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Abstract

In this paper we classify the 4-valent graphs having 6p2 vertices, with p a prime, ad-
mitting a group of automorphisms acting regularly on arcs. As a corollary, we obtain the
4-valent one-regular graphs having 6p2 vertices.
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1 Introduction
For a finite, simple and undirected graph X , we use V (X), A(X) and Aut(X) to de-
note its vertex set, arc set and automorphism group, respectively. The graph X is said to
be B-vertex-transitive, respectively B-arc-transitive, if B is a subgroup of Aut(X) acting
transitively on V (X), respectively A(X). When B = Aut(X), the prefix B in the above
notation is omitted. Moreover, X is said to be one-regular if Aut(X) acts regularly on
A(X), that is, X is arc-transitive and |Aut(X)| = |A(X)|.

Obviously, one-regular graphs are connected, and a graph of valency 2 is one-regular if
and only if it is a cycle. The first example of a 3-valent one-regular graph was constructed
by Frucht [10], with 432 vertices. Later on, a considerable amount of work has been
done on 3-valent one-regular graphs as part of the more general problem dealing with the
classification of the 3-valent arc-transitive graphs (see [5, 6, 7, 8, 19, 30]). Marušič and
Pisanski [17] have fully classified the 3-valent one-regular Cayley graphs on a dihedral
group, and Kwak et al. [14] have similarly classified those of valency 5. Moreover, more

E-mail addresses: m.ghasemi@urmia.ac.ir (Mohsen Ghasemi), pablo.spiga@unimib.it (Pablo Spiga)

cb This work is licensed under http://creativecommons.org/licenses/by/3.0/



2 Ars Math. Contemp. 9 (2015) 1–18

recently, Feng and Li [9] have classified one-regular graphs of square-free order and of
prime valency. Tetravalent one-regular graphs have also received considerable attention
(see [1, 2, 15, 16, 24, 25, 28, 29]).

In this paper we are concerned with the classification of the 4-valent one-regular graphs.
We recall that such graphs are already classified when their orders are a prime or the product
of two (not necessarily distinct) primes [3, 21, 22, 26, 29, 28]. Moreover, for p and q primes,
the classification of the 4-valent one-regular graphs of order 4p2 or 2pq is given in [4, 31].
In this context we prove the following.

Theorem 1.1. Let p be a prime and let X be a 4-valent graph of order 6p2 admitting a
group of automorphisms acting regularly on A(X). Then one of the following holds:

(i) X is isomorphic to C(2; 3p2, 1), C±1(p; 6, 2), Yp,±1, Yp,±√3, Zp,±√−1 or Zp,±√−3
(see Section 3 for the definition of these graphs);

(ii) X is a Cayley graph over G with connection set S where

(a) G = 〈x, y | xp = y6p = [x, y] = 1〉 and S = {y, y−1, xy, (xy)−1}, or
(b) G = 〈x, y, z | xp = y3p = z2 = [x, y] = [x, z] = 1, yz = y−1〉 and S =

{xz, x−1z, xεyz, x−εyz} (here ε2 ≡ −1 (mod p) and p ≡ 1 (mod 4)), or

(c) G = 〈x, y, z | xp2 = y3 = z2 = [x, y] = [x, z] = 1, yz = y−1〉 and S =
{xz, x−1z, xyz, x−1yz}, or

(d) G = 〈x, y, z | xp2 = y3 = z2 = [x, y] = [x, z] = 1, yz = y−1〉 and S =
{xz, x−1z, xεyz, x−εyz} (here ε2 ≡ −1 (mod p2)), or

(e) G = 〈x, y, z, t | xp = yp = z3 = t2 = [x, y] = [x, z] = [x, t] = [y, z] =
[y, t] = 1, zt = z−1〉 and S = {xt, x−1t, yzt, y−1zt};

(iii) p ∈ {2, 3, 5} and X is described in Section 6.

The definition of the graphs in part (i) requires a fair amount of notation and termi-
nology, so we do not include their description in this introductory section. Observe that if
p ≤ 7, then |V (X)| = 24, 54, 150 or 294. Since a complete census of the 4-valent arc-
transitive graphs of order at most 640 has been recently obtained by Potočnik, Spiga and
Verret [18, 19], for p ∈ {2, 3, 5, 7}, the 4-valent graphs of order 6p2 admitting a group of
automorphisms acting regularly onA(X) can be downloaded (in magma format) from [18].

The proof of Theorem 1.1 is based on “normal quotient” techniques. This method is
very powerful and allows to obtain results like Theorem 1.1 when the order of the graph
has a prime factorization that is not too complicated (the multiplicity and the number of
prime factors are both small). However there are two natural limits to this technique. First,
as the order of the graph X becomes more complicated, the local properties of the quotient
graph XN might not be strong enough to be lifted to the graph X we start with (to see
a concrete example of this situation see “Case XP = O” in the proof of Theorem 1.1).
Second, we believe that results like Theorem 1.1 are useful only when the list of graphs is
not too long or too cumbersome to use. Therefore, although some of our arguments apply
to graphs having order more complicated than 6p2 we do not pursue this classification here
because of the natural complications describing each possible family.

A direct application of Theorem 1.1 gives the following.

Corollary 1.2. Let p be a prime and letX be a 4-valent one-regular graphX of order 6p2.
Then one of the following holds:
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(i) X is isomorphic to Yp,±1, Yp,±√3, Zp,±√−1 or Zp,±√−3 (see Section 3 for the defini-
tion of these graphs);

(ii) X is a Cayley graph over G with connection set S where

(a) G = 〈x, y | xp = y6p = [x, y] = 1〉 and S = {y, y−1, xy, (xy)−1}, or
(b) G = 〈x, y, z | xp = y3p = z2 = [x, y] = [x, z] = 1, yz = y−1〉 and S =

{xz, x−1z, xεyz, x−εyz} (here ε2 ≡ −1 (mod p) and p ≡ 1 (mod 4)), or

(c) G = 〈x, y, z | xp2 = y3 = z2 = [x, y] = [x, z] = 1, yz = y−1〉 and
{xz, x−1z, xyz, x−1yz}, or

(d) G = 〈x, y, z | xp2 = y3 = z2 = [x, y] = [x, z] = 1, yz = y−1〉 and
{xz, x−1z, xεyz, x−εyz} (here ε2 ≡ −1 (mod p2));

(iii) p ∈ {2, 3, 5} and X is described in Section 6.

