Ni(II), Cu(II), Zn(II) AND Cd(II) COMPLEXES WITH DINEGATIVE N,N,O-TRIDENTATE URACIL-DERIVED HYDRAZONES

Francisco Hueso-Ureńa, Nuria A. Illán-Cabeza, Miguel N. Moreno-Carretero^{*} and Antonio L. Peńas-Chamorro

Departamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071-Jaén, Spain

Received 9.10.2000

Abstract

The synthesis and spectroscopic characterization of complexes of Ni^{II}, Cu^{II}, Zn^{II} and Cd^{II} containing hydrazones derived from 6-amino-5-formyl-1,3-dimethyluracil and nicotinic and isonicotinic acid hydrazides are reported. In all cases, the complexes appear to be monomeric and four-coordinated, with three binding sites occupied by the dinegative tridentate ligand, which makes two five- and six-membered chelate rings and the fourth position occupied by either water or ammonia. The coordination of the organic ligand takes place through the deprotonated N6 atom from the 6-amino group, the N51 azomethine atom and the O52 oxygen from the hydrazide moiety. Experimental data indicate that neither carbonyl oxygen atoms from the uracil ring nor the endocyclic nitrogen atom from pyridine are involved in the coordination to the metal.

Keywords: Complexes, hydrazones, Schiff bases, nicotinic acid, uracil

Introduction

Biological activity of complexes derived from hydrazones has been widely studied and contrasted, acting in processes such as antibacterial, antitumoral, antiviral, antimalarial and antituberculosis effects.¹ A lot of complexes derived from hydrazones such as thiosemicarbazones have been reported;²⁻⁵ compounds of this type have a great biological activity as antitumoral and antiviral agents. They usually show an N,N,S coordinating mode. However, there are very little information about O,N,O or N,N,O hydrazone compounds in bibliography.

F. Hueso-Ureńa, N. A. Illán-Cabeza, M. N. Moreno-Carretero, A. L. Peńas-Chamorro: Ni(II), Cu(II)...

In order to increase the knowledge about the coordination and bioinorganic chemistry of these compounds,⁶⁻¹⁴ two new hydrazone ligands (see Fig. 1) derived from 6-amino-5-formyl-1,3-dimethyluracil and nicotinoyl and isonicotinoyl hydrazides have been synthesized. The molecular structure of both ligands has been designed in a way that the activity of hydrazones with the uracil derivatives one has been tried to join with. Thus, the coordinating capacity through both the azomethinic nitrogen and carbonylic oxygen atoms of hydrazones has been enhanced with two new basic atoms (O4 and N6) available for metal ligation from the five-substituted uracil derivative. Furthermore, the presence of uracil ring may contribute to the resulting compounds with an structural analogy with the species found in biological systems, being this fact useful to their potential pharmacologic applications due to the azomethinic bond may be hydrolized in the acid pH of cancer cells, liberating the uracil derivative, which may act as an efficient alkylating or antimetabolite drug.

Experimental

Apparatus: C, H, N and S microanalyses were performed on a Fisons EA1108 apparatus. Conductivity measurements have been carried out using 10^{-3} M freshly prepared DMF solutions on a Hanna HI8820 instrument. IR spectra were measured on Perkin-Elmer FT-IR 1760-X (KBr pellets, 4000 - 400 cm⁻¹) and FT-IR Bruker Vector-22 spectrophotometer (polyethylene pellets, 600 - 220 cm⁻¹). ¹³C and ¹H-NMR spectra were recorded using a Bruker AM-300 apparatus (DMSO-d₆ solutions). Electronic spectra (diffuse relectance, 240 - 1500 nm) were recorded on a Perkin-Elmer UV/VIS/NIR

F. Hueso-Ureńa, N. A. Illán-Cabeza, M. N. Moreno-Carretero, A. L. Peńas-Chamorro: Ni(II), Cu(II)...

Lambda-19 machine using a BaSO₄ pellet as reference. EPR spectra were obtained in the X-band at room temperature on a Bruker ESP 300E spectrometer, with a microwave frequency of 9.79 GHz and a modulation frecuency of 100 kHz. Magnetic susceptibility measurements (70-290 K) were carried out on a Manics DSM-8 system.

