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The fusion of artificial neural networks (ANN) with soft computing enables to construct learning 
machines that are superior compared to classical ANN becaiise knowledge can be extracted and 
explained in the form ofsimple rules. Ifthe data sets are small it is hard tofind the optimal structure of 
ANN because classical statistical laws do not apply. One possible remedy is the structural risk 
minimization method applied together with a VC dimension estimation technigue. The construction of 
the optimal ANN structure is done in the higher dimensional space. The distortion of an image in this 
transformation can happen and the widely used expressionfor VC estimations based on minimal input 
data enclosing hypersphere and margin is not predse. An improvement of VC dimension estimation is 
presented. It enables better actual error estimation and is particidarly suitable for the small data sets. 
Tests on some real life data sets have confirmed the theoretical expectations. 

1 Introduction 
One of the important steps in improving the usefulness of 
artificial neural networks (ANN) was fiision with soft 
computing [Zadeh 1994]. The construction of learning 
machines that are able to extract knovvledge and explain 
it in the form of simple rules is now possible. The 
problem of an optimal number of neurons and weights of 
connections and their values is in a fact global 
optimization problem because of the nonlinear relations 
between the input and output data. 

When data sets are small classical statistical lavvs do not 
apply and the construction of an optimal ANN is even 
harder. This problem is handled with the application of 
the structural risk estimation method together with the 
VC dimension estimation technique. Mapping of 
nonlinear relations between the input and the output is 
done by a transformation into the higher dimensional 
Hilbert kemel space where the problem is linearized. A 
distortion of image in this transformation can happen and 
widely used VC estimations based on minimal enclosing 
hypersphere and margin are not precise anymore. 

In this paper a different approach that enables better VC 
estimation is presented. It is integrated into the structural 
risk minimization technique. An efficient strategy for 
constructing fiizzy artificial neural network (FANN) with 
the minimal actual error has been developed that can be 
easily implemented as a small addition to the existing 
FANN learning algorithm. 
The performances of the proposed method were tested on 
some small data sets from the UC Irvine machine 
learning repository. The obtained results have confirmed 
theoretical expectations. 

2 Support vector fuzzy modeling 

In this chapter some basic definitions and modeling 
procedures are set. For given k observations, each 
consisting of apair: Xi, yi, vvhereA:; e R", i=l,....,kis the 
input vector and yi is the associated output having values 
-1 or 1. Learning a machine is actually building up a 
mapping ability x —»• f(x,a) where the functions f(x,a) 
themselves are labeled by adjustable parameters a. For 
the ANN a represents weights and biases. The 
expectation of test error for the trained machine is 

R{a) = j-\y-f(x,a)dP(x,a)\ 
(2.1) 

where R(a) is the expected risk. The measured mean 
error rate on the finite number of observations is 
"empirical risk" 

1 * 

^K 1=1 (2.2) 

Remp(oi) is fixed for a particular choice of a and for a 
particular training set /jc„ a}. The probability is not 
included in the equation. The quantity 'A | j , -f(Xi, a)\ is 
loss flinction. Empirical risk minimization does not 
imply a small error on a test set if the number of training 
data is limited. The structural risk minimization is one of 
new techniques for handling efficiently a limited amount 
ofdata. For a chosen//.• 0<ri < 7 the bound holds 
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Ria)<KM^^('^}^) 
k k (2.3) 

where O is defined as 

k k 

| / , ( | 0 g ^ + ])- l0g(^) 

(2.4) 

The parameter h is the Vapnik Chervonenkis (VC) 
dimension [Vapnik 1998]. It describes the capacity of a 
set of fUnctions implemented on the leaming machine. 

According to eq. (2.3), the risk could be controlled by 
tvvo quantities: R^^p (o-) and h(f(x,a): a e k^„h), where ks„b 
is some subset of index set k. The empirical risk R^mp 
depends on the choice of the optimal function (a) applied 
in the learning machine. The VC dimension h depends on 
the set of ftinctions {f(x,a) : a e k^ub}- The parameter h is 
controlled by introducing the structure of nested subsets 
S„ :={f(x,a) : a £ k„} 

and 

^ , ^ 0 

where ^ are slack variables introduced in the čase when 
the problem is not separable, and C is the pre-specified 
value. 

