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Abstract

Construction of cycles in a graph is investigated, where cycles from particular subsets
(such as bases) are added together so that each partial sum is also a cycle or each new cycle
intersects the sum of the preceding terms in a nontrivial path. Starting with the geodesic
cycles, a hierarchical construction is given. For the hypercube graph, geodesic cycles are
characterized, and it is shown how hypercube geodesic cycles can be constructed in two
steps from a special basis. Applications are given to inferring commutativity of a diagram
in a groupoid from commutativity of some of its cycles.

Keywords: Robust cycle basis, well-arranged sequence, geodesic cycle, Cayley graph, hypercube,
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1 Introduction
Let G be a graph. A cycle-subgraph of G is a connected, 2-regular subgraph. Let Cyc(G)
denote the set of all cycle-subgraphs of G. Call S ⊆ Cyc(G) “weakly robust” if for every
z ∈ Cyc(G), there is an integer k ≥ 1 and z1, . . . , zk ∈ S (not necessarily distinct) such
that

z = z1 + z2 + · · ·+ zk (1.1)

and for 2 ≤ j ≤ k − 1
z1 + z2 + · · ·+ zj ∈ Cyc(G); (1.2)

that is, S is weakly robust if it spans the cycle space of G in such a way that every cycle-
subgraph has all partial sums remaining cycle-subgraphs (not just Eulerian graphs). Call S
“robust” if it is weakly robust and if, in addition, for 2 ≤ j ≤ k,

zj ∩ (z1 + · · ·+ zj−1) is a nontrivial path. (1.3)
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Of course, S = Cyc(G) has these properties vacuously, taking k = 1. Also, (1.3) =⇒
(1.2).

The problem of finding a cycle basis which is weakly robust seems to have first ap-
peared in print in a paper of Dixon and Goodman [2]. Given a spanning tree in a connected
graph, one can construct a basis of cycles using the non-tree edges. In [2], it was conjec-
tured that such bases are weakly robust but this was disproved by Sysło [22]. Later, it was
shown by Doğrusöz and Krishnamoorthy [3] that the set of region boundaries of a plane
graph, excluding the unbounded region, constitute a weakly robust basis.

The problem was rediscovered in [12], including the new question of finding a robust
basis, where we showed that for complete graphs, the set of all 3-cycles containing a fixed
vertex determines a robust basis. A basis which is not weakly robust (due to A. Vogt) was
exhibited. We also found a basis for the bipartite complete graph (the set of all 4-cycles
through a fixed edge), which was shown to be weakly robust by Ostermeier et al. [19]. Our
motivation was category theory and graph theory, while the work of Stadler and co-authors
[9, 11, 15, 16, 19, 8] is also motivated by applications, especially in biochemistry. These
latter papers, as well as [12], use notation which is different from that used here.

The properties of cycle bases and related sets discussed below were developed to permit
the propagation of commutativity from a basis of cycles to all of the diagram; see [13], [14].
In this paper, it is shown that the commutativity of a d-dimensional hypercube diagram in
a groupoid can be forced by the commutativity of a carefully chosen subset of the square
faces, containing approximately a fraction of 4/d of the square faces. In contrast, [13]
showed that commutativity cannot be blocked by any family with fewer than d− 2 squares
in a d-cube; that is, if all but d− 2 squares in a d-cube diagram in a groupoid are known to
commute, then the entire diagram is commutative.

The paper is organized as follows: Section 2 gives some basic graph-theoretic, al-
gebraic, and topological background. The next section reviews the basic types of well-
arranged sequences of cycles, providing the machinery used in the remaining sections.
Section 4 covers robustness and weak robustness, including the idea of iterating these con-
structions, and relates them to Cayley color graphs. In section 5 we give a brief proof that
the basis of region boundaries in a plane graph is robust. Section 6 shows how geodesic
cycles can build all cycles through an iterative process. Sections 7 and 8 apply only to
the hypercube. Geodesic cycles in the d-cube are given a simple characterization and then
they are constructed from a recursively defined basis. Section 9 derives the application
to commutative diagrams in groupoids and shows that a square which is the sum of two
commutative squares can be non-commutative if the two squares added do not intersect in
a nontrivial path. Finally, in Section 10, other types of cycle bases are considered.

2 Basic concepts

In this paper, graphs are finite, undirected, and simple (i.e., no loops or parallel edges). For
basic graph theory, see, e.g., [7], [1]. A connected graph is Eulerian if all of its vertex-
degrees are even. For G a graph, V (G) and E(G) denote the sets of vertices and edges,
respectively, and we also write G = (V,E). Every graph has a representation as a fam-
ily of points and closed straight-line segments (corresponding to the vertices and edges,
resp.) embedded in 3-dimensional Euclidean space; each segment in the representation
joins the two points corresponding to the edge which the segment represents. There is a
unique topology which induces the usual topology of a closed interval on the straight-line
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segments, and this is called the underlying topology of the graph. A cycle is a graph which
is 2-regular and connected. The underlying topology of a cycle is the unique closed con-
nected 1-manifold, i.e., the circle. Let G be a graph and let Cyc(G) denote the set of all
subgraphs of G which are cycles.

A path is a graph which consists of a single vertex, or a connected graph which contains
two vertices of degree 1 with every other vertex of degree 2. A nontrivial path is a path
which contains more than one vertex. We write Pr for the path with r vertices.

Let Z2 denote the field with 2 elements {0, 1}; ZA
2 denotes the Z2-vector space of all

functions from a set A to Z2; dimZA
2 = |A|, the cardinality of A. Addition of functions

is just coordinate-wise addition (modulo 2), so the zero element is the constant 0 function.
To each function in ZA

2 , one can associate the subset of A determined by those elements
mapping to 1 and conversely for every subset of A, there is a unique element in ZA

2 to
which it is associated (the “characteristic function” of the set). The symmetric difference
of two subsets of A corresponds to the vector space sum of the corresponding elements in
ZA

2 [1, p. 23]. If U is any subset of a vector space V , then span(U) is defined to be the
intersection of all linear subspaces of V which contain U . Over the field Z2, the linear span
of U is just the set of all sums of subsets of U ; if U is empty, its span is 0.