Synthetic procedures: Comercial grade chemicals were used without further purification. The Schiff bases were prepared by reacting equimolar amounts (10 mmol) of 6-amino-5-formyl-1,3-dimethyluracil with nicotinoyl hydrazide (H₂NDO·"H₂O) and isonicotinoyl hydrazide (H₂INDO) in EtOH medium (*ca.* 100 cm³) containing a few drops of glacial AcOH; after stirring the resulting solution for several hours, the Schiff bases were filtered off, washed with EtOH and Et₂O and air dried (yields ca. 80%). Characterizational data were as follows: H₂NDO·"H₂O; Found: C, 50.2; H, 4.9; N, 26.8. $C_{13}H_{15}N_6O_{3.5}$ calcd.: C, 50.1; H, 4.8; N, 27.0%. ¹³C{¹H}-n.m.r.: 29.3 (C1), 27.5 (C3), 150.1 (C2), 153.5 (C4), 82.7 (C5), 160.0 (C6), 146.8 (C51), 160.9 (C52), 129.2 (C1 py), 147.8 (C2 py), 123.8 (C4 py), 136.0 (C5 py), 151.2 (C6 py); ¹H-n.m.r.: 3.12 and 3.35 (N-CH₃), 8.68 (H51), 8.23 and 9.90 (C6-NH₂), 11.88 (H52); 9.08 (H2 py, singlet), 7.59 (H4 py, double doublet), 8.31 (H5 py, multiplet), 8.76 (H6 py, doublet). H₂INDO; Found: C, 51.2; H, 4.5; N, 27.4. $C_{13}H_{14}N_6O_3$ calcd.: C, 51.6; H, 4.6, N, 27.8%. ¹³C{ ¹H}-n.m.r.: 29.4 (C1), 27.6 (C3), 150.2 (C2), 153.6 (C4), 82.8 (C5), 160.2 (C6), 147.4 (C51), 161.0 (C52), 140.3 (C1 py), 121.4 (C2 and C6 py), 150.2 (C3 and C5 py); ¹Hn.m.r.: 3.15 and 3.27 (N-CH₃), 8.73 (H51), 8.22 (C6-NH₂), 9.92 (H52); 7.81 (H2 and H6 py, doublet), 7.45 (H3 and H5 py, doublet). The structure of ligands is depicted in the Fig. 1.

Preparation of the complexes: The complexes were synthesized by reacting 0.5 mmol of ligand (H₂NDO·"H₂O or H₂INDO) with 0.5 mmol of Ni(NO₃)₂·6H₂O, Cu(NO₃)₂·3H₂O, Zn(NO₃)₂·6H₂O and CdCl₂·2"H₂O, respectively, in 50 ml of conc. aqueous NH₃, with the exception of Cu(NDO)·2H₂O (H₂O, 40 cm³). In all the cases, a suspension of the reaction product was obtained which was heated at and stirred for about one hour and left to cool at room temperature before getting filtered off. The solids were washed with EtOH and Et₂O and air dried: Ni(NDO)·2H₂O·NH₃ (orange, Λ_{M} =10

F. Hueso-Ureńa, N. A. Illán-Cabeza, M. N. Moreno-Carretero, A. L. Peńas-Chamorro: Ni(II), Cu(II)...

Table 1. Selected infrared data (cm ⁻¹)					
Compound	v(N-H)	v(C=O)	v(N-N)	Amide II	v(M-N)
H ₂ NDO	3350, 3323	1701, 1676 1662	953	1543	-
$Ni(NDO) \cdot 2H_2O \cdot NH_3$	3540, 3461 3386, 3291	1682	963	1554	436
Cu(NDO)·2H ₂ O	3467, 3377	1700	966	1547	440
$Zn(NDO) \cdot 1 "H_2O \cdot 1 "NH_3$	3376, 3333 3235	1669	978	1552	371
$Cd(NDO) \cdot 2''H_2O \cdot NH_3$	3494, 3340	1667	973	1547	431
H ₂ INDO	3418, 3297	1703, 1682	971	1552	-
Ni(INDO)·H ₂ O·"NH ₃	3437, 3396 3289	1700	972	1514	457
$Cu(INDO) \cdot 2H_2O \cdot NH_3$	3335	1698	965	1540	434

