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Abstract

The inertia of a graph G is defined to be the triplet In(G) = (p(G), n(G), η(G)),
where p(G), n(G) and η(G) are the numbers of positive, negative and zero eigenvalues
(including multiplicities) of the adjacency matrix A(G), respectively. Traditionally p(G)
(resp. n(G)) is called the positive (resp. negative) inertia index of G. In this paper, we
introduce three types of congruent transformations for graphs that keep the positive inertia
index and negative inertia index. By using these congruent transformations, we determine
all graphs with exactly two positive eigenvalues and one zero eigenvalue.
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1 Introduction
All graphs considered here are undirected and simple. For a graph G, let V (G) and E(G)
denote the vertex set and edge set of G, respectively. The order of G is the number of
vertices of G, denoted by |G|. For v ∈ V (G), we denote by NG(v) = {u ∈ V (G) | uv ∈
E(G)} the neighborhood of v, NG[v] = NG(v) ∪ {v} the closed neighborhood of v and
d(v) = |NG(v)| the degree of v. A vertex of G is said to be pendant if it has degree 1.
By δ(G) we mean the minimum degree of vertices of G. As usual, we denote by G + H
the disjoint union of two graphs G and H , Kn1,...,nl

the complete multipartite graph with
l parts of sizes n1, . . . , nl, and Kn, Cn, Pn the complete graph, cycle, path on n vertices,
respectively.

The adjacency matrix ofG, denoted byA(G) = (aij), is the square matrix with aij = 1
if vi and vj are adjacent, and aij = 0 otherwise. Clearly, A(G) is a symmetric matrix with
zeros on the diagonal, and thus all the eigenvalues ofA(G) are real, which are defined to be
the eigenvalues of G. The multiset consisting of eigenvalues along with their multiplicities
is called the spectrum of G denoted by Spec(G). To characterize graphs in terms of their
eigenvalues has always been of the great interests for researchers, for instance to see [2, 4,
5, 8, 9] and references therein.

The inertia of a graph G is defined as the triplet In(G) = (p(G), n(G), η(G)), where
p(G), n(G) and η(G) are the numbers of positive, negative and zero eigenvalues (including
multiplicities) of G, respectively. Traditionally p(G) (resp. n(G)) is called the positive
(resp. negative) inertia index of G and η(G) is called the nullity of G. Obviously, p(G) +
n(G) = r(G) = n− η(G) if G has n vertices, where r(G) is the rank of A(G). Let B and
D be two real symmetric matrices of order n. Then D is called congruent to B if there is
an real invertible matrix C such that D = CTBC. Traditionally we say that D is obtained
from B by congruent transformation. The famous Sylvester’s law of inertia states that the
inertia of two matrices is unchanged by congruent transformation.

Since the adjacency matrix A(G) of G has zero diagonal, we have p(G) ≥ 1 if G has
at least one edge. One of the attractive problems is to characterize those graphs with a
few positive eigenvalues. In [9] Smith characterized all graphs with exactly one positive
eigenvalue. Recently, Oboudi [6] completely determined the graphs with exactly two non-
negative eigenvalues, i.e., those graphs satisfying p(G) = 1 and η(G) = 1 or p(G) = 2
and η(G) = 0.

In this paper, we introduce three types congruent transformations for graphs. By using
these congruent transformations and Oboudi’s results in [6], we completely characterize
the graphs satisfying p(G) = 2 and η(G) = 1.

2 Preliminaries
In this section, we will introduce some notions and lemmas for the latter use.

Theorem 2.1 (Interlacing theorem [1]). Let G be a graph of order n and H be an induced
subgraph of G with order m. Suppose that λ1(G) ≥ · · · ≥ λn(G) and λ1(H) ≥ · · · ≥
λm(H) are the eigenvalues of G and H , respectively. Then for every 1 ≤ i ≤ m, λi(G) ≥
λi(H) ≥ λn−m+i(G).

Lemma 2.2 ([1]). Let H be an induced subgraph of graph G. Then p(H) ≤ p(G).
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Lemma 2.3 ([3]). Let G be a graph containing a pendant vertex, and let H be the induced
subgraph of G obtained by deleting the pendant vertex together with the vertex adjacent to
it. Then p(G) = p(H) + 1, n(G) = n(H) + 1 and η(G) = η(H).

Lemma 2.4 (Sylvester’s law of inertia). If two real symmetric matrices A and B are con-
gruent, then they have the same positive (resp., negative) inertia index, the same nullity.

Theorem 2.5 ([9]). A graph has exactly one positive eigenvalue if and only if its non-
isolated vertices form a complete multipartite graph.

Let G1 be a graph containing a vertex u and G2 be a graph of order n that is disjoint
from G1. For 1 ≤ k ≤ n, the k-joining graph of G1 and G2 with respect to u, denoted by
G1(u)�k G2, is a graph obtained from G1 ∪G2 by joining u to arbitrary k vertices of G2.
By using the notion of k-joining graph, Yu et al. [11] completely determined the connected
graphs with at least one pendant vertex that have positive inertia index 2.

Theorem 2.6 ([11]). Let G be a connected graph with pendant vertices. Then p(G) = 2
if and only if G ∼= K1,r(u) �k Kn1,...,nl

, where u is the center of K1,r and 1 ≤ k ≤
n1 + · · ·+ nl.

Theorem 2.7 ([6]). Let G be a graph of order n ≥ 2 with eigenvalues λ1(G) ≥ · · · ≥
λn(G). Assume that λ3(G) < 0, then the following hold:

(1) If λ1(G) > 0 and λ2(G) = 0, then G ∼= K1 +Kn−1 or G ∼= Kn \e for e ∈ E(Kn);

(2) If λ1(G) > 0 and λ2(G) < 0, then G ∼= Kn.

Let H be set of all graphs satisfying λ2(G) > 0 and λ3(G) < 0 (in other words,
p(G) = 2 and η(G) = 0). Oboudi [6] determined all the graphs of H. To give a clear
description of this characterization, we introduce the class of graphs Gn defined in [6].

For every integer n ≥ 2, let Kdn2 e and Kbn2 c be two disjoint complete graphs with
vertex set V = {v1, . . . , vdn2 e} and W = {w1, . . . , wbn2 c}. Gn is defined to be the graph
obtained from Kdn2 e and Kbn2 c by adding some edges distinguishing whether n is even or
not below:

(1) If n is even, then add some new edges to Kn
2

+Kn
2

satisfying

∅ = NW (v1) ⊂ NW (v2) = {wn
2
} ⊂ NW (v3) = {wn

2
, wn

2−1} ⊂ · · · ⊂
NW (vn

2−1) = {wn
2
, . . . , w3} ⊂ NW (vn

2
) = {wn

2
, . . . , w2}.

(2) If n is odd, then add some new edges to Kn+1
2

+Kn−1
2

satisfying

∅ = NW (v1) ⊂ NW (v2) = {wn−1
2
} ⊂ NW (v3) = {wn−1

2
, wn−1

2 −1
} ⊂ · · · ⊂

NW (vn+1
2 −1

) = {wn−1
2
, . . . , w2} ⊂ NW (vn+1

2
) = {wn−1

2
, . . . , w1}.

By deleting the maximum (resp. minimum) degree vertex from Gn+1 if n is an even (resp.
odd), we obtain Gn. It follows the result below.

Remark 2.8 (See [6]). Gn is an induced subgraph of Gn+1 for every n ≥ 2.
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Figure 1: G5, G6, Gt and Gt+1.

For example, G2
∼= 2K1, G3

∼= P3 and G4
∼= P4. The graphs G5 and G6 are shown in

Figure 1. In general, Gt and Gt+1 are also shown in Figure 1 for an even number t.
Let G be a graph with vertex set {v1, . . . , vn}. By G[Kt1 , . . . ,Ktn ] we mean the gen-

eralized lexicographic product of G (by Kt1 ,Kt2 , . . . ,Ktn ), which is the graph obtained
from G by replacing the vertex vj with Ktj and connecting each vertex of Kti to each
vertex of Ktj if vi is adjacent to vj in G.

Theorem 2.9 ([6]). Let G ∈ H of order n ≥ 4 with eigenvalues λ1(G) ≥ · · · ≥ λn(G).

(1) If G is disconnected, then G ∼= Kp +Kq for some integers p, q ≥ 2;

(2) If G is connected, there exist some positive integers s and t1, . . . , ts such that G ∼=
Gs[Kt1 , . . . ,Kts ] where 3 ≤ s ≤ 12 and t1 + · · ·+ ts = n.

Furthermore, Oboudi gave all the positive integers t1, . . . , ts such that Gs[Kt1 , . . . ,
Kts ] ∈ H in Theorems 3.4 – 3.14 of [6].

Let G be the set of all graphs with positive inertia index p(G) = 2 and nullity η(G) = 1.
In next section, we introduce some new congruent transformations for graph that keep to
the positive inertia index. By using such congruent transformations we characterize those
graphs in G based onH.

3 Three congruent transformations of graphs
In this section, we introduce three types of congruent transformations for graphs.

Lemma 3.1 ([10]). Let u, v be two non-adjacent vertices of a graph G. If u and v have the
same neighborhood, then p(G) = p(G−u), n(G) = n(G−u) and η(G) = η(G−u) + 1.

Remark 3.2. Two non-adjacent vertices u and v are said to be congruent vertices of I-type
if they have the same neighbors. Lemma 3.1 implies that if one of congruent vertices of
I-type is deleted from a graph then the positive and negative inertia indices left unchanged,
but the nullity reduces just one. Conversely, if we add a new vertex that joins all the
neighbors of some vertex in a graph (briefly we refer to add a vertex of I-type in what
follows) then the positive and negative inertia indices left unchanged, but the nullity adds
just one. The graph transformation of deleting or adding vertices of I-type is called the
(graph) transformation of I-type.

Since Spec(Ks) = [(s − 1)1, (−1)s−1]. By applying the transformation of I-type, we
can simply find the inertia of Kn1,n2,...,ns

.
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Corollary 3.3. Let G = Kn1,n2,...,ns be a multi-complete graph where n1 ≥ n2 ≥ · · · ≥
ns and i0 = min{1 ≤ i ≤ s | ni ≥ 2}. Then G has the inertia index: In(G) =
(p(G), η(G), n(G)) = (1, ni0 + ni0+1 + · · ·+ ns − s+ i0 − 1, s− 1).

The following transformation was mentioned in [4], but the author didn’t prove the
result. For the completeness we give a proof below.

Lemma 3.4. Let {u, v, w} be an independent set of a graph G. If N(u) is a disjoint union
of N(v) and N(w), then p(G) = p(G−u), n(G) = n(G−u) and η(G) = η(G−u) + 1.

Proof. Since u, v, w are not adjacent to each other, we may assume that (0, 0, 0, αT ),
(0, 0, 0, βT ) and (0, 0, 0, γT ) are the row vectors of A(G) corresponding to the vertices
u, v, w, respectively. Thus A(G) can be written as

A(G) =


0 0 0 αT

0 0 0 βT

0 0 0 γT

α β γ A(G− u− v − w)

 .

Since N(u) = N(v) ∪N(w) and N(v) ∩N(w) = ∅, we have α = β + γ. By letting the
u-th row (resp. u-th column) minus the sum of the v-th and w-th rows (resp. the sum of the
v-th and w-th columns) of A(G), we get that A(G) is congruent to

0 0 0 0T

0 0 0 βT

0 0 0 γT

0 β γ A(G− u− v − w)

 =

(
0 0T

0 A(G− u)

)
.

Thus p(G) = p(G− u), n(G) = n(G− u) and η(G) = η(G− u) + 1 by Lemma 2.4.

Remark 3.5. The vertex u is said to be a congruent vertex of II-type if there exist two non-
adjacent vertices v andw such thatN(u) is a disjoint union ofN(v) andN(w). Lemma 3.4
implies that if one congruent vertex of II-type is deleted from a graph then the positive and
negative indices left unchanged, but the nullity reduces just one. Conversely, if there exist
two non-adjacent vertices v and w such that N(v) and N(w) are disjoint, we can add a
new vertex u that joins all the vertices in N(v) ∪N(w) (briefly we refer to add a vertex of
II-type in what follows), then the positive and negative inertia indices left unchanged, but
the nullity adds just one. The graph transformation of deleting or adding vertices of II-type
is called the (graph) transformation of II-type.

An induced quadrangle C4 = uvxy of G is called congruent if there exists a pair of
independent edges, say uv and xy in C4, such that N(u) \ {v, y} = N(v) \ {u, x} and
N(x) \ {y, v} = N(y) \ {x, u}, where uv and xy are called a pair of congruent edges of
C4. We call the vertices in a congruent quadrangle the congruent vertices of III-type.

Lemma 3.6. Let u be a congruent vertex of III-type in a graph G. Then p(G) = p(G−u),
n(G) = n(G− u) and η(G) = η(G− u) + 1.

Proof. Let C4 = uvxy be the congruent quadrangle of G containing the congruent vertex
u. Then (0, 1, 0, 1, αT ), (1, 0, 1, 0, αT ), (0, 1, 0, 1, βT ), (1, 0, 1, 0, βT ) are the row vectors
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of A(G) corresponding to the vertices u, v, x and y, respectively. Thus A(G) can be
presented by

A(G) =


0 1 0 1 αT

1 0 1 0 αT

0 1 0 1 βT

1 0 1 0 βT

α α β β A(G− u− v − x− y)

 .

By letting the u-th row (resp. u-th column) minus the x-th row (resp. x-th column) of
A(G), and letting the v-th row (resp. v-th column) minus the y-th row (resp. y-th column)
of A(G), we obtain that A(G) is congruent to

B =


0 0 0 0 αT − βT

0 0 0 0 αT − βT

0 0 0 1 βT

0 0 1 0 βT

α− β α− β β β A(G− u− v − x− y)

 .

Again, by letting the u-th row (resp. u-th column) minus the v-th row (resp. v-th col-
umn) of B, and adding the y-th row (resp. y-th column) to the v-th row (resp. v-th column)
of B, we obtain that B is congruent to

0 0 0 0 0T

0 0 1 0 αT

0 1 0 1 βT

0 0 1 0 βT

0 α β β A(G− u− v − x− y)

 =

(
0 0T

0 A(G− u)

)
.

Thus p(G) = p(G− u), n(G) = n(G− u) and η(G) = η(G− u) + 1 by Lemma 2.4.

Remark 3.7. The Lemma 3.6 confirms that if a congruent vertex of III-type is deleted
from a graph then the positive and negative inertia indices left unchanged, but the nullity
reduces just one. Conversely, if we add a new vertex to a graph that consists of a congruent
quadrangle with some other three vertices in this graph (briefly we refer to add a vertex
of III-type in what follows) then the positive and negative inertia indices left unchanged,
but the nullity adds just one. The graph transformation of deleting or adding vertices of
III-type is called the (graph) transformation of III-type.

Remark 3.2, Remark 3.5 and Remark 3.7 provide us three transformations of graphs that
keep the positive and negative inertia indices and change the nullity just one. By applying
these transformations we will construct the graphs in G. Let G1 be the set of connected
graphs each of them is obtained from some H ∈ H by adding one vertex of I-type, G2 be
the set of connected graphs each of them is obtained from some H ∈ H by adding one
vertex of II-type and G3 be the set of connected graphs each of them is obtained from some
H ∈ H by adding one vertex of III-type. At the end of this section, we would like to give
an example to illustrate the constructions of the graphs in Gi (i = 1, 2, 3).