If G = (V,E) is a graph, there is a linear map

∂G : Z
E(G)
2 → Z

V (G)
2

given by ∂G(e) = v + w when e = vw ∈ E(G). The members of Z
E(G)
2 are called

the 1-chains while members of ZV (G)
2 are called 0-chains. The kernel (or “null space”)

Z(G) of the Z2-linear map ∂G is the subset of the 1-chains which map to the zero 0-chain.
Thus, connected components of subgraphs of G induced by elements of Z(G) correspond
to Eulerian subgraphs of G. By a theorem of Euler, H in Z(G) is an edge-disjoint union,
hence sum, of cycles [1, p. 24], so Z(G) is the linear span of Cyc(G). So there is a basis
for Z(G) consisting entirely of cycles, which is called a cycle basis. Addition in Z(G) is
denoted +. One refers to the vector space Z(G) as the “cycle space” of the graph where
the word “cycle” is used in the algebraic, rather than geometric, sense.

The cyclomatic number b(G) of a graph G is the dimension of Z(G). It is well-known
(and straightforward to show) that

b(G) = q − p+ k,

where q, p, k denote the number of edges, vertices, and connected components of G.
If G is connected, then for every spanning tree T of G, there is a basis B(G,T ) which

is the set of cycles ze formed by adding a single element e = vw in E(G) \E(T ). Indeed,
as each pair v, w of distinct vertices in G are joined by a unique path in T , T + e has a
unique cycle. Each of these cycles has an edge contained by no other cycle, so the set of
cycles must be independent. But the cardinality of this independent set is maximal, for T
contains p−1 edges, so |B(G,T )| = q−p+ 1, and so it is a basis, the spanning tree basis,

3 Well-arranged sequences of cycles
If z, z′ ∈ Cyc(G), we write z||z′ and call z, z′ compatible if z ∩ z′ = P , where P is a
nontrivial path. This relation on the set of cycles is symmetric and irreflexive.

For two compatible cycles z, z′, the underlying topology of z+z′ is the connected sum
of the underlying topologies of the components, so z + z′ must be a cycle as well. We
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give a direct argument avoiding the reference to connected sum after introducing a useful
notation.

If z is any cycle and P is a nontrivial path contained in z, then there is a unique non-
trivial path P ′ also contained in z such that z = P ∪P ′ and P ∩P ′ = 2K1 (i.e., P and P ′

intersect in two isolated vertices). We write z − P for P ′.

Lemma 3.1. The sum of two compatible cycles is a cycle.

Proof. Let z, z′ be two cycles with z ∩ z′ = P a nontrivial path. Then

z + z′ = (z − P ) ∪ (z′ − P ).

The paths z − P and z′ − P intersect in the two endpoints of P , so their union is a cycle.
�

Let z ∈ Cyc(G); suppose S ⊆ Cyc(G) and span(S) = Z(G); e.g., S could be a cycle
basis. A z-sequence in S is a sequence σ = (s1, s2, . . . , sk) ∈ Sk such that

z = s1 + s2 + · · ·+ sk =

k∑
i=1

si.

We do not insist that the entries in σ need all be distinct. Of course, for every cycle z
there are z-sequences in S with all members distinct since S spans every cycle, but in order
to achieve further constraints on the sequence, it may be necessary to allow repetitions of
members of the sequence. When there are no repetitions, it will be indicated.

For a sequence σ = (s1, s2, . . . , sk) ∈ Sk, there are several notions of “well-arranged”:
σ is well-arranged with respect to intersection (wai) if for each j, 2 ≤ j ≤ k, sj intersects

the previous partial sum
∑j−1

i=1 si in a nontrivial path, that is, sj ||
(∑j−1

i=1 si

)
for 2 ≤ j ≤

k;
σ is well-arranged with respect to topology (wat) if each partial sum is a cycle; that is, if the
partial sums are topologically constant. These are the only variants of well-arrangedness
which we shall need below but for completeness we mention two more.
σ is well-arranged with respect to connectedness (wac) if each partial sum is connected;
σ is well-arranged with respect to degree (wad) if each partial sum is regular of degree 2.

By Lemma 3.1, wai =⇒ wat. However, the converse is false. Noncompatible cy-
cles may sum to a cycle (see, e.g., the example at the end of section 6), so there can be
z-sequences which are well-arranged with respect to topology but not with respect to inter-
section.

Note that wat =⇒ wac and wat =⇒ wad trivially. Conversely, if wad holds for the
z-sequence σ, then σ satisfies a weaker intersection condition that for each j, 2 ≤ j ≤ k,
sj intersects the partial sum

∑j−1
i=1 si in a subgraph with no isolated vertices. Further, this

weak intersection condition, in turn, implies wad.

4 Robustness and weak robustness
Let G be a graph and let S ⊆ Cyc(G). We define the robust closure ρ(S) (or weak robust
closure ρw(S)) of S with respect to G to be the set of all cycles in G which are the sum
of a wai (resp., wat) sequence of elements in S. A set S of cycles is called robust (weakly
robust) if ρ(S) = Cyc(G) (resp. ρw(S) = Cyc(G)). Of course, a weakly robust (and
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so also a robust) set of cycles is necessarily spanning: span(S) = Z(G). When S is a
basis for Z(G), then every cycle can be written as the sum of a unique subset of the basis,
with no element repeated. This non-repetition property of the sequence is not required for
the definition of robust and weak robust closure. However, no examples are known where
every wai (or wat) sequence which sums to some cycle z has repeated terms.

Hierarchical iteration is achieved by taking the robust span of the set of cycles produced
by the previous stage. Let ρ0(S) = S and, for integer a ≥ 1, put ρa(S) := ρ(ρa−1(S)).
Then ρa(S) ⊆ ρb(S) when a ≤ b, for a, b nonnegative integers. Also, if S ⊆ T , then
ρ(S) ⊆ ρ(T ).

We note the following for use in Section 9. Let T ⊆ Cyc(G) for some graph G. Call
T cooperative if (z, z′ ∈ T and z||z′) =⇒ z + z′ ∈ T . According to Lemma 3.1, the set
of all cycles is cooperative. From the definition of iterated robust closure and our remarks
there, if G is any graph, one has the following.

