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In the paper we introduce a biomolecular implementation of the push-down automaton (one of the 
theoretical models of computing devices with unbounded memory) using DNA molecules. The idea of 
this improved implementation was inspired by Cavaliere et al. (2005). 
Povzetek: Predstavljen je avtonomni avtomat na osnovi DNK po vzoru Cavaliereja. 

1 Introduction 
In the paper written by Cavaliere, Janoska, Yogev, Piran, 
Keinan, Seeman [4] the authors propose a theoretical 
model (i.e. not tested in laboratory) of implementation of 
the push-down automaton built on DNA. The idea was 
inspired by two papers: the first one by Rothemund [7] 
who proposed a simulation of the Turing machine - the 
basic theoretical model of computation - and the second 
one by Benenson, Paz-Elizur, Adar, Keinan, Livneh, 
Shapiro [1] who proposed a simulation of the finite 
automaton – the simplest model of computation. The 
above three implementations represent all the basic 
theoretical models of computers in the Chomsky 
hierarchy. But all these simulations have weak points in 
different places.  

The Rothemund model is not autonomous. A person 
must interfere in the process to obtain the required 
sequences of actions through many restriction enzymes. 
This is likely a reason why nobody tested it 
experimentally.  

Next, Benenson et al. [1] model is autonomous, 
programmable and was tested in laboratory but it 
represents the simplest computational model - a finite 
automaton (in fact it was only 2-states 2-symbols finite 
automata). The next propositions along the same idea 
(Soreni et al. [10], Unold et al. [11], Krasiński and 
Sakowski [6]) essentially did not improve the situation. 

The last model, Cavaliere et al. [4] is more 
powerful (a push-down automaton), autonomous, 
programmable  (although the action of it was illustrated 
only on one simple example) but the problem lies in 
obtaining the right sequence of ligations of transition 
molecules to the input and to the stack (represented by 
the same circular DNA). The authors themselves indicate 
this problem “It is first important to know which side is 
ligated first, since there is degeneracy in the stack side … 

and therefore different transition molecules may be 
ligated at that end at any stage” and propose two ways to 
reduce (not eliminate) the problem. Moreover, another 
problem in their model is that it is not clear 
biochemically whether the used enzyme PsrI could not 
accidentally cut transition molecules of the first kind 
(which add the symbol Z to the stack) before ligating it to 
the input and to the stack. 

In this paper we suggest an improvement of the last 
model of push-down automata to avoid these problems. 
However, it is a theoretical model not tested yet in 
laboratory. We propose a new shape of transition 
molecules and another kind of restriction enzymes, 
which cut only when the ligation of a transition molecule 
to the circular molecule of the input will be accomplished 
on both sides.  

2 Push-down Automaton  
In this section we recall shortly the definition of the 
push-down automaton (PDA). More information can be 
found in any textbook (Hopcroft and Ullman [5]; Sipser 
[8]). 

A push-down automaton is a finite automaton 
(nondeterministic) which has a stack, a kind of simple 
memory in which it can store information in a last-in-
first-out fashion.  

 
So a PDA has a finite control unit, an input tape and 

a stack (Fig. 1).  
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Figure 1: A scheme of the PDA. 

In each step the machine, based on its current state (q), 
the input symbol which is being currently read (c) and 
the top symbol on the stack (A) performs a move 
according to a transition rule (from a list of transition 
rules associated to a given PDA): pops the top symbol 
from the stack, pushes a symbol (or a sequence of 
symbols) onto the stack, moves its read head one cell to 
the right and enters a new state. We also allow                    
ε - transitions in which a PDA can pop and push without 
reading the next input symbol. The PDA is 
nondeterministic, so there may be several transitions that 
are possible in a given configuration. We will denote 
transition rules in the following way 

)','(),,( AqAcq →  

where: q' - a new state, A' - a new symbol or a sequence 
of symbols (may be an empty sequence) which replaces 
A on the top of the stack. 

There are two (equivalent) alternative definitions of 
acceptance of an input word w: by empty stack and by 
final state. Since in the presented implementation we use 
the second one we will recall only that one. A PDA 
accepts an input word w if it enters a final state (from a 
distinguished subset of all states) after scanning the 
entire word w, starting from the initial configuration with 
w on the input tape and with the special initial symbol 
⊥ on the stack.  

The class of languages accepted by PDA is the class 
of context-free languages which strictly includes the 
class of regular languages (accepted by finite state 
automata) and is strictly contained in the class of 
recursive enumerable languages (accepted by Turing 
machines).  