ohm⁻¹·cm²·mol⁻¹), found: C, 38.2; H, 4.3; N, 23.4%. NiC₁₃H₁₉N₇O₅ calcd.: C, 37.9; H, 4.6; N, 23.8. Cu(NDO)·2H₂O (grey, $\Lambda_{\rm M}$ =5 ohm⁻¹·cm²·mol⁻¹), found: C, 38.8; H, 3.6; N, 21.3%. CuC13H16N6O5 calcd.: C, 39.0; H, 4.0; N, 21.0%. Zn(NDO)·1"H2O·1"NH3 (yellow, $\Lambda_{\rm M}=2$ ohm⁻¹·cm²·mol⁻¹), found: C, 36.9; H, 4.7; N, 25.0%. ZnC₁₃H_{19.5}N_{7.5}O_{4.5} calcd.: C, 37.3; H, 4.7; N, 25.1%. Cd(NDO)·2⁻⁻H₂O·NH₃ (yellow, Λ_M=2 ohm⁻¹·cm²·mol⁻ ¹), found: C, 32.5; H, 3.8; N, 20.3%. CdC₁₃H₂₀N₇O_{5.5} calcd.: C, 32.9; H, 4.2; N, 20.6%. Cu(INDO)·2H₂O·NH₃ (brown, $\Lambda_{M}=13$ ohm⁻¹·cm²·mol⁻¹), found: C, 38.3; H, 4.3; N, 23.1%. CuC₁₃H₁₉N₇O₅ calcd.: C, 37.4; H, 4.6; N, 23.5%. Ni(INDO)·H₂O·"NH₃ (orange, $\Lambda_{M}=30 \text{ ohm}^{-1} \cdot \text{cm}^{2} \cdot \text{mol}^{-1}$), found: C, 40.2; H, 4.4; N, 23.7%. NiC₁₃H_{15.5}N_{6.5}O₄ calcd.: C, 40.5; H, 4.1; N, 23.6%. N.m.r. data of Zn(NDO)·1"H₂O·1"NH₃ complex display the following signals: ¹³C{¹H}-n.m.r.: 27.7 (C1), 27.0 (C3), 150.5 (C2), 155.5 (C4), 83.5 (C5), 161.6 (C6), 151.2 (C51), 163.9 (C52); ¹H-n.m.r.: 3.14 and 3.32 (N-CH₃), 8.85 (H51), 6.12 (H6). It was not possible to record the Cd(NDO)·2"H₂O·NH₃ spectra due to the low solubility in DMSO of this complex.

Results and discussion

The conductivity values have clearly shown the non-electrolyte character of the complexes. In all the complexes, the presence of water and/or ammonia molecules has

F. Hueso-Ureńa, N. A. Illán-Cabeza, M. N. Moreno-Carretero, A. L. Peńas-Chamorro: Ni(II), Cu(II)...

been corroborated from the thermal studies. The pyrolitic degradation in the t.g. plots begins around 70°C due to the loss of the water and/or ammonia molecules. Each of these molecules causes an endothermic effect, being the NH_3 ones at higher temperature since they must be coordinated to the metal because of their greater basicity if it is compared with the water ones. The pyrolitic degradations finish between 400 and 600°C, leaving as final residue the metallic oxide, which was corroborated by infrared spectroscopy.

To carry out a comparative study of the IR spectra of the complexes and the free ligands is very difficult, due to the great number of bands; only general remarks can be made. The most interesting features are listed in Table 1. There is a general displacement due to the coordination process. The v(N-H) bands are displaced to upper wavenumber due to the coordination and the double deprotonation, because the two lost hydrogen to make the dianion are from 6-amino group (which becomes to an imino group) 6,7,9 and the hydrazone nitrogen atom.¹² So, bands of groups involved in the coordination are displaced too. As it has been found from X-ray diffraction studies,¹² the more feasible predominant tautomeric form of the dinegative ligand in these complexes is the enolate one. The amide II band is displaced to lower wavenumber in the H₂INDO complexes due to the electronic delocalization, but in the H₂NDO ones, this displacement is to upper wavenumber; so, at least from the IR spectral point of view, it is not clear the predominant tautomeric form of these complexes. The v(N-N) bands are displaced to upper wavenumber, being this shift very characteristic for several hydrazone ligands coordinated through the azomethine nitrogen atom.^{15,16} In the 600-200 cm⁻¹ range, the bands associated to M-N and terminal M-X vibrations have been assigned, and are in good accordance with the data found in the literature.¹⁷ On comparing the NMR spectra of $Zn(NDO) \cdot 1^{"}H_2O \cdot 1^{"}NH_3$ complex with those of free ligand, weak shifts (< 2 ppm) of the signals assigned to the C1 and C3 (downfield) and C2, C5 and C6 atoms (upfield) are observed; so, a stronger displacement is found in the C4 (upfield, 2 ppm). The C4 and C6 signals are equally modified, so it is not clear which of them is the metal binding site; however, we have characterized the similar complex [Pd₄(TSDO)₄]·4H₂O·2DMF,⁹ whose ligand contains the same monodeprotonated uracil moiety, in which an analog

