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Abstract
The acetic acid derivatives of [1,2,4]triazino[4,3-a]benzimidazole as aldose reductase inhibitors were subjected for
QSAR (quantitative structure activity relationship) modeling studies. A total 25 compounds were modelled in MOE.
The QSAR model was generated using training set of 17 compounds employing sequential multiple linear regression
analysis method. The internal consistency of the training set was confirmed by using leave-one-out (LOO) cross-
validation method to ensure the robustness of the model. The model gave conventional and cross-validated r2 values of
0.920 and 0.723, respectively. The predictive ability of model was further confirmed by a test set of eight compounds,
which were not included in the model generation. The predicted activities of the test set were in good agreement with
experimentally determined values. The model can be used to improve the activity of [1,2,4]triazino[4,3-
a]benzimidazole acetic acid derivatives.
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1. Introduction

Diabetes mellitus is a widespread chronic disease,
whose current worldwide prevalence of 150 million is pre-
dicted to double by year 2025.1–3 It is always associated
with degenerative long-term complications (retinopathies,
nephropathies, neuropathies, angiopathies, atherosclerosis
and cataracts) that make it one of the leading causes of
blindness, renal failure and neuronal pathologies. The in-
creased flux of glucose through the polyol pathway that
occurs in hyperglycaemic conditions in tissues possessing
insulin-independent glucose transport (nerve, retina, lenses
and kidney) is a well-examined factor involved in the onset
and progression of such chronic complications.4–12 Aldose
reductase (EC 1.1.1.21, ALR2) is the first enzyme of the
polyol pathway and catalyses the NADPH-dependent re-
duction of glucose to sorbitol. The deprivation of NADPH
and NAD+ and the intracellular accumulation of sorbitol

result in biochemical imbalances which cause damage in
target tissues. ALR2 inhibition thus represents an attractive
approach to prevent or control the progression of chronic
diabetic complications.4–12 A variety of ALR2 inhibitors
(ARIs) have been reported; however, in clinical studies
many of them have exhibited low efficacy or a narrow
spectrum of tissue activity, generally because of unfavou-
rable pharmacokinetics, or have proved to produce toxic
side-effects.10,12–15 Currently, epalrestat (Figure 1) is the
only ARI inhibitor available on the market.15 This demands
the development of potent inhibitors.

To gain insight into the structural and molecular re-
quirements influencing the aldose reductase inhibitor ac-
tivity, we herein describe QSAR analysis of [1,2,4]triazi-
no[4,3-a]benzimidazole acetic acid derivatives.16 The rel-
evance of the best QSAR model obtained for the design of
novel derivatives should be assessed not only in terms of
predictivity, either internal or external, but also in terms of
their ability to provide a chemical and structural explana-
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tion for their binding interaction. Here we propose a mod-
el for the aldose reductase inhibitors and present minimal
structural requirements for an aldose reductase inhibitor.
These results could serve as a guideline in design of more
potent and selective aldose reductase inhibitors.

2. Experimental Methods

The aldose reductase inhibitory activity data of
[1,2,4]triazino[4,3-a]benzimidazole acetic acid deriva-
tives, was taken from the reported work of Da Settimo et
al 16 (Table 1).

The biological activity data (IC50 in µm) was convert-
ed to negative logarithmic mole dose (pIC50) for quantita-
tive structure activity relationship analysis. The molecular
modelling study was performed on a P-III processor using
MOE17 and the regression analysis program VALSTAT.18

The molecular structures of all twenty-three compounds
were sketched using the builder module software and ener-
gy minimized via steepest descent, conjugate gradient and
truncated Newton method in sequence using MMFF94 as
force field with energy tolerance value of root mean square
gradient 0.001 kcal/mol and maximum number of iteration
set to 1000. Conformational search of each energy-mini-
mized structure was performed using stochastic approach.
Stochastic conformational search method is similar to
RIPS method,19 which generate new molecular conforma-
tion by randomly perturbing the position of each coordi-
nate of each atom in molecule followed by the energy min-
imization. All conformers generated for each structure
were analyzed in conformational geometries panel with
great care and the lowest energy conformation of each
structure was selected and added to a molecular database
to compute various physicochemical properties from three
classes: 2D-descriptors based on atoms and connection in-
formation of the molecules, i3D-descriptors used three di-
mensional coordinate information about each molecule,
which are invariant to rotations and translations of the con-
formation, and x3D descriptors which were supported by
three dimensional coordinate information, require an ab-
solute frame of reference using QuaSAR module.20–25

Series was divided into a training set of 17 com-
pounds and a test set of 8 compounds on the basis of struc-
tural diversity and cover the complete range of variation in
inhibitory activity. The data was transferred to the statisti-

