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Abstract

The Distinguishing Chromatic Number of a graph G, denoted χD(G), was first defined
in [5] as the minimum number of colors needed to properly colorG such that no non-trivial
automorphism φ of the graph G fixes each color class of G. In this paper,

1. We prove a lemma that may be considered a variant of the Motion lemma of [15]
and use this to give examples of several families of graphs which satisfy χD(G) =
χ(G) + 1.

2. We give an example of families of graphs that admit large automorphism groups in
which every proper coloring is distinguishing. We also describe families of graphs
with (relatively) very small automorphism groups which satisfy χD(G) = χ(G)+1,
for arbitrarily large values of χ(G).

3. We describe non-trivial families of bipartite graphs that satisfy χD(G) > r for any
positive integer r.

Keywords: Distinguishing chromatic number, automorphism group of a graph, Motion Lemma, weak
product of graphs.
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1 Introduction
For a graph G = (V,E) let us denote by Aut(G), its full automorphism group. A labeling
of vertices of a graph G, h : V (G) → {1, . . . , r} is said to be distinguishing (or r-
distinguishing) provided no nontrivial automorphism of the graph preserves all of the vertex
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labels. The distinguishing number of the graph G, denoted by D(G), is the minimum r
such that G has an r-distinguishing labeling (see [1]).

Collins and Trenk introduced the notion of the Distinguishing Chromatic Number
in [5], as the minimum number of colors r, needed to color the vertices of the graph so
that the coloring is both proper and distinguishing. In other words, the Distinguishing
Chromatic Number is the least integer r such that the vertex set can be partitioned into sets
V1, V2, . . . , Vr such that each Vi is independent in G, and for every I 6= π ∈ Aut(G) there
exists some color class Vi such that π(Vi) 6= Vi.

The problem of determining the distinguishing chromatic number of a graph G, or at
least good bounds for it, has been one of considerable interest in recent times ([4, 13,
5, 2, 3]). Clearly, the notion of the distinguishing chromatic number begins to get more
interesting only if the graph admits a large group of automorphisms, in which case, it can
vary substantially from the usual chromatic number. It is known (see [5]) that χD(G) = |V |
if and only if G is complete multipartite. Consequently, it is simple to see that there exist
graphsGwith χ(G) = k, χD(G) = l+k, for any k, l, since for instance, a disjoint union of
a clique of size k andK1,l achieves the same. Some upper bounds for χD(G) (for instance,
a version of Brooks’ theorem for the distinguishing chromatic number) appear in [4], which
also includes the inequality χD(G) ≤ D(G)χ(G). However, in many interesting large
naturally occurring families of graphs, we have χD(G) ≤ χ(G) + 1 (see [3, 2, 5, 4]).

In this paper, we seek to address three aspects of the problem of determining χD(G)
for a given graph G. Firstly, we prove a lemma that may be considered a variant of what
is now well known as the motion lemma, first introduced in [15]. The motion lemma
basically says that if every nontrivial automorphism of a graph moves ‘many’ vertices then
its distinguishing number is small. A similar lemma also appears in the context of graph
endomorphisms and ‘endomorphism breaking’ in [12]. As a result of our variant of the
Motion lemma, we give examples of several families of graphs G satisfying χD(G) =
χ(G) + 1.

Secondly, we contrast the relation between the size of the automorphism groupAut(G)
of a graph with its distinguishing chromatic number χD(G). A result describing an upper
bound for χD(G) in terms of the prime factors of |Aut(G)| appears in [4]. However, our
perspective is somewhat different. We demonstrate families of vertex transitive graphs G
with large chromatic number, and χD(G) = χ(G) + 1 even though |Aut(G)| is not very
large (we have |Aut(G)| = O(|V |3/2)). As a contrast, we also demonstrate a family of
graphs with arbitrarily large chromatic number, with ‘super large’ automorphism groups
for which every proper coloring of G with χ(G) colors is in fact distinguishing. This latter
example also addresses a point raised in [3] and these contrasting results indicate that the
relation between |Aut(G)| and χD(G) can tend to be haphazard.

Finally, as we indicated earlier, while it is simple to give (the trivial) examples of graphs
G with χ(G) = r, χD(G) = r + s, for any r, s, non-trivial examples are a little harder to
come by. Clearly, adding a copy (not necessarily disjoint) of a large complete multipartite
graph to an arbitrary graph achieves this goal but we shall consider such examples ‘trivial’
since the reason for the blowing-up of the distinguishing chromatic number is trivially
attributed to the presence of the complete multipartite component. While it seems simple
to qualitatively ascribe the notion of what constitutes a nontrivial example in this context,
we find it a bit tedious to describe it precisely. Our last result in this paper describes
what we would like to believe constitutes a nontrivial family of bipartite graphs G such
that χD(G) > r, for any r ≥ 2. It turns out that large complete bipartite graphs do
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appear as induced subgraphs in our examples, but that alone does not guarantee that the
distinguishing chromatic number necessarily increases. Furthermore, what makes these
nontrivial in our opinion, is the fact that the distinguishing chromatic number of these
graphs is more than what one might initially guess.

The rest of the paper is organized as follows. In Section 2, we state and prove what we
regard as a variant of the motion lemma and use this to establish instances of families of
graphs with χD(G) = χ(G) + 1 in Section 3. In Section 4, we describe two families of
graphs — G1 and G2 — with rather contrasting properties. For G ∈ G1, we have χD(G) =
χ(G) + 1 even though |Aut(G)| = O(|V |3/2); for G ∈ G2, |Aut(G)| = ω(e|V |) and
yet every proper χ(G) coloring of G is in fact distinguishing. In Section 5, we describe a
family of bipartite graphs for which χD(G) > r, for any r ≥ 2. The Section 6 contains
some concluding remarks and open questions.

2 A Variant of the Motion Lemma
Following [15], we recall that the motion of an automorphism φ ∈ Aut(G) is defined as

m(φ) := {v ∈ G : φ(v) 6= v}

and the motion of a graph G is defined as

m(G) := min
φ∈Aut(G)

φ6=I

m(φ).

The Motion lemma of [15] states that for a graph G, if m(G) > 2 log2 |Aut(G)| then
G is 2−distinguishable. We prove a slightly more general criterion to obtain a similar
conclusion for the distinguishing chromatic number.

For a graph G with full automorphism group Aut(G), let G ⊂ Aut(G) be a subgroup
of the automorphism group. For A ∈ G and S ⊆ V (G) we define FixA(S) = {v ∈ S :
A(v) = v} and FA(S) = |FixA(S)|. Let F (S) := max

A∈G
A6=I

FA(S).

Definition 2.1. The Orbit of a vertex v with respect to an automorphism A is the set

OrbA(v) := {v,Av,A2v, . . . Ak−1v}

where Akv = v.

Lemma 2.2 (A variant of the motion lemma). Let C be a proper coloring of the graph
G with χ(G) colors and let C1 be a color class in C. Let G be the subgroup of Aut(G)
consisting of all automorphisms that fix the color class C1. For each A ∈ G, let θA denote
the total number of distinct orbits induced by the automorphism A in the color class C1. If
for some integer t ≥ 2,

f(G) =
∑
A∈G

tθA−|C1| < r

where r is the least prime dividing |G|, then χD(G) ≤ χ(G) + t − 1. In particular, if
F (C1) < |C1| − 2 logt |G| then this conclusion holds.

