Univerza *v Ljubljani* Fakulteta *za kemijo in kemijsko tehnologijo*

M. Lukšič, Č. Podlipnik, B. Hribar Lee MOLEKULSKO MODELIRANJE Navodila za vaje

Ljubljana, 2021

MOLEKULSKO MODELIRANJE — Navodila za vaje

Avtorji: Miha Lukšič, Črtomir Podlipnik, Barbara Hribar Lee Strokovni pregled: prof. dr. Jurij Reščič, prof. dr. Tomaž Urbič Oblikovanje in prelom: Miha Lukšič, Barbara Hribar Lee Slike in risbe: Miha Lukšič, Barbara Hribar Lee Naslovnica: Miha Lukšič Jezikovni pregled: Alenka Klemenc Urednica založbe: dr. Barbara Modec

© (2021) Univerza v Ljubljani, Fakulteta za kemijo in kemijsko tehnologijo *Založila*: Univerza v Ljubljani, Fakulteta za kemijo in kemijsko tehnologijo *Za založbo*: prof. dr. Jurij Svete 1. spletna izdaja Ljubljana, 2021

Vse pravice pridržane.

To delo je objavljeno pod licenco Creative Commons Priznanje avtorstva-Nekomercialno 4.0 Mednarodna (CC BY-NC 4.0).

Licenca dovoljuje nekomercialno uporabo, kopiranje in razširjanje vsebin v kakršnemkoli mediju in obliki, pri čemer mora biti vir ustrezno naveden (© (2021) Univerza v Ljubljani, Fakulteta za kemijo in kemijsko tehnologijo). Kopija licence se nahaja na sledeči povezavi: https://creativecommons.org/licenses/by-nc/4.0/deed.sl.

Kataložni zapis o publikaciji (CIP) pripravili v Narodni in univerzitetni knjižnici v Ljubljani COBISS.SI-ID 60949763 ISBN 978-961-7078-19-0 (PDF)

Kazalo

Predgovor	5
1. VAJA: Predstavitev molekul	6
2. VAJA: Podatkovne zbirke	14
3A. VAJA: Predstavitev molekul v programu Spartan	23
3. VAJA: Uvod v kvantnomehanske račune	29
4. VAJA: Lastnosti molekul	36
5. VAJA: Reakcijski intermediati	48
6. VAJA: Medmolekulske interakcije	53
7. VAJA: Konformacija molekul	56
8. VAJA: Prehodna stanja	61
9. VAJA: Molekulska dinamika	68
10. VAJA: Molekulsko sidranje ("docking")	74

Predgovor

Ta skripta so namenjena izvedbi laboratorijskih vaji pri predmetu *Molekulsko modeliranje*. Podajajo podrobnejša navodila za izvedbo vaj, ki so navedene v učbeniku B. Hribar Lee in Č. Podlipnika *Molekulsko modeliranje* (UL FKKT 2019), in sicer na straneh:

160—162
163—164
165—166
167—168
169
170
171—173
174
175
176.

Slike pri kvantnomehanskih vajah so bile za te vaje narejene s programom *Spartan'14*. Pri delu z verzijo *Spartan'18* lahko pride do manjših oblikovnih razlik. Prav tako so manjše razlike v ukazih. Ta oblikovna razhajanja med obema verzijama programa *Spartan* pa so dovolj majhna, da menimo, da jih bo uporabnik brez težav uspel sam prepoznati ter temu tudi ustrezno aplicirati.

Na nekaterih slikah ni nujno molekula, o kateri govori tekst, ali molekula, s katero se boste vi ukvarjali na vajah. Pri določenih vajah namreč vsak dobi svojo molekulo. K skriptam sodijo tudi dodatne datoteke, ki jih za posamezno vajo dobite v spletni učilnici FKKT.

Avtorji Ljubljana, april 2021

1. VAJA: Predstavitev molekul

Pri tej vaji se bomo seznanili z različnimi načini predstavitve (zapisi) molekul:

- 1D zapisi: SMILES, InChI, ključ InChI
- 3D zapisi: SDF, XYZ, Z-matrika

Seznanili se bomo s programom *MarvinSketch*. Uporabili ga bomo za risanje strukturnih formul ter tvorjenje zapisov SMILES, InChI, ključ InChI, SDF. Pogledali si bomo, kako določiti strukturno formulo iz omenjenih zapisov. S programom *MarvinSketch* bomo generirali Markusheve strukture ter določili število vseh možnih struktur.

Navodila za delo s programom *MarvinSketch* najdeš tudi na <u>https://chemaxon.com/products/</u> <u>marvin</u>.

* * *

(i) Poženi program *MarvinSketch* tako, da na namizju klikneš na ustrezno ikono. Odpre se ti okno:

🐺・⊘ つて X B 🗂 Cy 🔍 Q 100% 💌 🕼	
1 -	lar ^a
·∧· •	н
-	c
-	N
т	0
NF	5
1	
0	
1. L	P
U *	C
•	Bi
+	1.1
-	
	_
ΛΠΟΛΛΑ∞	

(ii) Nariši molekulo aspirina (2-acetiloksibenzojska kislina):

(ii/1) Z levim gumbom miške klikni na ⁽ⁱ⁾ "benzen", ki se nahaja v *spodnji* orodni vrstici. Kurzor miške postavi na sredino platna in z levim gumbom miške klikni nanj. Izriše se molekula benzena.

(ii/2) V orodni vrstici na *levi* izberi **/** ("Single Bond") ter se s kurzorjem miške postavi na ustrezni atom benzena, kamor želiš dodati kemijsko vez. Atom (oz. vez) se tam obarva zeleno. Z levim klikom dodaš vez (+CH₃).

(ii/3) S takšnimi kliki dodaš preostale vezi (CH oz. CH₂ oz. CH₃ skupine) na ustrezna mesta. Enojno vez zamenjaš v dvojno oz. trojno tako, da z levim gumbom miške klikneš enkrat ali dvakrat na izbrano vez.

(ii/4) Na ustreznih mestih moraš sedaj $-CH_3$ skupino zamenjati z -OH ter $=CH_2$ skupino z =O. To storiš tako, da v orodni vrstici na *desni* izbereš **O** (kisik) ter z levim gumbom miške klikneš na ustrezni C atom, ki ga želiš zamenjati.

(ii/5) Ko je molekula narisana, v meniju izberi <u>Structure >> Clean 2D >> Clean in</u> <u>2D</u> ali uporabi bližnjico Ctrl+2.

(ii/6) Za izpis imena spojine v meniju izberi *Structure >> Structure to Name...* Izberi (obkljukaj) opcije: *IUPAC Name*, *Traditional Name*, *CAS Registry Number*. V tem primeru bo program izpisal:

(iii) Zapis SMILES dobiš tako, da v meniju izbereš *Edit >> Source...*, nato pa v oknu, ki se ti odpre, izbereš *View >> SMILES >> SMILES*. Podobno tudi za druge vrste zapisov: za zapis InChI izbereš *InChI / RinChI*, za ključ InChI pa *InChIKey / RinChIKey*.

Drugi način pa je, da molekulo shraniš v ustreznem formatu:

— V meniju izbereš *<u>File >> Save As...</u>*

— V oknu, ki se ti odpre, najprej v naboru *Files of Type* izbereš

SMILES (*.smiles *.smi) ter pod File Name določiš ime datoteke

(denimo aspirin.smiles).

— Pod *Save In* izbereš, kam naj se datoteka shrani.

Datoteko nato odpreš npr. s programom MS Word tako, da z desnim gumbom miške klikneš na datoteko in izbereš *Open With >> Choose Another App >> Word*.

Za molekulo aspirina se ti pokaže naslednji SMILES zapis:

CC(=0)OC1=CC=CC=C1C(O)=O

Za InChI in ključ InChI narediš podobno:

Za zapis InChI v naboru Files of Type izbereš InChI / RinChI (*.inchi .rinchi),

za ključ InChI pa InChIKey / RinChIKey (*.inchikey).

V datotekah, ki jih prav tako odpreš z MS Word, bo za dani primer pisalo:

InChI=1S/C9H8O4/c1-6(10)13-8-5-3-2-4-7(8)9(11)12/h2-5H,1H3(H,11,12) InChIKey=BSYNRYMUTXBXSQ-UHFFFAOYSA-N

(iv) Datoteko shrani v SDF (Spatial Data File) formatu (glej opis zgoraj):

Izberi *MDL Sdfile (*.sdf *.sd)*. Če datoteko odpreš z *MS Word*, boš našel naslednji zapis:

```
aspirin
 Mrv1921 10101914522D
                   999 V2000
13 13 0 0 0 0
  1.4289 3.3000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
  1.4289 2.4750 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
  2.1434 2.0625 0.0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0
  0.7145
        2.0625 0.0000 0 0 0 0 0 0 0 0 0 0 0 0 0
        1.2375 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
  0.7145
        0.8250 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
  1.4289
  0.7145 -0.4125 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
  0.8250 0.0000 C 0 0 0 0 0 0 0 0 0 0 0
  0.0000
        1.2375 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
  -0.7145
        2.0625 0.0000 0 0 0 0 0 0 0 0 0 0 0 0
  -0.7145
  -1.4289 0.8250 0.0000 0 0 0 0 0 0 0 0 0 0 0 0 0
 1 2 1 0 0 0 0
 2 3 2 0 0 0 0
 2 4 1 0 0 0 0
 4 5 1 0 0 0 0
 5 6 2 0 0 0 0
 67
    1 0 0 0 0
 7 8 2 0 0 0
            0
 89
     1 0 0 0
            0
      0 0 0
 9 10
     2
            0
        0
 5 10
     1
      0
          0
            0
        0 0
10 11
     1
      0
            0
      0 0 0
11 12
     1
            0
    2 0 0 0 0
11 13
M END
> <type>
common
```

\$\$\$\$

(v) Odpri datoteko, v kateri je zapis SMILES za molekulo aspirina, zapis označi (levi gumb miške) in ga kopiraj (Ctrl+C). V programu *MarvinSketch* odpri novo platno (*File >> New >> New Window* ali uporabi bližnjico Ctrl+N). Postavi se kjer koli na platno in tja prilepi kopirani zapis (Ctrl+V). Izriše se ti strukturna formula aspirina.

Enako stori z zapisom InChI.

MarvinSketch ne zna prebrati ključa InChI, zato ta zapis najprej pretvori v zapis InChI. To lahko storiš tako, da npr. odpreš spletno stran

https://www.chemspider.com/InChI.asmx

in izbereš pretvornik <u>InChIKeyToInChI</u>. V ustrezno polje kopiraš InChI ključ (brez dela InChIKey=) in stisneš tipko **Invoke** ter nato **Continue**. Odpre se ti novo okno, v katerem je zapis pretvojen v InChI:

InChI=1S/C9H8O4/c1-6(10)13-8-5-3-2-4-7(8)9(11)12/h2-5H,1H3,(H,11,12).

(vi) Za aspirin s pomočjo podatkovne zbirke *PubChem* določi njene zapise SMILES, InChI in ključ InChI ter jih primerjaj s tistimi, ki si jih dobil s programom *MarvinSketch*.

PubChem se nahaja na spletni povezavi: <u>https://pubchem.ncbi.nlm.nih.gov/</u>

Za naslednje naloge *Vaje 1* v učbeniku *Molekulsko modeliranje* (str. 160—162) delaj takole:

Naloga 4:

Molekule kofeina, aspirina in viagre lahko uvoziš v *MarvinSketch* z njihovim imenom. V meniju izberi *Structure* >> *Name to Structure* ali bližnjico Ctrl+Shift+N ter v okno vpiši ime:

caffeine	ali	1,3,7-trimethylpurine-2,6-dione
aspirin	ali	2-acetyloxybenzoic acid
viagra	ali	5-[2-ethoxy-5-(4-methylpiperazin-1-yl)sulfonylphenyl]-1-methyl-3-
		propyl-6 <i>H</i> -pyrazolo[4,3-d]pyrimidin-7-one

Zapis SMILES določi tako, kot je opisano v točki (iii).

Naloga 8:

MS Word datoteka z zapisi a.—i. se nahaja v spletni učilnici [Vaja1_naloga8.docx].

Posamezen zapis odpri v programu *MarvinSketch* — glej točko **(v)**. Za izpis imena spojine delaj, kot je opisano v točki **(ii/6)**.

Naloga 9:

Pri pretvorbi zapisa molekule etena v obliki Z-matrike v format XYZ si pomagaj npr. s spletno stranjo "*Z-Matrix to Cartesian Coordinate Conversion Page*", ki se nahaja na povezavi:

http://www.shodor.org/chemviz/zmatrices/babel.html

Naloga 6: Markusheve strukture

Z Markushevimi strukturami (tudi –R strukture) opisujemo sete spojin, ki si delijo skupen skelet. Za prikaz mest, kjer se spojine med seboj razlikujejo, uprorabljamo posebne oznake. Markusheve strukture se pogosto uporabljajo za opis generičnih struktur v kemijskih tekstih, v patentnih prijavah itd.

Za generacijo Markushevih struktur program *MarvinSketch* dovoljuje naslednje tipe variacij:

R-group, Atom Lists, Position, Homology, Frequency in Link Node.

Njihovo uporabo si bomo pogledali na naslednjem primeru *Vaje 1* (glej učbenik):

(N6/1) Nariši strukturno formulo *piridoksina* ali generiraj strukturo iz imena (<u>Structure >> Name to Structure</u>; v okno, ki se odpre, vtipkaj pyridoxine ali IUPAC ime 4,5-bis(hidroksimetil)-2-metilpiridin-3-ol).

(N6/2) V *levi* orodni vrstici izberi \checkmark ("Single Bond") in klikni na kisik –OH skupine na mestu 3 (glej zgornjo strukturno formulo). S kurzorjem miške se postavi na C atom na novo generirane –CH₃ skupine, klikni na desni gumb miške ter izberi <u>*R*-Group >> R1</u>. S tem si –CH₃ skupino zamenjal z R1.

S kurzorjem miške se postavi na O atom hidroksimetilne skupine na mestu 4 in ga na enak način zamenjaj z R2. Na enak način zamenjaj O atom hidroksimetilne skupine na mestu 5 z R3.

(N6/3) Kjerkoli na platno poleg strukture piridoksina nariši *etan*, *propan*, *butan* in *metoksietan*. V zgornji orodni vrstici izberi 🔅 "Rectangle Selection" in s klikom tako, da držiš levi gumb miške, označi vse štiri narisane spojine. Ko so označene, z uporabo tipkovnice napiši **R1**.

Da dodaš oznako za vezavno mesto, z levim gumbom miške nato klikni na ustrezni C atom vsake od teh štirih spojin.

(N6/4) Kjerkoli na platno nariši *benzen, toluen, metan, etan* in *propanol*. V zgornji orodni vrstici izberi 📪 "Rectangle Selection".

— Na molekuli benzena označi sosednje tri atome: najprej klikni z levim gumbom miške na en C atom, drži tipko Shift ter klikni še na sosednja dva atoma. Ko so trije atomi izbrani, klikni na desni gumb miške in izberi <u>Add >> Position</u> <u>Variation Bond</u>. Ti trije atomi in vezi med njimi se bodo označili s sivo obrobo, dodala pa se bo enojna vez (—CH₃).

— Na strukturi toluena (enako kot pri benzenu) označi C atome na mestu 2, 3 in 4 ter izberi <u>*Add* >> Position Variation Bond</u>.

— V *desni* orodni vrstici izberi ^{hent} "Periodic Table and More". Odpre se ti okno s periodnim sistemom elementov. Klikni na "Atom Inclusive List" in na periodnem sistemu izberi F, Cl in Br tako, da nanje klikaš z levim gumbom miške. Nato z njim klikni na molekulo metana, ki si jo prej narisal. CH_4 se bo zamenjal v —L [F, Cl, Br].

— V *levi* orodni vrstici v zavihku / izberi "Single or Double" in klikni na vez v molekuli etana.

— V *zgornji* orodni vrstici izberi "Rectangle Selection" ter v molekuli propanola z levim gumbom miške označi C atom na mestu 2 ter nato z desnim gumbom miške izberi *Link Node* >> *L1-3*.

V *zgornji* orodni vrstici izberi "Rectangle Selection" in s klikom tako, da držiš levi gumb miške, označi vse te štiri spojine. Ko so označene, z uporabo tipkovnice napiši **R2**.

Da dodaš oznako za vezavno mesto, z levim gumbom miške nato klikni na ustrezni atom vsake od petih struktur.

(N6/5) Kjerkoli na platno nariši *2-aminopropanamid*. V *levi* orodni vrstici izberi **[]**_n ("Create Group"), nato pa tako, da držiš levi gumb miške, označi H₂NCOCHCH₃ del molekule. Odpre se ti okno "Create Group": v meniju "Type" izberi "*Repeating unit with repetition ranges*". V polje "Repetition Ranges" pa vtipkaj **1-3**.

V *zgornji* orodni vrstici izberi "Rectangle Selection" in s klikom tako, da držiš levi gumb miške, označi celotno spojino ter z uporabo tipkovnice napiši **R3**. Oznako za vezavno mesto dodaj s klikom z levim gumbom miške na N atom amidne skupine.

(N6/6) Za določitev vseh možnih struktur, ki jih predstavlja takšna Markusheva struktura, v meniju izberi *Structure >> Markush Enumeration*. Odpre se ti okno, kjer obkljukaš "*Markush Library Size*" ter nato klikneš na **OK**.

Odprlo se ti bo okno, kjer bo pisalo: <u>*Markush library size* = *XYZ*</u>, kjer številka XYZ pove, da je takšnih struktur XYZ. Za njihov prikaz izberi <u>*Sequential Enumeration* >> OK >> OK.</u>

Z uporabo *MarvinSketcha* tvori zapis SMILES za spojino, za katero si dobil IUPAC ime. Prav tako za Markushevo strukturo, ki si jo dobil, z *MarvinSketchom* določi vse možne strukture in jih izpiši.

* * *

Pripravi poročilo za vajo, ki vsebuje naslednje:

— Zapise SMILES za spojine iz naloge **1.1** in **1.3**, ki si jih tvoril brez uporabe računalnika, ter zapise SMILES za te spojine, ki si ga dobil s programom *MarvinSketch*.

- Strukturne formule za spojine iz naloge **1.2**.
- Komentar o enoličnosti zapisa SMILES.
- Zapis InChI za molekuli iz naloge **1.5**.
- Strukturne formule za spojine iz naloge **1.8**.
- *Z*-matrika in XYZ format zapisa molekule etena iz naloge **1.9**.
- Slika z *MarvinSketcha* za nalogo **1.6** in število določenih vseh možnih struktur.
- SMILES zapis za organsko molekulo, ki si jo dobil od asistenta.

— Število vseh možnih struktur, ki jih podaja Markusheva struktura, ki si jo dobil od asistenta (izriši strukturne formule vseh spojin).

2. VAJA: Podatkovne zbirke

Vaja je sestavljena iz treh delov:

(i) Iskanje po podatkovnih zbirkah *PubChem, RCSB-PDB* in *EMBL/FASTA* (glej naloge v učbeniku *Molekulsko modeliranje*, str. 163).