Example 3.8. We know the path P4, with spectrum Spec(P4) = {1.6180, 0.6180,
−0.6180,−1.6180}, is a graph belonging toH. By adding a vertex u of I-type to P4 we ob-
tain H1 ∈ G1 (see Figure 2) where Spec(H1) = {1.8478, 0.7654, 0,−0.7654,−1.8478},
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Figure 2: The graphs P4, H1, H2 and H3.

adding a vertex u of II-type to P4 we obtainH2 ∈ G2 where Spec(H2) = {2.3028, 0.6180,
0,−1.3028,−1.6180}. Finally, by adding a vertex u of III-type to P4 we obtain H3 ∈ G3,
where Spec(H3) = {2.4812, 0.6889, 0,−1.1701,−2}. In fact, uv and xy is a pair of inde-
pendent edges in H3. Clearly, N(u)\{v, y} = N(v)\{u, x} = {w} and N(x)\{y, v} =
N(y) \ {x, u} = ∅. Thus C4 = uvxy is a congruent quadrangle of H3.

Clearly, G = K1,2 ∪ P2 is a non-connected graph in G, and all such graphs we collect
in G− = {G ∈ G | G is disconnected}. Additionally, H1 and H2 shown in Figure 2 are
graphs with pendant vertex belonging to G, and all such graphs we collect in G+ = {G ∈
G | G is connected with a pendant vertex}. In next section, we firstly determine the graphs
in G− and G+.

4 The characterization of graphs in G− and G+

The following result completely characterizes the disconnected graphs of G.

Theorem 4.1. Let G be a graph of order n ≥ 5. Then G ∈ G− if and only if G ∼=
Ks +Kt +K1, H +K1 or Ks +Kn−s \ e for e ∈ E(Kn−s), where H ∈ H is connected
and s+ t = n− 1, s, t ≥ 2.

Proof. All the graphs displayed in Theorem 4.1 have two positive and one zero eigenvalues
by simple observation. Now we prove the necessity.

Let G ∈ G−, and H1, H2, . . . ,Hk (k ≥ 2) the components of G. Since λ1(Hi) ≥ 0
for i = 1, 2, . . . , k and λ4(G) < 0, G has two or three components and so k ≤ 3.

First assume that G = H1 +H2 +H3. It is easy to see that G has exactly one isolated
vertex due to η(G) = 1 and p(G) = 2. Without loss of generality, let H3

∼= K1. Since
λ3(G) = 0 and λ1(Hi) > 0 (i = 1, 2), we have λ2(H1) < 0 and λ2(H2) < 0. By
Theorem 2.7 (2), G ∼= Ks +Kt +K1 as desired, where s+ t = n− 1 and s, t ≥ 2.

Next assume that G = H1 +H2. If H1
∼= K1, then

λ1(G) = λ1(H2) ≥ λ2(G) = λ2(H2) > λ3(G) =

0 = λ1(H1) > λ4(G) = λ3(H2) < 0.

Thus H2
∼= H ∈ H, and so G ∼= H + K1 as desired. If |Hi| ≥ 2 for i = 1, 2, then one

of λ2(H1) and λ2(H2) is equal to zero and another is less than zero because λ3(G) = 0
and λ4(G) < 0. Without loss of generality, let λ2(H1) < 0 and λ2(H2) = 0. We have
λ3(H1) ≤ λ2(H1) < 0, in addition, λ3(H2) < 0 since η(G) = 1. By Theorem 2.7 (2),
H1
∼= Ks for some s ≥ 2 and by Theorem 2.7 (1), H2

∼= Kn−s \ e.
We complete this proof.

In terms of Theorem 2.6, we will determine all connected graphs with a pendant vertex
satisfying p(G) = 2 and η(G) = d for any positive integer d.
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Theorem 4.2. Let G be a connected graph of order n with a pendant vertex. Then p(G) =
2 and η(G) = d ≥ 1 if and only if G ∼= K1,r(u)�k Kn1,...,nl

, where r + n1 + n2 + · · ·+
nl − (l + 1) = d.

Proof. Let G = K1,r(u) �k Kn1,...,nl
and vu is a pendant edge of G. By deleting v and

u from G we obtain H = G − {u, v} = (r − 1)K1 ∪ Kn1,...,nl
. It is well known that

p(Kn1,...,nl
) = 1 and η(Kn1,...,nl

) = n1 + · · ·+ nl − l. From Lemma 2.3, we have

p(G) = p(H) + 1 = p(Kn1,...,nl
) + 1 = 2,

η(G) = η(H) = (r − 1) + (n1 + · · ·+ nl − l) = d.

Conversely, let G be a graph with a pendant vertex and p(G) = 2. By Theorem 2.6,
we have G ∼= K1,r(u) �k Kn1,...,nl

. According to the arguments above, we know that
η(G) = r + n1 + n2 + · · ·+ nl − (l + 1) = d.

From Theorem 4.2, it immediately follows the result that completely characterizes the
graphs in G+.

Corollary 4.3. A connected graph G ∈ G+ if and only if G ∼= K1,2(u) �k Kn−3 or
G ∼= K1,1(u)�k Kn−2 \ e for e ∈ E(Kn−2).

Proof. By Theorem 4.2, we have G ∈ G+ if and only if G ∼= K1,r(u) �k Kn1,...,nl
,

where r + n1 + n2 + · · · + nl − (l + 1) = 1 and r, l, n1, . . . , nl ≥ 1. It gives two
solutions: one is r = 2, n1 = n2 = · · · = nl = 1 and l = n − 3 which leads to
G ∼= K1,2(u)�kKn−3; another is r = 1, n1 = 2, n2 = · · · = nl = 1 and l = n−2 which
leads to G ∼= K1,1(u)�k Kn−2 \ e for e ∈ E(Kn−2).

Let G∗ denote the set of all connected graphs in G without pendant vertices. Then
G = G− ∪ G+ ∪ G∗. Therefore, in order to characterize G, it remains to consider those
graphs in G∗.

5 The characterization of graphs in G∗

First we introduce some symbols which will be persisted in this section. Let G ∈ G∗. The
eigenvalues of G can be arranged as:

λ1(G) ≥ λ2(G) > λ3(G) = 0 > λ4(G) ≥ · · · ≥ λn(G).

We choose v∗ ∈ V (G) such that dG(v∗) = δ(G) = t, and denote by X = NG(v∗) and
Y = V (G) − NG[v∗]. Then t = |X| ≥ 2 since G has no pendant vertices. In addition,
|Y | > 0 since otherwise G would be a complete graph. First we characterize the induced
subgraph G[Y ] in the following result.

Lemma 5.1. G[Y ] ∼= Kn−t−1 \ e,K1 +Kn−t−2 or Kn−t−1.

Proof. First we suppose that Y is an independent set. If |Y | ≥ 3, then λ4(G) ≥
λ4(G[Y ∪{v∗}]) = 0 by Theorem 2.1, a contradiction. Hence |Y | ≤ 2, and soG[Y ] ∼= K1

or G[Y ] ∼= K2 \ e = 2K1.
Next we suppose that G[Y ] contains some edges. We distinguish the following three

situations.
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If λ2(G[Y ]) > 0, we have p(G[Y ]) ≥ 2. For any x ∈ X , the induced subgraph
G[{v∗, x}∪Y ] has a pendant vertex v∗ by our assumption. By Lemma 2.2 and Lemma 2.3,
we have p(G) ≥ p(G[{v∗, x} ∪ Y ]) = p(G[Y ]) + 1 ≥ 3, a contradiction.

If λ2(G[Y ]) < 0, by Theorem 2.7 (2) we have G[Y ] ∼= Kn−t−1 as desired.
At last assume that λ2(G[Y ]) = 0. If λ3(G[Y ]) < 0, by Theorem 2.7 (1), we have

G[Y ] ∼= Kn−t−1 \ e,K1 +Kn−t−2 as desired. If λ3(G[Y ]) = 0, by Lemma 2.3 we have
p(G[{v∗, x} ∪ Y ]) = p(G[Y ]) + 1 = 2 and η(G[{v∗, x} ∪ Y ]) = η(G[Y ]) ≥ 2, which
implies that λ4(G) ≥ λ4(G[{v∗, x} ∪ Y ]) = 0, a contradiction.

We complete this proof.

First assume that Y = {y1}. If G[X] = Kt, then G = Kn \ v∗y1. However Kn \
v∗y1 6∈ G∗ since p(Kn \ v∗y1) = 1. Thus there exist x1 6∼ x2 in X . Then NG(x1) =
NG(x2) and NG(v∗) = NG(y1). It follows that η(G) ≥ 2 by Lemma 3.1. Next assume
that Y = {y1, y} is an independent set. We have NG(v∗) = NG(y1) = NG(y) since
dG(y1), dG(y)≥ dG(v∗) = δ(G). Thus, by Lemma 3.1 we have η(G) = η(G−y1) + 1 =
η(G − y1 − y) + 2 ≥ 2. Thus we only need to consider the case that G[Y ] contains at
least one edge. Concretely, we distinguish three situations in accordance with the proof of
Lemma 5.1:

(a) G[Y ] ∼= Kn−t−2 + K1 in case of λ2(G[Y ]) = 0 and λ3(G[Y ]) < 0, where
n− t− 2 ≥ 2;

(b) G[Y ] ∼= Kn−t−1 \ e in case of λ2(G[Y ]) = 0 and λ3(G[Y ]) < 0, where |Y | =
n− t− 1 ≥ 3;

(c) G[Y ] ∼= Kn−t−1 in case of λ2(G[Y ]) < 0, where |Y | = n− t− 1 ≥ 2.

In the following, we deal with situation (a) in Lemma 5.2, (b) in Lemma 5.3 and (c)
in Lemma 5.4, 5.7 and Lemma 5.15. We will see that the graph G ∈ G∗ illustrated in (a)
and (b) can be constructed from some H ∈ H by the graph transformations of I-, II- and
III-type, but (c) can not.

Lemma 5.2. If G[Y ] ∼= Kn−t−2 +K1, where n− t− 2 ≥ 2, then G ∈ G1.

Proof. Since G[Y ] is isomorphic to Kn−t−2 +K1 (n− t−2 ≥ 2), Y exactly contains one
isolated vertex of G[Y ], say y. We have NG(v∗) = NG(y) and thus y is a congruent vertex
of I-type. By Lemma 3.1, we have p(G) = p(G − y) and η(G) = η(G − y) + 1. Notice
that G − y is connected, we have G − y ∈ H, and so G ∈ G1. Such a graph G, displayed
in Figure 3 (1), we call the v∗-graph of I-type.

In Figure 3 and Figure 5, two ellipses joining with one full line denote some edges
between them. A vertex and an ellipse joining with one full line denote some edges between
them, and with two full lines denote that this vertex joins all vertices in the ellipse. Two
vertices join with same location of an ellipse denote that they have same neighbours in this
ellipse.

It needs to mention that the v∗-graph of I-type characterized in Lemma 5.2, is a graph
obtained from H ∈ H by adding a new vertex joining the neighbors of a minimum degree
vertex of H .

For S ⊆ V (G) and u ∈ V (G), let NS(u) = NG(u) ∩ S and NS [u] = NG[u] ∩ S.

Lemma 5.3. Let G[Y ] ∼= Kn−t−1 \ e, where n− t− 1 ≥ 3 and e = yy′. Then G ∈ G1 if
NX(y) = NX(y′) and G ∈ G2 otherwise.
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Figure 3: The structure of some graphs.

Proof. Since n− t− 1 ≥ 3, there is y∗ ∈ Y other than y and y′. It is clear that NG(y) =
NX(y)∪ (Y \ {y, y′}) and NG(y′) = NX(y′)∪ (Y \ {y, y′}), and thus NG(y) = NG(y′)
if and only if NX(y) = NX(y′). We consider the following cases.

Case 1. NX(y) = NX(y′).
By assumption, NG(y) = NG(y′), thus y and y′ are congruent vertices of I-type. By

Lemma 3.1, we have p(G) = p(G − y) and η(G) = η(G − y) + 1. Since G − y is
connected, we have G − y ∈ H and so G ∈ G1. Such a G, displayed in Figure 3 (2), we
call the Y -graph of I-type.

Case 2. NX(y) 6= NX(y′).
First suppose that exactly one of NX(y) and NX(y′) is empty, say NX(y) = ∅ and

NX(y′) 6= ∅. Then yy∗ is a pendant edge of the induced subgraph G[X ∪ {y, y′, y∗, v∗}].
By Lemma 2.2 and Lemma 2.3, we have

2 = p(G) ≥ p(G[X ∪ {y, y′, y∗, v∗}]) = p(G[X ∪ {y′, v∗}]) + 1 ≥ 2.

Thus

p(G[X ∪ {y, y′, y∗, v∗}]) = 2 and
p(G[X ∪ {y′, v∗}]) = 1.

We see that λ2(G[X ∪ {y′, v∗}]) = 0 (since otherwise λ2(G[X ∪ {y′, v∗}]) < 0 and then
G[X ∪ {y′, v∗}] is a complete graph, but y′ 6∼ v∗). If λ3(G[X ∪ {y′, v∗}]) = 0, we have

η(G[X ∪ {y, y′, y∗, v∗}]) = η(G[X ∪ {y′, v∗}]) ≥ 2,

which implies
λ4(G) ≥ λ4(G[X ∪ {y, y′, y∗, v∗}]) = 0,

a contradiction. If λ3(G[X∪{y′, v∗}]) < 0, thenG[X∪{y′, v∗}] ∼= Kt+2\e orKt+1+K1

by Theorem 2.7 (1). Notice that G[X ∪ {y′, v∗}] is connected, we get G[X ∪ {y′, v∗}] ∼=
Kt+2 \ e where e = v∗y′. Thus NX(y′) = X and so NG(y′) = X ∪ (Y \ {y, y′}) =
NG(v∗) ∪ NG(y) is a disjoint union. Additionally, {y′, v∗, y} is an independent set in G,
we see that y′ is a congruent vertex of II-type. Thus p(G) = p(G − y′) and η(G) =
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Figure 4: The graphs Γ1,Γ2, . . . ,Γ14.

η(G − y′) + 1 by Lemma 3.4. This implies that G − y′ ∈ H, and so G ∈ G2. Such a G,
displayed in Figure 3 (3), we call the (v∗, Y )-graph of II-type.

Next suppose that NX(y), NX(y′) 6= ∅, without loss of generality, assume that
NX(y′) \ NX(y) 6= ∅. Then there exists x′ ∈ NX(y′) \ NX(y). Thus x′ ∼ y′ and
x′ 6∼ y. Now by taking some x ∈ NX(y), we see that C6 = v∗xyy∗y′x′ is a 6-cycle in G.
Note that x may joins each vertex in {x′, y′, y∗} and x′ may joins y∗. By distinguishing
different situations in according with the number of edges we have

G[v∗, x, y, y∗, y′, x′] ∼=



C6 no edge;
Γ1 or Γ2 one edges;
Γ3,Γ4 or Γ5 two edges;
Γ6,Γ7 or Γ8 three edges;
Γ9 four edges.

However C6 and Γ1, . . . ,Γ8 and Γ9 are all forbidden subgraphs of G (see Figure 4).
We complete this proof.

It remains to characterize the graph G ∈ G∗ satisfying G[Y ] ∼= Kn−t−1. Such a graph
G we call X-complete if G[X] is also complete graph, and X-imcomplete otherwise. The
following result characterizes the X-imcomplete graphs.

Lemma 5.4. Let G[Y ] ∼= Kn−t−1, where n − t − 1 ≥ 2, and G is X-imcomplete. Then
G ∈ G1 if there exist two non-adjacent vertices x1 6∼ x2 in G[X] such that NY (x1) =
NY (x2) and G ∈ G3 otherwise.

