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A B S T R A C T	   A R T I C L E   I N F O	

In	 this	 research,	 Imprecise	 Data	 Envelopment	 Analysis	 (IDEA)	 model	 was
utilized	to	 improve	 fuzzy	multiple	responses	 in	robust	design.	The	combina‐
tion	of	process	factor	levels	at	each	experiment	was	considered	as	a	Decision	
Making	 Unit	 (DMU)	 with	 responses	 treated	 as	 inputs	 and	 outputs	 for	 all	
DMUs.	 The	 Fuzzy	 C‐Means	 Clustering	 (FCMC)	 technique	 is	 used	 to	 fit	 the	
response	fuzziness	by	clustering	the	average	values,	relative	to	each	response,
into	 a	 suitable	number	 of	 clusters	with	 triangular	 /	 trapezoidal	membership	
functions.	IDEA	models	were	used	to	estimate	the	fuzzy	triangular	/	trapezoi‐
dal	efficiency	values	for	each	DMU.	Finally,	the	preference	degree‐based	rank‐
ing	 approach	was	 used	 to	 discriminate	 between	 the	 fuzzy	 efficiency	 values	
and	 identifying	 the	 best	 combination	 of	 factors	 levels	 that	 would	 improve	
fuzzy	multiple	responses.	Two	case	studies	are	utilized	 to	 illustrate	 the	pro‐
posed	approach,	including	optimizing	wire	electrical	discharge	machining	and	
sputtering	 process	 parameters.	 The	 results	 showed	 that	 the	 proposed	 ap‐
proach	 provides	 better	 anticipated	 improvements	 than	 the	 fuzzy	 multiple	
regression	 based	 approach.	 This	 approach	would	 provide	 great	 assistant	 to	
process	 engineers	 in	 improving	 process	 performance	 with	 fuzzy	 multiple	
responses	over	a	wide	range	of	business	applications.	
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1. Introduction 

To	 survive	 in	 today’s	 competitive	markets,	manufacturers	produce	 their	 products	 considering	
multiple	quality	responses	of	main	customer	interest.	Therefore,	engineers	aim	to	determine	the	
best	 combination	 of	 process	 settings	 that	 reduces	 the	 variability	 of	 the	 quality	 responses	 and	
simultaneously	shift	the	mean	to	the	desired	target	[1].	For	this	reason,	several	approaches	are	
proposed	to	optimize	product/process	performance	with	multiple	responses	[2‐8].		
	 In	reality,	dealing	with	response	fuzziness	becomes	a	challenging	task	for	process	engineers.	
The	 fuzzy	 responses	 are	 captured	 as	 an	 imprecise	 value	 rather	 than	 crisp	 one.	 The	 imprecise	
value	could	be	interval,	triangular,	trapezoidal,	or	even	linguistic.	Conceptually,	response	fuzzi‐
ness	can	be	justified	by	four	reasons	[9,	10].	The	first	reason	is	the	vague	and	complex	process	
behaviour	which	may	be	explained	by	the	nondiscretionary	factors.	The	second	is	the	inability	to	
fix	the	process	settings	at	precise	values	or	in	words	the	fuzziness	inherent	in	the	settings	physi‐
cal	values.	The	third	is	the	qualitative	nature	of	the	response	itself.	Finally,	the	fuzziness	occurs	
due	 to	customer	preference.	Several	approaches	are	proposed	 to	deal	with	response	 fuzziness	
problem	in	robust	design	[9‐16].	
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	 The	Taguchi	method	utilizes	an	orthogonal	array	to	provide	experimental	 format.	Let	DMUj	
denotes	the	combination	of	factor	settings	at	each	experiment	in	Taguchi’s	orthogonal	array.	For	
DMUj,	 the	 fuzzy	inputs	and	outputs	are	denoted	by	ݕതෘ௜௝	and		ݕതෘ௥௝,	respectively.	 In	fuzzy	goal	pro‐
gramming	(FGP),	the	fuzzy	efficiency	value,	ܧෘ௝,	of	each	DMUj	is	calculated	as	follows.	For	a	fuzzy	
triangular	inputs,	ݕതෘ௜௝,	and	outputs,	ݕതෘ௥௝,	values,	the	relative	efficiency	value	of	each	DMUj	 is	also	
considered	as	a	fuzzy	triangular	value	with	three	parameters,	ܧ௝

௅	, ௝ܧ
ெ, and	ܧ௝

௎,	which	represent	
the	lower,	nominal,	and	the	upper	efficiency	values,	respectively.	That	is,		ܧ෩௝ ൌ ሺܧ௝

௅, ௝ܧ
ெ, ௝ܧ

௎)	and	
is	formulated	as	shown	in	Eq.	1:	
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where	s	and	m	denote	the	number	of	outputs	and	inputs,	respectively.	Let	the	lower	and	upper	
inputs	values	are	denoted	by	ݕ௜௝

௅ 	and	ݕ௜௝
௎,	respectively.	Also,	the	lower	and	upper	outputs	values	

are	expressed	as	ݕ௥௝
௅ 	and	ݕ௥௝

௎ ,	respectively.	For	a	DMU,	ܷܯܦ௞∈௝,	under	consideration,	 the	upper	
desired	efficiency	value,	ܧ௞

௎,	is	calculated	by	using	Model	1.	
	
