happen (by Maier and Saupe) also in a system
of molecules with a large anisotropy in the molecular polarizability resulting in
anisotropic attractive dispersion (van der Waals) forces [120,121]. To overcome the
mean-field approximation used in Refs. [120,121], a simple microscopic lattice model
was put forward by Lebwohl and Lasher, evolving into a computer simulation study
of the nematic-isotropic (NI) transition [93,122]. The lattice approximation was par-
ticularly suitable for the pioneering computer studies because of its computational
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Figure 2.6 Lebwohl-Lasher lattice model of a nematic: particles u; attached
to a cubic lattice of spacing a.

cheapness in comparison to the off-lattice models. With the enormous increase of
the computing power in the past decades, lattice models are still appealing because
they facilitate the performance of large-scale simulations, as well as simulations in
medium-size systems for a broad range of physical parameters.

In the framework of the Lebwohl-Lasher (LL) lattice model uniaxial nematic
molecules are represented by particles that can rotate freely, but are arranged into
a simple cubic lattice with spacing a (Fig. 2.6). Thereby there are no translational
degrees of freedom in the system, but despite this the model can be seen to reproduce
the orientational behavior well enough. Equivalently, particles may also be regarded
as close-packed molecular clusters (consisting of up to 10? molecules), maintaining
their short-range orientational order in the relatively narrow temperature existence
range of the nematic, as well as across the NI phase transition [94,100]). Supposing
that the effective volume occupied by one molecule is ~ 1 nm?, the lattice spacing
a can be estimated by a S 5 nm.

The orientation of the particle located at the ith lattice site is denoted by a
three-dimensional unit vector u;. The particles 7 and j then interact through a pair
potential given by

Uij = —GijPQ(COS ﬁ”) = —€jj [g(uz . 11j)2 - %], (229)
where €;; = € is a positive constant (of the order of ~0.02 eV) if ¢ and j are nearest
neighbors, and ¢;; = 0 otherwise. Further, P, is the second-rank Legendre polyno-
mial and S;; the angle between u; and u;. In this sense the LL model is similar to
the Heisenberg model used for modeling magnetic systems, yet accounting also for
the head-tail symmetry encountered in nematics. The effect of the interaction (2.29)
is to align neighboring particles parallel to each other and is at low enough temper-
atures sufficient to induce nematic ordering.

Simulating bulk systems, standard periodic boundary conditions are usually ap-
plied [93,122,123]. An improved “cluster” boundary condition has also been devised
where particle orientations at the simulation box surface are sampled from a dis-
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tribution with the same value of the order parameter S as calculated for particles
inside the box [124]. On the other hand, in confined systems a certain fraction of
nematic particles (the “ghost” particles) is used to fix the boundary conditions. For
example, to model a PDLC droplet, a jagged sphere is carved from the cubic lattice
by considering all molecules lying closer than R (the droplet radius) to the chosen
center [91]. Then the interaction with the confining polymer substrate is mimicked
by assuming an additional layer of ghost particles whose orientations are chosen in
accordance with the desired boundary conditions and are kept fixed during the sim-
ulation [125]. Both nematic-nematic and nematic-ghost interactions are modeled by
the interaction law (2.29), but the interaction strengths ¢;; are not necessarily equal
for both interaction types.
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Figure 2.7 Bulk Lebwohl-Lasher system: temperature dependence of reduced
internal energy U* = U/e (a) and scalar order parameter S (b). The NI phase
transition occurs at T* = kgT/e = 1.1232 in reduced units, as indicated by
the arrows [123].

Performing Monte Carlo simulations (described in more detail later in this Chap-
ter), it was shown that the LL model reproduces a weakly first-order NI transition in
a bulk system — a large sample with periodic boundary conditions [93,123] — while
in confined systems (e.g., droplets) of sufficiently small size the phase transition is
suppressed [126,127], which is in agreement with experimental data. The tempera-
ture dependences of the total internal energy U = ;. U;; and of the scalar order
parameter S are shown in Fig. 2.7. A biaxial version of the pair potential (2.29) has
also been devised, leading to a biaxial nematic [128].

The LL model can be easily modified to account for external field effects as well.
Following the same physical reasoning as in Sect. 2.1.5, the coupling energy of each
nematic particle u; to an external (electric or magnetic) field can be modeled by

3 1

Uif = —67’]P2(COS ,BZ) = —en[i(uz . f)2 —_ 5], (230)
where f is the unit vector giving the orientation of the external field and f; is the
angle between f and u;. Further, n is the constant describing the strength of the
coupling with the external field. In the magnetic field case the dimensionless 7 is
defined by en = x,VoB?/30, where B ~ poH stands for the magnetic induction,
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Xa = (X|| — x1)/S again denotes the anisotropy of the microscopic magnetic suscep-
tibility (|| and L referring to the direction of u;), and V; stands for the volume of
space occupied by one nematic particle (see, e.g., [99]). For n > 0 (x, > 0) nematic
particles are aligned along f. Matching aligning effects in the electric and the mag-
netic field, for a given nematic species one can translate any magnetic field strength
(or B) into an equivalent strength of the electric field (E) [99]. In the electric case
one then has en = €,60VoE?/3, where ¢, = (e —€1)/S.

2.2.2 Hexagonal lattice model

The Maier-Saupe theory [120,121] has been devised from anisotropic van der Waals
forces in the mean-field approximation that can be believed to work well deep enough
in the bulk. The Lebwohl-Lasher model [93] goes beyond the mean-field approxi-
mation, but still assumes the interparticle interaction to promote strictly parallel
alignment, regardless of the relative position of particles. While certainly reasonable
in the bulk, close to a confining substrate such a simplified picture is not necessarily
appropriate. Therefore, in what follows, anisotropic van der Waals forces will be
reconsidered, leading to a generalization of the interaction law (2.29): the induced
dipole-induced dipole interaction.

In a simplified picture, a nematic molecule can be thought of as an elongated
and electrically neutral cloud of positive and negative charge. Due to thermal fluc-
tuations, centers of mass for the positive and negative charge do not overlap. The
characteristic time for these charge fluctuations is much shorter than the times asso-
ciated with the reorientation of the molecule as a whole. Then, in a given moment,
in the molecule an instantaneous electric dipole p, is created whose time-averaged

value equals zero. However, during its existence p, gives rise to a dipolar electric
field

E(r) « l[3(1";7'2]?)]?

3 —pe- (2.31)

The electric field (2.31) polarizes neighboring molecules, thereby inducing electric
dipoles p,(u’,r), where r and u’ denote molecular positions and orientations, respec-
tively, and r = |r|. Assuming that nematic molecules are on the average uniaxial,
the molecular polarizability tensor o has only two different eigenvalues, o) and a,
referring to an electric field aligned along the molecular long axis u’ and perpendic-

ular to it, respectively. The dipole moment p, induced by the electric field E(r) can
now be written as

p,(u,r) =aBE(r) = o, E(r) + (o) — a1 )(E(r) - u')u’ (2.32)
and the corresponding interaction energy as
U=-p,(u,r) E(r) < —a, B2 — (g — ) (E(r) - u) (2.33)

Note that the molecular orientation-dependent term E(r) - u’ enters Eq. (2.33) as
a square and therefore always yields a nonzero average if averaged over rapid ther-
mal fluctuations of the molecular charge (and p.), regardless of the fact that the
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instantaneous p. is actually averaged to zero. Further, given a high anisotropy of
the molecular polarizability with a) > ., one can assume that the most probable
orientation of the instantaneous fluctuation-induced p. is along the molecular long
axis u. Then, taking the expression (2.31) for the dipolar field E(r), the orientation-
dependent part of the interaction energy is given by

€ r r\12
U(u,u',r) = —7_—6[u-u'—31/(u- ;)(u’;)] : (2.34)
Here v — the interaction anisotropy parameter — has been introduced: for v =1
the expression (2.34) represents the induced dipole-induced dipole interaction, while
for v = 0 it reduces to the Maier-Saupe interaction used in the LL model. The
magnitude of interaction strength €’ is similar to that of e introduced in Eq. (2.29)
for the LL model. Having assumed «j > o, € is positive and the interaction is
attractive. It is also decreasing rapidly with the interparticle distance r. Unlike the
Maier-Saupe interaction law used in the LL model (2.29), the interaction energy
U is a function not only of the particle orientations u and u’, but also of their
relative position r, and is therefore spatially anisotropic. The anisotropy parameter
v allows one to continuously vary the importance of the anisotropic (r-dependent)
contribution in the interaction law (2.34). Then, a nonzero v results in orienting
effects at the sample surface [17,81] and in an anisotropy of Frank elastic constants.
In fact, the Maier-Saupe interaction corresponds to the one-constant approximation,
while for v # 0 the twist elastic constant is different from the splay and bend
ones [129].

Figure 2.8 Simple hexagonal lattice model.

Having a spatially anisotropic pairwise potential, a question should be posed as
to whether discrete lattice models can still be used together with such potentials. In
principle, in this case artificial lattice approximation-induced bulk easy axes could
appear, depending on the lattice geometry. Indeed, the effect of the LL potential
is merely to impose parallel alignment of neighboring particles, regardless of their
relative position, and for this potential none of the lattices imposes any bulk easy
axes. Using the induced dipole-induced dipole interaction together with, e.g., the
simple cubic lattice (as in Ref. [81]) is inappropriate because easy axes appear along
the three main lattice directions. Then the model is not capable of reproducing
the soft curvature elasticity in the bulk and is hence useless for studying nematics.
Alternatively, one can use the simple hexagonal lattice — see Fig. 2.8. In this case,
for in-hexagonal-plane molecular alignment, on the average bulk easy axes can be
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seen to vanish [17], and planar elastic deformations in nematics can be treated
appropriately with this model system. The most striking leftover from the lattice
approximation is the existence of periodic solid-like solutions for the director profile,
which — at low enough temperatures — are more stable than the smooth nematic
ones [17]. One can avoid, however, these difficulties by reducing the anisotropy
parameter v to below v & 0.3. Then solid-like solutions disappear and the smooth
nematic ones become stable, while the spatially anisotropic interaction character
is still retained since v # 0. In fact, for v S 0.3 side-to-side molecular alignment
is favored (similar to that of the Gay-Berne interaction [130]), promoting parallel
ordering. This result is compatible with the one obtained in the mean-field analysis
by Maier and Saupe, as well as with the behavior of the LL model. However, while
disguised in the bulk, the anisotropic interaction character reappears in form of
orienting effects close to the sample surface (absent in the LL model), which can
be interpreted as intrinsic anchoring. To cover these phenomena qualitatively, it is
sufficient to consider nearest-neighbor interactions.

2.2.3 Monte Carlo simulation technique

This Section will be devoted to Monte Carlo simulations that can be applied to the
above model systems for finding equilibrium molecular configurations, as well as for
the calculation of macroscopic observables.

While molecular dynamics simulations aim at mimicking the “natural” dynam-
ics of the simulated system, the system evolution provided by Monte Carlo-type
simulations is different. Molecular dynamics consists of the brute-force step-by-step
solution of Newton’s equations of motion, thereby tracing the system in time, which
corresponds to a realistic experimental situation. In this case it is possible to calcu-
late time averages of thermodynamic quantities (A). On the other hand, the Monte
Carlo method can be interpreted as a procedure for sampling many-particle config-
urations from the statistical ensemble. This method then enables one to calculate
ensemble averages (A). Then, assuming that the ergodic hypothesis for a given
system holds (A = (A)), both molecular dynamics and Monte Carlo techniques
should yield equivalent results for the averages of interest. However, the advantage
of Monte Carlo methods is that — in contrast to molecular dynamics simulations —
they do not require any calculations of forces and torques. Moreover, in highly sim-
plified model systems like the lattice ones (“non-natural” by construction), Monte
Carlo simulations seem to be the method of choice.

In lattice models the microscopic state of the system consisting of N particles
is univocally defined by specifying all particle orientations u;. In the N-particle
configuration space the set of all orientations u; can be given by a single long vector
u”. In the LL model system (Sect. 2.2.1), for example, the Hamiltonian H(u”) in
presence of an external field reads

H(u) = —6(2 Py(u;-u;) —end Py(u; - ), (2.35)

1<j) =1

the first sum -, ;) to be taken over nearest neighbors only. The aim is to calculate
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the ensemble average of a given quantity A(u’")

[ duM A(uV) e 0T
[ dul e-PHEY)

(A) (2.36)

where 37! = kgT, kg being the Boltzmann constant and 7' the absolute temper-
ature. Straightforward integration of expression (2.36) is doomed to failure. This
is because the integration area — the configuration space — becomes enormously
huge with the growing number of particles. Moreover, when integrating, most of the
time is spent in regions where the Boltzmann weight e AHOUY) g negligibly small.

Obviously, the direct evaluation of integrals like Z = [ du® e FH(EY) (the par-
tition function) is not possible. However, when one calculates (A), merely a ratio
of two integrals of that kind is to be found. In other words, it is enough to know
the relative probability of sampled states rather than the absolute one. This is the
underlying idea of the Metropolis algorithm [37] for calculating (A), described in
what follows.

Suppose now that one is able to generate random points in configuration space
according to the canonical probability distribution A(u") oc e=#%("") character-
izing systems with well-defined temperature. Suppose that L points have been
generated. The number of points per unit volume in the neighborhood of the point
ul is ny, = LN (u}). The average (A) can now be calculated as follows:

<mz%;mmﬁy (2.37)

In this way one chooses (samples) only important states (i.e., those having a high
Boltzmann weight). The sampling scheme is hence called importance sampling.

Now an algorithm is needed to generate the L sample points ul according to the
scheme just introduced. Instead of generating all of them at once, one can simulate a
random walk in configuration space, producing a trajectory of states that obeys the
probability distribution AM'(u”). Let the random walk start with the configuration
u”, referred to as “0” (old). Now generate a new trial configuration u'", labeled
as “n” (new), by adding a random displacement to u”. The probability for such a
move to occur is denoted by m(o — n). It is a product of the probability to generate
such a trial move a(o — m), and the probability to accept it acc(o — n). The
sampling scheme described by the probability matrix 7 must necessarily be ergodic,
i.e., the scheme must be able to reach every accessible point in configuration space
in a finite number of steps from any other point of that space. Here it has already
been assumed that the simulated system is ergodic in itself.

The old and new states have a different Boltzmann weight factor and thus differ-
ent probabilities N (0) and N (n) of finding the equilibrated system in one of these
states. If N(n) > N(0), i.e., the new state is more likely, the move should auto-
matically be accepted. Otherwise, it should be accepted with a certain probability
depending on both M(n) and N (o). To find this acceptance criterion, one has to
notice that the transitions o — n and n — o should not destroy the equilibrium
probability distribution A'(u”) once it has been reached. Thus, the number of moves
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o — n must be exactly canceled by moves n — o, which gives rise to the detailed
balance condition:

N(o)r(o — n) = N(n)m(n — o). (2.38)

Assume that a(o — n) = a(n — o), i.e., the moves 0 — n and the reverse move
are attempted with equal probabilities. Then one can rewrite the detailed balance
condition as

acc(o — n) _ N(n) — o BlH(n)—H(0)]
acc(n = o)  N(o) '

Consequently, the above procedure is in agreement with the detailed balance con-
dition if the acceptance probability in trial moves with N (n) < N(o0) is set to
acc(o — n) = N(n)/N(0) = e PP)=HO)] At the same time, for trial moves with
N(n) > N(o), acc(o — n) = 1 must hold. Summarizing, a basic Monte Carlo
algorithm for a N-particle system has the form:

(2.39)

1. Take the configuration u¥; calculate its energy H(u) = H(o).

2. Select one particle from the old configuration at random; move the selected
particle randomly to obtain the new trial configuration u’V; calculate the
energy of the new configuration H(u'") = H(n).

3. Accept the move u¥ — u'’V (0 — n) with a probability
acc(o — n) = min [1, e‘ﬂ[%(")_m")]].
4. Return to step 2 of this algorithm.

At each step of the algorithm the quantity A, whose average is to be evaluated, has
to be sampled. It must be stressed that a sample must be taken also if the trial
move has been rejected since m(0 — 0) =1 -3, ., (0 = n) # 0. Not sampling A
in such cases can result in non-negligible systematic errors.

Moreover, the instantaneous value of the quantity A is subject to fluctuations.
Also the fluctuations of A can, beside the average (A), yield some interesting
information. For example, in the canonical ensemble considered above, fluctua-
tions of the total energy H are related to the specific heat Cy at constant volume
02, = (H2) — (H)? = kyT°Cy.

The ensemble average (A) is due to fluctuations accompanied by an error AA.
Suppose that one has performed M simulation steps and sampled A M times. As the
period of a fluctuation is usually several simulation steps (typically of the order 10?),
all M samples of A are not uncorrelated. Let 7 be the corresponding correlation
time (measured in units of steps). Since M /7 is then approximately the number of
independent sample points taken, the error of (A) can be written as

AA~ o4/ % (2.40)

o 4 standing for ((A?) —(A)?)'/2. If (A) x N, 0.4  v/N holds, and the relative error
AA/(A) decreases with the increasing number of particles as 1/v/N. Moreover, it
decreases also with the number of Monte Carlo steps as 1/v M.
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There is also the issue of how to generate trial moves — the u; reorientations.
For instance, the Lebwohl-Lasher model simulations presented in this thesis have
followed the Barker-Watts technique [131]. It was first applied to perform simu-
lations of water structure [131], but was then used extensively together with the
LL model. In all cases it proved to ensure appropriate and ergodic sampling in
configuration space [91]. The technique consists of selecting an individual particle
at random, then selecting one of the three fixed coordinate axes in the Cartesian
laboratory reference frame (again at random), and performing a rotation of the unit
vector u; around the chosen axis. The rotation angle and direction are also chosen
at random, the maximum rotation magnitude being an important simulation pa-
rameter. Indeed, if the moves are too small, the random walk will visit only a small
fraction of the configuration space and the estimate for (A) will be poor. On the
other hand, if the trial move is too large, it is very likely to be rejected due to the
low probability V' (n) of the new state. Although more sophisticated criteria for the
selection of the trial move magnitude exist, here a “rule of thumb” will be adopted,
stating that on the average 50% of attempted trial moves be accepted. Instead of
performing individual trial moves, collective moves involving several particles can
be performed as well. Efficient collective moves can, however, be constructed only if
the displacements of individual particles are not chosen independently, but follow,
e.g., Newton’s equations of motion as in molecular dynamics simulations, leading to
the hybrid Monte Carlo technique.

Performing Monte Carlo simulations with the hexagonal lattice model (Sect. 2.2.2),
a procedure similar to that used for the LL model can be adopted. The main differ-
ence between the two models comes from the fact that here nematic particles must
be prevented from moving out of hexagon planes, thereby avoiding bulk easy axes.
Again the Metropolis algorithm can be applied, however, the generation of trial
moves has to be reduced to a simple particle rotation, so as to meet the in-plane
constraint for particle orientations.

Another important topic are the initial conditions. In an ergodic system, after
equilibration the simulation results are supposed not to be initial configuration-
dependent. Yet some caution is necessary whenever the system can be trapped in
metastable states (especially if the simulation run is too short).

Finally, it is necessary to specify the quantity A to be sampled during the MC
evolution provided by the Metropolis algorithm. In analyses of confined nematics, it
is convenient to accumulate the ordering matrix ¢) components (2.5) to obtain the
order parameter, biaxiality, and director maps. Further, one can define and accumu-
late Py = 1(3(v-u;)? — 1);, where v is a fixed unit vector (also spatially-dependent,
if needed), quantifying the degree of order with respect to a given direction (v)
or a given pattern v = v(r). Moreover, various types of positional and orienta-
tional correlation functions can be sampled (only the latter being relevant in case
of lattice models). Another important class of observables are the ones detectable
experimentally. Some of the examples are 2H NMR line shapes, electric capacitance,
and transmitted polarized light intensity. They will be discussed in more detail in
Sect. 2.3 and later on.
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2.3 Experimental observables

An essential part of any theoretical or simulation work is to bridge the gap between
these approaches and experimental observables. Attempting to do this, from the
broad variety of experimental techniques listed in the introductory Chapter, here
three will be treated in more detail: deuterium nuclear magnetic resonance, mea-
surements of electric capacitance, and measurements of light intensity transmitted
through a sample between two crossed polarizers.

2.3.1 2H NMR

Deuterium nuclear magnetic resonance (*H NMR) is a powerful technique, frequently
applied to investigate confined nematics such as PDLC and systems with dispersed
polymer networks [25,40,132,133]. The technique is very convenient for the study
of such heterogeneous systems since, if applied to deuterated nematics, it only gives
direct information on the behavior of the confined liquid crystal — rather than on
the non-deuterated confining matrix. Further, it is applicable also for small, i.e.,
submicron cavities, where optical methods fail to yield useful information because
the light wavelength is too large in comparison to the cavity diameter. Moreover,
2H NMR spectra can give a complete idea about orientational molecular ordering,
that is both about director configurations and dynamic processes like fluctuations
of molecular long axes and translational diffusion.

z

Figure 2.9 2H NMR and geometry: u molecular long axis, n nematic director,
and B spectrometer magnetic field.

A ?H NMR spectrum of a selectively deuterated nematic in the bulk isotropic
phase consists of a single line whose position in the spectrum is determined by the
Zeeman splitting of deuteron energy levels in the spectrometer magnetic field. The
corresponding line width is well below 27 x 100 Hz. Since deuterons possess a
nonzero quadrupolar moment and interact with the electric field gradient (EFG) of
C—2H bonds in nematic molecules, there is an additional quadrupolar perturbative
contribution to their energy levels. This contribution is averaged out by molecular
motions in the isotropic, but not in the nematic phase. Indeed, once in an undis-
torted nematic, the single narrow line splits into a doublet, the frequency splitting
now being typically of the order of wg ~ 27 x 40 kHz. In general, the splitting wq
depends on the relative orientation of the EFG tensor and the direction of the NMR
spectrometer magnetic field B.
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In deriving the expression for wg, one usually assumes that nematic molecules
exhibit fast rotations, mainly around the long molecular axis. These occur on a time
scale much faster than any other motion type and lead to an averaged EFG tensor
that is uniaxial, with the principal axis along the long molecular axis u. The instan-
taneous quadrupolar frequency splitting so depends only on the relative orientation
of u and B, and is given by Qg = 0w 3 [3(u- B/B)? — 1], where dwg represents
the maximum effective splitting (averaged over fast molecular rotations). In a ne-
matic, however, molecular long axes u are not fixed and fluctuate also themselves
around the director n. An average over these fluctuations can be easily performed
only if they are also rapid enough on the NMR time scale given by ¢y ~ 27 /dwg and
results in a reduction of the quadrupolar splitting. Neglecting biaxiality in molecular
ordering, this effective splitting can be written as (see, for instance, Refs. [5,134,135])

3cos? — 1]

(UQZZE&AJQS[ B

(2.41)
where S = (£[3(n-u)?— 1]) is the usual uniaxial nematic order parameter (2.2) and
6 the angle between the local director n and the spectrometer magnetic field B (see
Fig. 2.9).

In a confined system, both n and S become position-dependent. Since the NMR
spectrum corresponds to the overall response of all molecules in the sample, the
n = n(r) and S = S(r) dependences reflect in NMR spectra via the spatial depen-
dence of the local value of the quadrupolar splitting wgy = wg(r). The resulting
characteristic spectral patterns make it then possible, e.g., to distinguish between
different structures inside PDLC droplets, or to monitor the switching of the molec-
ular orientation in a nematic with dispersed polymer fibers. The identification of di-
rector configurations can, however, become very problematic in small cavities where
translational self-diffusion significantly affects the 2H NMR line shape.

One of the ways to calculate spectra is a simple superimposition of individual
molecular static Lorentzian lines from all over the sample, positioning them into the
spectrum either according to n(r) and S(r) profiles [136], or according to molec-
ular configurations obtained from MC simulations [94,99], in both cases following
Eq. (2.41). Note that such a procedure is correct only in absence of significant dif-
fusive motion or, alternatively, in systems where the confinement is less severe and
the spatial dependence wg = wg(r) is weak.

To properly take into account any kind of motional effects, it is convenient to use
a semiclassical approach with the time-dependent deuteron spin Hamiltonian [135].
This approach consists of generating the relaxation function

G(t) = expliwozt) (exp (i | "Qqlri(#), ¢ dt)) (2.42)

with Qq[r;(t), t] = +6wg 3 [3(u; - B/B)? — 1], the “instantaneous” quadrupolar split-
ting [not to be confused with wg from Eq. (2.41) where an average over fluctuations
of u; has already been performed]. Further, in Eq. (2.42) w; denotes the Zeeman
frequency, while the brackets (...); stand for the ensemble average over all molecules
in the sample. The resonance frequency of the 7th molecule located at r; is given
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by wz + Qglri(t),t] and depends on time (¢) through w; = u;[r;(¢),¢], i.e., the in-
stantaneous orientation of the molecular long axis. Generating G(t) is equivalent to
mimicking an actual pulsed-NMR experiment. In fact, placing the nematic sample
into the spectrometer magnetic field B gives rise to a net magnetization M along
B, coming from %H spins. Then, applying a so-called 7/2 magnetic field pulse with
a coil mounted perpendicular to B, M is switched into a plane perpendicular to B.
Now, to withstand the torque exerted by B, M starts to precess (still in the plane
perpendicular to B if spin-lattice relaxation phenomena are neglected). Then, in the
coil (same as used to apply the 7/2-pulse) a periodic induced voltage is detected and
coincides with the relaxation function G(t) introduced above. Then the ?H NMR
line shape I(w) is calculated as the Fourier transform of G(t), namely

I(w) = / ¢t G(t) dt. (2.43)

This procedure for calculating I(w) can establish a correct link between any type
of molecular motion and the spectra. The information on the motion enters G(t)
via the uw; = wuy[r;(¢),t] dependence. The motion is dominated by two processess:
fluctuations of molecular long axes and translational self-diffusion. Neglecting for the
moment the diffusion, the coordinates of a given molecule r; can be taken as fixed and
time-independent during the G(t) acquisition. The long molecular axis u;, however,
still fluctuates around the local average, i.e., the director n(r;), and thus still depends
on t. Hence, the time dependence in {1y is caused solely by u; fluctuations, while
the average u; (the director) remains unchanged. The characteristic time scale for
such fluctuations ¢ in a typical liquid crystal is of the order of ~ 10~® s and is much
shorter than the typical NMR time scale ty ~ 2.5 X 107° s [41]. If now translational
diffusion is considered as well, also the molecular coordinates change during the
NMR experiment: r; = r;(¢). Thereby the average u; for a given molecule changes
with time since — in a confined system — n = n(r;). Then the instantaneous
Qo depends on t also indirectly through r; = r;(t). The typical time scale tp for
diffusion to yield a molecular displacement of approximately one molecular length
(~ 1 nm) is, like tg, also of the order of ~ 1078 s [41]. It is, however, more relevant
to know the time ¢}, needed for molecular diffusion to yield a displacement over
which the average molecular orientation n(r) changes noticeably. The time scale ¢/,
obviously varies with system size and can become much larger than ¢p, especially
in systems where the confinement is weak.