Figure 1: Polyol pathway

Comp. 
No. R IC50

a pIC50
b

1 CH3 24.80 4.606
2 CH2CH2CH3 37.20 4.429
3 CH2C6H5 0.36 6.444
4 CH2C6H4–4–CH3 13.30 4.876
5 CH2C6H4–4–OCH3 42.60 4.371
6 CH2C6H4–4–Cl 4.15 5.382
7 CH2C6H4–4–F 4.58 5.339
8 CH2C6H4–4–CF3 23.90 4.622
9 CH2C6H3–3,4–F2 4.42 5.355

10 CH2C6H3–2–F–4–Br 4.47 5.350
11 CH2COOH 13.5 4.870
12 CH3 108.6 3.964
13 CH2CH2CH3 46.5 4.333
14 CH2C6H5 4.50 5.347
15 CH2C6H4–4–CH3 45.90 4.338
16 CH2C6H4–4–OCH3 44.50 4.352
17 CH2C6H4–4–Cl 10.00 5.000
18 CH2C6H4–4–F 14.80 4.830
19 CH2C6H4–4–CF3 2.63 5.580
20 CH2C6H3–3,4–F2 9.72 5.012
21 CH2C6H3–2–F–4–Br 12.50 4.903
22 CH2COOH 236.0 3.627
23 H 35.90 4.445
24 CH3 17.00 4.770
25 CH2C6H5 5.44 5.264

Table 1: Structure and ALR2 inhibition data of acid derivatives.

a in vitro IC50 (50% inhibitory concentration in µM).
b negative logarithmic of IC50 value in mole.
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cal program in order to establish a correlation between
physicochemical parameters as independent variables and
aldose reductase inhibitory activity as dependent variable.
The sequential multiple linear regression analysis method
was employed. In sequential multiple regression the pro-
gram searches for all permutations and combinations se-
quentially for the data set. The best model was selected
from the various statistically significant equations on the
basis of the observed squared correlation coefficient (r2),
the standard error of the estimate (SEE), sequential
Fischer test (F), the bootstrapping squared correlation co-
efficient (r2

bs), the bootstrapping standard deviation (Sbs),
the cross-validated squared correlation coefficient using
leave-one-out procedure (q2), chance statistics (Chance),
outliers (Z-score value), and the predictive squared corre-
lation coefficient of test set (r2

pred).

3. Results and Discussion

In order to explore the physico-chemical require-
ments for aldose reductase inhibition in terms of molecular
characteristics, the series was subjected to QSAR analysis.
Training set was used to explore the conformational and
geometrical related physicochemical properties that could
help to understand the probable binding site of the drug
with the enzyme. A correlation was established between
physicochemical parameters and ALR2 inhibitory activity
using sequential multiple linear regression technique.
Several statistically significant equations were obtained,
from which the following equation was chosen as model.

pIC50 = 0.386 (±0.079) a_aro –0.574 (±0.135) diameter
–4.407 (±0.968) brotR+8.083 n = 17, r = 0.920, r2 =
0.846, r2

adj = 0.811, SEE = 0.216, QF = 4.260, PE =
0.0248, F = 23.868, FIT = 2.754, AIC = 0.075

Model has a better correlation coefficient (r =
0.920), which account for 92.0% of the variance in the ac-

tivity. The multi-variant model shows that the dependent
variable can be predicted from a linear combination of the
independent variables. The P value is less than 0.001 for
each physicochemical parameter involved in model gener-
ation. The data showed overall internal statistical signifi-
cance level better than 99.9% as it exceeded the tabulated
F(3,13 α 0.001) = 11.9. 

A high correlation coefficient alone is not enough to
select the equation as a model and hence various statistical
approaches were employed to confirm the robustness and
the practical applicability of the equations. The model was
further tested for outlier by the Z-score method and no
compound was found to be an outlier (Table 2) which sug-
gested that the model is able to explain the structurally di-
verse analogues of the series and is helpful in designing
more potent compounds using physicochemical parame-
ters. In randomized biological activity test model shows
that chance correlation was less than 0.1%. 

The internal consistency of the training set was con-
firmed by using leave-one-out (LOO) cross-validation
method to ensure the robustness of the model. A q2 value
(in the biological activity data of leave one compound) of
0.3 corresponds to a confidence limit greater than 95%,
which minimizes the risk of finding significant explanato-
ry equation for the biological activity just by mere chance.
The cross-validated squared correlation co-efficient (q2 =
0.723), predictive residual sum of square (SPRESS = 0.290)
and standard error of prediction (SDEP = 0.253) suggested
a good internal consistency as well as predictive ability of
the biological activity with low SDEP (Figure 2 and Table
2). Expressions that have significant internal consistency
may not be applicable for the analogs, which were never
used in generation of correlation. Therefore, the predictive
power of model was further confirmed by a test set of
eight compounds. 

