
Infonnatica 23 (1999) 431-436 431 

Conceptual Interactive Learning Tools Based on Computer Simulators 

Damjan Zazula, Bogdan Viher, Dean Korošec, Enis Avdičauševič, Mitja Lenič, Božidar Potočnik 
University of Maribor, Facuhy of Electrical Engineering and Computer Science 
Smetanova 17,2000 Maribor, Slovenia 
Phone: + 386 62 220 7480, Fax: + 386 62 211 178 
E-mail: zazula@uni-mb.si 

Keywords: modelling and simulation, conceptual learning, client-server, Java applets, electromyography 

Edited by: Rudi Mum 
Received: December 3, 1998 Revised: July 19, 1999 Accepted: August 18, 1999 

An existent computer-based simulator may serve double purpose: simulating the basic phenomenon that 
was conceptuaUy modelled by the simulator, and offeringits inherent teaching characteristics at the'same 
tirne. In this paper, we describe shortly the basic concepts ofa simulator of electromyographic signals 
(EMGs), which was, first, written for a single-user environment in C++ and later ported to Java and In
teractive network environment. At this stage it became natural that the Java application was upgraded by 
the features ofa teaching and learning tool. Such an integration was possible in a client-server approach 
providing the network users with a compact facility for generating the EMG components and signals, and 
learning about the electro-physiologicalphenomena in parallel. 

1 Introduction 
The world-wide accessibility of the Internet applications 
has recently opened a new prospective of the computer-
supported processing and dissemination of Information. In-
teraction has become a basic rule moving frontiers out of 
the local computer, out of the local community. At the same 
time, the philosophy of security and protection drew the 
major attention. New concepts have been developed, one 
of the most outstanding being the Interactive applications 
in Java [6], and the corresponding tools and approaches, 
for example the client-server cormections, three-tier archi-
tecture, and applets. 

The simulator ofelectromyographic signals (EMGs) was 
under the name of EmgSim [3] developed in the System 
Software Laboratory at the Faculty of Electrical Engineer
ing and Computer Science in Maribor. Initially, it was 
written in C++ for the Windows environment. Later on, 
we ported it into Java as an Internet application, built in 
the client-server mechanism, and even added some features 
being characteristic for the computer-assisted educational 
tools. Thus, we developed an integrated environment that 
may contribute at different levels: 

- it generates artificial EMG signals whose building 
blocks are known in details; therefore, it plays a role 
of a reference to the EMG decomposition techniques 
[4, 5, 1], 

- it enables experimenting with the effects of different 
electro-physiological parameters on the needle- and 
surface-recorded EMGs [7], and 

- it also runs as a teaching/leaming tool of the electro-
physiology of muscles. 

The approach will be presented briefly in this paper. Sec
tion 2 describes conceptual model of the EmgSim simula
tor, Section 3 speaks about the transformation into an In
ternet application, whilst the modifications introducing the 
educational elements are revealed in Section 4. 

2 Simulations of electromyographic 
signals 

Contractions of muscles are accompanied by electrical ac-
tivities that may be measured as an EMG, invasively by 
needle electrodes or non-invasively by surface electrodes. 
Physiologically, muscles consist of the so called fibres. 
Each fibre is innervated by a motoneuron transmitting the 
triggering electric pulses that cause the contraction ofa fi
bre. In fact, one nerve iimervates several fibres that are, 
consequently, contracted at the same time and acting as a 
primary unit of force - called a motor unit (MU). Several 
MUs then build up the whole muscle. 

Looking at this structure from the electrical point of 
view, the activation potentials flow down from the mo
toneuron. It triggers the corresponding single fibres, which 
affects them with a charge spreading from the innervation 
zone towards the tendons. This travelling charge is mea
sured as a single-fibre potential (SFP). AH the SFPs of 
one MU sum up into a motor-unit potential (MUP). Sev
eral MUPs are finally superimposed and, thus, form the 
observed EMG (Figure 1)[7]. 

Our simulator conceptualIy follows the electro-
physiology. Therefore, it begins first with building up a 
muscle. Several parameters may be specified in this stage 
[3], like the distribution of single fibres in the MUs, the 

mailto:zazula@uni-mb.si


432 Informatica 23 (1999) 431-436 D. Zazula et al. 

imiscle CNEMGrecordingelectrode 

isiKOidEdli; 

toelettal 

motor MUAP 
imits tmiiis 

isasupciposnon 
ofSFAPj 

Figure 1: The physiology of a muscle and sources of elec-
trical activity - top, a model of the muscle - bottom. 

musde model parameters 

jy 
muscle model generatlon 

electrode positloning 

AP calculation 

JL 

summation of APs for each MU 

simulation of the 
electrode movement 

generatlon ofAP 
wavefonn variatlons 

random llnear 
transformatlon of AP 

\ / set of MUAP vvavefomis 

O sImulatBd 
EMG signal 

Figure 2: Principle of operation of the EMG simulator. 

distribution of MUs in the muscle, the features of the fibres 
(their diameters), the triggering instants, etc. The principle 
of operation is depicted in Figure 2. 

