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The paper describes the implementation of the adaptive force control of an industrial
robot. The implemented algorithm is a position based hybrid control scheme with adap-
_tation to the environment stiffness. Control scheme s sensitive to the changes in envi-
-ronment stiffness. We solved this problem by the adaptive controller. Imblementation
problems on the robot controller are also discussed. The proposed control method is
casy to implement and can be applied to existing industrial roboets fitted with a con-
ventional position controller. The performance of the force controlled manipulator with
the proposed control law was tested with the compnter simulation and by using the real

robot.

1 Introduction

Many of robot industrial applications, such as au-
tomated assembly, deburring, teleoperation, etc.,
require exact control of interaction forces with the
- environment. The problem of controlling inter-
action forces has been investigated by many au-
thors. According to Kazerooni [7], active force
control strategy can be classified into two major
approaches. The first approach force or torque
is commanded along those directions constrained
by the environment, while position or orientation
is commanded in the direction unconstrained by
the environment. The above approach was for-
malized by Mason [9].. Craig and Raibert [12]
introduced a hybrid force/position controller by
controlling the actuator torque. Whitney [14] pro-
posed damping control where sensed force error
is transformed into the commanded velocity of
the actuator. A similar approach was used by
Paul and Shimano [11]. Some advantages can be
obtained if the decoupling of the manipulator is
done in the task space, like in the operational
space approach introduced by Kathib [6]. The
second approach is based on establishing a rela-

tionship between the position of the manipulator
and interaction forces. Error in position, velocity
and force generates joint torque commands. Salis-
bury [13] introduced the stiffness control approach
which acts like a six-dimensional active spring in
the tool coordinates. Impedance control which
combines stiffness and damping control was in-
troduced by Hogan [5]. Our approach is modified
hybrid /position force controlier where force error
is converted to the position offset. This method is
easy to implement and requires no modification at
the servo level of the robot controller. The stabil-
ity and response of the proposed force controller
depend on the sensor and environment stiffness.
For applications on unknown or changing environ-
ment stiffness we propose a simple adaptive con-
troller which adapts the gain of the force control
loop to the environment and sensor stiffness.

2 Force control

The problem of compliant control can be broken
down into pure position and pure force control. In
a direction where the robot task is unconstrained
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by the environment, purc position control can be
used, while in the direction constrained by the
environment pure force control is used. The con-
strains imposed by the environment are called
natural constrains. In order to specify the de-
sired task, artificial constraints are introduced.
Natural and artificial constraints together form
N-dimensional constrained space C, where N is
the number of the Cartesian degrees of {reedom.
The task of the controller is to map the C space
into the manipulator joint movement. The hy-
brid force control method controls motor torque
directly. Here, another approach was used due to
the hardware limitation of the controller of our
robot. The force control is implemented in the
outer loop of the existing position/velocity control
! and generates new N dimensional input vector
¥4 in tool coordinate system '

ya = Sx; + (I-8)x, (1)

where X, is the desired displacement vector of
the robot (translations and orientations), I is the
identity matrix and S is the compliance selection
matrix [12], and x; is

x; = Ky(Fa - F) (2)

where K/ is the force controller transfer function
and F and F; are the measured force and the
desired force, respectively. The compliance se-
lection matrix is defined as a binary NxN-tuple
which specifies which degrees of {reedom in C are
under force control and which are under position
control. The first term in the Eq.1 corresponds to
the force control loop where the last term is the
position (orientation) command vector. The posi-
tion (orientation) command vector is transformed
from the tool coordinate system to the rabot base
coordinate system and then to the joint coordi-
nates. Joint coordinates qq are passed to the posi-
tion/velocity controller. This transformation can
be described by the equation

q4 = ¥ (A(ya)) (3)

where ¥~! describes the transformation from the
Cartesian space to the joint angles and A denotes
the transformation from the tool coordinates to
the robot base coordinates.

Ithis method is referred Lo as position based force
control

A simple PI controller with the discrete trans-
. I = z'l 5
fer function I\;—l—_-i—_r was used for the force con-
troller transfer function. In order to improve the
stability, first order anti alias filter was used in
the force feedback loop.