Proof. Let X = {x1, x2, . . . , xt} and Y = {y1, y2, . . . , yn−t−1}. Then V (G) = {v∗} ∪
X ∪ Y and Y induces Kn−t−1. Let x and x′ be two non-adjacent vertices in X . Since
dG(x) ≥ dG(v∗) and n− t− 1 ≥ 2, we have |NY (x)| ≥ 1 and |Y | ≥ 2, respectively. First
we give some claims.

Claim 5.5. If x 6∼ x′ in G[X] then one of NY (x) and NY (x′) includes another. If
NY (x) ⊂ NY (x′) then |NY (x)| = 1 and NY (x′) = Y .
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Proof. On the contrary, let y ∈ NY (x) \ NY (x′) and y′ ∈ NY (x′) \ NY (x), then
G[v∗, x, x′, y, y′] ∼= C5. Thus one of NY (x) and NY (x′) includes another. Now as-
sume that NY (x) ⊂ NY (x′). If |NY (x)| ≥ 2, say {y, y′} ⊆ NY (x), then x′ ∼ y, y′ and
exists y∗ ∈ NY (x′) \ NY (x). Thus G[v∗, x, x′, y, y′, y∗] ∼= Γ10 (see Figure 4). However
p(Γ10) = 3. Hence |NY (x)| = 1, and we may assume thatNY (x) = {y}. IfNY (x′) 6= Y ,
then there exists y′ ∈ Y \ NY (x′). Also, there exists y∗ ∈ NY (x′) \ NY (x). We have
G[v∗, x, x′, y, y′, y∗] ∼= Γ4 (see the labels in the parentheses of Figure 4), but p(Γ4) = 3.
Thus NY (x′) = Y .

Claim 5.6. If x 6∼ x′ in G[X] then NX(x) = NX(x′).

Proof. On the contrary, we may assume that x∗ ∈ NX(x′) \ NX(x). Then x∗ ∼ x′ and
x∗ 6∼ x, thus |NY (x)| ≥ 2 since |NG(x)| ≥ t. By Claim 5.5, we have NY (x∗), NY (x′) ⊆
NY (x). Then either NY (x∗) = NY (x′) = NY (x) or one of NY (x∗) and NY (x′) is a
proper subset of NY (x) (without loss of generality, assume that NY (x∗) ⊂ NY (x), and
then |NY (x∗)| = 1 and NY (x) = Y by Claim 5.5).

Suppose that NY (x) = NY (x∗) = NY (x′). Take y, y′ ∈ NY (x), we see that
G[v∗, x, x∗, x′, y, y′] ∼= Γ11 (see Figure 4). However p(Γ11) = 3.

Suppose that |NY (x∗)| = 1 and NY (x) = Y . Let NY (x∗) = {y} and there exists
another y′ ∈ Y . Then G[v∗, x, x∗, x′, y, y′] is isomorphic Γ13 (see Figure 4) if x′ ∼ y, y′,
or isomorphic to Γ12 (see Figure 4) if x′ ∼ y and x′ 6∼ y′, or isomorphic to Γ14 (see
Figure 4) if x′ 6∼ y and x′ ∼ y′. However p(Γ12) = p(Γ13) = 3 and λ4(Γ14) = 0. We are
done.

Now we distinguish the following cases to prove our result.

Case 1. There exist x1 6∼ x2 such that NY (x1) = NY (x2).
Since x1 6∼ x2, we have NX(x1) = NX(x2) by Claim 5.6, so NG(x1) = NG(x2).

Thus x1 and x2 are congruent vertices of I-type. By Lemma 3.1, p(G) = p(G − x1) and
η(G) = η(G − x1) + 1. Thus G − x1 ∈ H and so G ∈ G1. Such a G, displayed in
Figure 5 (1), we call the X-graph of I-type.

Case 2. For each pair of x 6∼ x′ ∈ X , NY (x) 6= NY (x′).
By Claim 5.5, without loss of generality, assume that NY (x) ⊂ NY (x′) and then

NY (x) = {y} and NY (x′) = Y . Thus y ∼ x, x′ and furthermore we will show that X ⊆
NG(y). In fact, let x∗ ∈ X \{x, x′} (if any), if x 6∼ x∗, we have NY (x∗) ⊇ NY (x) = {y}
by Claim 5.6. Thus y ∼ x∗. Otherwise, x ∼ x∗ and thus x′ ∼ x∗ since NX(x) = NX(x′)
by Claim 5.6. Now take y′ ∈ Y \ {y}. If y 6∼ x∗, then G[v∗, x, x′, x∗, y, y′] is isomorphic
to Γ12 (see the first labels in the parentheses of Figure 4) while x∗ 6∼ y′, or isomorphic to
Γ13 (see the labels in the parentheses of Figure 4) while x∗ ∼ y′, but p(Γ12) = p(Γ13) = 3.
It follows that NG(y) = X ∪ (Y \ {y}) since Y induces a clique.

On the other hand, since dG(x) ≥ |X| = t, x 6∼ x′ and NY (x) = {y}, we have
NX(x) = X \ {x, x′} and so NX(x′) = X \ {x, x′} by Claim 5.6. Thus NG(x) =
(X \ {x, x′}) ∪ {v∗, y} and NG(x′) = (X \ {x, x′}) ∪ Y ∪ {v∗}. Hence the quadrangle
C4 = xv∗x′y is congruent, where xv∗ and x′y is a pair of congruent edges of C4. It
gives that x, v∗, x′, y are congruent vertices of III-type. By Lemma 3.6, we have p(G) =
p(G−x) and η(G) = η(G−x) + 1 thus G−x ∈ H, and so G ∈ G3. Such a G, displayed
in Figure 5 (2), we call the (v∗, X, Y )-graph of III-type.

We complete this proof.
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Figure 5: The structure of some graphs.

At last we focus on characterizing X-complete graph G ∈ G∗, i.e., G[X] ∼= Kt and
G[Y ] ∼= Kn−t−1. A X-complete graph G ∈ G∗ is called reduced if one of NY (xi) and
NY (xj) is a subset of another for any xi 6= xj ∈ X and non-reduced otherwise. Thus the
X-complete graphs are partitioned into a disjoint union of the reduced and non-reduced
X-complete graphs. Concretely, for a reduced X-complete graph G ∈ G∗, we may assume
that ∅ = NY (v∗) ⊆ NY (x1) ⊆ NY (x2) ⊆ · · · ⊆ NY (xt); for a non-reduced (X,Y )-
complete graph G ∈ G∗, there exist some x 6= x′ ∈ X such that NY (x) \NY (x′) 6= ∅ and
NY (x′) \ NY (x) 6= ∅. Such vertices x and x′ are called non-reduced vertices. It remains
to characterize the reduced and non-reduced X-complete graphs in what follows.

Lemma 5.7. Let G ∈ G∗ be a non-reduced X-complete graph and x, x′ be non-reduced
vertices. Then G ∈ G3.

Proof. Since x, x′ are non-reduced vertices, there exist y ∈ NY (x) \ NY (x′) and y′ ∈
NY (x′) \ NY (x). Then x, x′, y′, y induces C4 (see Figure 5 (3)). It suffices to verify that
C4 is congruent. Clearly, NG(x) ⊃ (X \{x})∪{v∗} and NG(x′) ⊃ (X \{x′})∪{v∗}. If
there exists y∗ ∈ NY (x) \NY (x′) other than y, then G[v∗, x, x′, y′, y, y∗] ∼= Γ12 (see the
second labels in the parentheses of Figure 4), however Γ12 is a forbidden subgraph of G.
Hence NY (x) \NY (x′) = {y}. Similarly, NY (x′) \NY (x) = {y′}. On the other aspect,
x ∈ NX(y)\NX(y′) and x′ ∈ NX(y′)\NX(y). If there exists x∗ ∈ NX(y)\NX(y′) other
than x, then G[v∗, x, x′, x∗, y, y′] ∼= Γ10 (see the labels in the parentheses of Figure 4),
however Γ10 is a forbidden subgraph of G. Hence NX(y) \ NX(y′) = {x}. Similarly,
NX(y′)\NX(y) = {x′}. HenceNX(y)\{x} = NX(y′)\{x′}. Note thatNG(y) ⊃ Y \{y}
and NG(y′) ⊃ Y \ {y′}, we have NG(y) \ {y′, x} = (Y \ {y, y′}) ∪ (NX(y) \ {x}) =
NG(y′) \ {x′, y}. Hence the quadrangle C4 = xx′y′y is congruent, where xx′ and y′y is
a pair of congruent edges. It follows that x, x′, y′, y are congruent vertices of III-type. By
Lemma 3.6, we have p(G) = p(G− x) and η(G) = η(G− x) + 1. Thus G− x ∈ H, and
so G ∈ G3. Such a G, displayed in Figure 5 (3), we call the (X,Y )-graph of III-type.

We complete this proof.

To characterize the reduced X-complete graph, we need the notion of canonical graph
which is introduced in [7]. For a graphG, a relation ρ on V (G) we mean that uρv iff u ∼ v
and NG(u) \ v = NG(v) \ u. Clearly, ρ is symmetric and transitive. In accordance with ρ,



332 Ars Math. Contemp. 17 (2019) 319–347

the vertex set is decomposed into classes:

V (G) = V1 ∪ V2 ∪ · · · ∪ Vk, (5.1)

where vi ∈ Vi and Vi = {x ∈ V (G) | xρvi}. By definition of ρ, Vi induces a clique Kni

where n1 + n2 + · · ·+ nk = n = |V (G)|, and vertices of Vi join that of Vj iff vi ∼ vj in
G. We call the induced subgraph G[{v1, v2, . . . , vk}] as the canonical graph of G, denoted
by Gc. Thus G = Gc[Kn1

,Kn2
, . . . ,Knk

] is a generalized lexicographic product of Gc

(by Kn1
,Kn2

, . . . ,Knk
).

Let G be a reduced X-complete graph. From (5.1) we have G = Gc[Kn1
,Kn2

, . . . ,
Knk

], where Gc = G[{v1, v2, . . . , vk}] and Vi = {x ∈ V (G) | xρvi} induces clique
Kni . Without loss of generality, assume v1 = v∗. Let Xc = NGc(v1) and Yc =
{v2, v3, . . . , vk} \ Xc. Clearly, Gc[Xc] is a clique since Xc is a subset of X and X in-
duces a clique in G. Furthermore, Gc[Yc] is a clique since Yc is a subset of Y and Y
induces a clique in G. Thus Gc is also a Xc-complete graph. Additionally, since G
is reduced, Gc is also reduced. Let tc = dGc

(v1) and Xc = {x1, x2, . . . , xtc}, Yc =
{y1, y2, . . . , yk−tc−1}. We may assume NYc(v1) ⊂ NYc(x1) ⊂ · · · ⊂ NYc(xtc) and
NXc(y1) ⊂ · · · ⊂ NXc(yk−tc−1). Therefore,

0 = |NYc(v1)| < |NYc(x1)| < · · · < |NYc(xtc)| ≤ |Yc| = k − tc − 1, (5.2)

and
0 ≤ |NXc(y1)| < |NXc(y2)| < · · · < |NXc(yk−tc−1)| ≤ |Xc| = tc. (5.3)

From Equation (5.2), we have tc ≤ k − tc − 1. Similarly, k − tc − 2 ≤ tc from
Equation (5.3). Thus k − 2 ≤ 2tc ≤ k − 1, and so tc = dk2 e − 1.

If k is even, then tc = k
2 − 1. From Equation (5.2), we have |NYc

(xi)| = i for
i = 1, 2, . . . , tc. Thus we may assume that

NYc
(v1) = ∅,

NYc
(x1) = {y k

2
},

...
NYc

(xn
2−2) = {y k

2
, . . . , y3},

NYc
(xn

2−1) = {y k
2
, . . . , y2}.

This implies that G ∼= Gk where Gk is defined in Section 2. Similarly, G ∼= Gk if k is odd.
Thus we obtain the following result.

Lemma 5.8. Let G be a reduced X-complete graph. Then Gc
∼= Gk where k ≥ 2 is

determined in (5.1).

Let G ∈ G∗ be a reduced X-complete graph. The following lemma gives a characteri-
zation for G. First we cite a result due to Oboudi in [5].

Lemma 5.9 ([5]). Let G = G3[Kn1 ,Kn2 ,Kn3 ], where n1, n2, n3 are some positive inte-
gers. Then the following hold:

(1) If n1 = n2 = n3 = 1, that is G ∼= P3, then λ3(G) = −
√

2;

(2) If n1 = n2 = 1 and n3 ≥ 2, then λ3(G) = −1;
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(3) If n1n2 > 1, then λ3(G) = −1.

We know that any graphG is a generalized lexicographic product of its canonical graph,
i.e., G = Gc[Kn1

,Kn2
, . . . ,Knk

]. We also have Gc = Gk if G is reduced X-complete by
Lemma 5.8. Furthermore, the following result prove that 4 ≤ k ≤ 13.

Lemma 5.10. Let G ∈ G∗ be a reduced X-complete graph. Then there exists 4 ≤ k ≤ 13
such that G = Gk[Kn1 ,Kn2 , . . . ,Knk

].

Proof. By Lemma 5.8, G = Gk[Kn1
,Kn2

, . . . ,Knk
] for some k. If k = 1 or 2 then

G ∼= Kn 6∈ G∗, and so k ≥ 3. If k = 3, then G = G3[Kn1
,Kn2

,Kn3
]. Thus λ3(G) < 0

by Lemma 5.9, a contradiction. Hence k ≥ 4. On the other hand, since Gc = Gk is an
induced subgraph of G, we have λ4(Gk) ≤ λ4(G) < 0 by Theorem 2.1. Note that G14 is
an induced subgraph of Gk (by Remark 2.8) for k ≥ 15, we have λ4(Gk) ≥ λ4(G14) = 0.
It implies that k ≤ 13.

Next we consider the converse of Lemma 5.10. In other words, we will try to find the
values of n1, . . . , nk such that p(Gk[Kn1

, . . . ,Knk
]) = 2 and η(Gk[Kn1

, . . . ,Knk
]) = 1,

where 4 ≤ k ≤ 13 and n = n1 + n2 + · · ·+ nk. For the simplicity, we use notation in [8]
to denote

G2s[Kn1
, . . . ,Kn2s

] = B2s(n1, . . . , ns;ns+1, . . . , n2s) and
G2s+1[Kn1

, . . . ,Kn2s+1
] = B2s+1(n1, . . . , ns;ns+1, . . . , n2s;n2s+1).

By Remark 3.2 in [6], we know

H0 = B2s(n1, . . . , ns;ns+1, . . . , n2s)
∼= B2s(ns+1 . . . , n2s;n1, . . . , ns) = H ′0 and

H1 = B2s+1(n1, . . . , ns;ns+1, . . . , n2s;n2s+1)
∼= B2s+1(ns+1, . . . , n2s;n1, . . . , ns;n2s+1) = H ′1.

In what follows, we always take H0 and H1, in which (n1, . . . , ns) is prior to (ns+1, . . . ,
n2s) in dictionary ordering, instead of H ′0 and H ′1. For example we use B6(4, 3, 2; 4, 3, 1)
instead of B6(4, 3, 1; 4, 3, 2) and B7(5, 3, 2; 5, 2, 4; 8) instead of B7(5, 2, 4; 5, 3, 2; 8).

For 4 ≤ k ≤ 13, let

Bk(n) = {G = Bk(n1, . . . , nk) | n = n1 + · · ·+ nk, ni ≥ 1}.