Model	1	is:	
	

௞ܧ
௎ ൌ ௥ݑ෍ݔܽ݉

௦

௥ୀଵ

௥௞ݕ
௎ 	 (2)

	

subject	to	
	

෍ݒ௜

௠

௜ୀଵ

௜௞ݕ
௅ ൌ 1	 (3)

	

෍ݑ௥ݕ௥௞
௎

௦

௥ୀଵ

െ ෍ݒ௜ ௜௞ݕ
௅

௠

௜ୀଵ

൑ 0 	 (4)

	

෍ݑ௥ݕ௥௝
௅

௦

௥ୀଵ

െ ෍ݒ௜ ௜௝ݕ
௎

௠

௜ୀ1

൑ 0, ∀ ݆ ് ݇	 (5)

	

,௥ݑ ௜ݒ ൒ ߝ , ∀ ,ݎ ݅ ∈ 	ݍ (6)
	

where	 ur,	 and	 vi,	 are	 the	 weights	 assigned	 to	 the	 outputs	 and	 inputs,	 and	 ε	 is	 the	 non‐
Archimedean	value.	In	model	1,	the	objective	function	seeks	to	maximize	the	upper	relative	effi‐
ciency	 for	each	DMUk	under	the	most	 favorable	situation.	The	first	constraint	keeps	the	 inputs	
weighted	sum	of	the	DMUk	equals	one.	The	second	and	the	third	constraints	represent	the	most	
favorable	condition	for	DMUk,	where	the	highest	score	of	the	upper	efficiency	value	is	attained	by	
settings	the	relative	interval	outputs	at	their	upper	bounds	and	the	interval	inputs	at	their	lower	
bounds.	Meanwhile,	the	outputs	of	all	other	DMUj≠k	reach	their	corresponding	lower	bounds	and	
the	interval	inputs	reach	their	corresponding	upper	bounds.	The	last	constraint	keeps	the	inputs	
and	outputs	weights	larger	than	a	small	positive	value.	Similarly,	the	lower	efficiency	value	ܧ௞

௅,	is	
calculated	by	using	Model	2.	
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Model	2	is:	
	

௞ܧ
௅ ൌ ௥ݑ෍ݔܽ݉
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௅ 	 (7)
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,௥ݑ ௜ݒ ൒ ߝ , ∀ ,ݎ ݅	 (11)
	

	 In	Model	2,	the	objective	function	seeks	to	maximize	the	lower	relative	efficiency	ܧ௞
௅,	for	each	

DMUk	under	the	least	favorable	situation.	The	first	constraint	keeps	the	upper	weighted	sum	of	
the	DMUk	inputs	equals	one.	The	second	and	the	third	constraints	represent	the	least	favorable	
condition	for	DMUk,	where	the	highest	score	of	the	relative	efficiency	value	is	attained	by	setting	
the	relative	interval	outputs	at	their	lower	bounds	and	the	interval	inputs	at	the	upper	bounds,	
while	the	interval	outputs	of	all	other	DMUj≠k	reach	their	relative	upper	bounds	and	the	interval	
inputs	reach	their	corresponding	lower	bounds.	The	last	constraint	keeps	the	inputs	and	outputs	
weights	larger	than	a	small	positive	value.	
	 Further,	 let	 the	middle	 inputs	 and	outputs	 values	 are	denoted	by	ݕ௜௝

ெ	and	ݕ௥௝
ெ	,	 respectively.	

Then,	for	DMUk	the	nominal	efficiency	value,	ܧ௞
ெ,	is	calculated	by	using	Model	3	as	follows:	

	
Model	3	is:	
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	 The	objective	function	in	Model	3	seeks	the	optimal	setting	of	outputs	and	inputs	weights,	ur	
and	vi,	that	maximize	the	nominal	efficiency	value,	ܧ௞

ெ,	for	each	DMUk.	The	second	and	the	third	
constraints	keep	the	input	weighted	sum	for	each	DMUk	constant	and	at	the	same	time	the	rela‐
tive	efficiency	value	less	than	one.	The	fourth	constraint	represents	the	nominal	desired	condi‐
tion	for	each	DMUk	such	that	the	nominal	efficiency	value	is	achieved	when	its	relative	outputs	
and	inputs	values	reach	their	middle	level,	while	the	outputs	reach	their	corresponding	higher	
levels	and	the	inputs	reach	their	corresponding	lower	levels	for	DMUj≠k.	The	last	constraint	keeps	
the	values	of	the	inputs	and	outputs	weights	more	than	a	small	non	Archimedean	variable.		
	 On	the	other	hand,	for	a	fuzzy	trapezoidal	inputs,	ݕതෘ௜௝	and	outputs	ݕതෘ௥௝,	values	the	relative	effi‐
ciency	 value	 of	 each	DMUj	 have	 four	 parameters,	 ௝ܧ

௅	, ௝ܧ
௅ெ, ௝ܧ

௎ெ, and	ܧ௝
௎	 which	 represent	 the	

lower,	lower	mid,	upper	mid,	and	the	upper	efficiency	values,	respectively.	The	fuzzy	trapezoidal	
efficiency	value	of	each	DMUj	can	be	written	as	ܧ෨௝ ൌ ሺܧ௝

௅, ௝ܧ
௅ெ, ௝ܧ

௎ெ, ௝ܧ
௎ሻ	which	is	shown	in	Eq.	17.	
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(17)

	

	 Then,	Model	1	and	Model	2	are	used	to	calculate	the	upper	and	lower	relative	efficiencies	for	
each	DMUj,	respectively.	The	lower	mid	efficiency	value,	ܧ௝

௅ெ,	is	calculated	as	follows:	
	
Model	4	is:	
	

௞ܧ
௅ெ ൌ ௥ݑ෍ݔܽ݉

௦

௥ୀଵ

௥௞ݕ
௅ெ	 (18)

	

subject	to	
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௅ெ

௠

௜ୀଵ

൑ 0, 	 (20)

	

෍ݑ௥ݕ௥௝
௎

௦

௥ୀଵ

െ ෍ݒ௜ ௜௝ݕ
௅

௠

௜ୀଵ

൑ 0, ݆ ് ݇	 (21)

	

,௥ݑ ௜ݒ ൒ ߝ , ∀ ,ݎ ݅ ∈ 	ݍ (22)

	 In	Model	4,	the	lower	mid	values	of	the	inputs	are	set	as	ݕത௜௝
௅ெ,	while	the	lower	mid	values	of	

the	outputs	are	set	as	ݕത௥௝
௅ெ.	The	objective	function	seeks	the	optimal	setting	of	outputs	and	inputs	
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weights	ur,	vi	that	maximize	the	relative	efficiency	value,	ܧ௞
௅ெ,	for	each	DMUk.	The	second	and	the	

third	constraints	keep	the	lower	mid	efficiency	value	for	each	DMUk	less	than	one	and	the	input	
weighted	sum	equal	to	one.	The	fourth	constraint	represents	the	lower	mid	desired	condition	for	
each	DMUk	 such	 that	 the	 lower	mid	 efficiency	 value	 is	 achieved	when	 its	 relative	outputs	 and	
inputs	values	are	at	 their	 lower	mid‐level,	while	the	outputs	and	inputs	 for	DMUj≠k	are	at	 their	
corresponding	higher	and	lower	relative	levels	respectively.	The	last	constraint	keeps	the	values	
of	the	inputs	and	outputs	weights	larger	than	a	small	non	Archimedean	variable	[17].	
	 By	the	same	way,	the	upper	mid	efficiency	value,	ܧ௞

௎ெ,	is	calculated	by	using	Model	5	as	fol‐
lows.	
	