2.1 Design of the force controller :

Single—joint case

We will first design the closed loop system for the
single joint case. Stability analyses will be done
in the S domain by a root locus design. A model
of the one-joint robot system with DC (AC) mo-
tors is presented on Fig. 1. The paramcters
of the transfer functions were estimated by using
the test signals and LS estimation procedure and
compared with the known parameters of the sys-
tem to validate results. For the third joint of our
robot the transfer function parameters are as fol-
lows:

Ky = 008 rad/N gain of the force control

£ = 0.997 damping of the force control
K, = 1400 1 /s gain of the position control
K = 15900 gain of the velacity comp.
K, = 1900 Vs/rad gain of the I* velacity control

K. = 5000 V/rad

K, = 0.03183t V/rad?
K, =023 Nm/A

Ky = 0.101 Vs/rad
R=0910

Be“ = 0.0003 Nms/rad
H.q = 0.00046 Nms? frad
K, = 350 N/ead

gain of the [ velocity control
tachometer gain

torque constant

back EMF constant

motor resistance

effective damping

cffective incrtia
sensorfenvironment stiffness

n = 1/70 gear ratio
a =50 anti alias filter pole
Ts=001s sampling time

The position controller consists of simple K,
gain with {eed-forward velocity compensation re-
alized by a digital computer. Since the sampling
time of the position control loop is much smaller
than the sampling time of the force feedback loop,
it is assumed that the position controller is real-
ized with an analog fecdback. The force control
loop is realized by a digital computer, thereforc
we will assume zero-order sample/hold element at
the input of the position controller. We assume
simple model environment, described by the Eq.
4, where g, and g is the environment contact po-
sition and measured position in joint coordinates
respectevely.

F=K.(¢-q)

From Fig. 1 we can compute the open loop

(4)

23

2apen laop with respect to the force loop
3we will omit the subsystem index i in the equations for
the single joint case
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Figure 1: Model of one robot joint with velocity and position control

transfer function for the single joint case in the
form

q=.G1(8)g2 + Ga(s)f - (5)
where : | ) \ _
Gi(s) = "Ifi(fi'p+k$?zgﬁ'u;+fs'vs) (©)
n?Rs ' _
GZ(S) = W (7)
and
W(s) = HeysR+ (8)

(BoggR+ KK Ky + KiKy)s® +
Ki( KKy + KpKon)s + KiKpKin

Discrete PI force control law for the single joint
case is S

9a(k) = qa(k — 1) + Ky(e(k) — Le(k - 1)) (9)

where e = (fi(k) — f(k)), f and fy are the mea-
sured and the desired joint forces . respectively.
Factor £ was chosen to meet the desired dynamic
performance of the closed loop system. The over-
all discrete transfer function of the reduced ¢ open
loop system with one sample delay in the control

“The non-reduced system is of 5th order. The system

was reduced by canceling non-dominate poles and non- -

dominate zeroes

loop and first order anti alias filter for the sam-
pling time T, = 0.01 s is thus

0.0221:~" —0.0180:~2% — 0.00292~? — 0.000075*

Gz} =
(=) § = 1.4488z=t 4 0ATIBz—2 ~0.00052—3 —D.00004z4

The above model was used to determine suit-
able gain for the force control loop via discrete
root locus analyses. The root locus for the 3rd
joint discrete model of our robot is presented in
Fig.2. The gain K’y where system becomes unsta-
ble is 0.132 rad/N and suitable gain at dominant
damping factor { = 0.5 is 0.06 rad/N.

2.2 Design of the force controller :
Multi-joint case

Robot dynamics is described by using the La-
grangean formulation, with the Eq. ®

T = H(q)§ +d(q,q)+ I'F (10)

where 7 is the N-dimensional actuator force
(torque) vector, H(q) is the NxN dimensional ma-
nipulator and actuator inertia matrix, d{(q,q) is
the N-dimensional vector of Coriolis, centrifugal,
gravity and friction forces, J is the manipulator
Jacobian and F is the compliant force in Carte-
sian coordinates. '

*for the sake of simplicity we will omit time dependence
in the equations that follow
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Figure 2: Discrete root locus of the system

In a general case Eq. 10 describes a highly non-
linear and strongly coupled multivariable system.
A stability analysis with the proposed control law
is very diflicult, if not. impossible for such a sys-
tem. The following is assumed for the stability
. analyses

— The gravity is compensated either by me-
chanical construction of the robot or by on-
line calculation and compensation with a
controller. '

— the manipulator is operating at low speed,
centrifugal and Coriolis forces are therefore
negligible.