Lemma 4.1. If S ⊆ T ⊆ Cyc(G), T is cooperative, and k is a nonnegative integer, then

ρk(S) ⊆ T .

Hierarchically iterated robust closure and the lemma above are applied in Cor. 9.3 to
obtain results on the propagation of commutativity in general groupoid diagrams, especially
when the diagram has the scheme of a hypercube. (Definitions are given there.)

These results can be expressed in terms of Cayley color graphs [24]; see [16], [19],
where the concept is used but not the name. Recall that the Cayley color graph of a group
A with respect to a subset S ⊆ A is the digraph Γ(A,S) withA as its vertex-set, where for
vertices v, w, there is an arc a = (v, w) if and only if there exists an element u ∈ S such
that w = v + u. (We write “+” as we are only considering the Abelian groups underlying
vector spaces.) The arc a = (v, w) is colored by assigning to it the unique u satisfying the
equation w = v + u, and so the Cayley color graph is the ordered pair consisting of the
digraph and the corresponding arc colors.

Let A be the abelian group determined by Z(G). Each element has order 2, so the
Cayley color graph is symmetric and can be replaced by an undirected graph. To avoid
loops, one assumes that the identity element of the group is not in the set S. Plainly, S is
spanning if and only if Γ(A,S) is connected; see, e.g., [19, Lemma 3.3].

Let G be a graph, let S ⊆ Cyc(G) with span(S) = Z(G). Let ΓCyc(G,S) denote the
subgraph of Γ(A,S) induced by Cyc(G) ⊆ A. Given two cycles z, z′ in G there is a z′-z-
path in ΓCyc(G,S) joining them if and only if there is a wat z-sequence σ in S and such
that z′ = s1. It is convenient to take z′ to be the null-set of edges which is 0 in the vector
space. The set of all cycles z reachable from 0 by such paths is exactly the weak robust
span of S. The graph ΓCyc(A,S) is connected if and only if there is a ΓCyc(A,S)-path
joining 0 to each z ∈ Cyc(G), that is, if and only if S is weakly robust.

The robust span of S is the set of all vertices in the connected component of 0 in the
edge-induced subgraph Γ′Cyc(G,S) of ΓCyc(G,S) determined by those edges zz′ where
z||z′. In this case, the partial sums are successively modified by replacing a single subpath
P with a complementary path P ′ = z − P , where P ⊂ z, for z some member of S.

Instead of robustness or weak robustness, given any family S of cycles which spans
Z(G), one might investigate the least number of connected components, the least maximum
degree, or the least number of distinct topologies which occur along the ΓCyc(A,S) (or
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Γ′Cyc(A,S)) paths from 0 to z, maximized or totaled over all cycles z in G. One may also
focus only on some cycles which need to be built up. See [15] for an application to random
networks and also Proposition 10.1 below.

5 Planarity and robustness
For plane graphs, we find a robust basis; cf. [3]. In the following, we do not distinguish
between subgraphs of a plane graph and the corresponding subsets of the plane. Let G be a
2-connected plane graph. To prevent pathological embeddings, assume that each edge ofG
is embedded as a piecewise-linear curve (with a finite number of segments). Then R2 \G
is a disjoint union of open disks and, using the 2-connectedness of the graph, the closure of
each open disk is a closed disk and the boundary of each closed disk is a cycle.

Each plane graph contains exactly one unbounded region, containing points which are
arbitrarily far from any point of the graph; all the other regions are called bounded. See,
e.g., [1, Chap. 4]. LetR(G) denote the set of all bounded regions. Then

B(G) := {∂r : r ∈ R(G)}

is a basis of the cycle space of G . It is spanning since if z ∈ Cyc(G), then z =
∑
∂r,

summing over all regions r contained within z. By Euler’s Formula, the number of all
regions is equal to q − p+ 2, so |B(G)| = b(G) and hence B(G) is a cycle basis.

The interior int(P ) of a nontrivial path P is the path minus its two endpoints. A
topological path is any curve which is homeomorphic to the closed unit interval [0, 1]. A
subset of the plane is topologically path-connected if any two of its points can be joined by
a topological path which is the union of a finite number of straight line segments.

Lemma 5.1. For any 2-connected plane graphG and z ∈ Cyc(G), either z = ∂r for some
r ∈ R(G) or there exists r ∈ R(G) such that z ∩ ∂r is a nontrivial path.

Proof. Assume z 6= ∂r for all r ∈ R(G). Then ∂r ∩ z is a disjoint union of paths, some of
which can consist of an isolated vertex. Let R1,R2 denote the sets of regions r in R(G)
which are contained within z and for which H = ∂r ∩ z has at most 1, resp. at least
2, connected components. If R2 is empty, then for each edge e in z, the unique region r
whose intersection with z includes e must satisfy ∂r ∩ z is a nontrivial path. Suppose R2

is nonempty. If P is any path subgraph of z joining two successive components of z ∩ ∂r,
then r separates the interior of P from the interior of z−P in the sense that any topological
path in the plane joining a point in int(P ) to a point in int(z−P ) must intersect ∂r. See [1,
Lemma 4.1.2] for a formal proof. Let P ∗ be a path subgraph of z joining two successive
components and of minimum possible length. Then for any edge e in P ∗, there exists a
unique region r′ for which e ∈ E(z ∩ ∂r′). If z ∩ ∂r′ is not contained in P ∗, then the
path-connected set r′ would allow a topological path between some point in the interior of
P ∗ and some point in the interior of z − P ∗. But this is impossible by our remark about
the separating property of r. Hence, z ∩ ∂r′ ⊆ P ∗. By minimality of P ∗, r′ must intersect
z in a single component. Since the intersection contains an edge, it is a nontrivial path. �

Theorem 5.2. The basis R(G) of a 2-connected plane graph G is a robust basis; in fact,
each cycle is the sum of a wai sequence with no repeated elements.

