UDK 621.892:621.771:621.778 Pregledni znanstveni članek ISSN 1580-2949 MTAEC9, 39(3)61(2005) D. ]URČIJA, I. MAMUZI]: LUBRICANTS FOR THE ROLLING AND DRAWING OF METALS LUBRICANTS FOR THE ROLLING AND DRAWING OF METALS MAZIVA ZA VALJANJE IN VLEČENJE KOVIN Dušan ]určija1, Ilija Mamuzi}2 1 Kneza Branimira 7, 44103 Sisak, Croatia 2 Metallurgical faculty, University of Zagreb, Aleja narodnih heroja 3, 44103 Sisak, Croatia Prejem rokopisa – received: 2004-01-19; sprejem za objavo – accepted for publication: 2005-03-24 A survey is given over lubricants for rolling and drawing of metals. Emulsions, suspensions, natural fats and oils and synthetic lubricants are presented. Fluid mechanics Reynolds equations are used for the calculation of the lubricant layer in the entering section of the metals deformation zone. Colloide chemistry is used for the analysis of surface active additions on lubricant properties, lubricant layer thickness and the wetting angle. Lubricants for hot rolling based on suspensions and glass are presented also. Special attention is given to the removing of lubricant from the surface after processing, to measures for the protection of workers and to ecological problems of used lubricants. Key words: lubricants, emulsions, suspensions, Reynolds equations, lubricants toxicity, surface roughness Dan je pregled maziv, ki se uporabljajo pri valjanju in vlečenju kovin. Opisane so emulzije, suspenzije, naravna olja in masti ter sintetična maziva. Reynoldssove enačbe iz mehanike tekočin so uporabljene za izračun debeline sloja maziva na prerezu kovine na začetku deformacijske zone. Koloidna kemija je uporabljena za opis vpliva površinsko aktivnih snovi na lastnosti maziva, na debelino sloja maziva in na kot omočljivosti. Opisana so maziva za vroče valjanje na osnovi suspenzij in stekel. Posebna pozornost je namenjena odstranitvi sloja maziva s površine kovine po procesiranju, ukrepom za zavarovanje delavcev pri delu in okolju. Ključne besede: maziva, emulzije, suspenzije, Reynoldsove enačbe, toksičnost maziv, hrapavost površine 1 INTRODUCTION The basic tribological principles presented in ref. 1 for the manufacturing of steel ropes and metal extrusion are enlarged to the use of lubricants for the rolling and drawing of metals. The methods for the deposition of lubricant in the processs of working of metals were developped gradually. In Figure 1 a modern system for lubricant deposition is shown shematically. Water, water steam and air temperarure are adjusted to the the type of lubricant by means of thermoregu-lators. The system is equipped with contact manometers, Figure 1: Functional lubrication system. A – Entering collector, B – Preparation of the mixture, C – Mixing of components, D – Feeding, E – Rollls, M – Lubricant, VMS – Water rich mixture, MS – Lubricabnt mixture, V – Water, Z – Air, REC – Lubricant recirculation Slika 1: Funkcionalni sistem za mazanje. A – Vhodni kolektor, B – Priprava zmesi, C – Mešanje komponent, D – Dodajanje, E – Valji, M – Mazivo, VMS – Zmes, bogata z vodo, MS – Zmes maziva, V – Voda, Z – Zrak, REC – Recirkulacija maziva devices for condensation, flow regulators, devices for authomatic feeding of lubricant and for the recycling and regeneration of lubricant returned in the processing. Pioner works in these topics are of Troost A., Roberts W.L., Billigman Y. and Stone M. The hydraulic resistance of emulsions at flowing through the feeding tubes and devices is specific by relation to other liquids. The hydrodynamic findings related to these topics were established by Dans and Rosii, while Darsi and Vejsbah developped the theoretical base. 2 LUBRICANTS FOR DRAWING AND ROLLING 2.1 Emulsions for cold working Emulsions are of the greatest importance for the cold working of metals. The viscosity of the systen can be calculated using Einstein’s and the Taylor’s equation1 ß = ßd 1 + 2,5