— the deflections in the position around the de-
sired force are low, because force sensors have
high stiifness. This assumption will allow lin-
carisation of the system around the set point.

Furthermore the majority of existing industrial
robots have a high gear ratio between the drive
motors and the joint. With the above assump-
tions the matrix of inertia H(q) can be approxi-
mated by a diagonal matrix with constant terms
H,; and d(q,q) can be approximated with con-
stant damping Bq.

r=H,q+Bq+3'F {(11)

Far a noncompliant motion Eq.11 describes a de-
coupled system, which is generally not true in case
of compliant motion. First we will analvse the

-
o

open loop transfer function (Eq.5) for multi joint

case. Matrices Gy and Gz are diagonal matri-

ces consisting of the subsystem transfer functions
described by 1g.6 and Fqg.8 respectively.

q=Giqu+ G J'F = Giqu + G2I K, (x - x.)

(12)
where X is the position and x. is the contact posi-
tion in the Cartesian coordinates. We will define
position as position for the desired force plus the
deflection lrom that sel point x = xy+ Ax. Then
Fq.12 can be rewritten in the form

éle + G2J'I'Ksc((xd - X:)+ Ax)

Giqi+ G223 (Fy + K., Ax)  (13)
Giqs + Go(fs + ITK,.JAq)

q:

i

1

Matrix J7K,.J is the joint stiffness matrix K., .
The control law for cartesian coordinates is in the
form
Oxy = KK (xq — % —x+ X} = K/ K, Ax
(h
Next we maltiply both sides of the Eqg. 111 by
Jacobian inverse and assume. that all subsystems




arc tuned using inner position and velocity con-
troller to have equal close loop dynamic proper-
ties. Then, the matrix K;K,, is diagonal matrix
with equal terms and control [aw (Eq. 14) can be
rewritten into the form '
_ Ny = K/K..Aq (13)
Control law for the multi-joint case is thus iden-
tical to the control law in si ngle-joint case.
From Eq. 5 and 13, we can sce that the dy-
namics of the multi joint case is thus similar to
the dynamics-of the single-joint case except that
the joint compliance K,; matrix introduces non-
linearity and cross-coupling between joints. Joint
stiffness matrix can be calculated and compen-
“sated on-line. This will assure stability of the
overall system regarding the assumptions pre-
sented at the beginning of this paper section. In

: our robot with high gear ratio the influence of the

last term in the Eq.13 is almost negligible and the
results of the single-joint case are also valid for the
multi-joint case.

2.3  Adaptation to the variable sensor
‘ and environment stiffness
‘The stability of the proposed force control loop

is mainly affected by the environment and sensor
stifTness. If the stiffness is not known in advance

or is changing during the task, the response of

the force control may be to slowness when the ex-
pected stiffness is lower than real stiffness. When
the real stifTness is greater than the expected stiff-
ness, the response of the robot can be very oscilla-
tory, bouncing and c¢ven unstable. ‘This problem
can be slightly reduced by diminishing time de-
lays in the force control loop (sec the results of
[1]), but this may be impossible with some robot
controller architectures. The above problem can
be efliciently solved by the adaptive control loop.
Sensor stiffness can be computed from Eq. 4. Un-
fortunately, the contact position x, vector is usu-
ally not known in advance. Differentiating the
Eq. 4 poses implementation problems. Robot po-
sition signals are usually read from encoders and
arc not so affected by noisc as force signals, which
are read as analog values from an A/D converter.
Differentiating noisy signals gives less useful re-
sults, In [2] averaging was proposed to avoid this
problem. Namely, Eq. 4 can be expressed also
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as F = K,.x - Fg, where Fy is a constant offset
if contact position remains wnchanged. However,
averaging slows the adaptation speed. We pro-
posc a stale variable filter to solve differentiation
problems. In this case, force readings and posi-
tion vectors are lead to the simple, stable, first
order filter with transfer function '

&

bs 4+

Gy = (16)

which can he realized by a computer program or

by a simple analog circuit. The realization of the

filter is presented on Fig. 3. Filtered derivatives
F; and x; are then used for the estimation of
the sensor and environment stifflness. A