In order to estimate how dynamic processes influence the spectra, it is necessary
to compare their characteristic time scales to the characteristic NMR time scale ;.
If the molecular motion is sufficiently slow on the t; time scale, the spectra can be
calculated as I(w) = (6w — wz £ |wg(r;)|]); [40], i.e., it is possible to use the static
approach used in Refs. [94,99]. If, at the other extreme, molecular motion is very
fast on the ¢y scale, the spectrum is completely motionally averaged and consists of
a sharp doublet I(w) = 6[w —wz £ [{wg(r;));:|] whose peaks are positioned at average
frequencies wy =+ |{we(r:))i| [40].
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2.3.2 Electric capacitance

Alternatively, confined nematics can be studied also by electric capacitance mea-
surements. As already discussed, the anisotropic shape of nematic molecules gives
rise to an anisotropy in the dielectric constant. In an external electric field E the
dielectric displacement D can be written as D = ¢ye E, where € is the dielectric
constant tensor. Therefore, for a given E the displacement D and the effective value
of the dielectric constant depend on the relative orientation of the principal axes of €
(being in an intimate relation with the director n) and E. As a consequence, a mea-
surement of electric capacitance can yield information on the orientation of nematic
molecules, i.e., n. Inversely, capacitance can also be predicted from known direc-
tor profiles derived phenomenologically [39], or directly from molecular simulation
providing configurations of molecular orientations u(r).

Consider now a nematic slab of thickness d between two capacitor plates where an
external electric field E is applied along z, the unit vector along the sample normal,
while the plates are parallel to the zy-plane. For simplicity, it will be assumed that
the local electric field is everywhere directed along z. Although in an inhomogeneous
dielectric sample this is not strictly true, a full solution of electrostatic Maxwell
equations to determine the correct E(r) dependence is beyond the scope of this
analysis. Given the above assumption, one can write for the normal component of the
dielectric displacement at the site of each molecule D,(z,y) = eoe(x, y, 2) E,(z,y, 2),
where the molecular €(z,y, z) is defined as

€(@,y,2) =€, + (¢ — € )(u- z)%. (2.44)

Here efl and €| denote the eigenvalues of the molecular dielectric tensor, and u
stands for the orientation of the long molecular axis. Following the Gaufi theorem
$sD - dS = 0 in absence of free (e.g., ionic impurity) charges, and provided that
spatial variations of u within the xy-plane are weak, for given x and y D, can
be taken to be z-independent. Then D, has to be same both for z = 0 (at the
sample surface) and for any other value of z, resulting in €(z,y,2)F,(z,y,2) =
€(z,y,0)E,(z,y,0). Moreover, the voltage VV across the sample is independent of
where at the plates it is measured, ie., V = f(ji E,(z,y,z)dz = fod E.(0,0,z)dz. At
the same time, the electric charge loaded onto a a x b portion of the capacitor
plates is given by e = [ dz [*dy D,(x,y). Assembling all the above relations, the
capacitance of the sample can be identified as

e a b d s -t

This formula can be interpreted as follows. The aforementioned assumptions are
equivalent to replacing the sample with a circuit of small capacitors, each with its
own capacitance proportional to €(z,y, z). These capacitors are connected in series
along the z-axis and, after this, these capacitor series are connected in parallel within
the zy-plane. The expression (2.45) then represents the effective capacitance of such
a circuit.
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2.3.3 Polarized light transmission

Historically, optical methods were the first to reveal the unusual phase behavior
of liquid-crystalline materials [1,2]. Like the static dielectric constant, its high-
frequency counterpart — the refractive index — is anisotropic, too. Solving the
electromagnetic wave equation in an anisotropic dielectric medium, one finds two
principal ray types with different polarization, ordinary and extraordinary, charac-
terized by different values of the refractive index and hence also by different prop-
agation speeds. In the following, exclusively polarized and monochromatic light
beams will be considered. Note that the polarization in an anisotropic medium is
given by the dielectric displacement vector D that is perpendicular to the direction
of beam propagation, k (the wave vector). As nematic molecules are anisotropic in
shape, it is important to know how the polarization D of incident light is oriented
with respect to the principal axes of the dielectric tensor. For uniaxial molecules,
only two out of three eigenvalues are different, €° and €T, symbols || and L again
referring to the molecular long axis u. The eigenvector corresponding to the non-
degenerate eigenvalue €° is identified as the optical azis (here denoted by the unit
vector a) and in a macroscopic sample coincides with the director n, while at the
molecular level it can be taken along the long molecular axis u.

If now the incident light polarization D — always perpendicular to k — is
perpendicular also to the optical axis a, one is dealing with the ordinary ray. The
ordinary refractive index is given by n, = /€ and does not depend on the relative
orientation of k and a, i.e., on cosf = a-k/k. On the other hand, if D is lying in
the plane defined by a and k, the corresponding ray is referred to as extraordinary.
For the extraordinary ray, however, the (extraordinary) refractive index n, becomes
f-dependent [137] and satisfies

1 2 2
1 _ cos 0+s1n 0. (2.46)

n? €P €

Consequently, any arbitrary polarization vector D can be decomposed into ordinary
and extraordinary polarization components, each of them propagating through the
sample with the corresponding index of refraction. Note that if the light beam is
directed along the optical axis (k||a), the refractive indices of both components are
equal, n, = 1, = /€.

The polarization vector D(r) at a given point r in the sample can be conveniently
described in terms of the Jones vector with components in the plane perpendicular to
k. These can also be complex, which corresponds to a general elliptical polarization
of the light. Assume again that the nematic is confined to slab geometry and that
z is the slab normal, coinciding with the incident light direction, k. Assume further
that diffractive and interference phenomena can be neglected and let the sample
be split into thin layers normal to k, of thickness 6z each. Considering a single
layer at z, the polarizations of incident and propagated light, D(z) and D(z + 42),
respectively, and are related via D(z + 6z) = A(2)D(z), where the matrix A(z) is
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given by
A(Z) _ e’i27m052//\ (1 0) + eiQW[ne(z)_no]5Z//\ -1 ( a?ﬂ awgy) | (247)
0 1 a?c+a§ Agy Gy
a; = a;(z) are the components of a, and A is the light wavelength in vacuum.

Propagating through the whole sample, the incoming and outcoming polarizations
Dy = D(z =0) and D’ = D(z = d) are related by D' = B Dy, where B is given by
the matrix product B = [[Y_, A(ndz) and N = d/6z is the number of layers in the
sample.

A typical experimental set-up consists of putting the sample between two po-
larizers crossed at right angle and measuring the intensity of transmitted light
I oc DI(D))* = [R(D)))? + [S(D.)]?. Here D! is the component of the Jones vector
D’ along the direction of the polarizer analyzing the outcoming light and (D%)* its
complex conjugate. Assuming that the director is homogeneous (and a constant)
and directed at an angle g with respect to the polarizer, the transmitted intensity
I can be written as [138]

I = Iysin®(2¢pp) sin?(A®/2), (2.48)

with I, denoting the intensity of the incoming polarized light. Moreover, A®
is the phase difference between the ordinary and extraordinary ray accumulated
upon passing through the sample (also called birefringence) and is given by A® =
27/ X) [¥ne(2) — no)dz. According to Eq. (2.48), the maximum output intensity is
obtained for ¢y = 7/4. The set-up described above has been used to monitor the
switching of the molecular orientation in the Fréedericksz transition [116] to measure
the temperature dependence of Frank elastic constants, to measure the anchoring
strength [6], as well as for the detection of surface-induced paranematic order [26],
to name just a few examples.

Figure 2.10 Defect structure in a nematic with polymer inclusions, as viewed
between crossed polarizers (photo by I. Drevensek).

In the above analysis it was tacitly assumed that the optical axis (and the nematic
director) depends only on the normal z-coordinate, but not on the in-plane ones,
x and y, as, for example, in PDLC droplets or nematics with dispersed polymer
networks. If the director modulations in the z and y directions are occurring on
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length scales much shorter than the light wavelength, in an experiment one measures
the light intensity averaged over the part of the xy-plane occupied by the probing
light beam [26]. If, on the order hand, n variations are smoother, one ends up
with a z-and-y-coordinate-resolved intensity pattern I(x,y), which is the underlying
mechanism, e.g., for the recognition of nematic structures in polarizing microscopy
experiments [38] — see Fig. 2.10.
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Nematic slab

This Chapter will be concerned with the simplest confining geometry, a nematic
slab. The motivation for the following study comes from experimentally detected
subsurface variations of the average molecular orientation, as discussed in the Intro-
duction. In the first part of the Chapter (Sects. 3.1 and 3.2), the nematic orientation
close to a flat solid substrate will be investigated by means of a Landau-de Gennes
phenomenological model. In particular, it will be shown that when the splay and
bend elastic constants are different from the twist elastic constant, a spatial variation
of S near the bounding walls yields a subsurface deformation in the nematic director
(and vice versa), as well as an intrinsic contribution to the anchoring strength. An
expression for the quasi splay-bend elastic constant will be derived and the effective
anchoring — a combination of the external and the intrinsic contribution — will be
analyzed. Matching elastic and magnetic effects, the corresponding effective extrap-
olation length will be estimated. In conclusion, a non-planar twisted sample will be
considered, analyzing the possibility of finding a localized subsurface deformation
also in the twist angle profile. Such twisted-cell geometry is particularly interesting
because it is widely used for display applications.

In the second part (Sect. 3.3), a microscopic Monte Carlo study of the intrinsic
anchoring at a planar free nematic surface will be presented. To estimate the corre-
sponding extrapolation length and its temperature dependence, a bend deformation
in a hybrid cell-like nematic slab will be imposed (Sect. 2.1.4), while the simulation
will be based on the simple hexagonal lattice model with nematic particles interact-
ing via the spatially anisotropic modified induced dipole-induced dipole potential
(see Sect. 2.2.2).

3.1 Planar cell: Landau-de Gennes analysis

Consider now a nematic sample sandwiched between two parallel plates. Let the
sample normal be the z-axis, with the plates positioned at z = j:g. Further, consider
a uniaxial nematic and allow for planar deformations only. Then one has S = S(z)
and n = n(z) = (sin ¢(z), 0, cos #(z)), ¢(z) being the angle between n and the sample
normal. Parametrizing the tensorial order parameter Q (2.4) with S(z) and ¢(z),
the Landau-de Gennes free energy density (2.13) in the one-constant approximation

93
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(Ly + L3y = 0) can be rewritten as
3. o 9r qan
f=1(ST)+ ZLIS + ZLIS P, (3.1)

where the prime denotes a derivative with respect to z. Note that in the planar
geometry discussed here the contribution giving the Ky, term vanishes identically.
Expression (3.1) has been considered by different authors, mainly to describe the
influence of the spatial variation of the elastic constant on the nematic tilt angle
profile ¢(z) [70,139-143]. A simple variational analysis shows that in a symmetric
sample in the strong anchoring case, in which ¢ values at both walls of the nematic
slab are equal and fixed, a possible S = S(z) dependence does not induce any
subsurface deformation. In fact, a minimum of f (3.1) corresponds to ¢’ = 0. The
spatial variation of S can induce an additional ¢(z)-variation only if the deformation
is already present.

Consider now a more general case, where Ly + L3 # 0 and K1 = K33 # K. In
the planar geometry the free energy density given by Eq. (2.13) has four terms

f - fO(Sa T) + f1(¢a Sl) + f2(¢la S) + f3(¢’¢l,sa SI)’ (32)

introducing three elastic contributions (fi, f2, f3). The f; term quadratic in S’
depends also on ¢:

n_ 3 Lo+ Lsy o, I\yane
f1(¢’S)_ZL1{1+ oL (cos ¢+§)}S . (3.3)
The Frank elastic term
by 9 e Ly+ L3y
f2(¢',8) = (LS {1+ == e (34)

has similar structure as the corresponding term in Eq. (3.1). The third part of the
free energy

15(6,8,5,8) = ~ 2 (L + L) sin(26) ¢SS’ (35

is absent in the equal elastic constant case, coupling variations in ¢ and S. If the
substrates impose a scalar order parameter different from the bulk one, the free
energy f is no longer minimized by a solution with ¢’ = 0. Hence a scalar order
parameter spatial dependence — usually localized near the substrates — induces a
spatial variation of the tilt angle ¢ [69]. The influence of f3 on structural transitions
in nematic liquid crystals has been partially analyzed by Jérome [50,51].

3.1.1 Quasi splay-bend elastic constant and intrinsic ancho-
ring energy

Assume for the moment that the nematic sample occupies the z > 0 half-space,
and that in the planar one-dimensional case S(0) = Sy and ¢(0) = ¢, are fixed by
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short-range forces. In the bulk the value of S depends only on temperature and is
denoted by S, [found by minimizing (2.8)]. Assuming further that S, # Sy, S(z)
relaxes to S, over a length which is of the order of the correlation length £ (2.11).
This characteristic length, in general, does not apply to ¢-variations, since in absence
of external fields there is no preferred orientation of nematic molecules ¢, in the bulk
of the sample, which would be analogous to S,. Bulk ¢-variations, i.e., bulk elastic
deformations, caused by external fields or confinements, occur usually over a scale
considerably larger than &.

In the following, it will be shown that in a nematic layer thick compared to & it
is possible to include a spatial variation of S in two additional surface energy terms,
one corresponding to intrinsic anchoring and one to a quasi splay-bend elastic term.
To show this, one has to consider the second and the fourth term of f defined in
Eq. (3.2). The total energies per unit surface coming from these contributions are

given by W = [7° fi(2)dz and G = [;° f3(z)dz. Then for W one obtains

W= §Ll{l + LQ;LFIL?’ (cos? p(2") + %)}/\*(5’2), (3.6)

4

where (S"2) = (A*)~! [ Sdz, \* being a length of the order of a few £. In Eq. (3.6)
z* is an effective distance in the range (0, \*). Since A\* is a mesoscopic length, W can
be considered as an additional surface energy, whose anisotropic part %VVZ cos® ¢(2*)
can be interpreted as intrinsic anchoring with a strength defined by

(Sy — Sp)? _ | K11 — Ko _@ 2
AT 3N (1 Sb)’ (3.7)

assuming that (S?) ~ (S, — Sp)?/(A*)? and taking into account expressions for the
elastic constants derived in Sect. 2.1.3. The sign of Ly + L3 determines the direction
of the easy axis, while the anchoring strength W, is proportional merely to the
modulus of Ly + L3. The Kléman-de Gennes extrapolation length I; = K11 /W; [4]
is then given by

3 3
W, = Z|L2 + L3|\*(S?) ~ Z|L2 + Ls|

z LS ( S )'x (3.8)

"7 K1y — Kao| \S, — So
and depends strongly on the difference S, — 5.
Also the integral of the term coupling the order and angle variations G can be
rewritten in an effective form as

3 ) / 2 2
g= _E(LQ + Ls) [Sm(2¢) 0 ]z (Sy — Sp), (3.9)

taking into account that S(z) is a monotonic function. The product sin(2¢)¢’ is
to be evaluated at some intermediate distance z**. Since 0 < z** < A*, G can also
be considered as an effective surface contribution having the characteristic angular
functional form sin(2¢) ¢’ of the splay-bend elastic term introduced by Nehring and
Saupe [52,53]. The corresponding quasi splay-bend elastic constant can then be
identified as

-~ 3 2 oy Koo — Kiy S0 2
Kis = =2 (Lo + Ls)(S} — 85) = T[l - (E) J- (3.10)
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It should be stressed that G is only effectively a surface term and cannot produce
any divergent subsurface deformation, as it is the case with the ordinary K3 term.
Essentially, it is a bulk term effective only in a thin layer of thickness A*. There-
fore the G term-induced subsurface deformations are stabilized by the bulk elastic
terms f; and f;. The detailed director profile, requiring a complete free energy
minimization, will be discussed in the following.

The intrinsic anchoring strength W; given by Eq. (3.7) and a quasi K3 given
by Eq. (3.10) are both temperature-dependent because both the bulk value of the
scalar order parameter S, and the length A\* oc & exhibit a significant temperature
dependence on approaching the nematic-isotropic (NI) phase transition.

According to the pseudomolecular model proposed by Vertogen [144,145], it is
possible to evaluate elastic constants if the interparticle interaction U responsible
for the formation of the nematic phase is known. In the framework of Vertogen'’s
model it can be shown that if U/ is spatially isotropic (i.e., molecular orientations
and their relative position are not coupled), the relations Kj; = Ky = K33 and
K13 = 0 hold [146]. This is in accordance with the above result that the quasi K3
vanishes in the one-constant approximation, i.e., for Ly + L3 = 0.

3.1.2 Numerical solution of the variational problem

To complete the previous approximate analysis, in the following a full minimization
of the total free energy will be carried out by solving numerically the corresponding
variational problem. Again a nematic slab of thickness d is considered, with the
confining surfaces at z = :I:%, and again the deformation is assumed to be planar.

To solve the minimization problem, Euler-Lagrange equations and the corre-
sponding boundary conditions must be derived first. The total free energy to be
minimized can be written as

P = [ falé(2),¢/(2), S(2), SNV + [ fslo(4), 60, S(4), SiJdS,  (3.11)

where fp = fo+ fi+ fo+ f3 and fs (specified later) are the bulk and the surface free
energy density, respectively, while ¢y and Sy denote the substrate-induced values of
¢ and S. The surface contribution fs arising from external anchoring is nonzero
only in the weak anchoring case. In presence of an external field also the field energy
contribution must be added to fp.
In the present case the Euler-Lagrange equations have the form
ofp  d 0fp ofs  d 0fp

96 diop 0 M Ge e =0

(3.12)

and are both second-order. Hence there must be four boundary conditions for the
variational problem to be well-posed. In the strong anchoring case and for a sym-
metric sample these read (b(ig) = ¢y and S (j:%) = Spy, while in the weak anchoring
case they become

afB 8f5 _ afB afS B
i(a¢l)zzig+6¢(ig)_o and i(aS')z=i%+8S(:|:%)_0' (3.13)
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The above system (3.12-3.13) was solved numerically by means of the relaxation
method for boundary value problems [147]. First the case with infinitely strong
anchoring will be considered. After this, it will be upgraded to a more general
situation with an arbitrary strength of anchoring.
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Figure 3.1 Nematic slab: ¢(z) and S(z) profiles in the strong anchoring case;
¢o = 0.1(180°/m) =~ 5.73°, Sy ~ 0.3747, and Ly + L3 = +L1,0,—L; [cases
(a), (b), and (c), respectively]. Disordering (Sp = 0.35, left) and ordering
substrate (Sg = 0.4, right). The sample thickness is equal to d = 1 pm,
a=0.13x10° J/m3K, B =1.6x10% J/m?, C = 3.9 x 10° J/m? (as measured
for 5CB [148]), T — T. = 0.4 K, and L; ~ 107! N.

In the strong anchoring limit at the confining surfaces the scalar order parameter
S is fixed to Sy by surface treatment, while in the bulk it takes the temperature-
determined value S, # Sy. Further, the surface tilt angle qﬁ(i%) is fixed to ¢y.
Although the actual surface tilt cannot vary, the S-variation induces a subsurface
deformation. Some examples of director and scalar order parameter profiles are
shown in Fig. 3.1. The S-variation occurs in a layer whose thickness is ~ 10 nm,
which is indeed of the order of £, as predicted by a rough estimate in Sect. 3.1.1.
In this region also the variation of ¢ — a subsurface deformation — occurs. The
amplitude of the resulting deformation A¢, defined as A¢p = @, — ¢y (¢Pp being
the bulk tilt angle), is found to be proportional to the quasi K5 elastic constant
introduced above, similarly as in the case of normal K3 elastic constant. If the
amplitude of the S-variation (i.e., Sp—Sp) is small enough to neglect the variation of
the Frank elastic constant K oc S7 close to the interface, the same relation as for the
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ordinary K;3 may be used to approximately predict the deformation amplitude [149]:

A¢ = —% sin 2¢(£2). (3.14)
Note that whereas the deformation stabilization in Ref. [149] is governed by second-
order elasticity, it is here by the positive definite first-order terms f; o S’ and
fa o ¢ introduced in Sect. 3.1.1.

The quasi Ki3 elastic constant given by Eq. (3.14) depends on both Ly + L
and the difference between the bulk and the surface scalar order parameter. The
numerical solutions confirm that if L, + L3 changes sign, the deformation amplitude
A¢ x K3 changes sign as well. If L, + Ly = 0, the subsurface deformation vanishes
and A¢ = 0. Further, the change in sign of A¢ occurs also if the sign of Sy — S
is changed. From Fig. 3.1 it can be deduced that also the characteristic length of
the subsurface distortion depends on Ly + L3. In comparison to cases with negative
Lo+ Ls, positive Lo+ L3 yield larger proportionality constants in the stabilizing terms
f1 and fy [see Egs. (3.3-3.4)], indicating that stabilization effects for Lo+ L3 > 0 are
stronger than for Lo+ L3 < 0. Hence the corresponding deformations are weaker, i.e.,
occurring over a larger distance and having smaller amplitude, the former holding
for both ¢(z) and S(z) profiles, while the latter is true for ¢(z) profiles only, since
Sy — Sy is fixed if anchoring is strong.

Consider now a more realistic nematic-surface coupling, i.e., an anchoring sit-
uation where actual surface values S(£%) and ¢(+%) are allowed to vary. Any
deviation of these values from the surface-induced ones (S and @, respectively) is
penalized with an increase of the anchoring energy. This short-range interaction free
energy is usually modeled by (2.17) [22], i.e.,

W[ {597 + 52} — 25 (D) 5of cos? [9(&4) — ol — )], (3.19)

fs=gWe|3g

where W, is related to the corresponding substrate (external) anchoring strength.
Note that if there is no S-variation, the expression (3.15) reduces to the stan-
dard Rapini-Papoular formula (2.18) [21], while in cases without elastic distortion
[p(£2) = @] its form is fs oc [S(£%) — Sp)>. In the most general case, however, S
and ¢-variations are coupled in the anchoring energy (3.15). The weak anchoring
case has been considered previously in Ref. [141] in the one-constant approximation,
in which the quasi splay-bend elastic constant is identically zero. Now this analysis
shall be generalized by allowing Ly + L3 # 0.

The same Euler-Lagrange equations as in the strong anchoring case were solved,
however, with modified boundary conditions. As the actual surface tilt angle is not
fixed any more, effects of S-variation-induced intrinsic anchoring can now be re-
vealed. The easy axis for this intrinsic anchoring contribution can be either planar
(for Ly + L3 > 0) or homeotropic (for Ly + L3 < 0), as it follows from Eq. (3.6). The
calculated ¢(z) profiles confirm this prediction, which is evident from Fig. 3.2: for
Ly+ L3 <0 ¢(£%) < ¢o, and for Lo+ Lz > 0 ¢(£2) > ¢o. The subsurface deforma-
tion is still present and behaves in the same manner as in the strong anchoring case.
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However, supposed the same S, and Sy, it is weaker than in the strong anchoring
case since |S, — S(£2)] < |9, — Sol-

It should be stressed that molecular models where, for instance, the intermolec-
ular interaction is described as a superposition of the Maier-Saupe and the induced
dipole-induced dipole coupling (2.34), yield Lo+ L3 < 0, i.e., K13 = K33 < Kay [146],
which corresponds to a homeotropic easy axis in our study. Thus further discussion
will be restricted only to cases with Lo + L3 < 0.
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Figure 3.2 Nematic slab: ¢(z) and S(z) profiles in the weak anchoring case
(we = 10); Disordering (So = 0.2, left) and ordering substrate (Sop = 0.5,
right). All other parameters and labels are same as those in Fig. 3.1.

A suitable method to estimate the strength of the effective anchoring is to in-
vestigate its competition with a distortion-imposing magnetic field H [17] tilted
at an angle a with respect to the surface normal. Therefore the magnetic energy
term (2.21)

fm = _%/'LOXaS(n . H)2 = _%/’LOXQSHQ C052 (d)(z) - a) (316)

should be added to the bulk free energy density (3.2). Then ¢(z) and S(z) profiles
can again be calculated by solving the Euler-Lagrange equations, which now differ
from those derived in absence of the additional magnetic free energy contribution.
The influence of subsurface deformations on the large scale director profile enters
only via the effective intrinsic anchoring contribution. Therefore, ignoring the thin
subsurface layer in which the subsurface deformation occurs, one can for small ¢ fit
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the calculated ¢(z) profiles by the ansatz (see Fig. 3.3)

cosh(z/&n)

cosh(d/2&,) (3.17)

¢(z) =a+A
following from the standard Frank elasticity, the parameter A being related to
the amplitude of the deformation, d denoting the sample thickness, and &, the
characteristic length of this field-induced deformation — the magnetic coherence
length (2.23) [4]. Fig. 3.3 (b) shows the enlarged subsurface region of Fig. 3.3 (a),
in which the ansatz (3.17) describing the macroscopic director profile fails to match
with the calculated profile. Since this region is of microscopic — nanometric —
thickness, it will be neglected in the determination of the anchoring strength, as
already stated above.
If ¢g is the direction favored by the effective anchoring, the parameters of the fit
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Figure 3.3 Calculated director profiles (dots) in magnetic field compared to
the hyperbolic cosine fit (solid line): we = 5, Ly + Ly = —L1, Sy ~ 0.3747,
and Sy = 0 [cases (a) and (b); no external anchoring] or Sy = 0.5 [case (c);
homeotropic external anchoring with ¢y = 0°]. The sample thickness is equal
to d = 1pm, the magnetic field direction o = 0.1(180° /7) ~ 5.73°. The mag-
netic field strengths expressed in terms of the coherence length &, amount
to &~ 65 nm, 90 nm, 205 nm, 290 nm, 650 nm, and 920 nm; the first value
corresponding to the top and the last to the bottom curves of Figs. (a) and (c).
Comparing cases (a) and (c), it is evident that the external anchoring is con-
siderably stronger than the intrinsic one. Fig. (b) presents the enlarged section
of Fig. (a) marked with a dashed line. All other parameters are equal to those
of Fig. 3.1.
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(A, &) for small ¢y — « yield the effective extrapolation length [17]

_ K _</50—04_ i
leps = T [ 1 1]§nzc0th(2§h1). (3.18)

This anchoring is a superposition of the intrinsic and external contribution. From
the analysis performed above, it is possible to estimate extrapolation lengths for
both sources of anchoring separately. For intrinsic anchoring one can rewrite (3.8)
as

B 352 2L,
1Sy — S(£4)? I Lo + Ly

+ 1), (3.19)

1

Provided that A* is known, the approximate value /; (3.19) can be compared with
the “measured” one, l.s; (3.18). Similarly, it is possible to derive an estimate for
the external anchoring extrapolation length [, = K;;/Wg. The external anchoring
strength Wy can from Eq. (3.15) be identified as Wy = W,.S(+%)S,, while the
elastic constant Ky is still given by K;; = %S§(2L1 + Ly + L3). In terms of the
dimensionless anchoring strength w, = W,d/L; the length [, can be expressed (for
So #0) as

Ly+ Ls
2L,

= — %
¢ ’U)eS()S(:l:Q)

2

1+ |d. (3.20)

Assuming that both intrinsic and external anchoring have the same easy axis (e.g.,
homeotropic), the effective anchoring strength can be written as Wy = W; + Wh.
Then for the corresponding extrapolation lengths the relation

.1 21
o LL (3.21)

1 1 1
i
holds. If, e.g., I < [;, then l.ff =~ L.

