
Strokovne razprave

Architectural Design for
Performance:

Determining Distributed Svstem Speed
from an Architectural Perspective

Patricia Carando*
Align360, 1430 Spring Hill Road, Suite 510, McLean, VA 22102, USA

Abstract
Few aspects of system development cause more concern to deslgners and frustration to users than performance. Most
designers believe that they are designing with performance as a primary concern. Why then, are systems deployed that
are significantly slovver than anticipated, sometimes resulting in a complete design overhaul to meet performance
needs? Experience suggests that the reasons are two-fold: (i) A failure to focus at an architectural level when designing
for performance; (ii) An inability to gather repuisite performance metrics early enough in the design cycle to affect the
development outcome. This paper recommends two approaches that address these failings: 1) How to focus on total
system throughput based on Use Čase scenarios when designing for performance, and 2) How to create an architectur
al prototype that is used to gather performance metrics prior to making firm design decisions.
Keywords: Distributed system performance, architecture-centric design, architectural prototype, data-intensive Java
application tuning

Izvleček
Le redki vidiki razvoja sistemov povzročajo toliko skrbi razvijalcem in toliko slabe volje uporabnikom kot zmogljivost.
Razvijalci zvečine mislijo, da pri razvoju poskrbijo za največjo možno zmogljivost. Zakaj se torej uporabljajo sistemi, ki
so znatno počasnejši kot je bilo pričakovano, tako da je včasih potrebno zasnovo popolnoma prenoviti, da bi dosegli
ustrezno zmogljivost? Izkušnje kažejo, da sta za to dva razloga: 1) V želji, da bi imel sistem kar največjo zmogljivost, se
razvijalci ne usmerjajo na določeno raven arhitekture; 2) Razvijalci nimajo možnosti, da bi že med razvojem sistema
pravočasno preverili njegovo zmogljivost in tako prilagodili rezultat razvoja. Članek priporoča dva načina reševanja teh
slabosti: 1) Upoštevali naj bi delovanje celotnega sistema na temelju scenarijev možne uporabe in 2) Še pred dokončno
odločitvijo o njegovi zasnovi naj bi zmogljivost sistema preverjali na prototipih.

1. Introduction
Determining if a distributed architecture vvill meet its
performance constraints is a daunting task. Often this
determination is made after a considerable percentage
of the system has been created; if the constraints are
unmet, a performance release is planned. This perfor
mance release may involve re-architecting the system

based on the newly gathered metrics.
This situation is brought about not because of a

lack of concern about performance on the part of de
signers; rather, it is a result of the fact that one can't
measure vvhat doesn't exist. Measuring system perfor
mance just before first deployment is too late in the
life cycle to impact design decisions, but this is often

the first time that a sufficient amount of the architec
ture has been implemented to allovv for metrics gath-
ering.

How can this seemingly circular dilemma be ad-
dressed? How can metrics be gathered to validate the
performance of an architecture prior to actually imple-
menting it? One way is the creation of an archtectur-
al performance prototype (APP). The purpose of the
APP is to implement the most important design deci
sions relating to performance sufficiently to verify
them. Failing that, the APP is an opportunity to ex-
periment with alternate designs that can meet the sys-
tem performance criteria.

* Patricia Carando has been designing and building distributed systems for 16 years. Early research work induded Distributed
Artificial Intelligence systems applied to oil well exploration. For the last 10 years, Ms. Carando has been Consulting on
commercial, distributed system development zn a variety of industries. These include telecommunications, materials
provisioning, document management, and system design for fault-tolerant computing. She is currently a principal in the
electronic Commerce company The e4Speed Initiative in McLean, Virginia.

2000-številka 4-letnik Vlil upomU zal NFORMATIKA

Patricia Carando: Architectural Design for Performance:Determining Distributed System Speed from an Architectural Perspective

This paper illustrates the following:
■ How to focus on total system throughput based on

Use Čase scenarios when designing for perfor-
mance, and

■ How to create an APP that is used to gather perfor-
mance metrics prior to making firm design deci-
sions.