£
Fo__ < .
_r s

1y
b/

——’

Figure 3: Derivative of an Signal obtained by fil-
tering ‘

direct adaptive controller was used in our con-
trol scheme. In order to increase the adapta-
tion speed and avoid the computational burden
we chose simple reference model in the form
F,. = GKox (17)

with the desired response. Root locus design was
used to determine the required gain Kg for the
desired behaviour of the reference model. Note
that sensor-environment stiffness is included in
Ko. The aim of the adaptive controller is to mini-
mize the output error between the reference model
and the system with variable gain Ky
F = GK[K,.x (18)

It can easily be verified that the proposed adap-
tive control satisfies the criteria for the perfect

lincar model following control [8]. The.gain Ky
b for the cach subsystem is calculated using RLS

“we will omit the subsystem index i in the equations
that follow
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Figure 4: Adaptive control scheme

estimation procedure in the form

Ky(K) = Ky(k - 1)+ | (19)
P{k = 2)9(k - 1) -
T+ 9(k - )Pk ~ Dok = 1)k~ 1
_Fk-1y
Pwk—-1)= B (20)

enlk = 1) = &(k=1) - p(k—1)  (21)

P(k-1)=(P(k-2) -

Pk — 239k = 1)¢p(k ~ 1)P(k - 2)
1+ ik — 1) P(k — 2)pk — 1

(22}
)A

Ais the appropriate chosen forgetting factor. Nor-
mally, the forgetting factor is set between A =
0.95 and A = 0.99. However, a large forgetting
factor slows down the convergence of the estima-
tion, but the algorithm is more resistant to a sud-
den change in the estimated parameters due to
noise . In our case we get the best results with a
forgetting factor of about A = 0.7. In this case the
behaviour of the RLS estimation will approach
the projection estimation algorithm. With a low
forgetting factor. A, there is a danger of covari-
ance blowup during the period when the system
is insufficiently excited [3]. In our case we solved
the problem by identifying only during the period
when filtered derivative of the lorce was above the
noise limit.

If the contact position remains unchanged dur-
ing the adaptation, the adaptive system is lin-

ear in the unknown parameter and the stabil-
ity of such a system can be easily verified un-
der the assumption of a persistently excited sys-
tem [4]. However, if the contact position changes
during the adaptation, it is impossible to esti-
mate both contact position and stiffness of en-
vironment. Namely, changes in contact position
have the same effect as changes in environment
stiffness. To solve this problem we propose to
estimate K; only a few samples after the sen-
sor reaches the obstacle, i.e. to identify only few
samples after the filtered force derivative changes
from 0 to the ¢, where ¢ is a suitably chosen con-
stant according to the sensor reading resolution
and noise in the measurement.

The adaptive control scheme is presented in
Fig.4. Note that at low speed calculation of the
robot position in the task space can be replaced
by the desired position in the task space. The
closed loop behaviour was simulated by using con-
tinuous time simulation of the DC motor, gears,
velocity controller and sensor, discrete simulation
for the position control and trajectory interpola-
tion at a sampling interval of 0.0016 s and discrete
simulation of the force control loop at a sampling
interval of 0.01 s,

The simulation results for the step response
of the proposed control scheme are presented
in Fig.5 for the non-adaptive and adaptive con-
troller with filtered signals respectively. Both, the
adaptive and non-adaptive controller were tuned
for the environment stiffness 1 N/mm, while ac-




tual environment stiffness was 4 N/mm. From
the simulation results we can see that the non-
adaptive controller starts to bounce when envi-
ronment stiffness increases and goes to a limit cy-
cle. In contrary, the adaptive controller quickly
adjusts to the new environment stiffness.

‘The simulation -results were compared to the
measurement obtained on the real robot. The
step response of the adaptive and non adaptive
controller for the stiff environment are presented
in Fig.6. The adaptive controller estimates cor-
rect gain and is stable, but some oscillation can
be noticed during the impact, which are not ob-
tained in the simulation. This is mainly due to
the nonlinear friction and backlash in the gears,
- which were not included -in the simulatjon.