Observe that we are not claiming that every graph in Corollary 1.2 is one-regular.

The structure of the paper is elementary: in Section 2 we introduce the notation and
some basic results that we will need for our proof of Theorem 1.1. Then in Sections 3 and 4
we present some graphs revelant to our investigation. In Section 5 we prove Theorem 1.1
and Corollary 1.2. In Section 6 we give the graphs in part (iii) of Theorem 1.1, and in
part (iii) of Corollary 1.2.

Acknowledgements. A toast to our friend Primož Potočnik for being constructively criti-
cal.

2 Preliminaries
In this section, we introduce some notations and definitions as well as some preliminary
results which will be used later in the paper.

Let X be a connected vertex-transitive graph, and let B ≤ Aut(X) be vertex-transitive
onX . Suppose that there is some groupN such that 1 6= NCB, andN is intransitive in its
action on V (X). The normal quotient XN is the graph whose vertices are the orbits of N
on V (X), with an edge between two distinct vertices vN and wN in V (XN ), if and only if
there is an edge of X between v0 and w0, for some v0 ∈ vN and some w0 ∈ wN . Normal
quotients were introduced by Praeger in [20] and they turned out to be an invaluable tool
for the classification of certain families of vertex-transitive graphs. In fact, our proof of
Theorem 1.1 heavily relies on normal quotient techniques.

For a positive integer n, we denote by Zn the cyclic group of order n as well as the ring
of integers modulo n, by Z∗n the invertible elements of Zn, by D2n the dihedral group of
order 2n, and by Cn and Kn the cycle and the complete graph of order n, respectively. For
a groupG and a subset S ofGwith 1 /∈ S and S = S−1, the Cayley graph Cay(G,S) onG
with connection set S is defined to have vertex setG and edge set {{g, sg} | g ∈ G, s ∈ S}.

For the benefit of the reader, we report here [12, Theorems 1.1 and 1.2] and [11, Theo-
rem 1.1], respectively.

Theorem 2.1 ([12, Theorem 1.1]). Let X be a connected B-arc-transitive 4-valent graph,
and let N be a minimal normal p-subgroup of B with orbits on V (X) of size ps. Let K
denote the kernel of the action of B on N orbits and let α be a vertex of X . If the quotient
XN is a cycle of length r ≥ 3, then one of the following holds:
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(a) p = 2 and X = C(2; r, s);

(b) p is odd and, if |Kα| = 2s, then X = C±1(p; st, s) or X = C±ε(p; 2st, s) for some
t ≥ 1.

Theorem 2.2 ([12, Theorem 1.2]). Let X be a connected B-arc-transitive 4-valent graph,
and letN ∼= Z2

p (p an odd prime) be a minimal normal subgroup ofB with orbits on V (X)
of size ps. Let K denote the kernel of the action of B on N -orbits and let α be a vertex of
X . If the quotient XN is a cycle of length r ≥ 3, then one of the following holds:

(a) s = 1 or 2, Kα
∼= Zs2 and X = C±1(p; st, s) or X = C±ε(p; 2st, s) for some t ≥ 1;

(b) s = 2, Kα
∼= Z2 and X = C±1(p; 2t, 2), or X belongs to one of two families

described in [12, Lemmas 8.4 and 8.7].

(The graphs C(2; r, s), C±1(p; st, s), C±ε(p; 2st, s) and the graphs in [12, Lemma 8.4
and 8.7] are define in Section 3.)

Theorem 2.3 ([11, Theorem 1.1]). Let X be a connected 4-valent B-arc-transitive graph.
For each normal subgroup N of B, one of the following holds:

(a) N is transitive on V (X);

(b) X is bipartite and N acts transitively on each part of the bipartition;

(c) N has r ≥ 3 orbits on V (X), the quotient graph XN is a cycle of length r, and B
induces the full automorphism group D2r on XN ;

(d) N has r ≥ 5 orbits on V (X), N acts semiregularly on V (X), the quotient graph XN

is a connected 4-valent B/N -symmetric graph, and X is a B-normal cover of XN .

3 Some families of graphs
In this section we present some of the graphs relevant to Theorem 1.1 and Corollary 1.2.
All of these graphs were introduced in the pivotal paper [12] of Gardiner and Praeger. (Here
we do not include the description of all the graphs in [12], but only those that are closely
related to our investigation.)

3.1 The graphs C(2; r, 1)

The graph C(2; r, 1) is the lexicographic product of a cycle of length r and an edgeless
graph on 2 vertices. In other words, V (C(2; r, 1)) = Z2 × Zr with (u, i) being adjacent to
(v, j) if and only if i− j ∈ {−1, 1}.

From [12, Definition 2.1], it follows that C(2; r, 1) is not one-regular.

3.2 The graphs C±1(p; st, s)

(We will be only interested to the case s ∈ {1, 2}.) The graph C±1(p; st, s) has vertex set
Zsp × Zst. To describe the adjacencies write every vertex of C±1(p; st, s) as

v = ((x0, . . . , xi−1, xi, xi+1, . . . , xs−1),ms+ i),

with x0, . . . , xs−1 ∈ Zs, 0 ≤ i < s and 0 ≤ m < t. Then v is adjacent to

((x0, . . . , xi−1, xi ± 1, xi+1, . . . , xs−1),ms+ i+ 1)
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and
((x0, . . . , xi−1 ± 1, xi, xi+1, . . . , xs−1),ms+ i− 1).

The group 〈a0〉×〈a1〉×· · ·×〈as−1〉 ∼= Zsp acts on V (C±1(p; st, s)) in the natural way,
inducing translations on the first s coordinates and leaving the coordinate in Zst unchanged.
Moreover, C±1(p; st, s) admits the automorphism σ defined by

((x0, x1, . . . , xs−1), q)σ = ((xs−1, x0, . . . , xs−2), q + 1).

A computation shows that C±1(p; st, s) is a Cayley graph over G = 〈a0, . . . , as−1, σ〉.
Observe that when s = 1 we have G ∼= Zp × Zt.

From [12, Definition 2.2], it follows that C±(p; t, 1) is a normal Cayley graph over
G with connection set S = {a0σ, (a0σ)−1, a−10 σ, (a−10 σ)−1}, that is, C±1(p; t, 1) =
Cay(G,S) and G E Aut(C±1(p; t, 1)). Moreover, if C±1(p; st, s) is one-regular, then
s = 1.