2FeO and Fe + H,OČFeO + H, (6) , 5 9nn \ Ž* iČn sr' mn v Ł" 50 V 0 č"""-------------- 0.E+00 1.E-03 2.E-03 dim 3.E-03 4.E-03 Figure 9: Influence of the thickness d/mm of the glas layer on the surface on the oxydation rate vT/(mg/cm h) of a steel Slika 9: Vpliv debeline sloja stekla na površini d/mm na hitrost oksidacije vT/(mg/cm2 h) površine jekla MATERIALI IN TEHNOLOGIJE 39 (2005) 3 65 D. ]URČIJA, I. MAMUZI]: LUBRICANTS FOR THE ROLLING AND DRAWING OF METALS By surface oxydations blistering may occur. The crushing of blisters shell lays the metal surface bare and accelerates the oxydation rate. The crytical radius of the blister in the scale layer is calculated using the equation: 2o sino 2pg 3o 1/3(pg(6+3cosö-cos3ö)) (7) Using appropriate data a radius of 0.52 mm is calculated. Soda water with the SiO2 : Na2O2 ratio of 2 -2,5 was used as lubricant in the past. 3 FUID MECHANICS BY WORKING OF METALS For the simple die design43 in Figure 10 the process of cold drawing can be described with the Reynold’s equation dp 6nv0(h0-h(x)) dx h 3 (x) with µ = µ0 exp (yp), h(x) = h0-xtana (8) The solution of this differential equation allows to calculate the pressure in the lubricant layer in the matrix; 3fi0yv0 p 1 ln y 1 hm (9) Introducing p = equation is obtained h h(x)tana\ h pm; h = hm the Mizun-Grudev 3ju0yv0 (10) Š1-exp(-ypm)tana] A die of more complex design44 is shown in Figure 11. The proces is divided in two phases and for each of them the Reynold’s equation is applied separately. The connection of the lubricant layer between the areas of thickness Ł2 and Ł1 is given by the following relation: 2 Łl(1-exp(-yp0)) 12ju0yv0lk (11) By increased drawing rate in the Reynold’e equation also the effect of inertia45 is considered in the following way: Die lubricants Figure 10: Sheme of die drawing with lubricant Slika 10: Shema vlečenja z votlico z mazivom T hi Figure 11: Sheme of drawing with a more complex die Slika 11: Shema vlečenja z bolj kompleksno votlico dp 6ß.v0 C1!x tanap dx h2(x) h3(x) 120h3(x) withC = — (16v20h2 -C1 - + 2vh(8vh + 3k); k 2 (12) 120u tana For an actual technological processing, the calculations according to equation (12) gives an increase of the pressure gradient in the lubricant layer on the die entering section for a few %. In the lubrication equations also the effect of diffusion forces can be introduced46 as result of the interaction between the lubricant and the solid metal surface: Ž(x,y) « Ł (tan2ö - 62)/e3 with: Ł « 10–20 J, O - equilibrium vetting angle and Ł - lubricant layer thickness. An analogous treatment can be evolved also for the rolling of metal, only the linear projection of the rolls vector is to be added to the rolling rate, as shown in Figure 12. The proces is described with the simplified version of the Reynold’s equation47: dx jU d2vx dp 0; dv dvy y 2 Č dx dy 0 (13) The solutions of this equation are different and for the case of calculation the roll jump48 and the lubricant back rate before the rolling gap the following solution is used: Figure 12: Sheme of rolling with lubrication Slika 12: Shema valjanja z mazanjem r = Ł 2 66 MATERIALI IN TEHNOLOGIJE 39 (2005) 3 D. ]URČIJA, I. MAMUZI]: LUBRICANTS FOR THE ROLLING AND