3 Implementation on the robot
controller

The proposed compliance control scheme was im-
plemented on a 6. d.o.f. industrial robot RIKO
106. The architecture of the control system is
presented in Fig.7. The main CPU of the robot
controller is dedicated to trajectory generation,
kinematic transformation and man-machine inter-
face, The axis computer is used for the digital
position controller with feed-forward speed com-
pensation and for interfacing with the controller
periphery. Because of hardware limitations, force
feedback was realized via the main CPU. The
sampling interval of the force controller, as well
as the sampling interval for the trajectory gen-
cration module was set to 0.01 s. The desired
trajectory is passed to the axis CPU by a shared
VME RAM. The axis computer generites trajec-
tory with sampling time 0.0016 s by polynomial
interpolation. Due to the interpolation algorithm
and data exchange between the main and the axis
CPU a delay of 0.02 s appears in the force feed-
back loop. RRL robot programming language
is implemented on the robot controller [10]. Three
additional commands were added to RRL for the
compliant motion definition. Natural constrains
are defined with command ForceSELect, FSEL s1
82 .. 86. Nonzero parameters sl .. s6 cotre-
sponds to the pure force control in the direction x
y z roll pitch yaw, while the zero parameter spec-
ifies the pure position control in the tool coordi-
nates, The value of the parameters sl ..s6 selects

along the X axis of the workpiece.
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the A/D channel where the corresponding force
signal appears. The negative parameter reverses
the signal input sign. Artificial constraints are
defined with command ForceTRACK, FTRACK c1

6, where ¢l .. c6 is the desired velocity {an-
gular velocity) or force (torque) vector according
to the artificial constraints definition. The offset
of the sensor and A/D converter, as well as the
effect of gravity on the sensor and tool is removed
using command CALIBRATE FS. Of course, during
the calibration, the force sensor should not be in
contact with the environment. . Calibration acti-

" vates also adaptation procedure.

4 Example

Force control was tested on the deburring pro-
cess of an irregulary shaped workpiece. The task
of the robot was to apply constant force 70 N
in the orthogonal direction of the free movement
of the robot and to maintain zero torque at the
tool during movement at constant speed 10 mm/s
We used a
three-dimensional wrist mounted force sensor, de-
veloped at our institute. The RRL program for
the required task is listed in Fig.8. The response
of the robot js presented in Fig.9 for orthogonal
force and wrist torques respectively. In the Fig.9
plot between (t=>5sec) and (t=9sec) shows the
tracking of the sensor when change in the shape
of workpiece occur, We can see that the signals
are rather chattering. It was found that this is
caused mainly by poor resolution, cross-coupling
and noise of the sensor. A higher sampling fre-
quency improves the transient response, but does
not eliminate chattering from the response.

5 Conclusion

A force control algorithm based on a hybrid con-
trol scheme was presented. The main difference
between the original method and our approach is
that force is controlled by changing the desired
position. This approach allows implementation
on existing robot controllers with a position and
velocity control loop. The limitations of our ap-
proach are the following: '

— position resolution of the rohot controller af-
fects the force resolution of the system. In
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1 » RRL saﬁple program for the deburring process

2 » :

3 * define maximal, actual speed and toll center point

4 MAXSP = 1000 40

5 SPEED = 50.0

6 TCP1=02350000 o

7 * approach start point of the deburrlng and calibrate sensor
8 APPRO TO 1 FOR 0 -10 O

9 CALIBRATE FS

.10 * natural constraints

11 FSEL0O 100 2 3

12 = artificial constraints , start deburring, stop on external signal
13 FTRACK 10.0 70.0 0 0 © O UNTIL SIG O

14 DEPART FOR ¢ -10 O

15 HOME

Figure 8 RRI, program for the deburring process
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other words, the proposed control scheme
will not work with sensors with high stiffness
and robots with poor position resolution.

— the sampling interval of the force control loop
is the same as the sampling frequency of the
trajectory generation module.

Therefore, the proposed method is suitable for
compliant tasks at low speed. In-the proposed
control law the environment stiffness is directly
multiplied by the force control gain. Additionally,
time delays introduced by the interpolation al-
gorithms and communications between main and
axis processor affect the stability of the control
algorithm. To avoid this problem we proposed
simple direct model reference adaptive controller.
A discrete root locus was used for the force con-
troller design. The results were verified with a
simulation and compared with the response of the
actual robot. The paper shows that the root locus
design is also suitable for a multi-joint case in the
case of the high gear robot and low speed robot
movements.
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