3 The EMG simulator as an 
application in Java 

We have stated multiple advantages of today's interactive 
network applications. The most important in our čase are 
flexibility and accessibility supported by intrinsic levels of 
control, security and protection. This is exactly what was 
needed for our EMG simulator to become widely avail-
able application on the Internet. Actually, the client-server 
link seems ideal for this purpose. On the server site, the 
modelling and simulation part runs with aH the calcula
tion routines, data bases, control, security and protection. 
Clients enter the server from their machines on a platform-
independent principle (see Figure 3). If they have access 
rights, they may send in their requests, i.e., they may run 
the EMG simulator at different stages. OnIy the user-
interface code is transferred to their site, where it is inter-
preted and supports the windows and menu environment. 

However, as ali the computation is done within the 
server, there is a lot of data that must be transmitted to the 

users in certain stages of simulation. This could degrade 
the simulator performance and its responsiveness, thafs 
why a special data communication protocol was developed 
between the server and the clients. 

The characteristics of our Java realisation, as well as the 
client-server communication, will be described in the fol-
lowing paragraphs. 

3.1 Realisation of the server and client 
The client software that runs on a user's machine in Java 
would need more time to run the simulation. Therefore, 
we divided the simulator in two parts: the client written in 
Java for user interface, and the server written in C++ (na-
tive code) for the calculation of the simulation. The client 
performs simple calculations and provides user interface. 
The server performs ali the time critical calculations. 

The client-server architecture has been used to speed up 
the simulation. The basic problem is communication over 
the network. If ali the clients were connected to the same 
instance of the server, an intemal server mechanism would 
have to keep trace and status of every action of individual 
clients. This would make the server code rather compli-
cated and vulnerable. Therefore, it was worthwhile to sac-
rifice a part of the server's performance by starting a new 



CONCEPTUAL INTERACTIVE LEARNING TOOLS . Infomiatica 23 (1999) 431^36 433 

Calculation 

if-^r 
Server stale 

-::^f::: 
Conrtol 

1 ; 

l i 
i : 

! 
r 

Marshaling 

'"~7r~"" 
Compression 

, . . . , . _ . „ . _ 

Unmarshaling 

Network interface 

1 : 

1 : 

1 : 

^ 1 : 
1 : 

Rpci : 
V ' I - : 

— J i . 1 ; 

Unmarshaling 

•••'""'1r-~ 
Decompression 

Marshaling 

-.-, -„.. : 

i • 

j : 

fl——1 

i 

• 

Client siaie 

• " • " • ' " • • " • ' " • " • • • " • " 

Coniral 

.. . - . , „™,™„ „ „ . 

r 

' : 

! 

Network interface 

Figure 3: The simulator structure in Java: a client-server connection. 

server instance for every new client, and even avoiding the 
solution with threads for the same reason. 

The simplest solution for the communication would be 
remote procedure calls (RPC), -vvhere there would be no 
need to track the status of simulation, i. e., the stage of 
its execution. The client would inherently employ the re
mote flinctions as demanded in the successive steps by the 
user. However, Java programming does not support RPCs, 
it is based on remote method invocation (RMI), which lacks 
tools for standard serialisation of data and actions. 

As mentioned, our solution to the server was starting 
new instances for every new client. The server incorporates 
special communication routines - deamons that use stan
dard inputs (STDI) and outputs (STDO). The STDO trans
fer of data is activated by detection of the ENTER code. 
One inconvenientbehaviour of the deamon is that, after the 
transfer is finished, terminates the connection. The action 
is natural in the multi-client environment, however, in our 
solution it is disturbing. A client and its instance of the 
server should stay connected and on-line aH the time. To 
circumvent the problem of the communication channel ter-
mination, aH the server messages are sent out by flushing. 

On the other hand , clients call the server functions by 
simple strings of the following form: 

<function name> <arguments>. 

As the clients are Java applets, they run under multi-
threading principle. The server on the other side, which 
is a C program, is not able to synchronize with the order of 
precedence of incoming messages. Therefore, the clients 
communication is synchronized with the server using an in
terval monitor structure which prevents sending a message 
before the previous one has been completed. 