Proof. Let t be the number of regions contained in z; we prove the result by induction on
t. For the basis case, t = 1 and the wai sequence has the single term z. If t > 1, then by
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Lemma 5.1, there is a region r inR(G) contained in z such that ∂r∩ z is a nontrivial path.
Hence,

z′ = z + ∂r ∈ Cyc(G)

and z′ contains every region contained in z except for r. By the induction hypothesis, there
is an ordering of the regions contained in z′ so that

z′ = ∂r1 + ∂r2 + · · ·+ ∂rt−1

and the sequence (∂r1, . . . , ∂rt−1) is well-arranged w.r.t. intersection. Therefore, concate-
nating one more term, ∂r, gives the desired wai sequence of members ofR(G). �

6 Geodesic cycles can build all cycles
If z is any cycle (or path), let `(z) := length(z) denote the number of edges. The girth
g = g(G) of a graph G is the length of a shortest cycle [1, p. 8]. A subgraph H ⊆ G is
geodesic (or isometric) if for all v, w vertices of H , distH(v, w) = distG(v, w), where for
a, b ∈ V (H), distH(a, b) is the distance from vertex a to vertex b in H - i.e., the length
of a shortest a-b-path in H (and similarly for G). In K4, any 3-cycle is geodesic but any
4-cycle is not geodesic. It is clear that a cycle of minimum length is necessarily geodesic,
so geodesic cycles always exist in any non-forest. The length of a geodesic cycle can’t
exceed twice the diameter by more than 1 as is shown in [1, proof of Prop. 1.3.2]. Hence,
in a bipartite graph, every geodesic cycle has length at most twice the diameter.

Let Geo(G) denote the set of geodesic cycles. We now show that for all graphs G,
every cycle belongs to an iterated robust span of the geodesic cycles and bound the number
of iterations needed; cf. [4].

Theorem 6.1. For every graph G and every z ∈ Cyc(G), one has

z ∈ ρ`(z)−g(G)(Geo(G)) (6.1)

Proof. Suppose G is a fixed arbitrary graph and z is any cycle of G. We write k =
k(G, z) = `(z) − g(G). The statement of the theorem holds when k = 0 since then the
cycle must be of minimum length, hence geodesic, and so in ρ0(Geo(G)). Suppose the
theorem holds when k(G, z) < n, where n is some positive integer and let z be a cycle of
G with length n+ g(G) (i.e., so that k(G, z) = n). If z is not a geodesic cycle, there exist
non-adjacent vertices v, w in z and a v-w-path P in G, intersecting z in exactly the two
vertices v, w (and no edges) such that the length of P is less than the distance between v
and w in z. Let P1, P2 be the two disjoint v-w-paths in z and put zi = P ∪ Pi, i = 1, 2.
Since (z1, z2) is a wai sequence with sum z, z ∈ ρ({z1, z2}). But both z1 and z2 are
strictly shorter than z so by the inductive hypothesis, z1, z2 ∈ ρk

′
(Geo(G)), where

k′ = max{`(z1), `(z2)} − g(G) ≤ k − 1.

Therefore, we have z in ρ1+k′
(Geo(G)) ⊆ ρk(Geo(G)) which completes the induction. �

Let c(G) denote the circumference of G, which is the length of a longest cycle.

Corollary 6.2. For every graph G, Cyc(G) ⊆ ρc(G)−g(G)(Geo(G)).
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7 Characterizing geodesic cycles in hypercubes
The Cartesian product G×G′ of graphs G = (V,E) and G′ = (V ′, E′) is the graph

V (G×G′) = V × V ′

with [(v, v′), (w,w′)] ∈ E(G×G′) iff (v = w& [v′, w′] ∈ E(G′)) or (v′ = w′& [v, w] ∈
E(G)) for all v, w in V and all v′, w′ in V ′. The distance lemma (e.g., [10, p. 100])
generalizes this

dG×G′((v, v′), (w,w′)) = dG(v, w) + dG′(v′, w′).

The hypercube Qd is the d-fold Cartesian product of K2 with itself; V (Qd) := {0, 1}d
consist of all binary d-tuples with vw ∈ E(Qd) exactly when v and w disagree in a
unique coordinate. Thus, each edge is associated with a single active coordinate in [d] :=
{1, . . . , d}. We interpret the vertices as vectors or strings as convenient. As Qd is bipartite
with diameter d, the longest geodesic cycle has length not exceeding 2d.

Write uj for the vertex with a single 1 in the j-th coordinate so that

uj : [d]→ Z2

is the characteristic function of the singleton subset {j} of [d].
Two vertices are antipodal (in the d-cube) if they have distance d (i.e., each coordinate

is changed); two vertices are diametrically opposite (in an even-length cycle) if they are at
maximum distance within the subgraph determined by the cycle. Two edges are diametri-
cally opposite (in an even-length cycle) if they correspond to diametrically opposite vertices
in the corresponding line graph. Let 0̄ := (0, 0, . . . , 0) be the 0-vector so 1̄ := (1, 1, . . . , 1)
is its antipode. The vertices determine a group under coordinatewise modulo-2 addition. In
fact, Qd is the Cayley color graph of Z2

d w.r.t. {u1, . . . , ud}.
The graph enjoys a nice property:

Homogeneity If e = vw is any edge of Qd, there is an automorphism of Qd carrying vw
to 0̄u1 and there is a color-preserving automorphism of Qd carrying vw to 0̄ur, where r is
the active coordinate in the edge vw.

Recall that a walk (of length k) in a graph G is a sequence v1, v2, . . . , vk+1 of vertices
of G such that, for each j, 1 ≤ j ≤ k, vj and vj+1 are adjacent in G. The walk is closed if
v1 = vk+1. For any length-k v-w-walk ω = (v = v1, v2, . . . , vk+1 = w) in Qd we define

Φ(ω) := (r1, r2, . . . , rk) ∈ [d]k,

where rj is the active coordinate for the j-th edge vjvj+1 of the walk, 1 ≤ j ≤ k. Con-
versely, given any vertex v ∈ V (Qd) and any k-tuple s in [d]k, s = (r1, . . . , rk), there
is a unique length-k walk ω as above with v1 = v such that Φ(ω) = s. Indeed, take
v2 = v1 + ur1 , v3 = v2 + ur2 , etc. Also, ωop := (vk+1, vk, . . . , v1) is a w-v-path and
Φ(ωop) is the reversal of Φ(ω). For each vertex v in the hypercube, there is a one-to-one
length-preserving correspondence between walks starting at v and sequences in [d].