F. Hueso-Ureńa, N. A. Illán-Cabeza, M. N. Moreno-Carretero, A. L. Peńas-Chamorro: Ni(II), Cu(II)...

displacement is observed, but the crystallographic studies have clearly shown that the coordination takes place through the N6 atom. On the other hand, we have pointed out that when the 6-aminouracil derived ligand is not deprotonated, the coordination is established through the O4,⁸ so the deprotonation seems to be a decisive fact to assign the coordination pattern in these molecules. The signals assigned to the hydrogen attached to the N(6) atom display a strong change because the initial amino group becomes into an imino group as consequence of the deprotonation. So, it does not appears the H52 signal, due to its deprotonation. The shifts of the C(51), C(52) and H51 signals are in according to the loss of electronic density of the ligand through the M-L bonds. In the pyridine moiety there is long distance coupling between hydrogen atoms, which causes the presence of double doublets (H4 and H6) and doublets (H2).

The electronic spectra of the copper(II) complexes show a single broad and poorly defined asymmetric band around 17500 cm⁻¹ and the spectra of nickel(II) complexes show a band around 20000 cm⁻¹. These results are consistent with square-planar structures, since the four lower orbitals are often so close together in energy, that individual transitions therefrom to the upper *d* level cannot be distinguished - hence the single absorption band.¹⁸

The nickel(II) complexes showed a diamagetic behaviour consistent with squareplanar environment around the metal ion. Magnetic susceptibilities at different temperatures of the copper(II) compounds have been fitted to the Curie-Weiss law $(1/\chi_{m}=(T-\theta)/C)$: Cu(NDO)·2H₂O: C=0.239(6) cgsu·K·mol⁻¹, θ =39(8) K, μ_{eff} =1.72(5) BM; Cu(INDO)·2H₂O·NH₃: C=0.257(7) cgsu·K·mol⁻¹, θ =36(8) K, μ eff=1.87(2) BM. The effective magnetic moments are in accordance with diluted monomeric units¹⁹ although the slightly high θ value could indicate antiferromagnetic interactions between the metal atoms. Both copper(II) complexes display rhombic EPR powder spectra with $g_1=2.05$, $g_3 = 2.14$ $(Cu(NDO) \cdot 2H_2O)$ and $g_1 = 2.03$, $g_2 = 2.05$, $g_2 = 2.07$, $g_3 = 2.17$ $(Cu(INDO) \cdot 2H_2O \cdot NH_3)$ respectively.²⁰

From these data, square-planar structures may be proposed for the nickel(II) and copper(II) complexes with the tridentate ligand and the fourth coordination position occupied by either an ammonia or water molecule, as depicted in fig. 2; a similar

F. Hueso-Ureńa, N. A. Illán-Cabeza, M. N. Moreno-Carretero, A. L. Peńas-Chamorro: Ni(II), Cu(II)...

structure has been observed from single-crystal X-ray diffraction studies for the related compounds aqua-[6-amino-1,3-dimethyl-uracilato-benzoylhydrazone(2-)-N⁶,N⁵¹,O⁵²]-copper(II) hydrate¹² and several O-nitrito-⁶ and halide-complexes with monodeprotonated *N*,*N*,*Z*-tridentate hydrazones (Z = S or O) derived from 6-amino-5-formyl-1,3-dimethyluracil.¹³ A similar structure but tetrahedral may be suggested for the zinc(II) and cadmium(II)

complexes.

Figure 2. Computer-generated square-planar structure proposed for the nickel(II) and copper(II) complexes (solv = NH_3 or H_2O). The two hydrogen lost to make the dianion are from N6 and N52 atoms.

Acknowledgements

The authors are indebted to Dirección General de Ensenanza Superior e Investigación Científica (MEC, Spain) (project PB97-0786-C03-03) and Consejería de Educación y Ciencia (Junta de Andalucía, research group FQM-273).

