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Abstract
The optimization for symmetrical gravity retaining walls 
of different heights is examined in this study. For this 
purpose, an optimization problem of continuous functions 
is developed. The continuous functions are the objective 
function defined as the cross-sectional area of the wall and 
the constraint functions derived from external stability and 
internal stability verifications. The verifications are listed as 
the overturning, the forward sliding, the bearing capacity, the 
shears in the stem and the bendings in the stem. The heights 
of the walls are selected as 2.0, 3.0, and 4.0 m in order to 
investigate the outline of the optimum cross-section and the 
effect of the wall height on the outline. Additionally, the phys-
ical and mechanical properties of the soil are kept constant in 
order to compare only the effect of the height on the geometry. 
The upper and lower bounds of the solution space are speci-
fied to be as wide as possible and the minimum dimensions 
suggested for the gravity retaining walls are not taken into 
account. A common feature of the optimum cross-sections of 
walls with different heights is to have a very wide lower part 
like a wall foundation and a slender stem. However, other 
than the forward sliding constraint, the bending constraints 
are active at the optimum values of the variables.
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1 INTRODUCTION

A difference in the ground elevation over a random 
horizontal distance is usually confronted during the use 
of land for civil engineering purposes. The first solution 

to this situation is brought into being by organizing a 
slope. However, in some cases the proposed slope cannot 
support itself, and so another kind of solution called a 
retaining structure is required. Thus, earth-retaining 
structures are normally used to support soils and struc-
tures in order to maintain a difference in the elevation of 
the ground surface and are normally grouped into grav-
ity walls, embedded walls, and reinforced earth walls [1].

The weight of the gravity wall provides the required 
stability against the effects of the retained soil and the 
ground water. This type of wall is generally constructed of 
plain concrete and masonry. In some cases, the provision 
of sand, gravel and cement are easier and cheaper than 
masonry, so it is preferable to use concrete as a construc-
tion material rather than masonry. Various cross-sections 
of gravity retaining walls are given in Fig. 1. 

Figure 1. Cross-sections of gravity retaining walls.

The retained soil provides pressure, known as earth 
pressure, on the back face of the retaining wall, since 
the horizontal deformation of the soil is restricted by 
the retaining wall. One of the most crucial stages when 
designing a retaining wall is the determination of the 
earth pressure. There are several theories (Coulomb’s 
theory [2], Rankine’s theory [3], etc.) and approaches 
(Terzaghi-Peck Charts [4] and finite-element analysis 
[5,6,7,8,9]) to determine the earth pressures. 

There have been a lot of studies to calculate the passive 
or active earth pressure since Coulomb’s theory 
[2,3,10,11,12]. However, because of its simplicity, 
Rankine’s theory [3] is still widely used for the determi-
nation of earth pressures acting on retaining walls. The 
theory is based on the assumptions that the soil is in a 
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state of plastic equilibrium and that the Mohr-Coulomb 
failure criterion is valid [2]. Thus, Rankine obtained the 
formula below to calculate the lateral pressures on verti-
cal planes within a mass of homogeneous, isotropic, and 
cohesionless soil behind a smooth wall: 

σi = Ki σv = Ki γn z      (i=a, p)        (1)

2tan 45 -
2aK fæ ö÷ç= ÷ç ÷÷çè ø

        (2)                                 
                                                                                                   

2tan 45
2pK fæ ö÷ç= + ÷ç ÷÷çè ø

        (3)

where:

Ka =  Coefficient of earth pressure in the active state
Kp =  Coefficient of earth pressure in the passive state.
σa =  Lateral soil pressure in the active state 
σp =  Lateral soil pressure in the passive state
σv =  Vertical pressure
ϕ =  Internal friction angle

The proper design of a gravity retaining wall satisfies both 
the external and internal stability. The external stability is 
related to the interaction of the wall with the surrounding 
soil. The stability is ensured by verifying some failures, 
called sliding (on the ground), overturning, bearing 
capacity, and overall failures. In this way it is shown that 
the wall remains fixed in the desired place. The external 
stability verifications are carried out by defining a factor 
of safety, which is the ratio of the stabilizing forces (or 
moments) over the destabilizing forces (or moments). 