(ii) Iskanje po predhodno pripravljeni podatkovni bazi 99 spojin (baza *ChemAxon*) s programom *Instant JChem*.

(iii) Izgradnja enostavne podatkovne baze molekul s protivnetno funkcijo z uporabo programa *Instant JChem*.

* * *

(i) Iskanje po podatkovnih zbirkah *PubChem*, *RCSB-PDB* in *EMBL/FASTA* Navodila za vaje 1.—4. v učbeniku *Molekulsko modeliranje* [str. 163].

Naloga 1:

Povezava do iskalnika podatkovne zbirke PubChem:

https://pubchem.ncbi.nlm.nih.gov/search/search.cgi

(1a) Za iskanje po imenu izberi opcijo: Search By: Name/Text

Naloga 2:

Zapis SMILES: CN1N=CC2=C1C (=O) NC (=N2) C1=CC=CC=C1

(2a) Za iskanje po podstrukturi izberi **Search By: Substructure/Superstructure** ter nato zavihek **CID**, **SMILES/SMARTS**, **InChI**.

(2b) Za iskanje spojin z indeksom podobnosti večjim od 90 % izberi Search By: Identity/Similarity ter nato zavihek CID, SMILES, InChI in pod Options izberi Similar Compounds, score >= 90%.

Naloga 3:

Povezava do iskalnika podatkovne zbirke *RCSB-PDB*:

https://www.rcsb.org

(3b) Komercialno ime liganda ter ključ InChI najdeš pod Small Molecules.

(3c) Indetifikator CAS za ta ligand poišči v podatkovni bazi *PubChem* (uporabi ime ali ključ InChI).

Naloga 4:

Povezava do iskalnika podatkovne zbirke EMBL/FASTA:

https://www.ebi.ac.uk/Tools/sss/fasta

V iskalniku izberi:

<u>STEP 1 - Select your databases</u> PROTEIN DATABASES >> Structures >> Protein Structure Sequences (PDBe protein structure sequences)

<u>STEP 2 - Enter your input sequence</u> Izberi **PROTEIN**

V polje kopiraj sekvenco iz naloge 4 (glej spletno učilnico):

MAKATGRYNLISPKKDLEKGVVLSDLCNFLVSQTIQGWKVYWAGIEFDVTHKGMALLHRLKTNDFAPAWMTRNLF PHLFQNPNSTIESPLWALRVILAAGIQDQLIDQSLIEPLAGALGLISDWLLTTNTNHFNMRTQRVKEQLSLKMLS LIRSNILKFINKLDALHVVNYNGLLSSIEIGTQNHTIIITRTNMGFLVELQEPDKSAMNRMKPGPAKFSLLHEST LKAFTQGSSTRMQSLILEFNSSLAI

<u>STEP 3 - Set your parameters</u> Izberi **FASTA**

<u>STEP 4 - Submit your job</u> Klikni **Submit**

(ii) Iskanje po predhodno pripravljeni podatkovni bazi 99 spojin (baza *ChemAxon*) s programom *Instant JChem*

Na namizju si najprej ustvari mapo *MM_baza*. S spletne učilnice v to mapo prenesi datoteko baza99.sdf.

Poženi program *Instant JChem* tako, da na namizju klikneš na ustrezno ikono.

Ko se ti program odpre, ustvari nov projekt tako, da v meniju klikneš na *File >> New Project...*

Odpre se ti novo okno, kjer pod *»Projects«* izbereš *IJC Project (empty)* [klik z levim gumbom miške na izbrano opcijo] ter klikneš **Next** >.

Pod »*Project Name*« vpiši ime »MM_baza« pod »*Project Location*« pa s klikom na gumb **Browse** izberi pot do mape »MM_baza«, ki jo imaš na namizju. Klikni **Open** in nato **Finish**.

teps	IJC Project Nam	e
 Choose Project IJC Project Name 	Project <u>N</u> ame:	MM_baza
	Project Location:	/home/univlj/Desktop/MM_baza Brgwse
	Project Folder:	/home/univlj/Desktop/MM_baza/MM_baza
		✓ Close Already Opened Projects
Instant JChem		
R		
0000000000		

Ko je nov projekt ustvarjen, bo okno izgledalo takole:

ile Edit Yiew Search Data Lists Chemistry Tools Window Help			Q - Search (Ctrl+I)
💽 🔂 🗄 🐣 🚔 🚔 🎽 74.0/264.5mg 🔞	って X 🖞 🖻 🔻 ^ 🛛 🔍 ビ 🛛 ビ	a_↓ a↓ a× a1 🕞 🖼	
Projects (MM_baza) ×	Dashboard x		()
README.html	Forms	Search	Quick Actions
	Form	Data Tree Schema Project	Connect to Database
			import File
			Templates
			C Sample data

V projekt »MM_baza« uvozi datoteko baza99.sdf tako, da v meniju izbereš *File* >> *Import File...* Odpre se ti novo okno, kjer naložiš ustrezno SDF datoteko in potrdiš z **Open**.

Steps	File and new	table details			
 Select schema File and new t details Field details Monitor import 	able Database: File to import:	localdb /home/univlj/Desktop/MM Structure file - SDE	_baza/baza99.sdf		- 23
	Table details:	New structure entity	using JChemBase ta	able)	
	Summary:	baza99 (APP.BAZA99) Ty	e: Molecules		
	14 fields foun Structure (Str code (Text, Lis MOLFORMULA	d: ucture,Text,List (Text)] t (Text)] [Text,List (Text)]		Records read: Read more	99
	MOLWEIGHT (product_nam c_log_p [Deci h_bond_dono rotatable_bor b_bond_acce	Decimal, Text, List (Text)] : [Text,List (Text)] nal,Text,List (Text)] :s [Decimal, Text,List (Text), ds [Decimal, Text,List (Text), tors (Decimal, Text, List (Text), tors (Decimal, Text, List (Text),	Integer] .Integer] di Integer]		
Instant JCh	em Parent_smile AqSol (Text,List HIA (Text,List BBB (Text,List	[Structure,Text,List (Text) st (Text)] (Text)] (Text)]			
8>	ACD_Code [T	xt,List (Text)]			
		< <u>B</u> a	ck Next >	Einish Cancel	Help

Enako stori pod »*3. Field details*«. Ko je korak »*4. Monitor import*« končan, potrdi s klikom na tipko **Finish**.

Steps	Monitor import								
Select schema File and new table details Field details Monitor import	The import may pause at times. This is perfectly normal. Please wait for it to continue. You can click Cancel at any time to halt the import at its current position. Created new field code Created new field MOLFORMULA								
	Created new field MOLWEIGHT Created new field product_name Created new field to no								
	Created new field hourd anors Created new field rotatable bonds								
	Created new field h_bond_acceptors Created new field Parent_smiles								
	Created new field HIA Created new field HIA Created new field BBB								
	Created new field ACD_Code Structure is mapped to current field Structure								
	Starting to import data								
	0 Errors.								
Instant JChem	99 entries processed								
	100%								
Ø	Display data when finished Refresh data in opened views (query will need re-applying)								
<u>~</u>									
	< Back Next > Finish Cancel Help								

Na desni strani programskega okna se ti odpre nov zavihek »*Grid view for baza99*« s tabelo podatkov za pripadajoče spojine iz datoteke baza99.sdf. Tabela vsebuje 99 spojin:

Projects [MM_baza] ×	Dashboard	x Grid view for bas	a99 x										4 🕨 🕶
#1 #1 #×	Query Brow	Cuery Browse Code minimit mit mit mit mit x S2 S2 ☆ + mb III MI ☆ III											
e	Cdid	Structure	Mol Weight Formula	code	MOLFORMUL	MOLWEIGHT	product_nam	c_log_p	h_bond_done	rotatable_bolh	_bond_acceParent_smi	leAqSol	ни
README.html	1	1 ani	219.22 C12H10FNO	BTB 03729	C12 H10 F N O2	219.21	5-fluoro-2-(2-methylp	2.98	0	2	3 CCI -Cclnc2c.	Good	Go
- readine.ou	2	2 977	259.24 C13H10FN3 02	BTB 03737	C13 H10 F N3 O2	259.24	ethyl 2- cvano-3-(1.58	1	6	4 CCOC(=O) C(=CNclc	Good	GI
	3	3 97	246.24 C13H11FN2 02	BTB 03738	C13 H11 F N2 O2	246.24	2-[(2-acetyl- 3-oxobut	0.26	1	5	3 CCI=OICI =CNc1ccc.	Good	G
	4	4	502.30 C24H15Cl2F 2N3O3	BTB 03742	C24 H15 Cl2 F2 N3	502.30	N4-{3- fluoro-2-((5.49	2	5	4 Cclonc(cl0 =O)Nc2cc	(Poor	G
	5	5 000	309.22 C15H7F4NO	BTB 03734	C15 H7 F4 N O2	309.22	5-fluoro-2-(3-(trifluor	4.52	0	1	3 Fclcccc2nc oc(=O)cl	Good	G
	6	6 algo	250.33 C12H1002S	RJC 00463	C12 H10 02 S2	250.34	1.4-di(2- thienvilbu	1.25	0	5	2 0=C(CCC(=0)clccc.	Good	0
	7	7 Gitte	321.33 C16H19NO6	BTB 01994	C16 H19 N 06	321.33	diethyl 2-{[3-(methox	1.52	1	11	6 CCOC(=O) C(=CNclc	Good	<
	8	8 2.9	305.18 C12H5F6N3	BTB 02000	C12 H5 F6 N3	305.18	2-([3,5-dil trifluorom	3.14	1	3	2 FC(F)(F) clcc(NC=	Good	4
	9	· rocar	333.32 C14H11N30 55	BTB 05522	C14 H11 N3 O5 S	333.32	N2-(6- ethoxy-1	2.04	1	4	6 CCOclecc2 c(NC(=O)c.	n Good	4
	10	10 10100	289.27 C12H7N3O4	BTB 05525	C12 H7 N3 04 S	289.27	N2-(1,3- benzothia	1.95	1	2	5 O=C(Nclnc2cc	Good	4
	11	11 0.0.00	513.38 C24H14F3N 307	BTB 05536	C24 H14 F3 N3 O7	513.38	01-{(2-0x0- 2H-chrom	5.25	1	7	8 NC(=NOC(=O)clcc2	Poor	
	12	12 2000	497.76 C25H15CI3N 203	KM 09944	C25 H15 CI3 N2 O3	497.76	2-[1-(3- chloroben	7.08	0	7	4 Clclcccc(cl C(=O)OC(Poor	<
	13	13 00-	253.21 C12H9F2NO	BTB 03756	C12 H9 F2 N O3	253.20	ethyl 6.8- difluoro-4	1.17	1	3	3 CCOC(=O) clc[nH]c2	Good	<
	14	14 02.0	504.12 C20H11Cl4F N2O4	RH 00414	C20 H11 Cl4 F N2 O4	504.13	2-([(3,5- dichloroa	6.57	2	6	4 FelecceiOC =O)Nc2cc	Poor	<
	15	15 .000-	286.11 C12H9CI2N 03	BTB 03757	C12 H9 CI2 N O3	286.11	ethyl 5.7- dichloro-4	1.92	1	3	3 CCOC(=O) clcinHic2	Good	<
	16	16 .000	435.39 C22H17N30	RJC 00482	C22 H15 N3 O6 . H	435.39	N4-(1- phenvieth	4.08	1	3	6 CC(NC(=O) clcc(cc2C.	Poor	4
	17	17 9	303.45 C19H29NO2	RH 00413	C19 H29 N 02	303.44	1-[3.5-dil tert-butvl)	4.70	1	6	2 CNICIC=CC =O)clcc(c.	Good	4
	18	18 - 0- 44	360.27 C13H18BrN 302S	BTB 03759	C13 H18 Br N3 O2 S	360.27	N1-(tert- butvI)-2-(5	0.00	3	7	4 COclcc(Br) cc(C=NNC	Good	0
	19	19 glind:	354.33 C16H17F3N 402	AW 00562	C16 H17 F3 N4 O2	354.33	N1-[(3,4- dimethoxy	2.76	1	8	5 COclecc(C=NCCNc	Good	G
	20	20 04.9.	268.74 C13H17CIN2 02	AW 00587	C13 H17 CI N2 O2	268.74	N1- 3- chloro-2	1.66	2	1	2 Cclc(CI) cccclNC(Good	G
	21	21 Dias	304.33 C13H15F3N 2OS	AW 00588	C13 H15 F3 N2 O S	304.33	N1-[3- trifluorom	3.07	2	3	2 OC1CCN(CC1)C(=S	Good	G
	22	22	315.30 C14H16F3N 302	KM 09913	C14 H16 F3 N3 O2	315.29	1-methyl-4-(({[3-(triflu	3.30	1	4	4 CN1CCC(=NOC(=0	Good	<
	23	23 xrda.	298.48 C14H180S3	BTB 03854	C14 H18 O S3	298.49	tert-butyl {[2-(4-meth	4.28	0	6	2 Cclccc(ccl C(=0)CSC.	Good	-
	24	24 0.0	342 86 C14H15CIN2	KM 09900	C14 H15 CI	342.87	1-[(5-chloro-	2.15	0	3	2 Cklccc(sl)	Good	

Naloga 5:

(5/i) V bazi spojin izvedi iskanje po *podstrukturi* (»substructure«) in *podobnosti* (»similarity«) za fluorobenzen in piridin. Primerjaj rezultata teh dveh iskanj (podstruktura ↔ podobnost) za ti dve spojini.

V orodni vrstici nad tabelo spojin klikni na *Query*. Odpre se ti prazna tabela:

Dashbo	ard 🗙 🔛 Grid view for ba	za99 ×												• • • •
Query Browse Code 🧏 Clear Query 🍒 Show All 🌾 Run Query Domain. 🔳 Entire Database 💌 🥀 🎫 No query is specified														
Cdid	Structure	Mol Weight	Formula	code	MOLFORMUL	MOLWEIGHT	product_nam	c_log_p	h_bond_don	rotatable_bo	h_bond_acce	Parent_smile	AqSol	HIA
	Double click to sketch structure													

Z dvojnim klikom [levi gumb miške] na polje označeno kot *»Structure«* se ti odpre okno *MarvinSketcha*. Nariši najprej strukturno formulo fluorobenzena ter nato klikni na **Set Query**.

V tabelo imaš sedaj vnešen fluorobenzen, pod njim pa se izpiše »Substructure«.

Dashboard 🗙 🔠 Grid view for baza99 🗴									
Query Browse Code 🧏 Clear Query 🏆 Show All 🆓 Run Query Domain: 🗮 Entire Database 💌 🎄 🏥									
CdId	Structure	Mol Weight	Formula	code	MOLFORMUL	MOLWEIGHT	product_nam	c_log_p	
	r L								
	Substructure								

Iskalni niz lahko zamenjaš tako, da nanj klikneš z desnim gumbom miške. Odpre se ti zavihek, kjer lahko izbiraš med: *Substructure*, *Superstructure*, *Similarity*, *Duplicate*, *Full*, *Full Fragment* ...

Iskanje po podstrukturi izvedeš tako, da v orodni vrstici nad tabelo klikneš na Run Query

WRUN QUERY. Odprla se ti bo tabela, v kateri so vse spojine, ki vsebujejo fluorobenzen kot fragment. Izpiši si število teh spojin ter preveri, če vsebujejo fluorobenzenski fragment.

Za iskanje po podobnosti pojdi zopet na tabelo *»Query«* in z desnim klikom na polje pod spojino izberi *Similarity* ter nato klikni na **Run Query**. Izpiši si število spojin.

Iskanje po podstrukturi in podobnosti za piridin izvedi na podoben način. Fluorobenzen najprej zamenjaj s piridinom tako, da v tabeli »Query« dvakrat klikneš na strukturo fluorobenzena in narišeš piridin ter potrdiš.

(5/ii) Izberi spojino **46** kot »*query*«: Najprej v tabeli »Query« izbriši spojino v polju »<u>Structure</u>« (uporabi <u>Clear Query</u>). Izberi <u>Browse</u> in poišči spojino 46. Z levim gumbom miške dvakrat klikni na njeno strukturno formulo. Odpre se ti okno <u>MarvinSketcha</u>. Z uporabo radirke izbriši *HBr*. Nato s klikom na gumb <u>Set Query</u> izberi to spojino kot »*query*«. Odpre se ti tabela Query, ki vsebuje to spojino. Izvedi iskanje tako, da kot iskalni niz izbereš <u>Full</u> ter nato <u>Full fragment</u>. Izpiši si število teh spojin, oglej si njihovo strukturo ter podaj svoj komentar.

(5/iii) Združi spojini **89** and **25** v en »*query*«. Odpri *MarvinSketch* in kopiraj vanj najprej strukturo 89 (postavi se v polje, kjer je strukturna formula spojine **89** in klikni nanjo z desnim gumbom miške ter izberi *Copy*; nato se postavi v polje *MarvinSketcha*, klikni z desnim gumbom miške ter izberi *Paste*). Nato na enak način kopiraj še strukturo **25**. Med sabo ju poveži na kateremkoli mestu: v orodni vrstici na levi izberi *»Single bond*«, postavi se na ogljikov atom ene spojine ter s klikom in držanjem levega gumba miške poveži ta atom z ogljikovim atomom druge spojine. Izberi *Structure >> Clean 2D >> Clean in 2D*. Označi spojino in jo kopiraj v ustrezno polje tabele Query. Izvedi iskanje tako, da kot iskalni niz izbereš *Superstructure*. Izpiši si število ter zaporedne številke najdenih spojin. Komentiraj strukturo.

(5/iv) Izvedi *kombinirano iskanje* po benzenu kot podstrukturi ter besedi »pirimidin« v imenu spojine:

- v tabelo Query v polje »Structure« nariši benzen in izberi opcijo »Substructure«

— z dvoklikom na polje *»product_name*« se odpre okno, v katerega vpiši *»pyrimidin*« ter v zavihku izberi *»contains*«.

Izpiši si število najdenih spojin, oglej si njihovo ime ter strukturo.

(5/v) Izvedi iskanje po podstrukturi za naslednji ciklični aromatski fragment šestih atomov, od katerih je vsaj en atom dušika:

Molekulo sestavi v *MarvinSketchu* tako, kot smo se naučili pri *1. vaji* (Markushove strukture). Izpiši si število najdenih spojin ter si oglej njihovo strukturo.

(5/vi) Najdi vse molekule, ki imajo molsko maso večjo od 200 g/mol ter v svoji strukturi *ne vsebujejo* benzenovega obroča.

— Najprej izvedi iskanje po vseh spojinah, ki imajo molsko maso večjo od 200 g/mol.
 V prazni tabeli Query z dvoklikom (levi gumb miške) na polje *»Mol Weight«* vnesi
 200 in v zavihku izberi >. Klikni na Run Query. Zapiši število najdenih spojin.

— Nato v tabelo Query v polje *»Structure«* dodaj molekulo benzena in izberi *»Substructure«*. Klikni na **Run Query**. Zapiši število najdenih spojin.