DRAWING OF METALS dp _ 2>uw(R-4r dx yv (y0 = Ł„ + R-4r H)2-(y0-yv)2 (14) With: m - rolls angular velocity, AH - decrese of sheet thickness, R - roll radius, µ - lubricant dynamical viscosity, y0 - lubricant layer thickness in the gap section with the maximal rate of back flow of metal, Ł0 -lubricant thickness in the entering section of the deformation zone, vx ; vy - lubricant rate in Descartes coordinates. A more used form of the equation49 is: dp dx : 6fi(v0 + vR ) e0-e(x) e(x) ; e(x) = Rcosa-Rcos- feilWČČ RMS LLLLUČ >->->-Jr t—, Y fe/ XllllC. X \l_Ll_Lt, ČAO / 1 _---""\ L L L 11 VlllJ lllI *A 0 ČA9o \f i *o X Figure 13: Graphic determination of the average roughness Ras Slika 13: Grafična določitev povprečne hrapavosti Ras The surface roughness is of very great practical importance53. Its anisotrophy54 on the cold rolled sheet depends on the rolling rate, the reduction and the lubricant quality. In Figure 13 the method of determination of the roughness of the cold rolled sheet is shown. The surface of an specific roughness area can be calculated considering the coordinates of it center (x0 ; y0) and radius (r) using the equation: R R2 R„nr, —R„a< H-----a 4=(R„ 42 R -) 2R„ R -V2Ra45 (1+a 90-) R, R2 "Ra 90 + 2 x0Ra90 2Rn (19) r = Čy0+(Ra90-x0)2 considering the following relations: (0 : Ra0); (Ra45 / 42 : Ra45 / 42); (Ra90 : 0) The specific area of the roughness shape is: y, x i— x R a0-y0 F R a90 y 0 + R a0 x 0 , r2 t', — ------------------+--- 2 2 y0 . -*a90 x 0 arctan--------------- arctan - y0 x0 The center of the isotropic roughness is then: V 71 (20) On Figure 14 the roughness56 of the cold rolled sheet in dependence of its initial roughness and on Figure 15 the solutions of the equation (17)57 are shown. The roughness decreases with the increasing number of rolling passes. The rough surface of rolls can be obtained either mechanically58 or, as it is presently achieved, with electropolishing. For the case of boundary lubrication, the roughness of the sheet could be greater than that of the rolls. In this case, the rolls require a suitable surface MATERIALI IN TEHNOLOGIJE 39 (2005) 3 67 D. ]URČIJA, I. MAMUZI]: LUBRICANTS FOR THE ROLLING AND DRAWING OF METALS 1,5 1 0,5 1________ 2 3 4 Figure 14: Influence of the sheet roughness RZ / µm on the lubricant layer after e /µm cold rolling. The numbers designate the pass number Slika 14: Vpliv hrapavosti RZ / µm pločevine na sloj maziva e /µm po hladnem valjanju. Številke so oznake za valjalniške prehode treatment. Small sheet roughness smaller than 1,0E-6 m is not recommemded, since it related to sheet micro welds by the annealing of coils. The use of unproper lubricants, especially those containing graphite, can produce sooth stains which, according to Howkins and Mecallan, contain carbon, iron, oxygen or iron carbide. The coefficient of roughness transmitted from the rolls to the sheet is in case of lubrication of 0.6-0.7 and by dressing it is of 0.5. Inaccuracies of solutions of the equation (17) can result from the slippage of lubricant between the rolls and the sheet because of the to small adhesion work.The forced slippage decreases the pressure gradient in the lubricant in relation to its complete adhesion to the rolls and sheet surface(*) of: grad p / grad p* = 1/(1 + 6fißC / e02) with ßC as coefficient of forced slippage. This relation was not yet experimentally confirmed. 