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Abstract

Let P be a polyhedron whose boundary consists of flat polygonal faces on some com-
pact surface S(P) (not necessarily homeomorphic to the sphere S2). Let voR(P), eoR(P),
foR(P) be the numbers of rotational orbits of vertices, edges and faces, respectively,
determined by the group G = GR(P ) of all the rotations of the Euclidean space E3

preserving P . We define the rotational orbit Euler characteristic of P as the number
EoR(P) = voR(P)− eoR(P) + foR(P).

Using the Burnside lemma we obtain the lower and the upper bound for EoR(P) in
terms of the genus of the surface S(P ). We prove that EoR ∈ {2, 1, 0,−1} for any convex
polyhedron P . In the non-convex case EoR may be arbitrarily large or small.
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1 Introduction
CONTEXT: Euler (1752) discovered the famous relation v−e+f = 2 between the numbers
of vertices v, edges e and faces f of any convex polyhedron. This Euler polyhedron formula
was implicitly stated in the formulas of Descartes (1630) p = 2f + 2v − 4, p = 2e, where
p is the number of ”plane angles” – corners of faces determined by pairs of adjacent edges
([5], p.469).

The number χ = v − e + f can be defined for any map (a graph cellularly embedded
into a compact surface S) and is called its Euler characteristic. It is related to the genus
g of the surface S as follows: χ = 2 − 2g ([5], p. 473.) and it may be used for the
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classification of surfaces by two parameters: one is χ and the other is orientability (or non-
orientability) of the surface. In [4] we introduced the concept of Euler orbit characteristic
Eo = vo − eo + fo, where vo, eo, fo denote the number of orbits of vertices, edges and
faces, respectively, determined by the group of all rotations and reflections of the Euclidean
space E3, preserving the polyhedron P , and we used it for the classification of the 92
Johnson solids ([4], p.258). In this paper we introduce a similar concept, called rotational
orbit Euler characteristic, and we use it for the classification of convex polyhedra.

Definition 1.1. The rotational Euler orbit characteristic of the polyhedron P is defined as
the number EoR = voR − eoR + foR where voR, eoR, foR are the numbers of rotational
orbits of the vertices, edges and faces, respectively, of P (these orbits are determined by
the group GR(P) of all the rotations of the Euclidean space E3 preserving P).

Proposition 1.2. EoR = 1 for all the Platonic solids and all the n-prisms and n-anti-
prisms, while 1 ≤ EoR ≤ 2 for all the Archimedean solids.

Proof. In the Table 1 the number of rotational orbits of Platonic and Archimedean solids
are given. These values can be easily found for each solid directly or deduced from the
symmetry-type graphs of Platonic and Archimedean solids [3]. The 5 Platonic solids have
just one rotational orbit of vertices, edges and faces. The 13 Archimedean solids have
at most two rotational orbits of vertices and at most three rotational orbits of edges and
faces. The n-prisms and the n-antiprisms have just one rotational orbit of vertices and two
rotational orbits of edges and faces.

class solid P vertex pattern voR eoR foR EoR

I. tetrahedron (3.3.3) 1 1 1 1
I. octahedron (3.3.3.3) 1 1 1 1
I. cube (4.4.4) 1 1 1 1
I. icosahedron (3.3.3.3.3) 1 1 1 1
I. dodecahedron (5.5.5) 1 1 1 1
II. cuboctahedron (3.4.3.4) 1 1 2 2
II. icosidodecahedron (3.5.3.5) 1 1 2 2
III. truncated tetrahedron (3.6.6) 1 1 2 2
III. truncated cube (3.8.8) 1 1 2 2
III. truncated octahedron (4.6.6) 1 1 2 2
III. truncated dodecahedron (3.10.10) 1 1 2 2
III. truncated icosahedron (5.6.6) 1 1 2 2
IV. rhombicuboctahedron (3.4.4.4) 1 2 3 2
IV. rhombicosidodecahedron (3.4.5.4) 1 2 3 2
V. truncated cuboctahedron (4.6.8) 2 3 3 2
V. truncated icosidodecahedron (4.6.10) 2 3 3 2
VI. snub cube (3.3.3.3.4) 1 3 3 1
VI. snub dodecahedron (3.3.3.3.5) 1 3 3 1
VII. n-prism (4.4.n) 1 2 2 1
VIII. n-antiprism (3.3.n) 1 2 2 1

Table 1: Values of voR, eoR, foR for Platonic and Archimedean solids and for the infinite
families of n-prisms and n-antiprisms.