References

- 1. West, D.X.; Liberta, A.E.; Padhye, S.B.; Chikate, R.C.; Sonawane, P.B.; Kumbhar, A.S.; Yerande, R.G. *Coord. Chem. Rev.* **1993**, *123*, 49.
- 2. Kovala-Demertzi, D.; Domopoulou, A.; Demertzis, M.; Raptopoulou, C.; Terzis, A. *Polyhedron* **1994**, *13*, 1917.
- 3. West, D.X.; Lockwood, M.A.; Castineiras, A. Transit. Met. Chem., 1997, 22, 447.
- 4. West, D.X.; Gebremedhin, G.H.;. Butcher, R.J.; Jasinski, J.P. Transit. Met. Chem. 1995, 20, 84.
- 5. Kovala-Demertzi, D.; Domopoulou, A.; Demertzis, M.A.;. Valle, G.; Papageorgiou, A. J. Inorg. Biochem. 1997, 68, 147.

F. Hueso-Ureńa, N. A. Illán-Cabeza, M. N. Moreno-Carretero, A. L. Peńas-Chamorro: Ni(II), Cu(II)...

- Hueso-Ureńa, F.; Peńas-Chamorro, A.L.; Moreno-Carretero, M.N.; Quirós- Olozábal, M.; Salas-Peregrín, J.M. Polyhedron 1999, 18, 351.
- 7. Hueso-Ureńa, F.; Peńas-Chamorro, A.L.; Moreno-Carretero, M.N.; Quirós- Olozábal, M.; Salas-Peregrín, J.M. J. Chem.Cryst., **29**, 283 (1999).
- 8. Hueso-Ureńa, F.; Peńas-Chamorro, A.L.; Moreno-Carretero, M.N.; Amigó, J.M.; Esteve, V.; Debaerdemaeker, T. *Polyhedron* **1999**, *18*, 2205.
- 9. Hueso-Ureńa, F.; Illán-Cabeza, N.A.; Moreno-Carretero, M.N.; Peńas-Chamorro, A.L.; Faure, R. *Inorg. Chem. Commun.* **1999**, *2*, 323.
- 10. Hueso-Ureńa, F.; Peńas-Chamorro, A.L.; Moreno-Carretero, M.N.; Amigó, J.M.; Esteve, V.; Debaerdemaeker, T. *Polyhedron* **1999**, *18*, 3629.
- 11. Hueso-Ureńa, F.; Peńas-Chamorro, A.L.; Moreno-Carretero, M.N.; Amigó, J.M.; Esteve, V.; Debaerdemaeker, T. Z. Kristallogr. NCS 2000, 215, 155.
- 12. Hueso-Ureńa, F.; Illán-Cabeza, N.A.; Peńas-Chamorro, A.L.; Moreno-Carretero, M.N.; Faure, R. *Polyhedron* **2000**, *19*, 689.
- 13. Hueso-Ureńa, F.; Illán-Cabeza, N.A.; Moreno-Carretero, M.N.; Peńas-Chamorro, A.L. *Transit. Met. Chem.* in press.
- 14. Hueso-Ureńa, F.; Peńas-Chamorro, A.L.; Moreno-Carretero, M.N.; Amigó, J.M.; Esteve, V.; Debaerdemaeker, T. Z. Kristallogr. NCS, in press.
- 15. Shetti, S.N.; Murty, A.S.; Tembe, G.L. Transit. Met. Chem. 1993, 18, 467.
- 16. West, D.X.; Makeever, R.M.; Scovill, J.P.; Klayman, D.L. Polyhedron 1984, 3, 947.
- 17. Ferraro, J.R. *Low-Frequency Vibrations of Inorganic and Coordination Compounds*, Plenum Press, New York, 1971, pp.156, 165, 222.
- 18. Lever, A.B.P. Inorganic Electronic Spectroscopy, 2nd ed., Elsevier, Amsterdam, 1984.
- 19. Carlin, R.L. Magnetochemistry, Springer-Verlag, Berlin, 1986.
- 20. Pilbrow, J.R. *Transition Ion Electron Paramagnetic Resonance*, Oxford Science Publications, Oxford, 1990.

Povzetek

Opisana je sinteza in spektroskopska karakterizacija kompleksov Ni(II), Cu(II), Zn(II) in Cd(II) s hidrazonom 6-amino-5-formil-1,3-dimetiluracila ter hidrazidoma nikotinske in izonikotinske kisline.