original scientific article UDC 581.9:582.26/.27(262.3-18) received: 2005-05-02 DEVELOPMENT OF THE INVASIVE TURF-FORMING RED ALGAE WOMERSLEYELLA SETACEA (HOLLENBERG) R. E. NORRIS ON SUBTIDAL SHORES OF RIJEKA BAY (NORTHERN ADRIATIC SEA) Claudio BATTELLI University of Primorska, Faculty of Education of Koper, SI-6000 Koper, Cankarjeva 5 E-mail: claudio.battelli@guest.arnes.si Milvana ARKO PIJEVAC Natural History Museum Rijeka, HR-51000 Rijeka, Lorenzov prolaz 1, Croatia ABSTRACT Results of the study of subtidal macrobenthic flora, carried out in 1997 at Cape Ostro, Rijeka Bay, Croatia (northern Adriatic Sea), are presented. The investigation was based on seasonal sampling at different depths. Results indicated that the flora was strongly dominated by turf-forming algae. Overall, 37 macrobenthic algae (23 Rhodophycota or 62.2%, 6 Phaeophycota or 16.2% and 8 Chlorophycota or 21.6%) were identified. The invasive red filamentous alga Womersleyella setacea (Hollenberg) R. E. Norris was recorded for the first time in this area. The impact of massive development of the turf-forming algae on the structure of algal assemblages is discussed. Key words: turf-forming algae, Womersleyella setacea, subtidal, northern Adriatic Sea, Rijeka Bay SVILUPPO DI FELTRI DELL'ALGA ROSSA INVASIVA WOMERSLEYELLA SETACEA (HOLLENBERG) R. E. NORRIS NELL'INFRALITORALE DEL GOLFO DI FIUME (ALTO ADRIATICO) SINTESI Vengono presentati i risultati di un'indagine condotta nel 1997 sulla flora macrobentonica nell'infralitorale nei pressi di Punta Ostro, Golfo di Fiume, Croazia (Alto Adriatico). Lo studio si basa su rilievi stagionali svolti a diverse profondita. I risultati indicano che la flora e costituita da densi feltri algali. Nel corso della ricerca sono state identifícate 37 specie di alghe macrobentoniche, di cui 23 Rhodophycota (62,2%), 6 Phaeophycota (16,2%) e 8 Chlorophycota (21,6%). Nel presente lavoro viene segnalata per la prima volta in quest'area la presenza dell'alga rossa filamentosa invasiva Womersleyella setacea (Hollenberg) R. E. Norris. Sono discusse le conseguenze dell'estesa dif-fusione di tali feltri sulla struttura delle comunita algali. Parole chiave: feltri algali, Womersleyella setacea, infralitorale, Alto Adriático, Golfo di Fiume INTRODUCTION More than 90 taxa of marine algae are known to have been introduced into the Mediterranean Sea, mostly by human activities {i.e. aquaculture, pollution, ballast waters, fishing nets), and at least nine of them are considered invasive {Verlaque, 1994; Boudouresque & Verlaque, 2002). Some of the most invasive introductions took place in the last 10-15 years and have caused substantial changes in the structure of benthic algal assemblages. One of the best examples of this phenomenon is represented by the massive development of dense algal turfs produced by filamentous species, in particular the red alga Womersfeyeffa setacea {Hollenberg) R. E. Norris This species has been reported to produce thick turfs covering large portions of subtidal bottoms in several regions {Verlaque, 1989; Airoldi et af., 1995; Atha-nasiadis, 1997; Patzner, 1998). The uncontrolled growth of turfs is considered an indicator of disturbance in the environment, with a negative impact on biodiversity {Barth & Fagan, 1990; Morand & Briand, 1996). Many non-indigenous species of algae have been recorded in the northern Adriatic Sea {Orlando Bonaca, 2001), mostly on the Italian shores. Among them, the brown Sargassum muticum {Yendo) Fensholt {Gargiulo et af., 1992) and Undaria pinnatifida {Harvey) Surigar {Rismondo et af., 1993), the green Codium fragife