LetB+k (n), B00k (n), B0k(n) andB−k (n) denote the set of graphs inBk(n) satisfying λ3(G) >
0 for G ∈ B+

k (n), λ4(G) = λ3(G) = 0 for G ∈ B00
k (n), λ4(G) < λ3(G) = 0 for

G ∈ B0k(n) and λ3(G) < 0 for G ∈ B−k (n), respectively. Clearly, Bk(n) = B+k (n) ∪
B00k (n) ∪ B0k(n) ∪ B−k (n) is disjoint union and G = Gk[Kn1

,Kn2
, . . . ,Knk

] ∈ B0
k(n) if

G ∈ G∗ is a reduced X-complete graph by Lemma 5.10. In what follows, we further show
that n ≤ 13. First, one can verify the following result by using computer.

Lemma 5.11. B0k(14) = ∅ for 4 ≤ k ≤ 13 (it means that there are no reducedX-complete
graphs of order 14).

Proof. For 4 ≤ k ≤ 13, the k-partition of 14 gives a solution (n1, n2, . . . , nk) of the
equation n1 + n2 + · · · + nk = 14 that corresponds a graph G = Bk(n1, n2, . . . , nk) ∈
Bk(14). By using computer, we exhaust all the graphs of Bk(14) to find that there is no
any graph G ∈ Bk(14) with λ4(G) < λ3(G) = 0. It implies that B0k(14) = ∅.
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In [6], Oboudi gave all the integers n1, . . . , nk satisfying λ2(Bk(n1, . . . , nk)) > 0 and
λ3(Bk(n1, . . . , nk)) < 0 for 4 ≤ k ≤ 9. For simplicity, we only cite this result for k = 5
and the others are listed in Appendix B.

Theorem 5.12 ([6]). Let G = B5(n1, n2;n3, n4;n5), where n1, n2, n3, n4, n5 are some
positive integers. Then λ2(G) > 0 and λ3(G) < 0 if and only if G is isomorphic to one of
the following graphs:

(1) B5(a,w; 1, 1; 1);

(2) B5(a, x; 1, d; 1);

(3) B5(a, x; 1, y; z);

(4) B5(a, x; 1, 1; e);

(5) B5(a, 1; c, 1; e);

(6) B5(a, 1;x,w; 1);

(7) B5(a, 1;x, y; e);

(8) B5(a, 1; 1, d; e);

(9) B5(w, x; y, 1; e);

(10) B5(x, b; 1, 1; 1);

(11) B5(x,w; 1, d; 1);

(12) B5(x,w; 1, 1; e);

(13) B5(1, b; 1, d; 1);

(14) B5(1, b; 1, x; y);

(15) B5(1, x; 1, y; e);

(16) 63 specific graphs: 13 graphs of order 10, 25 graphs of order 11, and 25 graphs of
order 12,

where a, b, c, d, e, x, y, z, w are some positive integers such that x ≤ 2, y ≤ 2, z ≤ 2 and
w ≤ 3.

Lemma 5.13. Let G ∈ Bk(n), where 4 ≤ k ≤ 9 and n ≥ 14. If G /∈ B−k (n), then G has
an induced subgraph Γ ∈ Bk(14) \ B−k (14).

Proof. We prove this lemma by induction on n. If n = 14, sinceG ∈ Bk(14)\B−k (14), our
result is obviously true by taking Γ = G. Let n ≥ 15 and G′ ∈ Bk(n − 1) be an induced
subgraph ofG. IfG′ /∈ B−k (n−1), thenG′ has an induced subgraph Γ ∈ Bk(14)\B−k (14)
by induction hypothesis, and so does G. Hence it suffices to prove that G contains an
induced subgraph G′ ∈ Bk(n− 1) \B−k (n− 1) for n ≥ 15 in the following. We will prove
that there exists G′ ∈ B5(n − 1) \ B−5 (n − 1) for n ≥ 15, and it can be similarly proved
for the other k which we keep in the Appendix B.

Let G = B5(n1, n2;n3, n4;n5) ∈ B5(n). Then one of

H1 = B5(n1 − 1, n2;n3, n4;n5), H2 = B5(n1, n2 − 1;n3, n4;n5),

H3 = B5(n1, n2;n3 − 1, n4;n5), H4 = B5(n1, n2;n3, n4 − 1;n5) and
H5 = B5(n1, n2;n3, n4;n5 − 1)

must belong to B5(n−1). On the contrary, assume thatHi ∈ B−5 (n−1) for i = 1, 2, . . . , 5.
Then Hi is a graph belonging to (1) – (15) in Theorem 5.12 since |Hi| = n− 1 ≥ 14.

First we consider H1. If H1 is a graph belonging to (1) of Theorem 5.12, then H1 =
B5(a,w; 1, 1; 1) where n1−1 = a, n2 = w, n3 = n4 = n5 = 1, and henceG = B5(a+1,
w; 1, 1; 1) ∈ B−5 (n), a contradiction. Similarly, H1 cannot belong to (2) – (8) of Theo-
rem 5.12. If H1 is a graph belonging to (9) of Theorem 5.12, then H1 = B5(w, x; y, 1; e)
where n1 − 1 = w, n2 = x, n3 = y, n4 = 1, n5 = e. Since w ≤ 3, we have
n1 ≤ 4. If n1 < 4 then w + 1 ≤ 3 and G = B5(w + 1, x; y, 1; e) ∈ B−5 (n), a con-
tradiction. Now assume that n1 = 4. Then H1 = B5(3, x; y, 1; e). Since x, y ∈ {1, 2},
we have G ∈ {B5(4, 1; 1, 1; e), B5(4, 2; 1, 1; e), B5(4, 1; 2, 1; e), B5(4, 2; 2, 1; e)}. How-
ever B5(4, 1; 1, 1; e), B5(4, 2; 1, 1; e), B5(4, 1; 2, 1; e) belong to (4), (5) of Theorem 5.12
which contradicts our assumption. Thus G = B5(4, 2; 2, 1; e). By Theorem 5.12, G =



F. Duan, Q. Huang and X. Huang: On graphs with exactly two positive eigenvalues 335

B5(4, 2; 2, 1; e) 6∈ B−5 (n), and also its induced subgraphB5(4, 2; 2, 1; e−1) /∈ B−5 (n−1),
a contradiction. Hence H1 belongs to (10) – (15) of Theorem 5.12, from which we see that
n1 − 1 is either x or 1. Thus n1 ≤ 3 due to x ≤ 2.

By the same method, we can verify that n2 ≤ 3 if H2 ∈ B−5 (n − 1); n3 ≤ 3 if
H3 ∈ B−5 (n − 1); n4 ≤ 3 if H4 ∈ B−5 (n − 1) and n5 ≤ 2 if H5 ∈ B−5 (n − 1). Hence
n = n1 + · · ·+ n5 ≤ 14, a contradiction. We are done.

Lemma 5.14 ([6]). If n ≥ 14, then B−k (n) = ∅ for 10 ≤ k ≤ 13.

Lemma 5.15. Given 4 ≤ k ≤ 13, B0k(n) = ∅ for n ≥ 14 (it means that there are no
reduced X-complete graphs of order n ≥ 14).

Proof. Let G ∈ B0k(n) and n ≥ 14. Then λ4(G) < λ3(G) = 0. First we assume that
4 ≤ k ≤ 9. Since G /∈ B−k (n), G has an induced subgraphs Γ ∈ Bk(14) \ B−k (14)
by Lemma 5.13. Thus λ3(Γ) ≥ 0. Furthermore, we have λ3(Γ) = 0 since otherwise
0 < λ3(Γ) ≤ λ3(G). Additionally, λ4(Γ) ≤ λ4(G) < 0, we have Γ ∈ B0k(14), contrary
to Lemma 5.11. Next we assume that 10 ≤ k ≤ 13. By deleting n − 14 vertices from G,
we may obtain an induced subgraph Γ ∈ Bk(14). By Lemma 5.14, we have λ3(Γ) ≥ 0,
and then λ3(Γ) = 0 by the arguments above. Additionally, λ4(Γ) ≤ λ4(G) < 0, we have
Γ ∈ B0k(14) which also contradicts Lemma 5.11.

By Lemma 5.15, we know that, for any reducedX-complete graphG ∈ G∗, there exists
4 ≤ k ≤ 13 and n ≤ 13 such that G ∈ B0k(n). Let

B∗ = {G = Bk(n1, n2, . . . , nk) ∈ B0k(n) | 4 ≤ k ≤ 13 and n ≤ 13}.

Thus G ∈ G∗ is a reduced X-complete graph if and only if G ∈ B∗.

Remark 5.16. Clearly, B = ∪4≤k≤13,n≤13Bk(n) contains finite graphs. By using com-
puter we can exhaust all the graphs of B to find out the graphs in B∗. We list them in
Table 1.

Recall that G1, G2 and G3 are the set of connected graphs each of them is obtained
from some H ∈ H by adding one vertex of I, II, III-type, respectively. Summarizing
Lemmas 5.2, 5.3, 5.4, 5.15 and Theorem 4.2, finally we give the characterization of the
connected graphs in G.

Theorem 5.17. Let G be a connected graph of order n ≥ 5. Then G ∈ G if and only if G
is isomorphic to one of the following graphs listed in (1), (2) and (3):

(1) K1,2(u)�k Kn−3 or K1,1(u)�k Kn−2 \ e for e ∈ E(Kn−2);

(2) the graphs belonging to G1,G2 or G3;

(3) the 802 specific graphs belonging to B∗ some of which we list in Table 1.

If G∗ is obtained from G ∈ G by adding one vertex of I, II or III-type, then the positive
and negative indices of G∗ left unchanged, but the nullity adds just one. Repeating this
process, we can get a class of graphs which has two positive eigenvalues and s zero eigen-
values, where s ≥ 2 is any integer. However, by using the I, II and III-type (graph) transfor-
mations, we can not get all such graphs. For example, H = B10(1, 1, 2, 3, 2; 1, 1, 1, 1, 1) is
a graph satisfying p(H) = 2 and η(H) = 2 that can not be constructed by above (graph)
transformation. Hence the characterization of graphs with p(H) = 2 and η(H) = s (espe-
cially η(H) = 2) is also an attractive problem.
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Table 1: All graphs of B∗.

k B∗ Number

4

B4(3, 2; 3, 2); B4(4, 3; 2, 2), B4(4, 3; 3, 1); B4(5, 4; 2, 1), B4(5, 2; 2, 3),
B4(3, 4; 2, 3), B4(4, 1; 3, 4), B4(5, 2; 4, 1); B4(7, 3; 2, 1), B4(4, 6; 2, 1),
B4(7, 2; 2, 2), B4(3, 6; 2, 2), B4(4, 2; 2, 5), B4(3, 3; 2, 5), B4(7, 2; 3, 1),
B4(3, 6; 3, 1), B4(6, 1; 3, 3), B4(6, 1; 4, 2).

18

5

B5(2, 2; 2, 2; 1); B5(2, 3; 1, 2; 2), B5(3, 3; 2, 1; 1); B5(3, 4; 1, 1; 2),
B5(3, 4; 1, 2; 1), B5(1, 3; 1, 3; 3), B5(2, 2; 1, 3; 3), B5(2, 4; 2, 1; 2),
B5(4, 2; 3, 1; 1); B5(4, 5; 1, 1; 1), B5(2, 5; 1, 1; 3), B5(4, 3; 1, 1; 3),
B5(1, 4; 1, 2; 4), B5(3, 2; 1, 2; 4), B5(2, 5; 1, 3; 1), B5(4, 3; 1, 3; 1),
B5(1, 4; 1, 4; 2), B5(3, 2; 1, 4; 2), B5(5, 2; 2, 1; 2), B5(3, 1; 2, 3; 3),
B5(3, 1; 2, 5; 1), B5(4, 1; 3, 2; 2); B5(3, 7; 1, 1; 1), B5(6, 4; 1, 1; 1),
B5(2, 7; 1, 1; 2), B5(6, 3; 1, 1; 2), B5(2, 4; 1, 1; 5), B5(3, 3; 1, 1; 5),
B5(2, 7; 1, 2; 1), B5(6, 3; 1, 2; 1), B5(1, 6; 1, 2; 3), B5(5, 2; 1, 2; 3),
B5(1, 3; 1, 2; 6), B5(2, 2; 1, 2; 6), B5(1, 6; 1, 3; 2), B5(5, 2; 1, 3; 2),
B5(2, 4; 1, 5; 1), B5(3, 3; 1, 5; 1), B5(2, 2; 1, 6; 2), B5(2, 7; 2, 1; 1),
B5(7, 2; 2, 1; 1), B5(4, 2; 2, 1; 4), B5(2, 3; 2, 1; 5), B5(5, 1; 2, 3; 2),
B5(5, 1; 2, 4; 1), B5(3, 2; 3, 1; 4), B5(6, 1; 3, 2; 1).

47

6 See Table 2 of Appendix A 138

7 See Table 3 of Appendix A 161

8 See Table 4 of Appendix A 205

9 See Table 5 of Appendix A 124

10 See Table 6 of Appendix A 78

11

B11(1, 1, 1, 2, 1; 1, 1, 1, 1, 1; 1), B11(2, 1, 1, 1, 1; 1, 1, 1, 1, 1; 1);
B11(1, 1, 1, 1, 3; 1, 1, 1, 1, 1; 1), B11(1, 1, 1, 2, 2; 1, 1, 1, 1, 1; 1),
B11(1, 1, 2, 1, 2; 1, 1, 1, 1, 1; 1), B11(1, 1, 2, 2, 1; 1, 1, 1, 1, 1; 1),
B11(1, 1, 3, 1, 1; 1, 1, 1, 1, 1; 1), B11(1, 2, 1, 1, 2; 1, 1, 1, 1, 1; 1),
B11(1, 2, 2, 1, 1; 1, 1, 1, 1, 1; 1), B11(1, 3, 1, 1, 1; 1, 1, 1, 1, 1; 1),
B11(2, 1, 1, 1, 2; 1, 1, 1, 1, 1; 1), B11(2, 2, 1, 1, 1; 1, 1, 1, 1, 1; 1),
B11(1, 1, 1, 1, 2; 1, 1, 1, 1, 1; 2), B11(1, 1, 2, 1, 1; 1, 1, 1, 1, 1; 2),
B11(1, 2, 1, 1, 1; 1, 1, 1, 1, 1; 2), B11(1, 1, 1, 1, 1; 1, 1, 1, 1, 1; 3),
B11(1, 1, 1, 1, 2; 1, 1, 1, 1, 2; 1), B11(1, 1, 1, 2, 1; 1, 1, 1, 1, 2; 1),
B11(1, 1, 2, 1, 1; 1, 1, 1, 1, 2; 1), B11(1, 2, 1, 1, 1; 1, 1, 1, 1, 2; 1),
B11(1, 1, 2, 1, 1; 1, 1, 2, 1, 1; 1), B11(1, 2, 1, 1, 1; 1, 1, 2, 1, 1; 1),
B11(2, 1, 1, 1, 1; 1, 1, 2, 1, 1; 1), B11(1, 2, 1, 1, 1; 1, 2, 1, 1, 1; 1).

24

12

B12(1, 1, 1, 1, 1, 2; 1, 1, 1, 1, 1, 1), B12(1, 1, 1, 1, 2, 1; 1, 1, 1, 1, 1, 1),
B12(1, 1, 1, 2, 1, 1; 1, 1, 1, 1, 1, 1), B12(1, 1, 2, 1, 1, 1; 1, 1, 1, 1, 1, 1),
B12(1, 2, 1, 1, 1, 1; 1, 1, 1, 1, 1, 1), B12(2, 1, 1, 1, 1, 1; 1, 1, 1, 1, 1, 1).