3.3 The graphs C±ε(p; 2st, s)

We introduce this family only for the case that concerns us, that is, s = 1. Let p be a prime
with p ≡ 1 (mod 4) and let ε be a square root of −1 (mod p). The graph C±ε(p; 2t, 1)
has vertex set Zp × Z2t and the vertex v = (x,m) is adjacent to

(x± ε,m− 1) and (x± 1,m+ 1) if m is even, and
(x± 1,m− 1) and (x± ε,m+ 1) if m is odd.

It is easy to check that the mappings a, τ , σ defined by

(x,m)a = (x+ 1,m)

(x,m)τ = (x, 1−m)

(x,m)σ = (εx, q + 1)

are automorphisms of C±ε(p; 2t, 1). Furthermore, a computation shows that, when t is
odd, C±ε(p; 2t, 1) is a Cayley graph over G = 〈a, σ4, τ〉 = 〈a〉 × 〈σ4, τ〉 ∼= Zp ×D2t.

From [12, Definition 2.3], it follows that, for t odd, C±ε(p; 2t, 1) is a normal Cayley
graph over G with connection set S = {aτ, (aτ)−1, aεσ2t+2τ, (aεσ2t+2τ)−1}, that is,
C±ε(p; t, 1) = Cay(G,S) and GE Aut(C±ε(p; 2t, 1)).

For defining the rest of the graphs we recall the concept of coset graph. For a group B,
a subgroup H and an element b ∈ B, the coset graph Cos(B,H, b) is the graph with vertex
set the set of right cosets B/H = {Hg | g ∈ B} and edge set {{Hg,Hbg} | g ∈ B}. The
following proposition is due to Sabidussi [23].

Proposition 3.1. Let H be a core-free subgroup of B and let b ∈ B with B = 〈H, b〉 and
b−1 ∈ HbH . Then Γ = Cos(B,H, b) is a connected B-arc-transitive graph of valency
|H : H ∩Hb|.

3.4 The graphs arising from [12, Lemma 8.4]: Yp,±1 and Yp,±
√

3

The graphs described in [12, Section 8 and Lemma 8.4] are very general, here we describe
only the graphs relevant to the scope of this article.
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Let N = 〈a0, a1〉 be an elementary abelian p-group of order p2 and let K be the group
with presentation

K = 〈σ, τ, w | σ6 = τ2 = w2 = [σ,w] = [τ, w] = 1, στ = σ−1〉.

Clearly, K = 〈σ, τ〉 × 〈w〉 ∼= D12 × C2. Fix u ∈ {−1, 1}. We let K act on N via

aσ0 = a1
aσ1 = a−10 au1

,
aτ0 = a1
aτ1 = a0

,
aw0 = a−10

aw1 = a−11

.

SetBu = NoK andHu = 〈τ, w〉. Now the graph Yp,u is defined as Cos(Bu, Hu, σ
−1a0).

From Proposition 3.1, it follows that Yp,u is a Bu-arc-transitive graph of valency 4 with
6p2 vertices and Bu acts regularly on A(Yp,u). Moreover, from [12, Section 8], we have
Yp,1 ∼= Yp,−1, and for p ≥ 5, we have Aut(Yp,u) = Bu.

Next we define Yp,±√3. Suppose p ≥ 5 and let u ∈ Zp be a square root of 3 (mod p).
(Observe that, from the law of quadratic reciprocity, for this example to exist we need
p ≡ ±1 mod 12.) Let N = 〈a0, a1〉 be an elementary abelian p-group of order p2 and let
K be the group with presentation

K = 〈σ, τ, w | σ12 = τ2 = w2 = [σ,w] = [τ, w] = 1, σ6 = w, στ = σ−1〉.

Clearly, K = 〈σ, τ〉 ∼= D24. We let K act on N via

aσ0 = a1
aσ1 = a−10 au1

,
aτ0 = a1
aτ1 = a0

,
aw0 = a−10

aw1 = a−11

.

SetBu = NoK andHu = 〈w, τ〉. As for Yp,±1, the graph Yp,u is defined by Cos(Bu, Hu,
σ−1a0). From Proposition 3.1, it follows that Yp,u is a Bu-arc-transitive graph of valency
4 with 6p2 vertices and Bu acts regularly on A(Yp,u). Moreover, from [12, Section 8], we
have Yp,√3

∼= Yp,−
√
3 and Aut(Yp,u) = Bu.

3.5 The graphs arising from [12, Lemma 8.7]: Zp,±
√
−3 and Zp,±

√
−1

As for Section 3.4, the graphs described in [12, Section 8 and Lemma 8.7] are very general,
here we present only the graphs relevant to the scope of this article.

We start by defining Zp,±√−3. Suppose p ≥ 5 and let u ∈ Zp be a square root of −3
(mod p). (Observe that, from the law of quadratic reciprocity, for this example to exist we
need p ≡ 1 mod 6.) Let N = 〈a0, a1〉 be an elementary abelian p-group of order p2 and
let K be the group with presentation

K = 〈σ, τ, w | σ6 = τ4 = w2 = [σ,w] = [τ, w] = 1, τ2 = w, στ = τ2σ−1〉.

We let K act on N via

aσ0 = a1
aσ1 = a0a

u
1
,

aτ0 = a1
aτ1 = a−10

,
aw0 = a−10

aw1 = a−11

.

Set Bu = N oK and Hu = 〈τ〉. Now the graph Zp,u is defined by Cos(Bu, Hu, σ
−1a0).

From Proposition 3.1, it follows that Zp,u is a Bu-arc-transitive graph of valency 4 with
6p2 vertices and Bu acts regularly on A(Zp,u). Moreover, from [12, Section 8], we have
Zp,
√
−3
∼= Zp,−

√
−3 and Aut(Zp,u) = Bu.
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Finally, we define Zp,±√−1. Suppose p ≥ 5 and let u ∈ Zp be a square root of −1
(mod p). (Observe that, from the law of quadratic reciprocity, for this example to exist we
need p ≡ 1 mod 4.) Let N = 〈a0, a1〉 be an elementary abelian p-group of order p2 and
let K be the group with presentation

K = 〈σ, τ, w | σ12 = τ4 = w2 = [σ,w] = [τ, w] = 1, σ6 = τ2 = w, στ = σ−1〉.