By the distance lemma, a walk ω, in Qd, corresponds to a geodesic path if and only if
Φ(ω) is a permutation of some nonempty subset of [d]. Hence, one can characterize walks
in the hypercube which correspond to geodesic cycles. Let a ∗ b denote concatenation of
strings a, b.
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Theorem 7.1. A walk ω in Qd is a geodesic cycle if and only if ∃S ⊆ [d], |S| ≥ 2, such
that

Φ(ω) = σ ∗ σ, (7.1)

where σ is a string which is a permutation of the elements of S.

Proof. Let z be any geodesic cycle in Qd. Then for any two diametrically opposite vertices
v, w of z, the two distinct v-w-paths P, P ′ contained in z must both be geodesic paths. Let
τ be the closed walk P ′ followed by P op. By the remark above, both P and P ′ correspond
to permutations of sets S, S′, resp. But S = S′ as the walk is closed. Hence, any r in [d]
appears either twice or not at all in the string Φ(τ). If the two appearances of some r ∈ [d]
were not at diametrically opposite edges e, e′ of z, then there exist diametrically opposite
vertices v′, w′ ∈ V (z) such that both e and e′ are contained in one of the two geodesic
paths in z which is impossible.

Conversely, for a walk of length 2j satisfying the permutation condition, any subpath
of length≤ j corresponds to a permutation and is geodesic so the cycle is also geodesic. �

8 Building geodesic cycles in the hypercube
Since Qd is bipartite, shortest cycles have length ≥ 4. For distinct i, j in [d], the closed
walk ω = (v, v+ ui, v+ ui + uj , v+ uj , v) is a 4-cycle and Φ(ω) = (i, j, i, j). Moreover,
any 4-cycle, being geodesic, must be of this form. Call 4-cycles squares and let Sq(Qd) be
the set of all squares in Qd. For convenience, during this section we shall write ij for any
square s such that Φ(s) = (i, j, i, j), for distinct i, j ∈ [d].

We will use the notion of a strip of squares in some graph G. This is a sequence

σ = (s1, s2, . . . , sk), (8.1)

where each sj is a distinct 4-cycle subgraph of G, no two squares intersect unless one is
the successor of the other, and for 2 ≤ j ≤ k− 1, sj intersects its predecessor sj−1 and its
successor sj+1 in disjoint, that is, opposite, edges. The length of a strip of squares is the
number of squares in the sequence. If the length of a strip of squares σ as in (8.1) is k ≥ 2,
then we call the strip nontrivial.

For a nontrivial strip there are distinguished start and stop edges for σ: the start edge
is the edge of s1 opposite to the edge s1 ∩ s2, and the stop edge is the edge of sk opposite
to the edge sk−1 ∩ sk. The ties of a nontrivial strip of squares is the set consisting of the
start and stop edges, together with all intersection edges sj ∩ sj+1, 1 ≤ j ≤ k − 1. Let
G(σ) :=

⋃k
j=1 sj denote the graph determined by the strip of squares. A strip of length 1

has graph which is a 4-cycle and so is isomorphic to Q1 × P2. The following results can
be easily proved by induction on k.

Lemma 8.1. Let σ be a strip of squares of length k ≥ 2. Then (i) G(σ) is isomorphic to
Q1 × Pk+1, (ii) the ties of σ correspond to the edges Q1 × v for v ∈ V (Pk+1), and (iii)
the squares s1, . . . , sk are a robust basis of G(σ).

Lemma 8.2. In a hypercube, all ties of a strip of squares have the same active coordinate.
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In the following, assume that d ≥ 3, else everything is trivial. For 1 ≤ j ≤ d, define
strips σj

1 in Qd as follows. Let s2 be the unique 12 square which contains 0̄, put σ1
1 = s2,

and let [u2, u2 + u1] be the “stop edge” of s2. For 2 ≤ j ≤ d, having defined σj−1
1 let

σj
1 := σj−1

1 ∗ sj ,

where sj is the unique 1j square through the vertex u2 + · · ·+ uj−1. Let zj1 be the sum of
the squares in σj

1. that is,
zj1 := s2 + · · ·+ sj .

We prove by induction on j that

Φ(zj1) = (1, . . . , j, 1, j, j − 1, . . . , 2). (8.2)

For j = 2 the result holds and for 2 ≤ j ≤ d− 1, adding sj+1 to zj1 replaces the stop edge
of σj

1 with a sequence of three edges active consecutively in coordinates j + 1, 1, j + 1.
Thus,

Φ(zj+1
1 ) = Φ(zj1 + sj+1) = (1, . . . , j + 1, 1, j + 1, j, j − 1, . . . , 2),

establishing the induction. Let σ1 = σd
1 and put z1 := zd1 . Then

Φ(z1) = (1, 2, . . . , d, 1, d, d− 1, . . . , 3, 2).

Thus, z1 is the union of two paths P, P1 from 0̄ to 1̄, where Φ(P ) = (1, 2, . . . , d) and
Φ(P1) = (2, . . . , d, 1). Hence, z1 is a cycle of length 2d, but it is not geodesic since the
intersection edges of σ1 join non-adjacent vertices of z1.

We now show that every geodesic cycle in Qd is in the robust span of the set of squares
by continuing the above construction.

Theorem 8.3. Let z be any geodesic cycle of length 2j in Qd, d ≥ 3. Then there exists
a wai z-sequence of distinct squares z1, z2, . . . , zm, where m = j(j − 1)/2. So z ∈
ρ(Sq(Qd)).

Proof. By the homogeneity of Qd, it suffices to show that, for each positive integer d ≥ 3,
the unique geodesic cycle z in Qd through 0̄ with Φ(z) = (1, 2, . . . , d, 1, 2, . . . , d) is the
sum of a sequence σ of squares which is well-arranged w.r.t. intersection.

For 1 ≤ j ≤ d− 1, let σj denote a sequence of squares of length d− j of the form

σj := (j j + 1, j j + 2, . . . , j d);

put σ := σ1 ∗σ2 ∗ · · · ∗σd−1, the concatenation. Each σj is a strip of squares, the strips are
disjoint in the sense that no square belongs to more than one, and every square does belong
to a strip. We will show that this sequence of squares is wai and has sum z. In the sequel,
as we add squares to z1 = P ∪ P1, the path P will be unchanged while the path P1 will be
successively transformed, but without changing its length.