Da določiš število vseh spojin, ki NE vsebujejo benzenovega obroča ter je njihova molska masa večja od 200 g/mol, je treba od števila zadetkov iz prve alineje odšteti število zadetkov iz druge alineje.

* * *

(iii) Izgradnja enostavne podatkovne baze molekul s protivnetno funkcijo z uporabo programa *Instant JChem*

Kot molekule podatkovne baze si bomo izbrali aspirin, paracetamol in ibuprofen:

(iii/1) V Programu *Instant JChem* ustvari nov projekt tako, da v meniju klikneš na *File >> New Project...* Izbereš *IJC Project (empty)* ter klikneš **Next** >. Poimenuj projekt kot *BazaAntiInf* in kot mapo ponovno izberi »MM_baze«. Za dokončanje klikni na tipko **Finish**.

(iii/2) Izberi *File >> Create New IJC Schema...* Odprlo se ti bo novo okno, kjer s klikom (levi gumb miške) izberi *Embedded Derby* ter klikni **Next** >.

Steps	Choose Template
1. Choose Template	Select a Template:
2	🔻 📕 Create new Schema
	Embedded Derby
	Microsoft SQL Server Microsoft SQL Server
	≡ Oracle
	PostgreSQL
	Template Description:
	Create a new local database connection.
Instant JChem	Create a new connection to a local Derby database that you can work with in Instant JChem. Tou will be asked to specify a name for the connection and any connection parameters that are required. An Instant JChem license is NOT required to use local database.
6	
	< Back Next > [Einish] Cancel Help

V polje »New IJC Schema« nato vpiši ime <u>BazaAntiInf</u> ter klikni Finish.

(iii/3) Z desnim klikom miške na ime baze (tri modre vodoravne črtice) izberi v zavihku *New Data Tree and Structure Entity (table)*.

D Pro	jects	[BazaAn	tilnf] ×			
$\begin{array}{c} a \downarrow \\ z \downarrow \\ a \end{array} $	a_{z} ×					
6	Baza REAI	AntiInf (ME.htm	as admi	n]		

Odpre se ti okno, kjer ne spreminjaš nastavitev, ampak jih samo potrdiš s klikom na **Finish**. Z dvoklikom (levi gumb miške) na *Grid view for Molecules* se ti odpre tabela s štirimi polji: Cdid, Structure, Mol Weight in Formula.

🗅 Projects [BazaAntiInf] 🗙	
$\begin{array}{c} a \downarrow \\ z \downarrow \\ a \downarrow \\ \end{array} \begin{array}{c} z \downarrow \\ z \times \end{array}$	
P	_
Grid view for Molecule	8

Query Browse Code 🧏 Clear Query 🍒 Show All 🌾 Run Qu	ery Domain: Entire Database v 🔥 🔢 No query is specified		
Cdid	Structure	Mol Weight	Formula
	Double click to sketch structure		

(iii/4) V to tabelo bomo dodali še polje za vrednosti log*P*:

— V zavihku *»Projects«* z desnim gumbom miške klikni na *Molecules* in izberi *Edit Data Tree*.

— V zavihku, ki se odpre (*»Data trees«*), z desnim gumbom miške klikni na <u>Molecules</u> in izberi <u>New Chemical Terms Field...</u> V oknu, ki se ti odpre, v polju *»Expression«* izberi **logP** in nato klikni **Finish**.

(iii/5) Izberi zavihek *Grid view for Molecules* nato v glavnem meniju izberi *Search >> Show All*. (Če ni nobenih vnosov, bo program to napisal. Potrdi s klikom na **OK**).

V glavnem meniju izberi <u>Data >> New Row</u>. Odpre se novo okno, katerega del je *MarvinSketch*. Nariši strukturo aspirina (ali ga uvozi po imenu) ter nato klikni na **Add**. Ponovi to še za paracetamol in ibuprofen.

Naloga 6:

V bazi teh treh spojin kot »*query*« izberi **ocetno kislino** ter iskanje po podstrukturi. Komentiraj rezultat.

* * *

Pripravi poročilo za vajo, ki vsebuje:

— I.: Odgovore na naloge 1.—4. iz učbenika *Molekulsko modeliranje* [str. 163].

— **II**.: Odgovore na naloge i.—vi., ki jih boste dobili na vajah (iskanje po bazi spojin z *Instant JChem*).

— **III**.: Odgovor na nalogo, ki jo boste dobili na vajah v zvezi z izgradnjo podatkovne baze z *Instant JChem*.

3A. VAJA: Predstavitev molekul v programu Spartan

Pri tej vaji se bomo naučili osnov programa *Spartan*, ki ga bomo uporabljali za kvantnomehanske izračune. Slike posnetkov zaslona se lahko nekoliko razlikujejo od dejanskih, odvisno od verzije programa (*Spartan'14*, *Spartan'18*).

* * *

i) Zaženi program *Spartan*.

A) PREDSTAVITEV MOLEKUL

ii) V meniju izberi *<u>File >> Open</u>* in odpri datoteko:

Tutorials/basic operations.spartan[Spartan'14]oziromaTutorials/Walking Through Spartan.spartan[Spartan'18]

Na ekranu se izriše molekula etana, prikazana s kroglicami in paličicami. Spodaj desno se izpiše ime molekule (»ethane«), kar pomeni, da je molekula vključena v *Spartanovo* bazo podatkov (SSPD; *Spartan Spectra and Properties Database*). Če klikneš na posamezen atom, se desno spodaj izpiše vrsta atoma.

iii) Z uporabo miške poskusi molekulo premikati po ekranu (držiš desni gumb miške) ali jo vrteti (držiš levi gumb miške). Molekulo lahko približaš/oddaljiš z uporabo sredinskega (tj. »scroll«) gumba na miški.

iv) V meniju izberi <u>*Model* >> *Wire*</u> (oz. <u>*Ball*</u> oz. <u>*Tube*</u> oz. <u>*Ball* and <u>*Spoke*</u>) in poglej, kako se predstavitev molekule spremeni pri posamezni izbiri.</u>

Sliko molekule lahko shraniš tako, da izbereš *File >> Save as* (izberi PNG format).

1	File Edit M	lodel Geometry	Build	Setup	Display	Search							Options	Activities	Help	2
	New Build New Sketch Open	Ctrl+N Ctrl+K Ctrl+O	S	X	69	8 2	0	þ 🍣	M) XX	9 8 Q					
1.9	Close	Ctrl+W														
	Save	Ctrl+S														
	Save As	Ctrl+Shift+S														
2	Build New Molecu	le														
2	Sketch New Mole	cule														
	Append Molecule	(s)														
10	Access PDB Online	e														
-	Print	Ctrl+P														
	Embedded Data															
-																
•	•	4	Þ													
Sav	e the active docum	ent with a new name								ethane		•	1 Doc	14 Mol	C2h	•

v) Izberi prikaz <u>*Model* >> *Space Filling*</u>. V tem načinu predstavitve molekule vezi niso prikazane, je pa to dober prikaz njihove velikosti v prostoru.

vi) Na ekranu poleg molekule klikni z desnim gumbom in izberi *Properties*. V razdelku *Molecule* so zbrane s kvantnomehanskimi računi dobljene lastnosti molekule.

Če namesto na ozadje z desnim gumbom miške klikneš na atom, se izpišejo njegove lastnosti.

to to to to the total of the first f	Openne Anthenis Help	Barry Santa Santa	Cerei Ce	Qeex Asvie Hep
	Element(2) = Carbon	Label (27		DenertiCD - Cabos

vii) Geometrijske parametre molekule dobiš v meniju <u>Geometry >> Measure ...</u> Izberi eno izmed opcij: <u>Distance, Angle, Dihedral</u>. Za določitev razdalje med atomoma izberi <u>Measure</u> <u>Distance</u> ter s klikom označi atoma, med katerima te zanima razdalja. Za določitev kota izberi <u>Measure Angle</u> ter označi 3 atome, ki kot oklepajo. Za določitev dihedralnega kota izberi <u>Measure Dihedral</u> in označi ustrezne 4 atome. Razdalja oz. kot se ti izpiše desno spodaj.

B) SESTAVLJANJE MOLEKULE

viii) Sestaviti želiš novo molekulo (podatke dobiš od asistenta). V meniju izbereš *<u>File >></u> <u>New Build</u>*. Na desni se ti odpre okno, v katerem so navedeni določeni elementi.

Izbereš ustrezen atom, nato klikneš na modro polje.

Izbereš nov atom ter klikneš na konec vezi, kjer je vezan. Nadaljuješ, dokler molekula ni sestavljena.

File	Edit	Model	Geometry	Build	Setup	Display	Search									Options	Activities	Help
4			5 🚰	5	X	60	8 3		0	<i>Q</i> 	> Y	Υ	×		Q			
C														On	ganic eotide	Inorgani Substitue	nt I	Peptide
																— н′	-	
																🕶 H (1) Hyd	rogen	
							27	2							 	·		\times
														Li	Groups	More	Rings	pboard
															_	-	-	•
																%	•	×.
•			4	Þ														
D basic	operations	Spa	artan															
select a fi	ee valence															2 000	T IVIOI	· ·

Odvečne vezi zbrišeš tako, da desno spodaj izbereš radirko ter nato klikneš na odvečno vez. Opazuj, kako so prikazane enojna, dvojna in trojna vez.

ix) Ko končaš (pred izračunom), molekulo shrani v meniju *<u>File >> Save as</u>*.

Save As		×						Options	Activities	Help
← → ✓ ↑ → This PC → Desktop → Test	ע פֿ Search Test	, Q	() 95	الا 🧶	N III 🔀	0	6			
Organise 👻 New folder		BB 🕶 🔞		~		-				
Documents # Name Pictures # New folder Screenshots Tip:	Date modified 9/29/2019 6:04 PM 9/30/2019 7:39 PM	Type SPARTAN File SPARTAN File					Organic lucleotide	Inorgani Substitue	c F	Peptide
i John i Test								▼ н (1) нуd	rogen	
This PC This PC File name: Dydrogen chloride Save as type: Spartan Doc's ("spartan)		> ~ ~					 -	*	-×	→ *
A Hide Folders	Save	Cancel					Groups Ligands	More	Rings	board
										•
b d b							۶	•	÷	4
basic operations bydrogen chloride					huder over able of					au

Za sestavljeno molekulo odčitaj vse geometrijske parametre (razdalje, koti) ter jo poglej v različnih prikazih. Različne prikaze shrani kot sliko (*.PNG).

Pripravi poročilo za vajo, ki vsebuje:

— Slike molekule etana v različnih načinih prezentacije.

— Slike etana, etena in etina ter pripadajočo tabelo, v kateri so zbrane razdalje C-C in C-H ter valenčni kot HCC za navedene molekule.

— Komentar, kako se struktura narisanih molekul etana, etena in etina ter pripadajoče vrednosti za razdalje in kot spremenijo ob uporabi funkcije Minimize.

— Slike molekul, ki si jih dobil od asistenta, in komentar, katera predstavitev je boljša.

3. VAJA: Uvod v kvantnomehanske račune

Pri tej vaji se bomo seznanili z osnovami kvanto-kemijskega računanja. S programskim paketom *Spartan* bomo naredili kvantnomehanske izračune za nekaj enostavnih molekul. Zanimalo nas bo predvsem, kako izbrati ustrezni bazni set in ustrezno metodo.

Pri prvi nalogi *Vaje 3* v učbeniku *Molekulsko modeliranje* (str. 165) moraš določiti število primitivnih Gauβovih funkcij, potrebnih za opis danih molekul z danim baznim setom. Svoj rezultat lahko preveriš s pomočjo spletne strani za določitev števila primitivnih Gauβovih funkcij:

https://www.basissetexchange.org/

Izberi *NWChem* format izpisa. V zapisu $(...) \rightarrow [...]$ dobimo število primitivnih funkcij iz podatkov v (...), medtem ko dobimo število baznih funkcij iz podatkov v [...].

* * *

Na namizju ustvari mapo **Vaja_3**, v katero bo program *Spartan* shranjeval ustrezne datoteke, in poženi program *Spartan*.

A) VPLIV RAČUNSKE METODE NA IZRAČUNANE LASTNOSTI MOLEKULE Z DANO GEOMETRIJO

(i) V *Spartanu* sestavi molekulo **vodikovega peroksida**, H₂O₂ (v meniju izberi kisikov atom z dvema enojnima vezema ter nato dodaj dva vodika) in jo shrani v mapo *Vaja_3*.

(ii) Fiksiraj (zamrzni) geometrijske parametre (tj. dolžine vseh vezi in vse kote) tako, da v meniju *Geometry* izbereš *Constrain Distance* oz. *Constrain Angle* oz. *Constrain Dihedral*, potem pa klikneš na atoma, med katerima želiš fiksirati razdaljo oz. kot oz. dihedralni kot. (Na spodnjih slikah je molekula vode in ne vodikovega peroksida!)

Desno spodaj se ti prikaže rumeno obarvana odklenjena ključavnica. Ko klikneš nanjo, se zaklene, v polju desno od nje pa se ti izpiše vrednost (dolžina vezi oz. kot).

Ko fiksiraš enega od geometrijskih parametrov, nadaljuješ z drugim in tako naprej. Fiksirati moraš **vse** dolžine vezi ter vse kote ter dihedralne kote v izbrani molekuli.

(iii) Sedaj izbereš kvantnomehansko metodo, s katero boš račun izvedel (za izbor metod in baznih setov glej tabelo, ki je v spletni učilnici). To narediš v meniju Setup (*Setup >> Calculations...*). Poleg metode in baznega seta izberi tudi <u>»Energy« at »Ground state« in</u> <u>»Vacuum«</u> ter odkljukaj <u>»Subject to: Constraints«.</u> Pritisni na gumb **Submit** in počakaj, da se izračun konča.

Program bo javil, da se je izračun začel, ter tudi to, da se je končal. Potrdi s klikom na **OK**.

(iv) Preglej rezultate in jih tabeliraj: energija, število baznih funkcij, CPU (glej spodaj).

Če na modrem polju klikneš na desni gumb miške, se ti odpre manjše okno, na katerem lahko izbereš *Properties*. Prepišeš lastnosti, ki te zanimajo (*»Energy«*).

Podatke o izračunu lahko pogledaš tudi tako, da izbereš *Display >> Output*.

File Edit Model Geometry Build Setup Display Search	Options Activities Help	File Edit Model Geometry Build Setup Display Search Options Added	ies Help
🛃 🕗 🐌 🎒 🗂 🔏 🗖 Algent 🔄 🔂 🕥 🏟 😂 🏹 🖶 🛠 😫		🖃 🔎 🕪 🖉 🗥 🗙 🔜 🗟 🗟 🗔 💽 👁 🎌 🗎 🔜 🐼 💈	
Image: Control of the second of the secon	5 G	warmout warmout and a second s	
		velenna statutika na unit - V.S. velenn	
Open an output window for the active document. water	• 1 Dec 1 Mel C2v 💽	Select an object. • 1 Doc 1 Mol	C2v 🔝

Za primerjavo hitrosti izračunov z različnimi metodami izpiši **CPU** čas (v *s*). V tej datoteki najdeš tudi število baznih funkcij (*»Number of basis functions«*).

Izračune ponovi za vse navedene metode v tabeli.

Naloga 1:

Glede na vrednost energije določi, katera od semiempiričnih metod, katera od *ab initio* metod ter katera od teorij gostotnega funkcionala je v primeru molekule vodikovega peroksida najprimernejša.

S pomočjo spodnje razpredelnice določi število baznih funkcij, ki jih dani bazni set potrebuje za opis molekule H_2O_2 , ter preveri, kaj za ta podatek izpiše *Spartan*. Bazni set 6-31G* uporablja 6 polarizacijskih funkcij d-tipa, bazni set G-311+G** pa 5 polarizacijskih funkcij d-tipa.

	STO-3G	3-21G	6-31G*	6-311+G**
H:	(3s) → [1s]	(3s) → [2s]	(4s) → [2s]	$(5s,1p) \rightarrow [3s,1p]$
O:	(6s,3p) → [2s,1p]	(6s,3p) → [3s,2p]	(10s,4p,1d) → [3s,2p,1d]	$(12s,6p,1d) \rightarrow [5s,4p,1d]$

Komentiraj, kako število baznih funkcij vpliva na CPU čas.

B) ENERGIJSKO-GEOMETRIJSKA OPTIMIZACIJA MOLEKULE: IZRAČUN LASTNOSTI MOLEKULE Z RAZLIČNIMI KVANTNOMEHANSKIMI METODAMI IN BAZNIMI SETI

Program Spartan omogoča izračun ravnotežnih lastnosti molekul, ki poteka tako, da program izračun energije kombinira z geometrijsko minimizacijo (tj. sistematično spreminja položaje in orientacije atomov v molekuli ter išče tisto geometrijo, ki ima najnižjo energijo). Kot rezultat pri tem izračunu dobimo lastnosti molekule, ki jo najde s postopkom minimizacije.

(i) Pri izračunih uporabi molekulo vodikovega peroksida, ki si jo že sestavil. Sprosti fiksirane (zaklenjene) razdalje in kote tako, da jih izbereš s klikom ter nato odkleneš ključavnico.

(ii) Preden izvedeš kvantnomehanski izračun, energijo molekule minimiziraj z mehanskim poljem sil (*Merck* oz. *Sybyl*), saj so ti izračuni bistveno hitrejši od kvantnomehanskih. Energijsko minimizacijo s poljem sil izvedeš tako, da klikneš zeleno puščico desno spodaj v zavihku *Build* ali pod *Build* >> *Minimize*.

(iii) Sedaj izberi kvantnomehansko metodo, ki ti je bila določena. To narediš v meniju *Setup* (*Setup* >> *Calculations...*).

Ne Edit Model Geometry Build Setup Display Search	Options Activities Help	Ne Edit Model Geometry Euld Setup Display Search	Option	Activities Help
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓		🔁 🖸 🕪 🔰 🍊 🗙 🔐 🛃 🗟 🗟 🔍 🦇 🗢 🎬 🗄 🌾 🕯	28 (k)	
C	Nucleotide Substituent	C	Nucleotide Substi	anic Peptide Ituent
	-н	Colcutorisms ?	×]	н
		Calculate: Wh [Hartree-Fock +] 3-21 G + in [Vacuum +]		
s		Molecular Mechanics Start Front: Start Front: Corr Target Front: Corr Target Front: Decision	* *	-+
l X	<u>)</u> - <u>N-</u> <u>0-</u> -P -0* =N =0 -0	Verfay Fanctonal Sabjet To: Commany - Procent Procent Total Charge: Neutral	2 -C# #N	0f
•••••	> > > = =	compute: IR Raman NMR Uv/vis OgaR Unpaired Electrons: 0		88
		Print Orbitals & Energies Thermodynamics Vibrational Modes Charges & Bond Orde	n >- >-	-8 -1
	Groups Rings	Options	Groups	Rings
	More Clipboard		More	Clipboard
* d b	9 5 4 5	a d _b		4 1
Setup calculation.	ethylene • 1 Doc 1 Mol D2h 💽	Select a free valence. etbylene	* 1 Doc	1 Mol D2h

Izberi *»Equilibrium Geometry« at »Ground state« in »Vacuum«* in preveri, da *»Subject To:* <u>Constraints«</u> **NI** odkljukan. Pritisni na gumb **Submit** in počakaj, da se izračun konča.