subsp. tomentosoides {Van Goor) P.C. Silva {Godini & Avanzini, 1988), Cauferpa taxifofia {Vahl) C. Agardh {Zuljevic & Antolic, 1998; Span et af., 1998), Ufva scan-dinavica Bliding {Battelli & Tan, 1998), and the red An-tithamnion pectinatum {Montagne) Brauner ex Athana-siadis et Tittley {Curiel et af., 1996) and Pofysiphonia morrowii Harvey {Curiel et af., 2002) are some of the most recent records. Comparatively, the eastern shores of the northern Adriatic Sea have not been severely affected by algal introductions so far. However, some algae reported elsewhere as highly aggressive invaders, such as C. taxifofia, Cauferpa racemosa var. cyfindracea {Sonder) Verlaque, Huisman & Boudouresque, {Verlaque, 1994) and W. setacea {Sartoni & Rossi, 1998), have been recently recorded. In 1996, an extensive growth of turf-forming algae was noted in the sublittoral area around Cape Ostro, northeastern coast of Rijeka Bay, northern Adriatic Sea {Battelli & Arko Pijevac, 2003). The same phenomenon was subsequently recorded in other parts of Rijeka Bay, such as the Sepen cove and the submarine area of Sv. Marko islet {Jaklin & Arko Pijevac, 1997; Zahtila, 1999). Examination of samples collected in these areas indicated that algal turfs had been formed primarily by W. setacea. The ben-thic marine algae of the Kvarner Gulf have been studied sporadically {Munda, 1960; Rizzi Longo, 1972; Zavodnik et af., 1981; Zavodnik & Zavodnik, 1982; Zavodnik, 1992; Zavodnik et af., 1998) and no previous records of this phenomenon are available in the literature. In this study, we report preliminary on the observations regarding the composition of algal assemblages, their bathymetric variation and the reproductive phenology of W. setacea in the area at Cape Ostro. The results presented constitute the first report on extensive development of algal turfs in the northern Adriatic and provide a background of knowledge that will be of great value for further investigations. Fig. 1: Study area, Cape Oštro (north-eastern coast of Rijeka Bay). SI. 1: Raziskovano območje, Rt Oštro (severovzhodna obala Reškega zaliva). MATERIAL AND METHODS The study was carried out near Cape Oštro (northeastern coast of Rijeka Bay) (43°16.152 N, 1433.792 E) in 1997 (Fig. 1). The morphology of the area's bottom varies with depth; the substratum consists of carbonate rocks (limestone and dolomites) between 0 and 5 m, a mixture of rock and sand between 5 and 10 m, sand between 10 and 15 m, and muddy sand below 15 m. Samples were collected at different depths (5, 10, 15 and 20 m) and in each season. Overall, 36 samples (8 in winter, 8 in summer, 8 in autumn and 12 in spring) were collected. Algae were removed from 100 cm2 squares and the percentage cover of each species was estimated for each date and for different depths (5 m, 10 m, 15 m and 20 m). The samples were preserved in 4% seawater-formalin solution and examined in the laboratory. The algal material is deposited in the Natural History Museum of Rijeka. The algae were determined at the best possible level of taxonomic resolution; for W. setacea (Fig. 2), detailed observations of the reproductive phenology were also carried out. Algal nomenclature follows Ribera et al. (1992), Gallardo et al. (1993), and Gomez Garreta et al. (2001). Fig. 2: Thallus of Womersleyella setacea (barr = 500 pm). Sl. 2: Steljka vrste Womersleyella setacea (merilo = 500 pm). RESULTS Overall, 37 species of macrobenthic algae were identified (Tab. 1): 23 Rhodophycota (62.2%), 6 Phaeo-phycota (16.2%) and 8 Chlorophycota (21.6%). At the time of the survey, the bottom of the surveyed