4 LUBRICANTS FOR HOT ROLLING The metal resistance to deformation is smaller by hot59 than by cold working and other lubricants are used, also, for hot rolling. Earlier, lubricants were used resistant to oxidation and producing smoke60, f.i. glass, Figure 15: Change of contact stresses PC/MPa, CS/MPa, lubricant layer ec/µm and wear coefficient CA along the deformation zone Lc. 1-pressure, 2-lubricant layer, 3-tangential stress, 4-wear coefficient Slika 15: Sprememba kontaktnih napetosti PC/MPa, CS/MPa sloja maziva ec/µm in koeficienta obrabe CA vdolž zone deformacije Lc. 1-pritisk, 2-sloj maziva, 3-tangencialna napetost, 4-koeficient obrabe. graphite and eutectic salts. The use of colloidal graphite was investigated in Russia allready by the 1930-thies and it is investigated also presently due to the great importance of graphite as lubricant for mechanical, metallurgical and electrical industry. The use of appropriate lubricant for hot rolling has prolonged the working life of rolls from 2600 t to 3200 t.62 The use of synthetic lubricant decreased the pressure of metal on rolls by 17 % and the coefficient of contact friction by 35 % when compared to the rolling using cooling water only63. A greater decrease of contact friction is obtained using64 synthetic lubricants than with castro oil and masut. The fat addition65 to the lubricant is by hot working greater than by cold working and it does not exceed 8 %. Also surface active subtances66 are added, such as IS-20 and P-20, both increasing the adhesion in the range of boundary friction67 by a surface roughness of (0.04–0.06) E-6. The perspective for hot rolling67 seems to be the use of solid fats, mixtures of fats and synthetic additions and of lubricant in form of air suspension. At high temperature fat and oils are not stable, f.e. palm oil is decomposed in several products which, mixed with wear products and oxide particles, contaminate the sheet surface. The process of decomposition is slowed by proper aditions and in Figure 16 the effect of sodium polyphosphate on the layering of palm oil is shown69. The maximum is by the addition of 0.15 % of sodium polyphosphate for the water emulsion with 1/7 of palm oil and for the temperature of 70 °C. As lubricant and cooling agent for hot working70, it is possible to use also water with soap addition, even sea water with soap addition. Lubricant emulsions used for hot working are rapidly degraded because of the effect of microorganisms, such as aerobic and aneorobic bacteria and mildew spores all causing earlier ageing and lowering of chemo-physical, technological and hygienic properties. The degradation can be slowed with bactericide additions. A strong antimicrobic effect is obtained by addition of thriso-diumphophate and soda in the content of 30-60 g/L of ß/s 150 ¦ -č «*. Č Č 100 N \ 50 0.2 0.6 CpFN'' PFN'% Figure 16: Layering time for the emulsion ß/s in dependence of the content of sodium polyphosphate CPFN/% Slika 16: Čas za razslojenje emulzije ß/s v odvisnosti od vsebnosti natrijevega polifosfataCPFN/% 68 MATERIALI IN TEHNOLOGIJE 39 (2005) 3 D. ]URČIJA, I. MAMUZI]: LUBRICANTS FOR THE ROLLING AND DRAWING OF METALS emulsion and of 0.4-0.5 % of phormacide. The exploitation time can be increased up to 4-6 times and the quantity of used additions significantly lowered. The dilatation of emulsion lubricant because of the increased temperature is calculated using the equation: V1 = V0Š1-Cln(1 + p/D)];V1 = V0Š1 + C(t-t0)] (21) With: V0 as initial lubricant volume by the pressure p0 and C and D empirical constants, the volume expansion coefficient: C0 = 0,0006 - 0,0008 —, -t,t0 rolling temperature and temperature of softening of the solid