File Ec	dit Model (Geometry	Build Setup	Display	Search								Options	Activitie	s Help
a	2 🔰 🚶	5 徣	5 📈	60	3 3		<u></u>) <i>Q</i>	٢	M 📕	🔆 일	Q			
Ċ.												Organic Nucleotide	Inorg Substi	anic went	Peptide
												_			
			🕭 Calculati	ons							? ×		-1	4	
			Calculate:	Equilibrium	n Geometry	▼ at Gro	ound 🔹	state							
				with Hartr	ee-Fock	▼ 3-2	21G	▼ ir	Vacuum	•					
			Start From:	Current	•	geometry							₩ N	P	-H
			Cubic et Ter									><	N-	`o-	-F
			Subject 10:	Constra	ints		Frozen Atom	15		Total Cha	rge: Neutral 🕏	-c=	=N	-0	-CI
			Compute:	🗆 IR	🗌 Raman		UV/vi	is 🗌 QS4	AR	Unpaired Electr	ons: 0 👻	<u></u>	[®] л	`s-	-Br
			Print:	Orbitals	& Energies	Thermoo	dynamics	Vibratio	nal Modes	Charges	& Bond Orders		-// 	-0	
			Ontions:									· · · · ·	_/N=	-0	
							Clabel	Calculations		or	ut Culumit	Gro	ups	Rin	igs
							Giobai	Calculations		JK Canc	submit	More	•	Clipb	oard
			_												
•		-													
Select a free v	valence.										ethylene		• 1 Doc	1 Mol	D2h

(iv) Preglej rezultate (dolžini vezi HO in OO, kot HOH in dihedralni kot HOOH; energija; električni dipolni moment; število baznih funkcij; CPU) in jih vnesi v tabelo, ki se nahaja v spletni učilnici.

Naloga 2:

Ko bo celotna tabela izpolnjena, primerjaj izračunane razdalje vezi, kote in dipolne momente z eksperimentalnimi vrednostmi za vodikov peroskid in komentiraj, katera od uporabljenih metod se ti zdi najbolj in katera najmanj primerna.

Naloga 3 – Ovrednotenje baznih setov v Hartree-Fockovi metodi na primeru spojin z vodikom:

Sestavi molekulo, ki ti je bila določena. Shrani jo v mapo *Vaja*_3. Po postopku, opisanem v delu (B), poženi ustrezen račun in nato odčitaj razdaljo HX ter v primeru tri- in štiriatomnih molekul tudi kot HXH. Rezultate vnesi v ustrezno tabelo, ki se nahaja v spletni učilnici.

Rezultate kvantnomehanskih izračunov primerjaj z eksperimentalnimi vrednostmi. Kateri bazni set v Hartree-Fockovi metodi najbolje opiše geometrijo dane spojine?

Ko je celotna tabela izpolnjena, nariši graf, ki prikazuje odvisnost razlike med izračunano in eksperimentalno vrednostjo razdalje ter kota od elektronegativnosti elementa X (težji element) za vse bazne sete. Komentiraj, kakšna je korelacija.

Schönfliesova notacija kristalografskih točkovnih grup ter oblika molekul, navedenih v tabeli V3.2 (str. 166 v učbeniku *Molekulsko modeliranje*):

Naloga 4 – Geometrija ogljikovodikov z enojno, dvojno in trojno vezjo:

Po postopku, opisanem v delu (B), s Hartree-Fockovo metodo in baznim setom $6-311+G^{**}$ določi geometrijske lastnosti energijsko najbolj stabilne konformacije molekule etana, etena in etina, tj. razdaljo vezi CH in CC ter kot HCC. Rezultate primerjaj z eksperimentalnimi vrednostmi.

Pripravi poročilo za vajo, ki vsebuje:

— Utemeljen odgovor v nalogi 3.1.

— Odgovore na vprašanja v nalogi 3.2.

— Energije, število baznih funkcij ter CPU čas za račune, izvedene na fiksni geometriji molekule H_2O_2 . Komentar, kako število baznih funkcij vpliva na CPU čas. Rangiranje semiempiričnih in *ab initio* metod ter metod teorije gostotnega funkcionala glede na izračunano energijo.

— Tabela V3.1 ter primerjava izračunanih razdalj vezi, kotov in dipolnih momentov z eksperimentalnimi vrednostmi za H_2O_2 in komentar, katera od uporabljenih metod se ti zdi najbolj in katera najmanj primerna.

— Primerjava izračunane razdalje (in kota) z eksperimentalno vrednostjo za izbrano spojino z vodikom. Premislek, kateri bazni set v Hartree-Fockovi metodi najbolje opiše geometrijo dane spojine?

— Izpolnjena tabela V3.2. Graf, ki prikazuje odvisnost razlike med izračunano in eksperimentalno vrednostjo razdalje ter kota od elektronegativnosti elementa X (težji element) za vse bazne sete. Kakšna je korelacija?

4. VAJA: Lastnosti molekul

Pri vaji se bomo seznanili z nekaterimi količinami, ki jih lahko izračunamo s kvantnomehanskimi metodami. S programskim paketom *Spartan* bomo naredili kvantnomehanske izračune za nekaj enostavnih molekul. Pogledali si bomo, kaj predstavlja:

- Elektronska gostota in izoelektronska ploskev.
 Kako lahko obliko molekule vizualiziramo s pomočjo izoelektronske ploskve.
- HOMO in LUMO orbitali.
 Projekcija LUMO orbitale na izoelektronsko ploskev kot način za določanje reaktivnih mest v molekuli.
- Lokalni ionizacijski potencial.

Pri vaji bomo pogledali, kakšna je korelacija med maksimum oz. minimumom elektrostatskega potencial na izoelektronski ploskvi molekule organske kisline in njeno vrednostjo pK_a .

* * *

Na namizju ustvari mapo **Vaja_4**, v katero bo program *Spartan* shranjeval ustrezne datoteke, in poženi program *Spartan*.

Številčenje spodnjih se nanaša na naloge v učbeniku *Molekulsko modeliranje* (str. 167—168).

Naloga 4.1:

(i) Sestavi molekulo, ki jo želiš proučiti (cikloheksanon). Minimiziraj jo z mehanskim poljem sil (*Build >> Minimize*) in shrani v mapo *Vaja_4*. (Na spodnjih slikah ni prikazan cikloheksanon!).

(ii) Z ustrezno kvantnomehansko metodo (*HF/3-21G*) molekulo najprej geometrijsko optimiziraj (*Setup >> Calculations; »Equilibrium geometry« at »Ground state« in »Vacuum«*). Ko je izračun končan, si oglej lastnosti molekule (desni gumb miške; *Properties*).
(iii) Program *Spratan* omogoča vizualizacijo različnih lastnosti molekule. Najprej si poglej obliko molekule, ki jo določa elektronska gostota. Izriši izoelektronsko ploskev pri različnih vrednostih. V meniju izberi *Setup >> Surfaces*, lahko pa tudi klikneš na ikono s prikazanim elektrostatskim potencialom.

Odpre se ti okno, v katerem izbereš površino, ki jo želiš izračunati. Če pritisneš na **Add**, se ti prikaže meni različnih možnih površin, med njimi tudi izoelektronska, a z že prednastavljeno vrednostjo. Če želiš to vrednosti spreminjati, izbereš gumb **More Surfaces**.

V okvirčku <u>Surface</u> izbereš »<u>density</u>« (elektronska gostota), pri <u>Isovalue</u> pa označiš »*Fixed*« in v polje vpišeš vrednost izoelektronske gostote, ki jo želiš prikazati.

Re Edit Model Geometry Build Setu	p Display Search	N 🗌 🌫 📭 👘	Options Activities H
🗉 🔼 📭 📭 🔚 = 7 🔊			
	Q _		
	le Surfaces	<u></u>	
	O/I Surface	n Label	
	Surface: density *		
	Property: none		
	Resolution: medium		
	IsoValue: Fixed 0.002		
	Add More S	Auto-Gen is active.	

Izračun izoelektronske ploskve izvedeš s pritiskom na gumb **Apply**. Ko je račun končan, odkljukaj polje »*density*«, da se ti izriše izoelektronska ploskev.

Elektronska gostota je velika v okolici kemijskih vezi, tako da te dobro vidiš v primeru, ko narišeš ploskev z veliko izoelektronsko gostoto. Če te zanima oblika molekule oz. koliko prostora molekula dejansko zavzame v prostoru, izbereš nižjo izoelektronsko gostoto.

Naloga: Shrani sliki molekule cikloheksanona z izolelektronsko gostoto 0,1 in 0,002 elektrona/Å³. V poročilu komentiraj, kaj predstavlja ena in kaj druga izoelektronska gostota.

Naloga 4.2:

(i) Sestavi molekulo, ki jo želiš proučiti (žveplov tetrafluorid; za geometrijo glej sliko spodaj). Minimiziraj jo z mehanskim poljem sil (*Build >> Minimize*) in shrani v mapo *Vaja_4*. Z ustrezno kvantnomehansko metodo (*B3LYP/6-31G**) molekulo najprej geometrijsko optimiziraj (*Setup >> Calculations; »Equilibrium geometry« at »Ground state« in »Vacuum«*). Ko je izračun končan, si oglej lastnosti molekule. (Na spodnjih slikah ni prikazan žveplov tetrafluorid.)

(ii) Dober indikator za to, na katerem mestu v molekuli lahko poteče nukleofilna adicija, je oblika LUMO orbitale. To in ostale orbitale si lahko vizualiziraš tako, da v meniju izbereš *Display* >> *Orbital Energies*. Na levi strani ekrana se ti prikaže energijski diagram.

Ko klikneš na tisto orbitalo, ki jo želiš vizualizirati, se ti bo ta izrisala.

(iii) Če želimo iz oblike LUMO orbitale sklepati na mesto, na katerem se bo npr. izvršil nukleofilni napad, ta prikaz ni najboljši, saj prikazuje le prostor, v katerem se elektron nahaja z dano verjetnostjo. Boljšo informacijo dobimo, če absolutne vrednosti LUMO orbitale narišemo na izoelektronsko ploskev, ki ponazarja obliko molekule. To narediš tako, da izbereš <u>Display >> Surfaces</u>.

V oknu, ki se odpre, pritisni na gumb **Add** ter označi <u>|*LUMO*| *map*</u>.

Vrednosti LUMO orbitale na izoelektronski ploskvi se izrišejo s standardnimi barvami (rdeče najnižja in modro najvišja vrednost).

(iv) Še ena lastnost, ki nam nekaj pove o reaktivnosti molekule, je lokalni ionizacijski potencial, ki predstavlja energijo, potrebno za odstranitev elektrona na danem mestu v molekuli. Zanima nas na molekulski površini, zato ga narišemo na izoelektronsko ploskev. V meniju izberi <u>Display >> Surfaces</u>, v oknu, ki se odpre, pa izberi »<u>local ionization potential</u> <u>map</u>« in pritisni gumb Add. Program začne z izračunom izbrane lastnosti. Ko jo izračuna, pri izbrani površini izpiše »<u>Completed</u>«.

Ko odkljukaš »*local ionization map*«, se bo lokalni ionizacijski potencial s standardnimi barvami izrisal okoli izbrane molekule. Deli molekule, kjer je relativno enostavno odstraniti elektron, so obarvani rdeče, deli, kjer je elektron močno vezan, pa modro.

Naloga: Shrani naslednje slike: HOMO in LUMO orbitali, LUMO orbitala na izoelektronski ploskvi ter lokalni ionizacijski potencial na izoelektronski ploskvi. Odgovori na vprašanja iz učbenika (Naloga **4.2**).

Naloga 4.3:

Sestavi molekulo, ki jo želiš preučiti (podatek dobiš od asistenta). Minimiziraj jo z mehanskim poljem sil (*Build >> Minimize*) in shrani v mapi *Vaja_4*. Z ustrezno kvantnomehansko metodo (podatek dobiš pri asistentu) molekulo najprej geometrijsko optimiziraj (*Setup >> Calculations; »Equilibrium geometry« at »Ground state« in »Vacuum«*). Ko je izračun končan, si oglej lastnosti molekule.

(i) Elektrostatski potencial, izračunan na izoelektronski ploskvi, podaja informacijo o razporeditvi naboja na molekulski površini (koristen podatek npr. za napoved mesta elektrofilne adicije). Prikazan je z barvami, pri čemer rdeča barva označuje bolj negativen potencial, modra pa bolj pozitivnega. V meniju izberi <u>Display >> Surfaces</u>, v oknu, ki se odpre, pa izberi »<u>electrostatic potential map</u>« in pritisni gumb Add. Program začne z izračunom izbrane lastnosti. Ko ga izračuna, pri izbrani površini izpiše »<u>Completed</u>«.

N = 10 + 1000 - 1000 - 100 - 10000 - 1000 - 1000 - 1000 - 1000 - 1000 -	10 10 100 1000 1000 100 100 100 100 100
Safeen	le fatere
Of Suffer State State State Call State State State	Off Soften Soften Soften Soften Soften Ø Andreads particular lange Completed Soften Soften Soften
	a (
Select an object.	Select an object.

Ko odkljukaš »*electrostatic potential map*«, se bo elektrostatiski potencial s standardnimi barvami izrisal okoli izbrane molekule.

Z levim gumbom miške klikni kamorkoli na površino molekule — s tem označiš površino — potem pa pritisni desni gumb miške in v oknu, ki se ti odpre, izberi »*Properties*«. Prikažejo se ti lastnosti površine pri danih nastavitvah. V okencih jih lahko poljubno spreminjaš in opazuješ, kako to vpliva na prikaz elektrostatskega potenciala.

V oknu, ki se ti odpre, lahko tudi odkljukaš okence »*Legend*«, kar bo na ekran izpisalo legendo posameznih elektrostatskih potencialov. Če odoznačiš okence pri besedi »*Bands*«, se bo elektrostatski potencial prikazal s kontinurnim spektrom barv, namesto z barvnimi pasovi. Ko z levim klikom miške izbereš površino, lahko na ekranu desno spodaj v meniju »*Style*« izbereš tudi način izrisa površine (*Solid*, *Transparent*, *Mesh*). Meni *Style* najdeš tudi v oknu *Surface Properties*, ki se odpre, ko označiš površino in klikneš z desnim gumbom miške.

Naloga: Za molekulo, ki ti je bila določena, si shrani sliko elektrostatskega potenciala v prikazu »*Transparent*«. Komentiraj rezultate.

Naloga 4.4:

Včasih želimo določene podatke kvantizirati in izpisati ali določene lastnosti primerjati med seboj. To lahko naredimo s pomočjo funkcij *Post to Spreadsheet*, ki je pri podatkih, kjer jo lahko uporabimo, označena z znakom P. S pritiskom na ta gumb se bo podatek prenesel v *Spartanovo* tabelo, ki jo lahko vidimo/odpremo v meniju *Display >> Spreadsheet*.

Naučili se bomo, kako lahko za serijo več molekul odčitamo maksimalne vrednosti elektrostatskih potencialov (MESP) na izoelektronski ploskvi ter preverimo njihovo napovedno vrednost za konstanto disociacije molekul.

Najprej bomo kreirali skupino molekul, ki jih želimo primerjati med seboj: Sestavimo prvo molekulo in jo minimiziramo s poljem sil (*Build >> Minimize*). Ko je račun za prvo molekulo končan, pritisnemo na gumb z očali od in v meniju izberemo *File >> Build New Molecule*. Pazi, da ne izbereš opcije *New Build*, saj v tem primeru nova molekula ne bo del skupine. Sestaviš in s poljem sil minimiziraš novo molekulo ter postopek nadaljuješ, dokler ne sestaviš vseh molekul v skupini. Vse molekule so sedaj shranjene v isti datoteki zato jih lahko enostavno primerjamo med seboj. Med njimi lahko preklapljaš s pušicami, ki so levo spodaj na ekranu.

Za vajo 4.4 molekul ne boš sestavil sam, temveč boš molekule uvozil iz *.sdf datotek, ki jih najdeš v spletni učilnici.

(i) Najprej uvoziš prvo molekulo tako, da v meniju izbereš *File >> Open*. V oknu, ki se ti odpre, izbereš *All Files* ter nato datoteko moll.sdf. Ko se molekula naloži, v meniju izbereš *File >> Append Molecule(s)*, ponovno izbereš opcijo *All Files* ter v mapi označiš vse preostale molekule ter jih uvoziš. Izbereš ime datoteke, pod katero shraniš vse molekule v *Spartanu*.

Lastnosti molekul bomo zbrali v tabeli, ki jo na ekranu prikažeš z izbiro v meniju *Display >> Spreadsheet*. V njej se bodo pojavile vse molekule z oznakami M0001, M0002 ...

Spartan_10:M0001	
Label	▲
M0001	
M0002	
M0003	
M0004	
M0005	
M0006	•
f(x) Add	Delete Sort Formulas

Če želimo namesto teh oznak imena molekul, izberemo stolpec »*Label*«, tako da z levim gumbom miške kliknemo nanj. Potem kliknemo z desnim gumbom miške in odpre se nam okno, v katerem izberemo *Rename Selected Using SSPD* (če so molekule vključene v *Spartanovo* bazo podatkov, bo program namesto oznak izpisal ime spojine).

Ctrl+C
Ctrl+V
SSPD
Ctrl+P

Imena v tabelo lahko dodamo tudi tako, da kliknemo na prazen stolpec ter izberemo **Add**. V oknu, ki se nam odpre, izberemo <u>Name</u> (ali katero drugo lastnost, ki jo sistem ponudi).

(a Add	
Columnia Jammannia Jammann	
Units Temperature Everge Lance Length Are 2013 5 (2) Root	

(ii) V naslednjem koraku moramo izračunati ravnotežno geometrijo skupine molekul ter njihov elektrostatski potencial na izoelektronski ploskvi. Izberemo <u>Build >> Minimize</u>, nato pa v meniji <u>Setup >> Calculations</u> izberemo <u>»Equilibrium Geometry« at »Ground state« in</u> <u>»Vacuum«</u> ter ustrezno računsko metodo (najprej **AM1** in nato še **EDF2/6-31G***). Pazi, da je odkljukano okence »<u>Global Calculations</u>«, kar pomeni, da bo *Spartan* izvedel račun za vse molekule v skupini.