area was colonized by macroalgal assemblages that appeared very poor in terms of species number. The investigated area was mostly colonized by turf-forming species overgrowing all types of substrata from 5 m to 20 m depth. In terms of presence, the most common species were the green algae Chaetomorpha linum (O.F. Müller) Kützing and Cladophora nigrescens Zanardini ex Frauenfeld and the red alga Womersleyella setacea. The species C. linum dominated at a depth of 5 m, C. nigrescens at depths of 10 and 20 m, while the depth of 15 m was dominated by the red alga W. setacea (Tabs. 2, 3, 4, 5). Tab. 1: Check list of macrobenthic algae at Cape Ostro (Rijeka Bay, northern Adriatic Sea). Tab. 1: Seznam vrst makrobentoskih alg pri Rtu Ostro (Reski zaliv, severno jadransko morje). Rhodophycota_ Antithamnion cruciatum (C. Agardh) Nägeli_ Boergeseniella fruticulosa (Wulfen) Kylin_ Ceramium ciliatum (J. Ellis) Ducluzeau var. robustum (J. Agardh) Feldmann-Mazoyer_ Ceramium tenerrimum (G. Martens) Okamura_ Champia parvula (C. Agardh) Harvey_ Chondria coerulescens (J. Agardh) Falkenberg_ Dipterosiphonia rigens (C. Agardh) Falkenberg_ Gelidium pusillum (Stackhouse) Le Jolis_ Haliptilon virgatum (Zanardini) Garbary et H. V. Johansen_ Halopithys incurva (Hudson) Batters_ Herposiphonia secunda (C. Agardh) Ambronn f. secunda_ jania rubens (Linnaeus) J. V. Lamouroux_ Laurencia sp._ Lophosiphonia obscura (C. Agardh) Falkenberg_ Nitophyllum punctatum (Stackhouse) Greville_ Polysiphonia atra Zanardini_ Polysiphonia breviarticulata (C. Agardh) Zanardini Polysiphonia opaca (C. Agardh) Moris & De Notaris Polysiphonia polyspora (C.Agardh) Montagne_ Polysiphonia stuposa Zanardini ex Kützing_ Polysiphonia subulifera (C. Agardh) Harvey_ Spyridia filamentosa (Wulfen) Harvey_ Womersleyella setacea (Hollenberg) R. E. Norris Phaeophycota_ Cystoseira corniculata (Turner) Zanardini_ Dictyota dichotoma (Hudson) J.V. Lamouroux var dichotoma_ Dictyota fasciola (Roth) J.V.Lamouroux_ Halopteris filicina (Grateloup) Kützing_ Padina pavonica (Linnaeus) J. V. Lamouroux_ Sphacelaria cirrosa (Roth) C. Agardh_ Chlorophycota_ Chaetomorpha linum (O. F. Mueller) Kützin_ Cladophora coelothrix Kützing_ Cladophora laetevirens (Dillwin) Kützing_ Cladophora lehmanniana (Lindenberg) Kützing_ Cladophora nigrescens Zanardini ex Frauenfeld_ Cladophora prolifera (Roth) Kützing_ Ulva clathrata (Roth) C. Agardh_ Ulva laetevirens Areschoug_ In terms of percentage cover, the most abundant species were the green algae C. nigrescens and the red alga W. setacea. During the study, the abundance of C. nigrescens, at different depths, was generally higher than W. setacea, although the average cover percentage of these two species showed different trends during the seasons. The cover percentage of C. nigrescens increased from a depth of 5 m to a depth of 10 m and then markedly decreased to a depth of 20 m. The fluctuation of the cover percentage of the red algae W. setacea showed a different trend: it increased slightly from a depth of 5 m to 15 m and then decreased at a depth of 20 m (Fig. 3). Seasonal fluctuation of the cover percentage values showed that at all depths (5 m, 10 m, 15 m, 20 m), the abundance of C. nigrescens decreased in general from the winter to the summer and then increased in the autumn, while the abundance of W. setacea slightly decreased from the winter to the autumn at all depths (Fig. 4). In spite of frequent sampling, W. setacea was never observed in a reproductive state. □ CI. nigrescens EW. setacea I ^ □ CI. nigrescens 38.8 34.2 setacea A I 20- 5.9 Spring Summer Season 43.8 43.8 15.0 6.7 