Remark: Instead of G, one can consider the subgroup of G consisting of all nontrivial
automorphisms that fix all the color classes of the proper coloring C. The proof in that case
is identical to the present one.
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Proof. Let 1 be the color assigned in the color class C1 and suppose that the symbols
2, . . . , t denote labels different from the color labels of the vertices in the proper coloring
C. For each v ∈ C1, pick uniformly and independently, an element in {1, 2, . . . , t} and
color v using that color. Keep the coloring of all other vertices intact. This creates t − 1
additional color classes. This new coloring C ′ of G is clearly proper; we claim that with
positive probability, it is also distinguishing.

For A ∈ G, let BA denote the event that A fixes every color class. Observe that if A
fixes a color class containing a vertex v, then all other vertices in the set OrbA(v) are also
in the same color class. Moreover the probability that OrbA(v) is in the same color class
of v, equals t1−|OrbA(v)|. Then

P(BA) =
∏
θA

t1−|OrbA(v)| = tθA−|C1|

LetN ⊂ G denote the set of all automorphisms which fixes every color class in C ′ and
let N = |N |. Then note that the expectation

E(N) ≤
∑
A∈G

1

t|C1|−θA
(2.1)

By the hypothesis of the lemma, E(N) ≤ f(G) < r, hence with positive probability
N < r. Since N is in fact a subgroup of G, N divides |G|, so with positive probability, the
coloring C ′ is such that N = {I}, which implies that C ′ is distinguishing. Note that C ′ is
a coloring with χ(G) + t− 1 colors.

In particular, since θA ≤ F (C1) + |C1|−F (C1)
2 it follows from Equation (2.1) that

E(N) ≤
∑
A∈G

t
F (C1)−|C1|

2 = |G|t
F (C1)−|C1|

2 .

Thus, if F (C1) < |C1| − 2 logt |G| then there exists a distinguishing proper χ(G) + t− 1
coloring of the graph.

3 Examples
3.1 Levi graphs

In this subsection, we restrict our attention to Desarguesian projective planes and consider
the Levi graphs of these projective planes, which are the bipartite incidence graphs corre-
sponding to the set of points and lines of the projective plane. It is well known [11] that
the theorem of Desargues is valid in a projective plane if and only if the plane can be con-
structed from a three dimensional vector space over a skew field, which in the finite case
reduces to the three dimensional vector spaces over finite fields.

In order to describe the graphs we are interested in, we set up some notation. Let Fq
denote the finite field of order q, and let us denote the vector space F3

q over Fq by V . Let P
be the set of 1-dimensional subspaces of V and L, the set of 2-dimensional subspaces of V .
We shall refer to the members of these sets by points and lines respectively. The Levi graph
of order q, denoted by LGq , is a bipartite graph defined as follows: V (LGq) = P ∪ L,
where this describes the partition of the vertex set; a point p is adjacent to a line l if and
only if p ∈ l.
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The Fundamental Theorem of Projective Geometry [11] states that the full group of au-
tomorphisms of the projective plane PG(2,Fq) is induced by the group of all non-singular
semi-linear transformations PΓL(F3

q). If q = pn for a prime number p, PΓL(F3
q)
∼=

PGL(F3
q) o Gal(Fq/Fp). In particular, if q is a prime, we have PΓL(F3

q)
∼= PGL(F3

q).

The upshot is that LGq admits a large group of automorphisms, namely, PΓL(F3
q).1

We first show that the distinguishing chromatic number for the Levi graphs LGq is pre-
cisely 3 in almost all the cases. This is reminiscent of the result of [6] for the distinguishing
number of affine spaces.

Theorem 3.1. χD(LGq) = 3 for all prime powers q ≥ 5.

Proof. Firstly, we consider the case when q ≥ 5 and q is prime and show that χD(LGq) ≤
3. Consider a 2-coloring of LGq by assigning color 1 to the point set P and color 2 to the
line set L. It is easy to see that an automorphism of LGq that maps P into itself and L into
itself corresponds to an automorphism of the underlying projective plane, and hence any
such automorphism is necessarily in PGL(F3

q) (by the preceding remarks).
In order to use Lemma 2.2, set G = PGL(F3

q) and observe that every A ∈ PGL(F3
q),

which is not the identity, fixes at most q + 2 points of LGq . Hence

θA ≤ q + 2 +
(q2 + q + 1)− (q + 2)

2
=
q2 + 2q + 3

2
.

Consequently,

f(G) <
(q8 − q6 − q5 + q3)

t(q2+1)/2
+ 1 (3.1)

Case 1: q ≥ 7.
For q = 7, t = 2, the right hand side of Equation (3.1) is approximately 1.16. Since the
right hand side of inequality Equation (3.1) is monotonically decreasing in q, it follows that
f(G) < 2 for q ≥ 7, hence by Lemma 2.2, LGq admits a proper distinguishing 3−coloring.
In particular, χD(LGq) = 3, for q ≥ 7, since clearly, χD(LGq) > 2.
Case 2: q = 5.
In this case, for t = 2 we actually calculate f(G) using the open source Mathematics
software SAGE to obtain f(G) ≈ 1.2; see the Appendix for the code with relevant expla-
nations. Again in this case, χD(LG5) = 3.

We also can prove that χD(LG2) = 4 and χD(LG3) ≤ 5; these proofs are included in
the Appendix for the sake of completeness.

If q = pn for n ≥ 2 and a prime p, we note that the cardinality of the automorphism
group of PG(2,Fq) equals

n|PGL(F3
q)| ≤ log2(q)|PGL(F3

q)|.

As in the prime case, we have

f(G) ≤ log2 q(q
8 − q6 − q5 + q3)

t
q2+1

2

+ 1.

For q = 8 and t = 2 the right hand side is approximately 1.01. By the same arguments
as in the preceding section, it follows that χD(LGq) = 3.

1It follows that this group is contained in the full automorphism group. The full group is larger since it also
includes maps induced by isomorphism of the projective plane with its dual.
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For q = 4 we calculate f(G) ≈ 1.2. for q = 4, and t = 3 using the same SAGE code
in the case q = 5 to make the actual computation, so we have χD(LG4) ≤ 4. We believe
that χD(LG4) = 3 though our methods fall short of proving this.

3.2 Levi graphs of order one

Suppose n, k ∈ N and 2k < n, consider the bipartite graphs G = G(L,R,E) where
L :=

(
[n]
k−1

)
corresponds to the set of k − 1 subsets of [n], R :=

(
[n]
k

)
corresponds to the k

subsets of [n], and u ∈ L, v ∈ R are adjacent if and only if u ⊂ v. We shall refer to these
graphs as Levi Graphs of order one and we shall denote them by LG1(k, n), or sometimes,
simply LG1. Note that for each u ∈ L, v ∈ R we have d(u) = n− k + 1 and d(v) = k.

It is clear that Sn ⊂ Aut(LG1). But in factAut(LG1) = Sn, and this is a fairly routine
exercise, so we skip these details.

We shall use Lemma 2.2 to determine the distinguishing chromatic number of LG1(k,
n). Following the notation of the lemma, set Fσ := {v ∈ R : σ(v) = v} for σ ∈ Sn and
let F = max

σ∈Sn
σ 6=I

|Fσ|.