6

13 B13(1, 1, 1, 1, 1, 1; 1, 1, 1, 1, 1, 1; 1). 1
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[10] A. Torgašev, On graphs with a fixed number of negative eigenvalues, Discrete Math. 57 (1985),
311–317, doi:10.1016/0012-365x(85)90184-0.

[11] G. Yu, L. Feng and H. Qu, Signed graphs with small positive index of inertia, Electron. J.
Linear Algebra 31 (2016), 232–243, doi:10.13001/1081-3810.1976.



338 Ars Math. Contemp. 17 (2019) 319–347

Appendix A Five tables
Appendix A contains 5 tables, in which there are 706 specific graphs: 4 graphs of order 10,
32 graphs of order 11, 150 graphs of order 12, and 520 graphs of order 13.

Table 2: k = 6.

n B∗

10 B6(1, 2, 2; 1, 2, 2), B6(2, 2, 1; 1, 2, 2);

11

B6(1, 3, 3; 1, 1, 2), B6(2, 3, 2; 1, 1, 2), B6(3, 3, 1; 1, 1, 2), B6(1, 3, 3; 1, 2, 1),
B6(2, 3, 2; 1, 2, 1), B6(3, 3, 1; 1, 2, 1), B6(2, 1, 1; 1, 3, 3), B6(3, 2, 1; 2, 1, 2),
B6(2, 2, 2; 2, 2, 1), B6(3, 1, 2; 3, 1, 1);

12

B6(1, 4, 4; 1, 1, 1), B6(2, 4, 3; 1, 1, 1), B6(3, 4, 2; 1, 1, 1), B6(4, 4, 1; 1, 1, 1),
B6(1, 2, 4; 1, 1, 3), B6(1, 4, 2; 1, 1, 3), B6(2, 2, 3; 1, 1, 3), B6(2, 4, 1; 1, 1, 3),
B6(3, 2, 2; 1, 1, 3), B6(4, 2, 1; 1, 1, 3), B6(1, 3, 1; 1, 2, 4), B6(2, 1, 2; 1, 2, 4),
B6(3, 1, 1; 1, 2, 4), B6(1, 4, 2; 1, 3, 1), B6(2, 2, 3; 1, 3, 1), B6(2, 4, 1; 1, 3, 1),
B6(3, 2, 2; 1, 3, 1), B6(4, 2, 1; 1, 3, 1), B6(2, 1, 2; 1, 4, 2), B6(3, 1, 1; 1, 4, 2),
B6(2, 3, 3; 2, 1, 1), B6(4, 1, 3; 2, 1, 1), B6(4, 3, 1; 2, 1, 1), B6(2, 3, 2; 2, 1, 2),
B6(3, 2, 2; 2, 1, 2), B6(4, 1, 2; 2, 1, 2), B6(2, 3, 1; 2, 1, 3), B6(4, 1, 1; 2, 1, 3),
B6(3, 1, 3; 2, 2, 1), B6(3, 2, 2; 2, 2, 1), B6(3, 3, 1; 2, 2, 1), B6(3, 1, 1; 2, 2, 3),
B6(2, 3, 1; 2, 3, 1), B6(3, 2, 2; 3, 1, 1), B6(4, 2, 1; 3, 1, 1), B6(4, 1, 1; 4, 1, 1);

13

B6(1, 3, 6; 1, 1, 1), B6(1, 6, 3; 1, 1, 1), B6(2, 3, 5; 1, 1, 1), B6(2, 6, 2; 1, 1, 1),
B6(3, 3, 4; 1, 1, 1), B6(3, 6, 1; 1, 1, 1), B6(4, 3, 3; 1, 1, 1), B6(5, 3, 2; 1, 1, 1),
B6(6, 3, 1; 1, 1, 1), B6(1, 2, 6; 1, 1, 2), B6(1, 6, 2; 1, 1, 2), B6(2, 2, 5; 1, 1, 2),
B6(2, 6, 1; 1, 1, 2), B6(3, 2, 4; 1, 1, 2), B6(4, 2, 3; 1, 1, 2), B6(5, 2, 2; 1, 1, 2),
B6(6, 2, 1; 1, 1, 2), B6(1, 2, 3; 1, 1, 5), B6(1, 3, 2; 1, 1, 5), B6(2, 2, 2; 1, 1, 5),
B6(2, 2, 5; 1, 2, 1), B6(2, 6, 1; 1, 2, 1), B6(3, 2, 4; 1, 2, 1), B6(4, 2, 3; 1, 2, 1),
B6(5, 2, 2; 1, 2, 1), B6(2, 3, 1; 1, 1, 5), B6(3, 2, 1; 1, 1, 5), B6(1, 2, 6; 1, 2, 1),
B6(1, 6, 2; 1, 2, 1), B6(6, 2, 1; 1, 2, 1), B6(1, 5, 1; 1, 2, 3), B6(2, 1, 4; 1, 2, 3),
B6(3, 1, 3; 1, 2, 3), B6(4, 1, 2; 1, 2, 3), B6(5, 1, 1; 1, 2, 3), B6(2, 1, 1; 1, 2, 6),
B6(1, 5, 1; 1, 3, 2), B6(2, 1, 4; 1, 3, 2), B6(3, 1, 3; 1, 3, 2), B6(4, 1, 2; 1, 3, 2),
B6(5, 1, 1; 1, 3, 2), B6(2, 2, 2; 1, 5, 1), B6(2, 3, 1; 1, 5, 1), B6(3, 2, 1; 1, 5, 1),
B6(2, 1, 1; 1, 6, 2), B6(2, 2, 5; 2, 1, 1), B6(2, 5, 2; 2, 1, 1), B6(3, 1, 5; 2, 1, 1),
B6(3, 2, 4; 2, 1, 1), B6(3, 3, 3; 2, 1, 1), B6(3, 4, 2; 2, 1, 1), B6(3, 5, 1; 2, 1, 1),
B6(4, 2, 3; 2, 1, 1), B6(4, 3, 2; 2, 1, 1), B6(5, 2, 2; 2, 1, 1), B6(6, 1, 2; 2, 1, 1),
B6(6, 2, 1; 2, 1, 1), B6(2, 2, 4; 2, 1, 2), B6(2, 5, 1; 2, 1, 2), B6(3, 1, 4; 2, 1, 2),
B6(3, 2, 3; 2, 1, 2), B6(6, 1, 1; 2, 1, 2), B6(2, 2, 3; 2, 1, 3), B6(3, 1, 3; 2, 1, 3),
B6(2, 2, 2; 2, 1, 4), B6(3, 1, 2; 2, 1, 4), B6(2, 2, 1; 2, 1, 5), B6(3, 1, 1; 2, 1, 5),
B6(2, 5, 1; 2, 2, 1), B6(4, 2, 2; 2, 2, 1), B6(5, 1, 2; 2, 2, 1), B6(5, 2, 1; 2, 2, 1),
B6(3, 1, 3; 2, 2, 2), B6(4, 1, 2; 2, 2, 2), B6(5, 1, 1; 2, 2, 2), B6(3, 1, 2; 2, 2, 3),
B6(4, 1, 2; 2, 3, 1), B6(4, 2, 1; 2, 3, 1), B6(3, 1, 2; 2, 3, 2), B6(4, 1, 1; 2, 3, 2),
B6(3, 1, 2; 2, 4, 1), B6(3, 2, 1; 2, 4, 1), B6(3, 1, 1; 2, 4, 2), B6(3, 3, 2; 3, 1, 1),
B6(3, 4, 1; 3, 1, 1), B6(6, 1, 1; 3, 1, 1), B6(3, 3, 1; 3, 2, 1), B6(4, 2, 1; 3, 2, 1),
B6(5, 1, 1; 3, 2, 1), B6(4, 1, 1; 3, 3, 1).
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Table 3: k = 7.

n B∗

10 B7(2, 2, 1; 1, 1, 2; 1), B7(2, 1, 2; 2, 1, 1; 1);

11

B7(3, 3, 1; 1, 1, 1; 1), B7(2, 1, 3; 1, 1, 1; 2), B7(2, 2, 2; 1, 1, 2; 1), B7(2, 1, 2; 1, 1, 2; 2),
B7(1, 2, 1; 1, 1, 3; 2), B7(2, 1, 1; 1, 1, 3; 2), B7(1, 2, 3; 1, 2, 1; 1), B7(1, 2, 2; 1, 2, 2; 1),
B7(2, 1, 1; 1, 2, 3; 1), B7(2, 2, 2; 2, 1, 1; 1), B7(3, 2, 1; 2, 1, 1; 1), B7(3, 1, 1; 3, 1, 1; 1);

12

B7(1, 3, 4; 1, 1, 1; 1), B7(3, 1, 4; 1, 1, 1; 1), B7(3, 3, 2; 1, 1, 1; 1), B7(1, 2, 4; 1, 1, 1; 2),
B7(2, 2, 3; 1, 1, 1; 2), B7(2, 4, 1; 1, 1, 1; 2), B7(3, 2, 2; 1, 1, 1; 2), B7(4, 2, 1; 1, 1, 1; 2),
B7(1, 1, 4; 1, 1, 1; 3), B7(3, 1, 2; 1, 1, 1; 3), B7(1, 3, 3; 1, 1, 2; 1), B7(2, 2, 3; 1, 1, 2; 1),
B7(3, 1, 3; 1, 1, 2; 1), B7(1, 1, 3; 1, 1, 2; 3), B7(1, 3, 1; 1, 1, 2; 3), B7(3, 1, 1; 1, 1, 2; 3),
B7(1, 3, 2; 1, 1, 3; 1), B7(3, 1, 2; 1, 1, 3; 1), B7(1, 2, 2; 1, 1, 3; 2), B7(1, 3, 1; 1, 1, 4; 1),
B7(3, 1, 1; 1, 1, 4; 1), B7(2, 1, 4; 1, 2, 1; 1), B7(2, 2, 3; 1, 2, 1; 1), B7(2, 3, 2; 1, 2, 1; 1),
B7(4, 2, 1; 1, 2, 1; 1), B7(2, 1, 2; 1, 2, 1; 3), B7(1, 2, 2; 1, 2, 2; 2), B7(1, 3, 1; 1, 2, 2; 2),
B7(2, 4, 1; 1, 2, 1; 1), B7(2, 1, 2; 1, 2, 2; 2), B7(3, 1, 1; 1, 2, 2; 2), B7(2, 1, 2; 1, 2, 3; 1),
B7(1, 3, 2; 1, 3, 1; 1), B7(3, 1, 1; 1, 3, 2; 1), B7(2, 3, 2; 2, 1, 1; 1), B7(2, 3, 1; 2, 1, 1; 2),
B7(4, 1, 1; 2, 1, 1; 2), B7(3, 2, 1; 2, 2, 1; 1), B7(3, 1, 1; 2, 2, 1; 2);

13

B7(1, 2, 6; 1, 1, 1; 1), B7(1, 5, 3; 1, 1, 1; 1), B7(2, 1, 6; 1, 1, 1; 1), B7(2, 2, 5; 1, 1, 1; 1),
B7(2, 3, 4; 1, 1, 1; 1), B7(2, 4, 3; 1, 1, 1; 1), B7(2, 5, 2; 1, 1, 1; 1), B7(2, 6, 1; 1, 1, 1; 1),
B7(3, 2, 4; 1, 1, 1; 1), B7(3, 3, 3; 1, 1, 1; 1), B7(4, 2, 3; 1, 1, 1; 1), B7(5, 1, 3; 1, 1, 1; 1),
B7(5, 2, 2; 1, 1, 1; 1), B7(6, 2, 1; 1, 1, 1; 1), B7(1, 1, 6; 1, 1, 1; 2), B7(1, 4, 3; 1, 1, 1; 2),
B7(2, 3, 3; 1, 1, 1; 2), B7(2, 4, 2; 1, 1, 1; 2), B7(5, 1, 2; 1, 1, 1; 2), B7(1, 3, 3; 1, 1, 1; 3),
B7(2, 3, 2; 1, 1, 1; 3), B7(1, 2, 3; 1, 1, 1; 4), B7(2, 2, 2; 1, 1, 1; 4), B7(2, 3, 1; 1, 1, 1; 4),
B7(3, 2, 1; 1, 1, 1; 4), B7(1, 1, 3; 1, 1, 1; 5), B7(2, 1, 2; 1, 1, 1; 5), B7(1, 2, 5; 1, 1, 2; 1),
B7(1, 5, 2; 1, 1, 2; 1), B7(2, 1, 5; 1, 1, 2; 1), B7(2, 2, 4; 1, 1, 2; 1), B7(5, 1, 2; 1, 1, 2; 1),
B7(1, 1, 5; 1, 1, 2; 2), B7(1, 2, 4; 1, 1, 2; 2), B7(1, 3, 3; 1, 1, 2; 2), B7(1, 4, 2; 1, 1, 2; 2),
B7(1, 5, 1; 1, 1, 2; 2), B7(5, 1, 1; 1, 1, 2; 2), B7(1, 2, 3; 1, 1, 2; 3), B7(1, 3, 2; 1, 1, 2; 3),
B7(1, 2, 2; 1, 1, 2; 4), B7(1, 1, 2; 1, 1, 2; 5), B7(1, 2, 1; 1, 1, 2; 5), B7(2, 1, 1; 1, 1, 2; 5),
B7(1, 2, 4; 1, 1, 3; 1), B7(1, 5, 1; 1, 1, 3; 1), B7(2, 1, 4; 1, 1, 3; 1), B7(5, 1, 1; 1, 1, 3; 1),
B7(1, 1, 4; 1, 1, 3; 2), B7(1, 2, 3; 1, 1, 3; 2), B7(1, 2, 3; 1, 1, 4; 1), B7(2, 1, 3; 1, 1, 4; 1),
B7(1, 2, 2; 1, 1, 5; 1), B7(2, 1, 2; 1, 1, 5; 1), B7(1, 2, 1; 1, 1, 6; 1), B7(2, 1, 1; 1, 1, 6; 1),
B7(1, 5, 2; 1, 2, 1; 1), B7(3, 2, 3; 1, 2, 1; 1), B7(4, 1, 3; 1, 2, 1; 1), B7(4, 2, 2; 1, 2, 1; 1),
B7(1, 4, 2; 1, 2, 1; 2), B7(2, 3, 2; 1, 2, 1; 2), B7(3, 2, 2; 1, 2, 1; 2), B7(4, 1, 2; 1, 2, 1; 2),
B7(1, 3, 2; 1, 2, 1; 3), B7(2, 2, 2; 1, 2, 1; 3), B7(2, 3, 1; 1, 2, 1; 3), B7(3, 2, 1; 1, 2, 1; 3),
B7(1, 2, 2; 1, 2, 1; 4), B7(1, 5, 1; 1, 2, 2; 1), B7(2, 1, 4; 1, 2, 2; 1), B7(3, 1, 3; 1, 2, 2; 1),
B7(4, 1, 2; 1, 2, 2; 1), B7(5, 1, 1; 1, 2, 2; 1), B7(1, 2, 2; 1, 2, 2; 3), B7(2, 1, 1; 1, 2, 2; 4),
B7(2, 1, 3; 1, 2, 3; 1), B7(3, 1, 3; 1, 3, 1; 1), B7(3, 2, 2; 1, 3, 1; 1), B7(2, 2, 2; 1, 3, 1; 2),
B7(2, 3, 1; 1, 3, 1; 2), B7(3, 1, 2; 1, 3, 1; 2), B7(3, 2, 1; 1, 3, 1; 2), B7(2, 1, 3; 1, 3, 2; 1),
B7(3, 1, 2; 1, 3, 2; 1), B7(2, 1, 2; 1, 3, 2; 2), B7(2, 1, 1; 1, 3, 2; 3), B7(2, 1, 3; 1, 4, 1; 1),
B7(2, 2, 2; 1, 4, 1; 1), B7(2, 3, 1; 1, 4, 1; 1), B7(3, 2, 1; 1, 4, 1; 1), B7(2, 1, 2; 1, 4, 1; 2),
B7(2, 1, 2; 1, 4, 2; 1), B7(2, 1, 1; 1, 4, 2; 2), B7(2, 1, 1; 1, 5, 2; 1), B7(2, 4, 2; 2, 1, 1; 1),
B7(2, 5, 1; 2, 1, 1; 1), B7(6, 1, 1; 2, 1, 1; 1), B7(2, 2, 1; 2, 1, 1; 4), B7(3, 1, 1; 2, 1, 1; 4),
B7(2, 4, 1; 2, 2, 1; 1), B7(5, 1, 1; 2, 2, 1; 1), B7(2, 3, 1; 2, 2, 1; 2), B7(2, 2, 1; 2, 2, 1; 3),
B7(2, 3, 1; 2, 3, 1; 1), B7(3, 2, 1; 2, 3, 1; 1), B7(4, 1, 1; 2, 3, 1; 1), B7(3, 1, 1; 2, 4, 1; 1).
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Table 4: k = 8.