We let K act on N via

aσ0 = a1
aσ1 = a0a

u
1
,

aτ0 = a1
aτ1 = a−10

,
aw0 = a−10

aw1 = a−11

.

Set Bu = N o K and Hu = 〈τ〉. As for Zp,±√−3, the graph Zp,u is defined by
Cos(Bu, Hu, σ

−1a0). From Proposition 3.1, it follows that Zp,u is a Bu-arc-transitive
graph of valency 4 with 6p2 vertices andBu acts regularly onA(Zp,u). Moreover, from [12,
Section 8], we have Zp,√−1 ∼= Zp,−

√
−1 and Aut(Zp,u) = Bu.

4 Graphs for Theorem 1.1 (ii)
In this section we describe the examples introduced in Theorem 1.1 (ii) (and their relation
to the graphs in Section 3). For simplicity here we assume that p ≥ 5. The graphs described
in Sections 4.1 and 4.6 were already introduced with much more information and details
in [28], here we include yet again their construction for making our note self-contained.

4.1 4-Valent normal Cayley graphs over Zp × Z6p with p ≥ 5 prime

We describe the connected normal 4-valent arc-transitive Cayley graphs over the group
Zp × Z6p.

Let p be a prime and let G be the group given by generators and relations

G = 〈x, y | xp = y6p = [x, y] = 1〉.

Let S be a subset of G and assume that X = Cay(G,S) is connected, normal, 4-valent and
arc-transitive. Since X is normal and arc-transitive and since G is abelian of exponent 6p,
we see that S consists of elements of order 6p. Denote by S6p the elements of G of order
6p. Therefore

S ⊆ S6p = {xayb | a ∈ Zp, b ∈ Z∗6p}.

It is clear that Aut(G) acts transitively on S6p by conjugation. In particular, replacing
S by a suitable Aut(G)-conjugate, we may assume that y ∈ S. Therefore

S = {y, y−1, xuyv, x−uy−v},

for some u ∈ Z∗p and for some v ∈ Z∗6p.
Let B = {ϕ ∈ Aut(G) | yϕ = y}. Given ϕ ∈ B, we have

ϕ :

{
x 7→ xay6b

y 7→ y

with a, b ∈ Zp and a 6= 0. Note that every invertible element of Z6p is of the form 1 + 6b
or −1 + 6b, for some b ∈ Zp. Therefore, we may choose a, b ∈ Zp with (xy)ϕ = xuyv or
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(xy−1)ϕ = xuyv . Thus, replacing S by a suitable B-conjugate, we may assume that either
xy ∈ S or xy−1 ∈ S, that is,

S = {y, y−1, xy, x−1y−1}, or
S = {y, y−1, xy−1, x−1y}.

Let ϕ be the automorphism of G with xϕ = x and yϕ = y−1. Clearly, ϕ maps the first
possibility for S onto the second. Therefore, we may assume that

S = {y, y−1, xy, x−1y−1}.

The graph X is in Theorem 1.1 (ii) (a). Also, using [12, Definition 2.2], we see that X is
isomorphic to C±1(p; 6p, 1).

4.2 4-Valent normal Cayley graphs over Zp × D6p with p ≥ 5 prime

We describe the connected normal 4-valent arc-transitive Cayley graphs over the group
Zp ×D6p.

Let p be a prime and let G be the group given by generators and relations

G = 〈x, y, z | xp = y3p = z2 = [x, y] = [x, z] = 1, yz = y−1〉.

Let S be a subset of G and assume that X = Cay(G,S) is connected, normal, 4-valent and
arc-transitive. Since X is normal and arc-transitive, every element of S has the same order.
The elements of G of odd order lie in 〈x, y〉 and the involutions of G lie in 〈y, z〉. Since X
is connected, G = 〈S〉 and hence S consists of elements of order 2p. Denote by S2p the
elements of G of order 2p. Therefore

S ⊆ S2p = {xaybz | b ∈ Z3p, a ∈ Z∗p}.

We now consider the action of the automorphism group Aut(G) of G on S2p. Let
ϕ ∈ Aut(G). Clearly, ϕ is uniquely determined by the images of x, y and z. By considering
the element orders of G, we need to have

ϕ :

 x 7→ xay3b

y 7→ xcyd

z 7→ yez.

Since [x, z] = 1, the element xϕ needs to commute with zϕ and so, with a direct computa-
tion, we see that 3b = 0. Also, as yz = y−1, we have (yϕ)z

ϕ

= (yϕ)−1, but this happens
only for c = 0. Summing up,

ϕ :


x 7→ xa with a ∈ Z∗p
y 7→ yd with d ∈ Z∗3p
z 7→ yez.

(4.1)

This shows that all elements of S2p are Aut(G)-conjugate to xz. Therefore, replacing
S by a suitable conjugate under Aut(G), we may assume that xz ∈ S. In particular,
S = {xz, x−1z, xuyvz, x−uyvz}, for some u, v. As G = 〈S〉 ≤ 〈x, z, yv〉, we have that
v ∈ Z∗3p.
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Let B = {ϕ ∈ Aut(G) | (xz)ϕ = xz}. From (4.1), we see that ψ ∈ B only if xψ = x
and zψ = z. In particular, replacing S by a suitable B-conjugate, we may assume that
xuyz ∈ S, that is, v = 1. Thus S = {xz, x−1z, xuyz, x−uyz}.

Let ϕ ∈ Aut(G) with Sϕ = S and (xz)ϕ = xuyz (recall that such an automorphism
exists because X is a normal arc-transitive Cayley graph over G). From (4.1), we have
xϕ = xu, zϕ = yz and yϕ = yd (for some d coprime to 3p). Now, (xuyz)ϕ = xu

2

yd+1z ∈
S. If xu

2

yd+1z ∈ {xuyz, x−uyz}, then d = 0, contradicting the fact that d is coprime to
3p. Therefore xu

2

yd+1z ∈ {xz, x−1z} and u2 = ±1. Thus we have one of the following
two possibilities for S:

S = {xz, x−1z, xyz, x−1yz}, or
S = {xz, x−1z, xεyz, x−εyz}, where ε2 = −1

(note that in the second case p ≡ 1 (mod 4)). Now we focus our attention to the first
possibility for S. Take

ψ :

 x 7→ x
y 7→ y−1

z 7→ yz.