Model	5	is:	
	

௞ܧ
௎ெ ൌ ௥ݑ෍ݔܽ݉

௦

௥ୀଵ

௥௞ݕ
௎ெ	 (23)

	

subject	to	
	

෍ݒ௜

௠
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௜௞ݕ
௎ெ ൌ 1	 (24)
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௦

௥ୀଵ

െ ෍ݒ௜ ௜௞ݕ
௎ெ

௠

௜ୀଵ

൑ 0, 	 (25)

	

෍ݑ௥ݕ௥௝
௎

௦

௥ୀଵ

െ ෍ݒ௜ ௜௝ݕ
௅

௠

௜ୀଵ

൑ 0, ݆ ് ݇	 (26)

	

,௥ݑ ௜ݒ ൒ ߝ , ∀ ,ݎ ݅ ∈ 	ݍ (27)

	
	 Utilizing	the	Models	1	to	5,	the	optimal	factor	settings	can	then	be	determined.	Therefore,	this	
research	proposes	an	extension	 to	ongoing	research	by	proposing	a	procedure	 for	 solving	 the	
fuzzy	multiple	responses	problem	in	robust	design	using	DEA	approaches.	The	remaining	of	this	
research	including	introduction	is	organized	as	follows.	Section	two	presents	the	proposed	ap‐
proach.	Section	three	illustrates	the	proposed	approach	using	two	cases.	Section	four	compares	
the	results.	Finally,	section	four	highlights	the	research	conclusions.	

2. The proposed approach 

In	robust	design	method,	several	combinations	of	process	factor	levels	are	conducted	to	deter‐
mine	 the	 best	 combination	 that	 improves	multiple	 responses	 of	main	 concern.	 The	 proposed	
approach	for	solving	the	multiple	fuzzy	quality	characteristics	is	outlined	in	the	following	steps:		

Step	1:	Let	yqj	denotes	the	value	of	the	q‐th	response	at	the	j	experiment.	Then,	the	combination	
of	factor	levels	at	each	experiment	is	treated	as	a	DMUj.	Let	ݕത௤௝		be	the	response	average	of	the‐
smaller‐the‐better	(STB),	the‐larger‐the‐better	(LTB)	response	or	the	quality	loss	value	for	the‐
nominal‐the‐best	 (NTB)	 response	 to	 a	 number	 of	 triangular	 or	 trapezoidal	membership	 func‐
tions.		

Step	2:	The	FCMC	technique	is	used	to	cluster	the	average	values	of		ݕഥ௤௝	into	a	number	of	classes,	
d,	each	 is	 treated	either	as	a	 triangular	or	 trapezoidal	membership	 function.	The	parameter	of	
each	membership	function	is	determined	such	that,	the	class	center,	cqd,	for	the	triangular	mem‐
bership	function	is	considered	as	the	most	likely	value,	ݕത௤ௗ

ெ .	The	upper,	ݕത௤ௗ
௎ ,	and	lower,	ݕത௤ௗ

௅ ,	pa‐
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rameters	are	determined	by	the	centers	of	the	neighbor	classes	or	the	DMU	with	least	consider‐
able	membership	value.	For	the	trapezoidal	membership	function,	the	lower	mid,	ݕത௤ௗ

௅ெ,	and	the	
upper	mid,	ݕത௤ௗ

௎ெ,	of	each	class	are	considered	as	the	DMUs	of	the	largest	membership	value	rela‐
tive	to	the	same	class.	The	upper	and	lower	parameters	ݕത௤ௗ

௎ 	and	ݕത௤ௗ
௅ ,	are	determined	by	the	cen‐

ters	of	the	neighbor	classes	or	the	DMU	with	least	considerable	membership	value.	

Step	3:	The	fuzzy	efficiency	values	are	computed	by	using	models	1	to	5.	The	upper	mid	values	
inputs	are	set	as	ݕ௜௝

௎ெ	and	the	upper	mid	outputs	are	set	ݕ௥௝
௎ெ	in	Model	5,	which	has	similar	to	

that	of	Model	4	except	the	fourth	constraint	represents	the	upper	mid	desired	condition	for	each	
DMUk	where	the	upper	mid	efficiency	value	is	achieved	when	its	relative	outputs	and	inputs	val‐
ues	are	at	their	upper	mid‐level,	while	the	outputs	and	inputs	reach	their	corresponding	higher	
and	lower	levels	respectively	for	DMUj≠k.	

Step	4:	The	preference	degree	based	ranking	approach	[18]	is	used	for	clear‐cut	discrimination	
among	the	DMUs.	In	this	regard,	the	complete	ranking	order	for	n	fuzzy	efficiency	values	can	be	
obtained	as	(1)	the	triangular	efficiency	values	and	(2)	the	trapezoidal	efficiency	values.	