Imagine now a nematic slab confined by two substrates treated by silicon oxide-
evaporation technique, such that Sy, = 0. In this case the angular dependence
in (3.15) vanishes and hence the external anchoring in the Rapini-Papoular sense
is absent. The choice S; = 0 enables one therefore to investigate pure intrinsic
anchoring despite w, # 0, and thus simplifies the analysis significantly. Setting
we # 0 is, however, necessary to yield S (:I:%) # Sy, which is required for intrinsic
anchoring to occur at all. However, beside studying cases with Sy = 0, it will be
instructive to consider also those with Sy # 0 in order to see the increase of the
effective anchoring strength when external anchoring is present as well.

¢(z) and S(z) profiles in magnetic field were calculated for different values of the
field strength H, the surface-imposed order parameter Sy, and anchoring strength
we (the example w, = 5 is given in Fig. 3.3). In all cases Ly + L3 = —L; was
assumed, resulting in K7, < Ky and yielding a homeotropic easy axis for intrinsic
anchoring. The Landau parameters a, B, C, and the temperature were chosen such
that S, ~ 0.3747. The estimates for the “measured” effective extrapolation length
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we  So S(j:%) l; le (nm) lepp (nm)
1 0 0.3720 58000 \* — 400000
1 0.5 0.3756 500000 \* 374 375
5 0 0.3613 2350 \* — 16700
5 0.5 0.3791 22000 \* 74 75
10 0 0.3484 610 \* — 4300
10 0.5 0.3832 5800 \* 37 37
50 0 0.2606 33 \* — 205
50 0.5 0.4072 400 \* 7 7
100 0 0.1861 12 \* — 63
100 0.5 0.4255 160 \* 3 3

Table 3.1 Effective anchoring extrapolation lengths [.;; compared to the
values [; and [, predicted for intrinsic and external anchoring, respectively.
All estimates for lo;; with Sy = 0 refer to pure intrinsic anchoring, while
the ones with Sy = 0.5 refer to a superposition of intrinsic and external an-
choring, where the latter prevails. Easy axes for both kinds of anchoring are
homeotropic. The angle between the magnetic field direction and the sur-
face normal is equal to o = 0.1(180° /m) = 5.73°, the bulk value of the order
parameter to Sy ~ 0.3747, and the sample thickness to d = 1uym.

legs are listed in Table 3.1. The results for Sy = 0 show that if the coupling with
the surface has a strength w, < 50, the intrinsic anchoring is rather weak (/; > 100
nm). Its strength increases with increasing w, as S, — S (:l:g) increases, which is in
agreement with formula (3.19). However, if Sy # 0, the external contribution to the
anchoring is nonzero as well and is for, e.g., Sp = 0.5 considerably stronger than
the weak intrinsic part [compare Figs. 3.3 (a) and (c)]. Consequently, leaving other
parameters unchanged, the effective extrapolation length decreases significantly in
comparison to the Sy = 0 case, and now only w, < 5 yields extrapolation lengths
of the order of those observed experimentally (> 100 nm) [6]. Since the external
contribution to the effective anchoring seems to completely overwhelm the intrinsic
one, one cannot expect to observe any temperature-driven anchoring transitions due

to their competition.

Comparing the predicted values for [, in cases with Sy = 0.5 [Eq. (3.20)] and
the “measured” effective ones [Eq. (3.18)], a very good agreement is observed (see
Table 3.1), which again shows that in these cases the intrinsic anchoring is negligible
with respect to the external one. Further, setting Sy = 0 and considering intrinsic
anchoring alone, the agreement of predicted [Eq. (3.19)] and “measured” values of
l; can be achieved by setting \* ~ 6 — 7 nm, which is comparable to the thickness
of the layer in which the S and ¢ variations occur. Note also that in all cases the
deformation strength of the subsurface deformation is rather small. For instance, for
w, = 5 and Sy = 0.5, yielding a still reasonable extrapolation length, and close to
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¢o = /4 one finds dp/dz ~ 3 x107*/py < 1/py (po = 1 nm being the characteristic
molecular dimension), as required by the elastic continuum theory. In this case also
the variation of the order parameter is rather weak, i.e., [S(£%) — S]/S, ~ 0.01.
Cases with lower w, yield a deformation strength that is even smaller.

3.2 Twisted cell: Landau-de Gennes analysis

In Sect. 3.1 (as well as in Refs. [50,51,68,69]) exclusively planar deformations were
treated to analyze the coupling between S and director variations. Thereby the
twist distortion was neglected and the subsurface deformation was present in the
tilt angle profile ¢(z). The aim of this Section is to extend the above analysis for
the strong anchoring limit to non-planar distortions. In particular, here we would
like to examine whether a localized subsurface twist deformation similar to that
reported in Sect. 3.1 for the tilt angle can be observed, and, further, explore also
the global (delocalized) coupling between the tilt and the twist angle in a twisted
nematic slab. Analyses allowing also non-planar distortions have been performed in
Refs. [150,151], but were used to investigate substrate-induced orientational phase
transitions.

Consider again a nematic slab of thickness d where the z-axis is oriented along
the surface normal and the surfaces are lying at z = i%, being parallel to the zy-
plane. Dropping the in-plane restriction for the director n, n can be parametrized as
n(z) = (sin ¢(2) cosw(z), sin ¢(2) sinw(z), cos P(z)), ¢(z) being the angle between n
and the z-axis (the tilt angle) and w(z) the azimuthal angle defined with respect to
the z-axis (the twist angle). Now the free energy density (2.13) is given (neglecting
biaxiality) by

f = fO(Sa T) + f1(¢a SI) + f2(¢a ¢I,wla S) + f3(¢a ¢I, S, S’)a (322)

where the prime still denotes the z-derivative. Like in the planar case, in (3.22)
there are four free energy terms. The homogeneous term f,(S), the “polar” intrinsic
anchoring term f;(¢, S’), and the quasi splay-bend term f3(¢, ¢, S, S’) are identical
as in the planar case (Sect. 3.1). The Frank elastic term is now, however, different,
ie.,

! !

fa(, ¢, ', S) = %LlS2 { (1 + ;ﬁ) ¢” + sin® ¢ (1 + 2[21 cos’ </5> w'2} , (3.23)

where L), = L, + Ls. Note that the free energy density depends on w’, appearing in
the Frank term (fs), but not on w itself. If one considered chiral nematics that form
a structure twisted spontaneously already in the unperturbed ground state, the only
changes in the free energy density appear in the Frank term (3.23). Then, apart from
an w-independent term, a term linear in w’ has to be added, and the f>-contribution
to the free energy density is still w-independent. Considering chiral nematics would
not substantially change the analysis, therefore it will be restricted only to nonchi-
ral nematics where the twist is imposed by confining surfaces. Further, note that
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although the elastic deformations are non-planar now, the Ksys-contribution still
vanishes because n still depends on a single Cartesian coordinate, i.e., n=n(z).
In the strong anchoring case the total free energy per unit surface is given by

d/2
F= [, /19(2),0().(),5(), 8'(2) d= (3.24)
Minimizing (3.24) with respect to S(z), ¢#(z), and w(z) yields the following Euler-

Lagrange equations (ELE)

of d of of d of
. = - - = _— = — — = . .2
oS dz oS 0 0¢p  dz0¢ 0 and 0. (325)

Since in f there is no explicit dependence on w (also for chiral nematics), the last
of the above ELE can be rewritten as

of _ 0fs
Evin ikt const. (3.26)
Taking into account Eq. (3.23), one can find that
9 ) L
o= 552 sin? gb{Ll + 72 cos? qB} W, (3.27)

which, once integrated with respect to z over the whole slab, results in

d/2 dZ
w@) —w(-9=a o .
—d/2 352(Ly + 2* cos? ¢) sin® ¢

(3.28)

If w(%) = w(—%) is chosen, it follows that & = 0 must hold and from (3.27) also
that w’ = 0 everywhere in the sample. Hence in this case the twist deformation is
absent and the director is lying in a plane — the problem is degenerate with respect
to w; see previous Section). If, however, w(%) # w(—%), @ = 0 no longer holds and
the twist deformation is present. For such a twisted nematic slab the ELE (3.26)
must be solved numerically. As weak anchoring would only reduce the deformation,
here we will concentrate on strong anchoring boundary conditions, where the actual
surface values of S, ¢, and w cannot deviate from those imposed by the substrate.

First consider S-profiles in a twisted nematic sample. The scalar order parameter
always relaxes monotonously from the surface value Sy to the bulk value S, given
by Eq. (2.9). Like in the planar case, the variation here occurs over a distance
characterized by the nematic correlation length £ (2.11) (see Fig. 3.4, bottom) and
is hence again localized to a thin subsurface layer. For the present choice of a, L, and
T —T,, its thickness is about 20 nm. S-profiles in presence of the twist deformation
are very similar to those reported in the previous Section. In general, any variation
of ¢ or w affects S-profiles only very weakly since the free energy contributions
associated with the elastic deformation (f;, fo, and f3) are considerably smaller
than the homogeneous one (f).

On the other hand, in a twisted nematic slab there is quite a significant change in
tilt angle profiles ¢(z) in comparison to the non-twisted case. These profiles show a
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Figure 3.4 ¢(z) and S(z)-profiles in a twisted nematic slab with strong an-
choring. ¢(+%) = 45°, w(—%) = 0°, w(¥) = 45°, S ~ 0.375, Sy = 0.35 (left)
or Sy = 0.4 (right), and L), = Ly, 0, — Ly [curves (a), (b), and (c), respec-
tively]. The sample thickness is equal to d = 1 um, a = 0.13 x 10 J/m3K,
B=16x10%J/m? C=3.9x10% J/m? T T, =04K, and L; = 107! N.

considerable variation of ¢ that spreads over the whole slab (Fig. 3.4, top) — even in
the symmetric anchoring case in which ¢(—%) = ¢(%). The source of this delocalized
deformation is the coupling between w’ and ¢ in the Frank elastic term f, (3.23).
Namely, since the w-term — nonzero whenever the twist deformation is present —
always gives a positive free energy contribution, the proportionality factor appearing
in front of w”® must be as low as possible, i.e., for L, = 0, =L, (as chosen for profiles
plotted in Fig. 3.4) |¢| must decrease. However, this decrease is compensated by
the ¢ term which is also present in f, and gives a positive free energy contribution
as soon as ¢ varies. Note that because the ratio of the proportionality constants
belonging to w? and ¢2, respectively, is larger when L, < 0, in that case the decrease
in |¢| can be larger than for L, = 0 (just the opposite holds for L, > 0). Further,
it should be noticed that for L, # 0 the coupling between ¢’ and S’ described by
the fs-term yields a localized S-variation-induced subsurface deformation in ¢(z),
behaving similarly as in the non-twisted case.

Consider, finally, also w(z)-profiles. These can be calculated by integrating
Eq. (3.27) with respect to z. For simplicity, suppose first S and ¢ to be constant
throughout the sample. The resulting profile is then a linear function of z, i.e.,

w(z) =w(—%) + Aw (E + 1) , (3.29)

d 2

where Aw = w(%) — w(—%) is proportional to the constant « introduced in (3.26).
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If, however, either ¢ (with S=const.; Frank solution) or both ¢ and S are allowed to
vary with z, deviations dw(z) from the linear profile given by (3.29) may occur. For
example, global variations of ¢ appearing, e.g., when ¢(—%) # ¢(£), or even in a
symmetric case where ¢ varies due to the twist deformation, give rise to deviations
dw(z) that are global as well [see Fig. 3.5 (a)].

On the contrary, a localized variation of S(z) induces a variation of w that is
localized as well. Explore now this ”subsurface deformation” in w in more detail
and compare it to the one appearing in the ¢(z)-profile. Let, for sake of clarity,
the ¢(z)-dependence be omitted by setting ¢(2) = ¢(—2) = 90°. In this case there
is no source of the subsurface deformation in ¢ since the fs-term (3.5) vanishes.
Numerical solutions of the ELE (3.25) confirm indeed that then ¢(z) = 90° = const.
holds throughout the whole sample. Putting now ¢(z) = 90° into (3.27) yields

I — 2704 (3 30)
Y TS (2) '

Assume for the moment that the S(z)-profile is modeled by

cosh(z/\*)

S(z) =5 - AS(:osh(d/Q/\*)’

(3.31)
representing the localized variation of S close to the confining walls with an am-
plitude AS = S, — Sy and a characteristic length \* that is to be characterized by
the nematic correlation length £. The integration of (3.30) is particularly simplified
if |AS| < Sp, Sp is assumed in addition. The resulting w(z)-profile is then given
approximately by

w(z) mw(—9) + 42 + Aw (2 + 2143 ZEPO) (44X 45 tanh(d/2)\*)) (3.32)
The ratio sinh(z/\*)/ cosh(d/2\*) appearing in (3.32) is nonzero only in the bound-
ary layers and hence represents a localized subsurface variation of the twist angle,
whose amplitude equals

2257 A*AS

Aw ~ 22 22 Ay, 3.33
d+ xS tann(L) " Td S, (3:33)

5(,()0

)

taking into account A* < d in the end. The approximate w(z)-profile can be close
to the substrates (z — +2) simplified to w(z) & w(—%) + Aw(2 + 1) F dwe{l —
expl(£2 — £)/X']}.

This simple calculation proves the existence of a localized variation also in the
w-profile. Its amplitude is rather small, if compared to the overall variation of
w: for Aw = 45°, \* = 0.01d (d = 1pm), AS =~ 0.025, and S, ~ 0.375 it is
0wy ~ 0.06°. For comparison, the actual w-profile in slab geometry can be derived
also from solving the ELE (3.25) for ¢(+%) = 90° and the above parameters [see
Fig. 3.5 (b)]. The w(z)-dependence shows a localized deformation dw(z) that is
added to the linear solution (3.29) with AS = 0, exhibiting a functional dependence
similar to that predicted analytically by Eq. (3.32). The amplitude of dw(z), dwy,
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is of the same order of magnitude as estimated above. However, the dw effect could
become easily measurable considering a very thin highly twisted nematic cell (d ~
100 nm, Aw ~ 27), using strongly ordering substrates (|AS| ~ 0.1), and adjusting
the temperature close to the NI transition, where \* ~ 10 nm.
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Figure 3.5 Left: w(z)-profiles in a twisted and strongly anchored nematic slab
with a delocalized variation of ¢. Sy = 0.4, while all other parameters and la-
bels are same as in Fig. 3.4. In the inset, w(z) in the subsurface region is shown.
The deviation dw from the linear solution (3.29) spreads through the whole
sample. Profiles for Sy = 0.35 differ only negligibly from those plotted here.
Right: w(z)-profiles in the subsurface region of a twisted nematic slab with a
localized variation of S; qS(:i:%) = 90°, Sp = 0.375, AS =~ 0.025, 0, —0.025
(top, center, and the bottom curve, respectively), w(—%) = 0°, w(g) = 45°;

L =0 [for ¢(j:g) = 90° the problem is degenerate with respect to the value
of L,]. The profiles cross in the middle of the sample and exhibit a similar
behavior at the opposite side, the top curve, e.g., now corresponding to the
negative value of AS. The values for a, B, C, T — T, and L; are same as in
Fig. 3.4.

Note again that the source of the subsurface variation of the twist angle dw(z) is
the Frank elastic term (f;) and that the origin of this w-variation is different from
that responsible for the in-plane variation of ¢ examined in the previous Section —
in that case the source was the f3 term. Both subsurface ¢ and w-variations follow
from a localized variation of S, but the latter can exist only if a global distortion in
w is already present (since dw o Aw), while for the former no deformation in ¢ is
necessary to assure its existence.

Finally, note that in the Frank term (fs) there is also a coupling between S and
¢' that is mathematically equivalent to that between S and w’. In samples where
a delocalized deformation in ¢ is already present, e.g., in non-symmetric samples
with ¢(—2) # #(2), this can, in principle, induce an additional localized variation
in ¢. Then the additional variation has to be added to the one already analyzed
in Sect. 3.1, where this kind of deformation was not discussed since only symmetric
planar samples were considered.
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3.3 Planar cell: molecular approach

In this Section the properties of intrinsic anchoring (analyzed to some extent already
earlier in the Chapter) will be addressed from the molecular point of view, especially
its temperature dependence. The analysis will be based on the hexagonal lattice
model [17], along with the spatially anisotropic modified induced dipole-induced
dipole pairwise potential (2.34) — see Sect. 2.2.2. Before proceeding to anchoring
studies, however, the nematic-isotropic transition in this model system will be briefly
investigated. A similar molecular study of intrinsic anchoring was already given
in Ref. [17], however, in the zero-temperature approximation. More recently, a
finite-temperature Monte Carlo analysis of external anchoring was performed in
Ref. [152] for the LL model, attempting to present a full temperature dependence of
the external anchoring strength (expressed through the extrapolation length K/W).

Phenomenologically, the anchoring energy W decreases with increasing temper-
ature, being roughly proportional to S? if modeled by (2.17), and is unable to yield
any significant temperature dependence in K/W (recall that K oc S? as well). To
get rid of such behavior — in contrast also to most experiments — the anchoring
energy can be modeled directly by (2.16) with u # 0. In fact, experimental analyses
typically show a decrease of W — or an accompanying increase of the extrapola-
tion length K /W — when the NI transition is approached [46,112,143,153,154]. In
addition, thermal director fluctuations can substantially renormalize W [155,156].

While it is well known that K o S?, there seems to be no general rule for the
functional form of the W (S)-dependence [and, consequently, the temperature de-
pendence of W]. In fact, W seems to be strongly related to specific properties of
a given confining surface. For example, theoretical considerations in a system of
hard rods confined between parallel hard walls show that W o S [157], while in
experiments measuring anchoring at rough pore surfaces even W oc S* could be
observed [46]. Given K o S?% in the former case K/W decreases when the NI
transition is approached (agreeing with simulation results in athermic systems of
hard elongated particles [158]), but increases in the latter (as found experimentally
for most thermotropics). Motivated by these developments, here the analysis per-
formed in Ref. [17] will be upgraded to nonzero temperatures and K /W for intrinsic
anchoring will be reestimated, attempting to extract its temperature dependence
from the data. However, first a set of bulk sample simulations will be presented to
determine the NI transition temperature.

Consider again a nematic sandwiched between two flat and parallel substrates,
as shown in Fig. 2.8, the z-axis being the sample normal and d its thickness. To
avoid bulk easy axes, nematic particles are allowed to rotate only in parallel zz-
planes (coinciding with hexagon planes). Following Eq. (2.34), for nearest-neighbor
particles ¢ and j with orientations given by unit vectors u; and u;, the interaction
energy is given by

Uij = —EI [ui . Uj — 31/(111' . I'*)(u]' . I'*)]2 y (334)

where ¢ > 0 and r* is the interparticle unit vector. Although the range of the
van der Waals potential (2.34) is proportional to 7%, for computational reasons in
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the present simulation only interactions between nearest neighbors were taken into
account. Thereby the error in the estimation of the intrinsic anchoring energy is
expected not to exceed 15%. There are eight nearest neighbors (in contrast to the LL
model with six neighbors only): six in the zz hexagon plane, plus two out-of-plane
ones (along the y-axis). It must be stressed again that while the lattice itself is three-
dimensional, the particles u; are two-dimensional objects. As already suggested in
Sect. 2.2.2, the analysis must be restricted to low values of the anisotropy parameter
v to avoid solid-like periodic director solutions [17].
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Figure 3.6 Tripartite hexagonal lattice and the three sublattices: squares,
circles, and triangles. (a) zz-plane, (b) zy-plane.

Then Monte Carlo (MC) simulations were performed as follows. For the measure-
ment of the extrapolation length the simulation box size was chosen to be 48 x 48 x 48
particles, which amounts to 105984 particles taking part in the simulation (the
boundary layers at z = 0 and z = d being already excluded in this figure), while for
the bulk simulation a smaller 30 x 30 x 30 lattice with 27000 particles was consid-
ered. The hexagonal lattice was divided into three sublattices, as shown in Fig. 3.6.
Thereby the bonds between neighboring particles on the lattice never connect two
particles from the same sublattice. Considering the simple hexagonal lattice as tri-
partite made it possible to vectorize the simulation algorithm, which provided a
significant speed-up in calculations. Moreover, in the bulk calculation in all direc-
tions periodic boundary conditions were assumed, while for the K /W measurement
this was the case only along the z and y-axes. Then the simulation was started
either from a random configuration in two dimensions (recall that u; are restricted
to hexagonal planes), or from an equilibrated configuration at a temperature slightly
higher than the simulated one, if this was available. Then the standard Metropolis
algorithm was applied [37]. For the vectorized algorithm to work correctly, in each
MC cycle trial moves (in-plane rotations) involving particles in the first sublattice
were attempted (and accepted/rejected) first, only then proceeding to the second
one, and after this to the third one. In generating a new trial configuration for accep-
tance/rejection, each time only a single particle was involved. Typically 2 x 10> MC
cycles for equilibration and after that another 10° production cycles (to accumulate
averages of interest) were performed.
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In a bulk sample, temperature scans were carried out to determine the NI tran-
sition temperature, calculating the average internal energy U by summing up pair-
wise contributions (3.34). The second relevant quantity for the problem is the order
parameter, which, however, for two-dimensional in-plane ordering differs from the
standard S introduced in the usual three-dimensional space (2.2). Further, attempt-
ing to measure the extrapolation length, the third important average is the director
profile n(z). Both the order parameter and n can be extracted from the ordering
matrix, which in two dimensions can be defined by

q=2(u;Qu;) — | (3.35)

differing from its three-dimensional counterpart @ given by Eq. (2.5). Further, the
(...) average goes both over particles u; and over MC production cycles. Diagonal-
ization of ¢ leads to two eigenvalues, 5. The positive eigenvalue s can be identified
as the two-dimensional nematic order parameter, while its eigenvector corresponds
to the director n. The order parameter is now given by s = (2(u; - n)? — 1), giv-
ing s = 1 for a nematic aligned perfectly along n and s = 0 in the two-dimensional
isotropic phase. Note that in the two-dimensional case there is no biaxiality. Finally,
to deduce the z coordinate-resolved order parameter and the director profiles s(z)
and n(z), the ordering matrix g(z) was averaged separately for each layer with fixed
z and then diagonalized. Alternatively, the director profile can also be expressed in
terms of the tilt angle profile ¢(z), with ¢ again measured from the sample normal.
In this case ¢ = 0 corresponds to homeotropic, while ¢ = 7/2 to planar alignment.
Note that in Ref. [152] a different and less reliable method was used to obtain ¢(z).
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Figure 3.7 Temperature dependence of the reduced internal energy U/e (a)
and the order parameter s (b) in a bulk hexagonal lattice sample. The NI
transition positions (indicated by the arrows) depend strongly on the v pa-
rameter.

Turning now to a bulk sample, the NI transition temperatures Tx; can be ap-
proximately determined from the kinks observed in temperature scans of the internal
energy U(T) and of the order parameter s(7), shown in Fig. 3.7. More reliably Ty
can be found by monitoring the variance of internal energy fluctuations, i.e., by
determining the maximum of the heat capacity [123]. Here all temperatures are
reported in a reduced scale defined by 7° = kgT/€'. Note that even for v = 0 —
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v TN, T° ¢ (a)
0.05 | 1.375 £0.025 1.3 155+£1
1.2 13+£1
1.1 13+1
0.1 | 1.225 + 0.025 1.175 442
1.1 ox1
1.0 ox1
0.2 10950 £0.025 09 —-1+£0.5
08 +1=£0.5
0.7 +1+£05
0.3 | 0.675 £ 0.025 0.6 -4+ 1
0.5 -4+ 1
0.4 -4+ 1

Table 3.2 Temperature dependence of the intrinsic anchoring extrapolation
length £ (measured in units of lattice spacing a) for different v, and the corre-
sponding reduced bulk NI phase transition temperatures T’y ;.

corresponding to the spatially isotropic Maier-Saupe interaction — the transition
temperature is higher than in the LL model (having already taken into account
the difference in energy and temperature scale definitions in both models). This
difference can be attributed to a different coordination number (8 vs. 6 nearest
neighbors) and nematic particle dimensionality (two vs. three). Both distinctions
lead to a different balance between the decrease of internal energy and loss of ori-
entational entropy when going from the isotropic into the nematic phase. Further,
from Fig. 3.7 it is evident that the position of the NI transition strongly depends on
the anisotropy parameter v. In particular, in the range 0 < v < 0.3 Ty, decreases
with increasing v, which indicates that the parallel aligning tendency giving rise to
the nematic phase weakens with increasing v. This seems to be in agreement with
a decrease of the Frank elastic constant and an increasing softness of the nematic if

v is increased [129]. A full summary of reduced transition temperatures Ty, can be
found in Table 3.2.

A standard method to measure the strength of any anchoring is to impose an
elastic distortion so that the average surface molecular orientation ¢(0) deviates from
the easy axis ¢ defined by the anchoring. The magnitude of this deviation can then
be used to estimate the anchoring strength and the corresponding extrapolation
length [4] (see also Sect. 2.1.4). Note, however, that the length ¢ obtained by
simple geometrical extrapolation (as in Fig. 2.3) can be straightforwardly interpreted
as K/W only when anchoring is sufficiently weak, so that £ & £. Here £ is the
correlation length associated with interface-induced S-variations (2.11), matching
also with the length scale over which subsurface ¢-variations can occur, as shown
in the first part of this Chapter. The elastic distortion in a nematic slab can now
be imposed either by applying a magnetic field whose orientation must not coincide
with the direction of the easy axis [17], or by antagonistic anchoring conditions
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at the opposing surfaces [152]. In the zero-temperature analysis of Ref. [17] the
magnetic field method was used. On the other hand, for nonzero temperatures a
strong enough magnetic field can enhance the degree of nematic order and even shift
the NI phase transition, which can present additional difficulties in interpreting the
results. Therefore, it is more appropriate to avoid any external field and consider a
hybrid cell-like sample with antagonistic boundary conditions instead.