Since ψ fixes set-wise S, we have Go 〈ψ〉 ≤ Aut(X). We see that

(zψ)2 = zψzψ = z(ψzψ) = zzψ = zyz = yz = y−1

and so zψ has order 6p. Moreover xzψ = (xz)ψ = xψ = x and x commutes with zψ.
Therefore 〈x, zψ〉 ∼= Zp × Z6p. It is immediate to see that 〈x, zψ〉 acts regularly on the
vertices of X and so X is a Cayley graph over Zp×Z6p. In particular, from the discussion
in Section 4.1 (or with a direct computation) we obtain that X is isomorphic to the graph
in Theorem 1.1 (ii) (a).

Therefore we may assume that p ≡ 1 (mod 4) and that S = {xz, x−1z, xεyz, x−εyz}
where ε2 = −1. The graph X is in Theorem 1.1 (ii) (b). Also, using [12, Definition 2.3]
(or Section 3.3), we see that X is isomorphic to C±ε(p; 6p, 1).

4.3 4-Valent normal Cayley graphs over Zp × Zp × D6 with p ≥ 5 prime

We proceed as in the previous two examples. Let p be a prime and let G be the group given
by generators and relations

G = 〈x, y, z, t | xp = yp = z3 = t2 = [x, y] = [x, z] = [x, t] = [y, z] = [y, t] = 1,

zt = z−1〉.

Let S be a subset of G and assume that X = Cay(G,S) is connected, normal, 4-valent
and arc-transitive. As the elements of G of odd order lie in 〈x, y, z〉 and the involutions
of G lie in 〈z, t〉, we must have that S consists of elements of order 2p. Since 〈x, y〉 and
〈z, t〉 are characteristic subgroups of G, we have Aut(G) ∼= Aut(〈x, y〉) × Aut(〈z, t〉) ∼=
GL2(p)×D6. It follows easily from this description of Aut(G) and the connectivity of X
that we may assume that

S = {xt, x−1t, yzt, y−1zt}.

Thus we obtain the graphs in Theorem 1.1 (ii) (e).
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We show that X is not one-regular and hence it is not relevant for Corollary 1.2. Take

ψ :


x 7→ x−1

y 7→ y
z 7→ z
t 7→ t.

Clearly, ψ defines an automorphism of G that fixes set-wise S. Since ψ fixes the neighbour
yzt of 1 and maps xt to x−1t, we see that Aut(X) is not regular on A(X).

4.4 4-Valent normal Cayley graphs over Z3p × D2p with p ≥ 5 prime

Let G be the group given by generators and relations

G = 〈x, y, z | x3p = yp = z2 = [x, y] = [x, z] = 1, yz = y−1〉.

Let S be a subset of G and assume that X = Cay(G,S) is connected, normal, 4-valent
and arc-transitive. As the elements of G of odd order lie in 〈x, y〉, the involutions of G
lie in 〈y, z〉 and the elements of order 2p lie in 〈x3, y, z〉, we must have that S consists of
elements of order 6p. Denote by S6p the elements of G of order 6p. Therefore

S ⊆ S6p = {xaybz | a ∈ Z∗3p, b ∈ Zp}.

Arguing as in the previous examples, we see that Aut(G) acts transitively on S6p and hence
we may assume that xz ∈ S. In particular,

S = {xz, x−1z, xuyvz, x−uyvz},

for some u ∈ Z∗3p and some v ∈ Z∗p.
Let B = {ϕ ∈ Aut(G) | (xz)ϕ = xz}. Clearly, if (xz)ϕ = xz, then xϕ = x and

zϕ = z because z = (xz)3p and x2 = (xz)2. Using this observation, it is easy to see that
the elements ϕ ∈ B are of the form

ϕ :

 x 7→ x
y 7→ x3ayb

z 7→ z,

for some a, b ∈ Zp with b 6= 0. Therefore, we may choose a and b with (xuyvz)ϕ = xyz
or (xuyvz)ϕ = x−1yz. Therefore (as usual), replacing S by a suitable B-conjugate, we
may assume that

S = {xz, x−1z, xyz, x−1yz}.

Take

ψ :

 x 7→ x
y 7→ y−1

z 7→ yz.

Clearly, ψ defines an automorphism of G. Since ψ fixes set-wise S, we have G o 〈ψ〉 ≤
Aut(X). We see that

(zψ)2 = zψzψ = z(ψzψ) = zzψ = zyz = yz = y−1
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and so zψ has order 2p. Moreover xzψ = (xz)ψ = xψ = x and x commutes with
zψ. Therefore 〈x, zψ〉 ∼= Z3p × Z2p

∼= Zp × Z6p. It is immediate to see that 〈x, zψ〉 acts
regularly on the vertices ofX and soX is a Cayley graph over Zp×Z6p. In particular, from
the discussion in Section 4.1 (or with a direct computation) we obtain that X is isomorphic
to the graph in Theorem 1.1 (ii) (a).

4.5 4-Valent normal Cayley graphs over Zp2 × D6 with p ≥ 5 prime

Let G be the group given by generators and relations

G = 〈x, y, z | xp
2

= y3 = z2 = [x, y] = [x, z] = 1, yz = y−1〉.

Let S be a subset of G and assume that X = Cay(G,S) is connected, normal, 4-valent and
arc-transitive. A moment’s thought gives that S consists of elements of order 2p2. Denote
by S2p2 the elements of G of order 2p2. Therefore

S ⊆ S2p2 = {xaybz | a ∈ Z∗p2 , b ∈ Z3}.

Since 〈x〉 and 〈y, z〉 are characteristic subgroups of G, we have Aut(G) = Aut(〈x〉) ×
Aut(〈y, z〉) ∼= Z∗p2 × D6 and Aut(G) acts transitively on S2p2 . Hence we may assume
that xz ∈ S. In particular, S = {xz, x−1z, xuyvz, x−uyvz}, for some u ∈ Z∗p2 and some
v ∈ Z∗3. Replacing S by a suitable Aut(G)-conjugate, we may assume that v = 1, that is,

S = {xz, x−1z, xuyz, x−uyz}.