Lemma 3.2. For n > 4, F ≤
(
n−2
k−2

)
+
(
n−2
k

)
and equality is attained if and only if σ is a

transposition (ij) for some i 6= j.

Proof. Firstly, it is easy to see that if σ = (12) then |Fσ| =
(
n−2
k−2

)
+
(
n−2
k

)
, so it suffices

to show that for any π that is not of the above form, |Fπ| < |Fσ|.
Suppose not, i.e., suppose π ∈ Sn is not an involution and |Fπ| is maximum. Write

π = O1O2 . . . Ot as a product of disjoint cycles with |O1| ≥ |O2| ≥ · · · ≥ |Ot|. Then
either |O1| > 2, or |O1| = |O2| = 2. If |O1| > 2, then suppose without loss of generality,
let O1 = (123 · · · ) If h ∈ Fπ then either {1, 2} ⊂ h or {1, 2} ∩ h = ∅. In either case we
observe that h ∈ Fσ as well. Therefore Fπ ⊆ Fσ. Furthermore, note that σ fixes the set
g = {1, 2, 4, . . . , k + 1}, while π does not. Hence |Fσ| > |Fπ|, contradicting that |Fπ| is
maximum. If |O1| = |O2| = 2, again without loss of generality let O1 = (12), O2 = (34).
Again, h ∈ Fπ implies that either {1, 2} ⊂ h or {1, 2} ∩ h = ∅, so once again, h ∈ Fσ ⇒
h ∈ Fπ . Furthermore, {1, 2, 3, 5, . . . , k+ 1} ∈ Fσ ∩Fπ, which contradicts the maximality
of |Fπ|.

For k ≥ 2 define n0(k) := 2k + 1 for k ≥ 3 and n0(2) := 6.

Theorem 3.3. χD(LG1(k, n)) = 3 for k ≥ 2 for n ≥ n0(k).

Proof. We deal with the cases k = 2, k = 3 first, and then consider the general case of
k > 3.

For k = 2, let A = {(1, 2), (2, 3), (2, 4), (3, 4), (4, 5), (5, 6), . . . , (n − 1, n)}, and
consider the coloring with the color classes being L,A,R \ A. Consider the graph G with
V (G) = [n] and E(G) = A. Observe that the only automorphism G admits is the identity.
Since a nontrivial automorphism that preserves all the color classes of this coloring must
in fact be a nontrivial automorphism of G, it follows that the coloring described is indeed
distinguishing.

If k = 3, note that the coloring described by the sets R,A,L \ A is proper and distin-
guishing for the very same reason.
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For the case k ≥ 4, we use Lemma 2.2 with t = 2 and G = Aut(LG1). From Lemma
3.2 we have F ≤

(
n−2
k−2

)
+
(
n−2
k

)
. Let C1 = R be the color class to be parted randomly and

assign color 3 to all vertices in L =
(

[n]
k−1

)
. Then we have,

f(G) ≤ |Aut(LG1)|2 1
2 (F−|C1|) + 1, (3.2)

where |C1| =
(
n
k

)
.

Therefore from Equation 3.2, we have

f(G) ≤ n!

2K
+ 1,

where K =
(n
k)−(n−2

k−2)−(n−2
k )

2 . For n > 2k it is not hard to show that n!
2K < 1 for n ≥

n0(k), so, by Lemma 2.2 we are through.

3.3 Weak product of graphs

The distinguishing chromatic number of a Cartesian product of graphs has been studied in
[3]. The fact that any graph can be uniquely (upto a permutation of the factors) factorized
into prime graphs with respect to the Cartesian product plays a pivotal role in determining
the full automorphism group. In contrast, an analogous theorem for the weak product only
holds under certain restrictions. In this subsection, we consider the n-fold weak product
of certain graphs and consider the problem of determining their distinguishing chromatic
number.

To recall the definition again, the weak product (or Direct product as it is sometimes
called) of graphsG,H denotedG×H , is defined as follows: V (G×H) = V (G)×V (H).
Vertices (g1, h1), (g2, h2) are adjacent if and only if {g1, g2} ∈ E(G) and {h1, h2} ∈
E(H). We first collect a few basic results on the weak product of graphs following [9]. For
more details we refer the interested reader to the aforementioned handbook.

Define an equivalence relation R on V (G) by setting xRy if and only if N(x) = N(y)
where N(x) denotes the set of neighbors of x. A graph G is said to be R − thin if each
equivalence class of R is a singleton, i.e., no distinct x, y ∈ V (G) have the same set of
neighbors. A graph G is prime with respect to the weak product, or simply prime, if it is
nontrivial and G ∼= G1 ×G2 implies that either G1 or G2 equals Ks

1 , where Ks
1 is a single

vertex with a loop on it. Observe that Ks
1 ×G ∼= G.

Before we state our main theorem of this subsection, we state two useful results regard-
ing the weak product of graphs. If G is connected, nontrivial, and non-bipartite then the
same holds for G×n. This is a simple consequence of a theorem of Weischel (see [9] for
more details ). The other useful result is the following theorem which also appears in [9].

Theorem 3.4. Suppose φ is an automorphism of a connected nonbipartite R− thin graph
G that has a prime factorization G ∼= G1×G2× . . .×Gk . Then there exist a permutation
π of {1, 2, . . . , k}, together with isomorphisms φi : Gπ(i) → Gi, such that

φ(x1, x2, . . . , xk) = (φ1(xπ(1)), φ2(xπ(2)), . . . , φk(xπ(k))).

We are now in a position to state our main result regarding the distinguishing chromatic
number for a weak product of prime graphs. An analogous result for the cartesian product
of graphs, under milder assumptions, appears in [3].
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Theorem 3.5. Let G be a connected, nonbipartite, R − thin, prime graph on at least 3

vertices. Denote byG×n the n-fold product ofG, i.e., G×n :=

n-times︷ ︸︸ ︷
G×G× . . .×G. Suppose

further thatG admits a proper χ(G) coloring with a color class C1 such that no non-trivial
automorphism of G fixes every vertex of C1. Then χD(G×n) ≤ χ(G) + 1 for n ≥ 4.

Proof. Let G be connected, non-bipartite, R− thin, and prime. We first claim that

Aut(G×n) ∼= Aut(G) o Sn,

the wreath product ofAut(G) and Sn. To see this, note that ifG isR− thin one can easily
check that G×n is also R− thin. Moreover since every connected non-bipartite nontrivial
graph admits a unique prime factorization for the weak product (see [9]), it is a simple
application of Theorem 3.4 to see that Aut(G×n) ∼= Aut(G) o Sn. This proves the claim.

Suppose χ(G) = r and let {Ci : i ∈ [r]} be a proper coloring of G. Then Ci ×
G×n−1, i ∈ [r] is a proper r coloring of the graph G×n, so χ(G×n) ≤ r. On the other
hand, the map g → (g, g . . . , g) is a graph embedding of G in G×n, so χ(G×n) = r.
Let us denote the aforementioned color classes of G×n by C ′i, i ∈ [r]. We claim that
χD(G×n) ≤ r + 1 and show this as a consequence of Lemma 2.2.