For the nonlinear cases a non-linear support vector 
approach is applied. A non-linear mapping is applied to 
map the data in a higher dimension feature space where a 
linear classification is applied. This is possible with the 
kernel functions. These functions originate from the 
theory of Reproducing Kernel Hilbert Spaces [Aronszajn 
1950]. An inner product in the feature space has an 
equivalent kernel input space 

^(x,y) = ^(x)-^(y) (2.9) 

If K is a positive definite function, satisiying Mercer's 
conditions 

5, c52 c 5 3 c:....^S„ c . . . 

with adequate VC dimensions satisfying 

h^<h^< <K<. 

(2.5) K{x,y)^Yj^„y^^\)\j/{y\ a,„>Q 

The structural minimization principle chooses the 
function/(ic,a*> in the subset {f(x,a): ae k,,,/,} vvith the 
minimal right hand side of (2.3). The guaranteed risk 
bound is minimal. For a given set of data 

(X, ,y , ) , ,(^k,ykl XER",yG{-l,l} (2.6) 

»1=1 (2.10) 

lJK{x,y)g{x)giy)dxdy>0, Jg^(x)«fx<-
(2.11) 

then the kernel is a legitime product in the feature space. 

There are different functions satisfying Mercer's 
condition: polynomial, splines, B-splines, radial basis 
functions, etc. In the present work the Gaussian radial 
basis function is used: 

a separation of tvvo classes can be performed with an 
optimal hyperplane 

(Wo-x) + 6o=0 

The margin 
1 

llw|| 

(2.7) 

K(x,y)^exp[-^^-^] 
lo (2.12) 

The support vector technique places one local Gaussian 
function in each support vector. This means that there is 
no need for a clustering method. The basis vvidth o is 
selected using structural minimization principle (2.3) and 
(2.5). The non-linear classification support vector 
solution using kemels can be solved by 

can be maximized by the following quadratic 
programming model 

1 * 
min<I>(x,^) = - ( w • w)-i- C j ^ ^ , 

1=1 

subject to constraints 

(2.8) 

min / (x , a) = sign(^ a,K{x^ ,x) + b 
(=1 

subject to constraints 

«, >0 

(2.13) 

(2.14) 

The coefficients a, can be found by the foUovving 
quadratic optimization problem 
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1 i k 

max W{a) = - - S «,«y3^/3^y^(x, > y,) + E ẑ 
;j=i 

subject tO constraints 

0 < a , < C , i^\,....,k 

(2.15) 

(2.16) 

In the solution of (2.15) only some coefficients a, differ 
from zero. The corresponding vectors are support 
vectors. 

The model described by (2.15) has only one optimum 
(that is also global) which is a great advance against the 
backpropagation based learning algorithm in ANN. 

The following support vector FANN architecture can be 
defined as presented in the fig. 2.1 

Layer 1 Layer 2 Layer 3 Layer A Layer 5 

Figure 2.1 Support vector FANN architecture 

Layer 1 calculates membership vaiues. Layer 2 performs 
T norm operator (multiplication). Layer 3 derives the 
product of each rule's output. Layer 4 performs the kernel 
Gaussian radial basis operation (2.12). Layer 5 sums its 
inputs as the overall output vvhere dj = Oj. The non-linear 
classification function is 

sv 
f{x) = sign(^a,K{x,,x) + b) 

i=l (2.17) 

The empirical risk Rempfa) in (2.2) is fixed for a particular 
choice of a and for a particular training set /Jc„ a}, and 
the probability is not included in the equation. The risk 
functional (2.1) depends on the conditional distribution 
function (c.d.f) P(x, a), which is not known in advance. 
The only available information is from the finite 
independent and identically distributed (i.i.d.) training 
data sets. There are two possible approaches. The first 
one is to estimate the unknown c.d.f. P(x, a), or also 
unknown probability distribution function (p.d.f) in the 
form of p(x), and then compute the optimal estimate/(x, 
ao). The second approach is to find a minimum of the 
empirical risk, which is calculated with the empirical risk 
minimization procedure (ERM). The second approach is 
preferable on the small data sets. It works if the 
asymptotic consistency is fiilfilled 