2.5 2.5 WW/. vm C Fig. 3: Percentage covers of C. nigrescens and W. setacea at different depths. SI. 3: Odstotne pokrovne vrednosti vrst C. nigrescens in W. setacea na različnih globinah. DISCUSSION During the study, the invasive filamentous red alga W. setacea was recorded for the first time in Rijeka Bay. This species, originally described from a tropical locality and subsequently reported for other tropical regions, has recently become widespread in the Mediterranean Sea (Verlaque, 1989, 1994; Airoldi et a/., 1994; Rindi & Ci-nelli, 1995; Athanasiadis, 1997; Rindi et a/, 1999), and in the northern Adriatic Sea (Sartoni & Rossi, 1998). The phenological observations suggest that the colonization of W. setacea proceeded by vegetative reproduction, which is so far the only form of reproduction known both in the field and in cultures of this species from various areas of the Mediterranean Sea (Airoldi et a/.,1995; Rindi et a/., 1999; Rindi & Cinelli, 2000). m 5.8 6.7 1 1 2.5 1.3 m\ 1.3 W\ Fig. 4: Temporal fluctuation of mean cover of C. nigrescens and W. setacea at a depth of (A) 5 m, (B) 10 m, (C) 15 m and (D) 20 m. Sl. 4: Sezonske variacije pokrovnih vrednosti vrst C. nigrescens in W. setacea na globini (A) 5 m, (B) 10 m, (C) 15 m in (D) 20 m. The present results show that turfs of W. setacea can grow on all types of substratum (rock, sand and mud) and at different depths in the investigated area. Although W. setacea has been recorded in the Adriatic only re- B D cently, the extensive development of this alga in Rijeka Bay reflects the fast and aggressive propagation already reported for the western Mediterranean Sea (Verlaque, 1989; Airoldi et a/., 1995; Athanasiadis, 1997; Rindi & Cinelli, 2000; Piazzi & Cinelli, 2001; Boudouresque & Verlaque, 2002). Tab. 2: Algal species recorded in the study area at a depth of 5 m with average values*. (*Cover abundance values) Tab. 2: Vrste alg na raziskanem območju na globini 5 m s pokrovnimi vrednostmi*. (*Vrednosti pokrovne gostote) ln the course of the survey, large-sized erect algae appeared to be rare. The high dominance of the turf-forming algae might negatively affect the development of some erect species, such as Dictyota dichotoma (Hudson) J. V. Lamouroux, Dictyota fascio/a (Roth) J. V. Lam-ouroux, Padina pavonica (Linnaeus) J. V. Lamouroux and Cystoseira cornicu/ata (Turner) Zanardini. This is in agreement with the studies carried out in other regions of the Mediterranean, which have shown that the monopolization of substratum by turf-forming filamentous algae can prevent the development of other macroalgae by overgrowth and accumulation of sediment, making the settlement of spores and the survival of juvenile stages impossible and thus reducing species diversity and equi-tability (Airoldi et a/., 1995; Morand & Briand, 1996; Airoldi & Virgilio, 1998; Piazzi & Cinelli, 2001). The present observations, however, are based on a relatively short sampling period and do not allow for a formulation of relevant conclusions on the impact of these algal turfs in Rijeka Bay. Observations in a longer temporal span and studies based on an experimental approach, as carried out for other parts of the Mediter- Tab. 3: Algal species recorded in the study area at a depth of 10 m with average values*. (*see Table 2) Tab. 3: Vrste alg na raziskanem območju na globini 10 m s pokrovnimi vrednostmi*. (*glej Tabelo 2) Species Feb Mar Apr May Jun Jul Auj Nov Dec A. cruciatum 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 B. fruticulosa 15.0 2.5 2.5 0.0 0.0 15.0 0.0 2.5 0.0 C. ciliatum v. robustum 