By hypothesis there exist a color class, say C1 in G such that no nontrivial automor-
phism fixes each v ∈ C1. Consider C ′1 = C1 ×G×n−1 and for each element in C ′1 assign
a value from {1, r + 1} uniformly and independently at random. This describes a proper
(r + 1)−coloring of G×n. By Lemma 2.2, we have

f(G) ≤ n!|Aut(G)|n2
F−T

2 + 1 (3.3)

where T = |C1 ×G×n−1|, G = n!|Aut(G)|n and F is as in Lemma 2.2.
Claim: If there exists a nontrivial automorphism of G×n which fixes each color class

C ′i, i = 1 . . . , r, then it cannot also fix each vertex of C ′1.
To prove the claim, suppose ψ is an automorphism of G×n which fixes C ′i for each i ∈

[r], and also fixes C ′1 point-wise. By Theorem 3.4, there exist φ1, φ2, . . . , φn ∈ Aut(G)
and π ∈ Sn such that

ψ(x1, x2, . . . , xn) = (φ1(xπ(1)), φ2(xπ(2)), . . . , φn(xπ(n))) (3.4)

for all (x1, x2, . . . , xn) ∈ G×n. Now note that if ψ fixes C ′1 point-wise then φ1 fixes C1

point-wise. Indeed,

ψ(x1, x2, . . . , xn) = (x1, x2, . . . , xn)

⇐⇒ (φ1(xπ(1)), φ2(xπ(2)), . . . , φn(xπ(n))) = (x1, x2, . . . , xn)

⇐⇒ φi(xπ(i)) = xi for all i ∈ [r]. (3.5)

Since Equation (3.5) holds for all vertices (x1, x2, . . . , xn) ∈ G×n with x1 ∈ C1 and
xi ∈ G , 2 ≤ i ≤ n, we conclude that π = I , φi = I , for 2 ≤ i ≤ n, and φ1 acts trivially
on C1. But then by the hypothesis on G, it follows that φ1 = I in G and hence ψ = I .

We now show that F ≤ (|C1| − 2)|G|n−1.
We adopt similar notations as in Lemma 2.2 and for simplicity, let us denote |G| = m.

For ψ ∈ Aut(G×n) we shall write ψ = (φ1, φ2, . . . , φn : π) to denote the map

ψ(x1, x2, . . . , xn) = (φ1(xπ(1)), φ2(xπ(2)), . . . , φn(xπ(n)))
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as in Equation (3.4) (see Theorem 3.4). Suppose ψ fixes the vertex (x1, x2, . . . , xn) ∈
G×n. In particular we have xπ(i) = φ−1

i (xi) for all i. It then follows that for all k, we have

φ−1
πk(i)

(
xπk(i)

)
= xπk+1(i)

for each i. Consequently, if π has t cycles in its disjoint cycle representation then ψ can fix
at most |C1|mt−1 vertices in C ′1.

If π 6= I , then t < n, and in this case, since m ≥ 3, n ≥ 4, we have |C1|mt−1 ≤
(|C1| − 2)mn−1. If π = I , then ψ is non-trivial if and only if φi 6= I for some i. In this
case φi(xi) = xi for all i, so (x1, x2, . . . , xn) is fixed by ψ if and only if xi ∈ Fixφi for

all i. Consequently, Fψ′ =
n∏
i=1

Fφi . Observe that if φi is not a transposition then it moves

at least three vertices, say x, y and z in G. In particular, ψ does not fix any vertex of the
form (x1, x2, . . . , g, . . . , xn) , where g ∈ {x, y, z} and appears in the ith position. Thus, it
follows that

Fψ ≤ |C1|mn−2(m− 3).

If φi is a transposition for some i > 1 then it is easy to see that Fψ ≤ (|C1| − 3)mn−1 <
(|C1| − 2)mn−1. Finally, if φ1 is a transposition, then again F ≤ (|C1| − 2)mn−1. This
proves the claim.

Setting F = (|C1| − 2)mn−1 , T = |C1|mn−1 in Equation (3.3) gives us

f(G) ≤ n!|Aut(G)|n

2mn−1 + 1.

It is a simple calculation to see that the first term in the above expression is less than 1 for
all m ≥ 3 and n ≥ 4. This completes the proof.

Corollary 3.6. χD(K×nr ) = r + 1 for n ≥ 4, and r ≥ 3.

Proof. First note that for r ≥ 3, Kr is prime, non-bipartite, and R − thin. Hence by
Theorem 3.5 it follows that χD(K×nr ) ≤ r+ 1. A result of Greenwell and Lovász (see [8])
tells us that all proper r−colorings for K×nr are induced by colorings of the factors Kr. In
particular, it implies that χD(K×nr ) > r.

4 χD(G) versus |Aut(G)|
As indicated in the introduction, one aspect of the problem of the distinguishing chromatic
number of particular interest is the contrasting behavior of the distinguishing chromatic
number vis-á-vis the size of the automorphism group. Our sense of contrast here is to
describe the size of the automorphism group as a function of the order of the graph.

First, note that one can give somewhat trivial examples of graphs with χD(G) >
χ(G) > k for any k and with a very small automorphism group as follows. Start with
an arbitrary rigid graph, i.e. a graph with no non-trivial automorphism, with chromatic
number larger than k. Now fix an edge e = {x, y} and ‘blow up’ the vertices x, y by small
disjoint subsets X,Y respectively, and replace the edge e by the complete bipartite graph
on the sets X,Y . The new graph satisfies χD(G) > χ(G) rather trivially and one can
ensure that by picking small subsets X,Y we can ensure that the full automorphism group
is not too large either.
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In some sense, these examples are not very interesting because the fact that the distin-
guishing chromatic number exceeds the chromatic number for these graphs is attributable
to a ‘local’ reason. It however becomes a more intriguing problem if we insist that the
graph is also vertex transitive.

Our first theorem in this section gives examples of vertex transitive graphs that admit
‘small’ automorphism groups, and yet have χD(G) > χ(G) and with arbitrarily large
values of χ(G).

Theorem 4.1. Given k ∈ N, there exists a sequence of graphs Gni
satisfying

1. χ(Gni
) > k,

2. χD(Gni) > χ(Gni),

3. Gni
is vertex transitive and |Aut(Gni

)| = O(n
3/2
i ).

Proof. Let q ≥ k be prime and suppose S ⊂ Fq is a subset of size q−1
2 . We define the

graph GS as follows: The vertices of V (GS) are the points of the affine plane AG(2, q);
u = (u1, u2) and v = (v1, v2) are adjacent inGS if and only if v1 6= u1 and (v2−u2)(v1−
u1)−1 ∈ S. We denote (v2 − u2)(v1 − u1)−1 by s(u, v). For α, β ∈ Fq , consider the set
lβα := {(β + x, β + xα) : x ∈ Fq}. We shall call the sets lβα as lines in what follows.
Observe that, for each α ∈ S and β ∈ Fq , the sets lβα is a clique of size q, so χ(GS) ≥ q.
We shall denote the independent sets 2 {(β, x + β) : x ∈ Fq} by lβ∞. Similarly, if α /∈ S
the set lβα is an independent set of size q, the collection {lβα : β ∈ Fq} describes a proper
q-coloring of GS , hence χ(GS) = q.
Claim: χD(GS) > q. LetC = {C1, C2, . . . , Cq} be a proper q−coloring ofGS . We claim
that each Ci is a line, i.e., for each 1 ≤ i ≤ q we have Ci = lβα for some α /∈ S, β ∈ Fq .

Observe that for α ∈ S, the collection C = {lβα|β ∈ Fq} partitions the vertex set of GS
into cliques of size q. Therefore, in any proper q-coloring of GS , each color class contains
exactly q vertices.