(1)	For	the	triangular	efficiency	values:	

In	the	preference	degree	based	ranking	approach,	let		ܧ෨௞ ൌ ሺܧ௞
௅, ௞ܧ

ெ, ௞ܧ
௎)	and	ܧ෨௝ஷ௞ ൌ ሺܧ௝

௅, ௝ܧ
ெ, ௝ܧ

௎),	
are	two	fuzzy	triangular	efficiency	values.	According	to	fuzzy	arithmetic,	there	are	four	possible	
relationships	to	compare	ܧ෨௞	with	ܧ෨௝ஷ௞	as	shown	in	Eq.	28.	
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(28)

	 	
The	preference	matrix	Pk,j	is	calculated	as	follows:	
	

࢐,࢑ࡼ ൌ 	

ۏ
ێ
ێ
ێ
ۍ ௞,௝݌ ෘ௝ୀଵܧ ෨௝ୀ௞ܧ ෨௝ୀ௡ܧ
෨௝ୀଵܧ 0.5 ଵ,௞݌ ଵ,௡݌
෨௝ୀ௞ܧ … 0.5 ௞,௡݌
෨௃ୀ௡ܧ … … 0.5 ے

ۑ
ۑ
ۑ
ې

	 (29)

	
where	Pk,j	is	the	preference	matrix	for	all	DMUs.	Find	a	row	from	the	matrix,	Pk,j,	whose	elements	
except	the	diagonal	are	larger	than	or	equal	to	0.5.	If	this	row	corresponds	to	ܧ෨௞,	then	DMUk	 is	
considered	as	the	most	efficient	DMU	and	its	relative	settings	are	the	best.	The	kth	row	is	elimi‐
nated	from	the	matrix.	In	the	reduced	matrix,	if	ܧ෨௛ஷ௞	stands	out	with	the	largest	preference	val‐
ues	compared	to	the	remaining	efficiency	values,	then	ܧ෨௛ஷ௞	is	ranked	in	the	second	place.	Repeat	
this	step	until	all	of	the	fuzzy	efficiency	values	are	properly	ranked.	

(2)	For	the	trapezoidal	efficiency	values:		

Let	ܧ෨kሺܧ௞
௅, ௞ܧ

௅ெ, ௞ܧ
௎ெ, ௞ܧ

௎ሻ	and	ܧ෨௝ஷ௞ሺܧ௝ஷ௞
௟ , ௝ஷ௞ܧ

௅ெ , ௝ஷ௞ܧ
௎ெ, ௝ஷ௞ܧ

௎ ሻ	be	two	fuzzy	trapezoidal	efficiency	val‐
ues.	According	to	fuzzy	arithmetic,	there	are	five	possible	relationships	to	compare	ܧ෨௞	with	ܧ෨௝ஷ௞,	
which	are	stated	in	Eq.	(30).	
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(30)

	
	 The	preference	matrix,	Pk,j,	is	calculated	using	Eq.	(30):	
	

࢐,࢑ࡼ ൌ 	

ۏ
ێ
ێ
ێ
ۍ ௞,௝݌ ෘ௝ୀଵܧ ෨௝ୀ௞ܧ ෨௝ୀ௡ܧ
෨௝ୀଵܧ 0.5 ଵ,௞݌ ଵ,୬݌
෨௝ୀ௞ܧ … 0.5 ௞,௡݌
෨௃ୀ௡ܧ … … 0.5 ے

ۑ
ۑ
ۑ
ې

	 (31)

	
where	Pk,j	is	the	preference	matrix	for	all	DMUs.	Repeat	until	all	of	the	fuzzy	efficiency	values	are	
properly	ranked.		

Step	5:	The	anticipated	improvements	are	calculated	by	using	the	proposed	approach,	then	the	
improvements	gained	by	the	proposed	approach	are	compared	to	fuzzy	multiple	regression	ap‐
proach	(FMRA).	

3. Two cases for illustration 

Two	 cases	 adopted	 in	 the	 literature	 are	 applied	 to	 illustrate	 the	proposed	 approach.	The	 first	
case	 deals	 with	 response	 fuzziness	 that	 is	 best	 fit	 by	 fuzzy	 triangular	 membership	 function,	
whereas	the	second	case	considers	trapezoidal	membership	function	as	the	best	fit	to	response	
fuzziness.	

3.1 Case I: Optimization of Inconel on machining of CNC WEDM process 

Al‐Refaie	et	al.	[8]	conducted	nine	experiments	utilizing	Taguchi's	L9	array	to	optimize	the	multi	
quality	responses	of	 Inconel	718	on	machining	of	CNC	WEDM	process	using	fuzzy	multiple	re‐
gression	approach	(FMRA).	The	two	quality	responses	are	surface	roughness	(SR),	y1,	which	is	a	
STB	type	response	and	material	removal	rate	(MRR),	y2,	which	is	a	LTB	type	response.	Table	1	
shows	the	four	process	factors	considered	which	are:	pulse	in	time	(A),	delay	time	(B),	wire	feed	
speed	 (C),	 ignition	 current	 (D)	 as	well	 as	 the	 corresponding	 levels.	 The	 combination	 of	 factor	
settings	at	each	experiment	is	treated	as	DMUj,	where	the	average	values	of	SR,	ݕതଵ௝,	are	consid‐
ered	as	inputs,	while	the	average	values	of	MRR,	ݕതଶ௝,	are	the	outputs	for	DMUs.	Table	1	displays	
the	experimental	results.		
	

Table	1		Experimental	data	for	WEDM	process	optimization	

DMUj	
Process	factors	 	 Inputs	 Outputs	

A	 B	 C	 D	 	 തଵ௝ݕ തଶ௝ݕ 	

DMU1	 1	 1	 1	 1	 	 3.15	 46.00	
DMU2	 1	 2	 2	 2	 	 3.25	 47.50	
DMU3	 1	 3	 3	 3	 	 3.30	 41.50	
DMU4	 2	 1	 2	 3	 	 3.75	 55.50	
DMU5	 2	 2	 3	 1	 	 3.45	 49.50	
DMU6	 2	 3	 1	 2	 	 3.25	 52.50	
DMU7	 3	 1	 3	 2	 	 4.10	 70.50	
DMU8	 3	 2	 1	 3	 	 3.65	 73.50	
DMU9	 3	 3	 2	 1	 	 3.35	 64.00	
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Table	2		The	center	values	for	the	three	triangular	membership	functions	