lubricant. From equation (21) it is possible to develop the Barussa's equation, which gives the dependence of viscosity on temperature. /u0 expyD exp — (t-t0)ď C ) (22) Very good effects are obtained by hot working using suspensions, which differ from colloide solutions being more finely dispersed. If resistant to coarsening and sticking, suspensions are stable agregates. The stability is affected73 by absorption of electrically charged particles, which promote the hydratising of their surface. The measure of hydratising is the electrokinetic potential \p, which is shown in Table 1 for some compounds. Table 1: Effects of the electrokinetic potential of some elements on clay suspensions Tabela 1: Vpliv elektrokinetičnega potenciala nekaterih elementov na suspenzije gline Absorbed ion t/)/(mV) Coagulation threshold KCl eqvi./(mg/L) Li+ -58,8 21,6 Na+ -57,6 11,2 K+ -56,4 7,8 NH4+ -56,0 5,4 Ca+2 -52,6 3,0 Sr+2 -51,8 2,6 Ba+2 -50,8 2,3 La+3 -45,5 0,86 The clay electrokinetic potential74 and the clay suspension stability decrease with the increase of the valence of the compensating ion and a greater stability is found f.e. for lithium clay and a smaller for the lantan clay. The suspension is stabilised also with addition of isopolychromate, K2CrO4 and polyakrilamide. The montmorillonite and caolinite clays are stabilised and their properties improved with addition of lime. The heat conductivity of suspensions increases linerly with the clay content and the heat capacity is, in the range of working temperature, independent of the mineral type. The viscosity of suspensions75 in homo-geneus field of gradient G and by gliding flowing for an elipsoide shape of suspension particles is: Ši* = ŠiŠ1 + Mark for mathematical hope K_____Stefan-Boltzmann constant___________________ k1_____Parameter of the kinematical inertial effect h Matrix deformation zone length according to _________Figure 10 Lc_____Scale length of deformation Š-1.0 to 0]_______ P______Pressure in lubricant layer___________________ Pc Pressure ( MPa): Pc= Pc(Lc)__________________ Rz Initial roughness (1 E-6 m = 1 µm)___________ T_____Temperature in K___________________________ T_____Time_______________________________________ U Layering rate rate for the regimes of _________compression and coalescence________________ v0, vr Sheet rate and circumferential rolling rate VRx VT Projection of the roll rate vector on the ordinate _x_____________________________________________ Speed temperature corrosion___________________ Loose aerosol (weight %) Mark for infinite 7 REFERENCES 1]určija D., Materiali in tehnologije 37 (2003) 5, 237 Peši} M., Milenkovi} V., Hladno izvlačenje žica, šipki i cevi, Tehnička knjiga, Beograd 1965, 227 3Dolženkov F. E., Stalj 57(1987) 6, 45 4Troost A., Arch. Eisenhüttenwesens 40 (1969) 5, 387-394 Roberts W.L., Iron and Steel Eng., 42 (1965) 1, 75-84 Billigmann Y., Pichete W., Stahl und Eisen 78 (1958) 6, 345-360 Drake H.I., Iron and Steel Eng., 42 (1965) 12, 110-116 Losher H., Neue Hütte 7 (1962) 1, 30-32 Roberts W. L., Blast.Furn. and Steel Plant 65 (1968) 5, 382 Stone M., Iron and Steel Eng., 33 (1956) 12, 55 5Gurbanov R. S., Dadaš-Zade M. A., Izvestija Neft i Gaz 30 (1987) 7, 58 Belosevič V. K., Netesov N. P., Meleško V. I., Emulsii i smazki pri holodnoj prokatke, Metallurgija, Moskva 1976 7Rozencvajg A. K., Žurnal prikladnoj himii 58 (1985) 10, 2243-2249 Rozencvajg A. K., Žurnal prikladnoj himii 58 (1985) 6, 1290-1298 Pavlova-Verevkina O. B., Aprosin Ju. D., Novopašina L. V., Kolloid-nij Žurnal 49 (1987) 1, 178-182 