R(a*\ k) -^ R(aO) when k—> °° 

R„„p(a*\k) ->R(aO) whenk->°°, 

(3.1) 

(3.2) 

vvhere R^i„p(a*\ k) is the optimal value that minimizes the 
empirical risk in the loss function (2.2). R(a*\ k) is the 
unknown value of the true risk for the same loss function. 
The ERM is consistent if the true risk R(a*\k) and the 
empirical risk Remp(a*\ k) converge to the same limit 
R(ao) = miria R(cc) as the number of samples k grows 
toward the infinite value (fig. 3.1). 

vvhere SV is the number of support vectors. 

Fig. 3.1 Convergence of the empirical risk toward the 
actual risk 

The condition that a small actual risk will be guaranteed 
at a small empirical error is given by the follovving limit 
[Vapniketal. 1989] 

3 Optimization of parameters 
lim/^[sup I Ria) - R,„Ja) | > £] - O, Vf > O 

(3.3) 

Described are the conditions for optimizing the 
parameters of FANN, considering that some asymptotical 
laws from statistics are not valid for small data sets. 

The consistency is determined for the worst čase 
function. 

The structural risk minimization principle is applied to 
find the optimal value for the true risk estimation 



86 Informatica 25 (2001) 83-88 B. Novak 

R(a*\k). The penalization method is used to find the 
optimal function/f^, ao) from the set of functions/f ĵc, a). 
Then the trne risk R(a) is related to the empirical risk 

R(a) = Rr(p) 
(3.4) 

where r(p) is the penalization factor. In the support 
vector approach the penalization factor is of the form 
(2.4) and is proportional to the ratio of the VC dimension 
divided by the number of samples k. 

The structural risk minimization principle (2.5) can be 
realized by estimating the VC dimension as a product of 
the radius of the minimal sphere that encloses data in the 
feature space divided by the margin (the distance 
betvveen the hyperplane and the closest training vector in 
the feature space) 

h D' 

(3.5) 

The actual risk prediction can be estimated very 
efficiently by the leave-one-out procedure. It consists of 
removing sequentially one sample from the training data 
and constructing k learning machines and testing aH k 
elements for an error L(Xi,y^. The leave-one-out 
estimator is almost unbiased, that is 

.L{\,y„....,x,y,) _ ER{a,_,) 
(3.6) 

For optimal hyperspheres passing through the origin the 
equivalent of the expression (3.6) is 

'\p^A<-^ 
(3.7) 

where p''"'enTor is the probability of error on the test set. 
The expectation on the left is over ali training sets of size 
k-1. The expectation on the right is over aH training sets 
of size k. 

This bound is tight when data fill almost the whole area 
of the sphere (fig 2.2 left) enclosing the training data. 
The consequence of data transformation into the feature 
space is that the sphere is often transformed into a flat 
ellipsoid (fig. 2.2 right). The bound (3.7) is not tight 
anymore. 

Input space Feature space 

Fig. 3.2 the shape of the feature space 

It is possible to achieve a better upper bound on the 
estimate of the expected error rate. The upper bound is 
constructed from the leave-one-out bound [Luntz 1969], 
Opper-Winther bound [Opper et al. ], Khun Tucker 
optimality conditions [Karush 1939, Kuhn et al. 1951] 
and properties of the essential support vectors [Vapnik 
1998]. 

The optimal supporting plane is unique, but can be 
expressed with different expansions of support vectors. 
Essential support vectors are those support vectors that 
appear in ali possible expansion of an optimal 
hyperplane. Their number is presented by kesv and they 
have the following properties 

A:„,„ < n (3.8) 

vvhere n is the dimensionality of the transformed input 
data in the feature space. 