To reduce the amount of network communication, the 
client and the server must have a synchronized copy of the 
State of their common actions. Another problem is data 
format. For example, Java ušes IEEE 745 for representing 
floating point arithmetics. The server could also run on a 
Motorola, MIPS, SPARC or Intel-based machine that use 
diflferent floating-point representations. Therefore, the data 
format for the network should be in a machine independent 
format. That is done by marshaling/unmarshaling of the 
data sent or received over the netvvork (see Figure 3). 

Hence, the data is serialised and transfered in either di-

rection in strings containing also aH the necessary Informa
tion about the original data structures (tables, vectors, etc.) 
and types (integers, floating point values, etc). 

The amount of data sent from a client to the server is 
rather low. On the other hand, in the stage generating the 
EMG singal the server have to send out about 3 M bytes of 
data. It is, therefore, of crucial importance that the transfer 
is coded. We implemented run-time length code compres
sion based on nibbles. The compression rate achieved is 
38%, onoverage. 

Figure 4 depicts class-hierarchy diagram considering the 
client-server intercormection. Solid lines in the figure show 
the hierarchical dependence, whereas dotted lines indicate 
the Information flow. Only the part depicting the client 
can acctually be shown in the form of class hierarchy. The 
server has been coded in C++, so the class hierarchy is not 
applicable in the same way. Nevertheless, the user inter
face in Figure 4 consists of two separated branches: one 
deals with user interaction, the other with data visualisa-
tion. The MUDialog box stands for the parameter input on 
the motor units, and the SPShapeDialog box accepts pa-
rameters on the action potentials. On the other hand, the 
EMGPanel box deals with the visualisation of the muscle 
structure, vvhile the MUAPsPanel takes čare of displaying 
the motor-unit action potentials, i.e., the EMG signals. 

4 Upgrading to educational tool 
Once having a conceptual model in the form of a simulator, 
it is just a step ahead to upgrade it for educational purposes. 
Although a reversed order may seem more normal, i.e., to 
build a teaching tool and then to include the simulation ses-
sions as explanations, we haven't found any dravvbacks in 
our approach. Moreover, it offers a two-level construction 
that, on the first level, acts as an extended help for the users 
of our simulator, on the next level, however, it enables self-
evaluation. The latter is done in a typical leaming cycle: a 
piece of leaming material is provided, with explanations, 
demonstrations, graphics, diagrams, etc, then questions 
about the topic are asked. The answers are scored auto-
matically and the results direct the user either over to the 
next topic or suggest repetition of some previous chapters 
(potentially, even some additional pages for basic compre-
hension may be inserted). 



434 Infomiatica 23 (1999) 431^36 D. Zazula et al. 

Interface for communication with server 

Server 

User interface 

User interaction 

EMGSIM 

Data visualisation 

Dialogs 

£^U—i£^ 

MUDialog 

APShapeDialog 

Presentation 

EMGPanel 
• 

J 

MUAPsPanel 

Figure 4: Class hierarchy: the client-server connection. 

The advantage of having chosen the simulator as a driv-
ing engine for the leaming subroutines certainly is re-
activation of the same leaming modules at any stage of the 
simulation run, as depicted in Figure 5. 

In order to extend the Internet EMG simulator as in Fig
ure 3, special program exits were inserted into the code of 
Java realisation. Their role can be compared to masked pro
cedure calls: the application runs with ali of its functions 
even if program exits are not activated. When activated, 
they trigger certain parallel actions which are understood 
as auxihary to the main operation of the application. 

The most important and instructive notions and steps in 
the simulation are elaborated additionally in separate pages 
of explanations an teaching material. The links are realised 
in terms of program exists. Each program exit has a cor-
responging parameter containing the address of an HTML 
document vî hich will be displayed upon a call initiated by 
the user pressing a button to enter the teaching/leaming 
procedure. 

There is another parameter that has special meaning. 
With this parameter we can switch between two types of 
the program exits. The first type is browser independent 
and it is implemented with an applet context. As we know, 
Java 1.1 is stili not flilly supported by browsers. Therefore 

we decided to implement additional program exits bound 
to Netscape's Internet browser. In this way, we can use 
appletviewer which supports Java 1.1 to run our applet, 
and the Netscape's brovvser to view educational documents. 
Hovvever, similar solution would be possible with Internet 
Explorer as well. 

Every such a program exit calls the indicated 
HTML document that may contain any necessary educa-
tional/explanation contents, supported by aH the available 
relevant Information, either locally or over the Internet con-
nections. This may include texts, voice, static images, ta-
bles, graphs, or movies. 

