
ERK'2022, Portorož, 200-203 200

Safety and path planning for collaborative applications based
on an autonomous mobile platform

Nicolas Gautier1, Peter Kmecl2, Marko Munih2 and Janez Podobnik2

ENIB, Brest, France 1 University of Ljubljana, FE, Ljubljana, Slovenia2

E-mail: nicolas.gautier29@protonmail.com

Abstract
This paper presents the improvement of a mobile robot
platform developed in the Laboratory of robotics at the
Faculty of Electrical Engineering. The final application
will be a collaborative mobile manipulator for indoor en-
vironment such as warehouse or retail store. The main
focus of this paper is the implementation of ADS commu-
nication for data exchange between the ROS controller
and the embedded computer, the use of external setpoint
generator for motor commands, the development of safety
using laser scanners and autonomous navigation using
the ROS (Robot operating system) navigation stack.

1 Introduction
Mobile robots are becoming more and more common, es-
pecially with the Industry 4.0. They are distinguished
from other robots by their ability to orient themselves
and navigate in an unknown and changing environment
thanks to their sensors and artificial intelligence algorithms.
This makes the robot capable of adapting to new situa-
tions and performing the tasks assigned to it. They are
most often used in industrial applications to transport and
handle materials and supplies, but also to assist humans in
their work and even to substitute them in difficult, repeti-
tive and dangerous tasks [1] [2].

Originally used in industrial applications, their scope
has expanded in recent years. They are now used in many
different areas such as museums, airports, warehouses,
etc. They will also play a key role in the future of agri-
culture and medicine, which are key sectors that humans
will have to transform in the next few years [3] [4].

Mobile platforms can be combined with robot manip-
ulators to form mobile manipulators which benefit from
the advantages of both types of robots. The robot can
move safely through its environment and be positioned
anywhere in the workspace to perform a variety of com-
plex and precise tasks. It can perform production and
manufacturing applications that previously required mul-
tiple stationary robots or a dedicated worker [5].

The mobile platform [6] shown in Figure 1 uses a
Beckhoff CX5140 PLC (Programmable Logic Controller)
to supervise the low level control of the platform (mo-
tors, joystick, laser field safety) and a high performance
computer running a ROS controller that uses high level

algorithms (path finding, SLAM, etc). The platform is
equipped with 4 Mecanum wheels for holonomic move-
ments, 2 SICK NanoScan3 laser sensors used for safety
and mapping, a joystick to control the platform in manual
mode and a battery to make the platform autonomous.

Figure 1: Mobile platform developed in the laboratory.

2 Upgrade and implementation
The mobile platform will be used in a collaborative appli-
cation. Therefore, safety had to be improved to prevent
any danger when it will be in contact with humans. To
enable autonomous navigation, path planning algorithms
had to be implemented. It was also relevant to improve
the responsiveness of the platform through the control of
the motors and the communication between the low and
high level programs.

2.1 ADS communication
We considered replacing the current UDP communica-
tion with ADS communication to exchange data between
the Beckhoff controller and the ROS controller. Twin-
CAT ADS ”Automation Device Specification” is an in-
terface created by Beckhoff for data exchange between
TwinCAT modules. All messages are transmitted over a
TCP/IP connections.

In our application, the ROS program needs the odom-
etry of the platform for the navigation algorithms. The
odometry is computed from the wheel motor encoders on
the PLC controller. The odometry must be sent periodi-
cally, so we use ADS notification which allows TwinCAT
variables to be received periodically without request.



201

We also need to send ROS velocity commands to the
PLC to move the platform. Instead of sending each vari-
able one by one, the ADS interface allows us to exchange
data arrays up to 500 variables to reduce the communica-
tion time.

2.2 External setpoint generator
To control the motors, TwinCAT offers the possibility of
using our own control signals (position, speed, accelera-
tion) through an external setpoint which replaces the in-
ternal setpoint. This allows us to have more control on
the trajectory and especially on the acceleration and the
jerk. It also reduces the delay between the sending of the
command and its execution.

For each wheel, we calculate the required accelera-
tion α which is the difference between the desired angu-
lar speed ωgoal and the current angular speed ω0 obtained
using the encoders over one period of the program ∆t (1).

α =
ωgoal − ω0

∆t
. (1)

If the acceleration is too high to suit our application
(smooth movement and avoid jerking), we clamp it. Then
we integrate twice using the linear approximation to ob-
tain the angular velocity ω (2) and angular position ϕ (3).

ω = α∆t+ ω0, (2)

ϕ = ω∆t+ ϕ0. (3)

2.3 Safety laser scanners
To enable autonomous movements, two sick nanoscan3
laser sensors were placed at two opposite corners of the
mobile platform to allow a 360◦view around the platform.
The objective is to have a safety field around the platform.
This allows warning fields for adapting the speed limit of
the platform depending on the triggered field and to safely
stop the platform (in software). In last resort in case of
a very close obstacle this also allows to disconnect the
motors from the power to stop the platform.