■ Focus of the Recommendations

While applicable to n-tier distributed systems in gen
eral, the recommendations in this paper target a Java-
based n-tier system, with a significant relational data-
base aspect. A typical n-tier system architecture of this
type is illustrated in Figure 1. Because many current
Web applications and new electronic commerce appii-
cations are of this character, these recommendations
are broadly applicable. Of particular concern is the
performance of systems implemented in Java. The
advent of Enterprise Java Beans (EJB) [7] has made
Java server implementation very attractive because of
the ease of implementing and deploying a multi-user
server. Enhancing the performance of such Java-
based servers is an increasingly important issue.

Relational
Database

Data Tier

Web
Server

RMIor HOP
Java

Application
Server

RMI or HOPApplet /

Business Logic TierClient Tier

Figure 1: N-Tier Architecture

2. Creating the Architectural
Performance Prototype

The body of this paper addresses how to create an
APP for a system such as that shown in Figure 1. This
figure illustrates a typical architecture that supports
Web-based applications. In the Data Tier, one or more
relational databases provide persistence for the appli-
cation. In the Business Logic Tier, a Java-based Object
Request Broker (ORB) or a Java application server
applies Business rules to data accessed and updated
through the Data Tier. In the Client Tier, one or more
implementations of a user interface that support the
system's Use Cases direct the activities of the system.

Depending on the server technology, the Java server
and the Web server functionality may be combined
into a single server.
The recommendations cover the follovving:
a) The selection of one (but not more than two) Use

Cases from the system Use Čase model that are
most likely to represent the most data-intensive or
computationally intensive activities.

b) Creation of stimulators to the systems Services (da
tabases, Java servers, Web servers) to determine
their throughput under conditions of light and
heavy use, given the chosen Use Cases.

c) Measurements of the servers' throughput under
conditions of heavy and light load to determine
lower bounds for performance, as vvell as typical or
average throughput.

d) Suggestions for modifying design and managing
expectations should preliminary performance indi-
cators be less than optimal.

Recommendations in this paper are based on experi-
ences in using this approach on several different
projects. As is probably apparent from the context of
the suggestions, the approach is best applied as part
of the Rational Unified Process [2] (RUP) and can be
considered one aspect of RUP's recommendation to
develop an architectural prototype.

Selecting Use Cases for Prototyping
When the majority of use cases for a system have
been defined, the analyst can begin to scope the use
cases for risk. In this paper, we are interested in per
formance risk, but it is wise to include issues of criti-
cality1 in the choice of the use cases, as vvell. To illus-
trate this, we introduce an example.

Suppose that designers are building a business-to-
business eCommerce system that allovvs corporate
trading partners to electronica!ly generale and trans-
mit purchase orders for products. The system allovvs
a trading member to brovvse their partners' catalogs,
select merchandise for purchase, and to generate one
or more purchase orders for electronic transmission
to the partner Corporation.2 Such a set of capabilities
is shovvn as use-cases in the left-hand side of Figure 2.
On the right hand side of the figure is illustrated a more
detailed break dovvn of the elements in the Search Trad
ing Partners' Catalogs use-case. These include Identifi/
Trading Partners, possibly Select Permitted Catalogs
(based on the Trading Member's alliances) and per-
forming a Search on Catalogs that meets the Trading
Member's search criteria.

1 These are essential functions that the system must perform.
2 This example issimplistic, butembodiesmanyoftheissues thatcom-

plex systems tace: multiple data sources, inconsistentschema, and
International iocations that observe varied up time s.