Next, we recall a result of Rédei [14] which states that for a prime number q if X ⊂
AG(2, q) such that |X| = q andX is not a line then the set S(X) = {s(x, y)|x 6= y, x, y ∈
X} has size at least q+3

2 .

If a color class Ci is not a line then by the theorem of Rédei, |S(Ci)| ≥ (q+3)
2 and since

|S| = q−1
2 this implies that S(Ci)∩S 6= ∅. But then this contradicts that Ci is independent

in GS .
In particular, any proper q-coloring C of GS must be a partition of the form {lβα : β ∈

Fq} with α ∈ (Fq ∪ {∞}) \ S. Then the map

φα(x, y) = (x+ 1, y + α) if α 6=∞,
φ∞(x, y) = (x, y + 1)

is a nontrivial automorphism that fixes each color class of C. This establishes that
χD(GS) > q and proves the claim.

Now, we shall show that for a suitable choice of S, GS has a relatively small automor-
phism group. Our choice of subset S shall be a uniformly random subset of Fq .

Note that our earlier proof of the claim in fact shows that any maximum independent set
corresponds to a line in AG(2, q). We now make the observation that all maximum sized

2These are independent in GS since ∞ /∈ Fq .
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cliques also correspond to certain lines in AG(2, q). Indeed, suppose X is a maximum
clique of size q which does not correspond to a line. Again, by Rédei’s theorem we have
|S(X)| ≥ q+3

2 . SinceX is a clique, S(X) ⊂ S, but this contradicts the fact that |S| = q−1
2 .

Consequently, if φ ∈ Aut(GS) then since maximum cliques (respectively, maximum
independent sets) are mapped into maximum cliques (resp. maximum independent sets), it
follows that φ is a bijective map on F2

q which maps affine lines into affine lines in AG(2, q)
(as a consequence of [14]). Hence, it follows that Aut(GS) ⊂ AGL(2, q) (see [11]). In
other words, any φ ∈ Aut(GS) can be written as A + b̄ for some A ∈ Aut0(GS) and
b̄(= φ(0, 0)) ∈ F2

q , where Aut0(GS) ⊂ Aut(GS) is the subgroup of automorphisms
which fix the vertex (0, 0) ∈ V (GS).

The following lemma shows that for a random choice of the set S, the automorphism
group Aut(GS) is not very large.

Lemma 4.2. Suppose S is picked uniformly at random from the set of all q−1
2 subsets of

Fq . Then asymptotically almost surely, Aut(GS) = {λI + b̄ : λ ∈ F∗q , b̄ ∈ V (GS)}.
Consequently, |Aut(GS)| = q2(q − 1) asymptotically almost surely.

Here by the phrase asymptotically almost surely we mean that the probability that
Aut(GS) = {λI + b̄ : λ ∈ F∗q , b̄ ∈ V (GS)} approaches 1 as q →∞.

Proof. Since we have already observed that Aut(GS) ⊂ AGL(2, q), every φ ∈ Aut(GS)
can be written in the form φ(x, y) = A(x, y) + (b1, b2) for some b1, b2 ∈ Fq and A ∈

Aut0(GS). Here, A ∈ GL(2, q) corresponds to a matrix
(
a b
c d

)
for a, b, c, d ∈ Fq with

ad− bc 6= 0.
We introduce the symbol∞ and adopt the convention that a+∞ =∞, a ·∞ =∞ for

a 6= 0, and a
0 =∞ for a 6= 0. For φ ∈ Aut(GS), define a map fφ : Fq∪{∞} → Fq∪{∞}

as follows:

fφ(α) =
dα+ c

a+ bα
, if α 6= −a

b
,

fφ

(
−a
b

)
= ∞,

fφ(∞) =
d

b
.

Observe that fφ is trivial if and only if b = c = 0 and a = d.
Let x = (x1, x2), y = (y1, y2) be two adjacent vertices in GS . Since φ(x) is adjacent

to φ(y), we have

s(φ(x), φ(y)) =
c(y1 − x1) + d(y2 − x2)

a(y1 − x1) + b(y2 − x2)
=
d · s(x, y) + c

b · s(x, y) + a
.

Observe that y1 − x1 is nonzero since s(x, y) ∈ S. Therefore we have,

s(φ(x), φ(y)) = fφ(s(x, y)). (4.1)

Also note that if φ 6= λI then for µ ∈ Fq and k ∈ N, setting

f
(k)
φ (µ) := fφ ◦ fφ ◦ · · · ◦ fφ︸ ︷︷ ︸

k−fold

(µ) = µ
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yields a quadratic equation in µ, so there are at most two values of µ ∈ Fq satisfying
f

(k)
φ (µ) = µ. In other words, for each positive integer k, the map fφ admits at most two

orbits of size k. Moreover if A ∈ Aut(GS) then by equation (4.1), fA(S) = S.
Consider the event E: There exist a nontrivial automorphism A ∈ Aut0(GS) such that

fA is not the identity map. Observe that E is the union of the events EA where the event
EA is described as follows: For any A ∈ GL(2, q) where A 6= λI , λ 6= 0, S is the union
of fA orbits. Recall that fA is not the trivial map if and only if A 6= λI for any λ 6= 0.

By a favorable automorphism, we shall mean an automorphism A ∈ Aut0(GS), A 6=
λI such that S is union of fA orbits. By the preceding discussion, it follows that a favorable
automorphism of GS induces a partition Λ of q−1

2 in which there are at most two parts of
any size. Therefore the number of favorable automorphisms is at most twice the number
of integer partition of q−1

2 in which there are at most two parts of any size which is clearly
less than 2p( q−1

2 ), where p(n) denotes the partition function. By the asymptotics of the
partition function of Hardy-Ramanujan (see [10]),

p(t) ∼ 1

4t
√

3
exp

(
π

√
2t

3

)
,

where t = (q − 1)/2. So in particular, for any A ∈ Aut0(GS) the probability that fA is
nontrivial is less than p(t)

(
q
t

)−1
. Consequently,

P(E) ≤ (q2 − 1)(q2 − q)2p(t)(
q
t

) → 0 as q →∞.

Hence asymptotically almost surely, every S ⊂ Fq satisfies Aut0(GS) = {λI : λ ∈ Fq}.
The second statement follows trivially from this conclusion and this completes the proof of
the lemma.

Resuming the proof of the theorem, let S be a subset of Fq of size q−1
2 such that

Aut(GS) = {λI + b̄ : λ ∈ F∗q , b̄ ∈ V (GS)}; such a choice for S exists by the preceding
lemma. For such S, the distinguishing chromatic number ofGS is greater than its chromatic
number. Furthermore, since GS admits all translations in AG(2, q) as automorphisms it
follows that it is vertex transitive.

In fact, the graph GS satisfies χD(GS) = χ(GS) + 1 as we shall see now.

Theorem 4.3. Let S ⊂ Fq be a set of size q−1
2 such that Aut0(GS) = {λI : λ ∈ Fq}.

Then χD(GS) = q + 1.