Class	
																	Membership	function	center

c1d c2d	
݀௤௟௢௪	 3.15	 47	

݀௤௠௘ௗ௜௨௠	 3.65	 57	

݀௤
ு௜௚௛	 4.00	 67	

	
	 Then,	the	Fuzzy	C‐Means	Clustering	(FCMC)	technique	is	used	to	determine	the	center	values	
for	the	three	triangular	membership	functions	which	are	listed	in	Table	2.	Each	defined	class	is	
considered	as	a	triangular	membership	function,	whose	parameters	are	tuned	such	that	the	cen‐
ter	of	the	relative	class	is	considered	as	the	most	likely	parameter,	ݕത௤ௗ

ெ ,	while	the	centers	of	the	
neighbor	classes	are	considered	as	the	upper,	ݕത௤ௗ

௎ ,	and	lower,	ݕത௤ௗ
௅ ,	parameters.	Consequently,	the	

experiments	results	shown	in	Table	1	are	transformed	into	the	fuzzy	triangular	numbers	shown	
in	Table	3.	
	 Model	1	is	used	to	calculate	the	upper	efficiency	values,	ܧ௝

௎	for	all	DMUs.	Similarly,	Model	2	is	
used	to	calculate	 the	 lower	efficiency	values,	ܧ௝

௅	 for	all	DMUs.	Model	3	 is	used	to	calculate	 the	
nominal	efficiency	values,	ܧ௝

௎for	all	DMUs.	Models	1,	2,	and	3	are	solved	and	the	fuzzy	triangular	
relative	efficiency	values	are	shown	in	Table	3.	
	

Table	3		Fuzzy	efficiency	values	for	WEDM	process	optimization	

DMUj	 	തෘଵ௝ݕ 	തෘଶ௝ݕ 	෨௞ܧ
DMU1	 3.15	≈	(3.15,3.15,3.65)low 46.0	≈	(40,47,57)low (0.460,	0.625,	1.000)
DMU2	 3.25	≈	(3.15,3.15,3.65)low 47.5 ≈ (40,47,57)low (0.460,	0.625,	1.000)
DMU3	 3.30	≈	(3.15,3.15,3.65)low 41.5 ≈ (40,47,57)low (0.460,	0.625,	1.000)
DMU4	 3.75	≈	(3.4,3.65,4.0)medium 55.5 ≈ (47,57,67)medium (0.550,	0.640,	1.000)
DMU5	 3.45	≈	(3.15,3.15,3.65)low 49.5 ≈ (40,47,57)low (0.460,	0.625,	1.000)
DMU6	 3.25	≈	(3.15,3.15,3.65)low 52.5 ≈ (47,57,67)medium (0.587,	0.731,	1.000)
DMU7	 4.1	≈	(3.65	,4.2,4.2)high 70.5 ≈ (57,67,74)high (0.555,	0.565,	1.000)
DMU8	 3.65	≈	(3.4,3.65,3.8)medium 73.5 ≈ (57,67,74)high (0.606,	0.752,	1.000)
DMU9	 3.35	≈	(3.15,3.15,3.65)low 64.0 ≈ (57,67,74)high (0.636,	0.864,	1.000)

	
	 Then,	 the	preference	degree	based	ranking	approach	 is	used	 for	more	clear‐cut	discrimina‐
tion	among	 the	DMUs.	Eq.(28)	 is	used	 to	calculate	 the	preference	matrix	as	 shown	 in	Table	4,	
where	it	is	found	that	DMUj=9	has	the	largest	value	in	each	column.	The	minimum	of	these	nine	
largest	values	is	0.609.	Hence,	it	is	the	most	preferred	DMU.	
	

Table	4		Preference	matrix	for	WEDM	process	optimization	

DMUj	
Preference	value	P൫E෩୩ ൐ E෩୨ஷ୩൯	 Rank	

1	 2 3	 4 5 6 7 8	 9	
DMU1	 0.500	 0.500	 0.500	 0.461 0.500 0.357 0.458 0.306	 0.227	 5
DMU2	 0.500	 0.500	 0.500	 0.461 0.500 0.357 0.458 0.306	 0.227	 5
DMU3	 0.500	 0.500	 0.500	 0.461 0.500 0.357 0.458 0.306	 0.227	 5
DMU4	 0.539	 0.539	 0.539	 0.500 0.539 0.383 0.491 0.327	 0.240	 4
DMU5	 0.500	 0.500	 0.500	 0.461 0.500 0.357 0.458 0.306	 0.227	 5
DMU6	 0.643	 0.643	 0.643	 0.617 0.643 0.500 0.589 0.435	 0.328	 3
DMU7	 0.542	 0.542	 0.542	 0.509 0.542 0.411 0.500 0.359	 0.359	 4
DMU8	 0.694	 0.694	 0.694	 0.673 0.694 0.565 0.640 0.500	 0.390	 2
DMU9	 0.773	 0.773	 0.773	 0.759 0.773 0.672 0.719 0.609	 0.500	 1

	

3.2 Case II: Optimizing of the sputtering process parameters 

Al‐Refaie	 et	 al.	 [8]	 conducted	 eighteen	 experiments	 utilizing	 L18	 array	 to	 optimize	 sputtering	
process	parameters	using	fuzzy	multiple	regression	based	method.	Five	process	factors	consid‐
ered,	including:	the	R.F.	power	(P),	the	sputtering	pressure	(Q),	the	deposition	time	(R),	the	sub‐
strate	temperature	(S),	and	the	post‐annealing	temperature	(T).	Further,	three	quality	responses	
were	 considered	 including	 the	electrical	 resistivity	 (ER),	y1,	which	 is	 a	STB	 type	 response,	 the	
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deposition	rate	(DR),	y2,	which	is	also	a	STB	type	response	and	the	optical	transmittance	(OT),	y3,	
which	is	a	LTB	type	response.	The	experimental	results	are	shown	in	Table	5	in	term	of	the	re‐
sponses	average	values,	ݕത௤௝.	In	Table	5,	the	average	values	of	ER	quality	response	ݕതଵ,	are	consid‐
ered	as	inputs,	while	the	outputs	are	considered	as	the	average	values	of	DR,	ݕതଶ,	and	OT,	ݕതଷ.	The	
FCMC	technique	is	employed	to	categorize	each	response	average	values	into	three	clusters.	The	
class	center	value,	ܿ௤ௗ	with	respect	to	each	class	are	calculated	and	listed	in	Table	6.	The	trape‐
zoidal	membership	functions	for	all	responses	are	shown	in	Table	7.	Further,	the	fuzzy	trapezoi‐
dal	efficiency	values	and	preference	degree	matrix	for	sputtering	process	are	listed	in	Tables	8	
and	9,	respectively.	
	