^ iiporabualNFORMATIKA 2000 - številka 4 - letnik Vlil

Patricia Carando: Architectural Design for Performance:Determining Distributed System Speed from an Architectural Perspective

ldentify <<include>>Search Trading
Partner Catalogs Trading Partners

<<include>>

Select Permitted
Catalogs

Search Trading
Partner Catalogs

Trading
member

Trading
Member

Add Item
to Shopping Cart

Perform Search on CatalogsCheck Out/Generate Purchase Order

Business-to-Bussiness eCommerce: Detail of the Use Čase for Search
a Simple Use Čase Trading Partner Catalogs

of their technical difficulty, but because of expected
delays in setting up these capabilities due to bureau-
cracy and Communications problems. Risk 4 is a con-
tingency risk based on the possibility that data may be
differently formatted or inconsistent amongst data
sources and may need to be transformed to a common
format. Risk 4 can be considered both a criticality and
a performance risk. Risk 5 also is a criticality and per-
formance risk: when data sources go offline, either
intentionally or through some fault, data is not avail-
able and connection attempts may cause performance
delays. Risks 6 and 7 are purely performance risks:
one factor in total system throughput is the response
of the data sources (Risk 6). Another factor is the abil-
ity of the server to process the data for presentation to
the Trading Member.

Figure 2: Use Cases for a Shopping System

Criticality and Risk in the Architectural
Performance Prototype.
As the designers drill down into the descriptions of
the use-cases, they note that the Search Trading Part
ner Catalogs use-case description embodies many un-
knowns. (These are based on the preconditions, main
flovv of events, exception flows, and additional notes
embodied in the use čase description in Figure 3.)
Their risk analysis, based on this use-case, is shown in
Table 1. The table lists a brief description of the risk
and an estimate of the severity of the risk.

Risks 1 - 3 in Table 1 address criticaliti/ risks—in
order to access data from the data sources, logins must
be created and schema must be known. These first
three items are listed as risks in the table not because

Search Trading Partners' Catalogs Use Čase Description

Search ali catalogs of Trading Member's trading partner
companies for the items matching the search criteria.

Preconditions:
• Login to trading partner site and access catalog.

Main flovv of events
• Issue query
• Consolidate responses

Exception flovvs:
• Trading partner site may be down for PM
• Trading partner site may be unavailable because of

netvvork or system failure
Additional Notes:

• Trading partners are located globally;
• Access characteristics of the trading partner catalogs

(schema, login authorization, netvvork connectivity, etc.)
are unknown.

Figure 3: Search Trading Partners’ Catalogs Use Čase
Description

Task Risk

1 ldentify instance of each catalog Low

2 ldentify relevant query to access item list
for each catalog

High

3 ldentify login account and permissions
for each trading partner site

Moderate

4 Transform differently formatted information
into a common display format.

High

5 Determine scheduled outages
of partner sites

High

6 Determine average response delay
for item queries

High

7 Configure middlevvare for optimal performance
given user load, data accessed.

High

Table 1: Risk Analysis for Search Trading Partners’ Catalogs
Use Čase

The designers decide to prototype the Search Trading
Partners' Catalogs use-case to validate the architecture
and to ascertain that it will meet performance expec-
tations. (Other use-cases in the system—Select Item for
Purchase, Purchase Merchandise—are addressed similar-
ly and deemed to be less of a performance risk: they
are being implemented with known components of
well-established characteristics.)

Building the Prototype
Ffaving chosen the use-case to be prototyped, the de
signers must build the prototype that addresses the
greatest performance risk. This prototyping effort
consists of two activities. The creation of the Data Tier
Stimulator and the creation of the Client Tier Stimu
lator. The intent of the exercise is to determine a
rough estimate of system throughput for the most
data intensive function.

Consider Figure 4—a variation on Figure 1—shovv-
ing the Client Tier, Business Logic Tier, and Data Tier

2000 - številka 4 - letnik Vlil upombna\ NFORMATIKA

Patricia Carando: Architectural Design for Performance:Determining Distributed System Speed from an Architectural Perspective

i i

Formatted
I Data
Generator

itimulati

Java Application Server

Measurpment B

Dam Tier
Stimulator Relational

Database

Java Application Server iE

Business Logic Tier Data TierClient Tier

Measurement A

Figure 4: Client and Data Tier Stimulators vvith Measurement
Points

for the distributed application. This figure illustrates
the measurement points for the prototype. Measure
ment A is the Data Tier Stimulator measurement—
measuring round-trip time from the server to the data
sources. Measurement B is the Client Tier stimulator:
a measurement of round-trip time from the client to
the server. VVhen the prototype and the measure-
ments have been completed, adding together Mea-
surements A and B should give a rough estimation of
minimal throughput times for the most data intensive
query.