MOTIVATION: Similar bounds on EoR exist for the Johnson solids (i.e. convex polyhedra
with regular polygonal faces and at least two orbits of vertices [2]). The direct motivation
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for writing this paper came from the empirical observation that the values of EoR for the
92 Johnson solids are in a small range between −1 and 2. This was discovered during
the process of constructing a table of 16 parameters of the Johnson solids presented in [4],
while the range for Eo for the same solids turned out to be bigger: 0 ≤ Eo ≤ 5.
COMPARISON OF Eo AND EoR: The two characteristics behave very differently on the set
of all convex polyhedra: the main result of the paper (Theorem 2.1) states that the relation
−1 ≤ EoR ≤ 2 holds for all convex polyhedra, while forEo there is no fixed upper bound,
we can obtain only the following estimate: Eo = vo−eo+fo ≤ vo+fo ≤ voR+foR =
≤ (voR − eoR + foR) + eoR = EoR + eoR ≤ 2 + eoR.

Definition 1.3. Let GR(P) = {R1, R2, ..., Rn−1, Rn = Id} be the group of rotational
symmetries of the polyhedron P . The poles of the rotation Ri are the points in which the
axis of the rotation Ri intersects the surface S(P). Let vp(Ri), ep(Ri), fp(Ri) denote the
numbers of poles of Ri in the vertices, edge centers and face centers of P , respectively.
The number Ep(Ri) = vp(Ri)− ep(Ri) + fp(Ri) is called the Euler polar characteristics
of the rotation Ri.

Lemma 1.4. Let ni denote the number of poles of any non-trivial rotation Ri of the poly-
hedral map P on the surface S of genus g. Then

ni ≤ 2(g + 1),
ni ∈ {0, 2, 4, . . . , 2(g + 1)},

vp(Ri) + ep(Ri) + fp(Ri) = ni,
0 ≤ ep(Ri) ≤ ni,

Ep(Ri) = ni − 2ep(Ri),
−2(g + 1) ≤ −ni ≤ Ep(Ri) ≤ ni ≤ 2(g + 1).

If the order of the rotation Ri is greater than 2 (i.e. Rn
i = id and n > 2), then

ep(Ri) = 0 and Ep(Ri) = ni.

Proof. Any line intersecting P has at most 2g intersecting points with S. If P is a convex
polyhedron then any nontrivial rotation Ri has exactly two poles, hence ni = 2. If ni > 2
then each segment of the rotational axis ri not lying in the interior of P contributes two
poles (hence ni is an even number!) and at least one new handle. Thus it ”increases” the
genus of S for 1 (since it is well known that the genus counts the numbers of ”handles” of a
surface), therefore it must be ni ≤ 2(g+1). The poles can be only in vertices, edge centers
or face centers, hence vp(Ri) + ep(Ri) + fp(Ri) = ni and 0 ≤ ep(Ri) ≤ ni. Obviously
Ep(Ri) = vp(Ri) − ep(Ri) + fp(Ri) = ni − 2ep(Ri). Therefore the upper bound for
Ep(Ri) is ni and the lower bound is −ni.

Corollary 1.5. If P is a convex polyhedron, then Ep(Ri) = 2− 2ep(Ri) ∈ {2, 0,−2}. If
ep = 0 then Ep = 2, if ep = 1 then Ep = 1, and if ep = 2 then Ep = −2. If the order of
the rotation Ri is greater than 2, then Ep(Ri) = 2.

Proof. Every convex polyhedron is homeomorphic (by a radial projection from any point
of its interior) to a sphere, which has genus g = 0. Now ni = 2 and the formulas follow
from the Lemma 1.4.

The next tool we need (in order to prove the main result, Theorem 2.1) is the Burnside
lemma, a standard tool for calculating the number of orbits.
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Lemma 1.6. (Burnside lemma) Let a group G act on some set Q. Let |G| = n denote the
number of elements of G and let |Fix(g)| denote the number of elements a of the set Q,
preserved by the given element g of the group: g(a) = a. Then the number of orbits Qo of
the set Q is given by the formula

Qo =
1

|G|
∑
g∈G
|Fix(g)|.