Let ϕ ∈ Aut(G) with Sϕ = S and (xz)ϕ = xuyz (recall that such an automorphism
exists because X is a normal arc-transitive Cayley graph over G). From the description
of Aut(G), we have xϕ = xu and zϕ = yz and yϕ = yd (for some d ∈ Z∗3). Now,
(xuyz)ϕ = xu

2

yd+1z ∈ S. As d 6= 0, we obtain d = −1 and u2 = ±1. Thus we have one
of the following two possibilities for S:

S = {xz, x−1z, xyz, x−1yz}, or
S = {xz, x−1z, xεyz, x−εyz}, where ε2 = −1

(note that in the second case p ≡ 1 (mod 4)). In particular, we obtain thatX is isomorphic
to the graph in Theorem 1.1 (ii) (c) or (d).

4.6 4-Valent normal Cayley graphs over Zp2 × Z6 with p ≥ 5

This case is by far the easiest to deal with and we leave it to the conscious reader. There is
only one graph arising, namely the graph in Theorem 1.1 (ii) (c).

5 Proof of Theorem 1.1 and Corollary 1.2
We start with some technical preliminary lemmas that will be useful in the proof of Theo-
rem 1.1.

Lemma 5.1. Let p be a prime with p ≥ 5 and let N be a normal subgroup of G with
|N | = p and G/N ∼= Zp × Z6 or G/N ∼= Zp ×D6. Then G is isomorphic to one of the
following groups
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(i) Zp2 × Z6 or Zp2 ×D6; or

(ii) Zp × (Zp o Z6) or Zp × (Zp oD6).

Proof. Let P be a Sylow p-subgroup of G. Since G is soluble, G contains a subgroup Q
with |Q| = 6. As G/N ∼= Zp × Z6 or G/N ∼= Zp ×D6, we have that QN/N ∼= Q (that
is, Q ∼= Z6 or Q ∼= D6) and that Q centralizes P/N . If P is cyclic, then Q centralizes P
by [13, Theorem 1.4]. So G = P ×Q and part (i) follows.

Suppose that P is an elementary abelian p-group. The action of Q by conjugation on P
endows P of a structure of an ZpQ-module. AsQ has order coprime to p, the ZpQ-module
N is completely reducible, that is, P = N × N ′, for some normal subgroup N ′ of G of
size p. As Q centralizes P/N , we see that Q centralizes N ′. Thus G = N ′× (N oQ) and
part (ii) follows.

Lemma 5.2. Let p be a prime with p ≥ 7 and let X be a connected normal 4-valent arc-
transitive Cayley graph over one of the groups G in Lemma 5.1 (ii). Let P be a Sylow
p-subgroup of G. Assume that P CG and that XP = C6. Then either G ∼= Zp × Z6p, or
G ∼= Z3p ×D2p, or G ∼= Zp ×D6p, or G ∼= Zp × Zp ×D6.

Proof. From Lemma 5.1 (ii), we have G = 〈x〉 × (〈y〉 o 〈z, t〉) with 〈x, y〉 ∼= Zp × Zp,
|z| = 3 and |t| = 2. Moreover, [z, t] = 1 if G ∼= Zp × (Zp o Z6) and zt = z−1 if
G ∼= Zp × (Zp o D6). If z centralizes y, then G = 〈x〉 × (〈yz〉 o 〈t〉). In particular,
G ∼= Zp × Z6p if t centralizes both y and z, G ∼= Zp × D6p if t inverts both y and z,
G ∼= Z3p ×D2p if t centralizes z and inverts y, and G ∼= Zp × Zp ×D6 if t inverts z and
centralizes y. In remains to consider the case that z does not centralize y. We show that this
case actually does not arise (here we use the fact that G admits a normal Cayley graph).

Note that the automorphism group of Zp is cyclic and hence D6 cannot act faithfully
as a group of automorphisms on Zp. Since we are assuming that z does not centralize y,
we must have that G ∼= Zp × (Zp o Z6), that is, [z, t] = 1. Let S be a subset of G with
X = Cay(G,S). Write A = Aut(X). Since 〈x〉 is a characteristic subgroup of G and
sinceGCA, we obtain that 〈x〉CA and Y = X〈x〉 is a normal quotient having 6p vertices.
In particular, Y has valency 2 or 4. Let K be the kernel of the action of A on V (Y ) and
assume that Y is a cycle. In particular, A/K ∼= D12p. Now D12p contains exactly two
regular subgroups, one isomorphic to Z6p and the other to D6p. Therefore

GK

K
∼=

G

G ∩K
=

G

〈x〉
∼= 〈y〉o 〈z, t〉

is isomorphic either to Z6p or to D6p, contradicting the fact that z does not centralize y.
Thus Y is a 4-valent Cayley graph over GK/K ∼= 〈y〉o 〈z, t〉 and K = 〈x〉.

Now, P/K has order p and is therefore a minimal normal subgroup of A/K. Also,
YP/K ∼= XP

∼= C6 and so we are in the position to apply Theorem 2.1 (b) to A/K, P/K
and Y . Hence Y = C±1(p; 6, 1) or Y = C±ε(p; 6, 1). From Sections 3.2 and 3.3 we see
that Y is a Cayley graph over Zp×Z6 or over Zp×D6. However, 〈y〉o〈z, t〉 is isomorphic
to neither of these groups, a contradiction.

In what follows we denote by O the graph K6− 6K2, that is, K6 with a perfect match-
ing removed. Clearly, O is connected, 4-valent and |V (O)| = 6. We refer to O as the
Octahedral graph.
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Proof of Theorem 1.1. We first consider the case that p ≥ 11. Let B be a subgroup of
Aut(X) acting regularly on A(X), let Bv be the stabilizer in B of the vertex v ∈ V (X)
and let P be a Sylow p-subgroup of B. We show that P is normal in B. Since |B| =
|A(X)| = 24p2, Sylow’s theorems show that the number of Sylow p-subgroups of B is
equal to |B : NB(P )| = 1 + kp, for some k ≥ 0. If k = 0, then P is normal in B and
thus we may assume that k ≥ 1. Now, 1 + kp divides 24 and this is possible if and only
if k = 1 and p = 23, or k = 1 and p = 11. Suppose that k = 1 and p = 23. Now
|B : NB(P )| = 24. So NB(P ) = P and CB(P ) = NB(P ). Therefore, by the Burnside’s
p-complement theorem [27, page 76], we see that B has a normal subgroup N of order
24. In particular, P acts by conjugation as a group of automorphisms on N . As a group of
order 24 does not admit non-trivial automorphisms of order 23, we see that P centralizes
B. Thus B ∼= N × P and P is normal in B. Finally, suppose that k = 1 and p = 11.
Now, |B : NB(P )| = 12. Consider the permutation group B̄ induced by the action of B
on the cosets of NB(P ). Now, B̄ has degree 12 and has order divisible by 11 because (by
hypothesis) P is not normal in B. Therefore B̄ is a 2-transitive group whose order divides
24 · 112. A quick inspection on the list of 2-transitive groups of degree 12 in magma shows
that this is impossible. This final contradiction gives that P is normal in B.

