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Preface

The series of workshops on ”What Comes Beyond the Standard Models?” started
in 1998 with the idea of Norma and Holger for organizing a real workshop, in
which participants would spend most of the time in discussions, confronting
different approaches and ideas. It is the seventeenth workshop which took place
this year in the picturesque town of Bled by the lake of the same name, surrounded
by beautiful mountains and offering pleasant walks and mountaineering.
In our very open minded, friendly, cooperative, long, tough and demanding dis-
cussions several physicists and even some mathematicians have contributed. Most
of topics presented and discussed in our Bled workshops concern the proposals
how to explain physics beyond the so far accepted and experimentally confirmed
both standard models - in elementary particle physics and cosmology. Although
most of participants are theoretical physicists, many of them with their own sug-
gestions how to make the next step beyond the accepted models and theories,
experts from experimental laboratories were very appreciated, helping a lot to
understand what do measurements really tell and which kinds of predictions can
best be tested.
The (long) presentations (with breaks and continuations over several days), fol-
lowed by very detailed discussions, have been extremely useful, at least for the
organizers. We hope and believe, however, that this is the case also for most of
participants, including students. Many a time, namely, talks turned into very
pedagogical presentations in order to clarify the assumptions and the detailed
steps, analysing the ideas, statements, proofs of statements and possible predic-
tions, confronting participants’ proposals with the proposals in the literature or
with proposals of the other participants, so that all possible weak points of the
proposals showed up very clearly. The ideas therefore seem to develop in these
years considerably faster than they would without our workshops.
In the seventeen years of our workshops the organizers, together with the par-
ticipants, are trying to answer several open questions of the elementary particle
physics and cosmology. Experiments have made large steps in this time. Among
the most notable and might be also among the most important ones was two years
ago the LHC confirmation that the scalar field, the Higgs, is like other fermionic
and bosonic fields - just a field. And yet it is a very unusual field: A boson with
the fractional weak and hyper charges. Do we have the explanation for that? Can
we explain the origin of families and Yukawa couplings? Can we understand the
origin of the matter-antimatter asymmetry? Can we explain all the assumptions of
the standard Model?
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The evolution of the universe and the dynamics of it on all levels, from the elemen-
tary particles to the matter, can be understood only, if we have the theory behind,
which explains the observations and predicts new phenomena. Should we design
theories and models in steps, each one more or less adapted for explaining a new
experimental observation? Or can we suggest the theory which answers several
(all?) open questions at the same time? Do the laws of Nature emerge at the low
energy regime in the way we observe them? Or are the laws of Nature simple and
elegant on all scales, while the observation of systems of many degrees of freedom
do not show up the laws behind in a transparent way?
Can it happen that at the LHC no new fields, scalars, vectors or fermions will be
observed, so that there will be no sign which will help to make a trustable step
beyond the standard model?
If trusting the spin-charge-family theory, predicting the fourth family, coupled to the
observed three families, and several scalar fields, this is not possible. This theory
offers the explanation for all the assumptions of the standard model. It answers the
question why does the Higgs’s scalar (in this theory a superposition of several
scalar fields) carry the weak charge and the hyper charge equal to (±1

2
, ∓1

2
),

respectively. Since these scalar fields carry also quantum numbers of the family
groups, the theory offers as well the explanation for the origin of the Yukawa
couplings. Predicting the second group of four families, the lowest of these four
families might explain the origin of the dark matter.
There are colour triplet scalars in this theory, transforming antileptons and anti-
quarks into quarks and back, transforming antimatter into matter and back. The
scalar condensate of two right handed neutrinos with the family quantum num-
bers of the upper four families breaks the matter-antimatter symmetry. This could,
hopefully, explain the observed matter-antimatter asymmetry. What is beautiful in
this theory is, that a simple and elegant starting action has (only) all the needed
degrees of freedom to explain in the low energy regime all the properties of quarks
and leptons and of the vector and scalar gauge fields, predicting even how will
more accurate measurements of the mixing matrices among the observed families
of fermions change the values. The experiments might observe, due to this theory,
that the space time is more than 3+1 dimensional.
There are inventive new predictions in this proceeding, in the main part and also
in the Discussion section: Like the one that the local gauge symmetries appear
due to the spontaneous break of the Lorentz invariance and supersymmetry, and
there are interesting trials to built the origin of all the gauge fields in a common
theory within the theory of higher spins, there are trials to explain emergency of
the space and the influence of the future on the past.
There are attempts to extend the standard model with new fields of fermionic and
bosonic origin to explain mass matrices and correspondingly masses and mixing
matrices of quarks and leptons. Although it is not easy to see, to which extent
different theories overlap when describing the same physical phenomena, yet our
discussions helped to clarify many points a lot.
There is the work of new string theory, made of non interacting equal scalar objects,
which reproduces the Veneziano scattering amplitude. These objects, which do
not recognize ”their own identity” when they meet with another group of equal
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objects and the scattering matrix in the Hilbert space of which is equal to unity,
manifest all the properties of strings, with the tension included.
It is the experimental contribution presenting the dark matter observations of
DAMA/LIBRA through more than a decade of years. It includes also explanation
why other experiments have not confirmed the DAMA/LIBRA experiments yet.
There are works trying to explain the direct observations from different laborato-
ries with the idea that new particles, like OHe, exist and form the dark matter.
There were works in this year workshop with very promising ideas and develop-
ments of the ideas, the authors of which have not succeeded to send in time their
contributions. And there were very discerning discussions among the participants,
for which there has been not enough of time to matured the discussions into the
written contribution.
Since the time to prepare the proceedings is indeed very short, three months if
vacations are not counted, authors did not have a time to polish their contributions
carefully enough.
Bled Workshops owe their success to participants who have at Bled in the heart of
Slovene Julian Alps enabled friendly and active sharing of information and ideas,
yet their success was boosted by vidoeconferences. Questions and answers as well
as lectures enabled by M.Yu. Khlopov via Virtual Institute of Astroparticle Physics
(www.cosmovia.org) of APC have in ample discussions helped to resolve many
dilemmas.
The reader can find the records of all the talks delivered by cosmovia since Bled
2009 on www.cosmovia.org in Previous - Conferences. The four talks delivered
by: R.Bernabei (Dark matter particles in the galactic halo), M. Laletin and M.Yu.
Khlopov (Dark Atoms and their Decaying Constituents), N.S. Mankoč Borštnik
(The Spin-Charge-Family theory offers the explanation for the assumptions of the
Standard model, for the Dark matter, for the Matter-antimatter asymmetry), H.B.F.
Nielsen (Novel string field theory), can be accessed directly at
http://viavca.in2p3.fr/what comes beyond the standard models xvii.html
Most of the talks can be found on the workshop homepage
http://bsm.fmf.uni-lj.si/.
Let us conclude this preface by thanking cordially and warmly to all the partici-
pants, present personally or through the teleconferences at the Bled workshop, for
their excellent presentations and in particular for really fruitful discussions and
the good and friendly working atmosphere.
The workshops take place in the house gifted to the Society of Mathematicians,
Physicists and Astronomers of Slovenia by the Slovenian mathematician Josip
Plemelj, well known to the participants by his work in complex algebra.

Norma Mankoč Borštnik, Holger Bech Nielsen, Maxim Y. Khlopov,
(the Organizing comittee)

Norma Mankoč Borštnik, Holger Bech Nielsen, Dragan Lukman,
(the Editors)

Ljubljana, December 2014
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1 Predgovor (Preface in Slovenian Language)

Serija delavnic ”Kako preseči oba standardna modela, kozmološkega in elek-
trošibkega” (”What Comes Beyond the Standard Models?”) se je začela leta 1998
z idejo Norme in Holgerja, da bi organizirali delavnice, v katerih bi udeleženci
v izčrpnih diskusijah kritično soočili različne ideje in teorije. Letos smo imeli
sedemnajsto delavnico v mestu Bled ob slikovitem jezeru, kjer prijetni sprehodi in
pohodi na čudovite gore, ki kipijo nad mestom, ponujajo priložnosti in vzpodbudo
za diskusije.
K našim zelo odprtim, prijateljskim, dolgim in zahtevnim diskusijam, polnim
iskrivega sodelovanja, je prispevalo veliko fizikov in celo nekaj matematikov.
Večina predlogov teorij in modelov, predstavljenih in diskutiranih na naših ble-
jskih delavnicah, išče odgovore na vprašanja, ki jih v fizikalni skupnosti sprejeta
in s številnimi poskusi potrjena standardni model osnovnih fermionskih in bo-
zonskih polj ter kozmološki standardni model puščata odprta. Čeprav je večina
udeležencev teoretičnih fizikov, mnogi z lastnimi idejami kako narediti naslednji
korak onkraj sprejetih modelov in teorij, so še posebej dobrodošli predstavniki
eksperimentalnih laboratorijev, ki nam pomagajo v odprtih diskusijah razjasniti
resnično sporočilo meritev in katere napovedi lahko poskusi najzanesljiveje pre-
verijo.
Organizatorji moramo priznati, da smo se na blejskih delavnicah v (dolgih) pred-
stavitvah (z odmori in nadaljevanji čez več dni), ki so jim sledile zelo podrobne
diskusije, naučili veliko, morda več kot večina udeležencev. Upamo in verjamemo,
da so veliko odnesli tudi študentje in večina udeležencev. Velikokrat so se pre-
davanja spremenila v zelo pedagoške predstavitve, ki so pojasnile predpostavke
in podrobne korake, soočile predstavljene predloge s predlogi v literaturi ali s
predlogi ostalih udeležencev ter jasno pokazale, kje utegnejo tičati šibke točke
predlogov. Zdi se, da so se ideje v teh letih razvijale bistveno hitreje, zahvaljujoč
prav tem delavnicam.
V teh sedemnajstih letih delavnic smo organizatorji skupaj z udeleženci poskusili
odgovoriti na marsikatero odprto vprašanje v fiziki osnovnih delcev in kozmologiji.
Na vsakoletnem napovedniku naše delavnice objavimo zbirko odprtih vprašanj,
na katera bi udeleženci utegnili predlagati rešitve. V sedemnajstih letih so eksperi-
menti napravili velike korake. Med najpomembnejšimi dosežki je potrditev LHC,
da je skalarno pole, Higgsov delec, prav tako polje kot ostala fermionska in bo-
zonska polja. In vendar je to skalarno polje zelo nenavadno polje: Je bozon s
polovičnim šibkim in hiper nabojem. Ali to razumemo? Ali lahko pojasnimo
izvor družin in Yukawinih sklopitev? Znamo pojasniti nesimetrijo med snovjo in
antisnovjo v vesolju? Znamo razložiti privzetke standardnega modela?
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Dinamiko vesolja na vseh nivojih, od osnovnih delcev do snovi, lahko razumemo
samo, če ponudimo teorijo, ki opaženja razloži in napove nova spoznanja. Je prava
pot pri postavljanju teorij ta, da prilagodimo teorijo eksperimentalnim spoznanjem
po korakih? Ali lahko ponudimo teorijo, ki odgovori na mnoga (morda vsa) doslej
odprta vprašanja?
Ali se naravni zakoni manifestirajo le pri nizkih energijah? Ali pa so preprosti in
elegantni na vseh nivojih, le da jih pri nizkih energijah opazujemo v sistemih z
velikim številom sodelujočih, kjer jih je težko razspoznati?
Kaj pa, če na LHC ne bodo izmerili nobenega novega polja, ne skalarja, ne vek-
torja, ne fermiona in ne bo ponudil eksperiment nobenega napotka, kako izbrati
naslednji korak od standardnega modela?
Če ima teorija spina, naboja in družin prav, potem bodo na LHC izmerili četrto
družino, ki je z že opaženimi sklopljena ter verjetno še kakšnega od dveh tripletov
in treh singletov, ki jih teorija napoveduje. Teorija razloži vse predpostavke stan-
dardnega modela, pojasni izvor družin kvarkov in leptonov, vektorskih umeritvenih
polj in izvor Higgsovega skalarja ter Yukawinih sklopitev. Razloži tudi, zakaj ima
Higgsov skalar polštevilčen šibki in hiper naboj. To lastnost imata oba tripleta (ki
nosita tudi družinska kvantna števila) in trije singleti skalarnih polj, ki poskrbijo
za masne matrike kvarkov in leptonov ter razložijo Yukawine sklopitve. Teorija
napove še eno skupino štirih družin kvarkov in leptonov. Družina z najnižjo
energijo razloži nastanek temne snovi.
Teorija napove skupino skalarnih polj, ki so barvni tripleti. Povzročijo rojstvo
kvarkov iz antileptonov in antikvarkov, s tem pa tudi rojstvo nukleonov. Reak-
cije tečejo tudi v obratni smeri. Kondenzat iz dveh desnoročnih nevtrinov z
družinskimi kvantnimi števili zgornjih štirih družin zlomi simetrijo med obem
reakcijama in ponudi odgovor na vprašanje, kaj je vzrok presežku snovi nad
antisnovjo v opazljivem delu vesolja.
Teorija je lepa in elegantna, ker ponudi preprosta začetna akcija vsa fermionska
(družine kvarkov in leptonov z opaženimi lastnostmi) in bozonska (vektorska
umeritvena polja in skalarna polja) polja, ki so že opažena, direktno ali indirektno,
napove nove fermione, nova skalarna polja in napove, kako se bodo spreminjali
matrični elementi mešalne matrike pri bolj natančnih meritvah. Novi eksperimenti
bodo prej ali slej dokazali, če ima teorija ,,prav”, da je dimenzija prostora-časa več
kot le (3+ 1).
V zborniku so nove zelo preroške teorije: Lokalne umeritvene simetrije se pojavijo
kot odziv sistema na spontano zlomitev Lorentzove invariance, pa tudi super-
simetrije. Zanimiva je prav gotovo tudi teorija, ki gradi na spinih večjih kot 2, da
razloži vsa umeritvena polja. Zbornik vsebuje tudi prispevek, ki razširi standardni
model z novimi fermionskimi in bozonskimi polji, da bi pojasnil masne matrike
kvarkov in leptonov, ter s tem njihove mase in mešalne matrike.
Je tudi delo, nova teorija strune, ki jo sestavljajo enaki skalarni objekti, ki med
seboj sploh ne interagirajo. In vendar reproducira teorija Venezianovo sipalno
amplitudo. Ti objekti, ki ,,pozabijo”, ko srečajo drugo struno iz enakih objektov,
kateri struni so pripadali in katerih sipalna matrika v njihovem Hilbertovem
prostoru je identiteta, manifestirajo vse lastnosti teorije bozonskih strun, vklučno
z napetostjo strune. Fermionska inačica nove strune je v delu.
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Vselej smo veseli eksperimentalnih prispevkov, ki tokrat predstavi več kot de-
setletje meritev temne snovi na DAMA/LIBRA. Pojasni tudi, zakaj jih ostali eksper-
imenti še niso potrdili.
Predstavljeni sta tudi deli, ki poskušata razložiti obstoječe neskladje med ra-
zličnimi laboratotiji, ki merijo direktno interakcijo z delci temne snovi. Avtorji
študirajo interakcijo novih delcev, kot je OHe, z jedri v merilnih aparaturah.
Je tudi nekaj del, ki so bila predstavljena na delavnici, ki pa jih avtorji v tako
kratkem času niso uspeli pripraviti za zbornik. Je tudi kar precejšnje število zelo
obetavnih diskusij, ki jih avtorji prav tako niso utegnili pravočasno pripraviti.
Četudi so k uspehu ,,Blejskih delavnic” največ prispevali udeleženci, ki so na
Bledu omogočili prijateljsko in aktivno izmenjavo mnenj v osrčju slovenskih
Julijcev, so k uspehu prispevale tudi videokonference, ki so povezale delavnice z
laboratoriji po svetu. Vprašanja in odgovori ter tudi predavanja, ki jih je v zadnjih
letih omogočil M.Yu. Khlopov preko Virtual Institute of Astroparticle Physics
(www.cosmovia.org, APC, Pariz), so v izčrpnih diskusijah pomagali razčistiti
marsikatero dilemo.
Bralec najde zapise vseh predavanj, objavljenih preko ”cosmovia” od leta 2009, na
www.cosmovia.org v povezavi Previous - Conferences. Štiri letošnja predavanja: R.
Bernabei (Dark matter particles in the galactic halo), M. Laletin in M.Yu. Khlopov
(Dark Atoms and their Decaying Constituents), N.S. Mankoč Borštnik (The Spin-
Charge-Family theory offers the explanation for the assumptions of the Standard
model, for the Dark matter, for the Matter-antimatter asymmetry) in H.B.F. Nielsen
(Novel string field theory), so dostopna na
http://viavca.in2p3.fr/what comes beyond the standard models xvii.html
Večino predavanj najde bralec na spletni strani delavnice na
http://bsm.fmf.uni-lj.si/.
Naj zaključimo ta predgovor s prisrčno in toplo zahvalo vsem udeležencem,
prisotnim na Bledu osebno ali preko videokonferenc, za njihova predavanja in še
posebno za zelo plodne diskusije in odlično vzdušje.
Delavnica poteka v hiši, ki jo je Društvu matematikov, fizikov in astronomov
Slovenije zapustil v last slovenski matematik Josip Plemelj, udeležencem delavnic,
ki prihajajo iz različnih koncev sveta, dobro poznan po svojem delu v kompleksni
algebri.

Norma Mankoč Borštnik, Holger Bech Nielsen, Maxim Y. Khlopov,
(Organizacijski odbor)

Norma Mankoč Borštnik, Holger Bech Nielsen, Dragan Lukman,
(uredniki)

Ljubljana, grudna (decembra) 2014



i
i

“proc14” — 2014/12/8 — 18:22 — page 1 — #13 i
i

i
i

i
i

Talk Section

All talk contributions are arranged alphabetically with respect to the authors’
names.



i
i

“proc14” — 2014/12/8 — 18:22 — page 2 — #14 i
i

i
i

i
i



i
i

“proc14” — 2014/12/8 — 18:22 — page 1 — #15 i
i

i
i

i
i

BLED WORKSHOPS
IN PHYSICS
VOL. 15, NO. 2

Proceedings to the 17th Workshop
What Comes Beyond . . . (p. 1)
Bled, Slovenia, July 20-28, 2014

1 Dark Atoms and Their Decaying Constituents

K. Belotsky1,2, M. Khlopov1,2,3 and M. Laletin1

1National Research Nuclear University ”MEPHI” (Moscow Engineering Physics Institute),
115409 Moscow, Russia
2 Centre for Cosmoparticle Physics “Cosmion”, 115409 Moscow, Russia
3 APC laboratory 10, rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France

Abstract. The nonbaryonic dark matter of the Universe might consist of new stable charged
species, bound by ordinary Coulomb interactions in various forms of heavy neutral ”dark
atoms”. The existing models offer natural implementations for the dominant and sub-
dominant forms of dark atom components. In the framework of Walking Technicolor the
charge asymmetric excess of both stable negatively doubly charged technilepton ζ−− and
metastable but longliving positively doubly charged technibaryon UU++ can be gener-
ated in the early Universe together with the observed baryon asymmetry. If the excess
of ζ exceeds by several orders of magnitude the excess of UU, dark matter might consist
dominantly by Heζ dark atoms of nuclear interacting O-helium (OHe) bound state of ζ
with primordial helium. This dominant dark matter component causes negligible nuclear
recoil in underground experiments, but can explain positive results of DAMA/NaI and
DAMA/LIBRA experiments by annual modulations of few keV energy release in radia-
tive capture of OHe by sodium. However, a sufficiently small subdominant component
of WIMP-like objects UUζ can also form. Making up a small fraction of dark matter, it
can also evade the severe constraints on WIMPs from underground detectors. Although
sparse, this subdominant component can lead to observable effects, since leptonic decays
of technibaryons UU give rise to two positively charged leptons contrary to the pairs of
opposite charge leptons created in decays of neutral particles. We show that decays of
UU++ → e+e+, µ+µ+, τ+τ+ of the subdominant UUζ component of dark matter, can ex-
plain the observed high energy positron excess in the cosmic rays if the fraction of UUζ
is ∼ 10−6 of the total dark matter density, the mass of UU++ about 1 TeV and the lifetime
about 1020 s. Optimizing fit of recent AMS-02 data by model parameters, the predicted
mass range of such long-living double charge particle is challenging for its search at the
LHC.