The internal stability requirements are satisfied by devel-
oping a structural design with sufficient structural integ-
rity to resist the applied loads safely [13]. The design 
of the wall may be carried according to the Building 
Code Requirements for Structural Concrete (ACI 318-99) 
[14]. The ACI code uses the ultimate strength design. 
Therefore, the computed loads are multiplied by the ACI 
load factors, which are equal to 1.6 for the earth pressure 
loads and 1.2 for the dead loads. However, this method 

Figure 2. Shear and bending verifications.

uses a resistance factor (0.85) to the ultimate capacity 
for a strength-limit analysis. As a result, an evaluation 
between the factored forces and the nominal capacity is 
made. More obviously, the internal stability is checked 
in terms of the bending and shear verifications for some 
sections of the wall (Fig. 2).

Optimization is the process of obtaining the ‘best’, if it is 
possible to measure and change what is ‘good’ or ‘bad’. 
Optimization practice, on the other hand, is the collec-
tion of techniques, methods, procedures, and algorithms 
that can be used to find the optima. Optimization 
problems are abundant in various fields of engineering, 
like electrical, mechanical, civil, chemical, and structural 
engineering. In recent decades, optimization methods 
have been widely applied to the problems of geotechni-
cal engineering [15,16,17,18,19]. 

There are several general approaches to optimization, 
including analytical methods, graphical methods, experi-
mental methods, and numerical methods. Analytical 
methods are based on the classical techniques of differ-
ential calculus and cannot be applied to highly nonlinear 
problems and problems involving more than two or 
three independent variables. Graphical methods require 
a plot of the function to be maximized and minimized. 
However, the number of independent variables does not 
exceed two. Experimental methods use a setup and change 
variables while the performance criterion is measured 
directly in each case (e.g., the Standard Proctor Test). 
Numerical methods can be used to solve highly complex 
optimization problems of the type that cannot be solved 
analytically. The discipline encompassing the theory and 
practice of numerical optimization methods has come to 
be known as mathematical programming. The branches 
of mathematical programming are linear programming, 
integer programming, quadratic programming, nonlinear 
programming, and dynamic programming. 

The most general class of optimization problems that has 
both nonlinear objective functions and constraint func-
tions is nonlinear programming. These problems can be 
solved using a variety of methods, such as penalty- and 
barrier-function methods, gradient projection methods, 
sequential quadratic-programming (SQP) methods, 
interior point methods, etc.  

Rhomberg and Street [20] presented a method of propor-
tioning for cantilever walls. The design variables were 
selected as the base size, the proportion of the stem to the 
base, the thickness and the reinforcing of the stem. Many 
combinations of the selected design parameters were 
evaluated to satisfy the basic design requirements for a 
minimum factor of safety, a maximum toe pressure and a 
minimum cost. Thus, the trial proportions were provided.

E. SADOGLU: DESIGN OPTIMIZATION FOR SYMMETRICAL GRAVITY RETAINING WALLS˘



ACTA GEOTECHNICA SLOVENICA, 2014/2 73.

Alshawi et al. [21] proposed a new type of retaining wall 
called a tied-back retaining wall, for which the stem is 
tied to the base with inclined ties. The design bending 
moments were calculated for various dimensions of the 
retaining wall and various positions of the tie system. They 
found the position for the tie system where the design 
bending moment is a minimum. For this position of the 
tie system, the bending moments are greatly reduced with 
respect to that of the cantilever retaining wall. The design 
tables of the optimum cases were presented.

 Other researchers also developed constrained nonlinear 
programming problems dealing with cantilever retaining 
walls [22,23]. The design variables were generally chosen 
as the total base width, the toe projection, the stem 
thickness at the bottom, the thickness of the base slab, 
the vertical steel area of the stem per unit length of the 
wall, the horizontal steel area of the toe per unit length 
of the wall, the horizontal steel area of the heel per unit 
length of the wall, etc. The total cost of the reinforced 
concrete wall was considered as the objective function 
for the analysis. The constraints were derived not only 
from structural safety and stability considerations but 
also some code provisions and practice. Sensitivity 
analyses were carried out to study the effect of the varia-
tion of problem parameters on the objective function.