If the group of rotational symmetries of a convex polyhedron is the cyclical group
Cn then the exact value for the Euler orbit characteristic EoR(P) can be obtained by a
straightforward application of the Burnside lemma. This is a generalization of the similar
result for the spherical polyhedra ([4], p.253).

Proposition 1.7. Let P be a convex polyhedron. If GR(P ) = Cn where Cn is generated
by a rotation R1 (thus Rn

1 = I), then EoR(P) ∈ {0, 1, 2}.

Proof. The identity transformation fixes all vertices, edges and faces while the other n− 1
rotations fix only the poles. Hence we get by the Burnside lemma and using the Euler
formula v − e + f = 2 (valid for any convex polyhedron) the following formulas for the
numbers of rotational orbits:

voR =
1

n
(v + (n− 1)vp),

eoR =
1

n
(e+ (n− 1)ep),

foR =
1

n
(f + (n− 1)fp),

EoR =
1

n
(2 + (n− 1)Ep(R1)),

and using Ep(R1) = 2− 2ep(R1) we see: if ep(R1) = 0 then Ep(R1) = 2 and EoR = 2;
if ep(R1) = 1 then n = 2, Ep(R1) = 0 and EoR = 1; if ep(R1) = 2 then n = 2,
Ep(R1) = −2 and EoR = 0. Thus, if n > 2 then EoR = 2.

2 The main result
Theorem 2.1. Let P be a polyhedron with faces on the surface S of genus g. Then

EoR(P) =
1

n
(χ(P) +

n−1∑
i=1

Ep(Ri)),

and we get the following bounds on EoR(P):

1

n
(χ(P)−

n−1∑
i=1

2(g + 1)) ≤ EoR(P) ≤
1

n
(χ(P) +

n−1∑
i=1

2(g + 1)).

If P is a convex polyhedron, then

−1 ≤ EoR(P) ≤ 2.
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Proof. Let n be the number of elements in the group GR(P ).
The identity transformation fixes each vertex, edge or face.
Every rotation Ri fixes vp(Ri) vertices, ep(Ri) edges and fp(Ri) faces.
Therefore, by the Burnside lemma:

voR =
1

n
(v + vp(R1) + · · · vp(Rn−1)),

eoR =
1

n
(e+ ep(R1) + · · · ep(Rn−1)),

foR =
1

n
(f + fp(R1) + · · · fp(Rn−1)),

EoR =
1

n
(χ+ Ep(R1) + · · ·Ep(Rn−1)).

Using −2(g + 1) ≤ Ep(Ri) ≤ 2(g + 1) (proved in Lemma 1.4) we get

1

n
(χ−

n−1∑
i=1

2(g + 1)) ≤ EoR ≤
1

n
(χ+

n−1∑
i=1

2(g + 1)).

If P is a convex polyhedron, then g = 0, χ = 2, hence

EoR ≤
1

n
(2 + (n− 1)2) = 2,

EoR ≥
1

n
(2 + (n− 1)(−2)) = 1

n
(4 + n(−2)) ≥ −2 + 4

n
≥ −1,

because 4
n > 0 and EoR must be an integer.

Thus there are 4 classes C2, C1, C0, C−1 of convex polyhedra, whose EoR are 2, 1,
0,−1, respectively.

Is the lower bound EoR = −1 actually obtained, and (if it is so) for which convex
polyhedra? And is there any simple description of these four classes?

Proposition 2.2. Let a, b, c be the numbers of rotationsRi in the groupGR(P) of a convex
polyhedron for which Ep(Ri) equals 2, 0 and −2, respectively, and let n be the number of
elements in GR(P). Then

EoR(P) =
1

n
(2 + a · 2 + c(−2)) = 2

n
(1 + a− c).

Thus the number 1 + a − c is an integer multiple of n
2 . The numbers a and c can be (for

each of the 4 possible values of EoR) expressed by b, n and EoR.