Povzetek. Avtorji predpostavijo, da sestavlja nebarionsko temno snov v vesolju nova,
stabilna, nabita vrsta snovi, katere delce v obliki težkih nevtralnih “temnih atomov” veže
običajna Coulombska interakcija. V obstoječih modelih, denimo v “Walking Technicolor”,
najdejo potrditev za tako domnevo: V zgodnjem vesolju lahko nastane presežek stabilnih
tehnileptonov ζ−− z nabojem −2 in metastabilnih vendar dovolj dolgoživih tehnibarionov
UU++ z nabojem +2, ki pojasnijo barionsko-antibarionsko asimetrijo. Če je presežek delcev
ζ za več velikostnih redov večji od presežka delcev UU, sestavljajo temno snov pretežno
temni atomi Heζ O-helija (OHe), ki je vezano stanje delca ζ in jedra običajnega helija. Če je
OHe prevladujoči del temne snovi, je njegov prispevek k odrivu na jedrih merilnih aparatur,
ki so postavljene pod zemljo, zanemarljiv, vendar lahko pojasni poskuse na DAMA/NaI
in DAMA/LIBRA, ki izmerita periodično letno modulacijo, v območju nekaj keV energije.
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2 K. Belotsky, M. Khlopov and M. Laletin

Opazljiv pa je, pravijo avtorji, tudi majhen delež UUζ, ki tudi sestavlja temno snov, ker
nastaneta pri leptonskem razpadu tehnibarionov UU dva pozitivno nabita leptona, pri
razpadu nevtralnih delcev pa nastaneta dva nasprotno nabita leptona. Avtorji pokažejo, da
lahko razpadi UU++ → e+e+, µ+µ+, τ+τ+ UUζ pojasnijo izmerjeni presežek pozitronov v
kozmičnih žarkih, če je masa UU++ približno 1 TeV, njihov prispevek h gostoti temne snovi
∼ 10−6 in življenska doba okrog 1020 s. Avtorji napovedujejo, da bodo te delce izmerili tudi
na LHC.

1.1 Introduction

Dark atoms offer an interesting possibility to solve the puzzles of dark matter
searches. It turns out that even stable electrically charged particles can exist hidden
in such atoms, bound by ordinary Coulomb interactions (see [1–3] and references
therein). Stable particles with charge -1 are excluded due to overproduction of
anomalous isotopes. However, there doesn’t appear such an evident contradiction
for negatively doubly charged particles.

There exist several types of particle models where heavy stable -2 charged
species, O−−, are predicted:

(a) AC-leptons, predicted as an extension of the Standard Model, based on the
approach of almost-commutative geometry [4–7].

(b) Technileptons and anti-technibaryons in the framework of Walking Technicolor
(WTC) [8–14].

(c) stable ”heavy quark clusters” ŪŪŪ formed by anti-U quark of 4th generation
[4,15–19]

(d) and, finally, stable charged clusters ū5ū5ū5 of (anti)quarks ū5 of 5th family
can follow from the approach, unifying spins and charges[20].

All these models also predict corresponding +2 charge particles. If these posi-
tively charged particles remain free in the early Universe, they can recombine
with ordinary electrons in anomalous helium, which is strongly constrained in
terrestrial matter. Therefore a cosmological scenario should provide a mechanism
which suppresses anomalous helium. There are two possible mechanisms than
can provide a suppression:

(i) The abundance of anomalous helium in the Galaxy may be significant, but in
terrestrial matter a recombination mechanism could suppress this abundance
below experimental upper limits [4,6]. The existence of a new U(1) gauge
symmetry, causing new Coulomb-like long range interactions between charged
dark matter particles, is crucial for this mechanism. This leads inevitably to
the existence of dark radiation in the form of hidden photons.

(ii) Free positively charged particles are already suppressed in the early Universe
and the abundance of anomalous helium in the Galaxy is negligible [1,16].

These two possibilities correspond to two different cosmological scenarios of dark
atoms. The first one is realized in the scenario with AC leptons, forming neutral
AC atoms [6]. The second assumes a charge asymmetry of the O−− which forms
the atom-like states with primordial helium [1,16].
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1 Dark Atoms and Their Decaying Constituents 3

If new stable species belong to non-trivial representations of the SU(2) elec-
troweak group, sphaleron transitions at high temperatures can provide the relation
between baryon asymmetry and excess of -2 charge stable species, as it was demon-
strated in the case of WTC [8,21–23].

After it is formed in the Standard Big Bang Nucleosynthesis (BBN), 4He
screens theO−− charged particles in composite (4He++O−−)OHe “atoms” [16]. In
all the models ofOHe,O−− behaves either as a lepton or as a specific “heavy quark
cluster” with strongly suppressed hadronic interactions. The cosmological scenario
of the OHe Universe involves only one parameter of new physics − the mass of
O−−. Such a scenario is insensitive to the properties of O−− (except for its mass),
since the main features of the OHe dark atoms are determined by their nuclear
interacting helium shell. In terrestrial matter such dark matter species are slowed
down and cannot cause significant nuclear recoil in the underground detectors,
making them elusive in direct WIMP search experiments (where detection is
based on nuclear recoil) such as CDMS, XENON100 and LUX. The positive results
of DAMA and possibly CRESST and CoGeNT experiments (see [24] for review
and references) can find in this scenario a nontrivial explanation due to a low
energy radiative capture of OHe by intermediate mass nuclei [1–3]. This explains
the negative results of the XENON100 and LUX experiments. The rate of this
capture is proportional to the temperature: this leads to a suppression of this effect
in cryogenic detectors, such as CDMS. OHe collisions in the central part of the
Galaxy lead to OHe excitations, and de-excitations with pair production in E0
transitions can explain the excess of the positron-annihilation line, observed by
INTEGRAL in the galactic bulge [2,3,21,25].

One should note that the nuclear physics of OHe is in the course of develop-
ment and its basic element for a successful and self-consistent OHe dark matter
scenario is related to the existence of a dipole Coulomb barrier, arising in the pro-
cess of OHe-nucleus interaction and providing the dominance of elastic collisions
of OHe with nuclei. This problem is the main open question of composite dark
matter, which implies correct quantum mechanical solution [26]. The lack of such
a barrier and essential contribution of inelastic OHe-nucleus processes seem to
lead to inevitable overproduction of anomalous isotopes [27].

It has been shown [8,21–23,28] that a two-component dark atom scenario is
also possible and can be naturally realized in the framework of a WTC model,
in which both stable double charged technilepton ζ−−, playing the role of O−−,
and positively double charged technibaryon UU are predicted. Along with the
dominant ζ−− abundance, a much smaller excess of positively doubly charged
techniparticlesUU can be created. These positively charged particles are hidden in
WIMP-like atoms, being bound to ζ−−. In the framework of WTC such positively
charged techniparticles can be metastable, with a dominant decay channel to a pair
of positively charged leptons. We have shown in [28] that even a 10−6 fraction of
such positively charged techniparticles with a mass of 1 TeV or less and a lifetime
of 1020 s, decaying to e+e+, µ+µ+, and τ+τ+ can explain the observed excess of
cosmic ray positrons, being compatible with the observed gamma-ray background.

The anomalous excess of high-energy positrons in cosmic rays was first ob-
served by PAMELA [29] and was later confirmed by AMS-02 [30]. These results
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generated widespread interest, since the corresponding effect cannot be explained
by positrons of only secondary origin and requires primary positron sources, e.g.
annihilations or decays of dark matter particles. Recently AMS-02 collaboration
has reported new results on positron and electron fluxes in cosmic rays [31] and
positron fraction [32]. These measurements cover the energy ranges 0.5 to 700 GeV
for electrons and 0.5 to 500 GeV for positrons and provides important information
on the origins of primary positrons in the cosmic rays. In particular, new results
show, for the first time, that above ∼ 200 GeV the positron fraction no longer ex-
hibits an increase with energy. The possibility to explain the cosmic positron excess
by the decays of UU particles, comprising the tiny WIMP-component of dark mat-
ter in the considered scenario, was discussed in detail in [28]. Here we estimate the
optimal values of model parameters by achieving the best agreement with AMS-02
data on cosmic positron flux and FERMI-LAT data on diffuse gamma-ray flux [33].

1.2 Cosmic positron excess and fit to the latest AMS-02 data

In the considering scenario the metastable UU particles, which together with ζ
forms the subdominant component of dark matter, decays as

UU→ e+e+, µ+µ+, τ+τ+

in principle with different branching ratios. All decay modes give directly or
through cascades positrons and gamma photons. The latter are hereafter referred to
as final state radiation (FSR). The positron flux at the top of the Earth’s atmosphere
can be estimated as

F(E) =
c

4π

nloc

τ

1

βE2

∫m/2
E

dN

dE0
Q(λ(E0, E))dE0, (1.1)

where nloc = ξ · (0.3GeV/cm3)m−1
UU is the local number density of UU particles

with ξ = 10−6, dN/dE0 is the number of positrons produced in a single decay
(obtained using Pythia 6.4 [34]), β ∼ 10−16 s−1GeV−1 and

Q = 1−
(λ− h)2(2λ+ 4)

2λ3
η(λ− h) −

2h(λ2 − r2)

3λ3
η(λ− R), (1.2)

(see [28] for details).

Below ∼ 10 GeV behavior of positrons is affected by solar modulation. This
effect can be in principle taken into account, using the force field model with
two different parameters φ both for electrons and positrons, which can be easily
adjusted in order to fit the data points at low energies. However, the effects of
solar modulations are insignificant at the energies above ∼ 20 GeV and thus for
our analysis we consider the positron spectrum from 20 to 500 GeV. The positron
background component was taken from [35].
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Any scenario that provides positron excess is also constrained by other obser-
vational data, mainly from the data on cosmic antiprotons and gamma-radiation
from our halo (diffuse gamma-background) and other galaxies and clusters. If dark
matter does not produce antiprotons, then the diffuse gamma-ray background
gives the most stringent and model-independent constraints. For the FSR photons
produced by UU decays in our Galaxy, the flux arriving at the Earth is given by

F
(G)
FSR(E) =

nloc

τ

1

4π∆Ωobs

∫
∆Ωobs

n(r)

nloc
dldΩ · dNγ

dE
, (1.3)

where we use an isothermal number density distribution n(r)
nloc

=
(5 kpc)2+(8.5 kpc)2

(5 kpc)2+r2 ,
r and l are the distances from the Galactic center and the Earth respectively. We
obtain the averaged flux over the solid angle ∆Ωobs corresponding to |b| > 10◦,
0 < l < 360◦.
Out of our Galaxy, decays of UU homogeneously distributed over the Universe
should also contribute to the observed gamma-ray flux. For FSR photons this
contribution can be estimated as

F
(U)
FSR(E) =

c

4π

〈nmod〉
τ

∫
dN

dE
dt =

c〈nmod〉
4πτ

×

×
∫min(1100, m

2E
+1)

0

dN

dE0
(E0 = E(z+ 1))

H−1
moddz√

ΩΛ +Ωm(z+ 1)3
, (1.4)

where z = 1100 corresponds to the recombination epoch, 〈nmod〉 is the current
cosmological number density of UU, H−1

mod = 3
2
tmod
√
ΩΛ ln−1

(
1+
√
ΩΛ√
Ωm

)
is the

inverse value of the Hubble parameter with tmod being the age of the Universe.
ΩΛ and Ωm = 1 −ΩΛ are respectively the current vacuum and matter relative
densities.

Contribution into gamma-ray flux induced by scattering off background
electromagnetic radiations of electrons and positrons from decays is small at high
energy tail of spectrum, where observation data put the strongest constraint [28],
and is not taken into account here.

The best-fit parameter values were obtained by fitting the curve, given by
Eq.(1.1), to the AMS-02 data points in the least squares sense. Since the same
parameters define the predicted gamma-ray flux in order not to contradict the
FERMI-LAT data we extend the fitting procedure, involving several lowest points
in the diffuse gamma-background spectrum above ∼ 100 GeV to be fit. For each
choice of mUU from 700 to 1400 GeV we have evaluated the best-fit values of
the lifetime τ and three branching ratios Bre, Brµ and Brτ = 1 − Bre − Brµ. To
choose the scenario, which is most consistent with the experimental data, a χ2

statistical test was used. The best fit (χ2/n.d.f. = 0.57) corresponds to the following
parameter values: M = 900GeV, τ = 4.59 1020 s, Bre = 0.195, Brµ = 0.129,
Brτ = 0.676. Positron flux, positron fraction and gamma-ray flux in the best-fit
case are shown in Figs. 1.1,1.2 and 1.3 respectively.
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6 K. Belotsky, M. Khlopov and M. Laletin

Fig. 1.1. Positron flux from UU decays compared to PAMELA and AMS-02 data

Fig. 1.2. Positron excess due to UU decays compared to PAMELA and AMS-02 data
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1 Dark Atoms and Their Decaying Constituents 7

Fig. 1.3. Gamma-ray flux from UU decays in the Galaxy (|b| ≥ 100) compared to the
Fermi/LAT data on diffuse gamma-background

1.3 Conclusions

Being the reflection of fundamental particle symmetry beyond the Standard model,
the set of stable particles – dark matter candidates – can hardly be reduced to
one single species [2]. It makes natural to consider multi-component dark matter
and one can hardly expect that various components put equal or comparable
contribution into the total density. The situation with dominance of one component
coexisting with some other subdominant components doesn’t seem too exotic in
this case.

Dark matter solution for the puzzles of dark matter searches can involve
the form of neutral OHe dark atoms made of stable heavy doubly charged par-
ticles and primordial He nuclei bound by ordinary Coulomb interactions. This
scenario can be realized in the framework of Minimal Walking Technicolor, in
which an exact relation between the dark matter density and baryon asymmetry
can be naturally obtained. Strict conservation of technilepton charge together
with approximate conservation of technibaryon charge results in the prediction
of two types of doubly charged species with strongly unequal excess – dominant
negatively charged technileptons ζ−− and a strongly subdominant component
of technibaryons UU++, bound with ζ−− in a sparse component of WIMP-like
dark atoms (ζ−−UU++). Direct searches for WIMPs put severe constraints on the
presence of this component. However we have demonstrated in [28] that the exis-
tence of a metastable positively doubly charged techniparticle, forming this tiny
subdominant WIMP-like dark atom component and satisfying the direct WIMP
searches constraints, can play an important role in the indirect effects of dark
matter. We found that decays of such positively charged constituents of WIMP-
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like dark atoms to the leptons e+e+, µ+µ+, τ+τ+ can explain the observed excess
of high energy cosmic ray positrons, while being compatible with the observed
gamma-ray background. These decays are naturally facilitated by GUT scale in-
teractions. The best fit of the data takes place for a mass of this doubly charged
particle of 1 TeV or below making it accessible in the next run of LHC. Our refined
analysis of the best fit description of the recent data of the AMS-02 experiment,
presented here, can provide a crucial test for the decaying dark atom hypothesis
in the experimental searches for stable doubly charged lepton-like particles at the
LHC.
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Abstract. The DAMA/LIBRA–phase1 and the former DAMA/NaI data (cumulative expo-
sure 1.33 ton × yr, corresponding to 14 annual cycles) give evidence at 9.3 σ C.L. for the
presence of Dark Matter (DM) particles in the galactic halo, on the basis of the exploited
model independent DM annual modulation signature by using highly radio-pure NaI(Tl)
target. Results and comparisons will be shortly addressed as well as perspectives of the
presently running DAMA/LIBRA-phase2. Finally, some arguments arisen in the discussion
section of this workshop are mentioned in the Appendix.

Povzetek. Avtorica, ki je postavila in vodi laboratorij DAMA/NaI in DAMA/LIBRA za
merjenje delcev, ki tvorijo temno snov, poroča o rezultatih poskusov, ki tečejo že štirinajsto
leto. Poroča o tem, kako in do kolikšne mere so uspeli izločiti nečistoče in poznane izvore
signalov na merilni aparaturi. Poroča o odvisnosti števila izmerjenih delcev temne snovi
v odvisnosti od relativne hitrosti Zemlje okoli Sonca glede na hitrost Sonca okoli centra
galaksije. Prikaže napredek v zanesljivosti meritev v odvisnosti od let ter izrazitost letne
modulacije meritev. Komentira dosedanje rezultate drugih laboratorijev in vzroke, zaradi
katerih drugi njihovih meritev še niso potrdili. Napove drugi ciklus meritev ter odgovori
na vprašanja, ki so jih postavili udeleženci delavnice.

2.1 Introduction

About 80 years of experimental observations and theoretical arguments have
pointed out that a large fraction of the Universe is composed by Dark Matter
particles 1.

The presently running DAMA/LIBRA (' 250 kg of full sensitive target-mass)
[1–9] experiment, as well as the former DAMA/NaI (' 100 kg of full sensitive

1 For completeness, it is worth recalling that some efforts to find alternative explanations
to Dark Matter have been proposed such as MOdified Gravity Theory (MOG) and
MOdified Newtonian Dynamics (MOND); they hypothesize that the theory of grav-
ity is incomplete and that a new gravitational theory might explain the experimental
observations. MOND modifies the law of motion for very small accelerations, while
MOG modifies the Einstein’s theory of gravitation to account for an hypothetical fifth
fundamental force in addition to the gravitational, electromagnetic, strong and weak
ones. However, e.g.: i) there is no general underlying principle; ii) they are generally
unable to account for all small and large scale observations; iii) they fail to reproduce
accurately the Bullet Cluster; iv) generally they require some amount of DM particles as
seeds for the structure formation.
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2 Dark Matter Particles in the Galactic Halo 11

target-mass) [10–16], has the main aim to investigate the presence of DM particles
in the galactic halo by exploiting the model independent DM annual modulation
signature (originally suggested in Ref. [17]).

As a consequence of the Earth’s revolution around the Sun, which is moving
in the Galaxy with respect to the Local Standard of Rest towards the star Vega
near the constellation of Hercules, the Earth should be crossed by a larger flux of
DM particles around ' 2 June and by a smaller one around ' 2 December. In the
former case the Earth orbital velocity is summed to the one of the solar system with
respect to the Galaxy, while in the latter the two velocities are subtracted2. This
DM annual modulation signature is very distinctive since the effect induced by
DM particles must simultaneously satisfy all the following requirements: the rate
must contain a component modulated according to a cosine function (1) with one
year period (2) and a phase that peaks roughly ' 2 June (3); this modulation must
only be found in a well-defined low energy range, where DM particle induced
events can be present (4); it must apply only to those events in which just one
detector of many (9 in DAMA/NaI and 25 in DAMA/LIBRA) actually “fires”
(single-hit events), since the DM particle multi-interaction probability is negligible
(5); the modulation amplitude in the region of maximal sensitivity must be '
7% for usually adopted halo distributions (6), but it can be larger (even up to '
30%) in case of some possible scenarios such as e.g. those in Ref. [18,19]. Thus,
this signature is model independent and very effective; moreover, the developed
highly radio-pure NaI(Tl) target-detectors [1] and the adopted procedures assure
sensitivity to a wide range of DM candidates (both inducing nuclear recoils and/or
electromagnetic radiation), interaction types and astrophysical scenarios.

In particular, the experimental observable in DAMA experiments is the mod-
ulated component of the signal in NaI(Tl) target and not the constant part of it
as in other approaches as those by CDMS, Xenon, etc., where in addition e.g.:
i) different target materials are used; ii) the sensitivity is mainly restricted to
candidates inducing just nuclear recoils; iii) many (by the fact largely uncertain)
selections/subtractions of detectors and of data and (highly uncertain) extrapola-
tions of detectors’ features are applied.

The DM annual modulation signature might be mimicked only by systematic
effects or side reactions able to account for the whole observed modulation ampli-
tude and to simultaneously satisfy all the requirements given above. No one is
available or suggested by anyone over more than a decade [1,2,5,6,8,13,9].

It is also worth noting that the DM annual modulation signature acts itself as
a strong background reduction as pointed out since the early paper by Ref. [17],
and especially when all the above peculiarities can be experimentally verified in
suitable dedicated set-ups as it is the case of the DAMA experiments.

2 Thus, the DM annual modulation signature has a different origin and peculiarities than
the seasons on the Earth and than effects correlated with seasons (consider the expected
value of the phase as well as other requirements listed below).
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2.2 The DAMA results

The total exposure of DAMA/LIBRA–phase1 is: 1.04 ton × yr in seven annual
cycles; when including also that of the first generation DAMA/NaI experiment
it is 1.33 ton × yr, corresponding to 14 annual cycles. The variance of the cosine
during the DAMA/LIBRA–phase1 data taking is 0.518, showing that the set-up
has been operational evenly throughout the years [2,6].