We will illustrate the above definition by giving an 
example of  PDA which adds integers. It will be our 
main example in the implementation. 
Example 1. A PDA accepting the language 

},:{ NmncbaADD mnmn ∈= +  
has four states: q0 - initial state, q1, q2, q3 - final state. The 
PDA has the following transitions: 

1. ),(),,( 00 ⊥→⊥ Aqaq  
2. ),(),,( 00 AAqAaq →  
3. ),(),,( 10 AAqAbq →  
4. ),(),,( 11 AAqAbq →  

5. ),(),,( 21 εqAcq →  
6. ),(),,( 22 εqAcq →  
7. ),(),,( 32 εε qq →⊥  
A sequence of configurations (state, remaining input 

word, stack) of this PDA on the input word 
ADDaabccc∈  is as follows. 
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and on the input word ADDabc∉  is as follows. 
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0 ),,(),,(),,( →⊥→⊥→⊥ AAcqAbcqabcq   
),,( 2 ⊥Aq ε - stop the action. 

3 The Structure of DNA 
DNA (deoxyribonucleic acid) is the storage medium for 
genetic information in all living things. It is a single-
stranded (ss) or a double-stranded (ds) chain made of 
four nucleotides A, C, T, G. In a dsDNA two ssDNA 
(with the inverse orientations) are linked by hydrogen 
bonds in such a way that A can only pair together with T 
and C with G. To manipulate DNA we take various 
enzymes from a variety of organisms for catenating, 
splitting, cutting and copying DNA. In our consideration 
we will use restriction enzymes (restrictases) which 
recognize fixed sites in a DNA and cut it, leaving sticky 
ends on both sides of the cutting place. For instance the 
restrictase FokI cuts in the following way (Fig. 2). 

 

 
Figure 2: The action of the enzymes FokI. 

4 The implementation of PDA 
The implementation of a PDA is similar to that of 
Cavaliere et al. [4] with changes which eliminate their 
obstacles. The main idea of the implementation is as 
follows.  

The basic elements of a PDA i.e. the input tape and 
the stack are represented in the same circular dsDNA 
molecule of which one end represents the stack and the 
second one the input word (Fig. 3). 

 
Figure 3: The basic elements of implementation of a 
PDA. 
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The sticky end of the stack represents the top symbol on 
the stack and the sticky end of the input tape represents 
the first symbol of the input word (to be read) and 
simultaneously the state of the PDA. 

The transition rules of a PDA are suitable DNA 
molecules which hybridize to both ends of the circular 
DNA representing this PDA (Fig. 4). 

Figure 4: Process of hybridizing a transition rule to both 
ends of DNA. 

After ligation, appropriate restriction enzymes cut this 
circular molecule. Their actions cause changes in the 
stack and in the input word according to the move which 
is represented by this transition  molecule. A new idea is 
that the action of restriction enzymes will take place only 
when the transition molecule ligate to both ends of the 
circular molecule. It happens because the chosen 
restriction enzyme (BglI) has two separated recognition 
sites (Fig. 5), which appear both only when a transition 
molecules ligates to both ends of the circular molecule. 
After the cut additional molecules and restriction 
enzymes make adequate changes in the stack and in the 
input word. Then the next transition rule may act. When 
a sequence of such transitions leads to reading out the 
input word and the last sticky end would represent the 
final state of the PDA, then a long additional DNA 
molecule ligates to the molecule. It can be detected in the 
solution by gel electrophoresis. The word is accepted. 

 

 
Figure 5: The action of the enzyme BglI. 

5 The Practical Implementation 
The idea of the practical implementation will be 
illustrated on the PDA given in Example 1 i.e. on a PDA 
performing the addition of integers. The graph of it is 
represented in  Fig. 6. 
 

 
 
 
 
 
 
 
 
 

Figure 6: The graph of a PDA which adds integers. 

It has seven moves. Each of them is represented by a 
transition molecule, additional molecules and suitable 
restriction enzymes (see Appendix 1). 

The action of the enzyme BglI is presented in 
Fig. 5. The remaining enzymes act as follows (Fig. 7). 

 

 
Figure 7: The action of the enzymes AcuI, BbvI, SapI. 

The sticky end of an input word represents both a symbol 
and a state of the PDA according to the rules (Fig. 8). 
 

 
 
 
 

 
Figure 8: DNA codes of the symbols and pairs <state, symbol>. 
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The symbols { ⊥,A } on the stack and their 
representations on the top of the stack are presented in 
Fig. 9. 

 
Figure 9: The representations of the stack symbols. 

 
The representation of the considered PDA with the input 
word aabccc in the initial state q0 and the symbol ⊥ on 
the stack is shown in Fig. 10. 

 
Figure 10: The PDA with the input word aabccc. 

 
The action of the PDA will be illustrated on two moves, 
the first of which pushes a symbol on the stack 
(Appendix 2) and the second one of which pops the 
symbol from the stack (Appendix 3). 