Kolomicev B. A., Kolmogorov V. L., Nedovizij I. N., Stalj 49 (1979), 376-377 10Cichelli A. E., Iron and Steel Engineer 51(1974) 6, 56-62 Safjanov M. M., Pargamonov E. A., Troš}enkov N. A., Stalj 44 (1974) 3, 233-236 Starčenko D. I., Kaplanov V. I., Sidorenko A. V., Stalj 44 (1974) 2, 149-150 Tokarev Ju. A., Maslov A. I., Radjukevič L. V., Stalj 44 (1974) 9, 828 Ismajlova V. N., Kantor L. A., Summ B. D., Kolloidnij Žurnal 46 (1984) 4, 782-785 13Černov P. P., Metallurg 27 (1982) 4, 32-34 14Netesov N. P., Pivovarov V. F., Dobronravrov A. I., Stalj 57 (1987) 6, 46-47 Devlikamov V. V., Salimgarev T. F., Semenova L. V., Izvestija Neft i Gaz 28 (1985) 3, 44 Čistjakov B. E., Bedenko B. G., Himija i tehnologija topliv i masel 27 (1982) 3, 22-23 Bedenko B. G., Liisenko V. I., Kolloidnij Žurnal 43 (1981) 3, 553-556 MATERIALI IN TEHNOLOGIJE 39 (2005) 3 73 D. ]URČIJA, I. MAMUZI]: LUBRICANTS FOR THE ROLLING AND DRAWING OF METALS 17Grudev A. P., Razmahnin A. D., Izvestija AN SSSR Metalli 26 (1984) 2, 86–88 18Hentov V. Ja., Fokin V. P., Ostrikov M. S., Žurnal prikladnoj himii 46 (1973) 8, 1777 19Abramzov A. A., Slavina Z. N., Kolloidnij Žurnal 31 (1969) 635 Abramzov A. A., Slavin A. A., Žurnal fizičeskoj himii 44 (1970) 564–566 20Azizov V. G., Izvestija Neft i Gaz 29 (1986) 10, 56 Kuliev P. Š., Zakirov P. A., Nasirov M. M., Izvestija Neft i Gaz 28 (1985) 10, 43 21Lundina V. G., Kurnikova L. I., Kononenko V. I., Kolloidnij Žurnal 47 (1985) 5, 878–883 22Abramzov A. A., Slavin A. A., Žurnal fizičeskoj himii 44 (1970), 564 Abramzov A. A., Volfenzon I. I., Kiseleva V. M., Žurnal prikladnoj himii 45 (1972) 12, 2700 23Reusova L. A., Liikov M. B., Teoretičeskie osnovii himičeskoj tehnologii 18 (1984) 3, 407 24Fuks G. I., Fuks I. G., Himija i tehnologija topliv i masel 29 (1984) 3, 10–12 Fuks G. I., Trenie i iznos 4 (1983) 3, 398–415 25Swern D., Industrijski proizvodi ulja i masti po Baileyu, Znanje Zagreb 1972 26Bolley D. S., J.Am. Oil Chemista Soc., 30 (1953) 396–398 27Christopherson D. G., Naylor H., Proc.Instn.Mech.Engrs, 1955, 169 Cristopoherson D. G., Naylor H., Wire Production 4 (1955) 5, 45 28Perlin I. L., Šapiro V. Ja., Školjnikov E. L., Izvestija Cvetnaja metallurgija 6 (1963) 5, 130–137 29Zaskaljko P. P., Kičkin G. I., Lašhi V. L., Himija i tehnologija topliv i masel 14 (1969) 6, 30 Zaskaljko P. P., Kičkin G. I., Vipper A. B., Neftepererabotka i Neftehinija 10 (1970) 4, 28–30 30Miheev V. A., Nikolaev V. V., Kulikov N. N., Neftepererabotka i Neftehinija 17 (1977) 6, 30–33 31Groszek A. I., ASLE Trans., 9 (1966) 67 32Lunkov Ju. B., Alimov A. P., Kagan L. M., Neftehimija 27 (1987) 6, 822 33Bakalejnikov M. B., Samgina V. V., Istomin V. A., Neftepere-rabotka i Neftehimija 11 (1971) 5, 24–26 Subotin G. K., Stalj 58 (1988) 1, 74 34 Guljaeva A. G., Iljčenko T. G., Kuznecov V. A., Neftepererabotka i Neftehimija 11 (1971) 4, 20–22 35Ahmedov A. I., Levšina A. M., Isakov E. U., Neftehimija 26 (1986) 5, 716 36Sanin P. I., Kuzmina G. N., Lozovoj Ju. A., Neftehimija 26 (1986) 6, 825 37Lunkov Ju. B., Alimov A. P., Kagan L. H., Neftehimija 27 (1987) 6, 825 38Arsi} S., Maziva i podmazivanje, JUGOMA, Zagreb 1986, 376 39Golja M., Tehnologija podmazivanja pribora i alata za vrijeme procesa valjanja, Elaborat za valjaonicu bešavnih cijevi Željezare Sisak, Sisak 1984 40Golja M., Mamuzi} I., Doprinos istraživanju vrsta maziva u proizvodnji bešavnih cijevi, Elaborat za valjaonicu bešavnih cijevi Željezara Sisak, Sisak 1985 41Nigmatullina A. G., Mavljutov M. P., Kravcov V. M., Izvestija Neft i Gaz 27 (1984) 11, 19 42Buler