Many independent data analyses have been carried out [2,6] and all of them
confirm the presence of a peculiar annual modulation in the single-hit scintillation
events in the 2-6 keV energy interval, which – in agreement with the require-
ments of the DM signature – is absent in other parts of the energy spectrum and
in the multiple-hit scintillation events in the same 2-6 keV energy interval (this
latter condition correspond to have “switched off the beam” of DM particles). All
the analyses and details can be found in the literature given above. In particular,
Fig. 2.1 shows the time behaviour of the experimental residual rates of the single-hit
scintillation events for DAMA/NaI [13] and DAMA/LIBRA–phase1 [2,6] cumula-
tively in the (2–6) keV energy interval. The data points present the experimental
errors as vertical bars and the associated time bin width as horizontal bars. The
superimposed curve is the cosinusoidal function A cosω(t − t0) with a period
T = 2π

ω
= 1 yr, a phase t0 = 152.5 day (June 2nd) and modulation amplitude,

A, equal to the central value obtained by best fit on the data points. The dashed
vertical lines correspond to the maximum expected for the DM signal, while the
dotted vertical lines correspond to the expected minimum. The major upgrades
are also pointed out.

In order to continuously monitor the running conditions, several pieces of
information are acquired with the production data and quantitatively analysed. In
particular, all the time behaviours of the running parameters, acquired with the
production data, have been investigated: the modulation amplitudes obtained for
each annual cycle when fitting the time behaviours of the parameters including a
cosine modulation with the same phase and period as for DM particles are well
compatible with zero. In particular, no modulation has been found in any possible
source of systematics or side reactions; thus, cautious upper limits (90% C.L.) on
possible contributions to the DAMA/LIBRA measured modulation amplitude
have been derived (see e.g. [2]). It is worth noting that they do not quantitatively
account for the measured modulation amplitudes, and are not able to simultane-
ously satisfy all the many requirements of the signature. Similar analyses have
also been carried out for the DAMA/NaI data[13].

No other experimental result has been verified over so long time so accurately
and with various significant upgrades of the set-ups.

For completeness I mention that sometimes naive statements were put for-
wards as the fact that in nature several phenomena may show some kind of peri-
odicity. The point is whether they could mimic the annual modulation signature
in DAMA/LIBRA (and former DAMA/NaI), i.e. whether they could quantita-
tively account for the observed modulation amplitude and also simultaneously
satisfy all the requirements of the DM annual modulation signature. The same
is also for side reactions. This has already been deeply investigated in Ref. [1,2]
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July 2000 new DAQ and new electronic 
chain installed (MULTIPLEXER removed, 
now one TD channel for each detector):  
(i) TD VXI Tektronix;  
(ii) Digital Unix DAQ system;  
(iii) GPIB-CAMAC. 

DAMA/NaI & DAMA/LIBRA experiments main upgrades and improvements 

July 2002 DAMA/NaI data taking completed 

Sept.-Oct. 2008 �t DAMA/LIBRA upgrade:  
! one detector recovered by replacing a 

broken PMT 
" a new optimization of some PMTs and HVs 

performed 
# all the TD replaced with new ones (U1063A 

Acqiris 8-bit 1GS/s DC270 High-Speed cPCI 
Digitizers)  

$ a new DAQ with optical read-out installed. 

On 2003 DAMA/LIBRA has begun first 
operations  

PHASE2 

The second DAMA/LIBRA upgrade in Fall 2010:  
Replacement of all the PMTs with higher Q.E. ones from dedicated developments 

(+new preamp in Fall 2012 and other developments in progress) 
DAMA/LIBRA-phase2 in data taking 

Minimal upgrade in Fall 

Fig. 2.1. Experimental residual rate of the single-hit scintillation events measured by
DAMA/NaI and DAMA/LIBRA–phase1 in the (2–6) keV energy interval as a function of
the time. The data points present the experimental errors as vertical bars and the associated
time bin width as horizontal bars; see text. As always in DAMA results, the given rate is
already corrected for the overall efficiency. The major upgrades of the experiment are also
pointed out.

and references therein; the arguments and the quantitative conclusions, presented
there, also apply to the entire DAMA/LIBRA–phase1 data. Additional arguments
can be found in Ref. [5,6,8,9]. In particular, Ref. [9] further outlines in a simple
and intuitive way why neutrons (of whatever origin), muons and solar neutrinos
cannot give any significant contribution to the DAMA annual modulation results
and – in addition – can never mimic the DM annual modulation signature since
some of its specific requirements fail. Table 2.1 summarizes the safety upper limits
on the contributions (if any) to the observed modulation amplitude due to the
total neutron flux at LNGS, either from (α,n) reactions, from fissions and from
muons’ and solar-neutrinos’ interactions in the rocks and in the lead around the
experimental set-up; the direct contributions of muons and solar neutrinos are also
reported there. As seen in Table 2.1, they are all negligible and they cannot give
any significant contribution to the observed modulation amplitude; in addition,
neutrons, muons and solar neutrinos are not a competing background when the
DM annual modulation signature is investigated since they cannot mimic this
signature. For details see Ref. [9] and references therein.



i
i

“proc14” — 2014/12/8 — 18:22 — page 14 — #28 i
i

i
i

i
i

14 R. Bernabei

Source Φ
(n)
0,k ηk tk R0,k Ak = R0,kηk Ak/S

exp
m

(neutrons cm−2 s−1) (cpd/kg/keV) (cpd/kg/keV)
thermal n 1.08× 10−6 ' 0 – < 8× 10−6 � 8× 10−7 � 7× 10−5

(10−2 − 10−1 eV) however� 0.1

SLOW
neutrons epithermal n 2× 10−6 ' 0 – < 3× 10−3 � 3× 10−4 � 0.03

(eV-keV) however� 0.1

fission, (α, n) → n ' 0.9× 10−7 ' 0 – < 6× 10−4 � 6× 10−5 � 5× 10−3

(1-10 MeV) however� 0.1

µ→ n from rock ' 3× 10−9 0.0129 end of � 7× 10−4 � 9× 10−6 � 8× 10−4

FAST (> 10MeV) June
neutrons

µ→ n from Pb shield ' 6× 10−9 0.0129 end of � 1.4× 10−3 � 2× 10−5 � 1.6× 10−3

(> 10MeV) June

ν→ n ' 3× 10−10 0.03342∗ Jan. 4th∗ � 7× 10−5 � 2× 10−6 � 2× 10−4

(few MeV)
direct µ Φ

(µ)
0 ' 20 µm−2d−1 0.0129 end of ' 10−7 ' 10−9 ' 10−7

June
direct ν Φ

(ν)
0 ' 6× 1010 ν cm−2s−1 0.03342∗ Jan. 4th∗ ' 10−5 3× 10−7 3× 10−5

Table 2.1. Summary of the contributions to the total neutron flux at LNGS; the value, the
relative modulation amplitude, and the phase of each component is reported. It is also
reported the counting rate in DAMA/LIBRA for single-hit events, in the (2 − 6) keV energy
region induced by neutrons, muons and solar neutrinos, detailed for each component. The
modulation amplitudes, Ak, are reported as well, while the last column shows the relative
contribution to the annual modulation amplitude observed by DAMA, Sexpm ' 0.0112

cpd/kg/keV [2]. As can be seen, they are all negligible and they cannot give any significant
contribution to the observed modulation amplitude. In addition, neutrons, muons and solar
neutrinos are not a competing background when the DM annual modulation signature
is investigated since in no case they can mimic this signature. For details see Ref. [9] and
references therein.

∗ The annual modulation of solar neutrino is due to the different Sun-Earth distance along
the year; so the relative modulation amplitude is twice the eccentricity of the Earth orbit
and the phase is given by the perihelion.

In conclusion, DAMA gives a model-independent evidence – at 9.3σ C.L. over
14 independent annual cycles – for the presence of DM particles in the galactic
halo.

2.2.1 On comparisons

No direct model independent comparison is possible in the field when different
target materials and/or approaches are used; the same is for the strongly model
dependent indirect searches3.

3 It should be noted that the rising behaviour of the positron flux reported in Ref. [20,21]
does not give any intrinsic evidence for production due to DM annihilation; this may
arise only when a particular model of the competing background is assumed as e.g. the
GALPROP code. But other more complete models exist which do not support any signifi-
cant excess evidence. Moreover, an interpretation in terms of DM particle annihilation
would require the assumption of: i) a very large boost factor (∼ 400) of the density; ii)
to boost the annihilation cross section through an assumed new interaction type; iii) to
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In order to perform corollary investigations on the nature of the DM particles,
model-dependent analyses are necessary4. Thus, many theoretical and experi-
mental parameters and models are possible (see e.g. in [2,6,22,23]) and many
hypotheses must also be exploited, while specific experimental and theoretical
assumptions are generally adopted in the field assuming a single arbitrary scenario
without accounting neither for existing uncertainties nor for alternative possible
scenarios, interaction types, etc.

The obtained DAMA 9.3 σ C.L. model independent evidence is compatible
with a wide set of scenarios regarding the nature of the DM candidate and related
astrophysical, nuclear and particle Physics. For examples some scenarios and
parameters are discussed e.g. in Ref. [10,11,13,2,6,22,23]. Further large literature is
available on the topics (see for example in the bibliography of Ref. [6]). By the fact,
both the negative results and all the possible positive hints are largely compatible
with the DAMA model-independent DM annual modulation results in various
scenarios considering also the existing experimental and theoretical uncertainties;
the same holds for the strongly model dependent indirect approaches.

It is also worthwhile to further recall that these DAMA experiments are not
only sensitive to DM particles with spin-independent coupling inducing just
nuclear recoils, but also to other couplings and to other DM candidates as those
giving rise to part or all the signal in electromagnetic form. Finally, scenarios exist
in which other kind of targets/approaches are disfavoured or even blind.

2.3 DAMA/LIBRA–phase2 and perspectives

An important upgrade has started at end of 2010 replacing all the PMTs with new
ones having higher Quantum Efficiency; details on the developments and on the
reached performances in the operative conditions are reported in Ref. [4]. They
have allowed us to lower the software energy threshold of the experiment to 1 keV
and to improve also other features as e.g. the energy resolution [4].

Since the fulfillment of this upgrade and after some optimization periods,
DAMA/LIBRA–phase2 is continuously running in order e.g.: (1) to increase the
experimental sensitivity thanks to the lower software energy threshold; (2) to
improve the corollary investigation on the nature of the DM particle and related
astrophysical, nuclear and particle physics arguments; (3) to investigate other

adjust the propagation parameters; iv) to consider extra-source (subhalos, IMBHs); v) to
consider only a leptophilic candidate to justify the absence of any excess in the antiproton
spectrum. Finally, other well known sources can account for a similar positron fraction:
pulsars, supernova explosions near the Earth, SNR.

4 For completeness, it is worth recalling that it does not exist any approach to investigate
the nature of the candidate in the direct and indirect DM searches, which can offer
this information independently on assumed astrophysical, nuclear and particle Physics
scenarios. On the other hand, searches for new particles beyond the Standard Model
of particle Physics at accelerators cannot credit by themselves that a certain particle is
in the halo as a solution or the only solution for DM particles, and – in addition – DM
candidates and scenarios (even for the neutralino) exist which cannot be investigated
there.
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signal features and second order effects. This requires long and dedicated work
for reliable collection and analysis of very large exposures.

In the future DAMA/LIBRA will also continue its study on several other rare
processes as also the former DAMA/NaI apparatus did.

Finally, further future improvements of the DAMA/LIBRA set-up to increase
the sensitivity (possible DAMA/LIBRA-phase3) and the developments towards
the possible DAMA/1ton (1 ton full sensitive mass on the contrary of other kind
of detectors), we proposed in 1996, are considered at some extent. For the first case
developments of new further radiopurer PMTs with high quantum efficiency are
starting, while in the second case it would be necessary to overcome the present
problems regarding: i) the supplying, selection and purifications of a large number
of high quality NaI and, mainly, TlI powders; ii) the availability of equipments
and competence for reliable measurements of small trace contaminants in ppt or
lower region; iii) the creation of updated protocols for growing, handling and
maintaining the crystals; iv) the availability of large Kyropoulos equipments with
suitable platinum crucibles; v) etc.. At present, due to the change of rules for
provisions of strategical materials, the large costs and the lost of some equipments
and competence also at industry level, a satisfactory development appears quite
difficult.

2.4 Conclusions

The data of DAMA/LIBRA–phase1 have further confirmed the presence of a
peculiar annual modulation of the single-hit events in the (2–6) keV energy region
satisfying all the many requirements of the DM annual modulation signature; the
cumulative exposure by the former DAMA/NaI and DAMA/LIBRA–phase1 is
1.33 ton × yr (orders of magnitude larger than those typically released in the field).

As required by the DM annual modulation signature: 1) the single-hit events
show a clear cosine-like modulation as expected for the DM signal; 2) the measured
period is equal to (0.998 ± 0.002) yr well compatible with the 1 yr period as
expected for the DM signal; 3) the measured phase (144± 7) days is compatible
with ' 152.5 days as expected for the DM signal; 4) the modulation is present
only in the low energy (2–6) keV interval and not in other higher energy regions,
consistently with expectation for the DM signal; 5) the modulation is present only
in the single-hit events, while it is absent in the multiple-hit ones as expected for
the DM signal; 6) the measured modulation amplitude in NaI(Tl) of the single-hit
events in the (2–6) keV energy interval is: (0.0112 ± 0.0012) cpd/kg/keV (9.3 σ
C.L.). No systematic or side processes able to simultaneously satisfy all the many
peculiarities of the signature and to account for the whole measured modulation
amplitude is available.

DAMA/LIBRA–phase2 is continuously running in its new configuration
with a lower software energy threshold aiming to improve the knowledge on
corollary aspects regarding the signal and on second order effects as discussed e.g.
in Ref. [6,8].

Few comments on model–dependent comparisons have also been addressed
here.
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Appendix: Questions & Answers

This section shortly summarizes some of the topics extensively discussed at the
Workshop, where the time dedicated to discussions and the interest in deeply
understanding the topics were rather large.

Question 1: may you comment about the ratio of the measured dark matter particles
modulation amplitude to the total signal: the Sm/S0 ratio?

Answer 1: the measured counting rate in the cumulative energy spectrum
is about 1 cpd/kg/keV in the lowest energy bins; this is the sum of the back-
ground contribution and of the constant part of the signal S0. As discussed e.g. in
TAUP2011 [24], the background in the 2-4 keV energy region is estimated to be not
lower than about 0.75 cpd/kg/keV; this gives an upper limit on S0 of about 0.25
cpd/kg/keV. Thus, the Sm/S0 ratio is equal or larger than about 0.01/0.25 ' 4 %.

Question 2: may you comment on the quenching factors, on their dependence on the
type of the particles, and on some typical examples of extreme properties?

Answer 2: The quenching factor values play a role only when corollary model-
dependent analyses for DM candidates inducing just nuclear recoils are carried
out, in order to derive the energy scale in terms of nuclear recoil energy.

As is widely known, the quenching factor is a specific property of the em-
ployed detector and not a general quantity universal for a given material. For
example, in liquid noble-gas detectors, it depends – among others – on the level of
trace contaminants which can vary in time and from one liquefaction process to
another, on the cryogenic microscopic conditions, etc.. In bolometers it depends
for instance on specific properties, trace contaminants, cryogenic conditions, etc.
of each specific detector, while generally it is assumed exactly equal to unity
(the maximum possible value). The quenching factors in scintillators depend, for
example, on the dopant concentration, on the growing method/procedures, on
residual trace contaminants, etc., and are expected to be energy dependent. Thus,
all these aspects are already by themselves relevant sources of uncertainties when
interpreting whatever result in terms of DM candidates inducing just nuclear
recoils. Similar arguments have been addressed e.g. in Ref. [2,3,13,15,25].

Question 3: May you comment under which extreme conditions your experiment is
successful and comment what can at most the experiment which does not fulfil one of the
conditions or more than one of them at most can “see”?
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Answer 3: The full description and potentiality of the DAMA/LIBRA set-up
have been discussed in details in Refs. [1,2,4] and references therein. Obviously all
the set-up specific features and adopted procedures contribute to the possibility
to point out the signal through the model independent DM annual modulation
signature. The absence/difference of one of them would limit whatever else result.

Question 4: May you comment about muons?

Answer 4: An extensive discussion on this topics can be found in the dedicated
Ref. [5,9], where its has been quantitatively demonstrated (see also Table 2.1 in
this paper) that – for many reasons (and just one would suffice) - muons cannot
play (directly or indirectly) any role in the DAMA annual modulation effect.

Question 5: May you comment about neutrinos?

Answer 5: The contribution from solar, atmospheric, .. neutrinos is obviously
negligible; a quantitative discussion can be found in Ref. [9] (see also Table 2.1 in
this paper).

Question 6: May you comment about the operating temperature of your measuring
apparatus?

Answer 6: The DAMA set-ups operate at environmental temperature main-
tained stable by suitable and redundant air-conditioning system (2 independent
devices for redundancy); moreover, the Cu housings of the detectors are in direct
contact with the multi-ton metallic shield, thus there is a huge heat capacity (∼ 106

cal/0C). In addition, the operating temperature of the detectors is continuously
monitored and analysed as the production data. A discussion on temperature in
operating condition can be found e.g. in Ref. [2,6].

Question 7: May you comment about the Snowmass plots and its meaning?

Answer 7: The recent plot from Snowmass and that in Ref. [26] about the
“status of the Dark Matter search” do not point out at all the real status of Dark
Matter searches since e.g.: i) Dark Matter has wider possibilities than WIMPs in-
ducing just nuclear recoil with spin-independent interaction under single (largely
arbitrary) set of assumptions; ii) neither the uncertainties for existing experimen-
tal and theoretical aspects nor alternative possible assumptions are accounted
for; iii) they do not include possible systematic errors affecting the data (such as
e.g. “extrapolations” of energy threshold, of energy resolution and of efficiencies,
quenching factors values, convolution with poor energy resolution, correction
for non-uniformity of the detector, multiple subtractions/selection of detectors
and/or data, assumptions on quantities related to halo model, form factors, scal-
ing laws, etc.); iv) the DAMA implications – even adopting the many arbitrary
assumptions considered there – appear incorrect, for example the S0 prior is not
accounted for, etc., etc.. The perspectives as well appear incorrect/too optimistic.
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Abstract. The spin-charge-family theory [1–14] predicts before the electroweak break four
- rather than the coupled and observed three - massless families of quarks and leptons.
Mass matrices of all the family members demonstrate in this proposal the same symme-
try, determined by the scalar fields: There are two SU(2) triplets, the gauge fields of the
family groups, and the three singlets, the gauge fields of the three charges (Q,Q ′ and Y ′)
distinguishing among family members - all with the quantum numbers of the standard
model scalar Higgs with respect to the weak and the hyper charge [13]: ± 1

2
and ∓ 1

2
, respec-

tively. Respecting by the spin-charge-family theory proposed symmetry of mass matrices
and simplifying the study by assuming that mass matrices are hermitian and real and
mixing matrices real, we fit the six free parameters of each family member mass matrix
to the experimental data of twice three measured masses of quarks and to the measured
quarks mixing matrix elements, within the experimental accuracy. Since any 3 × 3 sub
matrix of the 4× 4matrix (either unitary or orthogonal) determine the whole 4× 4matrix
uniquely, we are able to predict the properties of the fourth family members provided that
the experimental data for the 3×3 sub matrix are enough accurate, which is not yet the case.
However, new experimental data [15] fit better to the required symmetry of mass matrices
than the old data [16]. The obtained mass matrices are very closed to the democratic ones.