		Organic Nucleotide	tinor subs	ganic tituent	Peptide
(a) Calculation	ans ? ×	7	_		
Calculater	Equilibrium Geometry • at Ground • state	1			
Carculate	with Hartree-Fock				
Start From:	Current • geometry		N	P	-+
Subject To:	Constraints Frozen Morris	>	`N=	`o-	-1
	Total Charge: Neutral	-C=	=N	-0	-0
Compute:		30-)»	`s-	-6
Print:	Orbitals & Energies Thermodynamics Vibrational Modes Charges & Bond Orders	SI-)N	=S	-
Options:				Pir	0.07
	Global Calculations 🗹 OK Cancel Submit]	Jups	- NI	igs
		More		cipo	loard
		>	· ·	-7	

V spodnji vrstici okna <u>Setup >> Calculations</u> se izpiše tudi vrstica <u>Options</u>. V njej lahko spreminjaš prednastavljene parametre v Spartanu, eden izmed njih je tudi maksimalno število iteracij pri kvantnomehanskih izračunih. V primeru, da Spartan v maksimalnem številu korakov ne pride do konvergentne rešitve, bo javil, da izračun ni uspel. V vrstico <u>Options</u> vpiši <u>OPTCYCLE=10000</u>. S tem boš povečal maksimalno število korakov pri izračunu. Pritisni gumb **Submit**.

Ko se račun konča, izračunaj še elektrostatski potencial na izoelektronski ploskvi (glej navodila zgoraj). Po končanem izračunu označi ploskev ter z desnim gumbom odpri okno z njenimi lastnostmi.

(iii) Z levim gumbom miške enkrat klikni na gumb ^P, levo od oznake **Min**. in **Max**. (zavihek *Property Range* levo zgoraj). Vrednosti minimalne in maksimalne vrednosti elektrostatskega potenciala na izbrani izoelektronski ploskvi se bodo zbrale v naslednjih dveh stolpcih v tabeli. Če te ni več na ekranu, jo lahko ponovno odpreš v meniju *Display* >> *Spreadsheet*.

File	Edit	Model	Geometry	Build	Setup	Display	Search							Opti	ons Activities	Help
-		13	5	S	X	6d		2 3	0 🏟	🗢 M		01	0			
-	2				2.0					- 11						
							() berzere?	40001[1]				-		8		
							Label	Name	Property Ma	xx(Surface2) kJ/mol						
							M0001	benzene		87.	50					
							M0001	: cyclohexane		37.1	31					
									_							
							f(x)	Add.	Delete	Sort Forms	las					
											_					
٦.			0.4													

(iv) V tabelo lahko dodamo tudi podatke, ki smo jih dobili iz drugih virov. V našem primeru bomo dodali podatke za pK_a vrednosti posameznih molekul (glej učbenik, slika V4.1). Dvakrat klikni na naslovno vrstico praznega stolpca ter vpiši naslov (**pKa**). Pritisni <Enter>. Na enak način vneseš tudi vrednosti pK_a za posamezne molekule. Podatke lahko preneseš v *MS Excel* datoteko tako, da označiš ustrezne stolpce, izbereš <u>*Copy*</u> ter nato <u>*Paste*</u> v *Excel* datoteki.

(v) Program *Spartan* omogoča, da lahko podatke iz tabele tudi grafično prikažeš. Izberi *Display* >>*Plots*. Odpre se ti okno:

Ko pritisneš na zeleni znak \neg , se ti odpre okno, v katerem lahko izbereš, katere podatke iz tabele želiš risati na osi *x* (leva stran) in katere na osi *y* (desna stran). Ustrezno izbereš in pritisneš gumb **Add**. Na ekranu se ti izriše graf.

Naloga: Poročilo naj vsebuje tabelo V4.1 ter grafa, ki prikazujeta odvisnost pK_a od minimalne oz. maksimalne vrednosti elektrostatskega potenciala na izoelektronski ploskvi z gostoto 0,002 elektrona/Å³. Preveri, kakšna je korelacija.

* * *

Pripravi poročilo za vajo, ki vsebuje:

— Sliki molekule cikloheksanona z izoelektronsko gostoto 0,1 in 0,002 elektrona/Å³. Komentiraj, kaj predstavlja ena in kaj druga izoelektronska gostota. (Naloga 4.1)

— Slike za molekulo SF₄: HOMO in LUMO orbitali, LUMO orbitala na izoelektronski ploskvi ter ionizacijski potencial na izoelektronski ploskvi. Odgovori na vprašanja: Kaj pomenita kratici HOMO in LUMO? Ali lahko na osnovi oblike HOMO orbitale sklepamo na prisotnost prostega elektronskega para? Kaj predstavlja lokalni ionizacijski potencial? (Naloga 4.2)

— Sliko projekcije elektrostatskega potenciala na izoelektronsko ploskev za molekulo, ki si jo dobil od asistenta. Uporabi prikaz *»Transparent«*. Komentiraj rezultat.

— Izpolnjeno tabelo V4.1 iz učbenika (str. 168). Grafa, ki prikazujeta odvisnost pK_a od minimalne oz. maksimalne vrednosti elektrostatskega potenciala na izoelektronski ploskvi z gostote 0,002 elektrona/Å³. (Naloga 4.4)

5. VAJA: Reakcijski intermediati

Pri vaji se bomo naučili računati lastnosti reakcijskih intermediatov:

- σ-kompleksa (arenijev kation), ki nastane pri napadu elektrofila (nitronijev kation) na aromatski obroč (monosubstituiran benzen),
- alkoksidnega radikala (butoksid), ki nastane pri reakciji alkena (but-1-en) s hidroksilnim radikalom,

ter si pogledali, kako lahko te izračune uporabimo za napoved stereokemije produktov pri kemijskih reakcijah.

* * *

Na namizju ustvari mapo **Vaja_5**, v katero bo program *Spartan* shranjeval ustrezne datoteke, in poženi program *Spartan*.

Številčenje nalog spodaj se nanaša na naloge v učbeniku *Molekulsko modeliranje* (str. 174).

Naloga 8.1:

(i) V *Spartanu* sestavi ustrezen monosubstituiran benzen, ki ti je bil določen (*File >> New Build*). Ne pozabi dodati tudi vodikov (—H). Pojdi v View Mode (*Build >> View*). Strukturo minimiziraj najprej z mehanskim poljem sil (*Build >> Minimize*), nato pa še s semiempirično metodo *AM1* (*Setup >> Calculations; »Equilibrium Geometry« at »Ground state«*). Sturkturo shrani pod njenim imenom (*File >> Save As...*).

(ii) Izračunaj elektrostatski potencial ter izriši izoelektronsko ploskev pri 0,002 elektrona/Å³ (ta je že avtomatsko nastavljena). S pomočjo slike najprej premisli, ali je katero od mest na benzenovem obroču (*orto, meta* ali *para*) preferenčno za vezavo nitro (—NO₂) skupine. Sliko si shrani tako, da bodo mesta *orto, meta* in *para* dobro vidna (na sliki naj bo tudi legenda). Zapri prikaz elektrostatskega potenciala.

(iii) V molekuli izberi mesto (C atom), na katerega boš vezal nitro skupino (*orto, meta* ali *para*): nalogo začni z *orto* mestom. Klikni na vez ob ustreznem C atomu, z desnim gumbom miške izberi <u>*Properties*</u> ter spremeni vez iz <u>*Aromatic*</u> v <u>*Single*</u>. Enako ponovi še z drugo vezjo ob izbranem C atomu.

(iv) Izberi <u>Build >> Edit Build</u>. V oknu na desni strni ekrana v zavihku <u>Organic</u> izberi <u>Groups >> Nitro</u> in dvakrat klikni nekam v bližino mesta na benzenovem obroču, kjer je izbrani C atom. (Nitro skupino lahko premikaš/rotiraš tako, da nanjo klikneš z levim gumbom, potem pa jo premakneš/zarotiraš z miško, pri čemer držiš tipko CTRL). Nato spodaj desno izberi znak za Make Bond (¹) ter dvakrat klikni najprej na ustrezen ogljikov atom v benzenovem obroču, potem pa še na dušikov atom nitro skupine. Med atomoma se izriše vez.

(v) Strukturo shrani pod novim imenom (*File >> Save As...*), recimo ime_orto. Strukturo nato minimiziraj najprej z mehanskim poljem sil (*Build >> Minimize* ali), potem pa še s semiempirično metodo *AM1* (*Setup >> Calculations; »Equilibrium Geometry« at »Ground state«*), pri čemer označi, da je spojina ion (*»Total Charge: Cation*«).

le Calcula	tions ?
Calculate	Equilibrium Geometry • at Ground • state with Semi-Empirical • AM1 •
Start From	Current • geometry
Subject To	Constraints Frozen Atoms Total Charge:
Compute	Raman NMR UV/vis QSAR Unpaired Electrons: 0
Print	Orbitals & Energies Thermodynamics Vibrational Modes Charges & Eoed Orde
Options	
_	Global Calculations 22 OK Cancel Subm

(vi) Ko je izračun končan, odčitaj energijo kompleksa (*Molecule Properties*) in jo zapiši v tabelo V8.1.

Enak račun ponovi še za mesti *meta* in *para* (koraki (iii)—(vi)). Pri tem vedno izhajaj iz spojine, ki si jo zgradil in shranil v koraku (i): <u>*File* >> New Build</u> in nato <u>*File* >> Open</u>. V koraku (v) shrani strukturi z ustreznim imenom (ime meta in ime para).

Naloga: Glede na razultate energij *orto, meta* in *para* substituiranih sigma kompleksov komentiraj, kam skupine na benzenovem obroču usmerjajo napad nitronijevega kationa. Komentar podkrepi tudi s sliko elektrostatskega potenciala monosubstituiranega benzena.

Naloga 8.2:

(i) Sestavi molekulo but-1-ena v ustrezni konformaciji — glej strukturno formulo v učbeniku (str. 174): posamezno vez lahko rotiraš tako, da nanjo klikneš in jo s tem označiš, potem pa držiš tipko ALT in miško ustrezno premikaš. Ko je molekula sestavljena tako, kot je prikazano v učbeniku, jo najprej minimiziraj z mehanskim poljem sil (*Build >> Minimize*), nato pa še s semiempirično metodo *AM1* (*Setup >> Calculations; »Equilibrium Geometry« at »Ground state«*). Sturkturo shrani pod njenim imenom (*File >> Save As...*), npr. buten.

(ii) Nato sestavi ustrezen radikal tako, da odstraniš vodikov atom z enega izmed označenih mest (1—5; glej številčenje v učbeniku): v meniju <u>Edit >> Build</u> desno spodaj izbereš radirko () in potem klikneš na atom oz. vez, ki jo želiš zbrisati. Začni z mestom 1. Molekulo shrani (*File >> Save As...*), npr. pod imenom buten 1.

(iii) Odpri meni <u>Setup >> Calculation</u>, izberi <u>»Equilibrium Geometry« at »Ground state«</u> in semiempirično metodo *AM1* in pod <u>»Unpaired Electron«</u> izberi 1.

(iv) Ko je račun končan, si najprej poglej spinsko gostoto (»*spin density*«): V meniju <u>Display</u> >> <u>Surfaces</u> izberi <u>Add</u> >> <u>spin density</u>. Ko je površina izračunana in jo odkljukaš, se izriše spinska gostota, ki predstavlja razliko med številom elektronov s spinom α in spinom β v prostoru – program torej prikaže lokacijo nesparjenih elektronov. Sliko si shrani pod ustreznim imenom (npr. buten sd 1).

(v) Sedaj nariši še »<u>spin density map</u>«, ki z barvami prikaže vrednost spinske gostote na molekulski površini (izoelektronska ploskev z elektronsko gostoto 0,002 elektrona/Å³ je že avtomatsko nastavljena). Modra barva označuje visoke vrednosti spinske gostote, rdeča pa majhne. Sliko si shrani pod ustreznim imenom (npr. buten sdm 1).

(vi) Izračun ponovi še za ostala mesta odcepa (2—5). Pri tem vedno izhajaj iz spojine, ki si jo zgradil in shranil v koraku (i): *File >> New Build* in nato *File >> Open*. V koraku (ii) shrani strukturi z ustreznim imenom (npr. buten 2, buten 3 itd.).

Naloga: Komentiraj rezultate v luči reaktivnosti posameznih mest but-1-ena glede na izračunane energije. Prikaži spinske gostote ter spinske gostote, prikazane na izoelektronski ploskvi (molekulska površina).

Pripravi poročilo za vajo, ki vsebuje:

— Glede na razultate izračunanih energij *orto*, *meta* in *para* substituiranih σ -kompleksov komentiraj, kam skupine na benzenovem obroču usmerjajo napad nitronijevega kationa. Komentar podkrepi tudi s sliko elektrostatskega potenciala. Premisli, kakšen je efekt resonančne stabilizacije ter steričnih efektov. (Naloga 8.1)

— Komentiraj rezultate v luči reaktivnosti posameznih mest na butoksidnem radikalu glede na izračunane energije. Priloži tudi slike spinske gostote oz. spinske gostote, prikazane na izoelektronski ploskvi. (Naloga 8.2)

6. VAJA: Medmolekulske interakcije

Pri dosedanjih vajah smo si pogledali, kako lahko s kvantnomehanskimi metodami izračunamo različne lastnosti posameznih molekul in jih primerjamo med seboj. kvantnomehanski izračuni nam omogočajo tudi izračun lastnosti majhnih sistemov, sestavljenih iz nekaj molekul. Pri tej vaji se bomo naučili, kako s kvantnomehanskimi metodami izračunamo lastnosti kompleksov dveh molekul. Pogledali si bomo tudi, kako kvantnomehanski izračuni identificirajo vodikovo vez.

Najprej bomo na primeru dimera vode proučili, kako izbira kvantnomehanske metode vpliva na izračunane lastnosti sistema več molekul, tj. na medsebojno orientacijo ter energijo dveh molekul vode. Pogledali si bomo, kako medsebojna geometrija akceptorja in donorja vodikove vezi vpliva to, da sta molekuli vode povezani z vodikovo vezjo.

Nadalje bomo študirali interakcije med pari nukleinskih baz oz. njim sorodnih molekul. Pogledali si bomo odvisnost energije kompleksa od števila vodikovih vezi ter odvisnost konstante asociacije od energije za tvorbo takšnega kompleksa.

* * *

Na namizju ustvari mapo **Vaja_6**, v katero bo program *Spartan* shranjeval ustrezne datoteke, in poženi program *Spartan*.

Številčenje nalog spodaj se nanaša na naloge v učbeniku *Molekulsko modeliranje* (str. 169).

Naloga 5.1:

(i) Poženi program *Spartan '14* in sestavi molekulo vode. Strukturo najprej minimiziraj z mehanskim poljem sil (*Build >> Minimize*), nato pa še z izbrano kvantnomehansko metodo (podatek dobiš pri asistentu; *Setup >> Calculations; »Equilibrium Geometry« at »Ground state« in »Vacuum«*).

(ii) Fiksiraj dolžini obeh vezi H-O v molekuli (*Geometry >> Constrain Distance*) ter kot H-O-H (*Geometry >> Constrain Angle*) ter si zapiši energijo molekule (*Properties – Energy*).

(iii) Še vedno v načinu <u>*Edit/Build*</u> molekulo označi tako, da nanjo klikneš z levim gumbom miške. V meniju izberi <u>*Edit* >> Copy</u>, kliki kamorkoli na delovno polje *Spartana* in v meniju izberi <u>*Edit* >> Paste</u> (uporabiš lahko tudi kombinacijo tipk CTRL+C in CTRL+V). Na ekranu imaš sedaj izrisani dve molekuli vode. Tudi pri drugi molekuli fiksiraj dolžini obeh vezi in kot.

(iv) Še vedno v načinu <u>*Edit/Build*</u> izberi eno izmed molekul tako, da nanjo klikneš z levim gumbom miške. Pritisni (in drži) gumb CTRL in levi ali desni gumb miške ter s premikanjem miške postavi molekuli v medsebojno orientacijo, iz katere želiš začeti kvantnomehansko energijsko minimizacijo.

Izberi si eno izmed naslednjih razporeditev (1—6) s slike na naslednji strani:

(v) Energijo kompleksa (dimera vode) minimiziraj z mehanskim poljem sil (<u>Build >></u> <u>Minimize</u>). Datoteko shrani z imenom dimer_vode.

(vi) Izberi ustrezno kvantnomehansko metodo (podatek dobiš pri asistentu) ter z njo izračunaj ravnotežno geometrijo kompleksa: <u>Setup >> Calculations; »Equilibrium Geometry« at</u> <u>»Ground state« in »Vacuum«;</u> v vrstico <u>Options</u> vpiši <u>OPTCYCLE=10000</u>; pazi, da je pri tem geometrija posamezne molekule vode (dolžine vezi, kot) fiksirana, odkljukaj »<u>Subject to:</u> <u>Constraints</u>«.

(vii) Ko je račun končan, zapiši energijo kompleksa ter njegove geometrijske parametre: razdalja med kisikom ene molekule ter najbližjim vodikom druge molekule, ustrezni kot in torzijski kot.

(viii) Izračunaj energijo vodikove vezi tako, da od energije kompleksa odšteješ energiji posameznih molekul.

(ix) *Spartan* dopušča možnost izrisa vodikove vezi. Ta ni kvantnomehansko določena, odvisna je le od medsebojne geometrije akceptorja in donorja vodikove vezi (v *Spartanu* sta to lahko le dušik ali kisik). *Spartan* bo vodikovo vez narisal, če je razdalja med H in Y v kompleksu X-H^{...}Y med 1,6 in 2,1 Å, kot X-H^{...}Y pa >120°, pri čemer sta X in Y dušik ali kisik. Vodikovo vez prikažemo tako, da v meniju izberemo <u>Model >> Hydrogen Bond</u>

(**s**¹). Izriše se kot rumena črtkana črta.

Primerjaj izpolnjevanje geometrijskih zahtev za obstoj vodikove vezi z energijo kompleksa ter komentiraj rezultate.

Naloga 5.2:

Na podoben način kot za dimer vode izračunaj ravnotežno geometrijo kompleksov ter ustrezno energijo nukleinskih baz in njim sorodnih spojin. Razliko med energijo kompleksa ter monomerov primerjaj z eksperimentalnimi vrednostmi konstant asociacije. Strukture monomerov najdeš v spletni učilnici v datoteki monomeri.zip, strukture kompleksov pa v datoteki kompleksi.zip.

* * *

Pripravi poročilo za vajo, ki vsebuje:

— Slika sestavljenega dimera vode. Tabela z energijami za posamezno molekulo vode, za dimer ter pripadajočo vodikovo vez, izračunane s semiempirično metodo PM3, *ab initio* metodo HF/6-31+G* in DFT metodo B3LYP/6-31+G*. Geometrijski parametri dimera: razdalja med kisikom ene molekule ter najbližjim vodikom druge molekule, kot O-H^{...}O in torzijski kot H-O-H^{...}O. Komentar, katera izmed metod je najboljša za opis geometrije in s katero metodo dobimo najboljšo oceno energije vodikove vezi.

— Slike kompleksov. Tabela z energijami za komplekse ter pripadajoče monomere in energija za nastanek kompleksa. Graf korelacije konstante asociacije od energije nastanka kompleksa (na *y*-osi uporabi logaritemsko skalo). Komentar odvisnosti.

7. VAJA: Konformacija molekul

Pri vaji se bomo seznanili s pojmom konformacija molekule in konformacijsko iskanje. Naučili se bomo poiskati konformacijo z najnižjo energijo, izračunati energijski profil molekule ter kako ga uporabiti za parametrizacijo polja sil. Proučili bomo, ali je razdalja od konca do konca za enostaven alkan odvisna od energije dane konformere molekule.