In this work, a constrained nonlinear programming 
problem is defined and solved in order to find the 
general outline of a plain concrete gravity retaining wall 
in a cohesionless soil. The constraints are derived from 
external and internal stability criteria and the objective 
function is defined as the cross-sectional area of the wall. 
The nonlinear programming problem is solved using the 
interior point method.

Figure 3. Design variables of gravity retaining wall.

2 OPTIMIZATION PROCEDURE

The engineering aspects that govern the design of a 
retaining wall are safety, stability, and cost. Safety and 
stability are interconnected concepts, i.e., the results of 
stability verifications provide information about safety, 
since safety is defined mostly on the results of stability 
verifications. Cost requires building with enough safety 
and usability for the least cost. Therefore, the cost of 
the wall should be minimized while some verifications 
are fulfilled.  Consequently, the design of a gravity 
retaining wall can be thought of as an optimization 
problem. Clearly, a cost-related function emerges as an 
objective function and the constraints are derived from 
the stability verifications. The design variables of this 
optimization problem are chosen as the thicknesses of 
the gravity retaining wall at regular distances from the 
base (Fig. 3). The vertical distances between the thick-
nesses are chosen as one-sixth of the wall’s height. Thus, 
the number of design parameters is prevented from 
becoming too large and sufficient points are determined 
in order to obtain the optimum outline of the concrete 
gravity retaining wall.

2.1 OBJECTIVE FUNCTION

An objective function is a mathematical expression 
that should be maximized or minimized in certain 
conditions and chosen as the volume, cost, weight, etc. 
in structural engineering [24]. The aim of this optimiza-
tion problem is to determine the cross-section of the 
wall that minimizes the cost. Therefore, the objective 
function is chosen as the cross-sectional area, because 
the cost of the formwork and the scaffolding is mainly 
dependent on the wall’s height. Thus, the wall with 
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minimum cross-sectional area can be considered to have 
the lowest cost.

1 2 3 4 5 6 7( ) ( 2 2 2 2 2 )
6
Hf x x x x x x x x= + + + + + +     (4)

2.2 CONSTRAINTS

The design of a gravity retaining wall must ensure that 
the wall has enough external and internal stability. 
External stability is satisfied if the wall remains fixed in 
its desired position, except for small movements causing 
active and passive states in the nearby soil. The forces 
causing instability are the resultant of earth pressures in 
this case. The earth pressures are calculated according 
to Rankine’s Theory [3]. Duncan et al. [25] proposed the 
following external stability criteria for granular backfill 
and foundation soils:

a) N within the middle third of the base (N = the sum 
of vertical forces acting on the wall),

b) qallowable ≥ qmax , (qallowable = allowable bearing capa-
city, qmax = maximum base pressure)

c) Safe against sliding,
d) Settlement within tolerable limits

Overturning about the toe criterion is often met in the 
design stage in addition to the foregoing criteria. The 
settlement criterion is mainly related to the layers beneath 
the wall, and therefore it is neglected in this study. 

Internal stability guarantees that the wall carries the 
loads acting on it without rupturing. In other words, a 
gravity retaining wall must be capable of resisting the 
internal shear forces and bending moments caused 
by earth pressures and for other reasons. Apparently, 
the distribution and magnitude of lateral earth pres-
sures should be known to find the internal forces and 
moments to evaluate the internal stability criteria. The 
lateral earth pressure is calculated according to Rankine’s 
theory, because it is widely used and easily adapted to 
this optimization study [3].

2.2.1 Overturning Constraint

The factor of safety against overturning is determined by 
dividing the resisting moments by the driving moments. 
The resisting moments are caused by the weight of the 
wall and the weight of the retained soil above the base of 
the wall (Fig 3.). The driving moment is the overturning 
effect of the active earth pressure. However, the factor of 
safety depends on the point around which we compute 
the moments. The overturning stability is evaluated only 
around the toe point in practice [13]. The constraint 
from overturning about the toe is derived as below.

where:

γn = Unit weight of the soil
γc = Unit weight of the concrete.
FSo = Factor of safety against overturning