Povzetek. Teorija spinov-nabojev-družin [1–14] napoveduje štiri in ne le tri opažene družine
kvarkov in leptonov. Simetrija masnih matrik je v tej teoriji enaka za vse člane družine.
Določajo jo skalarna polja: Dve tripletni upodobitvi grupe SU(2), ki določata družinska
kvantna števila in tri singletne upodobitve grup nabojev (Q,Q ′ in Y ′). Vsa skalarna polja,
to je obe tripletni in vsa tri singletna polja, nosijo tudi šibki in hiper naboj kot ju za Higgsov
skalarni delec privzame standardni model [13]: ali ( 1

2
in − 1

2
), ali pa (− 1

2
in 1

2
). Prva vrednost

v oklepaju velja za šibki in druga za hiper naboj. Avtorja v prispevku upoštevata simetrijo
masnih matrik, ki jo za štiri družine predlaga teorija spinov-nabojev-družin. Parametre mas-
nih matrik določita iz izmerjenih podatkov. Izračun masnih matrik in mešalnih matrik
poenostavita s privzetkom, da so masne metrike hermitske in realne. Mešalne matrike so
tedaj ortogonalne. Vsaka matrika ima v tem primeru šest prostih parametrov. Matrični ele-
menti vsake unitarne matrike nxn so enolično določeni z z matričnimi elementi podmatrike
(n−1)x(n−1), če je n ≥ 4, pri ortogonalnih matrikah pa za vsak n. Ker pa eksperimentalni
podatki nosijo napako, je mešala matrika 4x4 lahko samo približno določena. Tedaj lahko iz
eksperimentalnih podatkov za 2 krat po 3mase in iz mešalne matrike določimo lastnosti
četrte družine v okviru eksperimentalne natančnosti. Izmerjeni matrični elementi mešalne
matrike nosijo preveliko napako, da bi avtorja lahko napovedala mase četrte družine bolj
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natančno kot da so blizu 1 TeV. Vzpodbudno pa je, da se novi eksperimentalni podatki
za mešalno matriko kvarkov bolje ujemajo z zahtevano simetrijo masnih matrik kot stari.
Avtorja ugotavljata, da so masne matrike zelo blizu edinkam (demokratičnim matrikam).

3.1 Introduction

There are several attempts in the literature to reconstruct mass matrices of quarks
and leptons out of the observed masses and mixing matrices and correspondingly
to learn more about properties of the fermion families [17–28]. The most popular is
the n×nmatrix, close to the democratic one, predicting that (n− 1) families must
be very light in comparison with the nth one. Most of attempts treat neutrinos
differently than the other family members, relying on the Majorana part, the Dirac
part and the ”sea-saw” mechanism. Most often are the number of families taken to
be equal to the number of the so far observed families, while symmetries of mass
matrices are chosen in several different ways [29–31]. Also possibilities with four
families are discussed [32–34].

In this paper we follow the spin-charge-family theory [1–14], which predicts
four families of quarks and leptons and the symmetries of their mass matrices, the
same for all the family members.

The mass matrix of each family member is in the spin-charge-family theory
determined by the scalar fields, which carry besides by the standard model required
weak and hyper charges [13] (±1

2
and∓1

2
, respectively) also the additional charges:

There are two SU(2) triplets, the gauge fields of the family groups, and three
singlets, the gauge fields of the three charges (Q,Q ′ and Y ′), which distinguish
among family members. These scalar fields cause, after getting nonzero vacuum
expectation values [13], the electroweak break. Assuming that the contributions
of all the scalar (and in loop corrections also of other) fields to mass matrices of
fermions are real and symmetric, we are left with the following symmetry of mass
matrices

Mα =


−a1 − a e d b

e −a2 − a b d

d b a2 − a e

b d e a1 − a


α

, (3.1)

the same for all the family members α ∈ {u, d, ν, e}. In appendix 3.5.1 the evalua-
tion of this mass matrix is presented and the symmetry commented. The symmetry
of the mass matrix Eq.(3.1) is kept in all loop corrections.

A change of phases of the left handed and the right handed basis - there are
(2n− 1) free choices - manifests in a change of phases of mass matrices.

The differences in the properties of the family members originate in the
different charges of the family members and correspondingly in the different
couplings to the corresponding scalar and gauge fields.

We fit (sect. 3.3.1) the mass matrix (Eq. (3.1)) with 6 free parameters of any
family member to the so far observed properties of quarks and leptons within the
experimental accuracy. That is: For a pair of either quarks or leptons, we fit twice 6
free parameters of the two mass matrices to twice three so far measured masses and to the
corresponding mixing matrix.
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Since we have the same number of free parameters (6 parameters determine
in the spin-charge-family theory the mass matrix of any family member after the
mass matrices are assumed to be real) as there are measured quantities for either
quarks or leptons (two times 3 masses and 6 angles of the orthogonal mixing
matrix under the simplification that the mixing matrix is real and hermitian), we
should predict the fourth family masses and the missing mixing matrix elements
(Vuid4 , Vu4di , i ∈ (1, 2, 3)) uniquely, provided that the measured quantities are
accurate. The n−1 sub matrix of any unitary matrix determines the unitary matrix
uniquely for n ≥ 4. The experimental inaccuracy, in particular for leptons and also
for some of the matrix elements of the mixing matrix of quarks, is too large to be
able to estimate the fourth family masses better than very roughly even for quarks.
Yet we found out that our fitting to the experimental data for quarks are better
when using the new experimental data for the quarks mixing matrix [15] than the
old ones [16], which mainly differ in the second and the third diagonal values.
This might be a signal that the spin-charge-family theory is the right step beyond the
standard model (if taking into account also other predictions of this theory [1–14]),
although we assume in this calculations the real mass matrices (Eq. (3.1)) and the
orthogonal mixing matrices.

We treat all the family members, the quarks and the leptons, equivalently, as
required by the spin-charge-family theory. We take into account the estimations of
the influence of the fourth family masses to the mesons decays of the refs. [43],
making also our own estimations (pretty roughly so far, this work is not presented
in this paper) 1.

We can say that the so far obtained data do not contradict the prediction of
the spin-charge-family theory that there are four coupled families of quarks and
leptons, the mass matrices of which manifest the symmetry determined by the
family groups – the same for all the family members, quarks and leptons. The
mass matrices are quite close to the ”democratic” ones, in particular for leptons.

Since the mass matrices offer an insight into the properties of the scalar fields,
which determine mass matrices (together with other fields), manifesting effectively
as the observed Higgs and the Yukawa couplings, we hope to learn about the
properties of these scalar fields also from the mass matrices of quarks and leptons.

In sect. 3.2 the procedure to fit free parameters of mass matrices (Eq. (3.1) to
the experimental data is discussed.

We comment our studies in sect. 3.4.
1 M.I.Vysotsky and A.Lenz comment in their papers [43] that the fourth family is excluded

provided that one assumes the standard model with one scalar field (the scalar Higgs)
while extending the number of families from three to four when, in loop corrections,
evaluating the decay properties of the scalar Higgs. We have, however, several scalars:
Two times three triplets with respect to the family quantum numbers and three singlets,
which distinguish among the family members [13], all with the quantum numbers of the
scalar Higgs with respect to the weak and hyper charge. These scalar fields determine all
the masses and the mixing matrices of quarks and leptons and of the weak gauge fields,
what in the standard model is achieved by the choice of the scalar Higgs properties and
the Yukawa couplings. Our rough estimations of the decay properties of mesons show
that he fourth family quarks might have masses close to 1 TeV.
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In appendix 3.5 we offer a very brief introduction into the spin-charge-family
theory, which the reader, accepting the proposed symmetry of mass matrices
without knowing the origin of this symmetry, can skip. In Appendix neutrino the
old results [11] for leptons are presented *What follows must be carefully checked
and corrected. It must go to the discussion section.

In appendix 3.5 we offer a very brief introduction into the spin-charge-family
theory, which the reader, accepting the proposed symmetry of mass matrices
without knowing the origin of this symmetry, can skip.

3.2 Procedure used to fit free parameters of mass matrices to
experimental data

This part repeats in many points the ref. [11]
Matrices, following from the spin-charge-family theory, might not be hermitian

(appendix 3.7). We, however, simplify our study, presented in this paper, by assum-
ing that the mass matrix for any family member, that is for quarks and 0leptons, is
real and symmetric. We take the simplest phases up to signs, which depend on the
choice of phases of the basic states, as discussed in appendices 3.5.1 2.

The matrix elements of mass matrices, with the loop corrections in all orders
taken into account, manifesting the symmetry of Eq. (3.1), are in this paper taken as
free parameters. Due to this symmetry, required by the family quantum numbers
of the scalar fields [13], there 6 parameters having (n − 1) · (2 − 2)/2) complex
phases. Assuming, to simplify the calculations, that mass matrices are real, there
are correspondingly 6 free real parameter for the mass matrix for u and d quarks
and for ν and e leptons.

Let us first briefly overview properties of mixing matrices, a more detailed
explanation of which can be found in subsection 3.2.1 of this section.

LetMα, α denotes the family member (α = u, d, ν, e), be the mass matrix in
the massless basis (with all loop corrections taken into account). Let Vαβ = SαSβ†,
where α represents either the u-quark and β the d-quark, or α represents the
ν-lepton and β the e-lepton, denotes a (in general unitary) mixing matrix of a
particular pair: the quarks one or the leptons one.

For n× nmatrix (n = 4 in our case) it follows:
i. If a known sub matrix (n− 1)× (n− 1) of an unitary matrix n× nwith n ≥ 4 is
extended to the whole unitary matrix n×n, the n2 unitarity conditions determine
(2(2(n− 1) + 1)) real unknowns completely. If the sub matrix (n− 1)× (n− 1) of
an unitary matrix is made unitary by itself, then we loose the information of the
last row and last column.
ii. If the mixing matrix is assumed to be orthogonal, then the (n− 1)× (n− 1) sub
matrix contains all the information about the n× n orthogonal matrix to which it
belongs and the n(n+ 1)/2 conditions determine the 2(n− 1) + 1 real unknowns

2 In the ref. [9] we made a similar assumption, except that we allow that the symmetry on
the tree level of mass matrices might be changed in loop corrections. We got in that study
dependence of mass matrices and correspondingly mixing matrices for quarks on masses
of the fourth family.
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completely for any n.
If the sub matrix of the orthogonal matrix is made orthogonal by itself, then we
loose all the information of the last row and last column.

We make in this paper, to simplify the present study, several assumptions [39],
as it has been already written in the introduction. In what follows we present the
procedure used in our study and repeat the assumptions.

1. If the mass matrix Mα is hermitian, then the unitary matrices Sα and Tα,
introduced in appendix 3.7 to diagonalize a non hermitian mass matrix, differ
only in phase factors depending on phases of basic vectors and manifesting
in two diagonal matrices, FαS and FαT , corresponding to the left handed and
the right handed basis, respectively. For hermitian mass matrices we therefore
have: Tα = Sα FαSFαT †. By changing phases of basic vectors we can change
phases of (2n− 1) matrix elements.

2. We take the diagonal matrices Mα
d and the mixing matrices Vαβ from the

available experimental data. The mass matricesMα in Eq. (3.1) have, if they
are hermitian and real, 6 free real parameters (aα, aα1 , a

α
2 , b

α, eα, dα), α =

(u, d, ν, e).
3. We limit the number of free parameters of the mass matrix of each family

member α by taking into account n relations among free parameters, in our
case n = 4, determined by the invariants

Iα1 = −
∑
i=1,4

mαi , Iα2 =
∑

i>j=1,4

mαi m
α
j ,

Iα3 = −
∑

i>j>k=1,4

mαi m
α
j m

α
k , Iα4 = mα1 m

α
2 m

α
3 m

α
4 ,

α = u, d, ν, e , (3.2)

which are expressions appearing at powers of λα, λ4α+ λ3αI1+ λ2αI2+ λ1αI3+
λ0αI4 = 0, in the eigenvalue equation. The invariants are fixed, within the
experimental accuracy of the data, by the observed masses of quarks and
leptons and by the fourth family mass, if we make a choice of it. for a chosen
mα4 . Correspondingly there are (6− 4) free real parameters left for each mass
matrix, after a choice is made for the mass of the fourth family member.

4. The diagonalizing matrices Sα and Sβ, each depending on the reduced number
of free parameters, are for real and symmetric mass matrices orthogonal. They
follow from the procedure

Mα = SαMα
d T

α † , Tα = Sα FαSFαT † ,

Mα
d = (mα1 ,m

α
2 ,m

α
3 ,m

α
4 ) , (3.3)

provided that Sα and Sβ fit the experimentally observed mixing matrices V†αβ
within the experimental accuracy and thatMα andMβ manifest the symmetry
presented in Eq. (3.1). We keep the symmetry of the mass matrices accurate.
One can proceed in two ways.

A. : Sβ = V†αβS
α , B. : Sα = VαβS

β ,

A. : V†αβ S
αMβ

d S
α†Vαβ =Mβ , B. : Vαβ S

βMα
d S

β†V†αβ =Mα .(3.4)
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In the case A. one obtains from Eq. (3.3), after requiring that the mass matrix
Mα has the desired symmetry, the matrix Sα and the mass matrix Mα (=
SαMα

d S
α†), from where we get the mass matrix Mβ = V†αβ S

αMβ
d S

α†Vαβ.
In case B. one obtains equivalently the matrix Sβ, from where we get Mα

(= Vαβ SβMα
d S

β†V†αβ). We use both ways iteratively taking into account the
experimental accuracy of masses and mixing matrices.

5. Under the assumption of the present study that the mass matrices are real
and symmetric, the orthogonal diagonalizing matrices Sα and Sβ form the
orthogonal mixing matrix Vαβ, which depends on at most 6 (= n(n−1)

2
) free

real parameters (appendix 3.7). Since, due to what we have explained at the
beginning of this section, the experimentally measured matrix elements of the
3× 3 sub matrix of the 4× 4mixing matrix (if not made orthogonal by itself)
determine (within the experimental accuracy) the 4× 4mixing matrix, also the
fourth family masses are determined, again within the experimental accuracy.
We must not forget, however, that the assumption of the real and symmetric
mass matrices, leading to orthogonal mixing matrices, might not be an accept-
able simplification, since we do know that the 3× 3 sub matrix of the mixing
matrix has one complex phase, while the unitary 4 × 4 has three complex
phases. (In the next step of study, with hopefully more accurate experimental
data, we shall relax conditions on hermiticity of mass matrices and corre-
spondingly on orthogonality of mixing matrices.) We expect that too large
experimental inaccuracy leave the fourth family masses in the present study
quite undetermined, in particular for leptons.

6. We study quarks and leptons equivalently. The difference among family mem-
bers originate on the tree level in the eigenvalues of the operators (Qα, Q ′α,
Y ′α), which in loop corrections together with other contributors in all orders
contribute to all mass matrix elements and cause the difference among family
members 3.

Let us conclude. If the mass matrix of a family member obeys the symme-
try required by the spin-charge-family theory, which in a simplified version (as
it is taken in this study) is real and symmetric, the matrix elements of the mix-
ing matrices of quarks and leptons are correspondingly real, each of them with
n(n−1)
2

free parameters. These six parameters of each mixing matrix are, within
the experimental inaccuracy, determined by the three times three experimentally
determined sub matrix. After taking into account three so far measured masses
of each family member, the six parameters of each mass matrix reduce to three.
Twice three free parameters are within the experimental accuracy correspondingly
determined by the 3×3 sub matrix of the mixing matrix. The fourth family masses
are correspondingly determined - within the experimental accuracy.

Since neither the measured masses nor the measured mixing matrices are
determined accurately enough to reproduce the 4 × 4 mixing matrices, we can
in the best case expect that the masses and mixing matrix elements of the fourth
family will be determined only within some quite large intervals.

3 There are also Majorana like terms contributing in higher order loop corrections [7] which
might strongly influence in particular the neutrino mass matrix.
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3.2.1 Submatrices and their extensions to unitary and orthogonal matrices

In this part well known properties of n×nmatrices, extended from (n−1)×(n−1)
submatrices are discussed. We make a short overview of the properties, needed
in this paper, although all which will be presented here, is the knowledge on the
level of text books.

Any n × n complex matrix has 2n2 free parameters. The n + 2n(n − 1)/2

unitarity requirements reduce the number of free parameters to n2 (= 2n2 − (n+

2n(n− 1)/2)). Let us assume a (n− 1)× (n− 1) known sub matrix of the unitary
matrix. The sub matrix can be extended to the unitary matrix by (2× [2(n− 1)+ 1])
real parameters of the last column and last row. The n2 unitarity conditions on
the whole matrix reduce the number of unknowns to (2(2n− 1) − n2). For n = 4

and higher the (n− 1)× (n− 1) sub matrix contains all the information about the
unitary n× nmatrix.
The ref. [37] proposes a possible extension of an (n− 1)× (n− 1) unitary matrix
V(n−1)(n−1) into n× n unitary matrices Vnn.

The choice of phases of the left and the right basic states which determine the
unitary matrix (like this is the case with the mixing matrices of quarks and leptons)
reduces the number of free parameters for (2n−1). Correspondingly is the number
of free parameters of such an unitary matrix equal to n2−(2n−1), which manifests
in 1
2
n(n− 1) real parameters and 1

2
(n− 1)(n− 2) (= n2 − 1

2
n(n− 1) − (2n− 1))

phases (which determine the number of complex parameters).
Any real n×nmatrix has n2 free parameters which the 1

2
n(n+1) orthogonal-

ity conditions reduce to 1
2
n(n−1). The (n−1)×(n−1) sub matrix of this orthogonal

matrix can be extended to this n × n orthogonal matrix with [2(n − 1) + 1] real
parameters. The 1

2
n(n + 1) orthogonality conditions reduce these [2(n − 1) + 1]

free parameters to (2n−1− 1
2
n(n+1)), which means that the (n−1)× (n−1) sub

matrix of an n×n orthogonal matrix determine properties of its n×n orthogonal
matrix completely. Any (n − 1) × (n − 1) sub matrix of an orthogonal matrix
contains all the information about the whole matrix for any n. Making the sub
matrix of the orthogonal matrix orthogonal by itself one looses the information
about the n× n orthogonal matrix.

3.2.2 Free parameters of mass matrices after taken into account invariants

It is useful for numerical evaluation purposes to take into account for each family
member its mass matrix invariants (sect. 3.2), expressible with three within the
experimental accuracy known masses, while we keep the fourth one as a free
parameter. We shall make a choice of aα = 1

4
Iα1 (Eqs. (3.1, 3.6)) instead of the

fourth family mass.
We shall skip in this section the family member index α and introduce new

parameters as follows

a, b , f = d+ e , g = d− e , q =
a1 + a2√

2
, r =

a1 − a2√
2

. (3.5)

After choosing as a free parameter a = I1
4

(Eq. (3.6)), which is indeed the fourth
family mass - summed together with the three known (from the experiment)
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masses in I1 - the four invariants of Eq. (3.2) reduce the number of free parameters
to 2. The four invariants therefore relate six parameters leaving three of them
undetermined. There are for each pair of family members the measured mixing
matrix elements, assumed in this paper to be orthogonal and correspondingly
determined by six parameters, which then fixes these two times 3 parameters. The
(accurately enough) measured 3× 3 sub matrix of the (assumed to be orthogonal)
4×4mixing matrix namely determines these 6 parameters within the experimental
accuracy.

Using the starting relation among the invariants Ii , i ∈ (1, 2, 3, 4) and replac-
ing new parameters (a, b, f, g, q, r) from Eq. (3.5) we obtain

a =
I1

4
,

I ′2 = −I2 + 6a
2 − q2 − r2 − 2b2 = f2 + g2 ,

I ′3 = −
1

2b
(I3 − 2aI2 + 4a

2) = f2 − g2 ,

I ′4 = I4 − aI3 + a
2I2 − 3a

4

=
1

4
(q2 − r2)2 + (q2 + r2)b2 +

1

2
(q2 − r2) · (±) · [±] 2gf

+ b2(f2 + g2) +
1

4
(2gf)2 . (3.6)

We eliminate, using the first two equations, the parameters f and g, expressing
them as functions of I ′2 and I ′3, which depend, for a particular family member,
on the three known masses, the parameter a and the three parameters r, q and b.
We are left with the four free parameters (a, b, q, r) and the below relation among
these parameters

{−
1

2
(q4 + r4) + (−2b2 +

1

2
(−I2 + 6a

2 − 2b2))(q2 + r2)

+ (I ′4 −
1

4
((−I2 + 6a

2 − 2b2)2 + I ′23 ) + b2(−I2 + 6a
2 − 2b2))}2

= −
1

4
(q2 − r2)2((−I2 + 6a

2 − 2b2 − (q2 + r2))2 − I ′23 ) , (3.7)

which reduces the number of free parameters to 3. These 3 free parameters must
be determined, together with the corresponding three parameters of the partner,
from the measured mixing matrix.

We eliminate one of the 4 free parameters in Eq. (3.7) by solving the cubic
equation for, let us make a choice, q2

αq6 + βq4 + γq2 + δ = 0 . (3.8)

Parameter (α,β, γ, δ) depend on the 3 free remaining parameters (a, b, r) and the
three, within experimental accuracy, known masses.