The main idea of the first move 
),(),,( 00 ⊥→⊥ Aqaq  which pushes the symbol A on 

the stack is to use the restriction enzyme BglI, which cuts 
the DNA strand only when the transition molecule 
merges the stack and the input tape. It is caused by the 
fact that the enzyme BglI has two separated recognition 
sites 5’...GCC(5nt)GGC...3’ which appear when the 
transition molecule ligates to the stack and to the input 
word. An important fact is to use spacers GGC between 
symbols of the input word. After the cut the second 
restriction enzyme AcuI together with an additional 
molecule make a change in the input word. 

A second move ),(),,( 21 εqAcq →  which pops the 
symbol from the stack acts by using also the restriction 
enzyme BglI (Appendix 3). After cutting with the 
enzyme BglI we have to remove actual symbols from the 
input word and from the stack. The operation of 
removing from the input word is the same as in the first 
move (using the restriction enzyme AcuI).  

 
Since we could not find a commercial enzyme which cuts 
a DNA molecule in a long distance from the recognition 
site and leaves a 3-nt sticky end we have to apply two 
restriction enzymes (BbvI and SapI) 

The remaining moves act similarly. The whole 
process on the word aabccc is presented in Appendix 4. 

6 Conclusions 
We have presented a new method to implement a push-
down automaton based on DNA molecules and 
restriction enzymes. It is an improved version of the idea 
presented in [4]. Other attempts (not fully matured and 
functioning) are in [9], [13], [14]. A new idea is to use 
a restriction enzyme which has two separate recognition 
sites. It allows to cut DNA molecules representing 
elements of a PDA after ligating of transition molecules 
to both sides of circular DNA. It avoids problems that  
appeared in Cavaliere et al. [4]. This will enable us in the 
future to construct more powerful automata than PDA, 
which provides the possibility to solve more complicated 
problems. Actually we implemented our theoretical 
model of finite automata (more powerful than the one 
presented in Benenson et al. [1] in a laboratory in the 
cooperation with a research group from the Department 
of Molecular Genetics of the Łódź University. This 
attempt of a laboratory implementation of our research 
groups is described by Błasiak, Krasiński, Sakowski, 
Popławski [3]. We tested in the laboratory simultaneous 
action of two restriction enzymes AcuI and BbvI which is 
a crucial step in the experiment presented in this paper. 
The next step could be laboratory implementation of  the 
PDA presented in this article. 

The circular molecule dsDNA used in our model 
opens a new possibility to insert and apply our automaton 
to the bacteria cell. Such a type of DNA molecules are 
plasmids - heritable DNA molecules that are 
transmissible between bacterial cells and bacterial 
genomes. Bacteria controls DNA replication process via 
origin replication elements. These genetic elements are 
built with blocks of repeated sequences and replication is  
initiated when special proteins (e. g. DnaA in E. coli) 
binds to series of repeats. Regulations of bacterial 
genome and plasmid propagation is possible with use of 
our automaton by controlling the number of repeat motifs 
presented in origin (by inserting to the stack or removing 
from the stack). In a similar way it is possible to control 
in bacteria not only DNA replication but also 
transcription of some bacterial genes. Transcription starts 
when RNA polymerase binds to special genetic elements 
called promoter. The bacterial promoter is built with 
some genetic elements essential for efficient initiation of 
transcription (e.g. -10 and -30 blocks), thus we can 
switch on and off gene transcription by inserting or 
deleting some sequence blocks within promoter or even 
changing the distance between them. This method of 
DNA replication or transcription control with the use of 
an automaton has one major advantage in  comparison of 
natural scheme of control – it allows to make some 
logical calculations before cell take the final decision.  
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Appendix 1 
The transition rules and their molecular representations. 

 
Table 1 

Transition  
rule 

Transition 
molecule 

Additional 
molecule 

Restriction 
enzymes 

),(),,( 00 ⊥→⊥ Aqaq   
 

BglI 
AcuI 

),(),,( 00 AAqAaq →    
BglI 
AcuI 

),(),,( 10 AAqAbq →   
 

BglI 
AcuI 

),(),,( 11 AAqAbq →    
BglI 
AcuI 

),(),,( 21 εqAcq →   

 

BglI 
AcuI 
BbvI 
SapI 

),(),,( 22 εqAcq →   

 

BglI 
AcuI 
BbvI 
SapI 

),(),,( 32 εε qq →⊥   

 
BglI 
AcuI 
BbvI 
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Appendix 2 
The push a symbol on the stack ),(),,( 00 ⊥→⊥ Aqaq . 
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Appendix 3 
The pop a symbol from the stack ),(),,( 21 εqAcq → . 
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Appendix 4 
Process of computing of the word w=aabccc by the push-down automaton from Example 1. 
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