Proof. For 1 6= γ /∈ S, consider the coloring of GS described by the color classes {lβγ :
β ∈ Fq}. Assign the color q + 1 to only the vertex (0, 0) ∈ V (GS). This forms a q + 1
coloring of GSwhich is obviously a proper coloring. To show that this is distinguishing,
let φ be a color fixing nontrivial automorphism of GS . By Theorem 4.2, φ maps (x, y) to
(ax + b1, ay + b2) for some a, b1, b2 ∈ Fq . Since φ fixes (0, 0) we have b1 = b2 = 0 and
a 6= 1. This implies φ = aI and hence it is not color fixing; indeed φ maps (1, 1) to (a, a)
and (a, a) /∈ l1γ .

Our second result in this section describes a family of graphs with very large automor-
phism groups - much larger than exponential in |V (G)|, but for which χD(G) = χ(G). As
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was proven in [2], we already know that the Kneser graphs K(n, r) with r ≥ 3 satisfy the
same. However, one might also expect that in such cases, distinguishing proper colorings
are perhaps rare, or at the very least, that there do exist minimal proper, non-distinguishing
colorings of G. It turns out that even this is not true.

Theorem 4.4. Let K(n, r) denote the complement of the Kneser graph, i.e., the vertices of
K(n, r) correspond to r element subsets of [n] and two vertices are adjacent if and only if
their intersection is non-empty. Then for n ≥ 2r and r ≥ 3 χD(K(n, r)) = χ(K(n, r)).
Moreover, every proper coloring of K(n, r) is in fact distinguishing.

Proof. First, observe that since Aut(K(n, r)) ' Sn for n ≥ 2r, the full automorphism
group of K(n, r) is also Sn.

Consider a proper coloring c of K(n, r) into color classes C1, C2, . . . , Ct. Note that
for any two vertices v1, v2 in the same color class, v1 ∩ v2 = ∅. If possible, let σ ∈ Sn
be a non-trivial automorphism which fixes Ci for each i. Without loss of generality let
σ(1) = 2. Observe that for the vertex v1 = (1, 2, . . . , r), its color class has no other
vertex containing 1 or 2, so σ maps {1, 2, , . . . , r} to {1, 2, . . . , r}. Again, with the vertex
v2 = {1, 3, . . . , r+1}, which is in color classC2 6= C1, σ maps v2 into {2, σ(3), . . . , σ(r+
1)} 6= v2, so σ(v2) ∩ v2 = ∅ by assumption. However, since σ(i) ∈ {1, 2, . . . , r} for each
3 ≤ i ≤ r this yields a contradiction.

5 Bipartite graphs with large χD(G)

In this section we describe a family of bipartite graphs whose distinguishing chromatic
number is greater than any integer k, where k ≥ 4.

As we described in the introduction, the sense of non-triviality of these examples arises
from a couple of factors. Our examples contain several copies of Kr,s as induced sub-
graphs. That by itself does not imply that the distinguishing chromatic number is at least
r + s but it is suggestive. What makes these families nontrivial is the fact that the distin-
guishing chromatic number of these graphs is in fact r + s+ 1.

Again, in order to describe these graphs, let q ≥ 5 be a prime power, and let Π :=
(P,L) be a Desarguesian projective plane of order q. As is customary, we denote by [r],
the set {1, 2 . . . , r}.

The graph which we denote LGq ⊗Kr,s has vertex set V (LGq ⊗Kr,s) = (P × [r])t
(L × [s]), and for p ∈ P, l ∈ L, and (i, j) ∈ [r] × [s] we have (p, i) adjacent to (l, j) if
and only if p ∈ l. Another way to describe this graph goes as follows. The weak product
LGq × Kr,s is bipartite and consists of two isomorphic bipartite components. The graph
LGq ⊗Kr,s is one of the connected components.

For each point p there are r copies of p in the graph LGq ⊗ Kr,s; we call the set
{(p, i)|i ∈ [r]} the fiber of p, and denoted it by F (p). Similarly we denote by F (l), the set
F (l) = {(l, i) : i ∈ [s]}, and shall call this the fiber of l. Each vertex (p, i) (resp. (l, j)) of
LGq ⊗Kr,s has degree r(q + 1) (resp. s(q + 1)).

Theorem 5.1. χD(LGq⊗Kr,s) = r+ s+ 1, where r, s ≥ 2 and q ≥ 5 is a prime number.

Proof. Firstly, we show that χD(LGq ⊗Kr,s) > r + s.
If possible, let C be an (r + s)-proper distinguishing coloring of LGq ⊗Kr,s and let

Ci, i ∈ [r + s] be the color classes of C in LGq ⊗Kr,s. We claim:



102 Ars Math. Contemp. 12 (2017) 89–109

1. For each p ∈ P , each vertex of F (p) gets a distinct color. The same also holds for
each l ∈ L and each vertex of F (l).

2. If CP and CL denote the sets of colors on the vertices of
⋃
p∈P

F (p) and
⋃
l∈L

F (l)

respectively, then CP ∩ CL = ∅ and |CP | = r, |CL| = s. Consequently, for each i,
either F (p) ∩ Ci 6= ∅ for each p ∈ P or F (l) ∩ Ci 6= ∅ for each l ∈ L.

We shall first prove each of the claims made above.

1. For p ∈ P suppose F (p) contains two elements, say (p, i) and (p, j), with the same
color. Consider the map φ that swaps (p, i) with (p, j) and fixes all other vertices.
It is easy to see that φ is a graph automorphism which fixes each color class Ci
contradicting the assumption that C is distinguishing. The argument for the part
regarding vertices in the fiber F (l) is identical.

2. Let l ∈ L and p ∈ l. By claim 1 each vertex in F (p) has a distinct color. Since
|F (p)| = r we may assume without loss of generality let (p, i) gets color i for i ∈ [r].
In that case, no vertex of F (l) can be colored using any color in [r]. Furthermore,
by the same reasoning as above, each vertex of F (l) is colored using a distinct color,
so we may assume again that (l, i) is colored r + i for i = 1, 2 . . . , s. Since there
is a unique line through any two points, no vertex of the form (p′, j) gets a color

in
r+s
∪

i=r+1
Ci. Similarly, no vertex of the form (l′, j) belongs to

r
∪
i=1

Ci. Therefore,

all points and their fibers belongs to
r
∪
i=1

Ci and all lines with their fibers belongs to
r+s
∪

i=r+1
Ci.

From claims 1 and 2 above, we conclude that for each p ∈ P , Ci ∩ F (p) 6= ∅ for
i ∈ [r]. Otherwise, since |F (p)| = r, there exist an i ∈ [r] such that |Ci∩F (p)| ≥ 2,
contradicting claim 1. Similar arguments show that for each l ∈ L, Ci+r ∩F (l) 6= ∅
for i ∈ [s].

To showC is not a distinguishing coloring we produce a nontrivial automorphism ofLGq⊗
Kr,s which fixes each Ci for i = 1, 2, . . . , r + s. We first set up some terminology. For
i ∈ [r], we call a vertex in the fiber of p its ith vertex if its color is i and shall denote it pi.
Similarly, we shall call a vertex in the fiber of l its ith point if its color is i + r and shall
denote it by li.

Let ψ ∈ Aut(LGq) be a nontrivial automorphism such that ψ(P) = P so that it also
satisfies ψ(L) = L. Let σ be defined on V (LGq ⊗Kr,s) by σ(vi) = ψ(v)i for v ∈ P tL.
It is clear that σ is a color preserving map. Moreover σ preserves adjacency in LGq⊗Kr,s;
indeed, v is adjacent to w in LGq if and only if F (v) ∪ F (w) forms a Kr,s as a subgraph
of LGq ⊗Kr,s and ψ ∈ Aut(LGq). Therefore σ is a nontrivial automorphism which fixes
the color classes, thereby showing that χD(LGq ⊗Kr,s) > r + s.