P. P., Lazutkina O. P., Juškova V. A., Zaš}ita metallov 23 (1987) 4, 665–668 43Kolmogorov G. L., Izvestija Černaja netallurgija 26 (1983) 10, 68 44Kolmogorov G. L., Izvestija Černaja metallurgija 16 (1973) 8, 76 45Kolmogorov G. L., Sjanov V. P., Izvestija Černaja metallurgija 30 (1987) 10, 35 46Romanov A. S., Izvestija Neft i Gaz 30 (1987) 7, 66 47]určija D., Mamuzi} I., Tehnika-RGM 32 (1981) 10, 1459–1462 ]určija D., Mamuzi} I., Tehnika-RGM 34 (1983) 8, 1075–1078 48Kolmogorov G. L., Gnedenko V. V., Izvestija Černaja metallurgija 14 (1971) 8, 117 Meleško V. I., Mazur V. L., Timošenko V. I., Izvestija Černaja me-tallurgija 17 (1974) 5, 112 49Grudev A. P., Tilik V. T., Tehnologičeskie smazki v prokatnom proizvodstve, Metallurgija, Moskva 1975 50Mazur V. L., Timošenko V. I., Varivoda I. E., Izvestija Černaja metallurgija 25 (1982) 4, 44–47 Mazur V. L., Timošenko V. I., Varivoda I. E., Izvestija Černaja metallurgija 23 (1980) 9, 81–85 51]určija D., Železarski Zbornik 21 (1987) 3, 131–136 ]určija D., Železarski Zbornik 22 (1988) 3, 95–99 ]určija D., Strojarstvo 30 (1988) 3–4, 191–197 52Grudev A. P., Zilberg Ju. V., Tilik V. Z., Trenie i smazka pri obrabotke metallov davleniem, Metallurgija, Moskva 1982, 312 53Konstanciak E., Budzik R., Wazkielewicz, Metalurgija 42 (2003), 123–127 54Christensen H., Wear 17 (1971) 2, 149–162 55Meerovič I. M., Evseev O. M., Stalj 57 (1987) 4, 62 56Nikolaev V. A., Kovalenko L. A., Vasiljev A. G., Izvestija Černaja metallurgija 30 (1987) 9, 46 57Mazur V. L., Timošenko V. I., Izvestija Černaja metallurgija 25 (1982) 6, 58 58Andreev V. I., Derevjanko V. I., Beda N. I., Stalj 49 (1979) 10, 780–782 59Kovac F., Dzubinsky M., Metalurgija 42 (2003) 1, 15–20 Poliak E. I., Jonas J., Acta mater. 44 (1996) 127 60Meleško V. I., Tubolcev L. G., Adamskij S. D., Stalj 49 (1979) 10, 765–769 61Ovčarenko P. D., Moraru V. K., Moraru L. E., Kolloidnij Žurnal 42 (1980) 5, 880–885 62Grudev A. P., Burbelo N. T., Tilik V. T., Stalj 49 (1979) 10, 773–776 63Starčenko D. I., Kaplanov V. I., Švecov V. V., Stalj 49 (1979) 10, 776–778 64Grudev A. P., Beda N. I., Kacnelson G. M., Stalj 42 (1972) 5, 422–425 65Neport G., Iron and Steel Engineer 48 (1971) 4, 103–104 66Grigoreva N. I., Ivankina E. B., Badiištova K. M., Neftepererabotka i Neftehimija (1976) 3, 20–22 Frolov V. F., Osada Ja. E., Timošenko V. L., Stalj 49 (1979) 1, 53–55 67Barszcz M., Hutnik 25 (1975) 2, 61–65 68Edmundson R., Iron and Steel Engineer 47 (1970) 10, 66–69 Boyce A. J., Iron and Steel engineer 51 (1974) 2, 65 Šneerov B. Ja., Molčanov M. M., Saltavec V. I., Stalj 43 (1973) 5, 434–435 Netesov N.P., Djuldina E.V., Kločkovskij S.P., Stalj 55 (1985) 7, 43–45 69Fedorov V. I., Stalj 55 (1985) 7, 42–43 70Netesov N. P., Pivovarov V. P., Čelenko V. P., Metalurg 27 (1982) 1, 20 Zilberg Ju. V., Kacnelson G. M., Ivanov K. A., Stalj 40 (1970) 4, 325–327 Šneerov B. Ja., Šiškin A. I., Gunin V. I., Stalj 40 (1970) 2, 147–148 Belosevič V. K., Stalj 42 (1972) 11, 1018–1019 71Kačan V. I., Tilik V. T., Vjazovskaja S. S., Stalj 55(1985) 7, 48–50 Kačan V. I., Alpateva T. A., Grigoreva G. P., Mikrobiologičeskij Žurnal 43 (1981) 4, 502–506 72Verčon J., Maziva i podmazivanje, JUGOMA, Zagreb 1986 Belosevič B. K., Netesov N. P., Meleško V. I., Emulsii i smazki pri holodnoj prokatke, Metallurgija, Moskva 1976 73Galinker I. I., Medvedev I. P., Fizičeskaja i kolloidnaja himija, Viisšaja škola, Moskva 1972, 254 74Kister E. G., Pondoeva E. I., Popkova L. M., Kolloidnij Žurnal 29 (1967) 1, 104–111 75Malomuž N. P., Trojanovskij V. S., Žurnal fizičeskoj himii 