In the present simulation, the left (2 = 0) surface was chosen to represent
the free nematic surface (where the intrinsic anchoring is to act), while the right
(z = d) surface corresponds to a solid wall represented by a layer of fixed particles
with planar alignment. Since intrinsic anchoring was seen to promote homeotropic
alignment for v < 0.3 [17], a bend deformation is expected to appear in the sam-
ple. The deformation should be present as long as the sample thickness d exceeds
d. = [(K/W)o — (K/W)al|, where (K/W), and (K /W)y refer to anchoring at the
left and the right interface, respectively [114].
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Figure 3.8 Temperature dependence of director profiles ¢(z) for different v.
An extrapolation from the bulk to the left provides an estimate for £ at the
free surface. At temperatures closest to the NI transition (for bulk T, see
Table 3.2) in the bulk the nematic melts down to avoid elastic distortions
[compare with s(z) profiles given in Fig. 3.9].

Figs. (3.8) and (3.9) show the order parameter and the director profiles for v =
0.05, 0.1, 0.2, and 0.3. To reliably treat cases with even lower v (or cases with
extremely weak anchoring), a thicker nematic slab should have been considered,
ensuring d > d., so that the bent director structure becomes stable. In all cases
displayed in Figs. (3.8) and (3.9), at the right surface the nematic was strongly
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Figure 3.9 Temperature dependence of order parameter profiles s(z) for dif-
ferent v (see also the caption of Fig. 3.8).

anchored at ¢ = 7/2 = 90° (planar orientation), while the intrinsic anchoring at the
left surface tends to impose homeotropic alignment with ¢ = 0°. Wherever there is
no significant variation in s(z) — like deep enough in the bulk — the ¢(z)-profiles
roughly exhibit the linear behavior predicted by the Frank theory. On the other
hand, if close to the sample surface the degree of order exceeds its bulk value, the
nematic will reduce the deformation in this region because it is (free)energetically
more expensive due to a larger elastic constant (and vice versa). As it is evident from
order parameter plots, in the vicinity of the right solid wall with strong anchoring
there is always an increase in s(z), accompanied by a reduction in slope (d¢/dz) in
the director profile ¢(z). The same effect can be observed also close to the left wall
when intrinsic anchoring is sufficiently strong (as for » = 0.3). For weaker intrinsic
anchoring (e.g., with » = 0.05) the opposite is observed: a decrease in s induces
an increase in the slope d¢/dz. As also seen in the first part of this Chapter, all
inhomogeneities in s(z) and, consequently, in ¢(z) occur on a length scale of the
correlation length & that increases upon approaching the NI transition. As already
stressed, the extrapolation procedure has to be performed from far enough in the
bulk to ignore the subsurface region of thickness £. Then, in the £ Z £ regime,
¢ = K/W is found as K/W = ¢(0)/(d¢/dz)s, where (d¢/dz), stands for the bulk
slope of the ¢(z) profile and ¢(0) for the surface tilt angle, as extrapolated from the
bulk.

The corresponding extrapolation lengths ¢ are summarized in Table 3.2 and
mainly do not exceed a few molecular dimensions a, except for the weakly anisotropic
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v = 0.05 case. Moreover, all £ seem to be fairly temperature-independent — except,
again, for the v = 0.05 case showing a moderate increase of 7 if the NI transition
is approached — in contrast to both experiments in thermotropics and the find-
ings of Ref. [152]. Therefore, the current results suggest that in the present model
system one might have W oc S° with d close to 2, explaining the insensitivity of
the extrapolation length to changing temperature. Note also that for, e.g., v = 0.3
the extrapolation procedure gives a negative ¢. This is a consequence of having
ignored subsurface variations of the order parameter s(z) in the extrapolation pro-
cedure [143]. This happens whenever at the surface the nematic is more ordered
than in the bulk and the above ¢ 2 £ condition is not met.

Exploring the behavior of director profiles when v is varied, one can see that the
actual surface value of the tilt angle ¢(0) decreases with increasing v. In other words,
the corresponding intrinsic anchoring strength is nonzero for v # 0 and increases
with v, as already seen in Ref. [17], along with the decrease of the elastic constant
K [129]. Microscopic values of the extrapolation length disagree with the typical
experimental ones, that is 100 nm and above [6]. To reach a quantitative agreement
of present results and experiments, a significant decrease of the v parameter seems
to be inevitable, as also suggested in Ref. [17]. A small v in Eq. (3.34) promotes
parallel molecular alignment, as it is also favored, e.g., by steric repulsions in a
system of hard rods. A decrease in v might therefore be regarded as an effective
inclusion of steric repulsions excluded in the present model.

At the same time it should be borne in mind that at this stage looking for a
strict quantitative agreement with experimental results is somewhat far-fetched. In
fact, a number of other phenomena may also affect nematic ordering in the vicinity
of an interface [159], such as dipolar and quadrupolar interactions, electrostatic in-
teractions due to selective ion adsorption [160], presence of impurities [161], density
variations [66,67], or roughness of a solid surface. All these phenomena can alter the
local elastic properties of the liquid crystal, which affects the elastic torque transmit-
ted from the surface to the sample bulk, and can thereby affect the determination
of /.

Further note that close to the NI transition the nematic can melt in the center of
the sample if a strong enough elastic deformation is imposed (see Figs. 3.8 and 3.9).
Then molecular alignment becomes homeotropic in the vicinity of the left surface,
followed by a region of (nearly) isotropic liquid in the slab center, and by a region of
planar alignment close to the right surface (see the snapshots shown in Fig. 3.10),
as predicted also phenomenologically [162]. Thereby the elastic distortion vanishes,
which — in a sample of current thickness — makes it difficult to measure K/W in
the vicinity of Thyy.

Moreover, the variations in the ¢(z)-profile additional to the linear profile pre-
dicted by Frank elasticity seem to be a purely elastic effect driven by subsurface
variations of the elastic constants. In this sense they are similar to the localized
variations of the twist angle w explored in Sect. 3.2. In the strongly bent nematic
studied here, localized quasi-splay-bend-like subsurface deformations could not be
identified, although — in principle — they might exist since for v # 0 one has
Ly + L3 #0.
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[

Figure 3.10 Snapshots of molecular configurations for v = 0.05 in a hybrid
cell: right surface with strong planar anchoring, left surface is free (homeotrop-
ically anchored through intrinsic anchoring). Left: T° = 1.1 (bent profile),
right: T° = 1.35; just below bulk T'5; (homeotropic against planar alignment:
the nematic melts in the middle of the cell).

The final note in this Section goes to possible residual bulk easy axes connected
with the use of the spatially anisotropic pair potential (2.34) in a lattice model.
Strictly speaking, in the present model there is no bulk easy axis for in-plane align-
ment only provided that the nearest-neighbor particles are all aligned strictly along
the same direction. At any finite temperature, however, this never is the case, and
therefore some lattice-induced orientational correlations may be expected for molec-
ular ordering on short length scales comparable to the lattice spacing. However, for
the applicability of any lattice model it is important that it appropriately reproduce
large-scale elastic deformations and that the corresponding ¢(z) director profiles be
smooth and follow qualitatively the phenomenological picture. By all means, this is
the case for the model presented here.
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4
Polymer-dispersed liquid crystals

The following Chapter will be devoted to nematic ordering in microscopic spherical
cavities, as encountered in polymer-dispersed liquid crystal (PDLC) systems. Spher-
ical nematic droplets can be obtained by dispersing the liquid crystal in a polymer
binder through either phase separation [28] or emulsification [163,164]. Reviewing
PDLC samples, one encounters a rather broad distribution of droplet sizes, the lower
bound for their diameter being several tens of nanometers (e.g., 20 nm [132]), and
the upper well above 1 um. In the past, nematic ordering in PDLCs has been subject
to extensive studies (phenomenological, experimental, and simulation) and is well
understood by now [5,91]. For this reason, here another question will be addressed,
namely, of how to establish a correspondence between the information on nematic
ordering obtained from Monte Carlo (MC) simulations and one of the possible ex-
perimental observables, deuterium (2H) NMR spectra. A novel methodology for the
calculation of 2H NMR line shapes will be presented that is — in contrast to the
existing MC approaches — applicable in presence of significant molecular motion.
In particular, radial and bipolar droplets will be considered (see Fig. 1.4).

The MC simulations reported in this Chapter were performed in the framework
of the Lebwohl-Lasher (LL) lattice model (Sect. 2.2.1). To model a PDLC droplet, a
jagged sphere was carved from the cubic lattice, considering all the molecules lying
closer than R = 12a (the droplet radius, a denoting the lattice spacing) to the droplet
center. The interaction with the polymer matrix was mimicked by assuming an ad-
ditional layer of ghost particles, with orientations chosen in accordance with desired
boundary conditions. The radial boundary conditions were obtained by orienting
the ghost particles normal to the local droplet surface. Similarly, in case of bipolar
droplets the ghosts were fixed tangentially to the local surface and in planes contain-
ing the symmetry axis of the droplet (see Fig. 4.1). Further, the nematic-nematic
and nematic-ghost interaction strengths were assumed equal, which corresponds to
a rather strong anchoring with a microscopic extrapolation length of the order of a,
the lattice spacing. The number of particles inside the droplet was set to N = 5832,
whereas in the additional surface layer fixing the boundary conditions to IV, = 1352.
For radial and bipolar boundary conditions the calculations at the lowest tempera-
ture were started from perfectly ordered (zero-temperature) configurations. These
are, in accordance with the given boundary conditions, a perfect hedgehog and a
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perfect bipolar structure in the radial and bipolar cases, respectively. At higher
temperatures the simulations started from an already equilibrated configuration at
the nearest lower temperature, when this was available. The standard Metropolis
algorithm (Sect. 2.2.3) was then applied to update nematic particle configurations.
Typically, 5 x 10* MC cycles (sets of N attempted trial moves) were performed for
equilibration, followed by a set of further 1024 production cycles used to calculate
averages of interest. Within one MC cycle, each of the nematic particles was selected
at random for a trial move, using a random shuffling algorithm [123]. Then a new
trial orientation for the chosen particle was generated by a controlled variation from
the previous one, applying the Barker-Watts technique [131] (Sect. 2.2.3). The trial
move amplitude was adjusted dynamically so as to ensure a rejection ratio not too
far from 50%. The reduced temperature scale used in this Chapter is defined as
T* = kgT/e, with € introduced just below Eq. (2.29). The simulation runs corre-
sponding to the nematic phase were all performed at 7" = 0.8. Similarly, cases in
the isotropic phase were run at 7" = 1.2. Note again that in this temperature scale
the bulk nematic-isotropic (NI) transition takes place at Ty, = 1.1232 [123] and is
reduced to around 1, e.g., for a bipolar droplet in absence of external fields [100]).

(b)

Figure 4.1 Surface layer of ghost particles defining the boundary conditions.

(a) radial, (b) bipolar droplet (the arrow indicates the bipolar axis).

Recall that the dynamics of MC simulations is determined by the “non-natural”
molecular evolution process driven by the Metropolis procedure (in contrast to
molecular dynamics simulations following the equations of motion), and hence the
time scale assigned to fluctuations generated by this technique does not necessarily
have to match with the natural time scale indicated in Sect. 2.3.1. However, the
update process adopted here rotates one molecule (particle) at a time for a certain
angular step, which is a plausible physical evolution process. In this sense, one can
map the MC dynamics onto a plausible real one, apart from an arbitrary time unit.

For the calculation of 2H NMR line shapes the approach with the time-dependent
nuclear spin Hamiltonian (Sect. 2.3.1) was used, allowing for a full treatment of dy-
namical effects in calculating the line shapes. Combining this approach with MC
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simulations, in this Chapter it will be possible to link ?H NMR line shapes to fluctu-
ations of molecular long axes, translational self-diffusion of molecules (homogeneous
and inhomogeneous), as well as to aligning effects of external electric/magnetic
fields. In the analysis of the spectra we will proceed from the static limit to the
limit of completely motionally averaged spectra, in order to find out to which extent
diffusive processes smear the spectra and thus make the identification of director
configurations impossible.

4.1 Dynamical effects and ?H NMR line shapes

To begin with, droplets in absence of external fields will be considered, assuming
also that there is no coupling between the spectrometer magnetic field B and the
molecular orientation. Indeed, in microconfined liquid crystals the aligning effects
of a magnetic field can be ignored if the magnetic coherence length &, o< 1/B (2.23)
is much larger than the characteristic dimension of the confined system, i.e., if the
magnetic field is weak enough not to overwhelm the aligning effect of the confining
walls. In the droplet case, the condition &,, > R must be fulfilled to justify omitting
the molecular coupling with the spectrometer field.

4.1.1 Molecular fluctuations

First consider spectra in absence of translational diffusion, or, equivalently, spectra
of large enough nematic droplets in which this kind of molecular motion can be
considered as rather unimportant. The droplet size R in this case must satisfy R >
v/6Dty, where D is the diffusion constant, ty the characteristic NMR time scale, and
v 6Dt, the root-mean-square diffusive displacement covered by a molecule during .
Now the only relevant molecular dynamics is caused by fluctuations of long molecular
axes u;. In order to obtain a spectrum with a sufficient resolution, it is necessary to
simulate a relaxation signal G(t) that is long enough, i.e., lasting for several NMR
cycles of duration ¢, each. Comparing the time scales of molecular fluctuations ¢z
and the characteristic NMR “time-window” t, (see Sect. 2.3.1), it is evident that
there should be approximately 10 molecular fluctuations per each NMR cycle, .
This relation between ¢y and ¢x did not allow for generating a sufficiently long G(¢),
as, for technical reasons, at this point only data for 1024 MC particle configurations
were available. Therefore, generating G(t), the nematic particle configuration was
updated from the MC data less frequently than required by the natural time scale
so as to cover a long enough period in time. This approximation is not of essential
importance, given the already mentioned arbitrariness in the Monte Carlo time scale.

In the case without diffusion, particle configurations inside the droplet were
updated 8 times per NMR cycle, this being much less than the natural scale tp.
However, this made it possible to generate a G(t) signal whose length is 1281,
yielding spectra with a resolution of 256 points in the relevant (nonzero) part of the
spectrum. By comparing the order parameter S deduced from NMR spectra with
that calculated directly from MC data, it is possible to check whether the chosen
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frequency of configuration sampling is sufficient or not. Further, the resulting spectra
show some “noise” because the number of particles inside the droplet is still relatively
small. To smoothen these spectra, a convolution with a Gaussian kernel of width
0.040wg was performed. For dwg ~ 27 x 40 kHz this width equals ~ 27 x 1600 Hz,
which is well above the natural line width, typically given by ~ 27 x 100 Hz. Note
that neither the width of the kernel nor its shape (Gaussian instead of Lorentzian)
match with the features of natural single-spin NMR lines and that the purpose of
performing such a convolution is merely to smoothen the spectra and not to simulate
the natural linewidth.

According to Eq. (2.41), the maximum width of a doublet in the spectrum equals
20wgS. In the perfectly aligned nematic phase with S = 1 the spectral width
amounts to 20wg, but as soon as dynamic effects are taken into account, the spec-
trum is narrowed, and molecular fluctuations effectively yield S < 1. The line shape
obtained, for example, from the radial droplet, is somewhat more complex because
now one also has n = n(r). In the radial droplet most molecules are directed radially
from the droplet center, while in the center there is a fairly small defect core [165]
(the core structure will be discussed in more detail later). Consequently, molecular
orientations are distributed almost isotropically over the whole solid angle €2, which
is equivalent to considering a polycrystalline sample with dN/dS2 = const., where
dN is the fraction of molecules whose orientations fall into d€2. Then, taking into
account (2.41), the spectrum is given by I(w) = dN/dw o [w — (wz + L6wgS)]~!/2
(wz denoting the Zeeman frequency) and is called Pake-type powder pattern [135]. Tt
consists of two sharp asymmetric peaks positioned at w; £+ %&UQS , with two “shoul-
ders” reaching up to wz £ dwgS. In fact, similar features can be found also in the
spectrum calculated from the MC simulation data for the radial droplet at 7* = 0.8
— see the top curve in Fig. 4.2, left. Now it is possible to deduce the value of S
from the actual position of the peaks (or shoulders): S ~ 0.72 4+ 0.02. To check
this result, one can calculate S also directly from the MC data by diagonalizing the
MC time-averaged ordering matrix @ (2.5) for each particle and then averaging the
largest eigenvalues obtained in this way over the whole droplet. Such a calculation
then gives S ~ 0.73 4+ 0.10. Here the variance comes from the ensemble average
over particles. This rather good agreement also indicates that even sampling MC
structures rather infrequently (i.e., only 8 times per NMR cycle) still reproduces the
effect of molecular fluctuations sufficiently well.

In the bipolar case, surface anchoring is planar and in the droplet core most
particles are aligned along a given direction, determined by the bipolar symmetry
axis [Fig. 4.1 (b)]. Where the axis intersects the droplet surface, there are two
topological defects at the “poles” of the droplet. The spectrum of the bipolar droplet
in the no-diffusion limit differs considerably from that of the radial droplet. If the
NMR magnetic field B is applied along the bipolar axis, it still has two asymmetric
peaks, which, however, are now located approximately at wz 4 dwgS. This reveals
that indeed most of the molecules are aligned parallel to B — see the top curve
in Fig. 4.2, right, calculated for 7" = 0.8. Evaluating S from the peak positions,
S &~ 0.73 £ 0.01 is obtained, while calculating S directly from the MC data yields
S & 0.76 £ 0.04. Again the agreement of the two estimates is good. In general,
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bipolar symmetry axes in droplets of a real PDLC sample can have arbitrary spatial
orientations. Summing up contributions originating from droplets all over the sample
then yields a spectrum similar to the Pake-type powder spectrum even for bipolar
droplets [132] (this topic will be discussed later in this Chapter). If, however, the
process of bipolar droplet formation in a polymer matrix is occurring in a sufficiently
strong external magnetic field, the bipolar axes align along the field direction. This
frozen-in alignment (“memory-effect”) can be retained also after the field is switched
off [40], which then corresponds to the case considered here. In the following it will
be assumed that the NMR spectrometer magnetic field is directed along the droplet

symmetry axes.
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Figure 4.2 Left: 2H NMR spectra of the radial droplet for different values
of the diffusion parameter A: A = 0 corresponds to the no-diffusion limit,
while A = 32 corresponds to the fast diffusion limit. The Pake-type powder
spectrum obtained for A = 0 collapses into a single line centered at zero
quadrupolar splitting for A = 32. Right: Same as left, however, for the
bipolar droplet. The spectrometer magnetic field was aligned along the bipolar
symmetry axis, which results in a spectrum consisting of two lines both in
absence of diffusion and in the fast diffusion limit. In all cases T* = 0.8,
ensuring the existence of the nematic phase. Here and elsewhere in the thesis
all spectra were normalized so as to obtain the same peak height.
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4.1.2 Homogeneous translational diffusion

In addition to fluctuations of the molecular long axes, now also translational molec-
ular diffusion will be included into the analysis. Note that since nematics are
anisotropic liquids, the process of translational diffusion is anisotropic, characterized
by a tensor D. In a bulk unconstrained nematic phase the ratio of its eigenvalues
— the diffusion constants D) and D, measured along the director n and perpen-
dicular to it, respectively — can typically range around ~ 2 [4,40]. However, since
here we are primarily interested in qualitative features of spectra, in the following
analysis the diffusive process will be assumed isotropic and characterized by a single
motional constant D = Dy = D, . Some preliminary tests with anisotropic diffusion
indeed showed that qualitatively current results do not change.

Translational diffusion was simulated by a simple random-walk process in which
the particles representing one or several nematic molecules jump between lattice
sites. In every simulation step each of the particles is allowed to move to its near-
est neighbor site with equal probability in the present isotropic case, while in the
anisotropic case this probability should be biased so as to increase the diffusion
probability along the director [40]. After the diffusion jump has been performed,
the particle acquires a new orientation, whose average (i.e., the local n) in a distorted
sample is different from the average calculated at the old coordinates. Calculating
G(t), like in the diffusionless case nematic particle configurations were updated from
the MC data 8 times per NMR cycle. Now additional diffusion steps were added
in between these structural updates, with their number A ranging from 1 to 32.
In this last case the spectra are completely motionally averaged due to diffusion
effects since for A = 32 each of the particles exhibits a total of 256 jumps within the
duration of one NMR cycle, this already corresponding to the fast diffusion limit
with /6Dty ~ 16a 2 R. It should be stressed that the diffusive random walk does
not interfere with the MC evolution process; in fact, it only uses the particle config-
urations generated by the Metropolis algorithm, forwarding this information to the
line shape calculation.

Starting by considering the radial droplet at 7* = 0.8, Fig. 4.2 (left) shows
a sequence of spectra for this type of boundary conditions, ranging from the no-
diffusion limit (A = 0) to the limit of fast diffusion (A = 32). In general, for any type
of boundary conditions the fast diffusion spectrum consists of two lines centered at
wz+(wg), where the average frequency is given by (wg) = dwg (S(r;) 5[3 cos® §(x;) —
1]); and the average (...); goes over the whole droplet. If the diffusion is fast enough
so that molecules diffuse through a large enough portion of the droplet, in the
radial configuration for which (wg) = 0 the two lines should coalesce into a central
line (zero quadrupolar splitting). Inspecting the simulated spectra (the sequence in
Fig. 4.2, left), it is evident that this indeed happens. It is possible to deduce the
value of (wg) also directly from the MC data, yielding (wg) =~ 0.03 dwg.

Repeating the same analysis for the bipolar droplet (7* = 0.8), one can observe
that the two lines in the spectrum do not merge into a single line, as just observed
for the radial droplet when moving from the slow into the fast diffusion regime
(Fig. 4.2, right). This happens because now one is dealing with an ensemble of
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molecules whose orientational distribution is spatially anisotropic. Hence, (wg) # 0
should be expected, unless (by coincidence) the relative orientation of the NMR
spectrometer magnetic field and the majority of molecules within the droplet yields
wg ~ 0 already in itself. This is, however, not the case for the spectra shown in
Fig. 4.2, right: here (wg) = (0.61 £ 0.02) dwq from the peak positions and 0.59 dwg
from the MC data. Note also that the two lines in the spectrum move towards a
lower splitting (wgq), which is because not all particles are exactly parallel to the
spectrometer field and thus yield smaller |wg| contributions when the average (...)
is performed.

As indicated before, diffusive processes are expected to be more important in
small droplets than in large ones. Therefore, it can be convenient to express the
limit between the slow and fast diffusion regimes in terms of the droplet size, keeping
the value of the diffusion constant (a temperature-dependent material constant)
fixed. Then the degree of diffusional averaging can be quantified by introducing the
dimensionless parameter e = |wg|R?/12w D [40], where D is the effective diffusion
constant and wg is given by Eq. (2.41). The parameter e is constructed by comparing
the droplet radius R (i.e., the typical dimension over which n changes significantly)
with the root-mean-square distance traveled by a molecule during the characteristic
NMR time scale t5. In cases without diffusion (or in very large droplets) one has
e —» oo (v6Dty < R), while in the fast diffusion regime (or for small droplets)
e — 0 holds (v/6Dty > R). The cross-over between the two regimes occurs for
e =~ 1. The actual value of e can be deduced from simulation parameters and is, in
cases claimed to correspond already to the fast diffusion regime (A > 32), equal to
e S 0.45. Here it was assumed that most molecules are aligned along the NMR field
direction and that the nematic order is homogeneous with S = 0.8 throughout the
droplet. Note that although e < 1 is still not fulfilled, the translational diffusion
is already significant and the resulting spectra show features of diffusive motional
averaging. Increasing the diffusion rate (decreasing e) even further would have
resulted merely in an additional decrease of the spectral line width, maintaining the
spectral shape. On the other hand, translational diffusion is seen to affect the line
shapes spectra only negligibly for A < 1, i.e., e & 14 [95]. Choosing specific values
for dwg and D, it is possible to rewrite both bounds for e in terms of the droplet
radius R. Hence, putting dwg =~ 27 x 40 kHz, D ~ 4 x 107! m?/s (e.g., for bulk
5CB at room temperature) [5], and again S & 0.8, one finds that the spectra of
droplets smaller than R ~ 60 nm are already averaged by diffusion, while diffusive
motions can be ignored in droplets larger than R ~ 330 nm. However, here it is
again necessary to stress that a single particle in the LL model can represent a
cluster of up to 10? nematic molecules [94] and that because the number of particles
in the simulation is limited, only droplet radii below ~ 60 nm can be accessed. In
this range of R the simulation is meaningful and, for the above values of dwg and
D, one is actually always in the fast diffusion regime. Therefore, the no-diffusion
spectra are only given for a better comprehension.

Lining up spectra for radial and bipolar droplets (as in Fig. 4.2), one can readily
identify each of the two boundary condition types just by inspecting the calculated
line shapes. Indeed, in the slow diffusion limit it is always possible to identify the
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radial structure because of its characteristic Pake-type pattern not depending on the
direction of the spectrometer magnetic field. The spectrum of the bipolar droplet,
on the other hand, is two-peaked and the peak-to-peak distance depends on the
magnetic field direction. This conclusion holds also in the fast diffusion regime,
except that the Pake-type spectrum of the radial droplet now collapses into a single
line at zero splitting, again regardless of the NMR magnetic field direction.

4.1.3 Inhomogeneous translational diffusion

The analysis of the diffusive motion presented so far has assumed the diffusive
process to be both isotropic (with D, = D = D) and homogeneous (D position-
independent). However, as suggested by experimental results, in a thin subsurface
layer molecular diffusive motion is hindered, which results in a significant reduction
of the effective diffusion constant D. Consequently, in strongly confined systems
this effect can play an important role, especially if the molecular surface dwell time
is long, reducing D even by a factor of 3 x 10® [96,166]. It becomes even more
pronounced if the molecular exchange between the bulk and the surface layer is
accompanied by a significant change in either the degree of nematic order or in
molecular orientation (or both). Therefore, in this Section surface inhomogeneities
in the diffusive process will be examined.