We now claim that χD(LGq ⊗Kr,s) ≤ r + s+ 1. For 1 ≤ i ≤ r − 1, assign the color
i to the points {(p, i) : p ∈ P} and for r + 1 ≤ j ≤ r + s let {(l, j) : l ∈ L} be colored j.
Recall that LGq admits a distinguishing 3-coloring in which every vertex of L is given the
same color, and the point set P is partitioned into P1,P2 that correspond to the other two
color classes (Theorem 3.1). We split the set {(p, r) : p ∈ P} into Cr := {(p, r)|p ∈ P1}
and Cr+s+1 := {(p, r) : p ∈ P2} and designate these sets as color classes r and r + s+ 1
respectively.
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It is easy to see that the above coloring is proper since adjacent vertices get different
colors. To see that it is distinguishing, let µ be a nontrivial automorphism which fixes each
color class. Since µ fixes each color class as a set, and µ is nontrivial, in particular, µ fixes
the set {(p, r) : p ∈ P}, and also fixes each set {(l, i) : l ∈ L} for r+ 1 ≤ i ≤ r+ s, so in
particular, µ induces a nontrivial automorphism, ν, on LGq = Cr ∪ Ci+r for each i ∈ [s],
which is non-distinguishing. But this contradicts Theorem 3.1, and so we are through.

6 Concluding Remarks
• It is possible to consider other Levi graphs arising out of other projective geome-

tries (affine planes, incidence bipartite graphs of 1-dimensional subspaces versus k
dimensional subspaces in an n dimensional vector space for some k etc). Many of
our results and methods work in those contexts as well and it should be possible to
prove similar results there as well, as long as the full automorphism group is not
substantially larger. For instance, in the case of the incidence graphs of k sets ver-
sus l-sets of [n], it is widely believed (see [7], chapter 1) that in most cases, the full
automorphism group of the generalized Johnson graphs is indeed Sn though it is not
known with certainty.

• As stated earlier, we believe that χD(LG4) = 3 though we haven’t been able to
show the same. Similarly, we believe χD(LG3) = 4. One can, by tedious arguments
considering several cases, show that a monochromatic 3-coloring of LG3 is not a
proper distinguishing coloring. For related details on what a monochromatic coloring
is, see the Appendix.

• We were able to show χD(K×nr ) = r+ 1 since in this case, all proper r colorings of
K×nr are of a specific type. For an arbitrary (prime) graph H , it is not immediately
clear if χD(H×n) > χ(H). It would be interesting to find some characterization of
graphs H with χD(H×n) = χ(H) + 1 for large n.

• For a given k ∈ N, we obtained nontrivial examples of family of vertex-transitive
graphs G with arbitrarily large chromatic number which have χD(G) > χ(G) and
with |Aut(G)| somewhat small. It is an interesting question to seek infinite families
of vertex-transitive graphs G with χD(G) > χ(G) > k for any prefixed k, while
|Aut(G)| = Ok(|G|).

• While we have attempted to construct non-trivial families of bipartite graphs with
large distinguishing chromatic number, it would be interesting to construct nontriv-
ial examples of graphs with arbitrary chromatic number, and arbitrarily large distin-
guishing chromatic number.
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7 Appendix
7.1 The Levi graph LG2

Firstly, we remark that the upper bound χD(G) ≤ 2∆−2 wheneverG is bipartite andG �
K∆−1,∆,K∆,∆, which appears in [13], gives χD(LGq) ≤ 2q. In particular, χD(LG2) ≤
4. We shall show that in fact χD(LG2) = 4.

We first set up some notation, let {e1, e2, e3} be the standard basis of the vector space
V with e1 = (1, 0, 0), e2 = (0, 1, 0) and e3 = (0, 0, 1). For g, h, k ∈ Fq, a vector v ∈ V
is denoted by (g, h, k) if v = ge1 + he2 + ke3. A point p ∈ P is denoted by (g, h, k)
if p =< ge1 + he2 + ke3 > . Thus, there are q2 points in the form (1, h, k) such that
h, k ∈ Fq, q points in the form of (0, 1, k) such that k ∈ Fq and finally the point (0, 0, 1)
to account for a total of q2 + q + 1 points in PG(2,Fq).

We start with the following definition.

Definition 7.1. A coloring of the Levi graph is said to be monochromatic if all the vertices
in one set of the vertex partition have the same color.

Lemma 7.2. LG2 does not have a proper distinguishing monochromatic 3-coloring.

Proof. Assume that LG2 has a proper distinguishing monochromatic 3-coloring. Without
loss of generality let the line setL be colored with a single color, say red. Call the remaining
two colors blue and green, say, which are the colors assigned to the vertices in P . We shall
refer to the set of points that are assigned a particular color, say green, as the color class
Green. By rank of a color class C (denoted r(C)), we mean the rank of the vector subspace
generated by C. Observe that a nontrivial linear map T that fixes the color class Green,
must necessarily also fix the color class Blue, so any such linear map would correspond to
an automorphism that preserves each color class.
For any 2-coloring of P (which has 7 points), one of the two color class has fewer than
four points. Without loss of generality, assume that this is the color class Green. Firstly, if
r(Green) ≤ 2 then consider a basisB of V which contains a maximal linearly independent
set of points in color class Green. If r(Green) = 2, then the linear map T obtained by
swapping the elements of the color class Green in B, and fixing every other basis element
is a non-trivial linear transformation of V which necessarily fixes the color class Green.
If r(Green) = 1, then consider the map T which fixes the green point of B and swaps
the other two (necessarily Blue) is a nontrivial linear transform that fixes the color class
Green. Finally, if r(Green) = 3, then let T be the map that swaps two of them and fixes
the third. Again, this map is a nontrivial linear map that fixes every color class.

We now set up some notation. Denote the points in LG2 by e1, e2, e3, e1 + e2, e1 + e3,
e2 + e3 and e1 + e2 + e3 (see Figure1) and denote the lines in the following way:

1. l1 : 〈e1, e2〉 the line ( two dimensional subspace) spanned by e1 and e2.

2. l2 : 〈e1, e3〉.
3. l3 : 〈e2, e3〉.
4. l4 : 〈e1, e2 + e3〉.
5. l5 : 〈e2, e1 + e3〉.
6. l6 : 〈e3, e1 + e2〉.
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Figure 1: Fano plane

7. l7 : 〈e1 + e3, e2 + e3〉.

Theorem 7.3. χD(LG2) = 4.

Proof. By the remark at the beginning of the section, we have χD(LG2) ≤ 4, so it suffices
to show χD(LG2) > 3. We first claim that if LG2 has a proper distinguishing 3-coloring,
then three linearly independent points (points corresponding to three linearly independent
vectors) get the same color.
Suppose the claim is false. Then each monochrome set C of points satisfies r(C) ≤ 2.
Since any set of four points contains three linearly independent points and |V (LG2)| = 7,
a 3-coloring yields a monochrome set of points of size exactly three. Denote this set by E
and observe that E in fact corresponds to a line lE ∈ L. Since any two lines intersect, no
line is colored the same as the points of E. If p, p′ ∈ P \E are colored differently, then the
line lp,p′ cannot be colored by any of the three colors contradicting the assumption. Con-
sequently, every point in P \E must be colored the same if the coloring were to be proper.
But then this gives a color class with four points which contains three linearly independent
points contradicting that the claim was false. Without loss of generality, suppose e1, e2, e3

are all colored red. Since l7 contains the points e1 + e2, e2 + e3 and e1 + e3, these three
points cannot all have different colors. Hence at least two of these three points are in the
same color class.