The robustness and wide applicability of the model
was further explained by significant r2

pred value (0.348) of
the test set data (Figure 3 and Table 3). In general the
model fulfills the statistical validation criteria to a signifi-

Figure 2: The scattered plot between observed pIC50 and calculated pIC50 values.
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cant extent to be a useful theoretical base for proposing
more active compounds. 

In the model a_aro contributed positively while di-
ameter and brotR contributed negatively to the observed
variance in the activity. a_aro is representative of a num-
ber of aromatic atoms and might be responsible for π–π
interaction with the receptor and aromatic stacking with
aromatic amino acids. brotR is fraction of rotatable bonds
and depends on molecular flexibility, as measured by frac-
tion of rotatable bonds. This descriptor affects rigidity or
flexibility of molecules and result in the partitioning be-
havior of solutes. The molecules are in their vast majority
hydrophilic, with a fraction of rotatable bonds commonly
between 0.1 and 0.4, and are also crucial for hydrophilic
interaction with receptor. Diameter is the largest value in

the distance matrix and it might be crucial for accommo-
dation of the molecule in the receptor pocket. 

Table 2: Calculated and predicted pIC50 values (by LOO method) of training set with residual and 
Z-score value of training set.

Comp Observed Calculated Predicted Residual 
No. pIC50 pIC50 Residual Z-value pIC50 (LOO) (LOO)
4 4.876 5.251 –0.375 –1.926 5.314 –0.438
5 4.376 4.596 –0.220 –1.128 4.682 –0.305
6 5.382 5.313 0.069 0.352 5.300 0.082
7 5.339 5.313 0.026 0.132 5.308 0.031
8 4.622 4.677 –0.055 –0.285 4.703 –0.081
10 5.350 5.313 0.037 0.186 5.306 0.044
11 4.870 4.477 0.393 2.018 4.366 0.504
12 3.964 4.066 –0.102 –0.524 4.105 –0.141
15 4.338 4.242 0.096 0.494 4.204 0.134
16 4.352 4.173 0.179 0.919 4.091 0.261
18 4.830 4.847 –0.017 –0.087 4.851 –0.021
20 5.012 4.847 0.165 0.851 4.805 0.207
21 4.903 4.847 0.056 0.290 4.832 0.071
22 3.627 3.923 –0.296 –1.518 4.101 –0.474
23 4.445 4.645 –0.200 –1.028 4.731 –0.286
24 4.770 4.565 0.205 1.051 4.495 0.275
25 5.264 5.225 0.039 0.203 5.219 0.045

Table 3: Observed and predicted pIC50 values of test set with resid-
ual of test set.

Comp Observed Predicted Residual
No. pIC50 pIC50

1 4.606 4.682 –0.076
2 4.429 4.537 –0.108
3 6.444 5.888 0.556
9 5.355 5.313 0.042
13 4.333 4.021 0.312
14 5.347 5.421 –0.074
17 5.000 4.847 0.153
19 5.580 4.242 1.338

Figure 3: The scattered plot between observed pIC50 and predicted pIC50 values with residual presentation for test set.



On the basis of above made discussion we can assert
that the model could be explored further to design potent
[1,2,4]triazino[4,3-a]benzimidazole acetic acid deriva-
tives.
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Povzetek
V prispevku je podana modelna QSAR {tudija derivatov [1,2,4]triazino[4,3-a]benzimidazola z ocetno kislino, kot po-
tencialnih inhibitorjev aldolne reduktaze. Modeliranih je bilo 25 spojin z uporabo MOE metode. QSAR model je bil
generiran na setu 17 spojin z uporabo zaporedne mnogokratne linearne regresijske analize. Doslednost izbranega seta in
njegova trdnost je bila potrjena z uporabo leave-one-out (LOO) kri`no-validacijske metode. Model daje konvencional-
no r2 vrednost 0.920 in kri`no-validacijsko r2 vrednost 0.723. Zmo`nost predvidevanja generiranega modela je bila potr-
jena s testom na setu osmih spojin, ki niso bile vklju~ene pri generiranju modela. Sposobnost predvidevanja modela na
testnem setu se je dobro ujemala z eksperimentalno dolo~enimi vrednostmi. Generiran model bi lahko uporabili za
izbolj{anje aktivnosti derivatov [1,2,4]triazino[4,3-a]benzimidazola z ocetno kislino.