The sequence σ2 = (s23, s24, . . . , s2d) is defined as follows. Let s23 be the unique 23
square which includes the vertex 0̄; note that s23 intersects P1 in the path

p1,23 = (0̄, u2, u2 + u3)
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which are the first two edges of P1. Adding s23 to z1 produces a new cycle z1,23 which is
the union of P and the path P1,23 obtained by replacing (0, u2, u2 +u3) by (0, u3, u2 +u3)
in P1. Now there is a unique 24 square s24 which includes the vertex u3, and s24 intersects
P1,23 in the path

p1,24 = (u3, u2 + u3, u2 + u3 + u4)

which constitutes the second and third edges of P1,23. Put z1,24 = z1,23 + s24. Then
z1,24 = P ∪ P1,24, where

P1,24 = (0̄, u3, u3 + u4,

4∑
j=2

uj ,

5∑
j=2

uj , . . . ,

d∑
j=2

uj ,

d∑
j=1

uj).

Now there is a unique 25 square through the vertex u3 + u4 intersecting P1,24 in its third
and fourth edges, and so forth up to 2d. Adding the sum z′2 of the squares in σ2 to z1
produces

Φ(z2) = Φ(z1 + z′2) = (1, 2, . . . , d, 1, 2, d, d− 1, . . . , 3).

Proceeding in this fashion, z = zd, Φ(z) = (1, . . . , d, 1, . . . , d), and σ is a wai z-sequence
as each square after those in the initial subsequence σ1 intersects the sum of the preceding
squares in a path of length 2. �

Thus, the set Sq(Qd) of all squares inQd robustly spans the setGeo(Qd) of all geodesic
cycles in Qd,

Geo(Qd) ⊆ ρ(Sq(Qd)).

But Sq(Qd) contains d(d− 1)2d−3 squares, which is asymptotically d/4 times the size of
a cycle basis. Indeed, b(Qd) = 1 + d2d−1 − 2d = 1 + (d − 2)2d−1; e.g., [7, pp 22–23,
38–39].

In the graph Q1×G, as V (Q1) = {0, 1}, G is isomorphic to 0×G under the mapping

v 7→ (0, v),

and we write 0×H for the image under this isomorphism of a subgraph H of G in 0×G
and similarly for 1 × H . Also, if e ∈ E(G), we write e for the corresponding subgraph
(which is isomorphic to Q1), and for e ∈ E(G), each subgraph Q1 × e in Q1 × G is a
4-cycle.

We shall use the decomposition

E(Qd) = E(Q0
d) ∪ E(Q1

d) ∪ Ed, (8.3)

where
Q0

d = 0×Qd−1 and Q1
d = 1×Qd−1

denote the “bottom” and “top” subgraphs of the d-cube,

Ed := E(Qd) \ (E(Q0
d) ∪ E(Q1

d))

denotes the “side” edges of the d-cube. Similarly, there is a decomposition of the squares

Sq(Qd) = S0 ∪ S1 ∪ Sq′d, (8.4)
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where Sj := Sq(Qj
d) for j = 0, 1 and Sq′d = Sq(Qd) \ (S0 ∪ S1) (the set of all “side”

squares of Qd). Each element s in Sq′d is the product of Q1 with the unique edge e in
E(Qd−1) corresponding to the intersection of s with Q0

d.
Now we can define the Kainen basis of Qd [12]. Let BK(Qd) be the following re-

cursively given collection of squares in Qd. For d = 0 and d = 1, the set is empty, and
BK(Q2) = {Q2}. Having defined BK(Qd−1) for d ≥ 3, put

BK(Qd) := BK(Q0
d) ∪ Sq′d, (8.5)

where BK(Q0
d) is the cycle basis of Q0

d corresponding to BK(Qd−1) under the natural
isomorphism. For example, BK(Q4) consists of five squares in one of the 3-cube faces and
all twelve side-squares.

Lemma 8.4. The set BK(Qd) is a cycle basis for Qd for d ≥ 2.

Proof. By induction on d; trivial for d = 2. Now let d ≥ 3. Then BK(Qd) is independent
since by induction the squares in BK(Q0

d) in the decomposition (8.5) are independent,
while the squares in the sides, Sq′d, are independent of those in the bottom and also of each
other as each contains a unique edge in Qd−1. But BK(Qd) has the cardinality of a basis
(and so is a basis). Indeed, using (8.5), we have

|BK(Qd)| = |BK(Qd−1))|+|E(Qd−1)| = 1+(d−3)2d−2+(d−1)2d−2 = 1+(d−2)2d−1,

where the second equality again uses the inductive assumption that BK(Qd−1) is a basis.
�

We now show that this basis is sufficient to robustly span every square in Qd.

Theorem 8.5. For d ≥ 2, Sq(Qd) ⊆ ρ(BK(Qd)).

Proof. As before, the basis case d = 2 is trivial. Every square inQd which is on the bottom
is in ρ(BK(Qd−1)) by the induction hypothesis and ρ(BK(Qd−1)) ⊆ ρ(BK(Qd)) and the
side-squares are in BK(Qd) by definition. Thus, we only need to take care of the squares s
on the top; that is, s ∈ S1 = Sq(Q1

d). Each such square is contained in a unique subgraph
Q3 of Qd such that s = Q1

3. Let s′ = Q0
3. Then s′ ∈ Sq(Q0

d) so by induction there exists
σ′ a wai s′-sequence in BK(Qd−1) ⊆ BK(Qd), and we may append to this sequence the 4
side-squares of Q3 (in any order) to produce a wai sequence in BK(Qd) which sums to s.
�

Using Theorem 6.1, we see that for hypercubes every cycle is in the iterated robust
closure of BK(Qd).

Corollary 8.6. For d ≥ 2 and z any cycle in Qd, z ∈ ρ`(z)−2(BK(Qd)).