The set of warning fields used for the two sensors de-
pends on the direction in which the platform is moving.
To do this, we calculate the angle θ between the velocity
vector v and the x axis (4).

θ = arctan(
−vy
vx

). (4)

There are five sets of warning fields for each sen-
sor, for all the possible direction in which the platform is
moving (see Figure 2). For each set there are three warn-
ing fields (20 cm, 1 m and 2.5 m). These fields are used to
determine the nearest obstacle and adapt the speed limit.
There is no specific field for rotation because in this case
the platform will not move over large distances and the
default fields will be sufficient.

There is also a permanent set of fields all around the
platform (see Figure 2d.), consisting of the single protec-
tive field that disconnects the power if it is triggered. This
field is used for obstacles within 16 cm. The set also in-
cludes a warning field (18 cm), which has the same func-
tion but stops the platform in the TwinCAT program.

Figure 2: Set of fields used for a laser scanner mounted front
left, the fields are active depending on the direction of the plat-
form. Grey rectangle represents the platform.

2.4 ROS navigation
ROS navigation provides packages for autonomous nav-
igation and trajectory planning. It uses odometry com-
puted from the wheel encoders and the data from the two
laser scanners.

For localization we use ROS rtabmap package [7] which
is an implementation of VSLAM algorithm (Visual Si-
multaneous Localization And Mapping). It uses the sen-
sors and odometry of the platform to build and clear a
map. The map is recreated each time the program is
started because the platform will be used in different places
and should be able to adapt to new environments.

ROS navigation uses two path planners. The global
planner computes a global trajectory to reach the final
position. It usually implements shortest path algorithms
such as Dijkstra or A* algorithms [8]. In our application
we use the default settings of the ROS navigation global
planner [9].

The local planner computes the final trajectory that
tries to follow the global planner but handles local static
and dynamic obstacles. For local planner we use ROS
TEB (timed elastic band) local planner package [10]. The
algorithm optimizes the robot trajectory according to the
execution time, the distance to static and dynamic obsta-
cles and with regard to the platform dynamics. The user
can adjust the weights of the different parameters to best
fit the desired behavior. This planner is linked to a lo-
cal cost map that is regularly updated with sensor values.
The resolution is low and the map is small to avoid a long
computation time.

Figure 3 shows an example trajectory using the entire
navigation stack described above. The global cost map
(grey field) was created after a few moves of the platform
in the lab. The green trajectory is the path calculated by
the global planner to reach the final position. The local
cost map (white square field) shows the nearest obstacles
and their inflation radius. The local planner creates a lo-
cal trajectory (red path) that follows the global trajectory
but adapts it to the local cost map information and user



202

parameters.

Figure 3: Maps and trajectories using the navigation stack.

3 Evaluation and testing
3.1 ADS communication
Tests were performed to evaluate the frequency, delay and
jitter of the ADS communication for transmission. We
sent a large number of arrays and measured the time re-
quired for transmission. Figure 4 shows the final result,
the data was transmitted with an average of 1kHz with
some peaks at 500 Hz. The results are more consistent
and stable than the previous UDP communication.

Figure 4: ADS communication frequency experiment.

3.2 External setpoint generator
The movements using the external setpoint generator are
smooth and there are no jerks. This allows us to have bet-
ter control over the maximum acceleration limit. This is
important because the platform is quite heavy and high
acceleration could represent a danger in a collaborative
application. The response time is a few milliseconds and
the platform can stop almost instantly in case of an obsta-
cle. The movements are accurate to within 2-3 cm.

3.3 Safety laser scanners
Tests were conducted to ensure the reliability of the sys-
tem by placing obstacles such as boxes and chairs in the
path of the platform and verifying that the program stops
the platform. We also tested with dynamic obstacles (hu-
man cutting the path) when the platform was moving at a
higher speed to ensure that it prevented collisions.

3.4 Navigation behavior
We performed many tests in different configurations to
adjust the local planner settings to best suit the desired
behavior:

• Smooth trajectory without jerking and large accel-
erations.

• Adapt speed in the presence of obstacles and keep
a reasonable distance from them.

• React to dynamic obstacles by slowing down and
finding a new path around them if necessary.

• Navigate in narrow spaces without triggering the
safety fields.

• Precision of few centimeters on the final position
due to the future use of a manipulator.

3.5 Navigation accuracy
Measurements were performed to evaluate the accuracy
of the navigation to reach its final position. We wanted
to compare the odometry calculated from wheel motor
encoders, the position computed by ROS navigation stack
which combines the odometry and the laser sensor data.