To reduce the number of free parameters from the starting 6 in Eq. (3.1) to
the 3 left after taking into account invariants of each mass matrix, we look for the
solution of Eq (3.8) for all allowed values for (a, b, r). We make a choice for a in
the interval of (amin, amax), determined by the requirement that a, which solves
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the equations, is a real number. Allowing only real values for parameters f and g
we end up with the equation

−I2 + 6a
2 − 2b2 − (q2 + r2) > |

I3 + 8a
3 − 2aI2
2b

| , (3.9)

which determines the maximal positive b for q = 0 = r and also the minimal
positive value for b. For each value of the parameter a the interval (bmin, bmax),
as well as the interval (rmin = 0, rmax), follow when taking into account experi-
mental values for the three lower masses.

Trying to fit the free parameters to the experimental values of the 3× 3 sub
matrix to the mixing matrix we minimize the uncertainty defined in Eq. (3.10)

σ =

√√√√ 3∑
(i,j)=1

( Vuidj exp − Vuidj cal
σVuidj exp

)2
,

δVuidj = |
Vuidj exp − Vuidj cal

σVuidj exp
| , (3.10)

where expressions σVuidj exp stay for the experimental uncertainties, presented in
Eqs. (3.11, 3.12).

3.3 Numerical results

Taking into account the assumptions and the procedure explained in sect. 3.2
and in the ref. [39] we are looking for the 4× 4 in this paper taken to be real and
symmetric mass matrices for quarks and leptons, obeying the symmetry of Eq. (3.1)
and manifesting observed properties - masses and mixing matrices - of the so far
observed three families of quarks in agreement with the experimental limits for
the appearance of the fourth family masses and mixing matrix elements to the
lower three families, as presented in the refs. [16,15,43]. We also take into account
our so far made rough estimations of possible contributions of the fourth family
members to the decay of mesons. More detailed estimations are in progress. The
results for leptons, presented in Appendix 3.6 are the old ones, taking from [11].
They are added only for the comparison.

We hope that we shall be able to learn from the mass matrices of quarks and
leptons also about the properties of the scalar fields, which cause masses of quarks
and leptons, manifesting effectively so far as the measured Higgs and Yukawa
couplings.

We take the 3× 3measured mixing matrices for quarks and leptons and the
measured masses, all with the experimental inaccuracy. We extend the measured
nine mixing matrix elements for each pair to the corresponding 4× 4 mass matrix,
by taking into account the unitarity of the 4 × 4 matrix, in our case indeed the
orthogonality of the 4 × 4 matrices. We then look for twice 4 × 4 mass matrices
with the symmetry of Eq. (3.1), and correspondingly for the fourth family masses,
for quarks and leptons.
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We perform the calculations for quarks with the old [16] and new [15] experi-
mental data for the quarks mixing matrix, to see, whether or not the more accurate
values fit better into by the spin-charge-family theory predicted symmetry of mass
matrices (Eq. (3.1)). We present in appendix 3.6 also one trial for the lepton mass
matrices. Since the experimental data for the mixing matrix and masses are for
leptons known so inaccurate, the results do not tell much.

To test the predicting power of our model in dependence of the experimental
inaccuracy of masses and mixing matrices, we compare the calculated mass ma-
trices for quarks, obtained when choosing different values for the fourth family
masses, among themselves and with the experimental data, the old [16] ones and
the new [15] ones.

3.3.1 Numerical results for the observed quarks with mass matrices obeying
Eq. (3.1)

We take for the quarks masses the experimental values [16], recalculated to the Z
boson mass scale. We take two kinds of the experimental data for the quark mixing
matrices, the older data from [16] and the last data [15], with the experimentally
declared inaccuracies for the so far measured 3× 3mixing matrix. We assume, as
suggested by the spin-charge-family theory, that these nine matrix elements belong
to the 4×4 unitary mixing matrix. We take into account the experimentally allowed
values for the fourth family masses and other limitations, presented in refs. [43,32–
34]. We have made also our own rough estimations for the limitations which
follow from the meson decays to which the fourth family members participate.
Our estimations are still in progress.

A lot of effort was put into the numerical procedure to be sure as much as one
can, that we fit the parameters of mass matrices to the experimental values within
the experimental inaccuracy, in the best way, that is with the smallest errors.

It is expected that the inaccuracy, mainly due to the quarks mixing matrix,
masses do not influence the results so strongly, does not allow to tell much about
the fourth family masses. Yet, what we have learned not only supports the pre-
dicted symmetry of the spin-charge-family theory, but also predicts to what values
will the more accurately measured matrix elements of the 3× 3 sub matrix of the
4× 4mixing matrix move.

Let us admit that from the so far obtained results we are not yet able to predict
the fourth family quarks mass accurately enough, although the results show that
the most trustable might be results pushing the fourth family quarks to 1 TeV or
above.

The results manifest that the mass matrices are very close to the democratic
ones, which is, as expected, more and more the case the higher might be the fourth
family masses, and it is true for quarks and leptons.

The calculated 4 × 4 mixing matrix predicts, in dependence of the fourth
family masses, not only the fourth family matrix elements of the mixing matrix,
but also the direction in which will the matrix elements of the 3 × 3 sub matrix
move in the future more accurate measurements - under the assumption that the
spin-charge-family theory is offering the right next step beyond the standard model.
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In this paper we do not take yet into account the complex phases of the mass
matrix elements and correspondingly of the mixing matrices. Sooner or latter we
ought to do that.

We present below two types of the experimental values for the quarks 3× 3
mixing matrix, taken as the sub matrix of the 4× 4 matrix, the older experimental
data [16] and the newer experimental data [15].

We start with the older experimental data [16]

|Vud| =


0.97425± 0.00022 0.2252± 0.0009 0.00415± 0.00049 |Vu1d4 |
0.230± 0.011 1.006± 0.023 0.0409± 0.0011 |Vu2d4 |

0.0084± 0.0006 0.0429± 0.0026 0.89± 0.07 |Vu3d4 |

|Vu4d1 | |Vu4d2 | |Vu4d3 | |Vu4d4 |

 ,

(3.11)
and then repeat all the calculations also with the new experimental data [15]

|Vud| =


0.97425± 0.00022 0.2253± 0.0008 0.00413± 0.00049 |Vu1d4 |
0.225± 0.008 0.986± 0.016 0.0411± 0.0013 |Vu2d4 |

0.0084± 0.0006 0.0400± 0.0027 1.021± 0.032 |Vu3d4 |

|Vu4d1 | |Vu4d2 | |Vu4d3 | |Vu4d4 |

 .

(3.12)
The matrix elements of the 4 × 4 quark mixing matrix will be determine in the
numerical procedure, which searches for the best fit of the two quarks mass
matrices free parameters presented in Eq. (3.1) to the experimental data, taking
into account the experimental inaccuracy and unitarity of the mixing matrix,
ensuring as much as possible, the best fit.

Let us notice that in the new experimental data differ slightly from the old
ones only in the two diagonal matrix elements, Vcs = Vu2d2 and Vtb = Vu3d3 ,
appearing in new data with smaller inaccuracy. The corresponding fourth family
mixing matrix elements (|Vuid4 | and |Vu4dj |) are accordingly in both cases deter-
mined from the unitarity condition for the 4× 4 mixing matrix through the fitting
procedure, as also all the other matrix elements of the mixing matrix are.

Using first the old experimental data we predict the direction in which new
more accurately measured matrix elements should move and then check if this is
happening with the new experimental data.

Then we use new experimental data, repeat the procedure in look at what are
the new results predicting.

For the quark masses at the energy scale ofMZ we take

Mu
d/MeV/c2 = (1.3+ 0.50− 0.42, 619± 84, 172 000.± 760.,

mu4 = 700 000., 1 200 000.) ,

Md
d/MeV/c2 = (2.90+ 1.24− 1.19, 55+ 16− 15, 2 900.± 90.,

md4 = 700 000., 1 200 000.) . (3.13)

We found that the results are not influenced much if changing the masses within
the experimental uncertainties.

Experimental values for leptons as well as the obtained mass matrices are
presented in appendix 3.6.
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Following the procedure explained in sect. 3.2 we look for the mass matrices
for the u-quarks and the d-quarks by requiring that the mass matrices reproduce
experimental data while manifesting symmetry of Eq. (3.1), predicted by the
spin-charge-family theory.

We look for several properties of the obtained mass matrices:
i. We test the influence of the experimentally declared inaccuracy of the 3× 3 sub
matrices of the 4× 4mixing matrices and of the twice 3measured masses on the
prediction of the fourth family masses.
ii. We look for how do the old and the new matrix elements of the measured
mixing matrix influence the accuracy with which the experimental data are repro-
duced in the procedure which takes into account the symmetry of mass matrices.
iii. We look for how different choices for the masses of the fourth family members
limit the inaccuracy of particular matrix elements of the mixing matrices or the
inaccuracy of the three lower masses of family members.
iv. We test how close to the democratic mass matrix are the obtained mass matri-
ces in dependence of the fourth family masses.
v. We look for the predictions of the 4 × 4 mass matrices with the symmetry
presented in Eq. (3.1).

The numerical procedure, used in this contribution, is designed for quarks
and leptons. We present in this paper the results for quarks. The results for leptons,
presented in appendix 3.6 is only to manifest the general properties of leptons,
since the experimental data for leptons are far too non accurate to lead to trustable
predictions.

In the next subsection 3.3.1 the numerical results are presented for the 4× 4
mass matrices of the u-quarks and the d-quarks as they follow from the by the
spin-charge-family theory required symmetry after fitting the experimental data.

Mass matrices for quarks In order to test whether or not our results have some
experimental support, we use two kinds of the experimental values for the quark
mixing matrix, presented in Eqs. (3.11, 3.12), respectively, for several values of the
fourth family quark masses.

Searching for mass matrices with the symmetry of Eq. (3.1) to determine
the interval for the fourth family quark masses in dependence of the values of
the mixing matrix elements within the experimental inaccuracy, we repeat the
numerical procedure for data with several values of masses of the fourth family
quarks. Here we present results for two of them: formu4 = 700 GeV = md4 and
formu4 = 1 200 GeV = md4 .

We present below the results for the two experimental matrix elements [16,15]
for the quark mixing matrix, first for the data [16] and then for the data [15], in
both cases first formu4 = 700 GeV = md4 and then formu4 = 1 200 GeV = md4 .

Having results from the fitting procedure when used the old experimental
data for the quark mixing matrix, we look for the predictions, which the calculated
3× 3matrix elements of the 4× 4mixing matrix obeying the symmetry of Eq. (3.1)
offer, and then check to which extend the predictions agree with new experimental
data.

Then we repeat calculations with new experimental data.
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• Results for the mass matrices of the two quarks family members, fitted to the
mixing matrix elements presented in the ref. [16]. The fit offers the smallest
common deviation (Eq. 3.10)) of the sum of all the average values of the nine
matrix elements of the 3× 3 sub matrix. The masses of quarks and the mixing
matrix resulting from diagonalizing the two best fitted mass matrices are also
presented.
1. Heremu4 = 700 GeVmd4 = 700 GeV is chosen.

Mu =


227623. 131877. 132239. 217653.

131877. 222116. 217653. 132239.

132239. 217653. 214195. 131877.

217653. 132239. 131877. 208687.

 ,

Md =


175797. 174263. 174288. 175710.

174263. 175666. 175710. 174288.

174288. 175710. 175813. 174263.

175710. 174288. 174263. 175682.

 ,

(3.14)

Vud =


−0.97423 0.22531 −0.003 0.01021

0.22526 0.97338 −0.042 0.0016

−0.00663 −0.04197 −0.9991 −0.0004

0.00959 −0.00388 −0.0003 0.99995

 . (3.15)

The corresponding absolute values for the deviations from the average
experimental values (Eq.(3.10)) are

δVud =

 0.091 0.117 2.339

0.431 1.418 1.348

2.951 0.358 1.559

 . (3.16)

The corresponding total absolute average deviation Eq. (3.10) is 4.5579.

The two mass matrices correspond to the diagonal masses

Mu
d/MeV/c2 = (1.3, 620.0, 172 000., 700 000.) ,

Md
d/MeV/c2 = (2.88508, 55.024, 2 899.99, 700 000.) . (3.17)

2. In the next casemu4 = 1 200 GeV andmd4 = 1 200 GeV are chosen, again
fitting the old [16] experimental for quark mixing matrix elements.

Mu =


351916. 256894. 257204. 342714.

256894. 344411. 342714. 257204.

257204. 342714. 341900. 256894.

342714. 257204. 256894. 334395.

 ,

Md =


300783. 299263. 299288. 300709.

299263. 300623. 300709. 299288.

299288. 300709. 300856. 299263.

300709. 299288. 299263. 300696.

 ,

(3.18)
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Vud =


−0.97425 0.22536 −0.00301 0.00474

0.22534 0.97336 −0.04239 0.00212

−0.00663 −0.04198 −0.9991 −0.00021

0.00414 −0.00315 −0.00011 0.99999

 . (3.19)

The corresponding values for the deviations from the average experimental
value of the matrix elements of the 3× 3 sub matrix are

δVud =

0.003 0.226 2.3350.424 1.419 1.357

2.949 0.355 1.559

 . (3.20)

The corresponding total average deviation Eq. (3.10) is 4.5595.

The two mass matrices correspond to the diagonal masses

Mu
d/MeV/c2 = (1.3, 620.0, 172 000., 700 000.) ,

Md
d/MeV/c2 = (2.9, 55.0, 2 900.0, 700 000.) . (3.21)

Let us notice, that while the mass matrices of the u and the d quarks change
for a factor of ≈ 1.5, becoming more ”democratic” (that is the matrix elements
become more and more equal), when changing the fourth family masses from
700 GeV to 1 200 GeV, the mixing matrix elements of the 3× 3 sub matrix do
not change a lot (Eqs.(3.15, 3.19)).
Let us now see what does our calculations say. We first make comparison for
the old [16] (expo) mixing matrix with the calculated ones when the fourth
family quark masses are 700 GeV, and 1 200 GeV. Results are presented in
Eq. (3.22)

|V(ud)old | =



expo 0.97425± 0.00022 0.2252± 0.0009 0.00415± 0.00049
old1 0.97423 0.22531 0.003

old2 0.97425 0.22536 0.00301

expo 0.230± 0.011 1.006± 0.023 0.0409± 0.0011
old1 0.22526 0.97338 0.042

old2 0.22534 0.97336 0.04239

expo 0.0084± 0.0006 0.0429± 0.0026 0.89± 0.07
old1 0.00663 0.04197 0.9991

old2 0.00663 0.04198 0.9991


.

(3.22)
The calculated mixing predicts:
i. The matrix element Vu1d1 should almost not change, Vu1d2 may slightly
rise, and (Vu2d3 and Vu3d3 ) will also rise.
ii. The matrix elements (Vu1d3 , Vu2d1 , Vu2d2 , Vu3d1 , Vu3d2) should lower.
Checking the new experimental values one sees that the prediction was in all
the cases in agreement with those new experimental data which were done
with better accuracy.
• let us repeat the calculations with new experimental data [15] to see how will

the new data influence the mass matrices and the mixing matrix elements.
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Results for the mass matrices of the two quarks family members, fitted to
the new mixing matrix elements [15], which lead to the smallest common
deviation for the sum of all the average values of the nine matrix elements of
the 3× 3 sub matrix, are presented, together with the masses of quarks and
the mixing matrix resulting from diagonalizing the two mass matrices. Again
the fourth quark masses are first (mu4 = 700 GeV,md4 = 700 GeV) and then
(mu4 = 1 200 GeV,md4 = 1 200 GeV)
1. Heremu4 = 700 GeV andmd4 = 700 GeV is chosen.

Mu =


226521. 131887. 132192. 217715.

131887. 219347. 217715. 132192.

132192. 217715. 216964. 131887.

217715. 132192. 131887. 209790.

 ,

Md =


175776. 174263. 174288. 175709.

174263. 175622. 175709. 174288.

174288. 175709. 175857. 174263.

175709. 174288. 174263. 175703.

 ,

(3.23)

Vud =


−0.97423 0.22539 −0.00299 0.00776

0.22534 0.97335 −0.04245 0.00349

−0.00667 −0.04203 −0.99909 −0.00038

0.00677 −0.00517 −0.00020 0.99996

 . (3.24)

The corresponding values Eq. (3.10) for the deviations from the average
experimental values are

δVud =

 0.074 0.109 2.339

0.043 0.791 1.032

2.291 0.753 0.685

 . (3.25)

The corresponding total absolute average deviation Eq. (3.10) is 4.07154.

The two mass matrices correspond to the diagonal masses

Mu
d/MeV/c2 = (1.3, 620.0, 172 000., 700 000.) ,

Md
d/MeV/c2 = (2.9, 55.0, 2 900.0, 700 000.) . (3.26)

2. Heremu4 = 1 200 GeVmd4 = 1 200 GeV is chosen.

Mu =


354761. 256877. 257353. 342539.

256877. 350107. 342539. 257353.

257353. 342539. 336204. 256877.

342539. 257353. 256877. 331550.

 ,

Md =


300835. 299263. 299288. 300710.

299263. 300714. 300710. 299288.

299288. 300710. 300765. 299263.

300710. 299288. 299263. 300644.

 ,

(3.27)
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Vud =


0.97423 0.22538 0.00299 0.00793

−0.22531 0.97336 0.04248 −0.00002

0.00667 −0.04206 0.99909 −0.00024

−0.00773 −0.00178 0.00022 0.99997

 . (3.28)

The corresponding values for the deviations from the average experimental
value for each matrix element are

δVud =

 0.07 0.097 2.3290.038 0.79 1.061

2.889 0.762 0.685

 . (3.29)

The corresponding total average deviation Eq. (3.10) is 4.0724.

The two mass matrices correspond to the diagonal masses

Mu
d/MeV/c2 = (1.3, 620.0, 172 000., 1 200 000.) ,

Md
d/MeV/c2 = (2.88508, 55.024, 2 899.99, 1 200 000.) . (3.30)

Again we notice that the mass matrices of the u and the d quarks change for a
factor of ≈ 1.5when the masses of the fourth family members grow from 700

GeV to 1 200 GeV. The mass matrices become more ”democratic”. The mixing
matrix elements of the 3× 3 sub matrix do not change a lot (Eqs.(3.24, 3.28))
with the masses of the fourth family quarks, but they do agree better with the
newer [15] than with the older [16] experimental values.

Let us now compare the old [16] (expo) and the new [15] (expn) mixing matrix
elements of the 3× 3 sub matrix with the calculated ones for either the old [16] or
for the new [15] experimental values, fitting them to the mass matrices of Eq. (3.1),
in both cases for mu4 = md4 = 700 GeV and for mu4 = md4 = 1 200 GeV, to see
whether we can learn something out of this comparison.

We present below the old data (expo), the new data (expn) and both calculated
values, each for mu4 = md4 = 700 GeV (old1, new1) and mu4 = md4 = 1 200
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GeV (old2, new2), putting together all these values in the same matrix.

|V(ud)| =



expo 0.97425± 0.00022 0.2252± 0.0009 0.00415± 0.00049
expn 0.97425± 0.00022 0.2253± 0.0008 0.00413± 0.00049
old1 0.97423 0.22531 0.003

old2 0.97425 0.22536 0.00301

new1 0.97423 0.22531 0.00299

new2 0.97423 0.22538 0.00299

expo 0.230± 0.011 1.006± 0.023 0.0409± 0.0011
expn 0.225± 0.008 0.986± 0.016 0.0411± 0.0013
old1 0.22526 0.97338 0.042

old2 0.22534 0.97336 0.04239

new1 0.22534 0.97335 0.04245

new2 0.22531 0.97336 0.04248

expo 0.0084± 0.0006 0.0429± 0.0026 0.89± 0.07
expn 0.0084± 0.0006 0.0400± 0.0027 1.021± 0.032
old1 0.00663 0.04197 0.9991

old2 0.00663 0.04198 0.9991

new1 0.00667 0.04203 0.99909

new2 0.00667 0.04206 0.99909



.