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 C. coerulescens 15.0 2.5 2.5 2.5 0.0 0.0 0.0 2.5 0.0 C. laetevirens 0.0 0.0 0.0 0.0 15.0 0.0 0.0 0.0 2.5 C. tenerrimum 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.1 Ch. linum 0.1 2.5 0.1 0.1 2.5 0.1 0.1 0.1 0.1 Cl. coelothrix 0.0 2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Cl. lehmanniana 0.0 0.0 0.1 0.0 15.0 0.0 2.5 0.0 0.0 Cl. nigrescens 62.5 15.0 0.0 87.5 15.0 15.0 2.5 62.5 15.0 Cl. prolifera 0.1 0.1 0.1 2.5 0.0 2.5 0.0 2.5 0.0 Cy. corniculata 0.0 0.0 15.0 0.0 0.0 0.0 0.0 0.0 0.0 D. dichotoma 2.5 15.0 15.0 0.0 0.0 0.1 0.0 0.0 15.0 D. fasciola 2.5 0.1 0.1 0.0 15.0 0.1 15.0 2.5 15.0 D. rigens 0.0 0.0 2.5 0.0 2.5 2.5 15.0 2.5 0.0 G. pusillum 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 H. filicina 0.0 0.1 0.0 0.0 0.0 2.5 0.0 0.0 0.0 H. incurva 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.0 H. secunda 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 L. obscura 0.0 2.5 0.0 0.1 2.5 0.0 0.1 0.1 0.0 Laurencia sp. 0.0 0.0 15.0 2.5 15.0 15.0 15.0 15.0 0.0 N. punctatum 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 P. atra 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 P. breviarticulata 0.0 0.0 2.5 0.1 0.1 2.5 2.5 2.5 0.1 P. opaca 0.1 2.5 0.0 0.1 0.1 0.0 0.1 2.5 0.0 P. polyspora 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.5 P. sertularioides 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 P. stuposa 0.0 2.5 2.5 0.0 2.5 0.0 0.1 0.0 0.0 P. subulifera 0.0 15.0 2.5 0.0 0.1 0.0 0.0 0.0 2.5 S. filamentosa 0.0 0.0 0.0 0.0 0.0 0.0 2.5 0.0 2.5 Sp. cirrosa 0.1 0.1 0.0 0.0 2.5 0.1 2.5 2.5 0.0 W. setacea 0.1 15.0 15.0 0.0 2.5 0.1 2.5 0.0 2.5 *Cover abundance values / Vrednosti pokrovne gostote: Class % cover Average values + <1% 0.1 1 1.1-5.0% 2.5 2 5.1-25.0% 15.0 3 25.1-50.0% 37.5 4 50.1-75.0% 62.5 5 75.1-100% 87.5 Species Feb Mar Apr May Jun Jul AuJ Nov Dec C. coerulescens 2.5 0.1 0.1 2.5 0.0 2.5 0.0 0.1 2.5 C. parvula 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 Ce. ciliatum v. robustum 0.0 0.0 0.0 0.0 2.5 0.0 0.0 0.0 0.0 Ce. tenerrimum 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 Ch. linum 0.1 2.5 0.0 0.1 0.1 0.1 0.1 0.1 0.1 CO. laetevirens 0.0 37.5 15.0 0.0 0.0 2.5 0.0 0.0 0.0 CO. lehmanniana 0.0 0.1 0.0 0.0 0.0 0.0 2.5 2.5 2.5 Cl. nigrescens 87.5 37.5 15.0 87.5 37.5 87.5 2.5 87.5 15.0 Cl. prolifera 2.5 0.0 0.0 0.0 2.5 2.5 2.5 0.0 0.5 Cy. corniculata 0.0 0.0 0.0 0.0 0.0 0.0 62.5 0.0 0.0 D. dichotoma 0.0 0.1 0.1 2.5 0.0 0.0 0.0 0.0 0.0 D. fasciola 0.0 2.5 0.0 2.5 0.0 0.0 15.0 0.0 2.5 D. rigens 2.5 0.1 0.1 0.0 0.0 0.0 2.5 0.0 2.5 G. pusillum 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 H. filicina 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 H. incurva 0.1 0.1 0.0 0.0 0.0 0.1 0.0 0.1 0.0 L. obscura 0.0 2.5 0.1 0.0 0.0 0.1 0.0 2.5 0.0 Laurencia sp. 0.0 0.1 0.0 2.5 0.1 0.0 0.1 0.0 0.0 P. atra 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 P. breviarticulata 0.0 0.0 0.0 0.0 0.0 0.0 2.5 0.0 2.5 P. opaca 0.0 0.1 0.0 0.0 0.1 0.0 0.1 0.1 0.1 P. polyspora 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 P. sertularioides 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 P. stuposa 0.0 0.0 0.0 0.0 0.1 0.0 2.5 0.0 0.0 P. subulifera 0.0 0.0 2.5 0.0 0.1 0.0 0.0 0.0 2.5 S. filamentosa 0.0 0.0 0.0 0.0 0.0 0.0 2.5 0.0 0.0 Sp. cirrosa 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 W. setacea 2.5 15.0 15.0 0.1 2.5 0.0 2.5 0.0 0.0 Tab. 4: Algal species recorded in the study area at a depth of 15 m with average values*. (*see Table 2) Tab. 4: Vrste alg na raziskanem območju na globini 15 m s pokrovnimi vrednostmi*. (*glej