For the reference position of the platform, we used the
laboratory’s Optotrak Certus NDI motion capture equip-
ment, which has high accuracy of 0.1 mm. The camera
was placed above the platform and aimed at a 3 x 4 m
area where the platform was able to move. Three mark-
ers were placed on the robot to be able to compute the x,
y and θ coordinates.

50 experiments were performed in a row with the same
trajectory loop to observe the shift of the behavior over
time and especially to ensure that the navigation remained
accurate. Figure 5 shows the first trajectory. We can ob-
serve that the odometry is initially quite close to the real
position (about 15 mm).

Figure 5: Comparison of odometry, transforms and real position
on the 1st trajectory.

Figure 6 shows the 46th trajectory where the odom-
etry is completely off from the real position (more than
100 mm). At the same time, the accuracy of the ROS nav-
igation remains constant with an average difference of 25



203

mm compared to the real position. We can also notice that
the trajectory rotates from initial trajectory, this is due to
the small difference between the initial and final orien-
tation that accumulates over the experiments (commands
are sent in the local coordinates system of the platform).

Figure 6: Comparison of odometry, transforms and real position
on the 46th trajectory.

We have plotted the accuracy to reach the desired po-
sition by comparing the initial position and the final po-
sition for each experiment. Figure 7 shows the results,
we obtained an average difference of 13 mm which does
not deteriorate over time. This is a good result for our
application because we wanted an accuracy of less than
50 mm for the manipulator.

We also plotted the average difference between the
odometry and the transforms compared to the real posi-
tions. The odometry diverges linearly from the real po-
sition and quickly becomes unusable while at the same
time the transforms remain around 25 mm from real po-
sition.

We observed similar results with the orientation. An
average difference of 0.05 ◦between the transforms and
the real orientation and an average difference of 0.17◦on
the final orientation.

Figure 7: Accuracy of the platform to reach the final position;
Precision of the odometry and its correction over the experi-
ments.

4 Conclusion
The use of TwinCAT ADS and the external setpoint gen-
erator has improved communication between the low-level
and high-level program, increased the responsiveness of
the platform, and providing better control over the motor
commands.

The safety improvement allows the platform to be
used in collaborative applications. It has prevented any
collisions with humans and obstacles, even in difficult
scenarios.

The ROS navigation stack enable the platform to nav-
igate autonomously in its environment. It can move both
on large areas and in narrow passages. It can also adapt
its trajectory to the presence of static and dynamic obsta-
cles and can reach the targeted goal with accuracy.

References
[1] Spyros G Tzafestas. Introduction to mobile robot control.

Elsevier, 2013.

[2] Giuseppe Fragapane, Dmitry Ivanov, Mirco Peron, Fabio
Sgarbossa, and Jan Ola Strandhagen. Increasing flexibil-
ity and productivity in industry 4.0 production networks
with autonomous mobile robots and smart intralogistics.
Annals of operations research, pages 1–19, 2020.

[3] Hani Hagras, Martin Colley, Victor Callaghan, and Mal-
colm Carr-West. Online learning and adaptation of au-
tonomous mobile robots for sustainable agriculture. Au-
tonomous Robots, 13(1):37–52, 2002.

[4] ZR Struzik, K Yoshiuchi, M Sone, T Ishikawa, H Kikuchi,
H Kumano, T Watsuji, BH Natelson, and Y Yamamoto.
“mobile nurse” platform for ubiquitous medicine. Meth-
ods of Information in Medicine, 46(02):130–134, 2007.

[5] Biao Zhang, Carlos Martinez, Jianjun Wang, Thomas
Fuhlbrigge, William Eakins, and Heping Chen. The chal-
lenges of integrating an industrial robot on a mobile plat-
form. In 2010 IEEE International Conference on Automa-
tion and Logistics, pages 255–260. IEEE, 2010.

[6] Peter Kmecl, Matjaž Mihelj, Marko Munih, and Janez
Podobnik. Vodenje sodelujoče mobilne robotske celice.
ERK, 2020.

[7] Mathieu Labbe. ROS RTAB-Map. http://wiki.
ros.org/rtabmap_ros.

[8] Pablo Marin-Plaza, Ahmed Hussein, David Martin, and
Arturo de la Escalera. Global and local path planning
study in a ros-based research platform for autonomous ve-
hicles. Journal of Advanced Transportation, 2018, 2018.

[9] David Lu. ROS global planner. https://wiki.ros.
org/global_planner.

[10] F. Hoffmann C. Rösmann and T. Bertram. ROS Timed
Elastic Band local planner. https://wiki.ros.
org/teb_local_planner.

http://wiki.ros.org/rtabmap_ros
http://wiki.ros.org/rtabmap_ros
https://wiki.ros.org/global_planner
https://wiki.ros.org/global_planner
https://wiki.ros.org/teb_local_planner
https://wiki.ros.org/teb_local_planner

