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Abstract

        The sedimentation equilibrium of adhesive spheres mimicking a system of
interacting spherical colloidal particles in suspensions in planar pores with adhesive
(adsorbing) walls was studied on the basis of the solution to the hypernetted
chain/Ornstein Zernike equation. The increasing interparticle adhesive attraction
together with the gravity lead to the overall effect on particles to occupy the region of
lower altitudes in the pore. It is found that at sufficiently strong stickiness the dense
“substrate” being formed at the bottom of the pore behaves as a "condensation nucleus"
for the condensation of particles from the bulk phase, the effect predominating the
natural tendency of strongly adhesive particles to avoid the confined system. In the case
of  strongly adsorbing walls, the density profiles show a discontinuity in the slope at a
distance of one particle diameter from the wall-fluid contact planes as a consequence of
the exclusion volume of adsorbed monolayers.  Due to gravity, this and other features are
much more pronounced at the lower wall than at  the upper one of the same
adhesiveness.

 Introduction

        Theoretical research on the properties of colloidal suspensions in sedimentation

equilibrium has received much attention in the recent literature [1-6]. These studies

#Dedicated to Prof. Drago Leskovšek on the occassion of his eightieth birthday.
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include the application of various molecular models, and the density profiles of colloidal

particles in the gravitational field have been determined by using various statistical

mechanical approaches [7]. A common feature observed in all cases was the spatially

inhomogeneous structure along the direction of action of the external field.

        In our previous papers [5,6] we studied the sedimentation equilibrium of a model

fluid with an adhesive-sphere (AS) interaction potential [8] mimicking a system of

interacting spherical colloidal particles in a planar gap. The wall-fluid distribution

function was calculated by the Ornstein-Zernike (OZ) equation [7] in the form suitable

for inhomogeneous systems [9-11], supplemented by the hypernetted chain (HNC)

approximation for the wall-fluid correlation. It was found that in the presence of

gravity, the interparticle adhesive attraction additionally forces the particles toward

lower altitudes in the pore. It was also observed that at sufficiently strong stickiness the

adhesive fluid accumulated at the bottom of the gap behaved as a “condensation

nucleus” for the condensation of particles from the bulk phase, the effect predominating

over the natural tendency of strongly adhesive particles to avoid the confined system.

This “unexpected” behavior was a consequence of the common effect of gravity plus

the interparticle attraction. The same system in the absence of gravity has never shown

such  behavior  [12,13].

        The objective of the present paper was to extend these investigations to the case

of an adhesive fluid in a planar gap with adhesive walls, a problem which in the absence

of gravity has been already extensively treated [14]. The structure of the fluid in the

pore and its distribution between the bulk and confined phase are thus affected by an

interesting interplay of various interactions, i.e. steric effects, gravity, and the

competitive particle-particle and particle-wall adhesion. The details of the model and

the method are given in Section 2. In Section 3, the effects of the wall-fluid adhesion on

the “condensation” behavior [5] of the fluid in the pore is estimated. The calculated

density profiles of adhesive colloidal particles in "closed" pores, i.e. for a constant total

amount of fluid in the pore, are presented. The effects of the wall-fluid attraction on the

density profiles of sticky particles at different widths of the pore are discussed.      
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Model and methods

        The model used here is similar to that described in our previous articles [5,6]. The

sticky hard sphere fluid [8] (denoted by 2), mimicking a system of interacting spherical

colloidal particles, is confined between parallel smooth hard plates (1) with lateral

dimensions much bigger than the separation between the walls. The only difference is in

also considering the short-ranged attraction in the wall-fluid potential of interaction.

The fluid confined in the pore is in contact with a reservoir of bulk fluid at the

prescribed number density ρb. The walls are parallel to the plane (0,y,z), the lower one

being located at  x = 0 and the upper one at x = L. The diameter of the spheres is R, so

only the width L' = L-R is available to their centers. The particles interact among

themselves through the square-well potential φ22(r) in the limit of an infinitely strong

and infinitesimally short ranged attraction [8] in which the Boltzmann factor exp[-βφ22]

becomes

( )[ ] ( ) ( )exp − = − + −−βφ
τ

δ22 12
r

R
r R r RΘ (1)

Here, β = 1/kT, k is the Boltzmann constant and T the temperature, Θ and δ are the

step and the Dirac δ functions, respectively, and τ is the stickiness parameter related to

the strength of adhesion and to the temperature of the system [15].