9 Application to commutativity in groupoids
The original motivation for building up cycles using wai sequences was to show that the
commutativity of certain diagrams in a groupoid category can be inferred from the commu-
tativity of a small minority of the faces of the diagram [13]. After defining these terms, we
use the results of the previous sections of this paper to prove the above claim and we show
that a similar inference cannot be made using only wat sequences.
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For a full discussion of the concept of a category, see, e.g., Mac Lane [17]. Briefly, a
(small) category C consists of a set Obj(C) of objects, a set Mor(C) of morphisms, and
two functions (“domain” and “co-domain”)

dom, cod : Mor(C)→ Obj(C).

(A morphism thus models the notion of a structure-preserving function between two math-
ematical objects.) An ordered pair (a, b) of morphisms is called composable if dom(b) =
cod(a). In addition, C is required to have a law of composition which is a function from the
set of composable morphism pairs to the set of morphisms denoted by

(a, b) 7→ a b,

where dom(a b) = dom(a) and cod(a b) = cod(b). Often the notation for composition is
in reverse order, emulating composition of functions.

It is convenient to write C(x, y) for the set of all morphisms in C with domain x and
co-domain y, and a : x → y is another notation for a ∈ C(x, y) Typically, the set of
morphisms between a given pair of objects has many elements but this set can also be
empty or a singleton. For any triple x, y, z of objects of C the law of composition gives a
function C(x, y)× C(y, z)→ C(x, z).

Composition in a category C must be associative: if (a, b) and (b, c) are composable
pairs of morphisms in C, then (ab, c) and (a, bc) are both composable pairs and we re-
quire (ab)c = a(bc). It follows by induction that one can define a unique composition
a1a2 · · · ak for any finite sequence (a1, a2, . . . , ak) of morphisms for which each succes-
sive pair (ai, ai+1) is composable. The final condition in the definition of a category C is
that for each object x, there is an identity morphism 1x ∈ C(x, x) such that if x, y are any
two objects in C, then for any morphism a in C(x, y),

a1y = a = 1xa.

Typical examples of a category are a set of topological spaces and continuous maps,
or a set of vector spaces and linear maps, etc., provided that the composition of any two
morphisms remains in the set, and of course that the identity morphisms are included.

A directed multigraph D = (V,A,Ψ) is a set V of vertices, a set A of arcs, and a
mapping Ψ : A → V × V which associates to each arc an ordered pair (v, w), where v is
its source and w its target. Arc-pairs (a, a′) are composable if the target of a is the source
of a′ and an arc sequence is a dipath if each successive pair is composable. A v-w-dipath
is a dipath where the first arc has source v and the last arc has target w. A diagram δ in
a category C is a directed multigraph D = (V,A,Ψ) (called the scheme) and functions
fV , fA such that

fV : V → obj(C), fA : A→ mor(C)
such that if Ψ(a) = (v, w) and fV (v) = x, fV (w) = y, then fA(a) ∈ C(x, y). Unless nec-
essary, we shall not distinguish between vertices of the diagram and objects of the category,
nor between arcs and morphisms. A dipath in the diagram corresponds to a composable
sequence of morphisms in the category.

A face of the diagram is a distinct pair of v-w-dipaths, for some objects v, w, and this
face is commutative if the two paths give rise to the same v-w-morphism, using the law of
composition in the category. The face is said to “commute.” The diagram is commutative
if all of its faces commute.
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The importance of commutative diagrams is that they can be used to define certain
algebraic properties, such as co-associativity, and a basic theory of algebraic syntax can be
built up from commutative diagrams - see, e.g., [18] and [5]. For an explicit recent example
from computer science, see [21, p. 13, diagram for Remark 1.2.6].

A groupoid is a category G in which every morphism is invertible; i.e., for every mor-
phism a, there is a unique morphism a−1 such that composition in either order gives 1.
Groupoids are generalizations of ordinary groups and they have become of some interest
in a number of fields recently, spreading far from initial applications in topology; see, e.g.,
[23].

A diagram in a groupoid G can be extended by including for every arc a in the diagram
a reverse arc aop and if the morphism α is assigned to a then in the extended diagram, the
inverse morphism α−1 is assigned to aop. If the original diagram commutes, then so does
the extended diagram and the reverse implication is trivial. Hence, we shall assume that all
diagrams in a groupoid category are symmetric.

Any undirected cycle in a groupoid diagram can be parsed into a closed walk by choos-
ing one of the vertices and then proceeding either clockwise or counterclockwise. The cycle
is said to g-commute if the composition along the walk is the identity; this does not depend
on how the cycle is parsed; e.g., if abc = 1, then 1 = a−11a = bca, etc. A diagram in a
groupoid category will be called g-commutative if and only if all of its cycles g-commute.

Lemma 9.1. If a groupoid diagram is g-commutative, then it is commutative.

Proof. Suppose we have a g-commutative diagram. Let P,Q be two directed paths from
v to w in the diagram and let α, β be the morphisms induced by P and Q, resp. It suffices
to assume P and Q intersect only in v and w. Let z be the cycle formed by the union of P
andQ, parsed to begin at v, follow P , and thenQ (in reverse order). Then z induces αβ−1.
So the morphism induced by z is 1 if and only if α = β. Thus, g-commutativity implies
ordinary commutativity. �

The converse is false. For example, one can have four objectsw, x, y, z with morphisms

f : w → x, g : y → x, h : y → z, i : w → z.

The corresponding diagram is automatically commutative because it has no faces but if it
is in a groupoid it is g-commutative only if fg−1hi−1 = 1, i.e., fg−1 = ih−1.

Proposition 9.2. The g-commutative cycles in a groupoid diagram form a cooperative set.

Proof. Let z, z′ be commutative cycles in a groupoid diagram, with P = z∩z′ a nontrivial
path from v to w. Let α be composition along P , β along z−P , and β′ along z′−P . Then

αβ = 1v and αβ′ = 1v

But also β−1α−1 = 1v . Hence,

1v = β−1α−1αβ′ = β−1β′.