2.2.2 Sliding Constraint

The sliding verification is carried out by comparing the 
forces causing the sliding with the forces resisting it. The 
earth pressure acting on the back of the wall is the only 
sliding force and the friction along the bottom of the 
base is the only resisting force in this case. The resultant 
of the friction is calculated by multiplying the weight of 
the wall and the soil acting as part of the wall by the coef-
ficient of the base friction. Thus, the sliding constraint is 
defined as follows:

(5)

1 5 6 1 6 7(2 ) (2 ))]tan 0x x x x x x d+ - - + - - £

4 5 6 72 2 2 )x x x x+ + + + +

1 2 1 2 3 1 3 4(( ) (2 ) (2 )
12 n
H x x x x x x x xg + + - - + - -

1 4 5(2 )x x x+ - -

( ) 2
2 1 2 3

1 [ ( 2 2
2 6s n a c

Hg x FS H K x x xg g
æ ö÷ç= - + + +÷ç ÷÷çè ø

(6)

where:

tanδ = Friction coefficient between the wall base and 
the foundation soil

FSs   = Factor of safety against sliding

2.2.3 Total Vertical Forces within the 
Middle Third of the Base Constraint

Duncan et al. [25] suggested that eccentricity should be 
within the middle third of the base. Thus, the separation 
between the wall base and the soil does not occur. This 
constraint is inspired by the idea that tensile stresses 
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do not develop in the base-pressure distribution. The 
constraint is given as below:
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2.2.4 Bearing Capacity Constraint

Bearing-capacity failure happens in soil when the 
contact pressure between the footing and the soil causes 
shear failure in the foundation soil. In this optimization 
problem the Terzaghi bearing-capacity theory [26] is 
used to calculate the safe bearing capacity and compared 
with the maximum base pressure. The constraint from 
the bearing-capacity failure is given as below:

where:

Nγ =  Bearing capacity factor
FSb = Factor of safety against bearing capacity failure

2.2.5 Shear Verification Constraints

Shear and bending verifications are carried out to 
satisfy and verify the internal stability of the retaining 
wall. Therefore, the shear capacity of the different stem 
sections of a concrete gravity wall is calculated accord-
ing to the Building Code Requirements for Structural 
Concrete [14]. As there are no stirrups, the concrete of 
the stem must have adequate capacity to resist the shear 
force. The nominal shear capacity is:

1
6˘V b b d f ¢=         (9)

where:

Vn/b = Nominal shear capacity per unit length of the wall
bw = Width of shear surface (unit length for the wall)
d   = Effective depth (thickness of the stem)
f 'c  = 28-day compressive strength of the concrete

ACI 318 uses the ultimate strength design so the 
computed lateral earth pressures must be multiplied by 
the load factors. The factors for earth pressure and dead 
load are 1.6 and 1.2, respectively.  

The stem must have adequate thickness so that the 
following condition is fulfilled. 

0.5 /u nV b V bj£        (10)
where:

Vu/b = Factorized shear force per unit length of the wall.
φ  = Resistance factor = 0.85

As a result, the following constraints are obtained for five 
different sections, from the bottom to the top.
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2.2.6 Bending Verification Constraints

The thicknesses of the stem must have enough strength 
to resist the bending moments. The tensile strength of 
the concrete can be used in the design, because the stem 
of the wall can tolerate random cracks without detri-
mentally affecting their structural integrity, and ductility 
is not an essential feature of the design. The constraints 
from the bending verification can be given as follows:
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where:

fctd = Concrete design strength in tension

2.2.7 Design Constraints

The minimum thickness for the concrete gravity wall at 
the top is recommended to be 0.3 m  [27].  However, this 
is in contradiction with the aim of this study, i.e., to see 
the outline of the optimum cross-section this aspect is 
not taken into account. However, the xi dimensions must 
be greater than zero. Therefore, the following constraints 
can be defined.
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2.3 OPTIMIZATION METHOD

The constrained nonlinear optimization problem is 
defined as below:

minimize f(x)        (14)

subject to: gi(x) ≤ 0 for i = 1, 2, . . . , n        (15)

where f(x) and gi(x) are continuous and have continu-
ous second partial derivatives, and the feasible region 
described by Eq. (15) is non-empty. A computer 
program was developed to solve the problem using the 
interior point method.  The details and algorithms of 
this method can be found in books about nonlinear 
optimization [28].