        The external potential is given by the gravitational part

φ12 2 2( ) , ( / ) ( / )x mgx C R x L R= + < < −                                                              (2)

where m is the mass of a particle, g the acceleration due to gravity, and C a constant

defining the energy at the bottom of the pore, together with the wall-fluid adhesive

potential [14], leading to the following form of the Boltzmann factor exp[-βφ12]:     
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corresponding to a finite probability of configurations with particles of the fluid

touching the walls of the pore. The parameter A is a measure of the strength of the

wall-particle adhesiveness.

        The distribution of  sticky colloidal particles (2) in the slit (1) is determined by the

Ornstein-Zernike (OZ) equation

( ) ( ) ( ) ( )h x c x h c db12 12 12 22= + − ′ ′ ′∫ρ x x x x             (4)

supplemented by the combined hypernetted chain/Percus-Yevick (HNC/PY)

approximation in which the HNC closure [7]

( )c x x h x g x12 12 12 12= − + −βφ ( ) ( ) ln ( ) (5)

is used in the OZ equation for the wall-fluid correlations, whereas the PY expression is

retained for the direct correlation function c22 for the adhesive fluid in a homogeneous

phase, the corresponding analytical expression being found in the original paper of

Baxter [8].  Above, h
ij
= g

ij
-1 is the total correlation function.

        The impulse character of the wall-fluid potential of interaction, Eq. (3), gives rise

to the development of the δ -function peak in h12(x) at x = ½R and x = L - ½R. The

corresponding relation for the adhesive-hard wall-fluid correlation thus reads

h x
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where the amplitudes of the δ -function peaks Blow and Bupp represent a measure of the

adsorption of the fluid particles on the lower and on the upper wall of the pore. The

numerical solution of Eq. (4), based on the Picard iteration, is described in detail in

Refs. 12 and 14. During the iteration, the flat profile h = 0 at (R/2) < x < L - (R/2) and

the values of the coefficient of the δ-function peak Blow = 0 at x = (R/2) and Bupp = 0 at x

= L - (R/2) were used as the initial approximation. In each iteration, the profile h(x) and

the values Blow and Bupp from the preceding step were used for a set of discrete points

within the interval  (R/2) ≤ x ≤ L - (R/2).

        The constant C in Eq. (2) was chosen so that the average density in the pore <ρ>,

taken over the accessible region L-R, equalled the density of the fluid in the reservoir,

or equivalently [5]:
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      (7)

Results and discussion

        The gravitational effects on the properties of the fluid in the pore are dependent on

the strength of the gravitational field relative to the thermal energy kT. These effects are

therefore characterized by the dimensionless parameter k1
* = mgR/kT, using the

diameter of the particles R as a length unit. The reduced value of the energy at the

bottom of the pore is then k2
* = C/kT. The average density in the pore <ρ> is expected

to decrease with increasing strength of the attractive interactions among the particles

due to the tendency of the sticky particles to avoid the confined system. In our recent

study [5] we found, however, that the system showed such behavior only in the case of

weak to moderate interparticle attraction. <ρ> first decreased with reducing τ, at a

certain τ reached a minimum, and then rapidly grew with further decrease of τ. Namely,

in the presence of gravity, the particles are forced to occupy the region of lower

altitudes in the pore, the effect being even enhanced with increasing strength of the
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attraction among the particles. At the bottom of the pore, a dense and highly layered

“substrate” of strongly adhesive particles is formed, and as such, acts as a

“condensation” nucleus for the condensation of particles from the bulk phase. In the

presence of the wall-fluid adhesion, the particles are more likely to occupy the interior

of the pore, thus giving rise to an increase in <ρ>. This is illustrated in Fig. 1 where the

dependence of  the average reduced density <ρ* = ρR3> in the pore on the strength of
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Figure 1. The average density <ρ* = ρR3> in a gap of width L=5R as a function of the
stickiness parameter τ at the values of gravitational parameters k1

*  = mgR/kT = 1 and
k2

* = C/kT = -1.5, and at different values of the strength of the wall-fluid adhesion A.
The system is in equilibrium with the bulk fluid phase of density ρb

* = ρbR
3 = 0.4.

attraction among the particles at the reduced bulk density ρb
* = ρbR

3 = 0.4, k1
* = 1,

k2
* = -1.5,  L = 5, and at different values of the wall adhesiveness A, is presented. At
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higher A, as expected, weaker attractive interactions among the particles are needed for

condensation to start, leading to the shift of the minimum of <ρ*> to higher τ.