Na namizju ustvari mapo **Vaja_7**, v katero bo program *Spartan* shranjeval ustrezne datoteke, in poženi program *Spartan*.

Številčenje nalog spodaj se nanaša na naloge v učbeniku *Molekulsko modeliranje* (str. 170).

* * *

Naloga 6.1:

(i) Sestavi molekulo butana. Datoteko shrani (*File >> Save As...*) z imenom butan. Strukturo najprej minimiziraj z mehanskim poljem sil (*Build >> Minimize*), nato pa še s semiempirično metodo *PM6* (*Setup >> Calculations; »Equilibrium Geometry« at »Ground* state«).

(ii) Izvedli bomo konformacijsko analizo ter s sistematskim spreminjanjem torzijskih kotov v molekuli poiskali konformacijo z najnižjo energijo.

Če želiš pogledati/določiti, kateri torzijski koti se bodo med konformacijsko analizo spreminjali, v meniju izberi <u>Geometry >> Set Torsions</u>. Torzijski koti bodo označeni z rumenimi cilindri. Pri vsakem je, če nanj kliknemo, desno spodaj tudi napisano, koliko torzijskih kotov bo med izračunom pregledanih. Prednastavitev lahko spreminjamo: Če želimo, da se kateri izmed kotov med konformacijsko analizo ne bo spreminjal, nanj dvakrat kliknemo (levi gumb miške) in s tem odstranimo oznako. Torzijske kote lahko v konformacijsko analizo tudi dodamo tako, da kliknemo na vez (levi gumb miške), okrog katere se bo torzijski kot spreminjal, in desno spodaj dodamo število torzij.

(iii) V meniju <u>Setup >> Calculations</u> izberi <u>»Equilibrium Conformer« at »Ground state«</u> <u>with »Semi-Empirical« »PM6«</u>. Pritisni gumb **Submit** in počakaj, da se račun konča. Na ekranu se bo izrisala konformacija z najnižjo energijo, pri čemer bo energijska minimizacija potekla samo preko izbranih torzijskih kotov.

File Edit Model Geometry Build Setup	Display Search	Options A	ctivities Help
2 🗋 🚺 🚺 🏹	👦 🦂 📆 📑 💽 💶 🏟 🗢 🎢 📑 🌾 😫 🗽		
🕭 Calculat	ons ? X		
Calculate:	Equilibrium Conformer V at Ground V state wth Semi-Empirical V PM6 V		
	Maximum Conformers Examined: 100		
Subject To:	Constraints Frozen Atoms Total Charge: Neutral 🕃		
Compute:	IR Raman NMR UV/vis QSAR Unpaired Electrons: 0		
Print:	Orbitals & Energies Thermodynamics Vibrational Modes Charges & Bond Orders		
Options:			
	Global Calculations OK Cancel Submit		
• • •	Dista	nce(,) =	Р
Select two atoms, a bond,	n°butane	• 1 Doc 1 P	Mol C2h 💽

Izpiši si energijo molekule in njene geometrijske parametre (dolžine vezi C-C, kote C-C-C in dihedralni kot C-C-C-C).

(iv) V naslednjem koraku bomo izračunali energijski profil molekule. V molekuli, ki si ji prej določil ravnotežno konformacijo, izberi dihedralni kot, za katerega boš izračunal energijski profil (kot C1-C2-C3-C4; glej skico v učbeniku). V meniju izberi <u>Geometry >> Constrain</u> <u>Dehedral</u> ter v molekuli označi ustrezni dihedralni kot, ki ga želiš zakleniti. Kót zakleni (klikni na znak ključavnice, desno spodaj na ekranu) ter s kljukico označi polje <u>Profile</u>. Odprejo se ti okna, v katerih lahko določiš, od kod do kod in v kolikih korakih boš spreminjal torzijski kot. V ustrezna okenca vpiši <u>»0°« to »360°« Steps »73«.</u> Pri teh nastavitvah se bo torizjski kot spreminjal po 5°. (Če bi želel kot spreminjati po 10°, moraš izbrati 37 korakov.)

V meniju <u>Setup >> Calculations</u> izberi <u>»Energy Profile« at »Ground state« with »Semi-</u> <u>Empirical« »PM6«</u> ter pritisni gumb **Submit**.

File Edit Model Geometry Build Setup	Display Search	Options Activities	Help
🗟 🗋 📭 🔰 🚰 🗂 🔀	bod 🔏 💦 🗔 💽 🧶 🧶 🐪 🔙 😼		
Calculat			
Calculate:	Energy Profile • at Ground • state		
	with Semi-Empirical PMb		
Subject To:	Constraints Frozen Atoms Total Charge: Neutral		
Compute:	IR Raman NMR UV/vis QSAR Unpaired Electrons: 0		
Print:	Orbitals & Energies Thermodynamics Vibrational Modes Charges & Bond Orders		
Options:			
	Global Calculations 🗹 🛛 OK 🛛 Cancel Submit		
• • •	Constraint(Con1) = 200 * 100	o 360.00 ° Steps: 37	Profile
	n-butane	• 1 Doc 1 Mol	C2h 💺

Ko se račun konča, bo *Spartan* generiral novo datoteko, v kateri bodo spravljene tvorjene konformere. Pritisni na gumb **Yes**. Odpre se datoteka z imenom butan.Prof.M0001. Med posameznimi konformerami lahko preklapljaš s puščicami levo spodaj na ekranu. Oglej si konformere.

Ne Edit Model Geometry Build Setup Display Search Options Activities Help	File Edit Model Geometry Build Setup Display Search Options Activities Help
🛃 🗋 🕪 🎽 🗂 💥 妇 🦓 🖓 🗊 🖬 🔍 🦇 🗢 🏹 📃 🛠 😫 🗽	🛃 🗋 📭 🔰 🚰 🌱 🔏 🚮 🖓 🗔 💽 🌒 🏟 🚭 🏋 📃 🕵 🙎
	¥.
x	C orbetane Bret M0001
Select an object. • 1 Doc 1 Mol C2h	select an object. r-butane * 2 Doc 37 Mol C1 💆

Pri eni izmed konformer izmeri torzijski kot (*Geometry >> Measure Dihedral*). Desno spodaj ob vrednosti kota pritisni rumeni gumb (polje) s črko P.

Energijski profil dobiš tako, da izbereš <u>*Display* >> *Spreadsheet*</u>, klikneš na naslovno polje prvega praznega stolpca, pritisneš <u>*Add...*</u>, izbereš **E** (energija) in pritisneš **OK**. Podatke si shrani v *Excel*.

🛃 🗋 🕨 🍋 🗂 🗙 🐻 🏂 🖾 🗟 🔍 🧶 🧶	M 📑 🛠 😫 🐧	🛃 🕗 🕩 🍋 🗂 🗙 🐻 🔧 🗔 💽 🏟 🧶) 🎢 🔚 🛠 😫 🗽
And Cathon Summaria Lander Regression Terman	7 X		Add_ Doby Set Typede
d p		d	
Select an object.	n-butane * 2 Doc 37 Mol C1	Select an object.	modane * 2 Doc 37 Mol C1

File Edit Model Geometry Bi	uīld Setup Display Search	Options Activities Help
י (🖆 🍋 🞑 ו	🗢 📈 🛃 🔏 🗔 🗋 👁 🏘 🗢 🏋 📃 🕵 🛛	
	Plots:	P 🗙
	🕂 🧈 🔦 🔸	💾 🦐 -
	n-butane.Prof.M0001:M0001 X	
	Label E (k/mol) M0001 -94.33 M0002 -94.90 M0003 -96.53 M0004 -98.87 M0005 -101.42 M0005 -101.42 M005 -101.42	
• • •	Þ	
n-butane n-butane.Prof.M0001		
Select an object.	n-butane	▼ 2 Doc 37 Mol C1 🎽

Profil lahko prikažeš tudi grafično z izbiro *Display >> Plots*.

Naloga 6.2:

Z uporabo metode najmanjših kvadratov poišči vrednosti parametrov modelne funkcije, ki izračunani energijski profil najbolje opišejo:

$$E(\varphi) = C + \sum_{n=1}^{3} \frac{V_n}{2} \cos(n\varphi - \gamma_n) = C + \frac{1}{2} \left[V_1 \cos(\varphi) + V_2 \cos(2\varphi - \pi) + V_3 \cos(3\varphi) \right]$$

(V učbeniku na str. 170 v enačbi manjka COS.) Izpiši si konstante V_1 , V_2 , V_3 in *C* ter nariši graf, ki prikazuje izračunano energijo v odvisnosti od kota in modelno funkcijo. Za iskanje parametrov lahko uporabiš *Excel* in orodje *Solver*.

Naloga 6.3:

Običajno se molekula pri sobni temperaturi nahaja v več kot eni konformaciji, saj se te po energiji ne razlikujejo preveč. *Spartan* omogoča izračun vseh molekuli dostopnih konformacij ter njihove verjetnostne (Boltzmannove) porazdelitve. Iz teh podatkov izračuna povprečne molekulske lastnosti.

(i) V *Spartanu* sestavi molekulo *n*-oktana. Datoteko shrani (*File >> Save As...*) z imenom oktan.

(ii) Izberi <u>Setup >> Calculations</u> ter nato <u>»Conformer Distribution« at »Ground state« with</u> <u>»Molecular Mechanics« »MMFF«</u>. Odkljukaj <u>Maximum Conformers Examined</u> in izberi 100 (če označiš <u>Percent Conformers Kept</u>, lahko izbereš, katere konformacije bo program shranil. Številka 95 npr. pomeni, da bo shranil vse tiste konformacije, ki predstavljajo 95 % vseh konformacij pri sobni temperaturi) ter pritisni gumb **Submit**. Ko program konča, kreira novo datoteko oktan.Conf.M001. Potrdi z **Yes**. Oglej si konformere.

The Edit Model Generaty Build	Setup X	over	Options Activities Help	Ib 2d Jundi Gummy Ed Ling Dayle Sert Constraints May 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	(a) Calcula	kes ? X		
	Calculate	Conformer Distribution * at Ground * state with Semi-Empirical * PAd6 *		8 - C
		Maximum Conformers Examined: 100 Percent Conformers Kept	같은데이즈 및 트리아이지 같은 바이즈 및 트립아이지를	
	Subject To	Constraints Frozen Atoms Total Charge: Neutral 😨		ter en la seconda de la se
	Compute	R Raman NMR UV/vis QSAR Unpaired Electrons: 0		• • •••
	Print	Cribitals & Energies Thermodynamics Vibrational Modes Charges & Bond Orders		X
	Options	Giobal Calculations 🖸 OK Cancel Submit		e e e e e e e e e e e e e e e e e e e
• d b				
Select an object.		sroctase	• 1 Doc 1 Mel C2h	Select an object. mostane 🔹 2 Doc. 33 Mol. Czh.

(iii) S semiempirično metodo *PM6* izračunaj energijo konformer (*Setup >> Calculations;* »*Energy« at »Ground state«*; ne pozabi s kljukico označiti polje »*Global Calculations«*). Podatke zberi v tabeli (*Properties*; pritisni rumeno polje s črko P pri »*Energy«*). V tabeli zberi tudi podatke o razdalji med C1 in C8 za posamezni konformer (razdaljo izmeri; *Geometry >> Measure Distance*; pritisni rumeno polje s črko P, desno spodaj zraven vrednosti kota). Podatke kopiraj v *Excel* in nariši graf odvisnosti razdalje od konca do konca (C1—C8) od energije konformera. Komentiraj korelacijo.

* * *

Pripravi poročilo za vajo, ki vsebuje:

— Za molekulo butana podaj energijo, razdalje C-C, kote C-C-C ter dihedralni kot C-C-C-C konformacije, ki ima najnižjo energijo. Priloži sliko te konformere.

— Za molekulo butana podaj konstante modelne funkcije, ki si jih dobil s prileganjem modelne funkcije energijskemu profilu (energija v odvisnosti od dihedralnega kota) za molekulo butana ter graf, ki prikazuje s *Spartanom* izračunani energijski profil ter modelno funkcijo.

— Graf odvisnosti razdalje od konca do konca za molekulo *n*-oktana od energije konformere. Komentiraj korelacijo.

8. VAJA: Prehodna stanja

Pri tej vaji se bomo naučili z metodo adiabatnega mapiranja poiskati prehodna stanja pri kemijski reakciji, izračunati energijski profil vzdolž reakcijske koordinate (IRC) ter izračunati IR vibracijski spekter spojine.

Prehodnega stanja ne moremo določiti eksperimentalno, lahko pa ga poiščemo računsko. Ker to stanje ustreza sedlu na energijski ploskvi spojine, namesto najbližjega minimuma algoritem minimizacije išče začetni konformaciji najbližje sedlo 1. reda (maksimum v smeri reakcijske koordinate in minimum v vseh ostalih smereh). Zato je pomembno, da izračun začnemo s smiselnim približkom strukture prehodnega stanja, ki leži nekje med strukturo reaktantov in produktov!

* * *

Na namizju ustvari mapo **Vaja_8**, v katero bo program *Spartan* shranjeval ustrezne datoteke, in poženi program *Spartan*.

Številčenje nalog spodaj se nanaša na naloge v učbeniku *Molekulsko modeliranje* (str. 171—173).

Naloga 7.1:

(i) S programom *Spartan* sestavi produkt reakcije, za katero iščemo prehodno stanje: produkt Diels-Alderjeve reakcije med buta-1,3-dienom in etenom (slika V7.1 in V7.3) je **cikloheksen**. Pazi, da sestaviš obroč v konformaciji kadi – atoma, ki izhajata iz etena (*dienofil*), sta nad ali pod ravnino atomov, ki pripadajo buta-1,3-dienu (*dien*). Strukturo shrani (*File* >> *Save As...*) pod imenom cikloheksen 0.

NE uporabi opcije Minimize NE: Strukturo energijsko minimiziraj s kvantnomehansko metodo *HF/3-21G* (*Setup >> Calculations; »Equilibrium Geometry« at »Ground« state with »Hartree-Fock« »3-21G« in »Vacuum«*). Pod *Options* napiši *OPTCYCLE=100000*.

(ii) Sedaj iz ravnotežne konformacije produkta izdelaj približek prehodnega stanja tako, da vezi, ki so na novo nastale med reakcijo, podaljšaš na okoli 2 Å (glej sliko V7.1). V meniju izberi *Geometry >> Constrain Distance* ter označi ustrezna para atomov, med katerima so

novo nastali vezi. Fiksiraj ju na dolžino 2 Å tako, da klikneš na ključavnico in v polje vpišeš vrednost. Strukturo shrani (*File >> Save As...*) pod imenom cikloheksen_1.

(iii) Kompleks ponovno energijsko minimiziraj s kvantnomehansko metodo *HF/3-21G* (*Setup >> Calculations; »Equilibrium Geometry« at »Ground« state with »Hartree-Fock« »3-21G« in »Vacuum«*), pri čemer s kljukico označi polje pri *Subject to: Constraints*. Ko je minimizacija končana, smo dobili začetni približek prehodnega stanja, ki mu bomo na energijski ploskvi poiskali najbližje sedlo 1. reda. Strukturo shrani (*File >> Save As...*) pod imenom cikloheksen 2.

(iv) V meniju izberi <u>Setup >> Calculations</u> in označi <u>»Transition State Geometry« at</u> <u>»Ground« state with »Hartree-Fock« »3-21G« in »Vacuum«</u>. Pazi na to, da <u>Constraints</u> NI označen s kljukico, označi pa s kljukico polje pri <u>Compute: IR</u>. Program bo tako iz matrike 2. odvodov izračunal IR spekter, v katerem ima prehodno stanje eno imaginarno frekvenco. Na ta način bomo preverili, ali bo dobljena struktura res ustrezala prehodnemu stanju. Račun poženemo s klikom na gumb **Submit**. Ko je račun končan, strukturo shrani (<u>File >> Save</u> <u>As...</u>) pod imenom cikloheksen_3.

(v) IR spekter si pogledamo z izbiro *Display >> Spectra*, ali s pritiskom na gumb v orodni vrstici programa. Na oknu, ki se ti odpre, klikni na zeleni znak in izberi izračunani IR spekter *Calculated*. Spekter se ti izriše na ekranu. Z miško se lahko pomikaš levo in desno po spektru, da ga v celoti pogledaš. S klikom na levi gumb miške izbereš valovno število. Če pa na spekter klikneš z desnim gumbom miške, ga držiš in miško premikaš levo/desno po spektru, lahko spreminjaš območje valovnih števil.

Preveri, da ima spekter točno eno imaginarno frekvenco in si izpiši njeno vrednost. Če ni tako, dobljena struktura NE ustreza prehodnemu stanju, kar pomeni, da moraš postopek iskanja prehodne strukture ponoviti iz dugačnega začetnega stanja.

(vi) Če želimo pogledati tudi energijski profil reakcije, lahko pri izračunu odkljukamo še IRC (*»Intrinsic Reaction Coordinate«*), kar pomeni, da bo program iz dobljenega prehodnega stanja v smeri reakcijske koordinate (ki odgovarja smeri nihanja z imaginarno frekvenco) to sistematično spreminjal in generiral vmesne strukture v smeri reaktantov in produktov. Pri vajah bomo postopek izvedli ročno.

Ko v spektru izbereš frekvenco, se bo na ekranu prikazalo ustrezno nihanje v molekuli. Če na ta način označiš imaginarno frekvenco, bo nihanje predstavljalo reacijsko trajektorijo. Sedaj moraš samo še generirati ustrezne strukture v smeri reakcijske trajektorije ter izračunati njihovo energijo, da dobiš energijski profil reakcije.

Označi imaginarno frekvenco in pritisni na gumb na levi strani polja, ki bo generiral strukture v smeri izbranega nihanja. V dialogu, ki se odpre, izberi amplitudo nihanja (maksimalen odmik od vrednosti koordinate v začetni strukturi — v našem primeru strukturi prehodnega stanja) <u>Amp.</u> Izberi npr. vrednost **1,00** Å. Izberi tudi število korakov (št. generiranih struktur) <u>Steps</u> (npr. **20**).

Ko pritisneš na gumb **Make List**, bo program generiral serijo struktur v smeri reakcijske koordinate. Med njimi lahko prehajaš s puščicama levo spodaj na ekranu. Strukture shrani (*File >> Save As...*) pod imenom cikloheksen_3A.