3 OPTIMIZATION EXAMPLES

Several physical and mechanical properties of the walls 
and soils are assigned to the functions of the optimiza-
tion problem in order to obtain the optimum cross-
section of these situations. The assigned parameters 
corresponding to the optimization problem are given in 

Input Parameters Unit Symbol    Value
Height of the wall m H 2.0

Internal friction angle of the 
retained soil degree ϕ 35

Internal friction angle of the 
base soil degree ϕb 35

Friction angle between the 
wall base and the soil   degree δ 25.35

Unit weight of the retained 
soil kN/m3 γn 16.0

Unit weight of the base soil kN/m3 γnb 16.0
Concrete design strength in 

tension Mpa fctd 0.9

Concrete characteristic 
strength in compression Mpa f 'c 16.0

Unit weight of the concrete kN/m3 γc 25.0
Factor of safety for the over-

turning stability - FSo 2.0

Factor of safety against sliding - FSs 1.5
Factor of safety for the bear-

ing capacity - FSb 3.0

Table 1. Input parameters for design examples.

(12)

(13)
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Table 1. The heights of the walls are chosen to be 2.0, 3.0 
and 4.0 m, because gravity retaining walls are generally 
used for heights of less than 5 m. The other parameters 
are selected as typical values for concrete and cohesion-
less soil. The coefficient of base friction between medium 
sand and cast in place concrete can be taken as between 
0.45 and 0.55, according to the NAVFAC Design Manual 
[29].

The first example is the wall with a height of 2 m, and 
the xi values of the wall acquired from the optimization 
study are x1=0.6578 m, x2= 0.0934 m, x3=0.0670 m, 
x4=0.0436 m, x5=0.0238 m, x6=0.0084 m, and  x7=0.0000 
m. The cross-sectional area of the wall is 0.3767 m2, 
which is the result of the objective function too. The first 
striking feature of the cross-section is that a wide part 
occurs at the bottom of the wall like a footing (Fig. 4). It 
is seen from the results that active constraints determin-
ing the optimum values are the sliding and bending in 
the stem (Table 2). The constraints derived from the 
overturning, the total vertical force in the middle third, 
the bearing capacity, and the shear in the stem verifica-
tions are inactive.

Figure 4. Optimum cross-section of a gravity retaining wall 
with a height of 2 m.

Figure 5. Optimum cross-section of a gravity retaining wall 
with a height of 3 m.

The second example is a retaining wall of 3.0 m in 
height. The optimum xi values are x1=0.9633 m, 
x2=0.1707 m, x3=0.1225 m, x4=0.0798 m, x5=0.0436 m, 
x6=0.0155 m, and x7=0.0000, and the objective function 
takes the value of 0.9137 (Fig. 5). The factors of safety for 
the overturning, the sliding, and the bearing capacity are 
4.1068, 1.5000, and 7.7099, respectively. The sliding and 
bending in the stem verifications are the constraints that 
are equal to zero. In other words, these constraints are 
active (Table 2). The cross-section of the wall has a very 
narrow upper part, almost zero at the top and a wide 
lower part like a footing. The wide lower part contributes 
the stability of the wall with the retained soil over the 
base of the wall, especially for the overturning and slid-
ing checks.

The retaining wall with a height of 4.0 m is considered 
as the third example. The factors of safety for the 
overturning, the sliding and the bearing capacity are 
3.9975, 1.5000, and 7.0530, respectively. The optimum 
values of the variables are x1=1.2584 m, x2=0.2613 m, 
x3=0.1878 m, x4=0.1225 m, x5=0.0670 m x6=0.0238 m 
and x7=0.0000 m and area of the cross-section is equal to 
1.7220 m2 (Fig. 6). The g2(x), g10(x), g11(x), g12(x), g13(x) 
and g14(x) constraints derived from the sliding and 
bending in the stem verifications, respectively, are zero 
at the optimum xi values. The cross-section of the wall is 
very similar to the walls with heights of 2 and 3 m.

Figure 6. Optimum cross section of a gravity retaining wall 
with a height of 3 m.