Addressing the Performance Bottleneck
It is a truism that to optimize the performance of a
(distributed) system one must first identify the bottle-
necks to performance. Optimizing non-bottlenecks
will not increase the throughput of a system. How,
then, can one be assured that measuring data access
vvill measure the real bottleneck?

Measuring the total throughput of the system is
the goal of the exercise. If data access is a significant
aspect of user interactions, it must be a major compo-
nent of your throughput measurement. Further, data
access is (probably) the major source of memory con-
sumption in the server—a notorious source of perfor
mance degradation in Java [1], [3], [4], [5], [6]. Having
eliminated this as a potential bottleneck in perfor
mance, one is free to address other areas of the serv
er where performance issues could arise. Modeling
sequence diagrams can be a good source of informa-
tion on this—pointing out areas where major message
activity or computation occurs.

Setting up the Data Tier Stimulator
To determine the response time of the data sources,
they must be exercised from the server utilizing the

same communication pathways as are intended for
use in the deployed system. Successfully implement-
ing the Data Tier Stimulator vvill retire risks 1,2,3, and
address part of risk 6 (average response delay for mer-
chandise list queries) in Risk Table 1. (See section
VVork-Arounds for Common Impediments to Data
Tier Prototyping, belovv, for suggestions on how to
solve commonly encountered impediments to imple-
menting the Data Tier Stimulator.)

The Data Tier Stimulator (DTS) is implemented
vvithin the Java application server. It is a prototype of
the Data Abstraction Lat/er3 that vvill exist vvithin the
deployed server. The lovver right portion of Figure 4
shovvs the softvvare elements involved in the DTS.
These include the Java server (represented as a box),
the DTS classes (represented as a star), the communi
cation pathvvays to the data Stores (arrovvs), and the
data Stores themselves (cylinders labeled Relational
Database).

The DTS should issue a query to each of the data
Stores; the query chosen should be the most data in
tensive query for the application. Hard-coding the
query into a method of each DTS class is sufficient for
the prototype. Using a single DTS class per data
source is recommended. (See Appendix A for a Java
example of a sample DTS class.)

The sequence diagram in Figure 5 shovvs the series
of events the DTS follovvs in exercising the data sour
ces. The Merchandise Warehouse starts a timer (see
Appendix B for a Java Timer class example) and fans
out queries to the three data sources. VVhen ali query
requests have returned, the timer is stopped. The
elapsed time recorded by the timer is the (minimum)
time needed to perform the query.

: Partner
Catalog Set 1 : Catalog 2: Catalog 3: Catalog

: Querry
Stimulator search()

startTimer()

querry()

querry() U

querry()

stopTimer()

Simulated Business Logic Tier Data Tier

Figure 5: Sequence Diagram of Data Tier Stimulator

VVhile this exercise is deceptively simple, a great
deal is accomplished vvith this prototype:

3 An architectural layer vvithin a server that insulates the business logic
layer from the details of data .

uporabi ralNFORMATIKA 2000 - številka 4 - letnik Vili

Patricia Carando: Architectural Design for Performance:Determining Distributed System Speed from an Architectural Perspective

1. Necessary nccess information and knoivledge of data
Stores has been established. Risks 1, 2, and 3 of Table
1 have been retired.

2. A lozuer boundfor accessing data from the data sources is
established. Unless significant aspects of the system
change (database speed, netvvork speed, faster mul-
tiprocessing on server, etc.) the total svstem through-
put can never be faster than this bound. If the de-
rived performance number is unacceptable there is
time to re-architect or reconsider further system de-
velopment. This is a start at addressing Risk 6.