Table	5		Experimental	data	for	sputtering	process	optimization	

Exp.	No.	
Process	factors Responses	

P	 Q	 R	 S	 T	 	 yതଵ௝ yതଶ௝	 yതଷ௝
1	 50.00	 0.13	 30.00 25.00 0.00 15.10 4.60	 88.40
2	 50.00	 0.67	 60.00 50.00 100.00 9.75 5.60	 87.70
3	 50.00	 1.33	 90.00 100.00 200.00 7.85 4.95	 88.10
4	 100.00	 0.13	 30.00 50.00 100.00 5.50 9.45	 89.25
5	 100.00	 0.67	 60.00 100.00 200.00 4.45 11.20	 87.05
6	 100.00	 1.33	 90.00 25.00 0.00 6.55 10.00	 84.70
7	 200.00	 0.13	 60.00 25.00 200.00 1.65 20.00	 86.60
8	 200.00	 0.67	 90.00 50.00 0.00 1.95 21.60	 82.35
9	 200.00	 1.33	 30.00 100.00 100.00 1.70 20.90	 85.45
10	 50.00	 0.13	 90.00 100.00 100.00 7.15 4.70	 87.60
11	 50.00	 0.67	 30.00 25.00 200.00 7.00 4.95	 89.10
12	 50.00	 1.33	 60.00 50.00 0.00 7.75 4.85	 87.40
13	 100.0	 0.13	 60.00 100.00 0.00 6.00 9.70	 87.00
14	 100.00	 0.67	 90.00 25.00 100.00 5.90 11.35	 83.70
15	 100.00	 1.33	 30.00 25.00 200.00 5.60 10.75	 88.35
16	 200.00	 0.13	 90.00 50.00 200.00 1.05 19.45	 83.10
17	 200.00	 0.67	 30.00 100.00 0.00 1.25 22.05	 85.70
18	 200.00	 1.33	 60.00 25.00 100.00 1.35 20.50	 83.80

	
	

Table	6		The	center	values	for	the	three	triangular	membership	functions	

Class	
Membership	function	center

c1d c2d c3d	
Low	(dlow)	 1.57 4.95 83.50	

Medium	(dmedium)	 6.70 10.50 86.50	
High	(dhigh)	 14.80 21.00 88.40	

	
	

Table	7		Fuzzy	trapezoidal	experimental	data	for	sputtering	process	

DMUj	 	തଵ௝ݕ തଶ௝ݕ 	തଷ௝ݕ
DMU1	 15.10	≈	(6.7,14.8,15.1,15.1)H 4.60	≈ (4.6,4.6,4.95,10.5)L 88.40	≈	(86.5,88.4,90,90)H
DMU2	 9.75	≈	(6.7,14.8,15.1,15.1)H 5.60	≈ (4.95,9.7,11.35,21)M 87.70	≈	(86.5,88.4,90,90)H
DMU3	 7.85	≈ (1.57,6,7.3,14.8)M	 4.95 ≈ (4.6,4.6,4.95,10.5)L 88.10	≈	(86.5,88.4,90,90)H
DMU4	 5.50	≈ (1.57,6,7.3,14.8)M	 9.45	≈ (4.95,9.7,11.35,21)M 89.25	≈	(86.5,88.4,90,90)H
DMU5	 4.45	≈ (1.57,6,7.3,14.8)M	 11.20	≈ (4.95,9.7,11.35,21)M 87.05	≈	(86.5,88.4,90,90)H
DMU6	 6.55	≈ (1.57,6,7.3,14.8)M	 10.00	≈ (4.95,9.7,11.35,21)M 84.70	≈	(83.5,86,87,88.4)M
DMU7	 1.65 ≈ (1,1,1.95,5.5)L	 20.00	≈ (10.5,19,22,22)H 86.60	≈	(83.5,86,87,88.4)M
DMU8	 1.95	≈ (1,1.57,1.95,6.7)L	 21.60	≈ (12,19,22,22)H 82.35	≈	(82,82,83.5,86.5)L
DMU9	 1.70	≈ (1,1.57,1.95,6.7)L	 20.90 ≈ (10.5,19,22,22)H 85.45	≈	(83.5,86,87,88.4)M
DMU10	 7.15	≈ (1.57,6,7.3,14.8)M	 4.70	≈ (4.6,4.6,4.95,10.5)L 87.6	≈	(83.5,86,87,88.4)M
DMU11	 7.00	≈ (1.57,6,7.3,14.8)M	 4.95	≈ (4.6,4.6,4.95,10.5)L 89.1	≈	(86.5,88.5,90,90)H
DMU12	 7.75	≈ (1.57,6,7.3,14.8)M	 4.85	≈ (4.6,4.6,4.95,10.5)L 87.4	≈	(86.5,88.4,90,90)H
DMU13	 6.00	≈ (1.57,6,7.3,14.8)M	 9.70	≈ (4.95,9.7,11.35,21)M 87.00	≈	(83.5,86,87,88.4)M
DMU14	 5.90	≈ (1.57,6,7.3,14.8)M	 11.35	≈ (4.95,9.7,11.35,21)M 83.70	≈	(82,82,83.5,86.5)L
DMU15	 5.60	≈ (1.57,6,7.3,14.8)M	 10.75	≈ (4.95,9.7,11.35,21)M 88.35	≈	(86.5,88.5,90,90)H
DMU16	 1.05	≈ (1,1.57,1.95,6.7)L	 19.45	≈ (10.5,19,22,22)H 83.10	≈	(82,82,83.5,86.5)L
DMU17	 1.25	≈ (1,1.57,1.95,6.7)L	 22.05	≈ (10.5,19,22,22)H 85.70	≈	(83.5,86,87,88.4)M
DMU18	 1.35	≈ (1,1.57,1.95,6.7)L	 20.50	≈ (10.5,19,22,22)H 83.80	≈	(82,82,83.5,86.5)L
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Table	8		Fuzzy	trapezoidal	efficiency	values	for	sputtering	process	
DMUj	 	෨௞ܧ
DMU1	 (0.070,0.073,0.073,0.619)	
DMU2	 (0.117,0.121,0.123,1.000)	
DMU3	 0.116,0.121,0.123,1.000)	
DMU4	 (0.117,0.121,0.123,1.000)	
DMU5	 (0.117,0.121,0.123,1.000)	
DMU6	 (0.114,0.116,0.118,1.000)	
DMU7	 (0.229,0.235,0.244,1.000)	
DMU8	 (0.224,0.226,0.244,1.000)	
DMU9	 (0.229,0.235,0.244,1.000)	
DMU10	 (0.114,0.116,0.117,1.000)	
DMU11	 0.116,0.121,0.123,1.000)	
DMU12	 (0.116,0.121,0.123,1.000)	
DMU13	 (0.114,0.116,0.118,1.000)	
DMU14	 (0.112,0.112,0.114,1.000)	
DMU15	 (0.117,0.121,0.123,1.000)	
DMU16	 (0.224,0.226,0.244,1.000)	
DMU17	 (0.229,0.235,0.244,1.000)	
DMU18	 (0.224,0.226,0.244,1.000)	