In the simulation, the thickness of the surface layer was set to roughly one
particle dimension (up to @ ~ 5 nm), thereby leaving 1608 particles (out of 5832)
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Figure 4.3 Left: Spectra of the radial droplet at 7 = 0.8: no diffusion (top),
fast diffusion: inhomogeneous (center) and homogeneous (bottom). Right:
Same as left, but for the bipolar droplet.
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in the subsurface region. Then the rate of diffusive moves within this region was
reduced and the same reduction factor was assumed also for moves entering or
leaving the surface layer. Due to a significant portion (=~ 28%) of particles lying in
the surface layer, a substrate-induced slowdown in translational diffusion is expected
to be clearly visible.

First consider the droplet with radial boundary conditions at 7* = 0.8. The
top and bottom curves shown in Fig. 4.3, left, correspond to the no-diffusion and
fast diffusion cases, respectively. If now surface inhomogeneities in translational
diffusion are taken into account, in the spectra — apart from the diffusion-averaged
central peak — there are now two well-pronounced peaks at wz£0.36 dwg, plus some
additional signal at frequencies 0.4 0wg < |wg| < 0.8 dwg. The spectrum displayed
in Fig. 4.3 (center, left) was calculated for D,/D, = 3 x 10, where Dy, and D, are
the effective diffusion constants in the bulk and in the surface layer [96]. Since the
ratio Dy/ Dy is rather large, in the surface layer containing 28% of molecules there is
almost no diffusive motion in comparison to the droplet core. Therefore, it is possible
to understand the spectrum depicted in Fig. 4.3 as a weighted superimposition of a
diffusion-averaged contribution originating from the droplet core — the central peak
— and of an underlying Pake-type pattern originating from the surface layer, affected
only negligibly by the slow diffusion. Then from peak positions wz 3 0.36 dwg one
can roughly estimate the value of the order parameter in the surface layer, which
yields S = 0.72. For that layer the S-profiles calculated from MC data give S ~ 0.80
and the agreement is sufficiently good.

Turning now to bipolar droplets, again the bipolar axis was chosen parallel to
the spectrometer magnetic field. Consequently, both without diffusion and for rapid
(but homogeneous) diffusion the spectrum consists of two lines (Fig. 4.3, right),
the splitting in the latter case being somewhat smaller than in the former one, as
discussed above. If, however, diffusion is inhomogeneous (again with D,/D, = 3 x
10%), the two main peaks in the spectrum move slightly apart, but do not exceed the
initial splitting obtained in the diffusionless case. The diffusive paths of particles now
mostly avoid the surface region where the curvature of the director field is strongest
and, consequently, the deviations from the maximum |wg| are largest, which explains
the re-positioning of the main peaks. Further, there are two additional “shoulders”
positioned at a splitting slightly larger than that corresponding to the main peaks.
These “shoulders” originate from the diffusion-unaffected surface layer, especially
from particles aligned almost along the spectrometer field. Note that the “shoulder”
positions match with the positions of the two main peaks obtained in absence of
diffusion quite well, as also suggested by the dotted guidelines in Fig. 4.3.

4.1.4 “Powder” sample: bipolar droplets

Experimentally, 2H NMR has been applied to study mostly PDLC samples with pla-
nar anchoring, resulting in bipolar droplets [25,40,90,132,133]. The spectra available
from these analyses either consist of two well distinguished peaks, or are equivalent
to the Pake-type powder pattern. In the former case all bipolar droplet symmetry
axes were aligned along a given direction prior to recording the NMR spectrum
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(e.g., by a strong field during the droplet formation), which corresponds to the case
analyzed so far. In the latter case, however, bipolar axes are distributed over the
whole solid angle. Such a sample is then macroscopically isotropic, although the
constituent bipolar droplets are not.
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Figure 4.4 Spectra of 1000 bipolar droplets at T* = 0.8, with symmetry axes
oriented randomly: no diffusion (top), fast diffusion: inhomogeneous (center)
and homogeneous (bottom).

Although in the present study only MC data for a single droplet were available,
it was possible to simulate the effect of randomly oriented droplet symmetry axes by
using the unaltered single-droplet data and by assuming to have a random distribu-
tion of spectrometer magnetic field directions. Since in this way one simply “clones”
the data for a single droplet to model several droplets, this certainly results in un-
physical correlations between particle orientations in different droplets, but at least
in cases with diffusion this should not be of great importance since interdroplet cor-
relations are smeared out by independent diffusion paths in each droplet. Note that
now spectra show much less noise than for a single droplet and it is not necessary
to perform smoothening convolutions.

The top curve in Fig. 4.4 is the spectrum of 1000 bipolar droplets without dif-
fusion at 7" = 0.8 (nematic phase). It presents a Pake-type pattern, as expected,
with peaks positioned at wz 4 0.37 dwg. This suggests that S ~ 0.74, which is close
to S = 0.73, a value deduced from peak positions for a single bipolar droplet —
see Fig. 4.2. In the spectrum, fast and homogeneous diffusion again results in a
Pake-type pattern, albeit somewhat narrowed (Fig. 4.4, bottom). The ratio of line
widths measured peak-to-peak in cases with and without fast diffusion should be
equal to that calculated for a single bipolar droplet. For a single droplet this ratio
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is estimated by 0.83, while for an array of 1000 droplets one finds 0.80, indicating
that the agreement is good.

Finally, if diffusion is inhomogeneous (Fig. 4.4, center), the spectrum is still
similar to the Pake-type pattern, however, with less width reduction than in the
homogeneous diffusion case. In addition, at splittings slightly larger than those
corresponding to the main peaks, two “shoulders” appear again. Note that all
these features agree with those observed for a single bipolar droplet; compare with
Fig. 4.3, right. The central spectrum shown in Fig. 4.4 actually consists of two
superimposed Pake-type patterns. The first one — comprising the two main peaks
— is well-pronounced and originates from central droplet regions where diffusion
is effective. The two “shoulders”, on the other hand, are the main peaks of the
less pronounced, but not diffusion-narrowed second Pake-type pattern representing
the response from droplet surface layers. Note that the “shoulder” and no-diffusion
peak positions (Fig. 4.4, top) match again.

4.2 External field effects

Applying an external field in a PDLC droplet system leads to a competition between
the (usually) conflicting effects of the polymer matrix and the applied field. In case of
bipolar droplets, at lower field strengths the effect is less dramatic, resulting in a mere
reorientation of bipolar axes (provided that one is working with a non-aligned powder
sample, Sect. 4.1.4) [25,90]. Then, only at field strengths extremely high the bipolar
director structure itself is affected, too. These field-induced effects (especially the
low-field reorientation) turn out to be of great importance for technical applications
— mainly for the design of optical devices, such as switchable windows, displays, or
fast light shutters [5]. In the radial droplet case, however, already a relatively weak
external field can break the spherical symmetry of the molecular distribution, leading
to significant changes in the corresponding director structure. This Section will
present an upgrade of the analyses in Refs. [99,100]: it will reexamine the nematic
ordering in radial and bipolar droplets in an external field, both in the nematic and
isotropic phase, and establish a connection with the resulting dynamical 2H NMR
line shapes.

In the simulation, the coupling with the external field was modeled via (2.30),
as described in detail in Sect. 2. The strength of the field will be characterized
by the dimensionless parameter 7 introduced in (2.30) (just recall that the field
strength is proportional to /7). In order to influence the molecular alignment
inside the droplet significantly, the external (say, magnetic) field has to be strong
enough so that the characteristic length of the field-induced distortion [i.e., the
magnetic coherence length &, (2.23)] becomes comparable to or smaller than the
characteristic dimension of the confined system, here the droplet radius R. In an
experiment with an aligning magnetic field it is usually the NMR spectrometer field
itself taking the role of the external field introduced in the Hamiltonian (2.30). Here,
however, a distinction will be made between the “weak” NMR spectrometer field
and the “strong” external field of variable strength, responsible for the additional
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Figure 4.5 ?H NMR spectra of a single bipolar droplet in the nematic phase at
T* = 0.8 for different values of the external field strength (o< /7); no-diffusion
limit (a), fast diffusion limit (b). The quadrupolar splitting increases with
increasing 7.

molecular alignment. Note that although referring to magnetic field effects, in a real
experiment one can easier achieve the high field strengths required to align nematic
molecules by applying an electric field [25,90].

4.2.1 Nematic phase

Consider the bipolar case at T* = 0.8 without diffusion first, again supposing that
the direction of the NMR spectrometer field and of the external field f match with
the bipolar axis of the droplet, here denoted by z. Assume for the moment that
there is no external field applied (n = 0), except for the weak spectrometer field
that anyway does not disturb the nematic configuration. As already discussed,
already in this case a considerable portion of nematic molecules — especially those
in the droplet core — is directed approximately along the spectrometer field, which
results in a spectrum consisting of two well-defined peaks (Fig. 4.5, left) situated
almost at maximum quadrupolar splitting dwg, reduced by a factor of S. Increasing
now the external field strength to yield n = 0.2, the two peaks in the spectrum
move towards larger |wg| and get narrower. Accordingly, the MC data also yield an
increase in S — see Table 4.1. As it is evident from Fig. 4.5, this trend continues
also in even stronger fields, followed by an agreement also in the MC-calculated
S. Note, however, that already for n = 0.2 the external field is extremely strong:
considering the magnetic case and taking ¢ = kgTy;/1.1232 =~ 0.023 eV (with
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Tyn; =~ 300 K and T3, = 1.1232), the macroscopic anisotropy of the magnetic
susceptibility x,S ~ 107, and assuming a single particle to represent a cluster of up
to 100 nematic molecules of volume 1 nm? each, one obtains as much as B ~ 150 T.
If an electric field was used to align the nematic, the corresponding field strength for
a typical liquid crystal with €,S & 1 and for same 1 would be &~ 45 V/um, which is —
like in the magnetic case — rather difficult to be implemented experimentally (here
one encounters short-circuit problems in the dielectric nematic material). It must
be stressed, however, that strong external fields are required to induce a detectable
distortion because the simulated droplets are still rather small and because surface
anchoring was chosen strong, as already noted.

0 4 8 12 shell 0 4 8 12 shell
=1
0.84} 0.8
05 07
...... - A
“ . ~ 0.6
0.76
.-...-.... T]:O 0'5
0.72
0 0.5 1 7R 0 0.5 1 7R

Figure 4.6 Order parameters calculated for the bipolar droplet at T* = 0.8
(nematic phase): (a) standard nematic (S) and (b) external field ({P)p) order
parameter as a function of the distance from the droplet center . Curves are
plotted for (top to bottom): n =1, n = 0.5, n = 0.2, and 7 = 0, respectively.
External field enhances the degree of nematic ordering (a) and increases the
size of the aligned core (b). The molecular alignment for n = 0 is depicted
schematically as inset.

To gain more insight into field-induced changes of NMR spectra, it is convenient
to divide the PDLC droplet into onion-like spherical layers (shells) of equal thickness
and investigate nematic ordering layer by layer [126,127]. For this purpose the
standard nematic order parameter S and the external field order parameter (P,)p
were calculated in each layer of radius r (a < r < R) separately, leading to S(r) and
(Py) g(r) profiles, respectively. The parameter S was again obtained by diagonalizing
the local ordering matrices, as described above, and gives information on the degree
of nematic ordering with respect to the corresponding director. The parameter
(P3) g, however, is defined as (P,)p = (3[3(f - u;)?> — 1]);, f being the unit vector
directed along the external field and the brackets (...); representing the time and
ensemble average over orientations of molecules (particles) within a given spherical
layer. Contrary to S, (P,)p contains information on molecular ordering along a
fixed direction — determined by f — and thereby reflects also spatial variations of
the nematic director. Note also that the number of particles within a certain shell
increases rapidly when moving from the droplet center towards the surface (from
8 particles in the 1st shell to 1392 in the 11th). Despite this, the variance of S
(now calculated from the ensemble average over particles within a given shell) is not
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n Speak Smc ((wq)/0wq)pear  ({wo)/dwq)mc
bipolar 0.0 | 0.73+£0.01 0.76 +0.04 0.61 0.59
0.2 | 0.78+£0.01 0.794+0.03 0.71 0.70
0.5 | 0.81£0.01 0.81+£0.02 0.76 0.77
1.0 | 0.84+£0.01 0.84 £0.015 0.82 0.82
radial 0.0 | 0.724+0.02 0.73£0.10 0 0.03
0.02 | 0.70 £0.02 0.73+0.08 0 0.02
0.03 | 0.70+0.02 0.744+0.08 0.31 0.28
0.05 | 0.70+0.01 0.744+0.08 0.40 0.36
0.2 | 0.77+£0.01 0.76 £+ 0.065 0.59 0.57
0.5 | 0.80£0.01 0.79+0.06 0.70 0.70
1.0 { 0.844+0.01 0.82+0.05 0.78 0.78

Table 4.1 Bipolar and radial droplet at 7% = 0.8: comparison of S and
(wg) deduced from NMR spectra (“peak”) with those calculated directly from
Monte Carlo data (“MC”).

highest for the innermost shells. In the nematic phase, for example, it never exceeds
3% in the central shell containing 8 molecules only. The maximum variance (up to
6% in the bipolar and up to 30% in the radial case) usually occurs in intermediate
shells or even close to the substrate. In these regions aligning effects of the substrate
conflict either with the aligning effect of the external field or with the parallel aligning
tendency of the nematic-nematic interaction. The competition of these effects may
result also in a slight decrease of S.

The S(r) profiles for the bipolar droplet in the nematic phase for 7* = 0.8
are displayed in Fig. 4.6 (a). They indicate that the degree of nematic order is
almost constant throughout the droplet core with S ~ 0.74 when the external field
is absent, while it increases to S = 0.82 in the surface layer due to ordering effects
of the polymer substrate. Applying the field, the degree of molecular order inside
the core increases, if compared to the case without field; e.g., for n = 1 even to
S = 0.84. The profiles of the field order parameter (P,)z are plotted in Fig. 4.6 (b).
The corresponding curve for n = 0 shows that already in absence of the field there
is net molecular alignment along the z axis, which agrees with the imposed bipolar

/72 R\“\T\ /%772\\ . i M ML X
T 1 11 =
n=0 n=0.2 7=0.5 n=1

Figure 4.7 Bipolar droplet at 7* = 0.8 (nematic phase): snapshots of molec-
ular configurations for different n; zz-cross sections.
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boundary conditions whose symmetry axis matches with z (compare with snapshots
of molecular configurations, Fig. 4.7). The curves for n > 0 show that with the
increasing field strength more and more molecules orient along z (i.e., along f),
thereby increasing the size of the droplet core where the nematic liquid crystal is
almost undistorted and n||z. The thickness of the distorted region is related to the
external field coherence length &, and is obviously microscopic because the applied
field is extremely strong.

According to the above observations and to snapshots shown in Fig. 4.7, the
increase of the quadrupolar splitting w¢ in strong fields can be attributed both to
the overall increase in the local degree of ordering, i.e., to an increase of S — as
observed also experimentally [117] — and to the additional molecular alignment
along f resulting in an increase of (Py)p = (P,(cosf)); see formula (2.41). Also the
narrowing of the spectral lines is related to the increase of (P,)p since in the droplet

(a) (b)
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Figure 4.8 ?H NMR spectra of a single radial droplet in the nematic phase at
T* = (.8 for different values of n; no-diffusion limit (a), fast diffusion limit (b).
A hedgehog-to-aligned structural transition occurs with increasing 7.
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core the bipolar configuration is replaced by the “aligned” one. The spectral line
narrowing further follows from changes in the distribution of local S(r). In fact, in
strong fields the field-enhanced “bulk” value of S approaches the surface-induced
value and thus the distribution of S becomes narrower.

Considering now Fig. 4.5 (b) and the spectra of bipolar droplets in the fast
translational diffusion limit (or, equivalently, in small enough nematic droplets),
the spectra for all 7 still consist of two well-defined lines now positioned, however,
at an average quadrupolar frequency +(wg), where wq is spatially-dependent and
given by Eq. (2.41), and the averaging is to be performed over diffusive motions
of all molecules inside the droplet [40,136]. The quantity (wg) can be calculated
also directly from MC data and, according to values presented in Table 4.1, the
agreement with actual peak positions is very good.

1 0 4 8 12 shell 0 4 8 12 shell
0.8
0.6
“

0.4 72
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0.2

0 0.5 1 7R 0 05 L R

Figure 4.9 Order parameters calculated for the radial droplet at T* = 0.8
(nematic phase): (a) standard nematic (S) and (b) external field ((P2)p) order
parameter as a function of the distance from the droplet center. Curves are
plotted for (top to bottom): n = 1, n = 0.5, n = 0.2, n = 0.05, n = 0.03,
n = 0.02, and n = 0, respectively. The defect core transforms into an aligned
structure. The molecular alignment for n = 0 is depicted schematically as
inset.

We now turn to radial droplets. In absence of external fields the nematic director
is directed radially from the droplet center, giving rise to a “hedgehog”-like structure.
Then in the very vicinity of the center the elastic deformation (splay) becomes rather
strong and therefore it is convenient in this tiny region for the nematic to melt, i.e.,
to decrease the degree of nematic order (S) so as to reduce the elastic deformation
free energy. In the rest of the droplet the radial alignment still exists and therefore
in each of the intermediate and outer shells particle orientations are distributed
evenly through the whole solid angle. As far as NMR is concerned, this situation
is equivalent to having a polycrystalline powder sample and, indeed, as already
discussed, the spectrum of the radial droplet for n = 0 is the Pake-type powder
pattern shown in Fig. 4.8 (a) for the diffusionless case. A calculation of the nematic
order parameter S [Fig. 4.9 (a)] for n = 0 shows that the value of S in the center
of the droplet is nonzero, yet considerably smaller (= 0.32) than the value obtained
in the intermediate and surface layers (Z 0.75). This confirms the existence of a
small (~ 4a in diameter) and fairly disordered defect core. Looking at snapshots
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Figure 4.10 Radial droplet at 7* = 0.8 (nematic phase): snapshots of molec-
ular configurations for different 7; zy-cross sections (left column), zz-cross
sections (right column). The external field f is applied along z.

of molecular configurations (Fig. 4.10), it can be readily observed that here one is
not dealing with a point defect: the defect core actually consists of a weakly aligned
nematic, encircled by a ring disclination line of strength —l—%. The plane of the ring
takes an arbitrary orientation and can even rotate during the MC evolution. The
characteristic time scale associated with reorientations of the ring is expected to be
much larger than the time span covered by the 1024 MC cycles employed in the line
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shape calculation.

Applying an external field, with increasing n the disclination ring first orients
normal to f, the field direction, and after that increases also in size (see Fig. 4.10).
Thereby the radial “hedgehog” structure is transformed into an axially symmetric
structure with a well-pronounced ring defect. The degree of ordering in the center
therefore increases significantly and the molecules of the core align along the field
direction (compare with order parameters S and (P,) 5 plotted in Fig. 4.9). There is
no critical field characterizing the transition between the “hedgehog” and the aligned
structure: the size of the aligned core increases gradually with the increasing field
strength [99]. This can be confirmed also by inspecting the resulting NMR spectra
shown in Fig. 4.8 (a). For strong external fields with n > 0.2 the Pake-type pattern
transforms into a spectrum with two narrow peaks, similar to those observed for
bipolar boundary conditions. Again, this indicates that for n > 0.2 most of the
molecules are aligned along f, except for those lying close enough to the polymer
substrate (compare with Fig. 4.10). In fact, surface-induced radial order persists
in the outermost molecular layers, which results in a strong decrease of the order
parameter (P,)p [Fig. 4.9 (b)] in the surface region. The thickness of this region
is again roughly equal to the field coherence length &,,. In the intermediate regime
with 0 < 1 < 0.2 the spectra are composed both of the Pake type contribution
originating from the surface layers and of two narrow peaks being a signature of the
field-ordered core. With increasing n the latter contribution prevails, as it is clearly
evident from Fig. 4.8 (a). Again it is possible to check the agreement of values for
S deduced from peak positions and from MC data (Table 4.1).

As seen in previous Sections, in the fast diffusion regime the spectrum of the
radial droplet for n = 0 consists of a single line located at (wg) = 0 [40,136]. As
soon as there is a preferred direction (like in the bipolar case with all droplets aligned
or in a strong enough field), (wg) = 0 no longer holds and the spectrum splits into
two narrow and symmetric peaks. Fig. 4.8 (b) shows the fast diffusion spectra for
radial boundary conditions. As expected, one observes a single line in the spectrum
only if the external field is off or relatively weak with n < 0.02. Increasing the field
strength, the spectrum gradually transforms into the two-peak pattern described
above. For a comparison of peak positions and (wg) calculated from MC data see
Table 4.1; the agreement of the two estimates is fairly good.

4.2.2 Isotropic and field-induced nematic phase

In the following we will consider both types of boundary conditions at 7" = 1.2,
a higher temperature already above the nematic-isotropic transition. In absence
of external fields molecular motion in the bulk isotropic phase is spatially isotropic
(i.e., there is no long-range orientational order), hence one has S = 0. Consequently,
the quadrupolar perturbative contribution to the deuteron energy levels is averaged
out and the frequency splitting wg o< S vanishes [see Eq. (2.41)]. In this case a
single line positioned at wg = 0 appears in the NMR spectrum.

Consider the bipolar droplet for n = 0 first: the corresponding spectrum con-
sists of a single line at zero-splitting, as expected [Fig. 4.11 (a)]. A calculation of
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the nematic scalar order parameter S [Fig. 4.12 (a)] reveals some residual bipolar
ordering with S > 0 in the outer molecular layers that is responsible for a rather
large line width. Applying the external field, the two peaks characteristic for or-
dered nematic phases reappear. Also the nonzero values of both order parameters
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Figure 4.11 2H NMR line shapes of droplets at T* = 1.2 (above T%;). Top:
bipolar droplet in the static (a) and fast diffision limit (b). Bottomn: same as
top, but for the radial droplet: static (c) and fast diffision limit (d). For strong
enough fields a nonzero quadrupolar splitting is restored.
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Figure 4.12 Bipolar (top) and radial droplet (bottom); same as Figs. 4.6
and 4.9, but at T* = 1.2 (above T%;;). Even for n = 0 there is some residual
surface-induced nematic order in the outer layers of the droplet, while in a
strong enough external field nematic order is restored throughout the droplet.

(S and (Py)p) given in Fig. 4.12 are restored again despite the fact that the at
T* = 1.2 one is already quite far from the NI transition. All these observations
show that a strong enough external field can overwhelm temperature effects and
induce nematic-like molecular ordering also above the nematic-isotropic transition
temperature [99,100,167], which has been observed also experimentally [118], how-
ever, not that far from the NI transition in the absolute temperature scale. Like
in the nematic phase, the quadrupolar splitting increases with increasing 7. Again,
peak positions and MC-data values for S match (Table 4.2). One can also compare
the peak positions (and, simultaneously, the estimates for S) with those obtained
for the lower temperature 7% = 0.8. As expected, for T* = 1.2 the estimated values
for S are lower than those for 7* = 0.8 (see above). This suggests that although
unrealistically strong, the external field is still not the only important element in de-
termining the structure inside the droplet and that disordering temperature-induced
effects are still well-pronounced. In the fast diffusion limit all spectra, including that
for n = 0, consist of two peaks since (wg) # 0 [Fig. 4.11 (b)]. This result is ex-
pected for n # 0 and also for n = 0, where the ordering effect of the external field
is absent, but there is residual surface-induced ordering [for the behavior of S see
Fig. 4.12 (a)]. Checking the matching of peak positions and the MC-deduced values
of (wg), the agreement is still very good (Table 4.2).

Repeating the analysis for radial boundary conditions and 7™ = 1.2 gives similar
results: in the no-diffusion limit the single broad peak centered at wg = 0 for n =0
splits into a doublet for n # 0 and the splitting increases with n [Fig. 4.11 (c¢)].
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n Speak Smc ((wq) /0wg)pear  ((wq)/0wq)mc
bipolar 0.0 0 — 0.17 0.18
0.2 0.514+0.01 0.534+0.08 0.46 0.46
0.5]0.63£0.01 0.6340.05 0.59 0.60
1.0 1 0.724+0.01 0.714+0.03 0.69 0.69
radial 0.0 0 — 0 0.001
0.2 10.464+0.01 0.484+0.11 0.33 0.34
0.5 0.624+0.01 0.59+0.08 0.52 0.52
1.0 ] 0.71 +0.01 0.68 4+ 0.08 0.65 0.65
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Table 4.2 Bipolar and radial droplet at 7* = 1.2: comparison of S and (wg)
deduced from NMR spectra with those calculated directly from Monte Carlo
data. Sps¢ for n = 0 is not given since in the isotropic phase the method
employed to calculate S results in an overestimate because in a disordered
phase the nematic director is not well-defined [124].

If the field is absent, the order parameters S and (P»)p plotted in Fig. 4.12 show
the existence of residual radial order in the surface layers of the droplet, while
in the core the liquid crystal is isotropic. For nonzero 7 both order parameters
acquire a nonzero value and hence again confirm field-induced nematic ordering
above Tx;. A comparison of peak position-determined S and MC-calculated S
given in Table 4.2 again shows that the agreement of the two values is fairly good.
Like for the bipolar droplet one can compare these values with those obtained at
T* = 0.8 in the nematic phase and again find that the degree of nematic ordering
is lower at higher temperature. Finally, Fig. 4.11 (d) shows the corresponding fast
diffusion limit spectra. For n = 0 the line is single-peaked in spite of residual order
with nonzero S close to the surface (Fig. 4.12). Note, however, that in this layer one
is dealing with radial order yielding (wg) = 0 already in itself. In other cases with
external field two peaks reappear and the corresponding splitting increases with 7.
The agreement of (wg) evaluated from peak positions and from MC data is very
good again; see Table 4.2.