3. A rudimentan/ data abstraction tier has been prototi/ped.
VVhile not a candidate for final deployment, the
code in the DTS is an exploration of the data ab
straction layer of the server. Pointing to the func-
tioning prototvpe that accesses real data can alle-
viate the fears of stakeholders who may be anxious
to begin implementation. This is not a technical is-
sue, but can be very important politically.

Work-Arounds for Common Impediments to
Data Tier Prototyping
Even a simple prototype like the Data Tier Stimulator can
be difficult to implement. Common problems include:
a) One or more of the data Stores is unavailable. This can

occur for a number of reasons: delays in getting ac-
cess because of permissions, firevvalls, staff avail-
ability, etc.
VVorkaround. Define a test data set on a server
that can be used for initial development of your
performance prototype until the data store becomes
available. Determine what the schema of the data
base is and vvhat you'll have to access to satisfy
your user interactions. Get a sample data set and
begin your performance prototype using this same
set and sample server.

b) The schema for one or more data Stores is undefined.
The general content of a data store may be knovvn,
but its full definition may not be in plače when the
performance prototype is being implemented
Workaround. This situation, while frustrating to
performance determinations, can be an opportuni-
ty to design the data Stores optimally. It is eri tičal
that the server designers and data modelers work
closely together to design schema that vvill support
queries suggested by the use-cases.

c) The schema for one or more data Stores is changing. This
situation is similar to 2 above, but has the added dif-
ficulty that the server vvill need to support the exist-
ing schema until the nevv schema is operational.
Workaround. In this situation, a very robust data
abstraction layer must be implemented that has

the same interface for both schema. This vvill help
prevent data updates from rippling through to
updates in the entire server.4

Setting up the Client Tier Stimulator.
Implementing the Client Tier Stimulator vvill help to
determine the response time to a client request and
the memory usage of the server under load. These are
issues that are components of Risk 6 (average re
sponse delay for merchandise list queries) and Risk 7
(configure middlevvare for optimal performance giv-
en user load, data accessed) in Risk Table 1.

The CTS is implemented vvithin a prototype client
that is on a host remote from the server. This client
need only issue a request to the server and receive a
response. The request must elicit a response based on
the same query sent to the data sources by the Data
Tier Stimulator. That is, the response should be the
Consolidated, formatted version of the data that vvas
returned to the Data Tier Stimulator. This is the form
the data vvill have in the deployed system after being
merged from the various sources, passed through the
data logic, and readied for delivery to the client. VVhile
the raw data format and the processed data format
may be similar, they are not usually identical. (Some
data fields in the raw data format may be suppressed,
computed fields added, data fields transformed, etc.)

The sequence diagram in Figure 6 shovvs the series
of events the CTS follovvs in exercising the server. The
Client starts a timer and sends a request to the serv
er. A simulated response is generated and the data is
returned to the Client. The timer is stopped at this
point The elapsed time recorded by the timer is the
(minimum) time needed to return data aeross the vvire
to the client. A second timer may be utilized to deter
mine how long the client takes to format the display
for the user. Both these timing figures may faetor into
redesign efforts should elapsed times prove too great.

k
: Client Tier
Stimulator startTimer()

searchf)

stopTimer()
5F=!

IX
: Partner

Catalog Set

generateTestData()

Simulated Client Tier Simulated Business Logic Tier

TX

4 Designing to prevent data-update-ripple-through is a discussion topič
in its own right and can ’t be adequately addressed here. Figure 6: Sequence Diagram of Client Tier Stimulator

upombmA NFOR M AT IKA 1972000-številka 4-letnik Vlil

Patricia Carando: Architectural Design for Performance:Determining Distributed System Speed from an Architectural Perspective

Determining Performance Bounds
Having completed the two parts of the prototype, the
designers can now estimate minimal transit times
from client-to-server-to-data-source and back by ad-
ding together the measurements from the CTS and
the DTS. The minimum response time for the most
data intensive query will be CTS + DTS + x, where x
is the processing time for applying the business logic
and data consolidation rules to the fetched data. It
these numbers are "within the ballpark" of acceptable
performance, the designers can expand the prototype
to look at performance under load and optimal
parameters for server sizing. If these numbers are off-
scale, then redesign is necessary. Many possibilities
for redesign exist; a few are addressed in Section 3.