Tabelo 2) ranean, will be necessary to understand better the effects of the development of algal turfs. It is therefore very important that the scientific institutions continue to monitor the distribution and persistence of turfs of W. setacea and their effects on the structure of subtidal assemblages. Tab. 5: Algal species recorded in the study area at a depth of 20 m with average values*. (*see Table 2) Tab. 5: Vrste alg na raziskanem območju na globini 20 m s pokrovnimi vrednostmi*. (*glej Tabelo 2) Species Feb Mar Apr May Jun Jul AuJ Nov Dec B. fruticufosa G.1 G.G G.G G.G G.G G.G G.G G.G G.G Ce. cifiatum v. robustum G.G G.G 2.5 G.G G.G G.G G.G G.G G.G Ch. finum G.1 G.1 G.G G.1 G.G G.1 G.1 G.1 G.1 Cf. fehmanniana G.G G.1 G.G G.G G.G G.G G.G G.G G.1 Cf. nigrescens 15.G 2.5 G.G 15.G 2.5 2.5 2.5 2.5 15.G Cf. profitera 2.5 G.1 G.G G.G G.G G.G G.G G.G G.G D. dichotoma G.G G.G 2.5 G.G 15.G G.1 G.1 G.1 G.G D. rigens G.1 G.G G.G G.G G.1 G.1 G.1 G.1 G.G H. fificina 15.G G.G G.G G.G G.G G.G G.G G.G G.G H. incurva G.G G.G 2.5 G.G G.G G.G G.G G.G G.G H. secunda G.G G.1 G.G G.G G.G G.G G.G G.G G.G Laurencia sp. G.G G.1 G.G G.G 15.G 2.5 G.1 2.5 G.G P. atra G.1 G.G G.G G.G G.G G.G G.G G.G G.G P. pavonica G.G G.G 2.5 G.G G.G G.G G.G G.G G.G P. stuposa G.G G.1 G.1 G.G G.G G.G G.G G.G G.G S. cirrosa G.1 G.G 2.5 G.G 2.5 G.1 G.1 G.1 G.G U. cfathrata G.G G.G G.1 G.G G.G G.G G.G G.G G.G W. setacea 2.5 15.G 2.5 15.G 2.5 2.5 G.G G.G 2.5 ACKNOWLEDGEMENTS We are grateful to Dr Fabio Rindi from the Martin Ryan Institute of Galway {Ireland) for his advice and help with the revision of the text. We wish to thank Dr Donatella Serio from the University of Catania {Italy) for her assistance in the determination of some algal species. Species Feb Mar Apr May Jun Jul Auj Nov Dec B. fruticufosa G.G G.G G.G G.1 G.G G.G G.G G.G G.G C. coerufescens G.G 2.5 2.5 G.1 G.G 2.5 G.G 2.5 G.G Ce. tenerrimum G.G G.G G.G G.G G.G G.G G.1 G.G G.G Ch. finum G.1 2.5 2.5 G.1 2.5 G.1 G.G G.1 G.1 Cf. nigrescens 62.5 37.5 37.5 87.5 15.G 87.5 G.G 87.5 G.G Cf. faetevirens G.G 15.G 15.G G.G G.G G.1 15.G 2.5 G.G Cf. fehmanniana G.G G.G G.G G.G 2.5 G.G G.G G.G 2.5 Cf. profitera 2.5 G.1 2.5 2.5 G.1 G.G G.G G.G G.1 Cy. cornicufata G.G G.G G.G G.G G.G G.G 37.5 G.G G.G D. dichotoma G.G G.1 G.G G.1 G.G G.G 15.G G.G G.G D. rigens G.G G.1 G.G G.G G.G G.G 2.5 G.G 2.5 H. incurva G.1 2.5 G.1 G.G G.1 G.G G.G G.G G.G L. obscura 2.5 2.5 G.G G.G G.1 G.G G.G G.G G.G Laurencia sp. G.G G.1 G.G G.G G.G G.G G.G G.G G.G P. atra 2.5 G.G G.G G.G G.G G.G G.G G.G G.G P. opaca G.G G.1 G.1 G.1 G.1 G.1 G.1 G.1 G.1 P. sertufarioides G.G G.G G.G G.G G.G G.G 2.5 G.G G.G P. stuposa G.G G.G 2.5 G.G G.G G.G G.G G.G G.1 P. subufifera G.G G.G G.G G.G G.G G.G 2.5 G.G 2.5 S. cirrosa G.G G.G G.G G.G G.G G.G 2.5 G.G G.G S. fifamentosa G.G G.G G.G G.G G.G G.G 2.5 G.G G.G W. setacea 15.G 15.G 15.G 2.5 2.5 2.5 2.5 2.5 2.5 POJAVLJANJE GOSTIH PREVLEK INVAZIVNE RDEČE ALGE WOMERSLEYELLA SETACEA (HOLLENBERG) R. E. NORRIS V INFRALITORALU REŠKEGA ZALIVA (SEVERNO JADRANSKO MORJE) Claudio BATTELLI Univerza na Primorskem, Pedagoška fakulteta Koper, SI-6000 Koper, Cankarjeva 5 E-mail: claudio.battelli@guest.arnes.si Milvana ARKO PIJEVAC Prirodoslovni muzej Rijeka, HR-51000 Rijeka, Lorenzov prolaz 1, Hrvaška POVZETEK Članek obravnava rezultate raziskave morske makrobentoške flore alg infralitorala pri rtu Ostro, Reški zaliv (severno Jadransko morje). Študija, napravljena v letu 1997, temelji na sezonskem vzorčenju na različnih globinah (5, 10, 15 in 20 m). Rezultati kažejo, da je flora alg sestavljena predvsem iz gostih prevlek makrobentoških alg. Skupno