For a more serious quantitative comparison of all calculated spectra with the
experimental ones, usually recorded for larger droplets than the ones studied here,
it would be necessary to simulate droplets containing a significantly larger number
of particles, so as to access radii of the order of ~ 1 ym. Moreover, it turns out
that the distribution in orientations of droplet symmetry axes is closely related to
the shape of the droplets, which is not necessarily spherical — as assumed so far —
but rather somewhat ellipsoidal, which may reflect in NMR spectra [25], as well as
in other observables. Some simulation work with ellipsoidal droplets has also been
performed in the past, presenting, however, no experimental observables [92].
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Nematics with dispersed polymer networks

In this Chapter the complex-most of all confinement types in this thesis will be
treated — low-concentration polymer networks dispersed in a nematogenic liquid.
The networks typically consist of thin fibers — few nanometers thick — or of some-
what thicker bundles of such fibers. As already mentioned in the introductory Chap-
ter, polymer fibers can play an important role in aligning the surrounding liquid
crystal even at low polymer concentrations [5,26,39]. As such, they are important
for the construction of electrooptical devices based on the external field-induced
switching process. The detailed characteristics of this process are closely linked to
the anchoring and ordering conditions at the fiber surface, as well as to the shape
and regularity of the network. Experimentally, these network properties can be reg-
ulated during the network formation (photopolymerization from the monomer-liquid
crystal mixture) through various parameters: monomer solubility, curing tempera-
ture, ultra-violet (UV) light curing intensity, and the degree of orientational ordering
in the liquid-crystalline component [5]. In particular, poorly soluble monomers re-
sult in polymer fibers with a grainy and coarse surface morphology, while highly
soluble monomers can form smooth fiber surfaces [15]. Further, high curing temper-
atures, as well as high UV light intensities, result in larger voids between polymer
fibers [101]. If the liquid-crystalline component of the mixture is isotropic during
the polymerization process, polymer fibers form directionless strands. On the other
hand, performing the polymerization in the nematic phase, or applying an external
aligning magnetic field, fibers can form bundles with a well-defined average direc-
tion [5]. Similar types of network-like confinement can be achieved also in silica
aerogel systems, where irregular chains of silica particles play the aligning role of
polymer fibers [5]. While thin (nanometric) polymer fibers typically promote planar
surface anchoring along the fiber direction, thicker fibers or fiber bundles (several
10 nm in diameter) can be treated with surfactants to yield homeotropic anchoring
conditions.

Like for PDLC droplets (Chapter 4), Monte Carlo simulations have been per-
formed in the Lebwohl-Lasher lattice model system. In this Chapter following phe-
nomena will be investigated in more detail: (i) a relation between the polymer fiber
surface roughness and the long-range orienting ability of the network [102], (ii) the
switching behavior in network systems with regular and irregular surface topog-
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raphy, (iii) pretransitional paranematic ordering, and (iv) topological defect lines
(disclinations) [103]. The first two phenomena are of great interest for applicative
purposes. Issues (i), (ii), and (iv) will be explored in a system of parallel and straight
fibers. Such a regular fiber array is similar also to colloidal crystal systems. In ad-
dition, the analysis of issue (ii), the switching behavior, will be extended also to
irregular fiber networks, dropping the initial requirement that the fibers be straight
and regular in position. Pretransitional ordering, issue (iii), will also be addressed
in an irregular sample. The simulation output will be expressed in form of 2H NMR
spectra (all issues), electric capacitance (the switching behavior), and transmitted
polarized light intensity (the switching behavior and pretransitional ordering).

5.1 Aligning ability of the network

In this Section a thorough microscopic simulation study of the orientational coupling
between polymer fibers and the surrounding liquid crystal will be presented, focusing
on polymer networks with a well-defined net fiber direction (as shown in Fig. 1.3),
and on effects of roughness at the fiber surface. In simulations the same model as
for studying nematic droplets was used (see Chapter 4 and the references therein),
however, only after appropriately adapting the simulation box and the boundary
conditions to mimic the geometry of the current network sample.

As a first step towards modeling the complex topology of the polymer network,
a single straight cylindrical fiber (oriented along the z-axis) was considered. The
shape of the fiber was defined by carving a jagged cylinder from the cubic lattice and
taking all particles that are lying closer than R — the fiber radius — from the center
of the zy-plane (Fig. 5.1). The particle orientations in the surface layer of the fiber
(ghost particles) were chosen in agreement with the desired boundary conditions
and were kept fixed during the simulation. The strengths of nematic-nematic and
nematic-ghost interactions were set equal, which corresponds to the strong anchoring
limit. Further, periodic boundary conditions at the simulation box boundaries were
assumed. Such a set-up in fact corresponds to a regular array of straight and parallel
fibers. It is believed that such simplified topography of the fiber network does not
qualitatively affect the effect of surface roughness studied here, at least for low-
density polymer networks. More realistic network models will be presented later,
including curved fibers positioned randomly inside the simulation box, allowing for
cross-linking between them at somewhat higher polymer concentrations.

In the case of “perfect” anchoring ghost particle orientations were chosen either
along z (a unit vector along the z-axis) for planar anchoring, or along the local radial
unit vector for homeotropic anchoring. For cases with partially disordered anchoring
— simulating the still cylindrical but rough fiber surface — the perfect planar or
homeotropic ghost orientations were perturbed by performing an additional rotation
for each of the ghost particles, characterized by a set of polar (f) and azimuthal (o)
angles. While the ¢ angle was sampled from a uniform distribution within [0, 27],
the sampling of 6 (or, alternatively, cos #) was biased so as to regulate the degree of
randomness in ghost particle orientations. The biasing distribution was chosen to
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Figure 5.1 Schematic depiction of the polymer network (right) and the sim-
ulation box with the cylindrical fiber and one of the cylindrical shells (left).

be dp/d cosf o< exp(P cos® ) (with p denoting the probability and cosf € [—1,1]),
where for small P the resulting orientational distribution of ghosts becomes almost
isotropic, while for large values of P it becomes strongly peaked at cosf = =+1
(i.e., 8 = 0,7) and therefore approaches that of the perfect anchoring cases. In
the case with completely disordering anchoring ghost orientations were sampled
from a fully random orientational distribution. The degree of randomness can be
given quantitatively by diagonalizing the ordering matrix @ = 1(3(w; ® w;), —
[) (the average (...), taken over ghosts), which gives the ghost director and the
corresponding order parameter (P),. In all cases the (P,), order parameter is
referred to the z-axis, the fiber direction. Therefore, cases with (P), = 1 and
(Py), = —0.5 stand for perfect planar and homeotropic alignment, respectively, and
(Py), =~ 0 for a random orientational distribution. Intermediate values of (P,), then
correspond to partial planar ((P), > 0) or partial homeotropic order ((Ps), < 0)
in ghost orientations. In principle, the phenomenological analogue to such partially
disordered interfaces (characterized by a surface-imposed degree of order, (P),, and
by a given easy axis, as here z) can be found in modeling the surface free energy
by (2.17), also used in Chapter 3.

To study the radial dependence of order parameters, it is convenient to split
the cubic simulation box into cylindrical layers surrounding the fiber (see Fig 5.1).
The observables accumulated during the production run were (P§), quantifying
the degree of ordering with respect to the z-axis, (Ps), indicating how the or-
der deviates from perfect radial ordering in the xy-plane, and the standard ne-
matic order parameter S. Then, for example, (P§)-profiles were calculated as
(P§)(r) = 3 [3((u; - 2)?), — 1]. The average (...), has to be performed over all ne-
matic particles u; belonging to the cylindrical layer with radius r, and over MC
cycles. Analogously, (Ps) profiles were calculated with respect to the local unit vec-
tor e,, where e, defines the local radial direction in the zy-plane at the ith lattice
site. Finally, the nematic order parameter profile S(r) was obtained from the diago-
nalization of the ordering matrix Q(r) = 1(3(u; ® u;), —1) averaged over sites in the
nematic layer with radius r, and over MC cycles. The eigenvalue with the largest
absolute value can then be identified as S and the difference between the remaining
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two eigenvalues corresponds to biaxiality.

In absence of significant collective molecular reorientation during the MC evolu-
tion, it is instructive to calculate also spatially-resolved director and order parameter
maps n(r;) and S(r;), respectively, where r; denotes the position of the ith lattice
site. For this purpose the local ordering matrix Q(r;) = £(3(uw; ® w;)y, — 1) was
averaged over MC cycles and then diagonalized, yielding the local value of the order
parameter S(r;), as discussed above, and the corresponding eigenvector, i.e., the
local director n(r;). Similarly, the biaxiality map can also be deduced from the
data.

In simulations presented in this Section, the simulation box size was set to
30a x 30a x 30a, which for the chosen fiber radius (R = 5a, a denoting the lat-
tice spacing) amounts to 24600 nematic and 840 ghost particles in total. Simulation
runs were started from a completely random (disordered or isotropic) orientational
configuration not to impose any preferred orientation in the system. In general, sim-
ulation results were rather insensitive to changing the initial particle configuration.
Then the standard Metropolis scheme [37] was employed to perform updates in par-
ticle orientations [91,131]. Once the system was equilibrated (after at least 6 x 10*
MC cycles), a sequence of 6.6 x 10* (or more) successive particle configurations was
used to calculate relevant observables. Results from MC simulations were expressed
using selected order parameters and ?H NMR spectra following the methodology
presented in Chapter 4.

The following were obtained at two different reduced temperatures T* = kT /e,
T* = 1.0 and 7" = 1.2, deep enough in the nematic and isotropic phases, respec-
tively (recall again that the nematic-isotropic transition in the bulk takes place at
Ty, = 1.1232 [123]). Other calculations, not reported here for reasons of space,
were performed at T* = 1.1 with results qualitatively similar to those obtained for
T* = 1.0. The correlation length for orientational ordering at these temperatures
was found not to exceed =~ 5a, which with the present choice for the simulation
box size is expected to be enough to avoid spurious correlations originating from
periodic boundary conditions. In this study the fiber radius was fixed to R = 5a.
Another set of runs for a thinner fiber with R = 3a has also been performed, but
has shown no major difference in comparison with the R = 5 case and is therefore
not reported here.

5.1.1 Planar anchoring

First consider a nematic sample at 7" = 1.0, with planar anchoring along the z di-
rection and with possible deviations from this perfect alignment, as described above.
This situation corresponds to a series of polymer fibers whose surface morphology
varies from smooth to rough and disordered. Fig. 5.2 (a) shows how the (P§) order
parameter changes across the simulation box from the fiber surface to the outer sam-
ple boundaries. Different curves shown in the plot correspond to different degrees
of order in the ghost particle system, (P),. For perfect planar anchoring ||z with
(P), =1 the nematic director n is parallel to z. In this case (P5) becomes a direct
measure for S because n and z coincide. Far enough from the fiber the value of (P§)
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approaches =~ 0.6, matching with that of S in a bulk sample at 7* = 1.0 [123], while
close to the fiber there is an increase in (Py), reflecting the fiber-induced enhance-
ment of nematic order. The same effect is further confirmed by the behavior of the
S(r) profile depicted in Fig. 5.3 (a), as well as by the S(z,y) local order parameter
map shown in Fig. 5.3 (b). For all three profiles the characteristic length of the
nematic order variation £ (2.11) roughly amounts to ~ 3a.

Studying cases with reduced (imperfect) planar anchoring ||z [Figs. 5.2 (a) and
5.3 (a)], one can see that at least down to (P%), ~ 0.25 the bulk value of both order
parameters remains essentially unchanged if compared to the perfect (P), = 1
case. Note that now for, e.g., (P»), ~ 0.75 the increase of order close to the fiber
is smaller than for (P,), = 1, and that already for (P»), ~ 0.50 (as well as for
(Py), =~ 0.25) the surface degree of order is somewhat lower than its bulk value.
From these observations one can conclude that the first effect of the partial disorder
in surface anchoring is merely a slight decrease in the degree of nematic order in the
vicinity of the fiber, but that at this point the long-range orienting ability of the
polymer network is not lost. This ability, however, weakens upon further decreasing
(P2)g, but is present at least down to (Ps), =~ 0.09 (the corresponding profiles
not plotted here). Then only in a sample with a completely disordering fiber — for
(Py)4 &~ 0 — the net orientation of the nematic for the intermolecular potential (2.29)
is completely detached from the fiber direction. This follows from the behavior of
the (P§) order parameter (calculated with respect to the fixed fiber direction) which
now — in principle — can take any arbitrary value, and from the fact that the liquid
crystal is still nematic, as suggested by a nonzero value of the S order parameter
throughout the sample. Note that the bulk value of S remains almost unaltered in
comparison to, e.g., the (P,), = 1 case. The fact that it is actually slightly lower
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Figure 5.2 Order parameter (P§) versus r (the distance from the simula-
tion box center, measured in lattice units a) in a sample containing a single
cylindrical fiber with R = 5a. Planar anchoring along the z-axis; (a) nematic
(T™* = 1.0) and (b) isotropic phase (T = 1.2). In the plots each of the curves
corresponds to a different degree of ordering in the ghost particle system:
(P2)g = 1.0, 0.75, 0.50, 0.25, and 0 (top to bottom). The dotted lines serve as
a guide to the eye (also in following Figures).
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Figure 5.3 Planar anchoring ||z. (a) Order parameter radial profiles S(r) for
different values of (P)4 in the nematic phase (T* = 1.0); curves are labeled as
in Fig. 5.2. (b) Perfect planar anchoring ((P»), = 1); zy-cross section of the
local S(r;) order parameter map in the nematic phase (7* = 1.0). (c) Same
as (b), but in the isotropic phase (T = 1.2). The distances along z and y are
plotted in lattice units.

than the value obtained for (P,), = 1 (& 0.6) can be attributed to slow collective
molecular motion during the production run.

If temperature in the LL. model is increased to 7% = 1.2, in a bulk sample the
isotropic phase is stable. However, like in PDLC droplets, also in a nematic with a
dispersed polymer network one should expect surface-induced paranematic ordering.
For the case of planar anchoring ||z Figs. 5.2 (b) and 5.3 (c) show the (P§) and the
local S(z,y) profiles and in fact confirm the existence of surface-induced planar
ordering. Note that the layer-averaged nematic order parameter profile S(r) would
have looked exactly like the (P§)-profile and is therefore not shown here. The net
molecular orientation is still along z, as imposed by the fiber, and the corresponding
degree of order (given either by (P§) or S) decays to zero over a characteristic length
of the order of £ = 5a (2.11).

5.1.2 Homeotropic anchoring: topological defects

Proceeding now to cases with (P), < 0, i.e., to perturbed homeotropic ordering,
already for (P), ~ —0.08 the polymer fiber is able to align the liquid crystal.
Molecules are now aligned perpendicular to z, the fiber direction, i.e., mainly within
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Figure 5.4 Order parameter profiles (Ps)(r) and S(r) for homeotropic an-
choring with (P)4 = -0.50, -0.25, and 0 (top to bottom). (a) and (c): nematic
phase (T* = 1.0), (b) and (d): isotropic phase (T* = 1.2).

the zy-plane. This can be deduced from (P§) profiles, the (P§) values being now
negative for all 7 (not plotted here). Similarly as for planar anchoring there is
a decrease in the degree of nematic ordering close to the fiber, e.g., for (P), ~
—0.25 (partial disorder) and an enhancement for (P,), = —0.50 (perfect homeotropic
order). Studying cases with homeotropic surface alignment, it is more convenient
to plot the (P5) order parameter profiles. Note now that for (P), = —0.5 the (Ps)-
profile — shown in Fig. 5.4 (a) — is always positive and that (Py) values are rather
high close to the fiber. This is a signature of strong radial ordering, along with
the negative values of S in the first layer next to the fiber surface; see Fig. 5.4 (c).
Going away from the fiber, (P5) exhibits a plateau-like behavior, before relaxing to
the bulk value close to & 1S, which is characteristic for homogeneous (undeformed)
nematic ordering. Such alignment far from the fiber is compatible with strong radial
ordering in the fiber vicinity only if topological defects are to form. In fact, as shown
in the director map n(r;) (Fig. 5.5, left), a pair of —1 strength defect lines forms
along the fiber and close to the simulation box diagonal. The plateau in {Ps)-profiles
then corresponds to the distortion of the director field imposed by the defect lines.

As concluded from topological considerations, either a —1 strength disclination
line or a pair of —% lines can form in the neighborhood of the particle. This can
be inferred from the fact that the insertion of a homeotropic fiber into a uniform
nematic (the uniformity provided by periodic boundary conditions) is equivalent to
an insertion of a +1 strength defect line. Then, in order to meet the conservation



106 Nematics with dispersed polymer networks

rule for topological charge (the total defect strength Y, m;), defects of opposite
sign have to form in the nematic, which is exactly what is seen also in the present
simulation. The —1 line, however, does not seem to be stable and splits into a
pair of —% lines during the MC evolution, even if it is taken as initial configuration
in the simulation run. This behavior agrees with simple estimates of defect line
free energies where the defect line free energy scales as m? (where m is the defect
strength; see Sect. 2.1.6) [4,24]. Moreover, a stable “escaped” structure (bent in
the z-direction) could also not be observed in present simulations. Here it should
be stressed that the defects are able to form because the anchoring strength w is
rather high. Decreasing w or considering a rough fiber surface, both defects vanish,
which is because for small w (or for a rough surface) the anchoring penalty for
homogeneous alignment also in fiber vicinity is lower. Note also that the following
analysis of the defects is relevant not only for fiber network systems, but also for
elongated colloidal particles embedded in a liquid crystal host [103].

The pair of defect lines always forms close to one of the simulation box diagonals
although the cross section of the fiber is axially symmetric (ignoring its jagged
shape); see the director fields shown in Fig. 5.5 and 5.6. This symmetry breaking
may be attributed to two effects of different origin. The first one (and, according
to preliminary tests, the more important one for the 30 x 30 x 30 system size) is
the repulsion between defects maximizing the defect-to-defect distance (recall the
periodic boundary conditions), while the second one is a finite-size effect originating
from collective fluctuations, resulting in a tendency to align the nematic along the
simulation box diagonal [168]. These phenomena, as well as the presence of the
polymer fiber, are believed not to affect any of the qualitative features characterizing
the defect line inner structure studied in the following. Moreover, the presence of
the fiber is reflected only in an enhancement of nematic ordering in its immediate
surroundings.

The inner structure of a defect line is characterized by variations in the three
eigenvalues of the ordering matrix @, @1, @2, and (J3. The eigenvalues, along with
the corresponding eigenvectors, were obtained by diagonalizing @) (2.5) for each of
the lattice sites. The scalar order parameter S, biaxiality P, and director n maps
can then be derived from these data, as discussed earlier. Fig. 5.5 (left) shows the
director field and the order parameter map in the plane perpendicular to the long
axis of the fiber. Fig. 5.5 (right) shows the @1, Q2, and Qs-profiles plotted along the
y-axis through the left of the two disclinations. Note that the left-right asymmetry of
the profiles with respect to the defect position is caused solely by the presence of the
polymer fiber. After passing through the disclination, the ;-component changes
from its positive bulk value (= 0.6), coinciding with the value of the order parameter
S, to some negative value (~ —0.3). At the same time, the (Jo-component increases
from a negative value (&~ —0.3) to a large positive value (a 0.6) that roughly equals
twice the absolute value of the negative one. This behavior is attributed to the
director rotation by approximately /2 when one crosses the defect along the y axis
(just recall that the orientation of the eigensystem changes continuously on passing
through the defect). On the other hand, the value of the @)3-component does not
change too much, indicating that the variation in the nematic ordering mostly occurs
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in the xy-plane perpendicular to the fiber direction, z.

Alternatively, (01, (Q2, and @3-profiles can be interpreted also in terms of order
parameters S and P (see Fig. 5.5, right). When the defect line is approached, the
uniaxial order parameter S decreases from its temperature-defined bulk value and
drops even below zero in the defect center. Note that there the nematic director,
i.e., the eigenvector corresponding to the negative eigenvalue, is directed along the
fiber. On the other hand, the biaxiality — close to zero far enough from the defect
— increases when the defect line is approached, reaches a maximum and, finally,
in the very center of the defect, again drops to a value that is close to zero. The
characteristic length scales for these variations are of the order of a few (= 5) lattice
spacings a and agree with the estimates for the corresponding correlation lengths in
the nematic phase.

Qualitatively, molecular ordering close to a disclination line can be summarized
as follows. In the very center of the defect molecular ordering is uniaxial with
S < 0and P — 0. Far enough from the defect line the nematic liquid crystal is
uniaxial again, however, with S > 0 and P = 0, as expected in a homogeneous
or in a weakly distorted bulk sample. In the intermediate ring-like region, nematic
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Figure 5.5 Left: cross section of the director field n(z,y) represented by
“streamlines”. The shading represents the value of the order parameter S(z,y)
(dark values correspond to a low S). A pair of —3 defects has formed on the
diagonal. In the defect core molecules are (on the average) aligned in the
zy-plane; ordering is uniaxial with § < 0 and the corresponding eigenvector,
n, is directed out-of-plane (along the z-axis). Right: eigenvalues of the ordering
matrix @1, (2, and Q3 plotted across the left defect along the y axis. In the
upper panel the order parameter S and biaxiality P are plotted. The left-right
asymmetry with respect to the defect core positioned at y/a = 20 is due to
the presence of the fiber. While S exhibits a simple decrease if the defect is
approached from any direction, P shows a more complex crater-like profile.
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ordering is biaxial with P # 0. These conclusions agree also with results from
alignment tensor-based phenomenological analyses of topological defects both of
half-integer [104] and integer strength [105].

To conclude the discussion about defects, here are some final remarks related
to their position. There are two parameters characterizing the position of each de-
fect line: its distance from the fiber surface and the corresponding polar angle in
the zy-plane. Increasing the system temperature from 7" = 1.0 to 7" = 1.1, the
pair of defect lines moves away from the fiber, which increases the thickness of the
deformed region where radial ordering is well-pronounced, as imposed by strong
surface anchoring; see Figs. 5.6 (a) and (b). The increase of T* results in an overall
decrease of S and, consequently, in a decrease of the corresponding elastic constants
(proportional to S?). Moreover, when approaching the fiber surface, at higher 7*
the increase in S is larger and occurs over a somewhat larger characteristic length
€ (2.11), which makes the defect formation and the accompanying elastic deforma-
tion in the immediate fiber vicinity rather unfavorable. Therefore, the defects are
pushed away from the fiber surface when 7™ is increased. On the other hand, at
fixed T™ the defects move away from the fiber also as the fiber radius R is increased.
In addition, for a given R the defect-to-fiber distance seems to be rather insensitive
to changing the simulation box size. Indeed, for large R (i.e., for a low curvature of
the fiber surface) the elastic deformation imposed by the defect is more compatible
with the radial aligning tendency of the fiber if the defect is located far enough
from the fiber surface. Finally, for the current system size the main mechanism
for the formation of the defects close to the simulation box diagonal seems to be
the repulsion between defects corresponding to adjacent fibers, as discussed above.
Also this repulsion is mediated by curvature elasticity and weakens upon increasing
temperature. The actual locus of defects is then determined by the subtle inter-
play between all the effects listed above. Note that for 7* < 1 the defect position
becomes almost temperature-independent. Note also that the defect size increases
with temperature, which qualitatively agrees with the increase of the characteristic
length & on approaching the nematic-isotropic transition.
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Figure 5.6 Director field for perfect homeotropic anchoring, xy-cross section.
(a) T* =1.0, (b) T* = 1.1 (both nematic), and (c) T* = 1.2 (isotropic phase).
In the nematic phase a pair of —% defects has formed close to the diagonal.
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Analogous conclusions as for planar anchoring can be drawn in the isotropic
phase (T* = 1.2) also for the homeotropic case, now inspecting the decays in (Ps)
and S order parameters shown in Figs. 5.4 (b) and (d). Note that the two defect lines
observed in the nematic phase for 7* = 1.0 and T* = 1.1 have now vanished and that
the residual surface-induced ordering is simply radial [Fig. 5.6 (c)]. This is because
the current fiber-to-fiber distance exceeds 2£ and hence the degree of ordering at the
simulation box boundaries is already negligibly small. Consequently, no relevance
should be attributed to the “randomly” distributed directors plotted in the outer
cylindrical layers of the sample, Fig. 5.6 (c).

5.1.3 2H NMR spectra

The observations listed so far can be confirmed also by calculating 2H NMR spectra
using the numerical output from MC simulations. Fig. 5.7 shows the NMR spectra
calculated for the 30 x 30 x 30 particle sample and a single fiber (R = 5a) in the
nematic (left, 7* = 1.0) and in the isotropic phase (right, 7% = 1.2), with the
NMR spectrometer field applied along the fiber direction z. The calculation was
based on generating the relaxation function G(t) (2.42) from the MC data and
calculating its Fourier transform representing the spectrum, as described in detail
in Sect. 2.3.1. Generating G(t), effects of homogeneous translational diffusion were
included. Following the methodology applied in Chapter 4 to PDLC droplets, the
diffusive molecular motion was simulated by a random walk on the cubic lattice,
performing 1024 diffusion steps per NMR cycle. The effective diffusion constant
for such a random-walk process can be measured to be D = 256a%0wq/37, yielding
a root-mean-square molecular displacement of /6Dt; = 32a in each NMR cycle.
Here o stands for the particle-to-particle spacing on the cubic lattice, while ¢, =
27 /dwq denotes the NMR cycle duration. Since this displacement is comparable to
the sample size, the calculated NMR spectra are expected to be highly diffusion-
averaged. Note that here a sufficient amount of MC data was available to update
nematic particle configurations 1024 times per NMR cycle — thereby matching
with the natural time scale ¢ for fluctuations of molecular long axes — and not
less frequently as in the PDLC case. For smoothening, a convolution of the spectra
with a Lorentzian kernel of width ~ 0.07dwg was performed. Finally, note that
the NMR spectrometer magnetic field is assumed to be weak enough not to align
nematic molecules, which, again, is the case only for strongly confined systems.
The calculated spectra are shown in Fig. 5.7, left. In the nematic phase with
T* = 1.0, for perfect planar anchoring ((P), = 1) in the spectrum one has two peaks
positioned at wg/dwg =~ £0.6. In the chosen geometry, |wg/dwg| is supposed to be
roughly equal to the value of S, the nematic order parameter, since the director
and the direction of the NMR spectrometer magnetic field coincide. Indeed, for
T* = 1.0 one finds S =~ 0.6, as already seen above from various order parameter
profiles. Translational diffusion in this case affects the spectra only negligibly: the
nematic director is homogeneous throughout the sample and the degree of order is
enhanced only slightly in the vicinity of the fiber. Therefore, the effect of diffusion
should be merely a slight increase in quadrupolar splitting, but the resolution of the
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spectra is not high enough to clearly see this surface ordering-induced shift.

Proceeding now to fibers with partially disordered anchoring, in the spectra
there is no noticeable change at least down to (P), ~ 0.25, reflecting the ability
of the polymer network to align the surrounding liquid crystal along z. In the case
when anchoring is completely disordered with (P5), ~ 0, the spectrum typically
still consists of two peaks, however, the corresponding splitting can be arbitrary
because there is no preferred direction in the system — note that only one example
of the possible spectra is plotted. Note also that sometimes during the acquisition
of the G(t) signal slow collective molecular motion can occur, which results in an
increase of the spectral line width. On the other hand, in homeotropic cases with
(Ps)y S 0, molecular ordering is confined to the zy-plane. The quadrupolar splitting
now decreases by 50% with respect to perfect planar anchoring because the director is
perpendicular to the spectrometer field direction (see the two spectra in the bottom
of Fig. 5.7, left).