n B∗

11
B8(1, 2, 1, 2; 1, 1, 1, 2), B8(2, 2, 1, 1; 1, 1, 1, 2), B8(1, 2, 2, 1; 1, 1, 2, 1),
B8(1, 2, 1, 1; 1, 1, 2, 2), B8(2, 1, 2, 1; 1, 2, 1, 1), B8(2, 1, 1, 1; 1, 2, 1, 2);

12

B8(1, 1, 3, 3; 1, 1, 1, 1), B8(1, 3, 1, 3; 1, 1, 1, 1), B8(1, 3, 3, 1; 1, 1, 1, 1),
B8(2, 1, 3, 2; 1, 1, 1, 1), B8(2, 3, 1, 2; 1, 1, 1, 1), B8(3, 1, 3, 1; 1, 1, 1, 1),
B8(3, 3, 1, 1; 1, 1, 1, 1), B8(1, 1, 2, 3; 1, 1, 1, 2), B8(1, 2, 2, 2; 1, 1, 1, 2),
B8(1, 3, 2, 1; 1, 1, 1, 2), B8(2, 1, 2, 2; 1, 1, 1, 2), B8(2, 2, 2, 1; 1, 1, 1, 2),
B8(3, 1, 2, 1; 1, 1, 1, 2), B8(1, 1, 1, 3; 1, 1, 1, 3), B8(1, 3, 1, 1; 1, 1, 1, 3),
B8(2, 1, 1, 2; 1, 1, 1, 3), B8(3, 1, 1, 1; 1, 1, 1, 3), B8(1, 1, 3, 2; 1, 1, 2, 1),
B8(1, 2, 2, 2; 1, 1, 2, 1), B8(1, 3, 1, 2; 1, 1, 2, 1), B8(2, 1, 3, 1; 1, 1, 2, 1),
B8(2, 2, 2, 1; 1, 1, 2, 1), B8(2, 3, 1, 1; 1, 1, 2, 1), B8(2, 1, 1, 1; 1, 1, 2, 3),
B8(1, 1, 3, 1; 1, 1, 3, 1), B8(1, 3, 1, 1; 1, 1, 3, 1), B8(1, 2, 1, 3; 1, 2, 1, 1),
B8(1, 2, 2, 2; 1, 2, 1, 1), B8(1, 2, 3, 1; 1, 2, 1, 1), B8(2, 2, 1, 2; 1, 2, 1, 1),
B8(2, 2, 2, 1; 1, 2, 1, 1), B8(3, 2, 1, 1; 1, 2, 1, 1), B8(2, 1, 1, 1; 1, 2, 2, 2),
B8(2, 1, 1, 2; 1, 3, 1, 1), B8(3, 1, 1, 1; 1, 3, 1, 1), B8(2, 1, 1, 1; 1, 3, 2, 1),
B8(2, 2, 1, 2; 2, 1, 1, 1), B8(3, 1, 2, 1; 2, 1, 1, 1), B8(2, 2, 1, 1; 2, 1, 1, 2),
B8(3, 1, 1, 1; 2, 1, 1, 2), B8(2, 1, 2, 1; 2, 1, 2, 1), B8(2, 2, 1, 1; 2, 1, 2, 1),
B8(3, 1, 1, 1; 3, 1, 1, 1);

13

B8(1, 1, 2, 5; 1, 1, 1, 1), B8(1, 1, 5, 2; 1, 1, 1, 1), B8(1, 2, 1, 5; 1, 1, 1, 1),
B8(1, 2, 2, 4; 1, 1, 1, 1), B8(1, 2, 3, 3; 1, 1, 1, 1), B8(1, 2, 4, 2; 1, 1, 1, 1),
B8(1, 2, 5, 1; 1, 1, 1, 1), B8(1, 3, 2, 3; 1, 1, 1, 1), B8(1, 3, 3, 2; 1, 1, 1, 1),
B8(1, 4, 2, 2; 1, 1, 1, 1), B8(1, 5, 1, 2; 1, 1, 1, 1), B8(1, 5, 2, 1; 1, 1, 1, 1),
B8(2, 1, 2, 4; 1, 1, 1, 1), B8(2, 1, 5, 1; 1, 1, 1, 1), B8(2, 2, 1, 4; 1, 1, 1, 1),
B8(2, 2, 2, 3; 1, 1, 1, 1), B8(2, 2, 3, 2; 1, 1, 1, 1), B8(2, 2, 4, 1; 1, 1, 1, 1),
B8(2, 3, 2, 2; 1, 1, 1, 1), B8(2, 3, 3, 1; 1, 1, 1, 1), B8(2, 4, 2, 1; 1, 1, 1, 1),
B8(2, 5, 1, 1; 1, 1, 1, 1), B8(3, 1, 2, 3; 1, 1, 1, 1), B8(3, 2, 1, 3; 1, 1, 1, 1),
B8(3, 2, 2, 2; 1, 1, 1, 1), B8(3, 2, 3, 1; 1, 1, 1, 1), B8(3, 3, 2, 1; 1, 1, 1, 1),
B8(4, 1, 2, 2; 1, 1, 1, 1), B8(4, 2, 1, 2; 1, 1, 1, 1), B8(4, 2, 2, 1; 1, 1, 1, 1),
B8(5, 1, 2, 1; 1, 1, 1, 1), B8(5, 2, 1, 1; 1, 1, 1, 1), B8(1, 1, 1, 5; 1, 1, 1, 2),
B8(1, 1, 4, 2; 1, 1, 1, 2), B8(1, 2, 3, 2; 1, 1, 1, 2), B8(1, 2, 4, 1; 1, 1, 1, 2),
B8(1, 5, 1, 1; 1, 1, 1, 2), B8(2, 1, 1, 4; 1, 1, 1, 2), B8(2, 1, 4, 1; 1, 1, 1, 2),
B8(2, 2, 3, 1; 1, 1, 1, 2), B8(3, 1, 1, 3; 1, 1, 1, 2), B8(4, 1, 1, 2; 1, 1, 1, 2),
B8(5, 1, 1, 1; 1, 1, 1, 2), B8(1, 1, 3, 2; 1, 1, 1, 3), B8(1, 2, 3, 1; 1, 1, 1, 3),
B8(2, 1, 3, 1; 1, 1, 1, 3), B8(1, 1, 2, 2; 1, 1, 1, 4), B8(1, 2, 2, 1; 1, 1, 1, 4),
B8(2, 1, 2, 1; 1, 1, 1, 4), B8(1, 2, 1, 1; 1, 1, 1, 5), B8(2, 1, 1, 1; 1, 1, 1, 5),
B8(1, 1, 2, 4; 1, 1, 2, 1), B8(1, 1, 5, 1; 1, 1, 2, 1), B8(1, 2, 1, 4; 1, 1, 2, 1),
B8(1, 2, 2, 3; 1, 1, 2, 1), B8(1, 5, 1, 1; 1, 1, 2, 1), B8(2, 1, 2, 3; 1, 1, 2, 1),
B8(2, 2, 1, 3; 1, 1, 2, 1), B8(2, 2, 2, 2; 1, 1, 2, 1), B8(3, 1, 2, 2; 1, 1, 2, 1),
B8(3, 2, 1, 2; 1, 1, 2, 1), B8(3, 2, 2, 1; 1, 1, 2, 1), B8(4, 1, 2, 1; 1, 1, 2, 1),
B8(4, 2, 1, 1; 1, 1, 2, 1), B8(1, 1, 2, 3; 1, 1, 2, 2), B8(1, 1, 3, 2; 1, 1, 2, 2),
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n B∗

13

B8(1, 1, 4, 1; 1, 1, 2, 2), B8(2, 1, 1, 3; 1, 1, 2, 2), B8(2, 1, 2, 2; 1, 1, 2, 2),
B8(2, 1, 3, 1; 1, 1, 2, 2), B8(3, 1, 1, 2; 1, 1, 2, 2), B8(3, 1, 2, 1; 1, 1, 2, 2),
B8(4, 1, 1, 1; 1, 1, 2, 2), B8(1, 1, 3, 1; 1, 1, 2, 3), B8(2, 1, 2, 1; 1, 1, 2, 3),
B8(1, 2, 1, 3; 1, 1, 3, 1), B8(2, 1, 2, 2; 1, 1, 3, 1), B8(2, 2, 1, 2; 1, 1, 3, 1),
B8(3, 1, 2, 1; 1, 1, 3, 1), B8(3, 2, 1, 1; 1, 1, 3, 1), B8(2, 1, 1, 2; 1, 1, 3, 2),
B8(2, 1, 2, 1; 1, 1, 3, 2), B8(3, 1, 1, 1; 1, 1, 3, 2), B8(1, 2, 1, 2; 1, 1, 4, 1),
B8(2, 1, 2, 1; 1, 1, 4, 1), B8(2, 2, 1, 1; 1, 1, 4, 1), B8(2, 1, 1, 1; 1, 1, 4, 2),
B8(1, 2, 1, 1; 1, 1, 5, 1), B8(1, 3, 2, 2; 1, 2, 1, 1), B8(1, 4, 1, 2; 1, 2, 1, 1),
B8(1, 4, 2, 1; 1, 2, 1, 1), B8(2, 1, 1, 4; 1, 2, 1, 1), B8(2, 3, 2, 1; 1, 2, 1, 1),
B8(2, 4, 1, 1; 1, 2, 1, 1), B8(3, 1, 1, 3; 1, 2, 1, 1), B8(4, 1, 1, 2; 1, 2, 1, 1),
B8(5, 1, 1, 1; 1, 2, 1, 1), B8(1, 2, 3, 1; 1, 2, 1, 2), B8(1, 3, 2, 1; 1, 2, 1, 2),
B8(1, 4, 1, 1; 1, 2, 1, 2), B8(1, 2, 2, 1; 1, 2, 1, 3), B8(1, 3, 1, 2; 1, 2, 2, 1),
B8(1, 4, 1, 1; 1, 2, 2, 1), B8(2, 1, 1, 3; 1, 2, 2, 1), B8(2, 2, 1, 2; 1, 2, 2, 1),
B8(2, 3, 1, 1; 1, 2, 2, 1), B8(3, 1, 1, 2; 1, 2, 2, 1), B8(3, 2, 1, 1; 1, 2, 2, 1),
B8(4, 1, 1, 1; 1, 2, 2, 1), B8(2, 1, 1, 2; 1, 2, 3, 1), B8(2, 2, 1, 1; 1, 2, 3, 1),
B8(3, 1, 1, 1; 1, 2, 3, 1), B8(2, 1, 1, 1; 1, 2, 3, 2), B8(2, 1, 1, 1; 1, 2, 4, 1),
B8(1, 3, 1, 2; 1, 3, 1, 1), B8(1, 3, 2, 1; 1, 3, 1, 1), B8(2, 3, 1, 1; 1, 3, 1, 1),
B8(2, 2, 1, 1; 1, 3, 2, 1), B8(2, 2, 1, 1; 1, 4, 1, 1), B8(2, 1, 1, 1; 1, 5, 1, 1),
B8(2, 1, 1, 4; 2, 1, 1, 1), B8(2, 1, 2, 3; 2, 1, 1, 1), B8(2, 1, 3, 2; 2, 1, 1, 1),
B8(2, 1, 4, 1; 2, 1, 1, 1), B8(2, 2, 2, 2; 2, 1, 1, 1), B8(2, 2, 3, 1; 2, 1, 1, 1),
B8(2, 3, 2, 1; 2, 1, 1, 1), B8(2, 4, 1, 1; 2, 1, 1, 1), B8(3, 1, 1, 3; 2, 1, 1, 1),
B8(3, 1, 2, 2; 2, 1, 1, 1), B8(3, 2, 1, 2; 2, 1, 1, 1), B8(3, 2, 2, 1; 2, 1, 1, 1),
B8(3, 3, 1, 1; 2, 1, 1, 1), B8(4, 1, 1, 2; 2, 1, 1, 1), B8(4, 2, 1, 1; 2, 1, 1, 1),
B8(5, 1, 1, 1; 2, 1, 1, 1), B8(2, 1, 1, 3; 2, 1, 1, 2), B8(2, 1, 2, 2; 2, 1, 1, 2),
B8(2, 1, 3, 1; 2, 1, 1, 2), B8(2, 2, 2, 1; 2, 1, 1, 2), B8(3, 1, 1, 2; 2, 1, 1, 2),
B8(2, 1, 2, 1; 2, 1, 1, 3), B8(2, 1, 2, 2; 2, 1, 2, 1), B8(3, 1, 1, 2; 2, 1, 2, 1),
B8(3, 2, 1, 1; 2, 1, 2, 1), B8(4, 1, 1, 1; 2, 1, 2, 1), B8(3, 1, 1, 1; 2, 1, 2, 2),
B8(3, 1, 1, 1; 2, 1, 3, 1), B8(2, 2, 2, 1; 2, 2, 1, 1), B8(2, 3, 1, 1; 2, 2, 1, 1),
B8(3, 1, 1, 2; 2, 2, 1, 1), B8(3, 2, 1, 1; 2, 2, 1, 1), B8(4, 1, 1, 1; 2, 2, 1, 1),
B8(3, 1, 1, 1; 2, 2, 2, 1), B8(3, 1, 1, 1; 2, 3, 1, 1), B8(3, 2, 1, 1; 3, 1, 1, 1).