(vii) Da boš izračunal njihovo energijo, izberi <u>Setup >> Calculation</u> in izberi <u>»Energy« at</u> <u>»Ground« state with »Hartree-Fock« »3-21G« in »Vacuum«</u>. Pazi, da s kljukico označiš polje pri <u>Global Calculations</u>. V vrstico <u>Options</u> vpiši tudi <u>OPTCYCLE=10000</u>. Ko je račun končan, strukture shrani (<u>File >> Save As..</u>) pod imenom cikloheksen 3B.

le Calculat	ni ? X	
Calculate	Energy at Ground • state with Hartree-Fock • 3-21G • in Vacuum •	
Start From:	Current • geometry	
Subject To:	Constraints freezen Alterns Total Charge: Neutral 😨	
Computer	R Raman NMR UV/vis GSAR Unpaired Electrons: 0 0	
Print	Orbitals & Energies Thermodynamics Vibrational Modes Charges & Bond Orders	
Options:		
	Global Calculations 🗹 🛛 OK 🛛 Cancel Submit	
Options	Global Calculations 🖉 OK Cancel Submit	

(viii) Tabeliraj energije molekul (pri vrednosti energije molekule v <u>Properties</u> pritisni na gumb ^P). Enako naredi tudi z intrinzično koordinato (dolžino prej zamrznjene dolžine vezi; <u>Geometry >> Measure Distance</u>; klikni na ustrezno vez in desno spodaj ob vrednosti pritisni na gumb ^P). Preden nadaljuješ z nalogo iz točke (ix), podatke iz tabele (¹¹) prenesi v

na gumb []). Preden nadaljuješ z nalogo iz točke (ix), podatke iz tabele ([]) prenesi v *Excel* in jih shrani. Nariši graf, ki prikazuje odvisnost energije od intrinzične koordinate. Odčitaj vrednost energije prehodnega stanja.

	7 ×
Mitchi Cold Termity April Addig/Bitchight Cold Cold <td< th=""><th></th></td<>	
Index 21 (2014) Index 21 (2014)	
Everg(sql: 231,60755 au P T1 Heat: 456 Extend	
7 Solution 1: 644 (s)hol 7 Weight 62.344 annu	
P E HOMO: 467 eV P E LUMOI 356 eV	
Dosle Moment D25 detye P. (Crosp. C)	
Taudomen: 0 Contomen: 2	
Li utipipi upasi vister : Centomer Centry tamas o La mapolar	opioer

(ix) Če želiš odčitati energije reaktantov in produktov, izračune na setu generiranih struktur ponoviš, le da namesto »*Energy*« izbereš »*Equilibrium Geometry*« (V vrstico *Options* vpiši tudi <u>OPTCYCLE=10000</u>; preveri, da je opcija <u>Global Calculations</u> označena s kljukico.) Vmesne strukture med reaktanti in produkti se bodo sedaj minimizirale v ravnotežne strukture reaktantov oz. produktov, njihove energije pa lahko odčitaš na enak način kot prej (ko je izračun končan pri vrednosti energije molekule v *Properties*, pritisni na gumb ^P ter jih zberi v tabeli 🛄). Tudi te podatke prenesi v *Excel* datoteko. Nariši graf, kjer na *x*-os nanašaš zaporedno številko strukture (»Molecule«), na y-os pa energijo. Odčitaj energijo reaktantov in energijo produkta.

le Calco	lations	7 ×
Calcula	it: With Hartner-Fock • 3-21G • in Vacuum	•
Start Fro	current • geometry	
Subject 1	or Constraints Prozen Alorns To	al Charge: Neutral 🗘
Compu	e IR Raman NMR UV/VIS QSAR Unpaired	Electrons: 0
Pri	at Orbitals & Energies Thermodynamics Vibrational Modes C	harges & Bond Orders
Option	s	
	Global Calculations 🗹 🛛 OK	Cancel Submit

Naloga 7.2:

Po postopku, opisanem pod 7.1, s semiempirično metodo *PM6* izračunaj energijski profil za reakcijo med ciklopenta-1,3-dienom in dienofilom, ki ti ga določi asistent.

Iz grafa, ki ga dobiš pri točki (viii), določi energijo prehodnega stanja, iz grafa, ki ga dobiš pri točki (ix), pa energijo reaktantov in produkta. Podatke vpiši v tabelo V7.4.

Izračunaj tudi energijo aktivacije (tj. razliko med energijo prehodnega stanja in energijo reaktantov) ter reakcijsko energijo (tj. razliko med energijo produkta in energijo reaktantov). Ko je tabela izpolnjena, komentiraj rezultate.

Naloga 7.3:

S postopkom, opisanim pod 7.1, s semiempirično metodo *PM6* izračunaj energijski profil za reakcijo med 5-fluorociklopenta-1,3-dienom in akrilnitrilom, ki ti ga določi asistent (prehodna stanja so na sliki V7.5).

Določi energijo prehodnega stanja, energijo reaktantov in produkta ter rezultate vnesi v tabelo V7.2. Izračunaj tudi energijo aktivacije ter reakcijsko energijo.

Ko je tabela izpolnjena, komentiraj rezultate.

Pripravi poročilo za vajo, ki vsebuje:

— Sliko prehodnega stanja za reakcijo med buta-1,3-dienom in dienom. IR spekter in vrednost valovnega števila imaginarne frekvence. Graf energijskega profila vzdolž reakcijske koordinate za to reakcijo. Graf, s katerega določiš energijo reaktantov in produktov te reakcije. (Naloga 7.1)

— Sliko prehodnega stanja za reakcijo med cikolpenta-1,3-dienom in dienofilom, ki ti ga določi asistent. IR spekter in vrednost valovnega števila imaginarne frekvence. Graf energijskega profila vzdolž reakcijske koordinate za to reakcijo. Graf, s katerega določiš energijo reaktantov in produktov te reakcije. Izpolnjena tabela V7.1 in komentar rezultatov (odvisnost aktivacijske energije in energije reakcije od strukture dienofila). (Naloga 7.2)

— Sliko prehodnega stanja za reakcijo med 5-fluorociklapenta-1,3-dienom in akrilonitrilom v konfiguraciji, ki ti jo določi asistent. IR spekter in vrednost valovnega števila imaginarne frekvence. Graf energijskega profila vzdolž reakcijske koordinate za to reakcijo. Graf, s katerega določiš energijo reaktantov in produktov te reakcije. Izpolnjena tabela V7.2 in komentar rezultatov (odvisnost aktivacijske energije in energije reakcije od strukture produkta). (Naloga 7.3)

9. VAJA: Molekulska dinamika

Pri vaji se bomo seznanili z modeliranjem molekulskih sistemov s pomočjo molekulske mahanike. Ta za opis vedenja sistema uporablja *klasično mehaniko*: za razliko od kvantnomehanskih modelov, kjer računamo večelektronsko valovno fukcijo za celotno molekulo, pri molekulski mehaniki molekule opišemo kot med seboj povezane atome, geometrijo pa kot odstopanja od danih medatomskih razdalj ter valenčnih in dihedralnih kotov. Poleg tega za opis neveznih interakcij upoštevamo tudi van der Waalsove in Coulombske interakcije.

Potencialna energija celotnega sistema je funkcija koordinat jeder in je odvisna od izbranega polja sil (Born-Oppenheimerjev približek). **Polje sil** imenujemo funkcijo ter set parametrov, ki jih uporabimo za izračun potencialne energije sistema delcev. Parametre potencialne funkcije lahko določimo na podlagi eksperimentalnih meritev ali kvantnokemijskih računov ali kombinacije obojega.

Pri vaji se bomo seznanili s simulacijo **dinamike molekul**. Gre za metodo računalniške simulacije, s katero analiziramo gibanje atomov in molekul ter iz tega izračunamo termodinamske in dinamične količine. **Trajektorijo** (tj. pot, ki jo dani masni objekt opiše v prostoru kot funkcija časa) atomov in molekul najpogosteje določimo z numeričnim reševanjem Newtonovih enačb gibanja.

Pri tej vaji si bomo pogledali, kako izgleda simulacija dinamike molekul (argon; micela v eksplicitni vodi) ter kako so rezultati simulacije odvisni od izbranih parametrov. Uporabili bomo program *Yasara (Yet Another Scientific Artificial Reality Application)*.

* * *

Na namizju ustvari mapo **Vaja_9**, v katero bo program *Yasara* shranjeval ustrezne datoteke, in poženi program *Yasara*.

Številčenje nalog spodaj se nanaša na naloge v učbeniku *Molekulsko modeliranje* (str. 175).

(i) Iz spletne učilnice v mapo Vaja_9 prenesi datoteko skripta_za_MD.zip in jo odpakiraj (un-zip). Dobil boš datoteko Ar.mcr (naloga 9.1) in mapo MICELE (naloga 9.2), v kateri so datoteke do_micelle_exampleX.mcr (X = 1-6; podatek dobiš pri asistentu) ter mapa MONO, v kateri se nahajajo *.pdb datoteke z izhodnimi monomeri.

(ii) Poženi progam *Yasara* tako, da dvakrat klikneš na ikono 🦉 . Odpre se ti okno programa:

(iii) V meniju izberi <u>*Options*</u>. V zavihku, ki se ti odpre, izberi <u>*Working Directory*</u>. Odpre se ti okno, v katerem izberi (tj. *enkrat* klikni z levim gumbom miške) *Desktop* in nato mapo *Vaja_9* ter pritisni gumb **OK**.

Naloga 9.1:

Izvedel boš simulacijo dinamike molekul argona pri dani gostoti in temperaturi (kanonski (N,V,T) ansambel). Medatomske interakcije (argon-argon) boš opisal z Lennard-Jonesovim parskim potencialom.

(i) S programom *Notepad* (*Beležnica*) odpri skripto Ar.mcr. Izpiši si parametre simulacije: število delcev, velikost simulacijske celice, polje sil, časovni korak, dolžino ekvilibracijskega dela simulacije in dolžino produkcijskega dela simulacije. Izračunaj številsko gostoto argona.

(ii) V skripto Ar.mcr na ustreznem mestu vnesi temperaturo, ki ti jo določi asistent, ter datoteko shrani (za npr. 300 K vpiši Temp 300). V meniju programa *Yasara* izberi <u>Options</u> >> <u>Macro & Movie >> Play Macro</u> in naloži skripto Ar.mcr. Program začne izvajati simulacijo. Med njo lahko opazuješ simulacijsko škatlo: rotiraš jo tako, da držiš levi gumb miške in miško premikaš; približuješ/oddaljuješ pa z desnim gumbom miške. Če označiš enega izmed atomov argona (klik z levim gumbom miške na izbrani atom), se ti levo na ekranu izpisujeta njegov položaj in hitrost.

(iii) Ko se simulacija konča, se podatki za parsko porazdelitveno funkcijo, g(r), zapišejo v datoteko RDF_ArAr_xxxK.dat, ki jo najdeš v svojem delovnem direktoriju (xxx je temperatura v Kelvinih). Podatke odpri npr. s programom *Excel* in jih nariši. Komentiraj obliko g(r).

(iv) Podatki za temperaturo in energijo se ti izpišejo v datoteki energy_ekvil.dat (ekvilibracijski del) in energy_prod.dat (produkcijski del). S programom *Excel* odpri datoteko energy_ekvil.dat ter nariši podatke za kinetično, potencialno in celotno energijo ter temperaturo v odvisnosti od časa simulacije tekom ekvilibracijskega dela simulacije. Ali je ekvilibracijski del simulacije dovolj dolg, kako je z vzdrževanjem konstantne temperature? Komentiraj.

(v) Podatke za energijo med produkcijskim delom simulacije (energy_prod.dat) prenesi v *Excel* ter izračunaj povprečno kinetično, potencialno in celotno energijo sistema. Izračunaj tudi fluktuacije (kolebanja) v energiji in ustrezno toplotno kapaciteto pri konstantnem volumnnu:

$$k_{\rm B}T^2C_{\rm V} = \langle E^2 \rangle - \langle E \rangle^2$$

Vrednosti povprečnih energij ter toplotne kapacitete za dane pogoje simulacije vnesi v tabelo, ki se nahaja v spletni učilnici. Komentiraj trende ($\langle E \rangle$ vs. *T* in C_v vs. *T*).

Naloga 9.2:

Izvedel boš simulacijo dinamike molekul za micelo v eksplicitni vodi (model vode: TIP3P).

(i) S programom *Notepad* (*Beležnica*) odpri skripto do_micelle_exampleX.mcr, kjer je X številka, ki ti jo določi asistent. V 11. in 12. vrstici skripte sta navedeni vrednosti kontrolnih parametrov »simulation« in »mdref«. Če želiš pognati simulacijo, morata imeti oba parametra vrednost 1. Če sta vrednosti drugačni, ju popravi in skripto ponovno shrani.

(ii) V meniju programa *Yasara* izberi <u>*File* >> New</u> (s tem izbrišeš vse prejšnje podatke). Potrdi z **OK**. V meniju izberi <u>*Options* >> Working Directory</u> ter nato mapo *Vaja_9* in v njej mapo *MICELE* in pritisni gumb **OK**. (Izbiraš tako, da *enkrat* klikneš na ustrezno mapo z levim gumbom miške).

Nato naloži in poženi skripto do_micelle_exampleX.mcr (*Options >> Macro & Movie >> Play Macro*). X je številka, ki ti jo določi asistent. Izriše se ti ustrezni micel.

Ta se ti v naslednjem koraku (sam od sebe) obda z molekulami modelne vode. Če želiš imeti prikazan samo micel, odpri terminal: v meniju izberi <u>*Window >> Console >> Open now*</u>. V komandno vrstico, ki se ti pokaže spodaj, napiši <u>*HideRes HOH*</u>.

(iii) Ko se simulacija konča, se ti v delovnem direktoriju shranijo posnetki simulacije, shranjeni ob različnih časih (v formatu PDB). Analiziral jih boš s programom *Yasara*.

(iv) Posnetek naložiš tako, da v meniju *Yasare* najprej izbereš *File* >> *New*, nato pa *File* >> *Load* >> *PDB File* ter izbereš prvega izmed posnetkov (v imenu pred .pdb ima številko 00). Izriše se ti micel.

(v) *Yasara* omogoča različne vrste analiz. Pri tej vaji si bomo ogledali, kako se hidrofobni del topilu dostopne površine micele spreminja med simulacijo. Če v *Yasarinem* meniju izbereš *Analyze* >> *Surface* >> *area of* >> *Object*, se ti odpre okno, v katerem lahko izbereš, katera površina te zanima.

Izberi ime, ki se ti izpiše (micel) ter <u>All</u>. V naslednjem oknu izberi topilu dostopno površino (*»Solvent accessible surface*«) ter *»Object*«. Površina se bo izpisala na terminalu spodaj.

(vi) Za razliko od topilu dostopne površine hidrofobna površina ni tako enolično določena. Če želimo ta podatek, moramo najprej definirati, kaj hidrofobna površina je. V našem primeru bomo za hidrofobne dele molekule smatrali atome H, C in S, ki niso vezni na atome N ali O.

Odpri terminal (*Window >> Console >> Open now*) ter v komandno vrstico napiši: **SurfAtom Element H C S with 0 bonds to Element N O, accessible** Površina se bo izpisala v terminalu.

(vii) Na enak način analiziraj vse posnetke ter nariši graf, ki ti prikazuje hidrofobni del topilu dostopne površine v odvisnosti od časa simulacije.
Pripravi poročilo za vajo, ki vsebuje:

— Za simulacijo argona parametre simulacije: število delcev, velikost simulacijske celice, gostoto sistema, polje sil (ime uporabljenega polja sil ter Lennard-Jonesova parametra σ in ε za argon), časovni korak, dolžino ekvilibracijskega dela simulacije in dolžino produkcijskega dela simulacije.

— Graf parske porazdelitvene funkcije, g(r), za simulacijo argona ob pogojih, ki ti jih določi asistent. Komentar njene oblike (kaj predstavljajo maksimumi/minimumi, zakaj gre funkcija proti ena za velike razdalje).

— Za simulacijo argona ob pogojih, ki ti jih določi asistent, graf odvisnosti kinetične energije, potencialne energije, celotne energije in temperature v odvisnosti od časa ekvilibracijskega dela simulacije. Komentiraj, ali je ekvilibracijski del simulacije dovolj dolg ter kako je z vzdrževanjem konstantne temperature.

— Za simulacijo argona ob pogojih, ki ti jih določi asistent, graf odvisnosti kinetične energije, potencialne energije, celotne energije in temperature v odvisnosti od časa produkcijskega dela simulacije.

— Za simulacijo argona ob različnih temperaturah graf, ki prikazuje odvisnost povprečne vrednosti kinetične, potencialne in celotne energije od temperature. Graf odvisnosti toplotne kapacitete argona v odvisnosti od temperature. Komentar temperaturnih trendov.

— Za simulacijo micele, ki ti jo določi asistent, graf vrednost topilu dostopne površine ter topilu dostopne hidrofobne površine v odvisnosti od časa simulacije. Komentar.

10. VAJA: Molekulsko sidranje ("docking")

Molekulsko sidranje je metoda, s katero napovedujemo orientacijo ene molekule (ligand) napram drugi (receptor) ter jakost interakcije ligand-receptor. Ti dve molekuli tvorita stabilni kompleks. Metoda je npr. sestavni del računalniško osnovanega iskanja novih zravilnih učinkovin.

Pri vaji si bomo ogledali sidranje baikaleina na protein SARS-CoV proteazo (3CL^{pro}).

* * *

Na namizju ustvari mapo **Vaja_10**, v katero bo program *Yasara* shranjeval ustrezne datoteke, in poženi program *Yasara*.

TARČNO SIDRANJE

(i) V meniju programa *Yasara* izberi *Options*. V zavihku, ki se ti odpre, izberi *Working Directory*. Odpre se ti okno, v katerem izberi (tj. *enkrat* klikni z levim gumbom miške) *Desktop* in nato mapo *Vaja_10* in pritisni gumb **OK**.

(ii) Uvozi strukturo kompleksa protein-ligand iz podatkovne baze PDB. V meniju izberi *File >> Load >> PDB file from Internet*. V oknu, ki se ti odpre, vtipkaj v polje <u>PDB ID</u> kodo **6m2n** in pritisni gumb **OK**.

(iii) Naloži se ti kompleks SARS-CoV-2 3CL^{pro} proteaze in inhibitorja baikaleina. Če z levim gumbom miške klikneš na napis 6m2n v tabeli <u>SCENE CONTENT</u> (desno zgoraj), se ti izpiše, da je objekt 1 (Obj 1) sestavljen iz štirih delov: najprej set štirih vnosov za protein (Mol A, B, C, D), nato sledi set štirih vnosov molekule baikaleina (Mol A, B, C, D), nato pa še set štirih vnosov molekul vode (z rdečo barvo označene Mol A, B, C, D).

(iv) Vnosi A, B, C in D so identični, zato lahko tri od njih izbrišeš. V terminal (odpreš ga s tipko SPACE) vpiši **DelMol B C D**. Molekule vode izbrišeš z ukazom **DelRes HOH**. Ostane le kompleks dveh molekul, označenih s črko A. Koordinatno izhodišče lahko centriraš s **CenterAll**.

(v) Oznako receptorja in liganda preimenuj. Pod <u>SCENE CONTENT</u> z desnim gumbom miške likni na prvi **Mol A** (takoj pod 6m2n). V meniju, ki se ti odpre, izberi **Name**. V oknu, ki se ti odpre, v polje Name vpiši **R**. Enako stori z drugim Mol A, le da ta vnos preimenuješ v **L**. Mol R sedaj označuje protein, Mol L pa ligand.