(3.31)
Comparing the above results and the results for mass matrices and 4 × 4

mixing matrices one finds:
i. The old and new experimental data differ mainly in the diagonal matrix
elements.
ii. The old and new experimental data lead in the fitting procedure to quite
similar 3×3 sub matrix, while their influence on the fourth family matrix elements
are stronger.
iii. The fourth family masses change the mass matrices considerably, while their
influence on the 3× 3 sub matrix of the 4× 4mixing matrix is much weaker.
iv. The prediction (Eq. (3.22)) of the calculated mixing matrix elements, ob-
tained by fitting the symmetry of the mass matrices (Eq. (3.1)) to the experimental
data [16], was confirmed by improved experimental data [15]. In all cases are the
calculated 3× 3matrix elements closer to the new experimental values than to the
old experimental values.
v. Calculations with new experimental data predict: We expect (Eq. (3.31)) that
more accurate experiments will bring a slightly smaller values for (Vu1d1 , Vu1d3 ,
Vu3d3), smaller (Vu2d2 , Vu3d1), (Vu1d2 , Vu2d1) will slightly grow and (Vu2d3)
Vu3d2 will grow.
vi. The matrix elements Vuid4 and Vu4di change considerably with the mass of
the fourth family members, and they differ quite a lot also when using new instead
of the old experimental data for the mixing matrix.
vii. Fitting the free parameters of the mass matrices to the new experimental
data [15] gives smaller parameter σ (Eq. sigma) than when fitting old experimental
data [16]: 4.07154with respect to 4.5579 for the masses 700 GeV and 4.0724with
respect to 4.5595 for the masses 1 200 GeV, while with the mass σ does not really
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change. Only very accurate mixing matrix elements would allow to determine
fourth family quarks masses more accurately. Since the choice of the fourth family
quark masses does not appreciable influence either the fitting procedure or the
obtained 3× 3 mixing matrix, and also not the accuracy of the masses of the three
lower families, it is difficult to predict the interval for the masses of the fourth
family members. For the masses of the fourth family quarks to be close or above 1
TeV speak more other experimental data, like decays of mesons.

An estimation how trustable is the numerical procedure, used to fit free
parameters of the quarks mass matrices to the experimental data, can be made
by comparing the results for the mixing matrix for several choices of the fourth
family masses. The fitting procedure shows up that the 3× 3mixing matrix does
not change appreciable, even not for much lower masses from 300 GeV up.

We can conclude: Requiring that the experimental data respect the symmetry
of the mass matrices (Eq. (3.1)) (suggested by the spin-charge-family theory) the
prediction can be made for the change of the matrix elements of the 3×3 sub matrix
in future experiments. The masses of the fourth family members are more difficult
to predict, since the accuracy of the experimental data for the quark masses and
in particular for the mixing matrix should be extremely high to really limit the
fourth family masses. For a known fourth family masses the fourth family matrix
elements of the mixing matrix are accurate. For masses of the fourth family quarks
to be close or above 1 TeV speak more other experimental data, like decays of
mesons.

3.4 Discussions and conclusions

One of the most important open questions in the elementary particle physics is:
Where do the family originate? Explaining the origin of families would answer
the question about the number of families possibly observable at the low energy
regime, about the origin of the scalar field(s) and Yukawa couplings and would
also explain differences in the fermions properties - the differences in masses and
mixing matrices among family members – quarks and leptons.

Assuming that the prediction of the spin-charge-family theory that there are
four rather than so far observed three coupled families, the mass matrices of
which demonstrate in the massless basis the SU(2)× SU(2) (each of two SU(2) is
a subgroup of its own SO(4)) symmetry of Eq. (3.1), the same for all the family
members - the quarks and the leptons - and simplifying the numerical procedure by
the assumption that the mass matrices are symmetric and real and correspondingly
the mixing matrices orthogonal, we fit the free parameters of the quarks mass
matrices (6 for u-quarks and 6 for d-quarks to twice three masses of quarks and
to the mixing matrix 4× 4, extracted from the 3× 3 sub matrix elements, fitted to
6 parameters of the orthogonal matrix) to the experimental data. Every unitary
n× nmatrix is for n ≥ 4, through the unitary conditions, uniquely determined by
the 3× 3 sub matrix.

The numerical procedure, explained in this paper, to fit free parameters to the
experimental data within the experimental inaccuracy of masses and in particular
of the mixing matrix is very tough. The accurate mixing matrix elements and
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masses would completely determine the fourth family masses. The experimental
inaccuracies are too large to tell the trustable mass interval, within which the
fourth family masses of quarks lie.

In this paper we are not yet able to tell the mass intervals for the fourth family
quarks. But since the matrix elements of the 3× 3 sub matrix depend very weakly
on the fourth family masses, the calculated matrix (from the experimental data
under the assumption that the mass matrices manifest the symmetry of Eq. (3.1))
offer the prediction to what values will more accurate measurements move the
present experimental data. We checked this prediction by performing calculations
with the old matrix elements [16] and then test the prediction on the new ones [15].
The results are presented in Eq. (3.22). Repeating calculations with the new matrix
elements for several masses of the fourth family quarks we predict further change
of the 3× 3 sub matrix elements, presented in Eq. (3.31).

We expect: More accurate experiments will bring a slightly smaller values
for (Vud, Vub, Vtb), smaller (Vcs, Vtd), (Vus, Vcd) will slightly grow and (Vcb) Vts
will grow.

The fourth family mixing matrix elements depend, as expected, strongly on
the fourth family masses. For chosen masses of the fourth family members their
matrix elements can be quite accurately predicted (Eqs. (3.24, 3.28)).

Mass matrices are quite close to the ”democratic” ones not only for leptons
but also for quarks. With the growing fourth family masses the ”democracy” in
matrix elements grow (Eqs. (3.23, 3.23)), as expected.

Although we have not study complex mass matrices, we do not expect that
the presented results would change considerably after taking into account the
complex phases of mass matrices and correspondingly also of the mixing matrices.
We estimate the accuracy of our calculations by comparing the results of the
calculated 3× 3 matrix elements for the interval of the fourth family masses, from
300 GeV to 1 200 GeV. It look very trustable, offering for all these masses only
slowly changing matrix elements.

We are concluding: Requiring that the experimental data respect the symmetry
of the mass matrices (Eq. (3.1)) (suggested by the spin-charge-family theory) the
prediction is made for the change of the matrix elements of the 3× 3 sub matrix in
future more accurate experiments. More (much more) accurate measured 3×3 sub
matrix elements in future will determine, following the spin-charge-family theory,
the fourth family masses and the fourth family matrix elements. However, even
with the present experimental data our calculations, respecting the symmetry of
the mass matrices (Eq. (3.1)) offer the prediction for the direction to which will
more accurately measured matrix elements move.

Since the symmetry of the mass matrices are determined in the spin-charge-
family theory by two triplet (with respect to the family charges) and tree singlet
(with respect to the family members charges (Q,Q ′, Y)) scalar fields [13,14], all
with the weak and the hyper charges as assumed in the standard model for the
scalar fields, we hope to learn from the properties of the mass matrices and the
corresponding mixing matrices more about these scalar fields.
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3.5 APPENDIX: A brief presentation of the spin-charge-family
theory

We present in this section a very brief introduction into the spin-charge family
theory [1–14]. The reader can skip this appendix taking by the spin-charge family
theory required symmetry of mass matrices of Eq. (3.1) as an input to the study
of properties of the 4× 4mass matrices - with the parameters which depend on
charges of the family members - and can come to this part of the paper, if and
when would like to learn where do families and scalar fields possibly originate
from.

Let us start by directing attention of the reader to one of the most open
questions in the elementary particle physics and cosmology: Why do we have
families, where do they originate and correspondingly where do scalar fields,
manifesting as Higgs and Yukawa couplings, originate? The spin-charge-family
theory is offering a possible explanation for the origin of families and scalar fields,
and in addition for the so far observed charges and the corresponding gauge fields.

There are, namely, two (only two) kinds of the Clifford algebra objects: One
kind, the Dirac γa, takes care of the spin in d = (3 + 1), while the spin in d ≥ 4
(rather than the total angular momentum) manifests in d = (3 + 1) in the low
energy regime as the charges. In this part the spin-charge family theory is like the
Kaluza-Klein theory, unifying spin (in the low energy regime, otherwise the total
angular momentum) and charges, and offering a possible answer to the question
about the origin of the so far observed charges and correspondingly also about
the so far observed gauge fields. The second kind of the Clifford algebra objects,
forming the equivalent representations with respect to the Dirac kind, recognized
by one of the authors (SNMB), is responsible for the appearance of families of
fermions.

There are correspondingly also two kinds of gauge fields, which appear to
manifest in d = (3+ 1) as the so far observed vector gauge fields (the number of -
obviously non yet observed - gauge fields grows with the dimension) and as the
scalar gauge fields. The scalar fields are responsible, after gaining nonzero vacuum
expectation values, for the appearance of masses of fermions and gauge bosons.
They manifest as the so far observed Higgs [36] and the Yukawa couplings.

All the properties of fermions and bosons in the low energy regime originate
in the spin-charge-family theory in a simple starting action for massless fields in
d = [1 + (d − 1)]. Fermions interact with the vielbeins fαa and correspondingly
with the two kinds of the spin connection fields: with ωabc = fαcωabα which
are the gauge fields of Sab = i

4
(γaγb − γbγa) and with ω̃abc = fαc ω̃abα which

are the gauge fields of S̃ab = i
4
(γ̃aγ̃b − γ̃bγ̃a). α,β, . . . is the Einstein index and

a, b, . . . is the flat index. The starting action is the simplest one

S =

∫
ddx E Lf +

∫
ddx E (αR+ α̃ R̃) , Lf =

1

2
(ψ̄ γap0aψ) + h.c.

p0a = fαa p0α +
1

2E
{pα, Ef

α
a}−, p0α = pα −

1

2
Sabωabα −

1

2
S̃abω̃abα,(3.32)
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R =
1

2
{fα[afβb] (ωabα,β −ωcaαω

c
bβ)}+ h.c. ,

R̃ =
1

2
fα[afβb] (ω̃abα,β − ω̃caαω̃

c
bβ) + h.c. . (3.33)

E = det(eaα) and eaαfβa = δβα. Fermions, coupled to the vielbeins and the two
kinds of the spin connection fields, manifest (after several breaks of the starting
symmetries) before the electroweak break four massless families of quarks and leptons,
the left handed fermions are weak charged and the right handed ones are weak
chargeless. The vielbeins and the two kinds of the spin connection fields manifest
effectively as the observed gauge fields and (those with the scalar indices in
d = (1+ 3)) as several scalar fields. The mass matrices of the four family members
(quarks and leptons) are after the electroweak break expressible on a tree level by
the vacuum expectation values of the two kinds of the spin connection fields and
the corresponding vielbeins with the scalar indices ([1,2,6,7,12,13]):
i. One kind originates in the scalar fields ω̃abc , manifesting as the two SU(2)
triplets – ÃÑL is , i = (1, 2, 3) , s = (7, 8); Ã1̃ is , i = (1, 2, 3) , s = (7, 8); – and one
singlet – Ã4̃s , s = (7, 8) – contributing equally to all the family members.
ii. The second kind originates in the scalar fields ωabc, manifesting as three
singlets –AQs , A

Q ′

s , A
Y ′ , s = (7, 8) – contributing the same values to all the families

and distinguishing among family members. Q and Q ′ are the quantum numbers
from the standard model, Y ′ originates in the second SU(2) (a kind of a right handed
”weak”) charge.

All the scalar fields manifest, transforming the right handed quarks and lep-
tons into the corresponding left handed ones 4 and contributing also to the masses
of the weak bosons, as doublets with respect to the weak charge. Loop corrections,
to which all the scalar and also gauge vector fields contribute coherently, change
contributions of the off-diagonal and diagonal elements appearing on the tree
level, keeping the tree level symmetry of mass matrices unchanged 5.

3.5.1 Mass matrices on the tree level and beyond which manifest
SU(2)× SU(2) symmetry

Let us make a choice of a massless basis ψi, i = (1, 2, 3, 4), for a particular family
memeber α. And let us take into account the two kinds of the operators, which
transform the basis vectors into one another

ÑiL , i = (1, 2, 3) , τ̃iL , i = (1, 2, 3) , (3.34)

4 It is the term γ0γs φAis , where φAis , with s = (7, 8) denotes any of the scalar fields,
which transforms the right handed fermions into the corresponding left handed part-
ner [1,7,2,6,12–14]. This mass term originates in ψ̄ γap0aψ of the action Eq.(3.32), with
a = s = (7, 8) and p0s = fσs (pσ − 1

2
S̃abω̃abσ − 1

2
Sstωstσ).

5 It can be seen that all the loop corrections keep the starting symmetry of the mass matrices
unchanged. We have also started [7,42] with the evaluation of the loop corrections to the
tree level values. This estimation has been done so far [42] only up to the first order and
partly to the second order.
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with the properties

Ñ3L (ψ1, ψ2, ψ3, ψ4) =
1

2
(−ψ1, ψ2,−ψ3, ψ4) ,

Ñ+
L (ψ1, ψ2, ψ3, ψ4) = (ψ2, 0, ψ4, 0) ,

Ñ−
L (ψ1, ψ2, ψ3, ψ4) = (0 ,ψ1, 0, ψ3) ,

τ̃3 (ψ1, ψ2, ψ3, ψ4) =
1

2
(−ψ1,−ψ2, ψ3, ψ4) ,

τ̃+ (ψ1, ψ2, ψ3, ψ4) = (ψ3, ψ4, 0, 0) ,

τ̃− (ψ1, ψ2, ψ3, ψ4) = ( 0, 0,ψ1, ψ2) . (3.35)

This is indeed what the two SU(2) operators in the spin-charge-family theory do. The
gauge scalar fields of these operators determine, together with the corresponding
coupling constants, the off diagonal and diagonal matrix elements on the tree
level. In addition to these two kinds of SU(2) scalars there are three U(1) scalars,
which distinguish among the family members, contributing on the tree level the
same diagonal matrix elements for all the families. In loop corrections in all orders
the symmetry of mass matrices remains unchanged, while the three U(1) scalars,
contributing coherently with the two kinds of SU(2) scalars and all the massive
fields to all the matrix elements, manifest in off diagonal elements as well. All the
scalars are doublets with respect to the weak charge, contributing to the weak and
the hypercharge of the fermions so that they transform the right handed members
into the left handed onces.

With the above (Eq. (3.35) presented choices of phases of the left and the
right handed basic states in the massless basis the mass matrices of all the family
members manifest the symmetry, presented in Eq. (3.1). One easily checks that a
change of the phases of the left and the right handed members, there are (2n− 1)

possibilities, causes changes in phases of matrix elements in Eq. (3.1).

3.6 APPENDIX: Mass matrices for leptons

We evaluate 3× 3matrix elements from the data [16]

7.05 · 10−17 ≤ ∆(m21/MeV/c2)2 ≤ 8.34 · 10−17 ,
2.07 · 10−15 ≤ ∆(m(31),(32)/MeV/c2)2 ≤ 2.75 · 10−15 ,
0.25 ≤ sin2 θ12 ≤ 0.37 , 0.36 ≤ sin2 θ23 ≤ 0.67 ,
sin2 θ13 < 0.035(0.056) , sin2 2θ13 = 0.098± 0.013 , (3.36)

which means that π
4
− π
10
≤ θ23 ≤ π

4
+ π
10

, π
5.4

− π
10
≤ θ12 ≤ π

4
+ π
10

, θ13 < π
13

.
This reflects in the lepton mixing matrix Vνe = Sν Se †

|Vνe| =


0.8224 0.5200 0.1552 |Vν1e4 |

0.3249 0.7239 0.6014 |Vν2e4 |

0.4455 0.4498 0.7704 |Vν3e4 |

|Vν4e1 | |Vν4e2 | |Vν4e3 | |Vν4e4 |

 , (3.37)
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determining for each assumed value for any mixing matrix element within the
experimentally allowed inaccuracy the corresponding fourth family mixing matrix
elements (|Vνie4 | and |Vν4ej |) from the unitarity condition for the 4 × 4 mixing
matrix. The masses of leptons are taken from [15,16] while we take the fourth
family masses as free parameters, checking how much does the experimental
inaccuracy influence a possible prediction for the fourth family leptons masses
and how does this prediction agree with experimentally allowed values [15,16,43]
for the fourth family lepton masses.

Mν
d/MeV/c2 = (1 · 10−9, 9 · 10−9, 5 · 10−8, mν4 > 90 000.) ,

Me
d/MeV/c2 = (0.486 570 161± 0.000 000 042,
102.718 135 9± 0.000 009 2, 1746.24± 0.20,me4 > 102 000 ) . (3.38)

3.6.1 Numerical results for leptons

We present here the old results [11] for leptons, manifesting properties of the
lepton mass matrices. These results are less informative than those for quarks,
since the experimental results are for leptons mixing matrix much less accurate
than in the case of quarks and also masses are known less accurately.

We make a choice of the fourth family masses and take the mixing matrix
elements from the old experimental data [16]

We have

•

Mν =


14 021. 14 968. 14 968. −14 021.

14 968. 15 979. 15 979. −14 968.

14 968. 15 979. 15 979 −14 968.

−14 021. −14 968. −14 968. 14 021.

 ,

Me =


28 933. 30 057. 29 762. −27 207.

30 057. 32 009. 31 958. −29 762.

29 762. 31 958. 32 009. −30 057.

−27 207. −29 762. −30 057. 28 933.

 ,

(3.39)

which leads to the mixing matrix Vνe

Vνe1 =


0.82363 0.54671 −0.15082 0.

−0.50263 0.58049 −0.64062 0.

−0.26268 0.60344 0.75290 0.

0. 0. 0. 1.

 , (3.40)

and the masses

Mν
d/MeV/c2 = (5 · 10−9 , 1 · 10−8 , 4.9 · 10−8 , 60 000.) ,

Me
d/MeV/c2 = (0.510999 , 105.658 , 1 776.82 , 120 000) . (3.41)

We did not adapt lepton masses to Zm mass scale. Zeros (0.) for the matrix
elements concerning the fourth family members means that the values are less
than 10−5 and 1.means that the difference from 1 occurs on the sixth digit at
most.
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We notice:
i. The required symmetry, Eq. (3.1), is kept exactly.
ii. The mass matrices of leptons are very close to the ”democratic” matrix.
iii. The mixing matrix elements among the first three and the fourth family mem-
bers are very small, what is due to our choice, since the matrix elements of the
3 × 3 sub matrix of the 4 × 4 unitary matrix, predicted by the spin-charge-family
theory are very inaccurately known.

3.7 APPENDIX: Properties of non Hermitian mass matrices

This pedagogic presentation of well known properties of non Hermitian matrices
can be found in many textbooks, for example [44]. We repeat this topic here only
to make our discussions transparent.

Let us take a non Hermitian mass matrix Mα as it follows from the spin-
charge-family theory, α denotes a family member (index ± used in the main text is
dropped).

We always can diagonalize a non HermitianMα with two unitary matrices,
Sα (Sα † Sα = I) and Tα (Tα † Tα = I)

Sα †Mα Tα = Mα
d = (mα1 . . .m

α
i . . .m

α
n). (3.42)

The proof is added below.
Changing phases of the basic states, those of the left handed one and those of

the right handed one, the new unitary matrices S ′α = Sα FαS and T ′α = Tα FαT
change the phase of the elements of diagonalized mass matrices Mα

d

S ′α †Mα T ′α = F†αSMα
d FαT =

diag(mα1 e
i(φαS1 −φαT1 ) . . .mαi e

i(φαSi −φαTi ) , . . .mαn e
i(φαSn −φαTn )) ,

FαS = diag(e−iφ
αS
1 , . . . , e−iφ

αS
i , . . . , e−iφ

αS
n ) ,

FαT = diag(e−iφ
αT
1 , . . . , e−iφ

αT
i , . . . , e−iφ

αT
n ) . (3.43)

In the case that the mass matrix is Hermitian Tα can be replaced by Sα, but
only up to phases originating in the phases of the two basis, the left handed one
and the right handed one, since they remain independent.