In the bulk isotropic phase, however, quadrupolar interactions giving rise to the
wq splitting are averaged out by the rapid molecular motion. Therefore, ignoring
translational diffusion, in a confined system for S ~ 0 one should expect a single-
peaked spectrum at wg ~ 0, as already suggested above, and somewhat broadened
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Figure 5.7 2H NMR spectra; T* = 1.0 (left) and T* = 1.2 (right). Top to
bottom: spectra for (P%),=1.0 (planar), 0.75, 0.5, 0.25, 0 (random), -0.25,
and -0.5 (homeotropic). The aligning capability of the network is lost only for
<P2)g =~ 0.
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by the surface-induced order. The spectra shown in Fig. 5.7, right, were calculated
with fast translational diffusion, and it is evident that some of them are actually
double-peaked. This is a clear signature of surface-induced paranematic order. In
fact, the peak-to-peak distance decreases with decreasing degree of surface order;
compare with Figs. 5.2 (b) and 5.4 (d). For (P»), ~ 0 exhibiting no surface order,
the spectrum is again single-peaked. Finally, note that the splitting observed for
perfect planar anchoring ((P), = 1) roughly amounts to twice the splitting seen in
the perfectly homeotropic case ({(P2), = —0.5). This is again because the nematic
director close to the fiber is parallel to the NMR spectrometer magnetic field in the
first case and perpendicular to it in the second.

5.2 External field-induced switching

This Section is going to address the external field-induced switching of the molecular
orientation in a nematic with dispersed polymer networks. First a regular array of
straight and parallel polymer fibers will be treated, as in the preceding Section, here,
however, exclusively with perfect planar anchoring. In this simple model system the
stability of different director configurations in field presence will be analyzed in de-
tail. Then we will proceed to more complex network topographies, first simulating
irregularities in fiber positions (the fibers still taken as straight and parallel). Af-
ter this, a sample with a full topographical complexity — a system of curved and
potentially cross-linked fibers — will be treated. Also in these latter cases the fiber
surface will be assumed smooth, with planar anchoring along the local (tangential)
fiber direction. In the end, the switching process will be monitored by inspecting
selected experimental observables predicted from the simulation output.

5.2.1 Regular fiber array

Now a regular array of parallel fibers (Figs. 5.1 and 5.8) will be considered. Again
the fiber direction was taken along the z-axis and an external field was applied
perpendicular to the fibers along the y-axis. Note that switching experiments are

.

y

Figure 5.8 Regular fiber array: the switching geometry depicted schemati-
cally. Anchoring at fiber surfaces is planar along the fiber direction, z, while
the external field E is applied along y L z.
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usually performed in an external electric field and that in an inhomogeneous di-
electric (as encountered here) the electric field is not constant and homogeneous
throughout the sample. In such situations, Maxwell equations are to be solved in
order to obtain the local electric field strength vector E. For simplicity, however, in
the following E will be assumed homogeneous. Alternatively, one could perform a
switching experiment also in an external magnetic field where the inhomogeneities of
the corresponding susceptibility are weaker and the above homogeneity assumption
for the external field is more plausible. As discussed in Sect. 2.1.5, the switching
threshold is sensitive to changes in the surface anchoring strength. Therefore, here
cases with different anchoring strengths will be examined, with a dimensionless an-
choring strength defined as w = ¢,/e. Here ¢, denotes the nematic-ghost coupling
strength and e the nematic-nematic one; see Eq. (2.29).

Before investigating external field-driven orientational transitions in the fiber ar-
ray model system, it is instructive to draw a rough analogy with a nematic slab
(compare also with Sect. 2.1.5). Let the slab of thickness d be confined between two
parallel plates imposing strong planar anchoring along the z-axis, and let there be
an external field E applied along the slab normal (y-axis). In a weak external field
the equilibrium director profile (n) is homogeneous with n L E (“h-structure”). In-
creasing the field strength, at first the director profile does not change, but once the
Fréedericksz threshold E% = (/K /eye,S(m/d) is reached, a transition to a deformed
structure is observed (“d-structure”). Here K denotes the effective Frank elastic
constant and €,S the macroscopic anisotropy of the dielectric constant. For finite
anchoring strengths W the Fréedericksz threshold Er is reduced, satisfying the rela-
tion m(K/Wd)(Ep/E%) = cot [(n/2)(Er/E%)] [115]. Increasing the field strength E
even further, for finite W the orienting effect of the field overwhelms the anchoring
and a second, saturation transition takes place. Above this second threshold E
nematic molecules are aligned uniformly along the field, with n||E (“s-structure”).
Here E; can be found from 7(K/Wd)(Es/E%) = coth[(7/2)(E,/E%)] [115]. Note
that in case of weak anchoring or in a very thin nematic slab with K/W > d, the
thresholds Fr and E; attain similar values, indicating that the region of stability for
the deformed d-structure becomes extremely narrow. This can be inferred also from
the phase diagram derived numerically for the h, d, and s structures in Ref. [115].

A similar switching behavior can be observed also in a regular array of polymer
fibers favoring planar anchoring along z, the fiber direction, if the field E is applied,
e.g., along y, as shown in Fig. 5.8. For comparison, yz-cross sections of director
profiles calculated for each of the three structure types are shown in Fig. 5.9. Tt is
interesting to notice that for the d-structure the nematic is bent in the yz-plane,
while it is twisted in the zz-plane, as opposed to the slab case where the twist
deformation is absent. Consequently, the transition threshold values may differ
from those estimated for the slab geometry. Qualitatively, the switching behavior is
also expected not to change if the field is applied in some direction other than y, but
still within the zy-plane so that E | z is fulfilled. The specific in-plane orientation
of E may, however, still affect the switching threshold position.

In the MC simulation, the sample size was again set to 30a X 30a x 30a and the
fiber radius to R = 5a. All simulations were be performed at T* = 1.0, deep in the
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Figure 5.9 Switching in a regular fiber array: examples of director fields for
different 7 o< E?; T* = 1.0, R = 5a, and w = 1 (yz-cross sections through the
fiber center). From left to right: homogeneous (h), deformed (d), and satu-
rated (s) structure. Anchoring easy axis is planar and ||z, while the external
field E is directed along y.

nematic phase. To reliably estimate the field thresholds for the Fréedericksz and
saturation transitions from the MC simulation, for a given anchoring strength w
external field strength scans were performed as follows. The first run was performed
at 7 = 0 in absence of an external field. Then the external field strength |/ was
increased stepwise: at each stage, the last molecular configuration from the previous
simulation run was used as input for the next run performed at somewhat higher 7,
and so on until the maximum field strength was reached. Then the field strength was
decreased stepwise (following the same strategy as upon increase) so as to detect
a possible hysteresis in the simulated switching process. In the vicinity of struc-
tural transitions, orientational fluctuations in the system can increase significantly.
Therefore, equilibration runs somewhat longer than in preceding simulations were
needed to produce reliable results: approximately 1.2 x 10° cycles for equilibration
and further 1.2 x 10° cycles for average production.

Transitions between the three director structure types can conveniently be mon-
itored by plotting the radial dependence of a suitable order parameter defined as
PJ(r) = (3[3(u; - y)* — 1]),, where the brackets (...), represent an average over MC
cycles and over nematic particles lying within a cylindrical layer centered at radius
r. Moreover, y is a unit vector along the external field direction. In case of perfect
nematic alignment along y one has Py = 1, while for perfect alignment perpendic-

ular to y (e.g., along z) P§ = —1 is obtained. For non-perfect alignment at finite

temperature with S < 1 the abo2ve values reduce to Py — S and P§ — —1S for
alignment along y and z, respectively.

The Pj(r)-profiles for strong (w = 1) and weak (w = 0.1) anchoring and different
field strengths (o< /7) are reported in Fig. 5.10. The corresponding anchoring
extrapolation lengths can be estimated to be the order of ~ a for w =1 and =~ 10a
for w = 0.1, which is still below the fiber-to-fiber distance d.;s ~ 20a. For strong

anchoring (w = 1, Fig. 5.10, left) at low 1 the homogeneous h-structure withn L y is
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found and, consequently, PJ(r) is negative and almost constant. The slight variation
in Pj(r) close to the fiber originates from an enhancement in the degree of ordering
(S) close to the fiber, as discussed in Sect. 5.1.1. Above the first (Fréedericksz)
threshold at nr = 0.0085 4+ 0.0015, PJ is negative close to the fiber, while it is
positive far enough from it. Such behavior is a signature of the deformed d-structure
where close to the fiber the alignment is governed by anchoring, while far enough in
the bulk it is governed by the external field. The characteristic distortion length —
closely related to the external field coherence length & — can be deduced directly
from the PJ(r) dependences. After a further increase of n beyond 7, = 0.30 +0.015
the second threshold is reached and Py becomes positive for all r, which indicates
that now the homogeneous saturated s-structure is stable. The variation of Py in
the vicinity of the fiber can be ascribed to a reduction of S with respect to its bulk
value, occurring due to the conflicting alignment tendencies of the fiber and of the
external field.

Decreasing the anchoring strength (w = 0.1, Fig. 5.10, right), one can readily
identify homogeneous h and s-structures, while the deformed d-structure seems to
be missing. This is in agreement with the narrowness of the stability region for the
d-structure predicted in the nematic slab [115]. The Fréedericksz and the saturation
threshold can be estimated to lie within the interval n = 0.0034 4+ 0.008. Note that
now the variations of Py close to the fiber for all 7 indicate a decrease of S in this
region, which is a consequence of having weaker nematic-fiber than nematic-nematic
interactions.

Having found three possible director structures (h, d, and s) for w = 0.1 and
w = 1, it is interesting to explore their stability in an external field also at interme-
diate anchoring strengths and summarize the results in a structural phase diagram.
However, the determination of threshold fields (both for the Fréedericksz and the
saturation transition) is a rather delicate task. In fact, the recognition of different
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Figure 5.10 Regular fiber array: PJ(r)-profiles calculated for T* = 1.0,
R/a = 5, planar anchoring ||z, and an external field |ly. Left: w = 1; top
to bottom: n =1, 0.5, 0.1, 0.05, 0.01, 0.005, and 0.001. Right: w = 0.1; top
to bottom: n = 1, 0.1, 0.01, 0.005, 0.001, 0.0005, and 0.0001. Solid, dashed,
and dotted lines represent h, d, and s-structures, respectively. For w = 0.1 it
is almost impossible to find the d-structure.
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Figure 5.11 Order parameters (Py) (solid line) and (PY)s (dotted line), plus
the corresponding variances 0¥ and 0¥. Top: w =1, bottom: w = 0.1. Closed
circles correspond to scans upon increasing 7, the open ones to scans upon
decreasing. Fréedericksz and saturation thresholds can be deduced from the
positions of the ¢¥ and oY peaks, respectively. For w = 0.1 both transitions
virtually overlap.

structure types from snapshots or director fields turns out to be highly unreliable
and subject to human eye-generated bias. Therefore, one can tackle this problem
exclusively by finding a more quantitative criterion for structure identification. Hav-
ing applied an external field along the y-axis, an appropriate order parameter for
monitoring is the overall (Py), where the averaging (...) must be performed over
all particles and MC cycles. This order parameter is suitable for the detection of
the Fréedericksz transition involving a significant portion of nematic particles. The
saturation transition, however, is expected not to reflect that well in the overall
(PY) because it only affects a thin surface layer of particles. At this point one can
conveniently define (PJ),, calculated exclusively for particles in the surface layer
of thickness a. This “surface” order parameter is sufficiently sensitive to particle
reorientations that actually contribute to the saturation transition. Furthermore,
the sudden rise either of (PY) or (PJ), is accompanied by a significant increase of
fluctuations of these order parameters. Then the corresponding variances of (Py)
and (PY)s, 0¥ and 0¥, can also be used to spot the field strength threshold for both
transitions. This is equivalent to studying the NI transition by monitoring fluctua-
tions of the internal energy where the corresponding variance is proportional to the
heat capacity [123].
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For w = 0.1 and w = 1 the behavior of (Py) and (Py), upon increasing field
strength, along with their variances, is shown in Fig. 5.11. Note that the repro-
ducibility of the data points is good (comparing scans up and down in field strength),
yet it is somewhat poorer in the w = 0.1 case where the surface anchoring is much
weaker than for w = 1. The fact that there is no obvious hysteresis suggests that
both the Fréedericksz and the saturation structural transitions are second-order
(hence continuous), in agreement with phenomenological studies.

After identifying both thresholds also for anchoring strength values other than
w =1 and w = 0.1, a stability phase diagram can be plotted. For 7* = 1.0 and R =
5a it is shown in Fig. 5.12, together with the equivalent phase diagram for a nematic
slab, derived in Ref. [115]. In weak enough fields one can always find the h-structure,
while in strong enough fields the s-structure is always seen. The d-structure appears
at intermediate field strengths, but its stability region gets narrower with decreasing
w. As shown in Ref. [115] for the case of a nematic slab, the h-d and d-s coexistence
lines do not merge upon decreasing the anchoring strength and there is no triple
point where all three structures would coexist. Due to a finite accuracy in field
threshold estimates, in the present stability analysis the Fréedericksz and saturation
transitions below a certain anchoring strength (w = 0.1) coalesce and cannot be
distinguished any more. This, however, should not be regarded as an indication for
the existence of the triple point. Note that the qualitative agreement with results
presented in Ref. [115] is rather good. Further note that here only results for a single
temperature value, 7" = 1.0, are presented. The position of the coexistence lines in
Fig. 5.12 may shift with changing 7™, the temperature dependence entering the field
threshold values via the elastic constant K and the anchoring extrapolation length
K/W.
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Figure 5.12 (a) Structural phase diagram log+/n/ny vs. log1/w calculated
for T* = 1.0 and R/a = 5; o corresponds to the Fréedericksz threshold at
the strongest anchoring considered, w = 5. (b) Phase diagram for a nematic
slab (from Ref. [115]) plotted in scales and ranges allowing for a compari-
son with (a). h denotes field strength values normalized with respect to the
Fréedericksz threshold found for infinite anchoring.

Moreover, the position of the h-d coexistence line corresponding to the Fréede-
ricksz transition is expected to depend on the effective fiber-to-fiber distance d.;
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(determined also by the polymer concentration in the sample): with decreasing d.
at fixed w and 7™ the line is expected to move towards higher critical field strengths.
In other words, the nematic in fiber-rich samples is more difficult to switch. On the
other hand, the d-s saturation transition line is expected not to shift significantly.
To check these statements, one can explore transitions in a network consisting of,
e.g., somewhat thinner fibers. Setting R/a = 3 (instead of R/a = 5 above) and
considering a 18 x 18 x 18 sample with a single fiber (instead of the 30 x 30 x 30
one) roughly maintains the polymer concentration, but decreases the fiber-to-fiber
distance. For the thresholds at w = 1 one now finds n}® = 0.027 & 0.003 and
n® = 0.30 £ 0.03, which for both lines is in agreement with the behavior predicted
above (just recall the corresponding thresholds for the larger 30 x 30 x 30 sample:
730 = 0.0085 + 0.0015 and 72° = 0.30 £ 0.015). Note that like in slab geometry
(and for strong enough anchoring) the Fréedericksz threshold field strength scales
approximately as 1/d.sy, if dff is taken to be the shortest fiber-to-fiber distance. In
fact, comparing dg for the 18 x18x 18 and 30 x 30 x 30 sample gives d{},/d3}; = 0.6,
while the ratio of threshold field strengths yields (73" /n:¥)!/? = 0.56. On the other
hand, the saturation transition threshold remains almost unaltered.

All in all, the switching behavior in a regular fiber array system seems to be very
close to that of a simple nematic slab although in the fiber array system the elastic
deformation is somewhat different (twist and bend deformation combined). The
latter, however, poses no problems because the LL model anyway is equivalent to the
one-constant approximation. The difference in the type of geometrical confinement
reflects at most in different quantitative behavior.

5.2.2 Irregular fiber array

The actual topology of a polymer network shown in typical SEM pictures [26,39]
(Fig. 1.3) is much more complex than the regular array of straight and parallel
fibers considered so far. In particular, the effective interfiber distance distribution
is expected to play an important role in switching studies. Therefore, as a first step
towards a more complex network topography an irregular array of straight fibers
will be studied, increasing the lattice size to 50 x 50 x 50 particles and including
8 fibers of equal thickness, with R = 3a. The fibers were modeled as straight and
parallel (oriented along the z-axis), but distributed randomly within the zy-plane.
The polymer concentration and the fiber radii were kept unchanged in comparison
to the previous 18 x 18 x 18 case. This should provide the same average fiber-
to-fiber distance and thus facilitate the comparison of results. Again, the external
field was applied along the y-axis and the surface anchoring was assumed planar
(with w = 1) along the z-axis. The concentration of the polymer can be estimated
by dividing the number of frozen (ghost) particles by the number of all particles,
yielding approximately 9% polymer. In the following, the regular array sample
(previous Section) will be referred to as “sample A”, while the sample with the fiber
position irregularity as “sample B”. Moreover, “sample C” containing curved fibers
will be considered later in this Section. Simulation runs involving samples of B and
C-type consisted of 8 x 10* equilibration and 6.6 x 10* production cycles, while for
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Figure 5.13 Array of several (8) straight fibers (sample B): PY(r;) order pa-
rameter map (zy cross section) for different 7. The switching process starts
approximately at np = 0.013. The “columns” represent parallel straight poly-
mer fibers. Calculated for 7% = 1.0, w = 1, and R/a = 3.

the smaller A-type sample the equilibration was shortened to 6 x 10* cycles.

Fig. 5.13 shows the evolution of Py averaged over MC cycles for every particle
within a given zy-cross section for sample B. For < 0.012 one has P¥(r;) ~ —0.3



Nematics with dispersed polymer networks 119

constant and negative, showing that particles are still aligned along z (recall that
at 7* = 1.0 one has S ~ 0.6) and that the Fréedericksz threshold has not been
reached yet. Reaching, however, n = 0.014, in regions where the fiber density is
below average (the interfiber distance above average), the particles start to reorient
along the field direction and Py increases, becoming even positive in some areas
upon a further increase in 7. It is important to notice that now the Fréedericksz
threshold is significantly lower than in the regular array case with the same polymer
concentration — sample A. This can be attributed to the fact that the external
field always destabilizes the longest-wavelength distortion first. Then, unlike in
sample A, in the irregular sample B there is a distribution of effective fiber-to-fiber
distances, allowing also for deformations whose wavelength is larger than the average
interfiber distance. As the field strength is increased even further, the parallel-to-
fiber alignment persists only in the very vicinity of fibers and P becomes positive
almost everywhere. Finally, for extremely strong fields the saturation threshold is
reached as well, and then all molecules are aligned along the external field direction.
In addition, the strong field enhances the degree of nematic order [117]. Note also
that in extremely strong fields close to each fiber there is a decrease of Py that
can be attributed to a decrease in S. Indeed, in the vicinity of each fiber there is
a conflict between the strong aligning tendencies of anchoring and of the external
field.

Note that the switching of the molecular orientation has not occurred in all
parts of the sample simultaneously. Indeed, very strong fields are required to switch
the particle orientation, e.g., between two (or more) fibers positioned close to each
other (see Fig. 5.13, for n < 0.3, in the left corner). Consequently, the Fréedericksz
transition is not as sudden as in a regular array-system. The saturation transition, on
the other hand, is driven merely by a competition between surface anchoring and the
external field. Therefore, wherever the fiber density is not too high, the positional
irregularity of the network is expected not to affect the saturation transition very
significantly.

The last step in modeling the polymer network topography consisted of dropping
the assumption that the fibers be straight and parallel and considering a system of
curved fibers instead. Again, the general (average) fiber direction was taken along
the z-axis. Then each of the fibers (whose thickness was assumed constant along z)
was generated by performing a biased random walk: while progressing along the z-
direction, random deviations from this direction within the xy-plane were performed
with a given probability regulating the curvedness of the fiber. Doing this, care was
taken to meet the periodic boundary conditions along the z-axis. Following such a
procedure, at high enough polymer concentrations the neighboring fibers can meet
and cross-link, thereby providing a complexity in the network topography that is
already close to that present in a real sample (Fig. 1.3). The surface anchoring was
assumed planar, here, however, along the local fiber direction (yet not necessarily
matching with the z-direction) with w = 1. The fiber network used in switching
simulations presented here — also referred to as “sample C” — is shown in Fig. 5.14.
Because the orientations of ghost particles everywhere agree with the local fiber
directions, the ghost order parameter (P), introduced in Sect. 5.1 can be used also
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Figure 5.14 Array of several curved fibers (sample C): ghost particles repre-
senting the fixed polymer fiber network; (Ps), &~ 0.28.

to characterize the curvedness of the fiber system. For sample C shown in Fig. 5.14
(Py)g ~ 0.28.

The switching process was simulated also for the sample C. Fig. 5.15 shows di-
rector field yz-cross sections for different 7. Despite fiber curvature, in absence of
external fields (n = 0) the net molecular orientation seems to be still well-defined
(along the average fiber direction, z-axis), except for the fiber vicinity where it
is affected by the local anchoring easy axis. In Fréedericksz geometry where the
magnetic field is strictly perpendicular to the easy axis (samples A and B), the ori-
entational transition happens abruptly at a well-defined threshold. Here, however,
due to network irregularity, the magnetic field and the anchoring easy axis are never
perpendicular to each other, therefore — unlike in Fréedericksz geometry — a mag-
netic torque acts on nematic particles already at arbitrarily low field strengths. As
we shall see later, this results in a decrease of the field threshold value in comparison
to more regular samples A and B, while the switching itself is still relatively sudden.

At the same time it should be borne in mind that the sample C studied here
covers length scales still far below the macroscopic ones. The linear dimension of
the sample box 50a ranges from 50 nm to 250 nm, depending on which value of a
is taken into account (1 nm S a S5 nm). As a consequence, the detailed switching
behavior depends sensitively on the specific irregularities of the network generated
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Figure 5.15 Sample C: yz-cross sections of the director field map at z/a = 39

for different . Note that in absence of the field = 0 most molecules are

aligned along z (the average fiber orientation), except for those close enough

to fibers where they align along local fiber orientations. Applying an external

field (n # 0), the major particle reorientation is initiated at n¢ = 0.010.

for sample C. To provide more general results, either a much larger sample should
be considered, or a set of smaller samples, yet with different network topographies.
Finally, in any symmetry-lacking sample it is less instructive to show order parameter
or director map cross sections because they may not provide the information on the
general behavior such complex systems. On the contrary, it is much more relevant
to explore simulation-predicted experimental observables, which will be done in the
next Section. A detailed comparison of samples A, B, and C will be given as well.

5.2.3 Experimental observables and network irregularity

This Section will be devoted to the analysis of experimental observables (electric
capacitance, intensity of transmitted polarized light, and 2H NMR spectra). As these
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methods all monitor the bulk response of the system, they are suitable for monitoring
the Fréedericksz transition. For the same reason, they are rather insensitive to the
saturation transition, affecting a relatively small number of molecules in a thin
subsurface layer.

The Fréedericksz transition can be spotted most easily by performing an elec-
tric capacitance measurement, as described in Sect. 2.3.2. In the simulation, the
experiment was set up as follows. The net fiber direction was chosen along 2z and, as
above, the external field was applied along y. Then, following Eq. (2.45), normalized
capacitance Cy was measured along the y direction to monitor the switching process.
Below the Fréedericksz threshold, in a nematic aligned perfectly along z (S = 1) one
would expect to have Cy /ey = €|, while for a perfect alignment along the external
field (far beyond the saturation threshold) one should expect Cy/ey = € (€, and
eh standing for the eigenvalues of the molecular dielectric tensor). On the other
hand, for imperfect (but homogeneous) nematic alignment at finite temperatures
with S < 1, one has Cy /¢y = 5(1—S)€/ + £(2+5)€, > ¢ for alignment along z and
Cyleo = 3(1 +2S)€+ 2(1-9)¢, < ¢/, for alignment along y, as it follows from (2.7).
Here 61 > €/, has been assumed. Therefore, the measured capacitance depends both
on the orientation of the nematic director and on the degree of nematic ordering
given by S. Consequently, in sample geometry chosen here, the capacitance C, is
expected to exhibit a more or less sudden increase whenever a major reorientation
of nematic molecules takes place in the sample.

Fig. 5.16 shows the capacitance versus 7 (the field strength squared) for samples
A, B, and C in a semi-logarithmic scale. Recall that all three samples are char-
acterized by different network topographies, yet having roughly the same polymer
concentration. Like in experiments with a dielectrically highly anisotropic nematic
reported in Ref. [39], €/ = 29.8 and €| = 6.1 were chosen in the simulation. Fol-
lowing Ref. [39], for simplicity same values of €| and €, were assumed also for the
polymer network. Inspecting now Fig. 5.16, one can observe that the switching
threshold is lowest in the irregular sample C and highest in the regular sample A:
n4a = 0.022 + 0.01, ng = 0.013 + 0.01, and nc = 0.010 + 0.01. Again, npg is lower
than 74 because in sample B there is a distribution of interfiber distances. More-
over, n¢ is lower than ng because the absence of perpendicularity between fibers
and the external field direction allows for a field torque to act on molecules already
at arbitrarily low field strengths.

The second feature of curves depicted in Fig. 5.16 is their slope after exceeding
the switching threshold. The curve corresponding to sample A is steeper than that
of sample B because — as already seen — in the latter case the switching is a
gradual process and in the high-fiber-density areas molecules refuse to switch unless
the field is very strong. On the other hand, the curve pertaining to sample C is
steeper than the curve B (and approximately as steep as that of the regular sample
A), which is because now even molecules in the polymer-rich areas are not able to
resist switching since the corresponding fibers are not perpendicular to the external
field. Note also that in curve C there are jumps that may be attributed to the
irregularities in the fiber network. In a macroscopic sample these would have been
averaged out, yielding smooth capacitance curves comparable to those measured in
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Figure 5.16 External field-induced switching as monitored by capacitance
(Cy) measurements: sample A (small dots), sample B (medium dots), and
sample C (large dots). For explanations regarding the sample topographies
see text.

Ref. [39] experimentally.

The third feature of capacitance curves is the pre-threshold value of C,. In fact,
curves A and B in this region almost overlap, which is mainly because of the well-
defined molecular alignment along z. For n = 0 in sample C the overall molecular
alignment still matches with z, especially far enough from the fibers, but this is not
quite true in the fiber vicinity (see the snapshots in Fig. 5.15). This is also why
already below the threshold there are significant local deviations from z, resulting
in an enhancement of Cy, if compared to the A and B cases.

Finally, note that for all samples at extremely high field strengths (above the
saturation transition) the increase of Cy is attributed to an increase in the degree
of nematic order (S) rather than to molecular reorientation. Further, as discussed
in Sect. 4.2.1, the external fields applied in simulations to the rather small samples
are typically unrealistically strong.