Memory Configuration
In order to address Risk 7 (configure middleware for
optimal performance given user load, data accessed),
it is important to know how much memory the server
will require to Service the heaviest user queries. While
there are many other factors that will need to be con-
sidered for optimal performance, determining mem-
ory usage is one of the most critical for server-side
Java. Measuring memory usage for the query em-
ployed in the CTS will give an indication of hovv much
memory is dedicated to holding client data. The me-
mory test harness described in [4] can give an initial
estimate.

Once a memory usage number is determined,
double the figure to get an estimate of the real mem-
ory usage in the deployed system. Doubling the ini
tial figure is necessary because the processed version
of the data and the raw data vvill both be resident in
memory until the response is sent. Unless the raw
data can be read into the server, processed, and effi-
ciently released as the query response is being pre-
pared, roughly twice the memory of the formatted
response may be consumed during processing.

Performance Under Heavy Load
Estimating server performance under heavy load can
be as simple as creating multiple CTS clients and driv-
ing the prototype with query requests at varying in-
ter-arrival rates. This exercise estimates how many
clients might be supported by the deployed system.
The insights gained should be less an assurance of
meeting a performance requirement than an indicator
of when the requirement can't be met. In other vvords,
a favorable response should not lull the designer into
a sense of security: the actual system stili may not
meet the performance requirement. What is accom-
plished with the multiple CTS effort is to rule out—
very earlv—infeasible design approaches.

3. Modifying Design and Managing
Expectations

If the performance prototyping of a system goes well
and the early metrics indicate the design can easily
meet or exceed performance requirements, the de
signer can happily continue with detailed design.
Hovvever, should this not be the čase, the designer
needs to reconsider the approach.

Problems Revealed in the Client Tier Stimulator
Problems revealed by the CTS may include:
1. The arnount of data returned is causing significant de-

lays. The user may have an unbounded query that
returns too much data. Two suggestions for avoid-
ing this situation are:
Suggestion la: Restrict the generality of the que-
ry prior to processing.
Suggestion lb: If large responses are mandatory,
return data incrementally. This breaks the query-
response into segments that give the impression of
over-all better response.

2. Response is impacted bi/ memory management infrn-
structure. Excessive memory usage has the memo-
ry allocator and garbage collector vvorking over-
time. If one can't add more memory, consider the
following:
Suggestion 2a: Prefer primitive types. Excessive
object creation can cause significant memory allo-
cation overhead [4]. Consider vvhere primitives can
replace objects in the design.
Suggestion 2b: Use less memory by processing que-
ry responses-and the raw data that supports them-
incrementally. (This is a variation of lb above.)

Problems Revealed in the Data Tier Stimulator
Early detection of performance problems in the DTS
can help in re-architecting (at best) or managing user
expectation (at vvorst). A common problem found by
the DTS is:
■ The database qucry response is too slow. If the speed

of the network and the database servers are not
the culprits in slow database performance, en-
hancement may be accomplished by the following:
Suggestion a. Change the schema. Optimizing the
schema to better fit the needs of the user query can
result in significantly better performance.
Suggestion b. Modify the user interaction. If the
query involves the execution of many subqueries,
it is beneficial to try to simplify the use-case to min-
imize the complexity of queries. This approach
should only be taken when the schema can't be
modified.

When neither alternative is possible, the designer
must inform the user community that response vvill

t ipomb) ia\ NfORM ATI KA 2000 - številka 4 - letnik Vlil

Patricia Carando: Architectural Design for PerformancerDetermining Distributed System Speed from an Architectural Perspective

fall outside the performance boundaries. This know-
ledge is best transmitted before the developed system
is erroneously found at fault.