One can diagonalize the non Hermitian mass matrices in two ways, that is
either one diagonalizesMαMα † orMα†Mα

(Sα†MαTα)(Sα†MαTα)† = Sα†MαMα †Sα = Mα2
dS ,

(Sα†MαTα)†(Sα†MαTα) = Tα†Mα †MαTα = Mα2
dT ,

Mα †
dS = Mα

dS , Mα †
dT = Mα

dT . (3.44)

One can prove that Mα
dS = Mα

dT . The proof proceeds as follows. Let us define two
Hermitian (HαS , HαT ) and two unitary matrices (UαS , HαT )

HαS = SαMα
dSS

α † , HαT = TαMα†
dTT

α † ,

UαS = Hα−1S Mα , UαT = Hα−1T Mα † , (3.45)
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It is easy to show that Hα †S = HαS , Hα †T = HαT , UαS U
α †
S = I and UαT U

α †
T = I. Then

it follows

Sα†HαS S
α = Mα

dS = Mα †
dS = Sα†MαUα−1

S Sα = Sα†Mα Tα ,

Tα†HαT T
α = Mα

dT = Mα †
dT = Tα†Mα †Uα−1

T Tα = Tα†Mα† Sα , (3.46)

where we recognized Uα−1
S Sα = Tα and Uα−1

T Tα = Sα. Taking into account
Eq. (3.43) the starting basis can be chosen so, that all diagonal masses are real and
positive.
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1. N.S. Mankoč Borštnik, ”Spin-charge-family theory is explaining appearance of families
of quarks and leptons, of Higgs and Yukawa couplings”, in Proceedings to the 16th Work-
shop ”What comes beyond the standard models”, Bled, 14-21 of July, 2013, eds. N.S. Mankoč
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DMFA Založništvo, Ljubljana December 2013, p. 31-51, [arxiv:1403.4441].
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Abstract. It might be expected that only global symmetries are fundamental symmetries
of Nature, whereas local symmetries and associated massless gauge fields could solely
emerge due to spontaneous breaking of underlying spacetime symmetries involved, such
as relativistic invariance and supersymmetry. This breaking, taken in the form of the
nonlinear σ-model type pattern for vector fields or superfields, puts essential restrictions
on geometrical degrees of freedom of a physical field system that makes it to adjust itself
in such a way that its global internal symmetry G turns into the local symmetry Gloc.
Remarkably, this emergence process may naturally be triggered by spontaneously broken
supersymmetry, as is illustrated in detail by an example of a general supersymmetric QED
model which is then extended to electroweak models and grand unified theories. Among
others, the U(1) × SU(2) symmetrical Standard Model and flipped SU(5) GUT appear
preferable to emerge at high energies.

Povzetek. Avtor dokazuje, da so samo globalne simetrije temeljne simetrije narave, lokalne
simetrije in njim pridružena umeritvena polja pa se pojavljajo samo zaradi spontane
zlomitve simetrije prostora-časa, kot sta relativistična invarianca in supersimetrija. Avtor
uporabi nelinearni model σ za obravnavo sistema z relativistično simetrijo in supersimetrijo.
Ugotavlja, da zlomitev relativistične invariance ter supersimetrije bistveno zoži geometrij-
ske prostostne stopnje vektorskih in superpolja, zato se ta odzove s spremembo globalne
notranje simetrije G v lokalno simetrijo Gloc. Spontano zlomljena supersimetrija lahko
naravno sproži ta proces porajanja. Avtor ta spontani prehod ilustrira na primeru splošnega
modela supersimetrične kvantne elektordinamike. Ta model razširi tudi na elektrošibki
standardni model ter na teorije, imenovane ”velike teorije poenotenja” (GUT). Pri visokih
energijah se pri takih zlomitvah simetrij pojavita prav standardni model in ,,prekucnjen”
(flipped) model SU(5).

4.1 Introduction

We all believe that internal gauge symmetries form the basis of modern particle
physics being most successfully realized within the celebrated Standard Model
(SM) of quarks and leptons and their fundamental strong, weak and electromag-
netic interactions. At the same time, local gauge invariance, contrary to a global
symmetry case, may look like a cumbersome geometrical input rather than a ”true”
physical principle, especially in the framework of an effective quantum field theory
(QFT) becoming, presumably, irrelevant at very high energies. In this connection,

? E-mail: j.chkareuli@iliauni.edu.ge
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one could wonder whether there is any basic dynamical reason that necessitates
gauge invariance and the associated masslessness of gauge fields as some emer-
gent phenomenon arising from a more profound level of dynamics. By analogy
with a dynamical origin of massless scalar particle excitations, which is very well
understood in terms of spontaneously broken global internal symmetries [1], one
could think that the origin of massless gauge fields as vector Nambu-Goldstone
(NG) bosons are related to the spontaneous Lorentz invariance violation (SLIV)
that is the minimal spacetime global symmetry underlying particle physics. This
well-known approach providing a viable alternative to quantum electrodynamics
[2], gravity [3] and Yang-Mills theories [4] has a long history started over fifty
years ago, though has been significantly revised in the recent years [5–8].

4.1.1 An emergence conjecture

Directly or indirectly, the approach mentioned includes several key points which
in a conventional QFT framework may be formulated nowadays in the following
way (see [9] and comprehensive references therein):

• Only global symmetries are fundamental symmetries of Nature. Local sym-
metries and associated massless gauge vector (tensor) fields could only emerge
due to some phase transition producing them as appropriate Nambu-Goldstone
modes,

• The underlying Lorentz invariance is proposed to be spontaneously broken
since only spacetime symmetry breaking could basically provide an existence
of vector (tensor) emerging modes which mediate all interactions involved,

• The theory itself is proposed to be ”physically” viable in the sense that any
appropriate initial value condition (IVC), which determines the subsequent dy-
namical evolution of a physical field system, is uniquely satisfied. This means
in turn that an interacting field system can not be superfluously restricted in
the number of physical degrees of freedom in order to remain physical,

• Together, they naturally lead to the gauge symmetry emergence (GSE) conjec-
ture which I will follow throughout the paper: Let there be given an interacting
field system containing some vector field (or vector field multiplet) Aµ together with
fermion (ψ), scalar (φ) and other matter fields in an arbitrary relativistically invari-
ant Lagrangian L(Aµ, ψ,φ, ...) which possesses only global Abelian or non-Abelian
internal symmetry G. Suppose that an underlying relativistic invariance of this field
system is spontaneously broken in terms of the ”length-fixing” covariant constraint
put on vector fields,

AµA
µ = n2M2 (4.1)

(where M stands for the proposed SLIV scale, while nµ is a properly-oriented unit
Lorentz vector, n2 = nµn

µ = ±1). If this constraint is preserved under the time
development given by the field equations of motion, then in order to be protected from
further reduction in degrees of freedom this system will modify its global symmetry
G into a local symmetry Gloc, that will in turn convert the vector field constraint
itself into a gauge condition thus virtually resulting in gauge invariant and Lorentz
invariant theory.
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To see how technically a global internal symmetry may be converted into
a local one, let us consider in some detail the question of consistency of a pos-
sible constraint for a general 4-vector field Aµ with its equation of motion in
an Abelian symmetry case, G = U(1). In the presence of the SLIV constraint
C(A) = AµA

µ − n2M2 = 0 (4.1), it follows that the equations of motion can
no longer be independent. The important point is that, in general, the time de-
velopment would not preserve the constraint. So the parameters in the starting
Lagrangian have to be adjusted in such a way that effectively we have one less
equation of motion for the vector field Aµ not to be superfluously restricted. This
means that there should be some relationship given by a functional equation
F(C = 0; EA, Eψ, ...) = 0 between all the vector and matter field Eulerians in-
volved1 which are individually satisfied on the mass shell. According to Noether’s
second theorem [10] such a relationship gives rise to an emergence of local sym-
metry for the field system considered provided that the functional F satisfies the
same symmetry requirements of Lorentz and translational invariance, as well as
all the global internal symmetry requirements, as the general starting Lagrangian
does.

In this way, the nonlinear SLIV condition (4.1), due to which true vacuum
in the theory is chosen and massless gauge fields are generated, may provide a
dynamical setting for all underlying internal symmetries involved through the
GSE conjecture [9]. One might think that the length-fixing vector field constraint
(4.1) itself first introduced by Nambu in a conventional QED framework [11]
(for some extensions and generalizations, see also [12–17]) does not especially
stand out in the present context. Actually, it seems that the GSE conjecture might
be equally formulated for any type of covariant constraint, say for the spin-1
vector field condition, ∂µAµ = 0 [18]. However, as is generally argued in [9], the
SLIV constraint (4.1) appears to be the only one whose application leads to a full
conversion of an internal global symmetry G into a local symmetry Gloc that
forces a given field system to remain always physical. Other constraints could
only lead to partial gauge invariance being broken by some terms in an emerging
theory.

Based upon the SLIV constraint (4.1), the starting vector field Aµ may be
expanded around the true vacuum configuration in the theory,

Aµ = aµ + nµ
√

M2 − n2a2 , nµaµ = 0 (a2 ≡ aµaµ) , (4.2)

which means that it develops the vacuum expectation value (VEV) 〈Aµ〉 = nµM.
Meanwhile, its aµ components which are orthogonal to the Lorentz violating
direction nµ describe a massless vector NG boson being an eventual gauge field
(photon) candidate.

4.1.2 Gauge invariance versus spontaneous Lorentz violation

One can see that the gauge theory framework, be it taken from the outset or
emerged, makes in turn spontaneous Lorentz violation to be physically unobserv-

1 The field Eulerians (EA, Eψ, ...) are determined, as usual, (EA)
µ ≡ ∂L/∂Aµ −

∂ν[∂L/∂(∂νAµ)], and so forth.
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able both in Abelian and non-Abelian symmetry case. In substance, the essential
part of the SLIV pattern (4.2), due to which the vector field Aµ(x) develops the
VEV M, may itself be treated as a pure gauge transformation with a gauge function
linear in coordinates,ω(x) = nµx

µM. This is what one could refer to as the generic
non-observability of SLIV in gauge invariant theories. I shall call it the ”inactive”
SLIV in contrast to the ”active” SLIV case where physical Lorentz invariance could
effectively occur. From the present standpoint, the only way for an active SLIV
to occur would be if emergent gauge symmetries presented above were slightly
broken at small distances. This could inevitably happen, for example, in a par-
tially gauge invariant theory which might appear if the considered field system
could become ”a little unphysical” at distances being presumably controlled by
quantum gravity [19]. One may think that quantum gravity could in principle
hinder the setting of the required IVC in the appropriate Cauchy problem (thus
admitting a superfluous restriction of vector fields) due to the occurrence of some
gauge-noninvariant high-order operators near the Planck scale. As a consequence,
through special dispersion relations appearing for matter and gauge fields, one
is led a new class of phenomena which could be of distinctive observational in-
terest in particle physics and astrophysics. They include a significant change in
the Greizen-Zatsepin-Kouzmin cutoff for ultra-high energy cosmic-ray nucleons,
stability of high-energy pions andW bosons, modification of nucleon beta decays,
and some others just in the presently accessible energy area in cosmic ray physics
[19] (for many phenomenological aspects, see pioneering works [20,21]).

4.1.3 SUSY profile of emergent theories

The role of Lorentz invariance may change, and its spontaneous violation may not
be the only reason why massless photons and other gauge fields could dynamically
appear, if spacetime symmetry is further enlarged. In this connection, special
interest is related to supersymmetry which has made a serious impact on particle
physics in the last decades (though has not been yet discovered). Actually, as we
will see, the situation is changed dramatically in the SUSY inspired emergent gauge
theories. In sharp contrast to non-SUSY analogs, it appears that the spontaneous
Lorentz violation caused by an arbitrary potential of vector superfield V(x, θ, θ)
never goes any further than some nonlinear gauge condition put on its vector field
component Aµ(x) associated with a photon or any other gauge field. Remarkably,
this condition coincides, as we shall see below, with the SLIV constraint (4.1) given
above in the GSE conjecture. This allows to think that physical Lorentz invariance
is somewhat protected by SUSY, thus only requiring the ”condensation” of the
gauge degree of freedom in the vector field Aµ. The point is, however, that even in
the case when SLIV is not physical it inevitably leads to the generation of massless
photons as vector NG bosons provided that SUSY itself is spontaneously broken. In
this sense, a generic trigger for massless photons to dynamically emerge happens
to be spontaneously broken supersymmetry rather than physically manifested
Lorentz noninvariance.

While there are many papers in the literature on Lorentz noninvariant ex-
tensions of supersymmetric models (for some interesting ideas, see [22,23] and
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references therein), an emergent gauge theory in a SUSY context has only recently
been introduced [9,24]. Actually, the situation was shown to be seriously changed
in a SUSY context which certainly disfavors some emergent models considered
above. It appears that, while the constraint-based models of an inactive SLIV suc-
cessfully matches supersymmetry, the composite and potential-based models of an
active SLIV leading to physical Lorentz violation cannot be conceptually realized
in the SUSY context. The reason is that, in contrast to an ordinary vector field
theory where all kinds of polynomial terms (AµAµ)n (n = 1, 2, ...) can be included
into the Lagrangian in a Lorentz invariant way, SUSY theories only admit the
bilinear mass term AµA

µ in the vector field potential energy. As a result, without
a stabilizing high-linear (at least quartic) vector field terms, the potential-based
SLIV never occurs in SUSY theories. The same could be said about composite
models [2–4] as well: a fundamental Lagrangian with multi-fermi current-current
interactions can not be constructed from any matter chiral superfields. So, all the
models mentioned above, but the constraint-based models determined by the GSE
conjecture (4.1), are ruled out in the SUSY framework and, therefore, between the
two basic SLIV versions, active and inactive, SUSY unambiguously chooses the
inactive SLIV case.

4.1.4 Outline of the paper

The paper is organized in the following way. In the next section 2 I consider
supersymmetric QED model extended by an arbitrary polynomial potential of
massive vector superfield that breaks gauge invariance in the SUSY invariant
phase. However, the requirement of vacuum stability in such class of models makes
both supersymmetry and Lorentz invariance to become spontaneously broken.
As a consequence, the massless photino and photon appear as the corresponding
Nambu-Goldstone zero modes in an emergent SUSY QED, and also a special gauge
invariance is simultaneously generated. Due to this invariance all observable
relativistically noninvariant effects appear to be completely cancelled out and
physical Lorentz invariance is recovered. Further in section 3, all basic arguments
developed in SUSY QED are generalized successively to the Standard Model and
Grand Unified Theories (GUTs). For definiteness, I focus on the U(1) × SU(N)

symmetrical theories. Such a split group form is dictated by the fact that in the pure
non-Abelian symmetry case one only has the SUSY invariant phase in the theory
that makes it inappropriate for an outgrowth of an emergence process. As possible
realistic realizations, the Standard Model case with the electroweak U(1)× SU(2)
symmetry and flipped SU(5) GUT including some immediate applications are
briefly discussed. And finally in section 4, I summarize the main results and
conclude.

The present talk is complimentary to my last year talk in Bled [25]. Some more
detail can also be found in the recent extended paper [9].

4.2 Emergent SUSY theories: a QED primer

In contrast to attempts simply probing physical Lorentz noninvariance through
some SM extensions [8,20] with hypothetical external vector (tensor) field back-
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grounds originated around the Planck scale, we will principally focus here on a
spontaneous Lorentz violation in an ordinary Standard Model framework itself.
Particularly, we will try to extend an emergent SM with electroweak bosons ap-
pearing as massless vector NG modes to their supersymmetric analogs [9,24]. Such
theories seem to open a new avenue for exploring the origin of gauge symmetries.
Indeed, as I discussed at the previous workshop [25], the emergent SUSY theories,
in contrast to the non-SUSY ones, could naturally have some clear observational
signature. Actually, we have seen above that ordinary emergent gauge theories are
physically indistinguishable from the conventional ones unless gauge invariance
becomes broken being caused by some high-dimension couplings. Meanwhile,
their SUSY counterparts - supersymmetric QED, SM and GUT - can be experi-
mentally verified in another way. The point is that they generically emerge only
if supersymmetry is spontaneously broken in a visible sector in order to ensure
stability of the underlying theory. Therefore, the verification of emergent theories
is now related to an inevitable emergence of a goldstino-like photino state in the
SUSY particle spectrum at low energies, while physical Lorentz invariance may be
still left intact.

4.2.1 Spontaneous SUSY violation

Since gauge invariance is not generically assumed in an emergent approach, all
possible gauge-noninvariant couplings could in principle occur in the theory in
a pre-emergent phase. The most essential couplings, as I discussed earlier [25],
appear to be the vector field self-interaction terms triggering an emergence process
in non-SUSY theories. Starting from this standpoint, I consider a conventional su-
persymmetric QED being similarly extended by an arbitrary polynomial potential
of a general vector superfield V(x, θ, θ) which in the standard parametrization
[26] has a form

V(x, θ, θ) = C+ iθχ− iθχ+
i

2
θθS−

i

2
θθS∗

−θσµθAµ + iθθθλ′ − iθθθλ′ +
1

2
θθθθD′, (4.3)

where its vector field component Aµ is usually associated with a photon. Note
that, apart from an ordinary photino field λ and an auxiliaryD field, the superfield
(4.3) contains in general some additional degrees of freedom in terms of the
dynamical C and χ fields and nondynamical complex scalar field S (I have used
the brief notations, λ′ = λ + i

2
σµ∂µχ and D′ = D + 1

2
∂2C with σµ = (1,−→σ ) and

σµ = (1,−−→σ )). The corresponding Lagrangian can be written as

L = LSQED +
1

2
D2 +

∑
k=1

bkV
k|D (4.4)

where, besides a standard SUSY QED part, new potential terms are presented in
the sum by corresponding D-term expansions Vk|D of the vector superfield (4.3)
into the component fields (bk are some constants). It can readily be checked that
the first term in this expansion is the known Fayet-Iliopoulos D-term, while other
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terms only contain bilinear, trilinear and quartic combination of the superfield
components Aµ, S, λ and χ, respectively.

Actually, the higher-degree terms only appear for the scalar field component
C(x). Expressing them all in terms of the C field polynomial

P(C) =
∑
k=1

k

2
bkC

k−1(x) (4.5)

and its first three derivatives

P′C ≡
∂P

∂C
, P′′C ≡

∂2P

∂C2
, P′′′C ≡

∂3P

∂C3
(4.6)

one has for the whole Lagrangian L

L = LSQED +
1

2
D2 + P

(
D+

1

2
∂2C

)
+P′C

(
1

2
SS∗ − χλ′ − χλ′ −

1

2
AµA

µ

)
+
1

2
P′′C

(
i

2
χχS−

i

2
χχS∗ − χσµχAµ

)
+
1

8
P′′′C (χχχχ) . (4.7)

As one can see, extra degrees of freedom related to the C and χ component fields
in a general vector superfield V(x, θ, θ) appear through the potential terms in
(4.7) rather than from the properly constructed supersymmetric field strengths, as
appear for the vector field Aµ and its gaugino companion λ.

Note that all terms in the sum in (4.4) except Fayet-IliopoulosD-term explicitly
break gauge invariance. However, as we will see later in this section, the special
gauge invariance constrained by some gauge condition will be recovered in the
Lagrangian in the broken SUSY phase. Furthermore, as is seen from (4.7), the
vector field Aµ may only appear with bilinear mass term in the polynomially
extended superfield Lagrangian (4.4) in sharp contrast to the non-SUSY theory
case where, apart from the vector field mass term, some high-linear stabilizing
terms necessarily appear in a similar polynomially extended Lagrangian. This
means in turn that physical Lorentz invariance is still preserved. Actually, only
supersymmetry appears to be spontaneously broken in the theory.

Indeed, varying the Lagrangian Lwith respect to the D field we come to

D = −P(C) (4.8)

that finally gives the following potential energy for the field system considered

U(C) =
1

2
[P(C)]2 . (4.9)

The potential (4.9) may lead to spontaneous SUSY breaking in the visible sector
provided that the polynomial P (4.5) has no real roots, while its first derivative
has,

P 6= 0 , P′C = 0. (4.10)
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This requires P(C) to be an even degree polynomial with properly chosen co-
efficients bk in (4.5) that will force its derivative P′C to have at least one root,
C = C0, in which the potential (4.9) is minimized. Therefore, supersymmetry is
spontaneously broken and the C field acquires the VEV

〈C〉 = C0 , P′C(C0) = 0 . (4.11)

As an immediate consequence, that one can readily see from the Lagrangian L (4.7),
a massless photino λ being Goldstone fermion in the broken SUSY phase make all
the other component fields in the superfield V(x, θ, θ) including the photon to also
become massless. However, the question then arises whether this masslessness of
the photon will be stable against radiative corrections since gauge invariance is
explicitly broken in the Lagrangian (4.7). I show below that it could be the case if
the vector superfield V(x, θ, θ) would appear properly constrained.

4.2.2 Instability of superfield polynomial potential

Let us first analyze possible vacuum configurations for the superfield components
in the polynomially extended QED case taken above. In general, besides the
”standard” potential energy expression (4.9) determined solely by the scalar field
component C(x) of the vector superfield (4.3), one also has to consider other
field component contributions into the potential energy. A possible extension
of the potential energy (4.9) seems to appear only due to the pure bosonic field
contributions, namely due to couplings of the vector and auxiliary scalar fields,
Aµ and S, in (4.7)

Utot =
1

2
P2 +

1

2
P′C (AµA

µ − SS∗) (4.12)

rather than due to the potential terms containing the superfield fermionic com-
ponents. It can be immediately seen that these new couplings in (4.12) can make
the potential unstable since the vector and scalar fields mentioned may in general
develop any arbitrary VEVs. This happens, as emphasized above, due the fact that
their bilinear term contributions are not properly compensated by appropriate
four-linear field terms which are generically absent in a SUSY theory context.