Aftenvards, a self-evaluation procedure is entered by a 
special button. It consists of three stages: 

- questions on the topics presented, 

- answers typed in the pre-prepared forms, and 

- an automatic evaluation of the answers. 

4.1 Concept of the question-answer engine 

The first two stages are more or less straightfonvard. The 
questions are sequentially numbered and insertet at the end 
of the HTML pages that are activated through the simulator 



CONCEPTUAL INTERACTIVE LEARNING TOOLS ... Infomiatica 23 (1999) 431-436 435 

Text, 
images, 
movies 

Teachning 
unit on 

chosen topic 

Questions 

Additional 
explanation Ans^vvers 

wrong 

Database of 
correct and 
•vvrong reply 

phrases 
Statistics 

Figure 5: Block diagram of the simulator upgrading to a teaching/leaming tool. 

program exits. Dialog windows followning the questions 
receive the typed in answers. The entered answer links to 
an evaluation CGI (Common Gateway Interface) script di-
rectly from HTML. Such scripts enable execution of appli-
cations being called from the HTML documents. For the 
time being, our question-answer engine classifies ansvvers 
as false or correct only. This is done with the help of a 
database containing sets of the words and phrases of possi-
ble correct and false answers in the following format: 

<sequential number of the question>:< elemnts of 
possibly correct answers>:< elements ofpossibly wrong 
answers>. 

The computer-assisted evaluation of the ansvvers is, how-
ever, not an easy task. If we wanted to have it universal and 
complete, we would need a thorough base of grammatical, 
syntactical and semantic rules for every teaching/leaming 
language. At the present stage of development, we have 
simplified these demands considerably. 

The ansvvers are parsed to the individual words. The 
words and word groups are, aftenvards, compared to two 
lists of phrases. These lists are linked with the correspond-
ing question. One list contains typical correct words and 
phrases, the other typical wrong words and phrases. Ac-
cording to the score achieved in both lists, every answer is 
treated either correct or wrong. 

For each question, the user/teacher has to prepare and 
enter a target path (the document which contains the ques-
tion), a question, a list of correct answers, a list of wrong 
ansvvers, and a path to the next question in chain. This is 
realised by another CGI script. The target path is an abso-
lute path in the file system, the path of the next document 
in chain is relative to the HTTP server. A blank field for 
the next question terminates the chain. After having been 
submitted, a new record is written to the database and the 
target document is generated. Each question has unique 
ID (a sequential number) which links it to corresponding 
record in the database. The generated document contains 
the question and a field for answer. Submitted answer is 
evaluated and a new document is generated, containing the 
evaluation score and a link to the next question in chain, 
although the entered answer may have been incorrect. 

5 Conclusion 

The described solution could mean a universal approach 
to upgradings of netvvork versions of simulators. The nec-
essary change in the simulator code is minimum, actually 
it means only inserting a stmple routine to load HTML 
documents for additional explanation and activatrng the 
question-answer engine. The latter runs quite independent 
of the application and, therefore, can be developed and 



436 Informatica 23 (1999) 431-436 D. Zazula et al. 

treated stand alone once for ali the applications using it. 

Acknowledgemeiit 

This work was supported by an HP Labs donation of work-
stations and by a grant of the Slovenian Ministry of Science 
and Technology, Contact No. L2-8834, to the Centre for In
teractive Network Applications at the Faculty of Electrical 
Engineering and Computer Science in Maribor. 

References 
[1] Korošec D., Martinez C , Zazula D., "Parametric modelling of 

EMG signals," lEEEEMBS, Amsterdam 1996, 2 pp. 

[2] Roeleveld K., Siirface motor unit potenlials; the building stones 
ofsurface electromyography, PhD Thesis, Katholieke Universiteit 
Nijmegen, The Netherlands, 1994. 

[3] Viher B., Korošec D., Zazula D., "Computer simulator of elec-
tromyographic signal," CBMS '96, Ann Arbor 1996, pp. 47-52. 

[4] Zazula D., Korže D., Šoštarič A., Korošec D., "Study of meth-
ods for decomposition of superimposed signals vvith application 
to eIectromyograms," in: Pedotti et al. (Eds.), Neuroprosthetics, 
Springer Berlin 1996, pp. 377-389. 

[5] Zazula D., Korošec D., Šoštarič A., "Parametric decomposition 
of the SEMG," Proceedings ofthe SENIAM Vforkshop, Nijmegen, 
The Netherlands 1998. 

[6] Horstmann C. S., Comell G., Core Java Votume 11 - Advanced Fea-
tures, Sun Microsystems Press, USA, 1998. 

[7] Stalberg E., Trontelj J. V., Single Fiber Electmmyography, Raven 
Press, Nevv York, 1979. 