Another convenient method for the determination of the Fréedericksz threshold
are the measurements of the intensity of polarized light transmitted through the
sample (Sect. 2.3.3). The experimental set-up considered here is identical to that
described at the end of Sect. 2.3.3. Let again the average fiber direction coincide
with the z-axis and let the external field be applied along the y-axis, with the light
beam also propagating in this direction. In a nematic slab with planar anchoring
along z (and with no polymer networks) there is no z or z-dependence in the direc-
tor field. The intensity of light transmitted through such a sample (if put between
two polarizers crossed at a right angle) is given by the formula (2.48). As already
mentioned in Sect. 2.3.3, the output signal is maximized when the angle between
the projection of the director onto the xz-plane and the incident light polarization
plane is equal to g = w/4. Having fixed g, the output signal I depends only on
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the birefringence A® = (27/)) [ [ne(2) — no)dz, ie., I o sin?(A®/2). This im-
plies that below the Fréedericksz threshold I will be a constant depending on the
sample thickness d and on the effective refractive indices of the nematic. Exceed-
ing the threshold, the director reorients, which is accompanied by a change in the
extraordinary index n. [see Eq. (2.46)]. Consequently, A® changes continuously
as the director field deforms and, accordingly, the output signal I oc sin?(A®/2)
oscillates. The total number of oscillations seen upon increasing the field strength
(x /1) can be estimated by comparing A® for the homogeneous alignment along z
(A®,) with that for the alignment along the external field (A®,). In the latter case,
n, & n because the optical axis (n) matches with the light beam direction, yielding
A®, ~ 0. In the former case, however, the refractive index difference is nonzero and
is, for nematics with weak optical anisotropy, proportional to the degree of order
S [4]. Then, A®,/21 ~ An’Sd/) is the approximate number of oscillations ob-
served in the I(n) graph, where An® stands for the maximum difference n —n? in a
perfectly ordered nematic (the superscript “0” referring to perfect nematic ordering
with S = 1). From such a graph, the Fréedericksz threshold can be estimated by
identifying the point where the I(n) curve begins to oscillate (as, e.g., in Ref. [116]).

Turning now to a sample with dispersed polymer networks, the switching be-
havior is similar to that of a nematic slab, as seen in Sect. 5.2.1. In the simulation,
the net fiber direction was chosen along z, while all other geometrical parameters
were chosen as described in the previous paragraph, including the incoming light
polarization plane fixed at ¢y = 7/4. The sample thickness in this optical part of
the simulation was set to 10um. This can be done although the linear sample size
in samples B and C is just 50a — where a ~ 1 nm is the lattice spacing (or one

e®
08 | ° o
[ ]
.
(S 0.‘0 14 °
0.6 " .. a.. '.-...
e o o oo’ oF .« %
@ o M '
S04 e e e e rnndn .o
N Pt .T .®
Y o o ........T .... .
°
02 LR .
[ ]
° s
[ ] o
0 L e e i
-7 -6 -5 -4 -3 -2 -1 0
logn

Figure 5.17 External field-induced switching as monitored by transmitted
polarized light intensity I measurements: sample A (small dots), sample B
(medium dots), and sample C (large dots). The arrows indicate the switching
threshold as determined from the capacitance measurement (Fig. 5.16). I
denotes the intensity of the incoming light.
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molecular dimension) — by letting the polarized light pass several (~ 200) times
through the sample so as to accumulate a sufficient birefringence A®. In the smaller
sample A 550 light passes were necessary to yield the same optical thickness. On
each pass (i.e., MC cycle), the molecular configuration was refreshed from the MC
data. However, unlike in the nematic slab discussed above, now the local director
depends also on the x and z coordinates, and so does the outcoming light intensity
I = I(z,z). Because I = I(z,z) is modulated on length scales much shorter than
the light wavelength A, I(z, z) is to be averaged across the light beam cross section
in the xz-plane to yield an average light intensity observable in a real experiment.

In the following it will be assumed that the polymer network is optically isotropic,
with a refractive index n, = 1.499. It will be further assumed that for the per-
fectly ordered nematic n = 1.7445 (maximum value) and nl = 1.520, yielding
An® = n? — nY =~ 0.2175. Probing such a sample with He-Ne laser light with
A =632nm, at 7" = 1.0 with S & 0.6 A®, can be estimated close to A®, ~ 27 x2.1.
Consequently, two oscillations can be anticipated in the I(n)-dependence. Inspect-
ing the simulated I(n) curves shown in Fig. 5.17, one immediately recognizes the
oscillatory behavior predicted above. Again, curves for the A, B, and C sample are
characterized by different Fréedericksz thresholds, matching with those observed
already in the capacitance measurement. Moreover, the oscillations of I upon in-
creasing 7 are slowest for sample B, which is in agreement with the lowest slope
of the Cy(n) capacitance curve (Fig. 5.16). At extremely strong fields I drops to
zero which is because now the effective birefringence approaches zero, as discussed
above. Note also that the value of I below the threshold is different for each sample,
originating in different A®,, as also already discussed.

Finally, let us inspect 2H NMR spectra calculated for each sample type to monitor
the switching process. Fig. 5.18 comparatively shows the spectra calculated for the
samples A, B, and C, with the spectrometer field applied along the (average) fiber
direction, z. Again, a smoothening convolution with a Lorentzian kernel of width
~ 0.070wq was performed. Like in Sect. 5.1.3, translational diffusion was simulated,
taking the same rate of diffusion. Consider sample A first. In absence of the external
field, as well as for low 7, in the spectrum there are two well-defined lines positioned
approximately at a maximum frequency splitting reduced by a factor of S = 0.6, as it
follows from Eq. (2.41). This is a signature of fiber-imposed molecular ordering along
z below the Fréedericksz threshold. Once the threshold at n4 ~ 0.022 is reached,
molecular orientations start to switch along y, the external field direction, and the
splitting is reduced. At very high fields already above the saturation transition
the quadrupolar splitting should equal half the splitting seen at zero field, provided
that the degree of ordering remains unchanged. In a strong external field, however,
this never is the case and therefore the splitting keeps on increasing as the field is
getting stronger. Moving to sample B, one can observe that the low-field splitting
starts to decrease already at ng ~ 0.013. Moreover, the switching process is also
more gradual, which is all in agreement the other two experiments. In sample C at
low fields one also finds a double-peaked line shape, yet at a splitting slightly lower
than in the previous two cases. This indicates that despite the network is highly
irregular, the z-orientation of molecules is still maintained in most of the sample,
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Figure 5.18 External field-induced switching as monitored by 2H NMR spec-
tra: sample A (left), sample B (center), and sample C (right). In all cases
T* =1 and w = 1. The spectra of sample A show more noise because this
sample contains 5256 particles only — as opposed to 112200 particles in sam-
ples B and C.
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which agrees with snapshots plotted in Fig. 5.15. The fact that the splitting is
somewhat lower than that observed for samples A and B, however, implies that in
the vicinity of fibers nematic molecules do follow the local orientation of the network
and thus deviate from the z-direction. Note also that the sample C switches already
at n¢ ~ 0.010, which, again, is the lowest threshold of all. In addition, the switching

again occurs more suddenly than in sample B.

5.3 Pretransitional ordering in the isotropic phase

The last issue considered in this Chapter will be pretransitional ordering in a nematic
sample with dispersed polymer networks above the NI transition (T3, = 1.1232).
As seen already in Sect. 5.1 studying a regular fiber array, some surface-induced
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Figure 5.19 Pretransitional ordering in sample C at T* = 1.2, for planar
anchoring with w = 1: S(z,y) order parameter map cross section at z/a = 25.
The paranematic order decays to zero over the correlation length ¢ =~ b5a,
except in polymer-rich areas where nematic “bridges” can form in between
fibers (as here in the left lower corner with S < 0.2). Note that while the
“columns” denoting fiber positions are vertical, the fibers themselves can be
tilted with respect to the zy-plane.

paranematic ordering may persist in the vicinity of fibers. This ordering can be
detected by optical means [26], as described in Sects. 2.3.3 and 5.2.3. Alternatively,
it can be detected also by 2H NMR [132].

The simulations presented in this Section were performed with sample C pre-
sented in Sect. 5.2.3 (see Fig. 5.14). Again, planar anchoring along the local fiber
direction was assumed and there was no external field applied. Paranematic order-
ing can then be characterized by a director parallel to the local fiber direction, and
by a degree of order S decaying from a nonzero surface value to S = 0 over £ ~ 5a
(at T* = 1.2), the corresponding correlation length. Therefore, in a low-polymer-
density sample areas with S # 0 are limited only to the very vicinity of fibers. In
high-polymer-density samples, on the other hand, fibers can approach each other
(or even cross-link) and thereby create “bridges” of nematic order with S # 0 wher-
ever the lowest fiber-to-fiber distance becomes comparable to ~ 2§ — see Fig. 5.19.
This effect is similar to the capillary condensation observed experimentally in thin
nematic films by force spectroscopy [169], potentially allowing for a self-assembly
of colloidal particles. The actual degree of paranematic order depends significantly
also on temperature (7*) and on the strength of the orientational coupling of the
liquid crystal with the fiber surface (w). Therefore, in this Section simulation re-
sults for different 7* and w will be presented, focusing on the experimental output:
transmitted light intensity and 2H NMR line shapes. In the simulation, the sample
was equilibrated during 8 x 10* MC cycles and, afterwards, 7 x 10* cycles were used
to accumulate the relevant observables.

The set up of the optical experiment was identical to that used in Sect. 5.2.3:
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net fiber direction along the z-axis, light beam along the y-axis, and the polar-
izer and analyzer crossed in the zz-plane, each of them at an angle of 7/4 with
respect to the z-axis. Further, same sample thickness of d = 10 pm and light
wavelength A = 632 nm were considered. Again, the polymer was assumed opti-
cally isotropic and the refractive indices of the liquid crystal equal to those used in
Sect. 5.2.3. As already discussed, the intensity of outcoming light I is proportional
to I oc sin?(A®/2) (2.48), where the effective birefringence A® is proportional to
An, the difference between the extraordinary (n.) and ordinary (n,) refraction in-
dex averaged along the path of the light beam. Assuming that the net direction
of paranematic ordering — averaged over the whole sample — is still along the z-
axis, as imposed by the polymer network, and that An is small in comparison to 7,
and n,, An is simply proportional to the overall degree of order, in this case given
by (P#). This relation can be obtained from the expression for the eigenvalues of
the high-frequency dielectric tensor (2.7), assuming that (P§)Ae/e; < 1. Herewith
Ae =€’ —e} and ¢; = %(eﬁo +2€7°) were introduced, where €7 and €%° stand for the
eigenvalues in a perfectly ordered nematic. In the weakly ordered paranematic phase
the above assumption is expected to hold sufficiently well. Note that the averaging
performed to calculate An has to be carried out both over local rapid fluctuations
of molecular long axes (defining the local standard nematic order parameter S), and
across the sample over changes in the local director and polymer fiber orientations
(characterized by the (P), order parameter, as in Sect. 5.1). Furthermore, in the
fiber vicinity S is strongly spatially-dependent; see Figs. 5.3 (c) and 5.19. Following
the addition theorem for spherical harmonics, one can now write (P§) = (S)(Fs)q,
where (S) is the spatial average of S performed in the vicinity of the fiber (wherever
S #0).

In should be also noted that the above discussion is pertinent for low-density
networks only where there are no nematic “bridges” (areas with enhanced ordering)
between polymer fibers, and that sample C with approximately 9% polymer does
not necessarily meet this requirement. Moreover, the form of the addition theorem
for spherical harmonics that was applied above is valid only if there is no biaxiality
either in ordering of nematic molecules, or in the polymer network shape. Neither
of this is, however, strictly true for the sample C considered here. But, in any case,
if (P), is fixed, the transmitted light intensity I should increase with increasing (S)
(i.e., with decreasing T*), and I can be taken as a measure for the degree of ordering
in the system, as it was done in Ref. [26]. Note also that in an inhomogeneous
sample refraction of light, as well as light scattering should in principle be included
in studies of light propagation. Light scattering on refractive index inhomogeneities
characterized by a length scale much smaller than light wavelength A, as in sample C,
can be neglected [26]. Refraction of light, however, may become important, resulting
in slight deviations of the light beam from the incident y-axis. For simplicity, both
effects were ignored in the present calculation.

Fig. 5.20 shows the simulated transmitted light intensity (/) curves versus re-
duced temperature (above T, = 1.1232) for different anchoring strengths w. As
expected, the intensity I is nonzero due to paranematic surface-induced ordering,
(S) # 0, and decreases with increasing T*. Curves in Fig. 5.20 are similar to the
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Figure 5.20 Pretransitional ordering: transmitted polarized light intensity
I as a function of T for different anchoring strengths: w = 1 (large dots),

w = 0.5 (medium dots), and w = 0.1 (small dots). Iy denotes the intensity of
the incoming light.

corresponding experimental ones plotted in Ref. [26]. Note, however, that the in-
crease of I/l on approaching T, from above is not as abrupt as in Ref. [26]. This
may be because in the present simulation the NI transition was not approached as
closely as in the experiment. Further, in the present study /I, is well-behaved also
because the effective birefringence is not necessarily small — the polymer network
is rather dense and A® < 1 does not always hold (e.g., for w = 1) — and a possible
significant variation of A® is saturated in the I oc sin?(A®/2) dependence. For
the same reason, the curve for w = 1 is not monotonous close to the NI transition.
Moreover, with decreasing anchoring strength w the degree of ordering decreases,
which then translates into a lower /I signal.

One can also try to estimate I/l from the formula (2.48) and compare it with
the simulated one. Taking An® = 0.2175 and (P,), &~ 0.28, as above, and estimating
(S) from the simulation for a single fiber ((S) ~ 0.13 at T* = 1.2 and w = 1) yields
A® = AnO(S)(P),(2md/\) ~ 0.78. This then gives I/l = sin?(A®/2) ~ 0.15,
while the simulated value for 7* = 1.2 and w = 1 is I /I ~ 0.23. Recall now that in
the simulation I/l is deduced by averaging transmitted light intensities within the
xz-plane — across the light beam cross section. In a real (macroscopic) sample, the
outcoming light at each of the points in the xz-plane has accumulated roughly the
same phase shift A® when traveling through the sample, i.e., the intensity of the
outcoming light is uniform within the probing light beam cross section. Therefore,
in a real experiment the quantities (sin?(A®/2)),, (calculated in the simulation)
and sin®({A®),,/2) (estimated above and measured in Ref. [26]) are within reason
equal. Here (...),, stands for a spatial average in the xz-plane. The degree of network
irregularity in the simulated 50 x 50 x 50 particle simulation box is, however, still
rather far from that of irregularities in a macroscopic sample. As a consequence, one
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should not be surprised by the disagreement of the estimated and simulated I/Ij,
and better focus on the qualitative behavior of I/I, instead.

Alternatively, pretransitional ordering can be detected also via 2H NMR. As
discussed in great detail in Sect. 2.3.1 and elsewhere, the quadrupolar line splitting
wg(r) (2.41) depends both on the local orientation of the nematic director (matching
with the local orientation of the fiber network) and on the local degree of order.
The spectra presented in Fig. 5.21 were calculated for sample C in the fast diffusion
limit (the rate of diffusion being 1024 diffusive steps per NMR cycle, as earlier
in this Section), with the spectrometer magnetic field directed along the z-axis.
In this case the spectrum consists of one or two well-defined lines positioned at
an average frequency wy + (wg(r)), where (...) stands for the spatial average. As
above, in case of predominantly uniaxial molecular ordering the spherical harmonics
addition theorem can be applied to Eq. (2.41) when (wq(r)) is calculated, resulting
in (wq(r)) = dwg(S)(P2)g-

Fig. 5.21 shows the evolution of 2H NMR spectra upon increasing T* for different
values of the anchoring strength w. A convolution of the spectra with a Lorentzian
kernel of width ~ 0.070wg was performed in order to smoothen the spectra. The
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Figure 5.21 Pretransitional ordering: diffusion-averaged 2H NMR spectra as
a function of T* for different anchoring strengths: w = 0.1 (left), w = 0.5
(center), and w = 0.1 (right). Double-peaked line shapes are a signature of
surface-induced paranematic ordering.
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left sequence of spectra in Fig. 5.21 is plotted for w = 1 where the surface degree
of order is high enough to yield a double-peaked spectrum. For 7" = 1.2 the peak
is estimated to be located at |wg/dwg| ~ 0.04 = 0.01. On the other hand, (S)(Ps),
gives & 0.036, and hence the agreement of the two estimates is reasonably good.
The agreement indicates that in case of paranematic molecular ordering in sample C
biaxiality effects are not extremely important, supporting also the simple estimates
in the above optical experiment. When decreasing the temperature towards 7%,
the effective quadrupolar splitting increases, which results from an increase of (S).
For weaker anchoring (w = 0.5 and w = 0.1) the overall (S) is smaller and the
calculated spectra are only single-peaked — except rather close to T, for w = 0.5
— because their resolution is not high enough to detect (S) that approaches zero.

In conclusion, the simulations presented in this Section clearly confirm the ex-
istence of paranematic ordering above 7T%;. This ordering weakens with increasing
temperature and with the decreasing strength of the orientational coupling with the
polymer surface. These effects were both observed also through simulated 2H NMR
line shapes and transmitted light intensity measurements.
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Conclusion

In this concluding Chapter we will review the new achievements presented in the
thesis, along with the still open questions and possible future directions. The thesis
was mainly concerned with modeling confined nematics, applying well-established
phenomenological (Landau-de Gennes) and, more extensively, simulation (Monte
Carlo-type) approaches to selected open problems in the field.

Motivated by experiments indicating significant subsurface elastic deformations
in nematics, the first part (Chapter 3) focused on molecular ordering in a nematic
slab, with a special emphasis to the vicinity of its interfaces. In the framework of the
phenomenological Landau-de Gennes theory it was shown that unless the one-elastic
constant approximation is applied, any variation of the degree of nematic order S —
as occurring typically close to any interface — yields a subsurface elastic deformation
whose characteristic length matches with that of the S-variation, the corresponding
correlation length. This subsurface deformation exists only for planar distortions
(in the tilt angle ¢ profile), while it is absent in case of pure twist distortions. Note
that the free energy functional was expanded only up to first spatial derivatives of
S and ¢, and that the observed subsurface deformation stems exclusively from the
S-variation, having thus an origin completely different from that of deformations
predicted in connection with the controversial splay-bend elastic constant. In addi-
tion, the S-variation yields an intrinsic contribution to the surface anchoring energy,
with an easy axis either parallel or perpendicular to the sample normal. If the effec-
tive (intrinsic plus external) anchoring strength is adjusted to yield an extrapolation
length approaching those observable experimentally (¢ ~ 100 nm) — here estimated
by matching external field and anchoring effects — the subsurface deformation and
the S-variation are both small. This agrees with the use of a truncated first-order
free energy functional. Nevertheless, it should be clearly stressed that the described
phenomenological continuous approach cannot explain short-scale peculiarities in
the orientation of molecules observed experimentally in the first molecular layer in
direct contact with the substrate.

The phenomenological study of ordering in a nematic slab was complemented by
a molecular Monte Carlo (MC) simulation analysis based on the novel simple hexag-
onal lattice model. This model allows for the use of spatially anisotropic pairwise
potentials (like the induced dipole-induced dipole one considered here) without cre-
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ating any artificial bulk easy axes. In a deformed hybrid cell-like slab with one free
surface, intrinsic anchoring was explored in detail. Its microscopic origin comes from
incomplete spatially anisotropic intermolecular interactions close to the free surface.
For the induced dipole-induced dipole interaction the corresponding extrapolation
length £ is microscopic, as estimated from simple profile extrapolation. It approaches
experimental values only if the interaction anisotropy is significantly reduced. More-
over, ¢ exhibits almost no temperature dependence, even if the nematic-isotropic
transition is approached. This obvious disagreement with experimental findings
might be attributed to the great simplicity of the present model. Possible exten-
sions of the model comprise simulations of density variations close to the surface
(inserting vacancies into the lattice) and simulations of rough or modulated solid
substrates (both expected to reduce the anchoring strength). Nonetheless, a full
(and also computationally more demanding) description of nematic interfaces can
be provided only by dropping the lattice restriction, allowing thereby directly for
density variations and the formation smectic phases. This remains one of the goals
of the future research.

In the following Chapters, a rather simplified picture of interfaces was adopted:
anchoring (exclusively external) characterized with a well-defined easy axis and
strength. Instead, more complex confining geometries were treated: spherical PDLC
droplets (Chapter 4) and polymer networks (Chapter 5).

Chapter 4 was concerned with molecular ordering in radial and bipolar PDLC
droplets. Recently, PDLCs have gained renewed interest with the advent of holo-
graphic PDLC materials. The ordering in spherical PDLC droplets was explored
by performing MC simulations in the Lebwohl-Lasher model system. This model
is also based on a lattice (however, simple cubic), with particles interacting via a
spatially isotropic pair potential giving rise to no intrinsic anchoring. Following
extensive simulation studies of nematic droplets in the past, the focal point of the
present PDLC study was the development of a novel methodology for calculating
2H NMR spectra — one of the important experimental observables for these systems
— in presence of significant molecular motion, such as translational diffusion (both
spatially homogeneous and inhomogeneous) and fluctuations of molecular long axes.
The methodology was tested successfully for bipolar and radial droplets, allowing
for an identification of both director structures by inspecting the calculated line
shapes. The results indicate that molecular fluctuations lead to a narrowing of the
NMR spectrum, while its shape remains similar to that obtained in the static case.
From this narrowing it was possible to deduce the values of S, the order parameter,
which turned out to be in an excellent agreement with values deduced directly from
the MC data. Further, molecular diffusive motions result in an averaged spectrum,
which in the fast diffusion limit consists of one or two rather narrow lines, depending
on the type of boundary conditions. The positions of these lines can also be pre-
dicted from MC data, and again the agreement is fairly good. If the diffusive motion
close to the confining substrate is significantly hindered, this results in perceptible
changes in NMR spectra. These changes should be detectable also experimentally
in droplets with a high enough surface-to-volume ratio. Moreover, “powder” spectra
for an array of many bipolar droplets with randomly oriented symmetry axes were



Conclusion 135

calculated as well. Finally, droplets in an external electric or magnetic field were
studied, together with the evolution of the corresponding spectra upon increasing
the field strength. The field-induced effects seen to reflect in the spectra are: molec-
ular reorientation along the field direction, enhancement of the degree of nematic
order, and the formation of the nematic phase at temperatures even higher than
the nematic-isotropic transition. The two latter effects can be detected only in ex-
ternal fields that are unrealistically strong. In the radial droplet the external field
induces a continuous structural transition from the radial “hedgehog” structure to
an aligned one whose spectrum becomes similar to that of the bipolar droplet. Note
that currently it is still impossible to fit experimental spectra with the simulated
ones because of the smallness of the simulation box. To reduce the noise present
in the spectra, smoothening convolutions must be applied, distorting the spectra to
some degree. Qualitatively, however, the agreement of experimental and simulated
spectra is very good.

Another type of confinement — polymer networks dispersed in a nematic — was
investigated in Chapter 5. Like PDLCs, these systems are becoming important for
applicative purposes, yet to date lacking molecular simulation studies. Here as a first
step towards a realistic fiber network a regular array of straight and parallel fibers
was studied, focusing on effects of surface roughness. Different types of anchoring
conditions at the fiber surface were considered: planar along the fiber direction,
homeotropic, and partially or completely random. In cases with perfect planar or
homeotropic anchoring in the very vicinity of the fiber nematic order is enhanced.
However, once the anchoring conditions are partially distorted, the surface degree
of nematic order may drop below its bulk value, but the long-range orienting ca-
pability of the fiber network is still retained. This ability seems to be lost only for
completely random anchoring imposing no well-defined direction in the system, as
confirmed also by the 2H NMR spectra calculated from the simulation output. Fur-
ther, above the nematic-isotropic transition surface-induced paranematic ordering
could be detected, reflecting clearly in the translational diffusion-averaged 2H NMR
spectra. In addition, in the nematic phase two —% strength disclination lines paral-
lel to the fiber were observed for perfect homeotropic anchoring, and were seen to
move away from the fiber upon increasing temperature. Plotting order parameter S
and biaxiality P maps made it possible to resolve the inner structure of the defect
core: in the very center nematic ordering is uniaxial with S < 0, surrounded by a
ring where ordering is strongly biaxial with P # 0 and S > 0. These findings agree
very well also with those coming from phenomenological defect studies. Then, in
the same model system, an external field was applied in the direction perpendicular
to the fibers to investigate the switching behavior of nematic molecules. Monitoring
fluctuations of relevant order parameters, both the Fréedericskz and the saturation
transition were identified for different anchoring strengths. A stability phase di-
agram for possible nematic structures was plotted and was found to be in good
qualitative agreement with the one calculated from the Frank elastic theory for the
simple slab geometry. As a second step in increasing the complexity of the fiber
network, a system of several straight and parallel, yet randomly positioned fibers
was considered. At unchanged polymer concentration, the Fréedericskz switching
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threshold in such a sample shifts towards lower field strengths, and the switching
process is more gradual than in a system of regular fibers. An even more realistic
network model includes randomly positioned fibers that are curved and allows also
for cross-linking between them. This model represented the most complex type of
confinement considered in the thesis. The Fréedericskz threshold in such a sample
is not well-defined any more, but the switching is still relatively sudden. These
conclusions were all demonstrated also by the simulated experimental observables,
namely 2H NMR line shapes, electric capacitance, and transmitted polarized light
intensity. Finally, paranematic ordering was inspected also in the irregular fiber
system. Results obtained from diffusion-averaged 2H NMR spectra and from the
optical experiment measuring the intensity of transmitted light qualitatively agree
with real experiments. It should be noted that some of the above findings can be rel-
evant also for the behavior of other composite systems like nematic gels and colloids,
including regular colloidal crystals formed by capillary condensation.

All in all, the simulation part of the thesis has presented a number of effects and
phenomena in confined nematics qualitatively known either from phenomenology,
experiments, or simply from pure intuition. For this reason, someone might argue
that they are not that novel and striking. However, the great value of studies like
the present ones is, first, to allow for a treatment of complex confinement whenever
phenomenology fails (either for conceptual or merely for technical-computational
reasons). Second, simulation studies presented here were able to establish a qualita-
tive relation between rather subtle details in the microscopic material properties and
the macroscopic behavior of the system. In addition, with the ongoing improvement
of computing performance this qualitative relation — here established for the still
simplified confining geometries — should definitely evolve into a more quantitative
one, with the simulated experimental observables comparable directly to the real
ones.
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Izjava

Izjavljam, da sem v doktorskem delu predstavil rezultate lastnega znanstvenorazisko-
valnega dela.
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