57 (1983) 12, 2967–2970 Pokrovskij V. N., Uspehi fizičeskih nauk 105 (1971) 625 76Hromiih V. P., Žurnal fizičeskoj himii 55 (1981) 8, 1329 Hromiih V. P., Žurnal fizičeskoj himii 56 (1983) 4, 896–899 77Kravčik A. E., Kucenkov Ju. B., Sevjuškin I. L., Žurnal prikladnoj himii 60 (1987) 12, 2635–2639 78Dembovskij C. A., Čečetkina E. A., Žurnal fizičeskoj himii 57 (1983) 3, 593–596 74 MATERIALI IN TEHNOLOGIJE 39 (2005) 3 D. ]URČIJA, I. MAMUZI]: LUBRICANTS FOR THE ROLLING AND DRAWING OF METALS 79Miiler R. L., Žurnal prikladnoj himii 28 (1955) 5, 1077 80Džavukcjan S. G., Žurnal prikladnoj himii 59 (1986) 6, 1218–1224 81Grindevskij V. I., Klepkov V. V., Gorjačeva G. S., Stalj 51 (1981) 11, 28–29 82Subotin G. K., Stalj 58 (1988) 1, 74 83Tarasenko V. A., Dovbiiš N. V., Uvarova R. E., Stalj 47 (1977) 5, 440 84Grebenš}nikova A. Z., Dubonosov G. V., Iliniih R. P., Stalj 39 (1969) 11, 1030 85Kočergin V. P., Prostakov M. E., Tarasova A. A., Stalj 29 (1959) 3, 252–254 86Grinberg D. L., Abramenko V. I., Kuzkina T. A., Stalj 56 (1986) 5, 49–51 87Bogojavlevskaja N. V., Tretjakova V. D., Volkov Ju. M., Stalj 44 (1974) 8, 731–734 Bogojavlevskaja N. V., Tretjakova V. D., Zaš}ita metallov 8 (1972) 2, 227–229 Bogojavlevskaja N. V., Tretjakova V. D., Bedovik S. S., Zaš}ita metallov 8 (1972) 3, 335–337 Agrant B. A., Izvetija Cvetnaja metallurgija 5 (1962) 4, 174–179 88Lipuhin Ju. V., Pimenov A. F., Butiilkina L. I., Stalj 51 (1981) 11, 54–56 Guseva L. N., kondratev V. N., Petrova G. A., Stalj 53 (1983) 11, 52–53 89Ljudvig Dž. P., Blast Furance and Steel Plant 57 (1969) 8, 641–651 Belosevič V. K., Netesov N. P., Soveršenstvovanie processa holodnoj prokati, Metallurgija, Moskva 1971 90Pacekin V. P., Kislicina N. P., Rahimov K. Z., Stalj 56 (1986) 5, 71–73 91Podobaev N. I., Š}eglova M. N., Zaš}ita metallov 8 (1972) 1, 25 Oše E. K., Zimina T. Ju., Fokin M. N., Zaš}ita metallov 23 (1987) 3, 406 92Š}elčkova L. N., Savaljev S. S., Mohov A. G., Zaš}ita metallov 12 (1976) 1, 112 93Kuprin V.P., Marjanskij Ju.B., Danilov F.I., Kolloidnij Žurnal 49(1987) 1, 158 94Nečaev E. A., Volgina V. A., Elektrohimija 14 (1978) 4, 555 Nečaev E. A., Volgina V. A., Elektrohimija 14 (1978) 3, 417 Nečaev E. A., Elektrohimija 14 (1978) 9, 1403 Nečaev E. A., Šajdulin P. Ja., Elektrohimija 14 (1978) 10, 1590 95Nečaev E. A., Kuprin V. P., Morzov V. N., Kolloidnij Žurnal 48 (1986) 1, 173 96Rajkovi} M., Maziva i podmazivanje, JUGOMA Zagreb, 1986, 709–713 97Anisimov I. I., Gigiena i zdorovliie 40 (1971) 7, 14–21 98Wolf N., Momčilovi} N., Mateškovi} P., Kemija u Industriji 37 (1988) 2, 51–57 99Nahal K., Goriva i maziva 35 (1996) 5, 343–358 100Belosevič V. K., Netesov N. P., Meleško V. I., Emulsii i smazki pri holodnoj prokate, Metallurgija, Moskva 1976 101Pediši} Lj., Šviglin-Marasovi} M., Mandakovi} R., Kramer B., An|eli} V., Goriva i maziva 39 (2000) 3, 179 102Vržina J., Schiesi V., Pavli} Ž., Ulm L., Šateva M., Goriva i maziva 40 (2001) 6, 355 103Baranik V. P., Bondarčuk Ju. V., Zaš}ita metallov 12 (1976) 3, 337 104Baranik V. P., Bondarčuk Ju. V., Zaš}ita metallov 12 (1976) 3, 350 105Bambi} J., Podobnik M., Žuti} G., Goriva i maziva 37 (1998) 3, 151–211 106Vržina J., Schiesi V., Šateva M., Goriva i maziva 39 (2000) 4, 229–244 107Openshaw M., Immediate improvements using fuel additives, XXXV Symposium FULES 2002, Poreč 108Pediši} Lj., Goriva i maziva 41 (2002) 5, 309 109Latšin V. K., Šor G. I., Ivankina Z. B., Himija i tehnologija topliv i masel 29 (1984) 9, 21 110Litovčenko N. V., Stalj 55 (1985) 7, 45–48 MATERIALI IN TEHNOLOGIJE 39 (2005) 3 75