Thus, z + z′, which is the cycle (z − P ) ∪ (z′ − P ) is commutative. �

Using Lemma 4.1 and Proposition 9.2, by Theorem 6.1 and Corollary 8.6, we get:



Paul C. Kainen: Cycle construction and geodesic cycles with application to the hypercube 41

Corollary 9.3. A diagram in a groupoid is g-commutative if its geodesic cycles g-commute.
A Qd-diagram in a groupoid is g-commutative if each z ∈ BK(Qd) g-commutes.

The sum of two commutative cycles can be a noncommutative cycle when the cy-
cles intersect in more than one nontrivial path. Label the vertices of a complete graph on
4 verticesA,B,C,D in clockwise order, where all vertices correspond to a single objectX
in the groupoid, and take all morphisms to be 1X , except for the two diagonal arcs from C
to A and from D to B, respectively, which represent some morphism x : X → X , where
x2 6= 1X . (This is a mild condition on the groupoid, satisfied for instance by the symmetric
group Sn for n ≥ 3.) Consider the two squares A,B,C,D and A,B,D,C; going around
the first square gives a 4-fold composition of identities, while the second square gives

x ◦ 1X ◦ x−1 ◦ 1X = 1X .

The two squares intersect in edgesAB andCD and the sum of the two squares is the square
A,D,B,C which induces the morphism x2 6= 1X . Thus, propagation of commutativity to
the sum can fail when cycles intersect in two disjoint paths.

10 Remarks
This section is essentially an appendix which compares other types of cycle basis to the one
we have constructed. We thank one of the referees for suggesting some of the references
given here and for other helpful comments.

A general method for generating cycle bases for Cartesian product graphs, was de-
scribed by Hammack [6]. It constructs a cycle basis for G × G′ for each pair of graphs
G,G′ with given spanning trees T, T ′ and cycle bases B,B′ for G,G′, resp. Then there is
a Hammack basis

BH(G,B, T,G′,B′, T ′) := F ∪ G ∪ G′, where

F := {e× e′ : e ∈ E(T ), e′ ∈ E(T ′)},

G := {z × y : z ∈ B, y ∈ V (G′)},

G′ := {x× z′ : x ∈ V (G), z′ ∈ B′}.

For the hypercube Qd, it is reasonable to take G = Qd−1 and G′ = Q1. So T ′ = Q1

but T could be an arbitrary spanning tree of Qd−1. There is a natural recursive choice
for T a spanning tree of Qd−1 when d ≥ 3: just keep adding in all of the “side” edges.
For example, the spanning tree constructed for Q3 looks like a ”U” standing on 4 legs. If
d ≥ 4, the Hammack bases (allowing all possible spanning trees) do not include the Kainen
basis since the latter uses only bottom squares, but all (d− 1)2d−2 side-squares, while the
former type use both top and bottom squares but only 2d−1 − 1 side squares. For example,
BH(Q4) will have 5 squares in both Q0

4 and Q1
4 but only 7 side-squares (cf. supra Lemma

8.4). Other iterated Cartesian product graphs have been explicitly studied, e.g., in [9].
Minimum cycle bases (in the sense of having minimum total sum of the lengths of their

members) for Cartesian product graphs were constructed by Imrich and Stadler [11]. Like
the Hammack bases, these depend on a spanning tree and a cycle basis, and also a vertex,
for each factor of a Cartesian product. The Imrich-Stadler basis for G×G′ has the form

BIS(G,B, T, x,G′,B′, T ′, y) := B� ∪ Gy ∪ G′x,
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where B, T, x (B′, T ′, y) are cycle basis, spanning tree, and vertex forG (and forG′, resp.),
and

B� := {e× e′ : e ∈ E(T ), e′ ∈ E(G′)} ∪ {e× e′ : e ∈ E(G), e′ ∈ E(T ′)},

Gy := {z × y : z ∈ B},

G′x := {x× z′ : z′ ∈ B′}.

If G′ = T ′, then B� = {e × e′ : e ∈ E(G), e′ ∈ E(T ′)} and G′x is empty. So
BIS(G × T ′) doesn’t depend on T or x. When G = Qd−1 and T = Q1, this is just
BK(Qd) so BIS is a generalization of BK . When the cycle bases of G and G′ are minimal
and both G and G′ have girth at least 4, [11, Thm. 8] shows that BIS(G×G′) is minimal
as well. When G′ is a tree, we can get a robustness-related result. In the graph G× T , T a
tree, a cycle z contained in a subgraph G× v′ for some v′ ∈ V (T ) is called a level cycle.

Proposition 10.1. Let G be a graph with spanning tree T , cycle-basis B, and v0 ∈ V (G).
If B is robust, then every level-cycle in T ×G is in the robust span of the basis B′

B′ := {v0 × z : z ∈ B} ∪ {e′ × e : e′ ∈ E(T ), e ∈ E(G)}.

Proof. Suppose that T has t vertices and G has p vertices and q edges. Then it is easy to
calculate that b(T ×G) = qt− p+ 1 = |B′| and B′ is a basis by [11, Thm. 4].

We prove the robustness claim by induction on the number t of vertices of T . When
t = 1, B′ = B so the result holds. Let T be any tree with t vertices, t > 1. Then there is a
vertex v in T such that v has degree 1. Let T ′ = T − v. Now consider any level cycle z′ in
T ×G. If z′ is in w ×G for some w ∈ V (T ′), then by the induction hypothesis, there is a
z′-sequence from B′ which is wai. Otherwise, if z′ is contained in v ×G, then z′ = v × z
for some z ∈ Cyc(G). Let v′ be the unique vertex of T which is adjacent to v. For the
cycle z′′ = v′ × z, there is a z′′-sequence σ′ from B′ which is wai. If the edges in z are
followed in a closed walk, say e1, . . . , ek and if e = vv′, then

σ = σ′ ∗ (e× e1, . . . , e× ek)

is a wai sequence from B′ which sums to z′. �

Recently, convex cycle bases were studied in [8]. A subgraph H of G is convex if
for every minimal-length G-path P between vertices v, w ∈ V (H), P is a subgraph of
H . In a hypercube, squares are convex subgraphs. The Imrich-Stadler basis for G ×H is
convex when the bases for G and H are convex. They note that the only convex cycles in a
hypercube are the squares. Geodesic cycles in the hypercubes are a special case of planar
partial cube and the latter have been characterized in [20].
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