Without loss of generality, assume that e1 + e2 and e2 + e3 have the same color. Now
observe that the map σ defined by σ(e1) = e3, σ(e3) = e1, σ(e2) = e2, induces an
automorphism of LG2 that fixes every color class within P . Furthermore σ swaps l1 with
l3 and l4 with l6 and fixes all the other lines. If the sets of lines {l4, l6} and {l1, l3} are both
monochrome in L, then note that σ fixes every color class contradicting that the coloring
in question is distinguishing. Thus we consider the alternative, i.e., the possibilities that
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the lines l1 and l3 (resp. l4 and l6) are in different color classes, and in each of those cases
produce a non-trivial automorphism fixing every color class.

Case I : l4 and l6 have different colors, say blue and green respectively. In this case,
the point set witnesses at most two colors and none of the points of P \ {e1 + e3} can be
colored blue or green. Moreover, by Lemma 7.2, all the seven points cannot be colored red
(note that e1, e2, e3 are colored red). Consequently, e1 + e3 is colored, say blue, and all
the other points are colored red. The l7, l5 and l2 are all colored green since all these three
lines contain the point e1 + e3. As mentioned above, we shall in every case that may arise,
describe a non-trivial automorphism σ that fixes each color class. As before, we shall only
describe its action on the set {e1, e2, e3}.
Sub case 1 : l1 is colored blue. Then σ(e1) = e1, σ(e2) = e2 + e3, σ(e3) = e3 fixes
e1 + e3, swaps l1 with l4 and fixes l3. Consequently, it fixes every color class.
Sub case 2 : l1 is colored green and l3 is colored blue. In this case, σ(e1) = e2, σ(e2) =
e1, σ(e3) = e1+e2+e3 does the job. Sub case 3 : l1 and l3 are both colored green. In this
case, the only line which is colored blue is l4. Then σ(e1) = e2 + e3, σ(e2) = e2, σ(e3) =
e1 + e2, does the job.
From the above it follows that l4 and l6 cannot be in different color classes. So, we now
consider the other possibility, namely that l1 and l3 are in different color classes.

Case II: l6 and l4 have the same color but l1 and l3 are in different color classes, say
blue and green respectively. Here we first note that e1 + e2 and e2 + e3 are necessarily red
because they belong to l1 and l3 respectively. Again, we are led to three subcases:
Sub case 1 : e1 + e3 and e1 + e2 + e3 are both colored blue. Here, it is a straightforward
check to see that every l 6= l1 is colored green. Then, one can check that σ(e1) = e1 +
e2, σ(e2) = e2, σ(e3) = e3 fixes every color class.
Sub case 2 : The point e1 + e3 is colored red and e1 + e2 + e3 is colored blue. Again,
one can check in a straightforward manner, that for all 3 ≤ i ≤ 6, li is colored green. If
l2 is blue then σ(e2) = e3, σ(e3) = e2, σ(e1) = e1 does the job. If l2 is colored green,
σ(e1) = e2, σ(e2) = e1, σ(e3) = e3 does the job.
Sub case 3 : e1+e2+e3 is colored red and e1+e3 is colored blue. Here we first observe that
l2, l3, l5, l7 are all necessarily green. Also, by the underlying assumption (characterizing
Case II), l4, l6 bear the same color. In this case, σ(e1) = e1 +e2, σ(e3) = e2 +e3, σ(e2) =
e2, does the job. This exhausts all the possibilities, and hence we are through.

7.2 The Levi graph LG3

As remarked earlier, it is not too hard to show that χ(LGq) ≤ 6, so the same holds for
q = 3 as well. The next theorem shows an improvement on this result.

Theorem 7.4. χD(LG3) ≤ 5.

Proof. As indicated earlier we denote the points p ∈ P as mentioned in the beginning of
this section. A line corresponding to the subspace {(x, y, z) ∈ P : ax + by + cz = 0}
is denoted (a,b, c). We color the graph using the colors 1, 2, 3, 4, 5 as in Figure 2 (the
color is indicated in a rectangular box corresponding to the vertex) It is straightforward to
check that the coloring is proper. For an easy check we provide below, a table containing
adjacencies of each p ∈ P .

Here the first row lists all the points in the projective plane of order 3. The column
corresponding to the vertex p ∈ P lists the set of lines l ∈ L such that p ∈ l, so that the
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Figure 2: LG3

Points→ 100 110 010 120 112 121 012 122 011 111 101 102 001
Lines 001 001 001 001 011 011 011 012 012 012 010 010 010
↓ 011 120 100 110 120 121 122 122 121 120 122 121 120

012 121 101 111 101 102 100 101 100 102 102 101 100
010 122 102 112 112 110 111 110 112 111 112 111 110

columns are the adjacency lists for the vertices in P . To see that this coloring is distin-
guishing, firstly, observe that the line 001 is the only vertex with color 1. Therefore, any
automorphism φ that fixes every color class necessarily fixes this line. Consequently, the
points on 001 are mapped by φ onto themselves. Since each point on 001 bears a different
color, it follows that φ fixes each p ∈ 001. In particular, for 1 ≤ i ≤ 4, φ maps each set
{li1, li2, li3} onto itself. Here, {lij , 1 ≤ j ≤ 3} denotes the set of lines adjacent to the ith

point of 001. But again note that by the coloring indicated, the vertices lij and lij′ have
different colors for each i, so φ(lij) = lij for each pair (i, j) with 1 ≤ i ≤ 4, 1 ≤ j ≤ 3.
Now it is a straightforward check to see that φ = I .

7.3 SAGE code to calculate f(G) when G = PGL(F3q)

SAGE has inbuilt functions that allow us to list the elements of PGL(F3
q) and to write

down the disjoint cycle decomposition of a given permutation. For σ ∈ PGL(F3
q) the dis-

joint cycle decomposition, including its fixed points gives θσ , the total number of distinct
orbits induced by σ as in Lemma 2.2. Now it is easy to calculate P(Bσ) and sum over
PGL(F3

q). The SAGE code that we used for the calculation is given below, note that the
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text in the square bracket is an explanation of the corresponding line in the code.
#!/usr/bin/env sage -python
import sys
from sage.all import *
p = int(input("Enter p = " ))
t = float(input("Enter t = " ))
etot = p**2 + p + 1 [Total number of points in LGp.]
y = 0
G = PGL(3,p) [Automorphism group of PG(3, p).]
n = int(G.order()) [cardinality of G.]
for i in range(1, n):

g = G[i]
s = Set(g.cycle_tuples(singletons=True)) [Set of disjoint cycles of g ∈ G including sin-

gleton.]
og = s.cardinality() [Gives total number of distinct orbits induced by ‘g′. That is θg in

Lemma 2.2.]
ex = float(etot - og) [|C − 1| − θg as in the proof of Lemma 2.2.]
pg = 1 / float(t**ex)
y = float(pg + y)

print "tot prob is",y