	
Table	9		Preference	degree	matrix	for	the	fuzzy	trapezoidal	efficiency	values	(columns	1	to	9)	

Preference	value	ܲ൫ܧ෨௞ ൐ 	෨௝ஷ௞൯ܧ
Rank	DMUj

DMUk	 1	 2	 3	 4	 5	 6	 7	 8	 9	
DMU1	 0.500	 0.320	 0.320	 0.320 0.320 0.324 0.207 0.212	 0.207	 7
DMU2	 0.680	 0.500	 0.500	 0.500 0.500 0.504 0.403 0.407	 0.403	 2
DMU3	 0.679	 0.499	 0.50	 0.499 0.499 0.503 0.402 0.406	 0.402	 3
DMU4	 0.680	 0.500	 0.500	 0.500 0.500 0.504 0.403 0.407	 0.403	 2
DMU5	 0.680	 0.500	 0.500	 0.500 0.500 0.504 0.403 0.407	 0.403	 2
DMU6	 0.676	 0.495	 0.495	 0.495 0.495 0.500 0.400 0.404	 0.400	 4
DMU7	 0.792	 0.595	 0.596	 0.595 0.595 0.598 0.500 0.504	 0.500	 1
DMU8	 0.641	 0.393	 0.394	 0.393 0.393 0.398 0.495 0.500	 0.495	 6
DMU9	 0.792	 0.595	 0.596	 0.595 0.595 0.598 0.500 0.504	 0.500	 1
DMU10	 0.676	 0.495	 0.495	 0.495 0.495 0.500 0.400 0.404	 0.400	 4
DMU11	 0.679	 0.499	 0.50	 0.499 0.499 0.503 0.402 0.406	 0.402	 3
DMU12	 0.679	 0.499	 0.50	 0.499 0.499 0.503 0.402 0.406	 0.402	 3
DMU13	 0.676	 0.495	 0.495	 0.495 0.495 0.500 0.400 0.404	 0.400	 4
DMU14	 0.672	 0.492	 0.492	 0.492 0.492 0.495 0.398 0.401	 0.398	 5
DMU15	 0.680	 0.500	 0.500	 0.500 0.500 0.504 0.403 0.407	 0.403	 2
DMU16	 0.641	 0.393	 0.394	 0.393 0.393 0.398 0.495 0.500	 0.495	 6
DMU17	 0.792	 0.595	 0.596	 0.595 0.595 0.598 0.500 0.504	 0.500	 1
DMU18	 0.641	 0.393	 0.394	 0.393 0.393 0.398 0.495 0.500	 0.495	 6

	
Table	9		Preference	degree	matrix	for	the	fuzzy	trapezoidal	efficiency	values	(continuation,	columns	10	to	18)	

Preference	value	ܲ൫ܧ෨௞ ൐ 	෨௝ஷ௞൯ܧ
Rank	DMUj

DMUk	 10	 11	 12	 13	 14	 15	 16	 17	 18	
DMU1	 0.324	 0.320	 0.320	 0.324 0.327 0.320 0.212 0.207	 0.212	 7
DMU2	 0.504	 0.500	 0.500	 0.504 0.506 0.500 0.407 0.403	 0.407	 2
DMU3	 0.503	 0.500	 0.500	 0.503 0.503 0.499 0.406 0.402	 0.406	 3
DMU4	 0.504	 0.500	 0.500	 0.504 0.506 0.500 0.407 0.403	 0.407	 2
DMU5	 0.504	 0.500	 0.500	 0.504 0.506 0.500 0.407 0.403	 0.407	 2
DMU6	 0.500	 0.495	 0.495	 0.500 0.502 0.495 0.404 0.400	 0.404	 4
DMU7	 0.598	 0.596	 0.596	 0.598 0.601 0.595 0.792 0.595	 0.596	 1
DMU8	 0.398	 0.394	 0.394	 0.398 0.398 0.393 0.500 0.495	 0.500	 6
DMU9	 0.598	 0.596	 0.596	 0.598 0.601 0.595 0.792 0.595	 0.596	 1
DMU10	 0.500	 0.495	 0.495	 0.500 0.502 0.495 0.404 0.400	 0.404	 4
DMU11	 0.503	 0.500	 0.500	 0.503 0.503 0.499 0.406 0.402	 0.406	 3
DMU12	 0.503	 0.500	 0.500	 0.503 0.503 0.499 0.406 0.402	 0.406	 3
DMU13	 0.500	 0.495	 0.495	 0.500 0.502 0.495 0.404 0.400	 0.404	 4
DMU14	 0.495	 0.492	 0.492	 0.495 0.500 0.492 0.401 0.398	 0.401	 5
DMU15	 0.504	 0.500	 0.500	 0.504 0.506 0.500 0.407 0.403	 0.407	 2
DMU16	 0.398	 0.394	 0.394	 0.398 0.398 0.393 0.500 0.495	 0.500	 6
DMU17	 0.598	 0.596	 0.596	 0.598 0.601 0.595 0.792 0.595	 0.596	 1
DMU18	 0.398	 0.394	 0.394	 0.398 0.398 0.393 0.500 0.495	 0.500	 6
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4. Research results and discussion 