(vi) Kompleks najprej energijsko minimiziraj. V meniju izberi *Simulation >> Force field*. V oknu, ki se ti odpre, izberi polje sil **AMBER14** (klikni z levim gumbom miške) in nato pritisni gumb **OK, and if a force filed is selected above, also set its default parameters**. Nato v meniju izberi *Options >> Macro & Movie >> Play macro*. V oknu, ki se ti odpre, izberi (klikni z levim gumbom miške) **em_runclean.mcr** in pritisni gumb **OK**.

Select molecular dynamics force field		Select YASARA macro to play		
Force field	Force field terms	Browse		
AMBER03	Bond Planarity	dock_run.mcr	Yanaconda	
AMBERTI	Angle <u>C</u> oulomb	dock_runensemble.mcr		
AMBER14IP	Dihedral Van der Waals			
AMBER15IPO			a contraction	
OK and if a force	field is selected above, also set its default parameters	hm_buildfast.mcr	Always on <u>s</u> tartup	
		<pre>md_analyze.mcr md_analyzebindenergy.mcr</pre>		
Set these two para	ameters instead: 10.50000 A	In md_analyzehlock mcr		
Use PM	IE for <u>l</u> ongrange electrostatics			

(vii) Ko je minimizacija kočana, kompleks shrani pod imenom 6m2n_min.pdb: v terminal vpiši SavePDB 1, 6m2n_min, FORMAT=PDB. Izbriši celico in nato še molekule vode: v terminal najprej vpiši DelObj SimCELL in nato DelObj Water.

(viii) Za tarčno sidranje se bomo omejili na prostor okoli liganda. Simulacijsko celico v obilki kvadra bomo postavili tako, da bo oddaljenost od atomov liganda 5 Å. V terminal vpiši Cell Auto, Extension=5.0, Shape=Cuboid, Mol L. Okoli liganda se ti izriše simulacijska celica. Pripravljeno tarčo z ligandom shrani tako, da v terminal vpišeš SaveSce 6m2n_kompleks.sce. Izbriši ligand: v terminal vtipkaj DelMol L. Tarčo (protein z definirano celico okoli vezavnega mesta) shrani tako, da v terminal vtipkaš SaveSce 6m2n_receptor.sce.

(ix) Pripravi še ligand. Lahko ga izbereš iz minimizirane strukture ($6m2n_min.pdb$) ali pa ga v *Yasari* sestaviš s pomočjo SMILES kode baikaleina. Najprej počisti delovno okno tako, da v meniju izbereš <u>*File >> New*</u> in v oknu, ki se ti odpre, potrdiš s klikom na **Yes**. V terminal vtipkaš:

BuildSMILES String="OC1=CC2=C(C(O)=C1O)C(=O)C=C(O2)C1=CC=CC=C1"

Izriše se ti ligand. Strukturo energijsko minimiziraj na enak način kot v koraku (vi): izberi polje sil AMBER14 in poženi skripto **em_runclean.mcr**. Ko je minimizacija končana, si strukturo liganda shrani pod imenom 6m2n_ligand.pdb: v terminal vtipkaš **SavePDB 1**, **6m2n_ligand, FORMAT=PDB**. V mapi *Vaja_10* imaš sedaj datoteki **6m2n_receptor.sce** (tarča za sidranje) in **6m2n_ligand.pdb** (ligand, ki ga boš sidral).

(x) Počisti delovno okno *Yasare* (v meniju izberi *File >> New*). Nastavi macro za tarčo tako, da v meniju izbereš *Options >> Macro & Movie >> Set target*. V oknu, ki se ti odpre, izberi **6m2n_receptor.sce** ter označi **from underscore** in potrdi s klikom na gumb **OK**. V delovnem oknu *Yasare* se s tem korakom nič ne spremeni.

(xi) Zaženi sidranje: v meniju ponovno izberi *Options >> Movie & Macro >> Play macro*. V oknu, ki se ti odpre, izberi skripto **dock_run.mcr** in potrdi z gumbom **OK**.

Select YASARA macro to play	
Browse Turner Desktop Documents Documents Pictures YASARA Recent folders Upper folder dock_play.mcr dock_runensemble.mcr dock_runensemble.mcr dock_runelsemble.mcr dock_runelsemble.mcr	Always on startup

(xii) Ko je sidranje končano, dobimo na zaslonu sceno z različnimi pozami liganda znotraj celice, ki smo jo definirali. V mapi *Vaja_10* pa tudi datoteko 6m2n.log in datoteke 6m2n_xxx.yob (xxx so številke 001, 002 itd) s posameznimi pozami liganda.

(xiii) Odpri datoteko 6m2n.log in si oglej rezultate. V prvi tabeli je 25 poz, ki so razvrščene glede na vezavno energijo (bolj ko je energija pozitivna, boljša je vezava; negativna energija pomeni, da ne pride do vezave). Zraven je podana tudi konstanta vezave, ki je izračunana iz vrednosti za energijo, $K = exp(-\Delta E/RT)$. Sledi seznam aminokislinskih ostankov, s katerimi ligand interagira. Izpiši si vrednost vezavne energije in konstanto vezave za najbolj ugodno pozo.

Global d	lo ching result analysis
25 VIN/ sorted by	Adocking runs of the Jgggd object 3 to the receptor object 1 yielded the following results, blinding energy [more positive emergies indicate stronger binding, and negative energies mean no binding]
Run Bir	gl.grggflkg/lpgllD5555_constant [bgl] Contacting receptor residues
001	000007.4050 00000003733043.2500 R LEU 27 R HIS 41 R CXS 44 R ASP 48 R MET 49 R PRO 52 R TXR 54 R PHE 140 R LEU 141 R ASN 142 R GLX 143 R SER 144 R CXS 145 R HIS 163 R HIS 164 R MET 165 R GLU 166 R ASP 187 R ARG 188 R GLN 189
002	000007.4050 0000000373304325500 R LEU 27 R HIS 141 R CYS 44 R ASP 48 R MET 49 R PRO 52 R TYR 54 R PHE 140 R LEU 141 R ASN 142 R GLY 143 R SER 144 R CYS 145 R HIS 164 R MET 165 R GLU 166 R ASP 187 R ARG 188 R GLN 189
003	0000007.2110 00000005179250.5000 R HIS 41 R MET 49 R TYR 54 R THE 140 R LEU 141 R ASN 142 R GLY 143 R SER 144 R CYS 145 R HIS 163 R HIS 164 R MET 165 R GLU 166 R VAL 186 R ASP 187 R ARG 188
004	00/00/2/110 00/00/00/5/792/50/50/00 R HIS 41 R M ET 49 R TYR 54 R PHE 140 R LED 141 R ASN 142 R GLE 143 R SER 144 R CYS 145 R HIS 163 R HIS 163 R MET 165 R GLE 166 R VAL 166 R ASP 187 R ARG 188
005	00/00/1/10/01 00/00/00/02/4941/30/00/11 R H5 41 R M51 42 K G51 42 K G51 43 K H5 164 K ME 1 65 K G50 160 K
007	
008	000007.0559 J0000000000000000000000000000000000
009	000006 9570 00000007951542 5000 R HIS 41 R CVS 44 R MET 49 R TVR 54 R HIS 164 R MET 165 R GLU 166 R LEU 167 R PRO 168 R ASP 187 R ARG 188 R GLN 189 R THR 190 R ALA 191 R GLN 192
010	000006.9570 0000000 7951542.5000 R HIS 41 R CYS 44 R MET 49 R TYR 54 R HIS 164 R MET 165 R GLU 166 R LEU 167 R PRO 168 R ASP 187 R ARG 188 R GLN 189 R THR 190 R ALA 191 R GLN 192
011	000006.9030 0000008710316.0000 R THR 25 R THR 26 R HIS 41 R CYS 44 R MET 49 R PRO 52 R TYR 54 R ASN 142 R HIS 164 R MET 165 R GLU 166 R ASP 187 R ARG 188 R GLN 189
012	000006.8770 0000009101064.0000 R THR 25 R HIS 41 R VAL 42 R CYS 44 R MET 49 R TYR 54 R PHE 140 R LEU 141 R ASN 142 R GLY 143 R SER 144 R CYS 145 R HIS 163 R HIS 163 R HIS 165 R GLU 166 R ASP 187 R ARG 188 R GLN 189
013	000006.8760 00000009116438.0000 R THR 25 R THR 26 R LEU 27 R HIS 41 R CYS 44 R MET 49 R PHE 140 R LEU 141 R ASN 142 R GLY 143 R SER 144 R CYS 145 R HIS 163 R MET 165 R GLU 166
014	000006.8680 0000009240368.0000 R HIS 41 R MET 49 R TYR 54 R PHE 140 R LEU 141 R ASN 142 R SER 144 R CYS 145 R HIS 163 R HIS 164 R MET 165 R CLU 166 R VAL 186 R ASP 187 R ARC 188 R CLN 189
015	000006.7150 00000011962990.0000 R HIS 41 R MET 49 R LEU 141 R ASN 142 R GLY 143 R SER 144 R CYS 145 R HIS 163 R HIS 164 R MET 165 R GLU 166 R LEU 167 R PRO 168 R ARG 188 R GLN 189 R HR 190 R ALA 191 R GLN 192
016	000006.6710 00000012885230.0000 R THR 25 R THR 26 R LEU 27 R HIS 41 R MET 49 R ASN 142 R GLY 143 R CYS 145 R HIS 164 R MET 165 R GLU 166 R VAL 186 R ASP 187 R ARG 188 R GLN 189
017	000006.6690 00000012928799.0000 R THR 25 R HIS 41 R VAL 42 R CXS 44 R MET 49 R ASN 142 R MET 165 R CLU 166 R LEU 167 R PRO 168 R VAL 186 R ASP 187 R ARC 188 R CLN 189 R CLN 192
018	000006.5860 00000014872980.0000 R HIS 41 R LEU 141 R ASN 142 R GLY 143 R SER 144 R CYS 145 R HIS 163 R HIS 164 R MET 165 R GLU 166 R LEU 167 R PRO 168 R ARG 188 R GLN 189 R THR 190 R ALA 191 R GLN 192
019	000006 5210 000000 6597536.0000 R THR 25 R THR 26 R LEU 27 R HIS 41 R MET 49 R ASN 142 R GLY 143 R CYS 145 R MET 165 R GLU 166 R ASP 187 R ARG 188 R GLN 189
020	000006.5030 00000017/105518.0000 K HS 41 K C/S 44 K MEL 49 K RKO 52 K 1/K 54 K [HE] 140 K [EQ 141 K ASK] 142 K C/S 145 K HS 155 K HS 155 K HS 155 K MS 155 K GU 156 K AKG 188 K GU 159
021	000000240401 00000022221146.0000 K TMK 25 K TMK
022	
024	
025	-00028.6660 None R HIS 41 R MET 49 R ASY 142 R MET 165 R LEU 167 R PRO 168 R AKC 189 R CLN 189 R TLK 190 R ALL 31 R L CLN 192

(xiv) Počisti okno *Yasare* (*File* >> *New*). Odpri datoteko z najbolj ugodno pozo tako, da v meniju izbereš *File* >> *Load* >> *YASARA Object* in v oknu, ki se ti odpre, izbereš datoteko $6m2n_001.yob$. Potrdiš s klikom na gumb **OK**. V meniju izberi <u>View</u> >> *Style scene* >> *Overall style: Ribbon & ligand*. Oglej si, katere interakcije tvori ligand z aminokislinskimi ostanki proteina (vodikova vez, hidrofobna interakcija, π - π interakcija). Če z levim gumbom miške klikneš na atom aminokislinskega ostanka, se ti v tabeli levo zgoraj (<u>ATOM</u> <u>PROPERTIES</u>) izpiše ime aminokisline. Primerjaj s podatki v datoteki 6m2n.log.

View Effects 3DM Options	: <u>W</u> indow <u>H</u> elp 🔞 😋		SCE	NE CC	DNTENT
Dupl <u>i</u> cate	Overall style: Ball		<u>Name V</u> n2n_001 Y	is Act es Yes	Atom 1
Style scene	Ball&Stick		Nol R Y	es Yes	
Style atoms	Stick	2 41	drophobic Y	es Yes	
Switch object	Trac <u>e</u>	39		es Yes	
Show atoms	Tube			o No	
Show trace	<u>R</u> ibbon			No	
Show secondary structure	Ribbon & ligand				
Show interactions	<u>C</u> artoon			o No	
Show surface of	Cartoon & ligand			o No	
Show cavities in or at	Side-chain atoms:				
Show electrostatic potential	Ball				
Hide atoms	Ball&Stick				
Hide trace	Stic <u>k</u>				
Hide secondary structure of	<u>H</u> idden				
Hide surface of	Hetgroup atoms:				
Hide hydrogen bonds of	Ball				
Cut	Ball&Stick				
Projection	Stick				
Lighting	Sat dafault atula				
Atom appearance	Store as default style				
	Clore de golduit style				
	*				

(xv) Določi kvaliteto poze glede na izhodno kristalno strukturo. Najprej počisti delovno okno *Yasare* (*File* >> *New*). Nato naloži izhodni minimizirani kompleks tako, da izbereš *File* >> *Load* >> *PDB file* in v oknu, ki se ti odpre, izberi $6m2n_min.pdb$ ter potrdi z gumbom **OK**. Nato naloži še sidrano strukturo: izberi *File* >> *Load* >> *YASARA Object* in v oknu, ki se ti odpre, izberi $6m2n_min.pdb$ ter potrdi z gumbom **OK**. Nato naloži še sidrano strukturo: izberi *File* >> *Load* >> *YASARA Object* in v oknu, ki se ti odpre, izberi $6m2n_001.yob$ ter potrdi z gumbom **OK**. Proteina sedaj nimata istega koordinatnega izhodišča in orientacije. Molekuli proteina poravnaj tako, da izbereš *Analyze* >> *Align* >> *Molecules with MUSTANG*. V oknu, ki se ti odpre, najprej izberi pod <u>Sequence</u> drugi **R**, potrdi z gumbom **OK**. Ko se ti okno ponovno odpre, izberi prvi **R** in potrdi z **OK**.

Sedaj izberi <u>Analyze >> RMSD of >> Molecules</u>. V oknu, ki se ti odpre, izberi pod <u>Sequence</u> najprej **A** in potrdi z gumbom **OK**, nato pa še **L** (spet potrdi z gumbom **OK**). V oknu, ki se ti odpre, izberi samo **Atom name** in **Molecule** (ostalo naj ne bo odkljukano). V konzoli odčitaj vrednost RMSD v Ångstromih.

SLEPO SIDRANJE

(i) Da boš preveril, ali lahko sidranje napove pravilno vezavno mesto na proteinu, boš izvedel še slepo sidranje.

- Najprej počisti delovno okno *Yasare* (*File >> New*).
- --- Naloži mimimizirano strukturo (*File >> Load >> PDB file*; izberi 6m2n_min.pdb).
- Odstrani ligand, tako da v terminal vpišeš **DelMol L**.

— Definiraj simulacijsko celico tako, da v terminal napišeš **Cell Auto, Extension=10.0, Shape=Cuboid**.

— Sceno shrani tako, da v terminal vpišeš SaveSce 6m2nSlepo_receptor.sce.

— Kot v koraku (x) nastavi makro za tarčo: <u>Options >> Macro & Movie >> Set target</u>; v oknu, ki se ti odpre, izberi 6m2nSlepo_receptor.sce ter označi from <u>underscore</u> in potrdi s klikom na gumb OK.

---- V mapi Vaja_10 preimenuj ime 6m2n_ligand.pdb v 6m2nSlepo_ligand.pdb.

— Kot v koraku **(xi)** zaženi sidranje: <u>*Options* >> Movie & Macro</u> >> <u>*Play macro*</u>; v oknu, ki se ti odpre, izberi skripto **dock_run.mcr** in potrdi z gumbom **OK**.

(xvi) Ko je sidranje končano, primerjaj kristalno strukturo z napovedanimi strukturami (datoteke 6m2nSlepo_xxx.yob).

— Počisti delovno okno *Yasare* (*File >> New*).

— Naloži minimizirano eksperimentalno strukturo (*File >> Load >> PDB File*; izberi 6m2n_min.pdb), nato naloži pvo pozo (*File >> Load >> YASARA Object*; izberi 6m2nSlepo_001.yob).

— V meniju izberi <u>View >> Style scene >> Overall style: Ribbon & ligand</u>. Molekuli poravnaj kot v koraku (xiv): <u>Analyze >> Align >> Molecules with MUSTANG</u> (izberi pod <u>Sequence</u> najprej drugi **R**, nato prvi **R**).

Ali je vezavno mesto z najbolj ugodno vezavno energijo, ki si ga dobil pri slepem sidranju, identično eksperimentalnemu? Primerjaj vrednosti vezavnih energij za tarčno in slepo sidranje.

IZBIRA NAJBOLJ USTREZNEGA LIGANDA IZ KNJIŽNICE SPOJIN

Kadar imamo knjižnico potencialnih inhibitorjev, lahko s pomočjo molekulskega sidranja napovemo, kateri izmed njih bi imel potencialno najboljši učinek (najboljšao vezavo). Ligande, ki jih dobiš od asistenta, s pomočjo sidranja na obravnavano proteinsko tarčo, razvrsti glede na stabilnost nastalega kompleksa. Primerjaj razporeditev s trendom v eksperimentalno določeni konstanti vezave, K_d .

Za vsak ligand posebaj naredi naslednje:

— V mapi Vaja_10 najprej preimenuj datoteko 6m2n_receptor.sce v ImeLiganda receptor.sce, pri čemer je ImeLiganda oznaka za uporabljeni ligand.

— V *Yasaro* uvozi ligand glede na njegovo SMILES kodo. V terminal vpiši **BuildSMILES String="....."**

— Ligand energijsko minimiziraj: <u>Simulation >> Force field</u> (izberi AMBER 14). Nato <u>Options >> Macro & Movie >> Play macro</u>; izberi em_runclean.mcr.

— Ko je minimizacija končana, shrani ligand v pdb datoteko. V terminal napiši: **SavePDB 1, ImeLiganda_ligand, FORMAT=PDB**.

— Počisti delovno okno Yasare (*File >> New*). Nastavi tarčo: *Options >> Movie & Macro >> Set target* in izberi **ImeLiganda_receptor.sce**.

— Poženi sidranje: <u>*Options* >> *Movie & Macro* >> *Play macro*</u>. Izberi **dock_run.mcr**.

— Ko je sidranje končano, si iz datoteke **ImeLiganda.log** izpiši vrednost vezavne energije in pripadajoče konstante vezave za najboljšo pozo.

* * *

Pripravi poročilo za vajo, ki vsebuje:

— Tabelo z energijami, vezavnimi konstantami in seznamom aminokislinskih ostankov, ki sodelujejo pri interakciji protein-ligand, za vseh 25 poz pri tarčnem sidranju.

— Sliko eksperimentalnega kompleksa s superponirano napovedano strukturo liganda ter vrednost RMSD.

— Sliko predvidenega najboljšega vezavnega mesta pri slepem sidranju in primerjavo z eksperimentalno določenim mestom. Komentar: primerjava med tarčnim in slepim sidranjem.

— Razvrstitev ligandov glede na njihovo inhibitorsko sposobnost.