je bilo določenih 37 alg, med katerimi je bilo 23 rdečih (62,2%), 6 rjavih (16,2%) in 8 zelenih (21,6%). Prikazana je časovna variacija pokrovnih vrednosti najbolj pogostih vrst (Cladophora nigrescens Zanardini ex Frauenfeld in Womersleyella setacea (Hollenberg) R. E. Norris). V članku je prvič zabeleženo pojavljanje rdeče nitaste alge W. se-tacea na tem območju, ki se tu pojavlja na vseh globinah in v vseh letnih časih, vendar nikoli v fertilni obliki. Dosedanje študije o vrsti W. setacea so pokazale, da se vrsta v Sredozemskem morju razmnožuje vegetativno in hitro širi po vseh vrstah podlage; zato se ta alga prišteva k invazivnim vrstam. Članek obravnava tudi posledice masivnega pojavljanja gostih prevlek makrobentoških alg na sestavo združb alg. Ključne besede: prevleke alg, Womersleyella setacea, infralitoral, severno Jadransko morje, Reški zaliv REFERENCES Airoldi, L., F. Rindi, L. Piazzi & F. Cinelli (1994): Dis-tribuzione di Polysiphonia setacea (Rhodomelaceae, Rhodophyta) Hollenberg in Mediterraneo e possibili modalita di diffusione. Biol. Mar. Medit., 2, 343-344. Airoldi, L., F. Rindi & F. Cinelli (1995): Structure, seasonal dynamics and reproductive phenology of a filamentous turf assemblage on a sediment influenced, rocky subtidal shore. Bot. Mar., 38, 227-237. Airoldi, L. & M. Virgilio (1998): Responses of turf-forming algae to spatial variations in the deposition of sediments. Mar. Ecol. Prog. Ser., 165, 271-282. Athanasiadis, A. (1997): North Aegean marine algae IV. Womersleyella setacea (Hollenberg) R. E. Norris (Rhodophyta, Ceramiales). Bot. Mar., 40, 473-476. Barth, H. & L. Fagan (1990): Eutrophication-related phenomena in the Adriatic Sea and in other Mediterranean coastal zones. Commission of the European Communities water Pollution Research Report, 16 pp. Battelli, C. & I. H. Tan (1998): Ulva scandinavica Blid-ing, (Chlorophyta): a new species for the Adriatic Sea. Annales Ser. Hist. Nat., 8(1), 121-124. Battelli, C. & M. Arko Pijevac (2003): Structure and seasonal variations of a subtidal turf-dominated assemblage of the Ostro Cape (Rijeka Bay, Nothern Adriatic Sea). EMBS 38, Marine biodiversity. September 8-12, 2003, Aveiro, Portugal. Book of Abstracts. Universidade de Aveiro, Aveiro, p. 173. Boudouresque, C. F. & M. Verlaque (2002): Alien marine organisms introduced by ships. CIESM Workshop Monographs no. 20, 6-9 November 2002, Istanbul, Turkey, p. 53-61. Curiel, D., G. Bellemo & M. Marzocchi (1996): New records of marine algae in the Lagoon of Venice. G. Bot. Ital., 130, 651-707. Curiel, D., G. Bellemo, B. La Rocca, M. Scattolin & M. Marzocchi (2002): First Report of Polysiphonia morrowii Harvey (Ceramiales, Rhodophyta) in the Mediterranean Sea. Bot. Mar., 45, 66-70. Gallardo, T., A. Gomez Garreta, M. A. Ribera, M. Cor-maci, G. Furnari, G. Giaccone & C. H. Boudouresque (1993): Check-list of Mediterranean seaweeds. II. Chlo-rophyceae Wille s.l. Bot. Mar., 36(5), 399-421. Gargiulo, G. M., F. De Masi & G. Tripodi (1992): Sar-gassum muticum (Yendo) Fernsholt (Phaeophyta, Fu-cales) is spreading in the Lagoon of Venice (Northern Adriatic Sea). G. Bot. Ital.,126, p. 259. Godini, A. & A. Avanzini (1988): Una specie nuova per il Golfo di Trieste (Nord Adriatico): Codium fragile (Sur.) Hariot (Chlorophyta). Atti. Mus. Civ. Stor. Nat. Trieste, 41(2),197-203. Gómez Garreta, A., T. Gallardo, M. A. Ribera, M. Cor-maci, G. Furnari, G. Giaccone & C. F. Boudouresque (2001): Checklist of Mediterranean Seaweeds. III. Rho-dophyceae Rabenh. 