Table 5: k = 9.

n B∗

11
B9(2, 1, 2, 1; 1, 1, 1, 1; 1), B9(2, 1, 1, 1; 1, 1, 1, 2; 1), B9(1, 1, 2, 1; 1, 1, 2, 1; 1),
B9(2, 1, 1, 1; 2, 1, 1, 1; 1);

12
B9(1, 2, 1, 3; 1, 1, 1, 1; 1), B9(1, 2, 3, 1; 1, 1, 1, 1; 1), B9(2, 1, 2, 2; 1, 1, 1, 1; 1),
B9(2, 2, 2, 1; 1, 1, 1, 1; 1), B9(3, 2, 1, 1; 1, 1, 1, 1; 1), B9(1, 1, 1, 3; 1, 1, 1, 1; 2),
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n B∗

12

B9(1, 1, 3, 1; 1, 1, 1, 1; 2), B9(2, 1, 1, 2; 1, 1, 1, 1; 2), B9(3, 1, 1, 1; 1, 1, 1, 1; 2),
B9(1, 2, 1, 2; 1, 1, 1, 2; 1), B9(2, 1, 1, 2; 1, 1, 1, 2; 1), B9(1, 1, 2, 1; 1, 1, 1, 2; 2),
B9(1, 2, 1, 1; 1, 1, 1, 3; 1), B9(1, 1, 2, 2; 1, 1, 2, 1; 1), B9(1, 2, 1, 2; 1, 1, 2, 1; 1),
B9(2, 1, 1, 1; 1, 1, 2, 1; 2), B9(1, 2, 1, 1; 1, 1, 2, 2; 1), B9(2, 1, 1, 1; 1, 1, 2, 2; 1),
B9(1, 2, 1, 1; 1, 1, 3, 1; 1), B9(3, 1, 1, 1; 1, 2, 1, 1; 1), B9(2, 1, 1, 1; 1, 2, 2, 1; 1),
B9(2, 2, 1, 1; 2, 1, 1, 1; 1);

13

B9(1, 1, 1, 5; 1, 1, 1, 1; 1), B9(1, 1, 2, 4; 1, 1, 1, 1; 1), B9(1, 1, 3, 3; 1, 1, 1, 1; 1),
B9(1, 1, 4, 2; 1, 1, 1, 1; 1), B9(1, 1, 5, 1; 1, 1, 1, 1; 1), B9(1, 2, 2, 3; 1, 1, 1, 1; 1),
B9(1, 2, 3, 2; 1, 1, 1, 1; 1), B9(1, 3, 2, 2; 1, 1, 1, 1; 1), B9(1, 4, 1, 2; 1, 1, 1, 1; 1),
B9(1, 4, 2, 1; 1, 1, 1, 1; 1), B9(2, 1, 1, 4; 1, 1, 1, 1; 1), B9(2, 1, 2, 3; 1, 1, 1, 1; 1),
B9(2, 2, 1, 3; 1, 1, 1, 1; 1), B9(2, 2, 2, 2; 1, 1, 1, 1; 1), B9(2, 3, 1, 2; 1, 1, 1, 1; 1),
B9(2, 3, 2, 1; 1, 1, 1, 1; 1), B9(2, 4, 1, 1; 1, 1, 1, 1; 1), B9(3, 1, 1, 3; 1, 1, 1, 1; 1),
B9(3, 2, 1, 2; 1, 1, 1, 1; 1), B9(4, 1, 1, 2; 1, 1, 1, 1; 1), B9(5, 1, 1, 1; 1, 1, 1, 1; 1),
B9(1, 1, 2, 3; 1, 1, 1, 1; 2), B9(1, 1, 3, 2; 1, 1, 1, 1; 2), B9(1, 2, 2, 2; 1, 1, 1, 1; 2),
B9(1, 3, 1, 2; 1, 1, 1, 1; 2), B9(1, 3, 2, 1; 1, 1, 1, 1; 2), B9(2, 2, 1, 2; 1, 1, 1, 1; 2),
B9(2, 3, 1, 1; 1, 1, 1, 1; 2), B9(1, 1, 2, 2; 1, 1, 1, 1; 3), B9(1, 2, 1, 2; 1, 1, 1, 1; 3),
B9(1, 2, 2, 1; 1, 1, 1, 1; 3), B9(2, 2, 1, 1; 1, 1, 1, 1; 3), B9(1, 1, 1, 2; 1, 1, 1, 1; 4),
B9(1, 1, 2, 1; 1, 1, 1, 1; 4), B9(2, 1, 1, 1; 1, 1, 1, 1; 4), B9(1, 1, 1, 4; 1, 1, 1, 2; 1),
B9(1, 1, 2, 3; 1, 1, 1, 2; 1), B9(1, 1, 3, 2; 1, 1, 1, 2; 1), B9(1, 1, 4, 1; 1, 1, 1, 2; 1),
B9(1, 2, 2, 2; 1, 1, 1, 2; 1), B9(1, 2, 3, 1; 1, 1, 1, 2; 1), B9(1, 3, 2, 1; 1, 1, 1, 2; 1),
B9(1, 4, 1, 1; 1, 1, 1, 2; 1), B9(2, 1, 1, 3; 1, 1, 1, 2; 1), B9(1, 1, 1, 3; 1, 1, 1, 2; 2),
B9(1, 1, 2, 2; 1, 1, 1, 2; 2), B9(1, 2, 1, 2; 1, 1, 1, 2; 2), B9(1, 2, 2, 1; 1, 1, 1, 2; 2),
B9(1, 3, 1, 1; 1, 1, 1, 2; 2), B9(1, 1, 1, 2; 1, 1, 1, 2; 3), B9(1, 2, 1, 1; 1, 1, 1, 2; 3),
B9(1, 1, 1, 3; 1, 1, 1, 3; 1), B9(1, 1, 2, 2; 1, 1, 1, 3; 1), B9(1, 1, 3, 1; 1, 1, 1, 3; 1),
B9(1, 2, 2, 1; 1, 1, 1, 3; 1), B9(1, 1, 2, 1; 1, 1, 1, 4; 1), B9(1, 1, 2, 3; 1, 1, 2, 1; 1),
B9(1, 4, 1, 1; 1, 1, 2, 1; 1), B9(2, 1, 1, 3; 1, 1, 2, 1; 1), B9(2, 2, 1, 2; 1, 1, 2, 1; 1),
B9(2, 3, 1, 1; 1, 1, 2, 1; 1), B9(3, 1, 1, 2; 1, 1, 2, 1; 1), B9(3, 2, 1, 1; 1, 1, 2, 1; 1),
B9(4, 1, 1, 1; 1, 1, 2, 1; 1), B9(1, 3, 1, 1; 1, 1, 2, 1; 2), B9(2, 2, 1, 1; 1, 1, 2, 1; 2),
B9(1, 2, 1, 1; 1, 1, 2, 1; 3), B9(1, 1, 2, 2; 1, 1, 2, 2; 1), B9(2, 1, 1, 2; 1, 1, 2, 2; 1),
B9(1, 2, 1, 1; 1, 1, 2, 2; 2), B9(2, 1, 1, 2; 1, 1, 3, 1; 1), B9(2, 2, 1, 1; 1, 1, 3, 1; 1),
B9(3, 1, 1, 1; 1, 1, 3, 1; 1), B9(2, 1, 1, 1; 1, 1, 3, 2; 1), B9(2, 1, 1, 1; 1, 1, 4, 1; 1),
B9(1, 2, 2, 2; 1, 2, 1, 1; 1), B9(1, 3, 1, 2; 1, 2, 1, 1; 1), B9(1, 3, 2, 1; 1, 2, 1, 1; 1),
B9(2, 1, 1, 3; 1, 2, 1, 1; 1), B9(2, 2, 1, 2; 1, 2, 1, 1; 1), B9(2, 3, 1, 1; 1, 2, 1, 1; 1),
B9(3, 1, 1, 2; 1, 2, 1, 1; 1), B9(1, 2, 1, 2; 1, 2, 1, 1; 2), B9(1, 2, 2, 1; 1, 2, 1, 1; 2),
B9(2, 1, 1, 2; 1, 2, 1, 1; 2), B9(2, 2, 1, 1; 1, 2, 1, 1; 2), B9(2, 1, 1, 1; 1, 2, 1, 1; 3),
B9(1, 2, 2, 1; 1, 2, 1, 2; 1), B9(1, 3, 1, 1; 1, 2, 1, 2; 1), B9(1, 3, 1, 1; 1, 2, 2, 1; 1),
B9(2, 1, 1, 2; 1, 2, 2, 1; 1), B9(2, 2, 1, 1; 1, 2, 2, 1; 1), B9(2, 1, 1, 2; 1, 3, 1, 1; 1),
B9(2, 2, 1, 1; 1, 3, 1, 1; 1), B9(2, 1, 1, 1; 1, 3, 1, 1; 2), B9(2, 1, 1, 1; 1, 4, 1, 1; 1),
B9(2, 3, 1, 1; 2, 1, 1, 1; 1), B9(2, 2, 1, 1; 2, 2, 1, 1; 1).



F. Duan, Q. Huang and X. Huang: On graphs with exactly two positive eigenvalues 343

Table 6: k = 10.

n B∗

12

B10(1, 1, 2, 1, 2; 1, 1, 1, 1, 1), B10(1, 2, 1, 2, 1; 1, 1, 1, 1, 1),
B10(2, 1, 2, 1, 1; 1, 1, 1, 1, 1), B10(1, 1, 1, 1, 2; 1, 1, 1, 1, 2),
B10(1, 2, 1, 1, 1; 1, 1, 1, 1, 2), B10(2, 1, 1, 1, 1; 1, 1, 1, 1, 2),
B10(1, 1, 2, 1, 1; 1, 1, 1, 2, 1), B10(1, 2, 1, 1, 1; 1, 1, 1, 2, 1),
B10(1, 1, 2, 1, 1; 1, 1, 2, 1, 1), B10(2, 1, 1, 1, 1; 1, 2, 1, 1, 1);

13

B10(1, 1, 1, 1, 4; 1, 1, 1, 1, 1), B10(1, 1, 1, 2, 3; 1, 1, 1, 1, 1),
B10(1, 1, 1, 3, 2; 1, 1, 1, 1, 1), B10(1, 1, 1, 4, 1; 1, 1, 1, 1, 1),
B10(1, 1, 2, 2, 2; 1, 1, 1, 1, 1), B10(1, 1, 2, 3, 1; 1, 1, 1, 1, 1),
B10(1, 1, 3, 2, 1; 1, 1, 1, 1, 1), B10(1, 1, 4, 1, 1; 1, 1, 1, 1, 1),
B10(1, 2, 1, 1, 3; 1, 1, 1, 1, 1), B10(1, 2, 1, 2, 2; 1, 1, 1, 1, 1),
B10(1, 2, 2, 1, 2; 1, 1, 1, 1, 1), B10(1, 2, 2, 2, 1; 1, 1, 1, 1, 1),
B10(1, 2, 3, 1, 1; 1, 1, 1, 1, 1), B10(1, 3, 1, 1, 2; 1, 1, 1, 1, 1),
B10(1, 3, 2, 1, 1; 1, 1, 1, 1, 1), B10(1, 4, 1, 1, 1; 1, 1, 1, 1, 1),
B10(2, 1, 1, 1, 3; 1, 1, 1, 1, 1), B10(2, 1, 1, 2, 2; 1, 1, 1, 1, 1),
B10(2, 1, 1, 3, 1; 1, 1, 1, 1, 1), B10(2, 1, 2, 2, 1; 1, 1, 1, 1, 1),
B10(2, 2, 1, 1, 2; 1, 1, 1, 1, 1), B10(2, 2, 1, 2, 1; 1, 1, 1, 1, 1),
B10(2, 2, 2, 1, 1; 1, 1, 1, 1, 1), B10(2, 3, 1, 1, 1; 1, 1, 1, 1, 1),
B10(3, 1, 1, 1, 2; 1, 1, 1, 1, 1), B10(3, 1, 1, 2, 1; 1, 1, 1, 1, 1),
B10(3, 2, 1, 1, 1; 1, 1, 1, 1, 1), B10(4, 1, 1, 1, 1; 1, 1, 1, 1, 1),
B10(1, 1, 1, 2, 2; 1, 1, 1, 1, 2), B10(1, 1, 1, 3, 1; 1, 1, 1, 1, 2),
B10(1, 1, 2, 2, 1; 1, 1, 1, 1, 2), B10(1, 1, 3, 1, 1; 1, 1, 1, 1, 2),
B10(1, 2, 2, 1, 1; 1, 1, 1, 1, 2), B10(2, 1, 1, 2, 1; 1, 1, 1, 1, 2),
B10(1, 1, 1, 2, 1; 1, 1, 1, 1, 3), B10(1, 1, 2, 1, 1; 1, 1, 1, 1, 3),
B10(1, 1, 1, 2, 2; 1, 1, 1, 2, 1), B10(1, 1, 1, 3, 1; 1, 1, 1, 2, 1),
B10(1, 1, 2, 2, 1; 1, 1, 1, 2, 1), B10(1, 2, 1, 1, 2; 1, 1, 1, 2, 1),
B10(2, 1, 1, 1, 2; 1, 1, 1, 2, 1), B10(2, 1, 1, 2, 1; 1, 1, 1, 2, 1),
B10(2, 2, 1, 1, 1; 1, 1, 1, 2, 1), B10(3, 1, 1, 1, 1; 1, 1, 1, 2, 1),
B10(1, 1, 2, 1, 1; 1, 1, 1, 2, 2), B10(2, 1, 1, 1, 1; 1, 1, 1, 2, 2),
B10(2, 1, 1, 1, 1; 1, 1, 1, 3, 1), B10(1, 2, 1, 1, 2; 1, 1, 2, 1, 1),
B10(1, 2, 2, 1, 1; 1, 1, 2, 1, 1), B10(1, 3, 1, 1, 1; 1, 1, 2, 1, 1),
B10(2, 1, 1, 1, 2; 1, 1, 2, 1, 1), B10(2, 1, 1, 2, 1; 1, 1, 2, 1, 1),
B10(2, 2, 1, 1, 1; 1, 1, 2, 1, 1), B10(3, 1, 1, 1, 1; 1, 1, 2, 1, 1),
B10(1, 2, 1, 1, 1; 1, 1, 2, 2, 1), B10(2, 1, 1, 1, 1; 1, 1, 2, 2, 1),
B10(1, 2, 1, 1, 1; 1, 1, 3, 1, 1), B10(2, 1, 1, 1, 1; 1, 1, 3, 1, 1),
B10(1, 2, 1, 1, 2; 1, 2, 1, 1, 1), B10(1, 2, 2, 1, 1; 1, 2, 1, 1, 1),
B10(1, 3, 1, 1, 1; 1, 2, 1, 1, 1), B10(2, 2, 1, 1, 1; 1, 2, 1, 1, 1),
B10(2, 1, 1, 1, 1; 1, 2, 2, 1, 1), B10(2, 1, 1, 1, 2; 2, 1, 1, 1, 1),
B10(2, 1, 1, 2, 1; 2, 1, 1, 1, 1), B10(2, 1, 2, 1, 1; 2, 1, 1, 1, 1),
B10(2, 2, 1, 1, 1; 2, 1, 1, 1, 1), B10(3, 1, 1, 1, 1; 2, 1, 1, 1, 1).
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Appendix B Some theorems and lemmas
Theorem B.1 ([6]). Let G = B4(a1, a2; a3, a4), where a1, a2, a3, a4 are some positive
integers. Then λ2(G) > 0 and λ3(G) < 0 if and only if G is isomorphic to one of the
following graphs:

(1) B4(a, b; 1, d);

(2) B4(a, x; y, 1);

(3) B4(a, 1; c, 1);

(4) B4(a, 1;w, x);

(5) B4(a, 1;x, d);

(6) B4(w, b;x, 1);

(7) B4(w, x; y, d);

(8) B4(x, b; y, d);

(9) 25 specific graphs: 5 graphs of order 10, 10 graphs of order 11, and 10 graphs of
order 12,

where a, b, c, d, x, y, w are some positive integers such that x ≤ 2, y ≤ 2 and w ≤ 3.

Lemma B.2. Let G ∈ B4(n), where n ≥ 14. If G /∈ B−4 (n), then G has an induced
subgraph Γ ∈ B4(14) \ B−4 (14).