Proof. This formula follows immediately from the Burnside lemma. Also, it is clear that

a+ b+ c+ 1 = n,

hence
a+ c = n− b− 1.
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The equation 2
n (1 + a− c) = EoR implies 2(1 + a− c) = EoR · n and

c− a = 1− EoR · n
2

.

Then (a+ c) + (c− a) = 2c = n− b− 1 + 1− EoR·n
2 = (2−EoR)·n

2 − b and

c =
(2− EoR)n− 2b

4
.

Similarly, 2a = n− b− 1− 1 + EoR·n
2 , hence

a =
n · (2 + EoR)− (2b+ 4)

4
.

For example, if EoR = −1 and b = 0 then a = n
4 − 1 and c = 3n

4 . In that case n must
be divisible by 4.

Example 2.3. To find such a solid with 4 symmetries we have to look for one having three
rotations with poles in edge centers! The lower bound EoR = −1 is really obtained for
the Johnson solid J84 (Snub Disphenoid, see Figure 1), where voR = 2, eoR = 6, foR =
3, hence EoR = 2 − 6 + 3 = −1. Here the number of symmetries is 4 (the identity
transformation and 3 rotations of order two with axes going through edge centers), b =
0, a = 0 and c = 3. Thus this lower bound −1 is sharp.

Figure 1: The Johnson solid J84, also known as the Snub Disphenoid.

Remark 2.4. A rotational axis of a non-convex polyhedron may have more than 2 ”poles”.
As a consequence, there is no upper or lower bound for EoR in the non-convex case.

3 Classification of convex polyhedra
As an immediate consequence of the formulas in Proposition 3 we get:
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Corollary 3.1. The four classes C2, C1, C0, C−1 of convex polyhedra (whose EoR are
2, 1, 0,−1, respectively) can be characterized as follows:

C2: a− c = n− 1

C1: a− c = −1 + n
2

C0: a− c = −1
C−1: a− c = −1− n

2 , all poles in edge centers, a = 0.

Corollary 3.2. If a ≥ n/2 then EoR ∈ {1, 2}.

Proof. The relation a ≥ n/2 is a sufficient condition for a − c > 0 (since there is also
the identity transformation in the groupGR(P)) that holds only for polyhedra from C2 and
C1.

Corollary 3.3. Let q be the number of all rotations Ri ∈ GR(P) with the property that Ri

has the same rotational axis as some k-fold rotation for any k > 2. If q ≥ n/2, where n is
the order of the group GR, then EoR(P) ∈ {1, 2}.

Proof. No rotation with such an axis can have any of its two poles in an edge center, hence
a ≥ q ≥ n/2, therefore EoR(P) ∈ {1, 2}.

Now we can classify convex polyhedra with respect to their rotational symmetry groups
and their rotational orbit Euler characteristic.

The only possible rotational groups of the Euclidean space E3 are the rotational groups
of 1) the n-gonal pyramid, 2) the n-gonal dipyramid or prism, 3) the regular tetrahedron, 4)
the cube or the regular octahedron, 5) the regular dodecahedron or the regular icosahedron
([1], p.34).

Theorem 3.4. Convex polyhedra with at least one rotational symmetry can be classified
by their GR and by their EoR into 13 classes (in Table 2 the impossible cases are marked
with ∅):

C2 C1 C0 C−1
Cn cyclical group ∅
Dn dihedral group
T tetrahedron group ∅ ∅
O octahedron group ∅ ∅
D dodecahedron group ∅ ∅

Table 2: Classification of convex polyhedra by GR and EoR.

Proof. If GR = Cn then EoR 6= −1 (by Proposition 2). If GR ∈ {T,O,D} then q ≥ n/2
(Table 3) hence P cannot be in C0 or C−1 (by Corollary 3.3).
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2 3 4 5 n q
T tetrahedron 3 4 3 + 4.2 + 1 = 12 9
O cube 6 4 3 6 + 4.2 + 3.3 + 1 = 24 17

D dodecahedron 15 10 6 15 + 10.2+12.4 + 1= 60 44

Table 3: Numbers of the 2-,3-,4-,5-fold axes in the solids P with the rotational groups T ,O
or D, orders n of the groups T,O,D and the numbers q of all rotations Ri ∈ GR(P) with
the property that Ri has the same rotational axis as some k-fold rotation for any k > 2.
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