As usual, we denote by XP the normal quotient of X via P . The rest of the proof is a
case-by-case analysis depending upon the structure of the normal quotient XP . At the end
of the proof of each case we use the symbol � to mean that the theorem is proved in the
case under consideration.

As |Bv| = 4, we have Bv ∩ P = 1 and P acts semiregularly on V (X). Thus the orbits
of P on V (X) have size p2 and |V (XP )| = 6. In particular, XP is either the cycle C6 or
the octahedral graph O (depending on whether XP has valency 2 or 4).

CASE A: XP = O.

Fix v a vertex of X and let K be the kernel of the action of B on V (XP ). As XP has
valency 4, we obtain |B/K| = 24 and K = P . Now, the automorphism group W of O
is isomorphic to the wreath product Z2 o Sym(3), which has order 48. Therefore B/P is
isomorphic to a subgroup of index 2 in W . Labelling the vertices of O as {1, 2, 3, 4, 5, 6}
(so that {{1, 2}, {3, 4}, {5, 6}} is the system of imprimitivity for W ), we may assume that

W = 〈(1, 2), (3, 4), (5, 6), (1, 3)(2, 4), (1, 5)(2, 6)〉.

The group W has exactly three subgroups of index 2. Namely,

W1 = 〈(1, 2)(3, 4), (1, 2)(5, 6), (1, 3)(2, 4), (1, 5)(2, 6)〉,
W2 = 〈(1, 2), (3, 4), (5, 6), (1, 3, 5)(2, 4, 6)〉,
W3 = 〈(1, 2)(3, 4), (1, 2)(5, 6), (1, 3, 5)(2, 4, 6), (1, 2)(3, 6)(4, 5)〉.

The groupB/P acts by conjugation as a group of automorphisms on P . So, ifB/P ∼= Wi,
then Wi admits an action as a group of automorphisms on P . Assume that B/P acts
faithfully on P , that is, CB(P ) = P . In particular, Wi admits a faithful irreducible action
on P . Suppose that P is cyclic. Then Aut(P ) is cyclic and so B/P is cyclic. However,
W1,W2 and W3 are not cyclic, a contradiction. Thus P is an elementary abelian p-group
and Aut(P ) ∼= GL2(p) (the group of 2 × 2 invertible matrices). It is clear that the group
SL2(p) has index 2 in GL2(p) and that SL2(p) contains a unique element of order 2. This
shows that Wi has a normal subgroup T with Wi/T cyclic and with T containing at most
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one involution. A direct inspection on W1,W2 and W3 shows that such a normal subgroup
T does not exist. Therefore B/P does not act faithfully on P and CB(P ) > P .

Another direct inspection on W1,W2 and W3 shows that W1 and W3 contain a unique
minimal normal subgroup (namely, 〈(1, 2)(3, 4), (1, 2)(5, 6)〉, which has order 4) and W2

contains exactly two minimal normal subgroups (〈(1, 2)(3, 4)(5, 6)〉 having size 2 and
〈(1, 2)(3, 4), (1, 2)(5, 6)〉 having size 4). Therefore, CB(P ) contains a minimal normal
subgroup Q with |Q| = 2 or |Q| = 4. Suppose that |Q| = 2 (and so B/P ∼= W2). Now,
W2/〈(1, 2)(3, 4)(5, 6)〉 ∼= Alt(4) the alternating group on 4 letters. Arguing as in the pre-
vious paragraph, we see that Alt(4) cannot act faithfully on P . Therefore |CB(P ) : P | ≥ 4
and CB(P ) contains a minimal normal subgroup R with |R| = 4. So, replacing Q by R if
necessary, we may assume that |Q| = 4.

Since Q is characteristic in CB(P ), we get that Q is normal in B. As 4 does not divide
|V (X)|, we get that |Qv| = 2 and the Q-orbits have size 2. So, the quotient graph XQ is a
cycle of length 3p2. Now from Theorem 2.1 (a), we obtain X = C(2; 3p2, 1) and X is as
in Theorem 1.1 (i). �

For the remainder of the proof we may assume that XP = C6.
CASE B: P is a minimal normal subgroup of B.
Fix v a vertex of X and let K be the kernel of the action of B on V (XP ). As |B| = 24p2

and as XP has valency 2, we have B/K ∼= D12 and |Kv| = 2. So, we see that The-
orem 2.2 (b) applies (with s = 2), and X is isomorphic to C±1(p; 6, 2) or to one of
the graphs defined in [12, Lemmas 8.4 and 8.7]. From Sections 3.2, 3.4 and 3.5, Theo-
rem 1.1 (i) holds. �

For the remainder of the proof we may assume that B has a minimal normal subgroup
N with N ≤ P and |N | = p. Now by Theorem 2.3 the normal quotient XN is either C6p

or a 4-valent graph.
CASE C: XN = C6p.
Let K be the kernel of the action of B on V (XN ). As |B| = 24p2 and XN is 2-valent,
we have B/K ∼= D12p and |Kv| = 2. So, we are in the position to apply Theorem 2.1 (b)
(with s = 1) and thus X is isomorphic to either C±1(p; 6p, 1) or to C±ε(p; 6p, 1). From
Sections 4.1 and 4.2, we get that in the first case Theorem 1.1 part (ii) (a) holds and in the
second case Theorem 1.1 part (ii) (b) holds. �

For the remainder of the proof we may assume that XN is a 4-valent graph. So, X is a
regular cover of XN . Denote by K the kernel of the action of B on V (XP ) and recall that
|K| = 2p2 becauseXP = C6. Also, note that the normal quotient (XN )P/N is isomorphic
to XP . Now P/N is a minimal normal subgroup of B/N with orbits of size p. The kernel
of the action of B/N on XP is K/N and |KvP/P | = 2. Therefore Theorem 2.1 (b)
applies (with s = 1 and with B replaced by B/N ), and so XN = C±1(p; 6, 1) or XN =
C±ε(p; 6, 1). From Sections 3.2 and 3.3, we see that C±1(p; 6, 1) is a normal Cayley graph
over Zp × Z6 and that C±ε(p; 6, 1) is a normal Cayley graph over Zp ×D6.