Proof. By the proof of Lemma 5.13, it suffices to prove that G contains an induced sub-
graph G′ ∈ B4(n− 1) \ B−4 (n− 1) for n ≥ 15 in the following.

Let G = B4(n1, n2;n3, n4) ∈ B4(n). Then one of

H1 = B4(n1 − 1, n2;n3, n4), H2 = B4(n1, n2 − 1;n3, n4),

H3 = B4(n1, n2;n3 − 1, n4) and H4 = B4(n1, n2;n3, n4 − 1)

must belong to B4(n − 1). On the contrary, assume that Hi ∈ B−4 (n − 1) (i = 1, 2, 3, 4).
Then Hi is a graph belonging to (1) – (8) in Theorem B.1 since n ≥ 15.

First we consider H1. If H1 is a graph belonging to (1) of Theorem B.1, then H1 =
B4(a, b; 1, d) where n1 − 1 = a, n2 = b, n3 = 1 and n4 = d, hence G = B4(a + 1, b;
1, d) ∈ B−4 (n), a contradiction. Similarly, H1 cannot belong to (2) – (5) of Theorem B.1.
Hence H1 is belong to (6) – (8) of Theorem B.1 from which we see that n1 − 1 is either w
or x. Thus n1 ≤ 4 due to w ≤ 3 and x ≤ 2.

By the same method, we can verify that n2 ≤ 3 if H2 ∈ B−4 (n − 1); n3 ≤ 4 if
H3 ∈ B−4 (n − 1) and n4 ≤ 3 if H4 ∈ B−4 (n − 1). Hence n = n1 + · · · + n4 ≤ 14, a
contradiction. We are done.

Theorem B.3 ([6]). LetG = B6(a1, a2, a3; a4, a5, a6), where a1, . . . , a6 are some positive
integers. Then λ2(G) > 0 and λ3(G) < 0 if and only if G is isomorphic to one of the
following graphs:

(1) B6(a, x, c; 1, 1, 1);

(2) B6(a, 1, c; 1, e, 1);

(3) B6(a, 1, c; 1, x, y);

(4) B6(a, 1, c; 1, 1, f);

(5) B6(a, 1, 1;x, e, 1);

(6) B6(x, b, 1; y, 1, 1);

(7) B6(x, y, 1; 1, e, 1);

(8) B6(x, y, 1; 1, 1, f);

(9) B6(x, 1, c; y, 1, f);

(10) B6(1, b, x; 1, 1, 1);

(11) B6(1, b, 1; 1, e, 1);

(12) B6(1, b, 1; 1, x, y);

(13) B6(1, x, y; 1, 1, f);

(14) 145 specific graphs: 22 graphs of order 10, 54 graphs of order 11, and 69 graphs of
order 12,

where a, b, c, d, e, f, x, y are some positive integers such that x ≤ 2 and y ≤ 2.
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Lemma B.4. Let G ∈ B6(n), where n ≥ 14. If G /∈ B−6 (n), then G has an induced
subgraph Γ ∈ B6(14) \ B−6 (14).

Proof. By the proof of Lemma 5.13, it suffices to prove that G contains an induced sub-
graph G′ ∈ B6(n− 1) \ B−6 (n− 1) for n ≥ 15 in the following.

Let G = B6(n1, n2, n3;n4, n5, n6) ∈ B6(n). Then one of

H1 = B6(n1 − 1, n2, n3;n4, n5, n6), H2 = B6(n1, n2 − 1, n3;n4, n5, n6),

H3 = B6(n1, n2, n3 − 1;n4, n5, n6), H4 = B6(n1, n2, n3;n4 − 1, n5, n6),

H5 = B6(n1, n2, n3;n4, n5 − 1, n6) and H6 = B6(n1, n2, n3;n4, n5, n6 − 1)

must belong to B6(n− 1). On the contrary, assume that Hi ∈ B−6 (n− 1) (i = 1, 2, . . . , 6).
Then Hi is a graph belonging to (1) – (13) in Theorem B.3 since n ≥ 15.

Let us consider H3. If H3 is a graph belonging to (1) of Theorem B.3, then H3 =
B6(a, x, c; 1, 1, 1) where n1 = a, n2 = x, n3 − 1 = c, n4 = n5 = n6 = 1, hence
G = B6(a, x, c + 1; 1, 1, 1) ∈ B−6 (n), a contradiction. Similarly, H3 cannot belong to
(2) – (4) and (9) of Theorem B.3. If H3 is a graph belonging to (10) of Theorem B.3, then
H3 = B6(1, b, x; 1, 1, 1), where n1 = 1, n2 = b, n3 − 1 = x, n4 = n5 = n6 = 1. Since
x ≤ 2, we have n3 ≤ 3. If n3 < 3 then x + 1 ≤ 2 and G = B6(1, b, x + 1; 1, 1, 1) ∈
B−6 (n), a contradiction. Now assume that n3 = 3. Then H3 = B6(1, b, 2; 1, 1, 1), and
so G = B6(1, b, 3; 1, 1, 1). By Theorem B.3, G 6∈ B−6 (n), and also its induced subgraph
B6(1, b−1, 3; 1, 1, 1) /∈ B−6 (n−1), a contradiction. Similarly,H3 cannot belong to (13) of
Theorem B.3. Hence H3 is belong to (5) – (8) and (11) – (12) of Theorem B.3 from which
we see that n3 − 1 ≤ 1. Thus n3 ≤ 2.

By the same method, we can verify that n1 ≤ 3 if H1 ∈ B−6 (n − 1); n2 ≤ 3 if
H2 ∈ B−6 (n− 1); n4 ≤ 2 if H4 ∈ B−6 (n− 1); n5 ≤ 2 if H5 ∈ B−6 (n− 1) and n6 ≤ 2 if
H6 ∈ B−6 (n− 1). Hence n = n1 + · · ·+ n6 ≤ 14, a contradiction. We are done.

Theorem B.5 ([6]). Let G = B7(a1, a2, a3; a4, a5, a6; a7), where a1, . . . , a7 are some
positive integers. Then λ2(G) > 0 and λ3(G) < 0 if and only if G is isomorphic to one of
the following graphs:

(1) B7(a, 1, x; 1, e, 1; 1);

(2) B7(a, 1, 1; 1, e, 1; g);

(3) B7(a, 1, 1; 1, 1, x; 1);

(4) B7(x, y, 1; 1, e, 1; g);

(5) B7(x, 1, 1; y, 1, 1; g);

(6) B7(1, b, x; 1, 1, 1; g);

(7) B7(1, b, 1; 1, e, 1; g);

(8) B7(1, 1, c; 1, 1, f ; 1);

(9) 143 specific graphs: 18 graphs of order 10, 52 graphs of order 11, and 73 graphs of
order 12,

where a, b, c, d, e, f, g, x, y are some positive integers such that x ≤ 2 and y ≤ 2.

Lemma B.6. Let G ∈ B7(n), where n ≥ 14. If G /∈ B−7 (n), then G has an induced
subgraph Γ ∈ B7(14) \ B−7 (14).

Proof. By the proof of Lemma 5.13, it suffices to prove that G contains an induced sub-
graph G′ ∈ B7(n− 1) \ B−7 (n− 1) for n ≥ 15 in the following.

Let G = B7(n1, n2, n3;n4, n5, n6;n7) ∈ B7(n). Then one of

H1 = B7(n1 − 1, n2, n3;n4, n5, n6;n7),

H2 = B7(n1, n2 − 1, n3;n4, n5, n6;n7),

H3 = B7(n1, n2, n3 − 1;n4, n5, n6;n7),
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H4 = B7(n1, n2, n3;n4 − 1, n5, n6;n7),

H5 = B7(n1, n2, n3;n4, n5 − 1, n6;n7);

H6 = B7(n1, n2, n3;n4, n5, n6 − 1;n7) and
H7 = B7(n1, n2, n3;n4, n5, n6;n7 − 1)

must belong to B7(n− 1). On the contrary, assume that Hi ∈ B−7 (n− 1) (i = 1, 2, . . . , 7).
Then Hi is a graph belonging to (1) – (8) in Theorem B.5 since n ≥ 15.

Let us consider H1. If H1 is a graph belonging to (1) of Theorem B.5, then H1 =
B7(a, 1, x; 1, e, 1; 1) where n1 − 1 = a, n2 = 1, n3 = x, n4 = 1, n5 = e, n6 = n7 = 1,
hence G = B7(a + 1, 1, x; 1, e, 1; 1) ∈ B−7 (n), a contradiction. Similarly, H1 cannot
belong to (2) – (3) of Theorem B.5. If H1 is a graph belonging to (4) of Theorem B.5,
then H1 = B7(x, y, 1; 1, e, 1; g), where n1 − 1 = x, n2 = y, n3 = n4 = 1, n5 = e,
n6 = 1 and n7 = g. Since x ≤ 2, we have n1 ≤ 3. If n1 < 3 then x + 1 ≤ 2 and
G = B7(x + 1, y, 1; 1, e, 1; g) ∈ B−7 (n), a contradiction. Now assume that n1 = 3. Then
H1 = B7(2, y, 1; 1, e, 1; g), and so G = B7(3, y, 1; 1, e, 1; g). Since y ∈ {1, 2}, we have
G ∈ {B7(3, 1, 1; 1, e, 1; g), B7(3, 2, 1; 1, e, 1; g)}. However B7(3, 1, 1; 1, e, 1; g) belongs
to (2) of Theorem B.5 which contradicts our assumption. Thus G = B7(3, 2, 1; 1, e, 1; g).
By Theorem B.5, G 6∈ B−7 (n), and also its induced subgraph B7(3, 2, 1; 1, e − 1, 1; g) or
B7(3, 2, 1; 1, e, 1; g− 1) is not in B−7 (n− 1), a contradiction. Similarly, H1 cannot belong
to (5) of Theorem B.5. Hence H1 belongs to (6) – (8) of Theorem B.5 from which we see
that n1 − 1 ≤ 1. Thus n1 ≤ 2.

By the same method, we can verify that n2 ≤ 2 if H2 ∈ B−7 (n − 1); n3 ≤ 2 if
H3 ∈ B−7 (n − 1); n4 ≤ 2 if H4 ∈ B−7 (n − 1); n5 ≤ 2 if H5 ∈ B−7 (n − 1), n6 ≤ 2 if
H6 ∈ B−7 (n − 1) and n7 ≤ 2 if H7 ∈ B−7 (n − 1). Hence n = n1 + · · · + n7 ≤ 14, a
contradiction. We are done.

Theorem B.7 ([6]). Let G = B8(a1, a2, a3, a4; a5, a6, a7, a8), where a1, . . . , a8 are some
positive integers. Then λ2(G) > 0 and λ3(G) < 0 if and only if G is isomorphic to one of
the following graphs:

(1) B8(a, 1, 1, d; 1, 1, g, 1); (2) B8(1, b, 1, 1; 1, f, 1, 1);
(3) 134 specific graphs: 12 graphs of order 10, 42 graphs of order 11, and 80 graphs of

order 12,

where a, b, d, f, g are some positive integers.

Lemma B.8. Let G ∈ B8(n), where n ≥ 14. If G /∈ B−8 (n), then G has an induced
subgraph Γ ∈ B8(14) \ B−8 (14).

Proof. By the proof of Lemma 5.13, it suffices to prove that G contains an induced sub-
graph G′ ∈ B8(n− 1) \ B−8 (n− 1) for n ≥ 15 in the following.

Let G = B8(n1, n2, n3, n4;n5, n6, n7, n8) ∈ B8(n) and

H1 = B8(n1 − 1, n2, n3, n4;n5, n6, n7, n8),

H2 = B8(n1, n2 − 1, n3, n4;n5, n6, n7, n8),

H3 = B8(n1, n2, n3 − 1, n4;n5, n6, n7, n8),

H4 = B8(n1, n2, n3, n4 − 1;n5, n6, n7, n8),

H5 = B8(n1, n2, n3, n4;n5 − 1, n6, n7, n8),
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H6 = B8(n1, n2, n3, n4;n5, n6 − 1, n7, n8),

H7 = B8(n1, n2, n3, n4;n5, n6, n7 − 1, n8) and
H8 = B8(n1, n2, n3, n4;n5, n6, n7, n8 − 1).

If n3 ≥ 3, then H3 ∈ B8(n − 1) \ B−8 (n − 1) by Theorem B.7 as desired. If n3 = 2,
then at least one of n1, n2, n4, n5, n6, n7, n8 is greater than 1 since n ≥ 15, say n2. Thus
H2 ∈ B8(n − 1) \ B−8 (n − 1) by Theorem B.7 as desired. Hence let n3 = 1. Similarly,
let n5 = n8 = 1. Thus one of H1, H2, H4, H6, H7 must belong to B8(n − 1). On the
contrary, assume that Hi ∈ B−8 (n− 1) (i = 1, 2, 4, 6, 7). Then Hi is a graph belonging to
(1) – (2) in Theorem B.7 since n ≥ 15.

Let us consider H1. If H1 is a graph belonging to (1) of Theorem B.7, then H1 =
B8(a, 1, 1, d; 1, 1, g, 1); where n1 − 1 = a, n2 = n3 = 1, n4 = d, n5 = n6 = 1, n7 = g
and n8 = 1, hence G = B8(a + 1, 1, 1, d; 1, 1, g, 1) ∈ B−8 (n), a contradiction. Hence H1

belongs to (2) of Theorem B.7 from which we see that n1 = 2 due to n1 − 1 = 1.
By the same method, we can verify that ni = 2 if Hi ∈ B−8 (n − 1) for i = 2, 4, 6, 7.

Hence n = n1 + · · ·+ n8 ≤ 13, a contradiction. We are done.

Theorem B.9 ([6]). Let G = B9(a1, a2, a3, a4; a5, a6, a7, a8; a9), where a1, . . . , a9 are
some positive integers. Then λ2(G) > 0 and λ3(G) < 0 if and only if G is isomorphic to
one of the following graphs:

(1) B9(1, b, 1, 1; 1, f, 1, 1; k);

(2) 59 specific graphs: 3 graphs of order 10, 17 graphs of order 11, and 39 graphs of
order 12,

where b, f, k are some positive integers.

Lemma B.10. Let G ∈ B9(n), where n ≥ 14. If G /∈ B−9 (n), then G has an induced
subgraph Γ ∈ B9(14) \ B−9 (14).

Proof. By the proof of Lemma 5.13, it suffices to prove that G contains an induced sub-
graph G′ ∈ B9(n− 1) \ B−9 (n− 1) for n ≥ 15 in the following.

Let G = B9(n1, n2, n3, n4;n5, n6, n7, n8;n9) ∈ B9(n). On the contrary, suppose
that every induced subgraphs G′ ∈ B9(n − 1) of G belongs to B−9 (n − 1). If n1 ≥ 3,
then H1 = B9(n1 − 1, n2, n3, n4;n5, n6, n7, n8;n9) /∈ B−9 (n − 1) by Theorem B.9, a
contradiction. If n1 = 2, then at least one of n2, n3, n4, n5, n6, n7, n8, n9 is greater than 1
since n ≥ 15, say n2. Thus H2 = B9(n1, n2 − 1, n3, n4;n5, n6, n7, n8;n9) /∈ B−9 (n− 1)
by Theorem B.9, a contradiction. Hence n1 = 1. Similarly, n3 = n4 = n5 = n7 = n8 =
1. But now G = B9(1, n2, 1, 1; 1, n6, 1, 1;n9) ∈ B−9 (n) by Theorem B.9, a contradiction.
We are done.