4.1 Results of case I 

For	this	case,	Table	4	reveals	that	DMU9	is	the	most	preferred	DMU.	Table	10	shows	the	results	
of	the	proposed	approach	against	that	of	the	fuzzy	multiple	regression	approach	(FMRA).	Using	
the	 proposed	 approach,	 the	MRR	 fuzzy	 response	 value,	 	which	ത෨ଵ,ݕ is	 a	 LTB	 type	 response	 im‐
proved	from	(56.4,	59.10,	62.46)	to	(57,	67,	74),	where	the	ݕതଶ	

௎	and		ݕതଶ
ெ	values	are	significantly	

increased.	Also,	 the	SR	 fuzzy	 response	value,	ݕത෨ଶ,	which	 is	 a	STB	 type	 response	 improves	 from	
(2.94,	3.32,	3.75)	to	(3.15,	3.15,	3.65).	Note	that	the	proposed	approach	provides	smaller	mean	
and	upper	bound	value	than	FMRA.	Therefore,	 to	 improve	the	performance	of	WEDM	process,	
the	best	combination	of	factor	settings	is	pulse	in	time	A3,	delay	time	B3,	wire	feed	speed	C2,	igni‐
tion	current	D1.	
	

Table	10		Improvement	comparison	for	case	I	
Response	 	(LTB)	ത෨ଵݕ 	(STB)	ത෨ଶݕ

Initial	condition	 ≈ (49.4,51.9,54.58) ≈	(2.99,3.42,3.92)
Fuzzy	multiple	regression	approach	(FMRA) ≈ (56.4,59.10,62.46) ≈	(2.94,3.32,3.75)

Proposed	approach	results	(IDEA)	 ≈ (57,67,74) ≈	(3.15,3.15,3.65)

4.2 Results for case II 

For	case	II,	it	is	found	that	DMU9	is	the	best	DMU,	which	corresponds	as	shown	in	Table	5.	Table	
11	displays	the	anticipated	improvements	using	the	proposed	approach	and	FMRA.	
	 Using	the	proposed	approach	the	 fuzzy	trapezoidal	value	of	 the	ER,	ݕതଵ,	which	 is	a	STB	type	
response	decreased	from	(1.39,	2.91,	3.19,	4.32)	to	(1.0,	1.57,	1.95,	6.7).	Although	the	proposed	
approach	 increased	the	upper	response	value,	ݕതଵ	

௎	 it	significantly	decreased	the	 lower	mid	and	
upper	mid	response	values.	For	DR,	ݕതଶ,	which	 is	a	LTB	 type	response,	 the	proposed	approach	
enhances	the	response	fuzzy	trapezoidal	value	from	(11.84,	12.26,	12.75	21.94)	to	(10.5,	19,	21,	
22).	Finally	for	OT,	ݕതଷ,	which	is	a	LTB	type	response,	the	proposed	approach	improves	the	upper	
response	value	from	87.7	to	88.5.	Consequently,	the	best	combination	of	factor	settings	for	the	
sputtering	process	 is	 the	R.F.	power	P	=	200,	 the	sputtering	pressure	Q	 =	1.33,	 the	deposition	
time	R	=	30,	the	substrate	temperature	S	=	100,	and	the	post‐annealing	temperature	T	=	100.	
	

Table	11		Improvement	comparison	for	case	II	

Methods	
Quality	responses

	input)	(STB,	ଵݕ y2 (LTB,	output) y3	(LTB,	output)
	 ଵݕ

௅	 ଵݕ
ெ௅	 ଵݕ

௎௅	 ଵݕ
௎	 	 ଶݕ

௅	 ଶݕ
ெ௅	 ଶݕ

௎௅	 ଶݕ
௎	 	 ଷݕ

௅	 ଷݕ
ெ௅	 ଷݕ

௎௅	 ଷݕ
௎	

FMRA	
results	

1.39	 2.91	 3.19	 4.32	 	 11.84 12.26	 12.75	 21.94	 	 86.4	 86.5	 87.6	 87.7	

IDEA	
results	

1.0	 1.57	 1.95	 6.7	 	 10.5	 19.0	 21.0	 22.0	 	 83.5	 86.0	 87.0	 88.5	

	

5. Conclusions 

In	this	research,	a	fuzzy	DEA	based	procedure	is	proposed	to	solve	the	fuzzy	multiple	responses	
problem	in	robust	design.	DEA	models	are	utilized	to	calculate	the	fuzzy	efficiencies.	Then,	the	
preference	matrix	 is	 adopted	 to	 identify	 the	 best	 decision	making	 unit.	 Two	 real	 case	 studies	
from	previous	literature	are	employed	to	illustrate	the	proposed	approach	including	improving	
performance	of	the	WEDM	and	sputtering	processes,	where	the	response	fuzziness	is	fitted	by	a	
triangular	and	trapezoidal	membership	functions	in	the	first	and	second	case	study,	respectively.	
In	both	studies,	the	proposed	approach	efficiently	identified	the	best	combination	of	factor	set‐
tings	 and	provides	 better	 anticipated	 improvements	 than	 the	 fuzzy	multiple	 regression	based	
approach.	 In	 conclusion,	 the	 proposed	 approach	may	 provide	 great	 assistant	 to	 process	 engi‐
neers	 in	 determining	 the	 best	 combination	 of	 factor	 settings	 that	 improves	 fuzzy	multiple	 re‐
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sponses in a wide range of business applications. Nevertheless, this approach ignores process 
factor settings and preferences on quality responses. Another limitation is its complexity when 
many fuzzy responses are considered simultaneously. Future research will consider these is-
sues. 
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