1. Ceramiales Oltm. Bot. Mar., 44, 425-460. Jaklin, A. & M. Arko Pijevac (1997): Benthic biocoeno-ses of the Sv. Marko Islet (Rijeka bay). Period. Biol., 99(2), 219-228. Morand, P. & X. Briand (1996): Excessive growth of macroalgae: a symptom of environmental disturbance. Bot. Mar., 39, 491-516. Munda, I. M. (1960): On the seasonal distribution of benthic marine algae along the northeastern coast of the isle of Krk (Northern Adriatic). Nova Hedwigia, 2(1-2), 191-242. Orlando Bonaca, M. (2001): A survey of the introduced non-indigenous species in the Northern Adriatic Sae. Annales Ser. Hist. Nat., 10(2), 149-158. Patzner, R. A. (1998): The invasion of Lophocladia (Rhodomelaceae, Lophotalieae) at the northern coast of Ibiza (western Mediterranean Sea). Bol. Soc. Hist. Nat. Balears, 41, 75-80. Piazzi, L. & F. Cinelli (2001): Distribution and dominance of two introduced turf-forming macroalgae on the coast of Tuscany, Italy, northwestern Mediterranean Sea in relation to different habitats and sedimentation. Bot. Mar., 44, 509-520. Ribera, M. A., A. Gomez Garreta, T. Gallardo, M. Cor-maci, G. Furnari & G. Giaccone (1992): Check-list of Mediterranean Seaweeds. I. Fucophyceae (Warming, 1884). Bot. Mar., 35, 109-130. Rindi, F. & F. Cinelli (1995): Contribution to the knowledge of the benthic algal flora of the Isle of Alboran, with notes on some little-known species in the Mediterranean. Cryptogamie Algol., 16, 103-114. Rindi, F. & F. Cinelli (2000): Phenology and small-scale distribution of some rhodomelacean red algae on a western Mediterranean rocky shore. Eur. J. Phycol., 35, 115-125. Rindi, F., M. D. Guiry & F. Cinelli (1999): Morphology and reproduction of the adventive Mediterranean Rho-dophyta Polysiphonia setacea. Hydrobiologia, 398/399, 91-100. Rismondo, A., S. Volpe, D. Curiel & A. Solazzi (1993): Segnalazione di Undaria pinnatifida (Harvey) Suringar a Chioggia (Laguna di Venezia). Lavori Soc. Ven. Sci. Nat., 18, 328-330. Rizzi Longo, L. (1972): Campionamenti di alghe ben-toniche nel Quarnero. Atti Mus. Civ. Stor. Nat. Trieste, 28,147-166. Sartoni, G. & S. Rossi (1998): New records for the ben-thic algal flora of the Northern Adriatic Sea. Flora Medit., 8, 9-15. Span, A., B. Antolic & A. Zuljevic (1998): The genus Caulerpa (Caulerpales, Chlorophyta) in the Adriatic Sea. Rapp. Comm. int. Mer Médit., 35, 584-585. Verlaque, M. (1989): Contribution à la flore des algues de Méditerranée: Espèces rare ou nouvelles pour les côtes Françaises. Bot. Mar., 32, 101-113. Verlaque, M. (1994): Inventaire des plantes introduites en Méditerranée: origines et répercussions sur l'environnement et les activités humaines. Oceanol. Acta, 17(1), 1-23. Zahtila, E. (1999): IV. Biomonitoring in situ eksponira-nih morskih organizama. Izvještaj o pracenju utjecaja objekata DINA Omišalj na okoliš u 1999. godini. ZZJZ, Rijeka, p. 63-71. Zavodnik, N. (1992): Prilozi morskoj flori i fauni lošin-jske otočne skupine. I. Alge. Otočki ljetopis Cres-Lošinj, 8, 205-214. Zavodnik, D. & N. Zavodnik (1982): Survey of benthic communities in the area of Osor (North Adriatic Sea). Acta Adriat., 23(1/2), 259-270. Zavodnik, D., A. Span, N. Zavodnik, A. Simunovic & B. Antolic (1981): Benthos of the western coast of the island Krk (Rijeka Bay, the North Adriatic Sea). Thalassia Jugosl., 17(3/4), 285-337. Zavodnik, N., A. Jaklin & Z. LaEura (1998): Pojava tropske alge Caulerpa taxifilia u riječkom zaljevu. Priro-doslovna istraživanja riječkog područja. Prirodoslovni muzej Rijeka, Prirodoslovna bibilioteka, str. 717-722. Zuljevic, A. & B. Antolic (1998): Croatia. In: Proceeding of the workshop on invasive Caulerpa species in the Mediterranean. MAP Technical Report Series No. 125, p. 227-230.