The constraint functions are evaluated at the optimum 
solution points and the results are given in Table 2. The 
g2(x) constraint is equal to zero for all the gravity walls 
mentioned above. Thus, it can be said that the sliding 
constraint is active for all the walls. Additionally, the 
constraints derived from the bending in the stem verifica-
tions are also equal to zero for the walls. Therefore, bend-
ing in the stem checks becomes the other active constraint.
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A common feature of the optimum cross-sections of the 
walls is to have a wide lower part like a strip footing. In 
addition, the bending in the stem verifications deter-
mines the thicknesses of the stems at a regular interval 
from the base.  The general outlines of the optimum 
cross-section are similar to each other (Fig. 4, 5, and 6). 
The normalized thicknesses obtained by dividing the 
thicknesses by the height of the wall are given in Fig. 
7. The normalized thicknesses are almost equal for the 
walls and the normalized thicknesses increase slightly 
with increasing height, except for the thickness at the 
base (corresponding to x1).

The normalized dimensions of the condition that has an 
internal friction angle of 25º for the retained soil and the 

Constraints H=2 m H=3 m H=4 m
g1(x) -12.9428 -41.1071 -92,3876
g2(x) 0.0000 0.0000 0,0000
g3(x) -23.1743 -33.8651 -44,0500
g4(x) -140.7466 -203.0383 -261,5659
g5(x) -4.3915 -7.8965 -11,9324
g6(x) -11.9432 -21.2465 -31,7960
g7(x) -21.2523 -37.4571 -55,5754
g8(x) -31.8122 -55.5870 -81,8056
g9(x) -43.3270 -75.0844 -109,6252
g10(x) 0.0000 0.0000 0,0000
g11(x) 0.0000 0.0000 0,0000
g12(x) 0.0000 0.0000 0,0000
g13(x) 0.0000 0.0000 0,0000
g14(x) 0.0000 0.0000 0,0000

Table 2. Results of the constraint functions for the optimum
xi values.

Figure 7. Normalized dimensions for ϕ=35º.

foundation soil are given in Fig. 8. The other parameters 
are assigned to the constrained nonlinear programming 
problem, as in Table 1. Here, a 10º decrease in internal 
friction angle causes an approximately 52% increase in 
the normalized thickness corresponding to x1, and a 
nearly 22% increase occurs in the normalized thicknesses 
corresponding to x2, x3, x4, x5, x6. The active constraints 
are sliding and bending in the stem verifications in this 
case too. Such an increase in the width corresponding to 
x1 is caused by a high lateral earth pressure due to a low 
internal friction angle. The base key can be utilized in 
order to obtain a viable bottom width.

Figure 8. Normalized dimensions for ϕ=25º.

The normalized dimensions given in Fig. 7 and Fig. 
8 can be used for proportioning and the normalized 
thicknesses of the internal friction angles between 25° 
and 35° can be found by linear interpolation. The sliding 
constraint is the active constraint for all cases, so some 
measures, for example, adding a base key beneath the 
footing, installing anchors, etc., may be used to design 
more economic cross-sections for gravity retaining walls.

4 CONCLUSIONS

This study aimed to determine the optimum cross-
section outline of a symmetrical gravity retaining wall 
on granular soil.  The cross-sectional area of the plain 
concrete wall is assumed to be a direct indicator of the 
cost. Therefore, the objective function is defined as the 
cross-sectional area. Additionally, the constraints of the 
optimization problem are derived from the verifications 
that a concrete gravity retaining wall should satisfy. Thus, 
the constraint nonlinear optimization problem, defined 
by the objective function and constraints, is obtained. 
The problem is solved by developing a computer-
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program-based interior point method. The check of 
the sliding is an active constraint for external stability 
verifications and the bending in the stem verifications is 
an active constraint of the internal stability checks.  The 
cross-sections of the walls with different heights have 
similar outlines. The outlines of the optimum cross-
sections have wide lower parts, like wall footings, and 
slender stems that have minimum thicknesses satisfying 
the bending verifications. The areas of the optimum 
cross-sections are less than those of conventional plain 
concrete gravity retaining walls. The use of these opti-
mum cross-sections will substantially reduce the costs.
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