Let ER(a) is the expectation of the probability of an error 
for optimal hyperplanes constructed on the basis of 
training samples of size k, then the folIowing inequality 
holds 

ER(^a,_,)<^^^^ (3.9) 

In the čase of a learning machine vvithout threshold under 
assumption that the set of support vector does not change 
after removing example p (essential support vector), 
Opper-Winther equality applies 

yM'i^p)-r^^p)) 
cel 

iKtv) sv fpp (3.10) 

Ksv is the kernel matrix (2.12). The/o is decision function 
(2.13) trained on the whole training set and^ is decision 
function after one point Xp has been removed. It follows 
from (3.9) that the number of errors in the leave-out 
procedure is proportional to the number of essential 
support vectors. Instead of computing them we can use 
(3.10) and count the number of cases LE when 
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yrf\^p)^ 
cel 

(Ksv)pp (3.11) 

(3.12) 

is true. Then expectation is 

k 

4 Experimental results 

The program developed on the described principle for 
constructing optimal fuzzy learning machine on small 
data set was tested on some real data sets from practice. 
The data are form the UC Irvine machine leaming 
repository_( www.ics.uci.edu/~mlearn/MLRrepository). 
The first data set is a sonar data set (originally from 
www.boltz.cs.cmu.edu/ benchmarks/ sonar.html). The 
input consists of 104 samples of dimension 60, and the 
test data set is of the same size. 
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Fig. 4.1 The actual and the predicted risk for the sonar 
data 

The actual error R(a) and its prediction (3.12) for 
different <T (sigma) values is presented in the fig 4.1. In 
our čase a different set of fiinctions/(A:,c^ is generated by 
varying a in (2.12) for the radial basis function (a is 
actually a in our čase). The results are average values of 
a 100 fold repetition for each sigma value. Errors are 
given in the relative value (as in (2.2)). 

Next example is the ionosphere data set with the input 
dimension n=33 and 200 leaming samples and 151 test 
examples randomly generated from the complete set of 
351 samples. The actual error R{a) and its prediction 
(3.12) for different cr (sigma) values is presented in the 
fig 4.2. 

0,9 1 

0,6 

0,7 

0,6 

» 0,4 

0,3-

0,2-

0 ,1 -

0 -
0,1 0,5 1 

sigma 
i e 

• Ractual 
DRpredicted 

Fig. 4.2 The actual and the predicted risk for the 
ionosphere data 

The last example is the Pima Indians diabetes data set 
with the input dimension n = 8 and 200 learning samples 
and 200 test examples randomly generated from the 
complete set of 768 samples. 
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Fig. 4.3 The actual and the predicted risk for the Pima 
data 

The actual error R(a) and its prediction (3.12) for 
different cr(sigma) values is presented in the fig 4.3. 

5 Conclusion 

In practice it often happens that the amount of data is 
limited. Such cases appear in engineering where data are 
collected through expensive experiments or in medicine 
where records on certain diseases are rare. When a data 
set is small a significant discrepancy between the 
empirical error achieved on the leaming data set and the 
actual error on the testing data set appears. The actual 
error can be minimized with the stmctural risk 
minimization principle. It is calculated with the 
application of the VC dimension, which has to be 
estimated precisely to achieve good results. 

The estimation based purely on the margin and the 
minimal diameter of sphere including input data can be 
inadequate due to possible flattening of the sphere caused 
by mapping data into the feature space. 

http://www.ics.uci.edu/~mlearn/MLRrepository
http://www.boltz.cs.cmu.edu/
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In this paper a different approach that enables better VC 
estimation is presented. It is integrated into the structura! 
risk minimization technique. An efficient strategy for 
constructing FANN with the minimal actual error has 
been developed that can be easily impiemented as a small 
addition to the existing FANN learning algorithm. 

The performances of the proposed method were tested on 
some small data sets from the UC Irvine machine 
learning repository. The obtained results have confirmed 
theoretical expectations. 
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