Let G/N be the normal subgroup of B/N acting regularly on V (XN ), with G/N ∼=
Zp × Z6 or with G/N ∼= Zp × D6. Clearly, G acts regularly on V (X) and thus X is
a normal Cayley graph over G. From Lemma 5.1, we see that G is isomorphic either to
Zp2 × Z6, or Zp2 ×D6, or Zp × (Zp o Z6), or Zp × (Zp oD6).

If G is isomorphic to Zp × (Zp oZ6), or Zp × (Zp oD6), then from Lemma 5.2 G is
isomorphic to Zp × Z6p, or Zp × D6p, or Zp × Zp × D6, or Z3p × D2p. Now the proof
follows from Sections 4.1, 4.2, 4.3 and 4.4.
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If G is isomorphic either to Zp2 × Z6 or Zp2 × D6, then the proof follows from Sec-
tions 4.5 and 4.6.

It remains to consider the case that p ≤ 7. When p = 7, we see from [18, 19] that there
are seven 4-valent arc-transitive graphs on 6p2 vertices. A computer computation shows
that six of these graphs are isomorphic to one of the graphs defined in Theorem 1.1 (i)
and (ii), and the seventh does not admit a group of automorphisms acting regularly on arcs.
When p = 5, we see from [18, 19] that there are ten 4-valent arc-transitive graphs on
6p2 vertices and they all admit a group of automorphisms acting regularly on arcs. It is
a computer computation checking that eight of these graphs are isomorphic to one of the
graphs defined in Theorem 1.1 (i) and (ii), and the remaining two are given in Section 6.
When p = 3, we see from [18, 19] that there are five 4-valent arc-transitive graphs on
6p2 vertices and they all admit a group of automorphisms acting regularly on arcs. It is
a computer computation checking that three of these graphs are isomorphic to one of the
graphs defined in Theorem 1.1 (i) and (ii), and the remaining two are given in Section 6.
When p = 2, the result follows again with a straightforward computation.

Proof of Corollary 1.2. Observe that from Sections 3.1, 3.2 and 4.3 the graphsC(2; 3p2, 1),
C±1(p; 6, 2) and the graphs in Theorem 1.1 (ii) (e) are not one-regular. Now the result fol-
lows immediately from Theorem 1.1.

6 Description of the graphs in Theorem 1.1 part (iii) and
Corollary 1.2 (iii)

New now describe the exceptional graphs in Theorem 1.1 (iii) and Corollary 1.2 (iii).
CASE p = 2.

(i) X = Cay(〈x〉, {x, x−1, x5, x−5}) where 〈x〉 is a cyclic group of order 24. Now, X is a
normal one-regular Cayley graph.

(ii) X = Cay(〈x〉, {x, x−1, x7, x−7}) where 〈x〉 is a cyclic group of order 24. Now, X is
a normal one-regular Cayley graph.

(iii) X = Cay(SL(2, 3), S) and with connection set

S =

{(
1 1
0 1

)
,

(
1 −1
0 1

)
,

(
1 0
1 1

)
,

(
1 0
−1 1

)}
.

Now, X is a normal one-regular Cayley graph.

(iv) X = Cay(SL(2, 3), S) and with connection set

S =

{(
−1 1
0 −1

)
,

(
−1 −1
0 −1

)
,

(
−1 0
1 −1

)
,

(
−1 0
−1 −1

)}
.

Now, X is a normal one-regular Cayley graph.

(v) X = Cay(G,S) with G = 〈(1, 2, 3), (1, 2), (4, 5, 6, 7)〉 ∼= D6 × Z4 and
S = {(1, 3)(4, 6)(5, 7), (1, 2, 3)(4, 5, 6, 7), (2, 3)(4, 6)(5, 7), (1, 3, 2)(4, 7, 6, 5)}.
Now, X is neither a normal Cayley graph nor one-regular.

CASE p = 3.
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(i) X is the Cayley graph Cay(G,S), where G is the subgroup of GL(3, 3) generated by −1 0 0
0 1 0
0 0 1

 ,

 1 1 0
0 1 0
0 0 1

 ,

 1 0 0
0 1 1
0 0 1


and with connection set

 −1 −1 −1
0 1 −1
0 0 1

 ,

 −1 −1 1
0 1 1
0 0 1


 −1 1 1

0 1 −1
0 0 1

 ,

 −1 1 −1
0 1 1
0 0 1

 .

Now, it is a computation to verify that X is not one-regular.

(ii) X is the Cayley graph Cay(G,S), where G is the subgroup of GL(3, 3) generated by −1 0 0
0 1 0
0 0 1

 ,

 1 1 0
0 1 0
0 0 1

 ,

 1 0 0
0 1 1
0 0 1


and with connection set

 −1 0 0
0 1 0
0 0 1

 ,

 −1 1 0
0 1 0
0 0 1

 ,

 −1 −1 −1
0 1 1
0 0 1

 ,

 −1 −1 0
0 1 −1
0 0 1

 .

Now, it is a computation to verify that X is one-regular.

CASE p = 5.

(i) X is the coset graph Cos(G,H, g) where

G = 〈(1, 2, 3, 4, 5), (2, 5)(3, 4), (6, 7, 8, 9, 10), (8, 9, 10)〉 ∼= D5 ×Alt(5),

H = 〈(1, 5)(2, 4)(6, 9)(8, 10), (6, 10)(8, 9)〉 and g = (1, 3)(4, 5)(6, 10)(7, 8). Now,
|Aut(X)| = 1200 and hence X is not one-regular.

(ii) X is the coset graph Cos(G,H, g) where

G = 〈(1, 2, 3, 4, 5), (2, 5)(3, 4), (6, 7, 8, 9, 10), (8, 9, 10)〉 ∼= D5 ×Alt(5),

H = 〈(1, 5)(2, 4)(7, 10)(8, 9), (7, 9)(8, 10)〉 and g = (1, 2)(3, 5)(6, 7)(8, 9). Now,
|Aut(X)| = 600 and hence X is one-regular.
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