        In Figs. 2 and 3 we present the one-particle distribution function g(x) = ρ(x)/ρb of

the adhesive particles in the gap with adhesive (adsorptive) walls at two different
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Figure 2. One-particle distribution function g(x) = ρ(x)/ρb versus altitude for a system
of adhesive spheres in a gap of width L = 11R, at values of the gravitational parameter
k1

* = 1, the stickiness parameter τ = 0.5, and at different values of the wall adhesiveness
A . At each set of parameters, the parameters k2

* are obtained from the normalization
condition (7) providing for the equality <ρ*> = ρb

* = 0.4. Blow and Bupp are the
amplitudes of the δ-function peak in the wall-fluid correlation function h(x) at the wall-
fluid contact. The coverage of the walls is noted by the arrows at the planes of closest
approach to the walls.
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widths, L = 11R and L = 5R. For the sake of comparison, the bulk density ρb
* = 0.4 and

the gravitational parameter k1
*  = 1 are the same as used in our previous work [5]. The

interparticle stickiness parameter τ = 0.5 is chosen corresponding to moderately sticky

attraction. The wall adhesive strength parameter A varies from 0 to 5, the former
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Figure 3. Same as Fig. 2 but for a gap of width L = 5R.

corresponding to the hard wall case, studied in more detail in our preceding work [5],

and the latter to strongly adsorptive walls. Because of gravity, the profiles consist of an

oscillatory part near the bottom, revealing the existence of molecular layers, and a non-

oscillatory tail at higher altitudes [5,6]. In the hard wall case, A = 0, a region of

increased fluid density forms; mainly adjacent to the lower wall due to the steric

shielding effects. When an adhesive wall-fluid attraction is introduced, adsorbed
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monolayers of particles at the walls are formed, the measure of the two-dimensional

coverage being the amplitudes of the δ -function peaks Blow and Bupp in h12(x) at

x = (R/2) and x = L - (R/2), respectively. The ordered two-dimensional monolayers of

particles partly cover the walls, thus giving rise to the partial exclusion of particles from

the domain occupied by the particles of the adsorbed “subphase”, the result being a

decrease of fluid density in the close vicinity to the walls. The adsorbed monolayers

adhere the non-adsorbed particles. As a result, sharp peaks at x = (3R/2) and

x = L - (3R/2) evolve and the densities at infinitesimally larger distances from the walls

distinctively decrease, a feature similar to that found for the adsorption of the first

layers. The occurence of peaks and minima at larger distances from the walls is again a

consequence of adhesive attraction between successive molecular layers. These effects

are, of course, much more pronounced at the lower wall, in contrast to the situation in

similar systems without gravity [14]. Accordingly, the amplitude Blow is higher than Bupp,

the difference being, clearly, more pronounced in wider pores due to the stronger

effects of gravity at larger altitudes x. In the case of the wider gap L = 11R  (Fig. 2), the

tails of the curves vanish upon approaching the top of the pore. Though the fluid is

present in a negligible amount in the vicinity of the upper wall, the strongly attractive

wall with the highest adhesiveness A = 5 causes a rather large number of particles to

“hang” on its surface, as can be concluded from the relatively high value of the

amplitude of the δ-function peak Bupp.
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Povzetek

      Sedimentacijsko ravnote�je inte ragirajoèih koloidnih delcev v disperziji
obravnavamo na osnovi rešitve hypernetted chain / Ornstein-Zernikove integralske
enaèbe za sistem togih kroglic z adhezivnim potencialom v planarni pori z adhezivnima
(adsorbirajoèima) stenama. Gravitacija ter privlaène sile med koloidnimi delci vodijo do
tvorbe gostega “substrata” na dnu pore. Izka�e se, da v primeru moène adhezivnosti med
koloidnimi delci, ta deluje kot “kondenzacijsko jedro” za kondenzacijo delcev iz
ravnote�nega sistema v poro - pojav, ki prevlada nad naravno te�njo mo èno adhezivnih
delcev, da bi se izognili omejenemu sistemu. V primeru adhezije med stenama ter delci
se ob stenah tvorita monoplastni oblogi delcev. Njihov izkljuèeni volumen povzroèa
nezveznosti v gostotnem profilu na razdaljah enega premera delca od kontaktnih ravnin
pri obeh stenah.  Zaradi gravitacije so navedeni pojavi veliko bolj izraziti na dnu pore kot
pri zgornji steni iste adhezivnosti.