4. Conclusions
Determining the performance characteristics of a dis
tributed architecture is an anxiety-provoking task,
particularly if these characteristics can only be deter-
mined after the system has been created. This paper
has illustrated how to ascertain these characteristics
early in the design process so as to avoid the costly
effort of re-architecting after an implementation.
Steps illustrated include:

How to select the critical, data intensive use-cases
from a risk list for performance prototyping.
a) How to employ the use-cases in creating Data-Tier

and Client-Tier-Stimulators to derive performance
metrics.

b) How to modify the design and manage expecta-
tions if preliminary performance indicators are
poorer than what was anticipated.

While not applicable to ali distributed system devel-
opment, these approaches should serve as useful
techniques in optimizing for server-side Java systems.

Appendix A.
A Sample Data Store Stimulator Class
The sample class Catalogl of a class used in the Data Tier Sti
mulator. It vvould be employed as illustrated in Figure 5: Sequen-
ce Diagram of Data Tier Stimulator.
1. Create the instance. Initialize the timer
2. Call the Query method

■ Invoke the startTimer method: Starts the timer (See Ap-
pendix B, belovv, The Java Timer class)

■ Get a connection to the database
■ Execute the hard-coded SQL query
■ Stop the timer
■ Rrint out the elapsed time for performing the query

package Performance;
// Copyright: Copyright (c) 2000
// Author: P. Carando
II Description: A simple data tier stimulator
public Catalogl = new

Performance.Timer ();
}
public void query () {
try {
startTimer ();
java.sgl.Connection conn =

java.sql.DriverManager.getConnection(“<db url>");
java.sgl.Statement stmt = conn.createStatement ();
java.sgl.ResultSet r = stmt.executeQuery (“<query>");
stopTimer ();
System.out.println (“w1: “ + aTimer.elapsedTime ());

} catch (java.sql.SQLException ex) {
stopTimer ();
System.out.println (''w1 exception: “ + ex);

}
>

private void startTimer () {
aTimer.rešet (); aTimer.start ();

}
private void stopTimer () { aTimer.stop ();}
}

Appendix B.
A Java Timer Class
This simple Java timer class uses the System clock to measure
elapsed time in milliseconds.

package Performance;
// Title: Timer
// Copyright: Copyright (c) 2000
// Author: P. Carando
// Description: A simple timer
public class Timer {

private long startTime, stopTime, elapsedTime;
private boolean started, stopped;

public Timer() {rešet ();}
public void rešet () {

started = false; stopped = false; startTime = 0;
stopTime = 0; elapsedTime = 0;

}
public void start () {

startTime = System.currentTimeMillis ();
started = true;

}
public void stop () {

stopTime = System.currentTimeMillis ();
stopped = true;
elapsedTime = Math.max (stopTime - startTime, 0);

}
public long elapsedTime () {

if (Istarted) return 0;
if (Istopped) {

elapsedTime =
System.currentTimeMillis () - startTime;

}
return elapsedTime;

}
}

References
[1] Freeman, G., “The Right tools for the Job, Common

Performance tssues and Solutions", Java Report, Volume
4, Number 7, July 1999, pp. 29—34.

[2] Kruchten, R, 1999. The Rational Unified Process, An
Introduction, Addison-Wesley, Reading, Massachusetts.

[3] Long, F., “Avoiding Garbage Coltection in Java Applica
tions", Java Report, Volume 5, Number 1, January 2000,
pp. 28—34.

[4] McManus, A., “Java: Memories Are Made of This”, Java
Report, Volume 3, Number 11, November 1998, pp.
39—48.

[5] Nylund, J., “Memory Leaks in Java Programs ", Java
Report, Volume 1, Number 11, November 1999, pp.
22—31.

[6] Sosnoski, D., “Java Performance Programming, Part 1:
Smart Object Management Save s the Day”, JavaVVorld,
November, 1999, www.javaworld.com.

[7] Sun Microsystems, Java 2™ Platform Enterprise Edition
Specification, vi.2, December 17,1999.

2000 - številka 4 - letnik Vlil upombncA NFORM ATIKA