4.2.3 Stabilization of vacuum by constraining vector superfield

The only possible way to stabilize the theory seems to seek the proper constraints
on the superfield component fields (C, Aµ, S) themselves rather than on their
expectation values. This will be done again through some invariant Lagrange
multiplier coupling simply adding its D term to the above Lagrangian (4.4, 4.7)

Ltot = L+
1

2
Λ(V − C0)

2|D , (4.13)

where Λ(x, θ, θ) is some auxiliary vector superfield, while C0 is the constant
background value of theC field which minimizes the potentialU (4.9). Accordingly,
the potential vanishes for the supersymmetric minimum or acquires some positive
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value corresponding to the SUSY breaking minimum (4.10) in the visible sector. I
shall consider both cases simultaneously using the same notation C0 for either of
the background values of the C field.

Writing down the Lagrange multiplier D term in (4.13) through the compo-
nent fields

CΛ, χΛ, SΛ, A
µ
Λ, λ

′
Λ = λΛ +

i

2
σµ∂µχΛ, D

′
Λ = DΛ +

1

2
∂2CΛ (4.14)

and varying the whole Lagrangian (4.13) with respect to these fields one finds the
constraints which appear to put on the V superfield components [25]

C = C0, χ = 0, AµA
µ = SS∗. (4.15)

They also determine the corresponding D-term (4.8), D = −P(C0), for the spon-
taneously broken supersymmetry. As usual, I only take a solution with initial
values for all fields (and their momenta) chosen so as to restrict the phase space
to vanishing values of the multiplier component fields (4.14). This will provide a
ghost-free theory with a positive Hamiltonian.

Finally, implementing the constraints (4.15) into the total Lagrangian Ltot
(4.13, 4.7) through the Lagrange multiplier terms for component fields, we come
to the emergent SUSY QED appearing in the broken SUSY phase

Lem = LSQED + P(C)D +
DΛ

4
(C− C0)

2 −
CΛ

4
(AµA

µ − SS∗) . (4.16)

The last two term with the component multiplier functions CΛ and DΛ of the
auxiliary superfield Λ (4.14) provide the vacuum stability condition of the theory.
In essence, one does not need now to postulate from the outset gauge invariance
for the physical SUSY QED Lagrangian LSQED. Rather, one can derive it following
the GSE conjecture (section 1.1) specified for Abelian theory. Indeed, due to the
constraints (4.15), the Lagrangian LSQED is only allowed to have a conventional
gauge invariant form

LSQED = −
1

4
FµνFµν + iλσµ∂µλ+

1

2
D2 (4.17)

Thus, for the constrained vector superfield involved

V̂(x, θ, θ) = C0 +
i

2
θθS−

i

2
θθS∗ − θσµθAµ + iθθθλ− iθθθλ+

1

2
θθθθD, (4.18)

we have the almost standard SUSY QED Lagrangian with the same states - a
photon, a photino and an auxiliary scalar D field - in its gauge supermultiplet,
while another auxiliary complex scalar field S gets only involved in the vector
field constraint in (4.15). The linear (Fayet-Iliopoulos) D-term with the effective
coupling constant P(C0) in (4.16) shows that supersymmetry in the theory is spon-
taneously broken due to which the D field acquires the VEV, D = −P(C0). Taking
the nondynamical S field in the constraint (4.15) to be some constant background
field we come to the SLIV constraint (4.1) underlying the GSE conjecture. As is
seen from this constraint in (4.16), one may only have the time-like SLIV in a SUSY
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framework but never the space-like one. There also may be a light-like SLIV, if
the S field vanishes2. So, any possible choice for the S field corresponds to the
particular gauge choice for the vector field Aµ in an otherwise gauge invariant
theory. So, the massless photon appearing first as a companion of a massless
photino (being a Goldstone fermion in the visible broken SUSY phase) remains
massless due to this recovering gauge invariance in the emergent SUSY QED. At
the same time, the ”built-in” nonlinear gauge condition in (4.16) allows to treat
the photon as a vector Goldstone boson induced by an inactive SLIV.

4.3 On emergent SUSY Standard Models and GUTs

4.3.1 Potential of Abelian and non-Abelian vector superfields

Now, we extend our discussion to the non-Abelian internal symmetry case given
by some group Gwith generators tp

[tp, tq] = ifpqrtr , Tr(tptq) = δpq (p, q, r = 0, 1, ..., Υ− 1) (4.19)

where fpqr stand structure constants, while Υ is a dimension of the G group. This
case may correspond in general to some Grand Unified Theory which includes
the Standard Model and its possible extensions. For definiteness, I will be further
focused on the U(1)× SU(N) symmetrical theories, though any other non-Abelian
group in place of SU(N) is also admissible. Such a split group form is dictated
by the fact that in the pure non-Abelian symmetry case supersymmetry does not
get spontaneously broken in a visible sector that makes it inappropriate for an
outgrowth of an emergence process3. So, the theory now contains the Abelian
vector superfield V , as is given in (4.3), and non-Abelian superfield multiplet Vp

Vp(x, θ, θ) = Cp + iθχp − iθχp +
i

2
θθSp −

i

2
θθS∗p

−θσµθApµ + iθθθλ′
p
− iθθθλ′p +

1

2
θθθθD′p, (4.20)

where its vector field componentsApµ are usually associated with an adjoint gauge
field multiplet, (Aµ)ij ≡ (Apµt

p)ij (i, j, k = 1, 2, ..., N ; p, q, r = 1, 2, ..., N2−1). Note
that, apart from the conventional gaugino multiplet λp and the auxiliary fieldsDp,
the superfield Vp contains in general the additional degrees of freedom in terms
of the dynamical scalar and fermion field multipletsCp and χp and nondynamical
complex scalar field Sp. Note that for the non-Abelian superfield components I use
hereafter the bold symbols and take again the brief notations, λ′p = λp+ i

2
σµ∂µχ

p

andD′p = Dp + 1
2
∂2Cp.

2 Indeed, this case, first mentioned in [11], may also mean spontaneous Lorentz violation
with a nonzero VEV < Aµ > = (M̃, 0, 0, M̃) and Goldstone modes A1,2 and (A0 +A3)/2

−M̃. The ”effective” Higgs mode (A0 −A3)/2 can be then expressed through Goldstone
modes so as the light-like condition AµAµ = 0 to be satisfied.

3 In principle, SUSY may be spontaneously broken in the visible sector even in the pure
non-Abelian symmetry case provided that the vector superfield potential includes some
essential high-dimension couplings.
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Augmenting the SUSY andU(1)×SU(N) invariant GUT by some polynomial
potential of vector superfields V and Vp one comes to

L = LSGUT +
1

2
D2+

1

2
DpDp+[ξV+b1V

3/3+b2V(VV)+b3(VVV)/3]D (4.21)

where ξ and b1,2,3 stand for coupling constants, and the last term in (4.21) contains
products of the Abelian superfield V and the adjoint SU(N) superfield multiplet
Vi

j ≡ (Vptp)ij. The round brackets denote hereafter traces for the superfield Vi
j

(VV...) ≡ Tr(VV...) (4.22)

and its field components (see below). For simplicity, we restricted ourselves to the
third degree superfield terms in the Lagrangian L to eventually have a theory at
a renormalizible level. Furthermore, I have only taken the odd power superfield
terms that provides, as we see below, an additional discrete symmetry of the
potential with respect to the scalar field components in the V and Vp superfields

C→ − C, Cp → − Cp. (4.23)

Finally, eliminating the auxiliary D andDp fields in the Lagrangian L we come to
the total potential for all superfield bosonic field components written in terms of
traces mentioned above (4.22)

Utot = U(C,C) +
1

2
b1C(AµA

µ − SαSα) +
1

2
b2C[(AµA

µ) − (SαSα)]

+
1

2
b2[Aµ(A

µC) − Sα(SαC)] +
1

2
b3[(AµA

µC) − (SαSαC)] . (4.24)

Note that the potential terms depending only on scalar fields C andCi
j ≡ (Cata)ij

are collected in

U(C,C) = 1

8
[ξ+b1C

2+b2(CC)]
2+

1

2
[b22C

2(CC)+b2b3C(CCC)+
1

4
b23(CCCC)]

(4.25)
and complex scalar fields Sα and Spα (α = 1, 2) are now taken in the real field basis
like as

S1 = (S+ S∗)/2, S2 = (S− S∗)/2i , (4.26)

an so on. One can see that all these terms are invariant under the discrete symmetry
(4.23), whereas the vector field couplings in the total potential Utot (4.24) break it.
However, they vanish when the V and Vp superfields are properly constrained
that we actually confirm in the next section.

Let us consider first the pure scalar field potential U (4.25). The corresponding
extremum conditions for C and Ca fields are,

U ′C = b1(ξ+ b1C
2)C+ b2(b1 − 2b2)C(CC) = 0,

Tr(U ′
Ci

j
) = 3b2C(CC) + b3(CCC) = 0 , (4.27)

respectively. As shows the second partial derivative test, the simplest solution to
the above equations

C0 = 0 , Ci
j = 0 (4.28)
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provides, under conditions put on the potential parameters,

ξ, b1 > 0 , b2 ≥ 0 or ξ, b1 < 0 , b2 ≤ 0 (4.29)

its global minimum

U(C,C)asmin =
1

8
ξ2 . (4.30)

This minimum corresponds to the broken SUSY phase with the unbroken internal
symmetry U(1)×SU(N) that is just what one would want to trigger an emergence
process. This minimum appears in fact due to the Fayet-Iliopoulos linear term in
the superfield polynomial in (4.21). As can easily be confirmed, in absence of this
term, namely, for ξ = 0 and any arbitrary values of all other parameters, there is
only the SUSY symmetrical solution with unbroken internal symmetry

U(C,C)symmin = 0 . (4.31)

Interestingly, the symmetrical solution corresponding to the global minimum (4.31)
may appear for the nonzero parameter ξ as well

C
(±)
0 = ±

√
−ξ/b1, Ci

j = 0 (4.32)

provided that
ξb1 < 0 . (4.33)

However, as we saw in the QED case, in the unbroken SUSY case one comes
to the trivial constant superfield when all factual constraints are included into
consideration [25] and, therefore, this case is in general of little interest.

4.3.2 Constrained vector supermultiplets

Let us now take the vector fields Aµ and Apµ into consideration that immediately
reveals that, in contrast to the pure scalar field part (4.25), U(C,C), the vector
field couplings in the total potential (4.24) make it unstable. This happens, as was
emphasized before, due the fact that bilinear term VEV contributions of the vector
fields Aµ andApµ, as well as the auxiliary scalar fields Sα and Spα, are not properly
compensated by appropriate four-linear field terms which are generically absent
in a supersymmetric theory framework.

Again, as in the supersymmetric QED case considered above, the only pos-
sible way to stabilize the ground state (4.28, 4.29, 4.30) seems to seek the proper
constraints on the superfields component fields (C, Cp; Aµ, Ap; Sα, Spα) them-
selves rather than on their expectation values. Provided that such constraints are
physically realizable, the required vacuum will be automatically stabilized. This
will be done again through some invariant Lagrange multiplier couplings simply
adding their D terms to the above Lagrangian (4.21)

Ltot = L+
1

2
Λ(V − C0)

2|D +
1

2
Π(VV)|D , (4.34)

where Λ(x, θ, θ) and Π(x, θ, θ) are auxiliary vector superfields. Note that C0 pre-
sented in the first multiplier coupling is just the constant background value of the
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C field for which the potential part U(C,C) in (4.24) vanishes as appears for the
supersymmetric minimum (4.31) or has some nonzero value corresponding to the
SUSY breaking minimum (4.30) in the visible sector.

I will consider both cases simultaneously using the same notationC0 for either
of the potential minimizing values of the C field. The second multiplier coupling
in (4.34) provides, as we will soon see, the vanishing background value for the
non-Abelian scalar field, Ca = 0, due to which the underlying internal symmetry
U(1)×SU(N) is left intact in both unbroken and broken SUSY phase. The Lagrange
multiplier terms presented in (4.34) have in fact the simplest possible form that
leads to some nontrivial constrained superfields V(x, θ, θ) and Vp(x, θ, θ). Writing
down their invariantD terms through the component fields one finds the precisely
the same expression as in the SUSY QED [25] case for the Abelian superfield V
and the slightly modified one for the non-Abelian superfield Va

Π(VV)|D = CΠ

[
CD′ +

(
1

2
SS∗ − χλ′ − χλ′ −

1

2
AµA

µ

)]
+ χΠ [2Cλ′ + i(χS∗ + iσµχAµ)] + χΠ[2Cλ

′ − i(χS− iχσµAµ)]

+
1

2
SΠ

(
CS∗ +

i

2
χχ

)
+
1

2
S∗Π

(
CS−

i

2
χχ

)
+ 2AµΠ(CAµ − χσµχ) + 2λ

′
Π(Cχ) + 2λ

′
Π(Cχ) +

1

2
D′Π(CC) (4.35)

where the pairly grouped field bold symbols mean hereafter the SU(N) scalar
products of the component field multiplets (for instance, CD′ = CpD′p, and so
forth) and

CΠ, χΠ, SΠ, A
µ
Π, λ

′
Π = λΠ +

i

2
σµ∂µχΠ, D

′
Π = DΠ +

1

2
∂2CΠ (4.36)

are the component fields of the Lagrange multiplier superfield Π(x, θ, θ) in the
standard parametrization (4.20).

Varying the total Lagrangian (4.34) with respect to the component fields of
both multipliers, (4.14) and (4.36), and properly combining their equations of
motion we find the constraints which appear to put on the V and Va superfields
components [9]

C = C0, χ = 0, AµA
µ = SαSα,

Cp = 0, χp = 0, (AµA
µ) = (SαSα) , α = 1, 2 . (4.37)

As before in the SUSY QED case, one may only have the time-like SLIV in a su-
persymmetric U(1)× SU(N) framework but never the space-like one (there also
may be a light-like SLIV, if the S and S fields vanish). Also note that we only take
the solution with initial values for all fields (and their momenta) chosen so as to
restrict the phase space to vanishing values of the multiplier component fields
(4.14) and (4.36) that will provide a ghost-free theory with a positive Hamiltonian.
Again, apart from the constraints (4.37), one has the equations of motion for all
fields involved in the basic superfields V(x, θ, θ) and Vp(x, θ, θ). With vanishing
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multiplier component fields (4.14) and (4.36), as was proposed above, these equa-
tions appear in fact as extra constraints on components of the V andVp superfields.
Indeed, equations of motion for the Sα, χ and C fields, on the one hand hand,
and for the Spα, χp and Cp fields, on the other, are obtained by the corresponding
variations of the total Lagrangian Ltot (4.34) including the potential (4.24).

They are turned out to be, respectively,

SαC0 = 0 , λC0 = 0 , (ξ+ b1C
2
0)C0 = 0 ,

SpαC0 = 0 , λpC0 = 0, b2[AµAµij − SαSα
i
j] + b3[(AµA

µ)ij − (SαSα)
i
j] = 0(4.38)

where the basic constraints (4.37) emerging at the potential U(C,C) extremum
point (C0, Cp0 = 0) have been also used for both broken and unbroken SUSY
case. Note also that the equations for gauginos λ and λp in (4.38) are received by
variation of the potential terms in (4.21) containing fermion field couplings

U = b1C(χλ
′ + χλ′) + b2C[(χλ

′) + (χλ′)]

+
1

2
b2[χ(λ

′C) + χ(λ′C) + λ′(χC) + λ′(χC)]

+b3(χλ
′C) + (χλ′C)] . (4.39)

One can immediately see now that all equations in (4.38) but the last equation
system turn to trivial identities in the broken SUSY case (4.28) in which the corre-
sponding C field value appears to be identically vanished, C0 = 0. In the unbroken
SUSY case (4.32), this field value is definitely nonzero, C0 = ±

√
−ξ/b1, and the

situation is radically changed. Indeed, as follows from the equations (4.38), the
auxiliary fields S(x) and Sp, as well as the gaugino fields λ(x) and λp(x) have
to be identically vanished. This causes in turn that the gauge vector fields field
Aµ and Apµ should also be vanished according to the basic constraints (4.37). So,
we have to conclude, as in the SUSY QED case, that the unbroken SUSY fails to
provide stability of the potential (4.12) even by constraining the superfields V and
Vp and, therefore, only the spontaneously broken SUSY case could in principle
lead to a physically meaningful emergent theory.

4.3.3 Broken SUSY phase: an emergentU(1)× SU(N) theory

With the constraints (4.37) providing vacuum stability for the total Lagrangian
Ltot (4.34) we eventually come to the emergent theory with a local U(1)× SU(N)

symmetry that appears in the broken SUSY phase (4.28). Actually, implementing
these constraints into the Lagrangian through the Lagrange multiplier terms for
component fields one has

Lem = LSGUT +
1

2
ξD +

DΛ

4
(C− C0)

2 −
CΛ

4
(AµA

µ − SS∗)

+
DΠ

4
(CC) −

CΠ

4
(AµA

µ − SS∗) (4.40)

with the multiplier component functions CΛ and DΛ of the auxiliary superfield
Λ (4.14) and component functions CΠ and DΠ of the auxiliary superfield Π (4.36)
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presented in the Lagrangian (4.34). Again, with these constraints and the GSE
conjecture (section 1.1) specified for non-Abelian theories, one does not need to
postulate gauge invariance for the physical SUSY GUT Lagrangian LSGUT from
the outset. Instead, one can derive it starting from an arbitrary relativistically
invariant theory. Indeed, even if the Lagrangian LSGUT is initially taken to only
possess the global U(1) × SU(N) symmetry it will tend to uniquely acquire a
standard gauge invariant form

LSGUT = −
1

4
FµνFµν + iλσµ∂µλ+

1

2
D2

−
1

4
FpµνFpµν + iλpσµDµλ

p
+
1

2
DpDp (4.41)

where the conventional gauge field strengths for both U(1) and SU(N) part and
terms with proper covariant derivatives for gaugino fields λp necessarily appear
[9]. Again as in the pure Abelian case, for the respectively constrained vector su-
perfields V and Vp we come in fact to a conventional SUSY GUT Lagrangian with
a standard gauge supermultiplet containing gauge bosons Aµ andAp, gauginos λ
and λp, and auxiliary scalar D andDp fields, whereas other auxiliary scalar fields
Sα and Spα get solely involved in the Lagrange multiplier terms (4.41). Actually,
the only remnant of the polynomial potential of vector superfields V and Vp (4.21)
survived in the emergent theory (4.40) appears to be the Fayet-Iliopoulos D-term
which shows that supersymmetry in the theory is indeed spontaneously broken
and the D field acquires the VEV, D = −1

2
ξ.

Let us show now that this theory is in essence gauge invariant and the con-
straints (4.37) on the field space appearing due to the Lagrange multiplier terms in
(4.34) are consistent with supersymmetry. Namely, as was argued in [25] (see also
[9]), though constrained vector superfield (4.18) in QED is not strictly compatible
with the linear superspace version of SUSY transformations, its supermultiplet
structure can be restored by appropriate supergauge transformations. Following
the same argumentation, one can see that similar transformations keep invariant
the constraints (4.37) put on the vector fields Aµ and Ap. Leaving aside the U(1)
sector considered in [25] in significant details, I will now focus on the SU(N)

symmetry case with the constrained superfield Vp transformed as

Vp → Vp +
i

2
(Ω−Ω∗)p (4.42)

The essential part of this transformation which directly acts on the vector field
constraint

ApµA
pµ = SpS∗p (4.43)

has the form
Vp → Vp +

i

2
θθFp −

i

2
θθF∗p − θσµθ∂µϕ

p (4.44)

where the real and complex scalar field components, ϕp and Fp, in a chiral super-
field parameterΩp are properly activated. As a result, the corresponding vector
and scalar component fields, Apµ and Spα, in the constrained supermultiplet Vp

transform as

Apµ → apµ = Apµ − ∂µϕ
p, Sp → sp = Sp + Fp . (4.45)
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One can readily see that our basic LagrangianLem (4.40) being gauge invariant
and containing no the auxiliary scalar fields Sp is automatically invariant under
either of these two transformations individually. In contrast, the supplementary
vector field constraint (4.43), though it is also turned out to be invariant under
supergauge transformations (4.45), but only if they act jointly. Indeed, for any
choice of the scalar ϕp in (4.45) there can always be found such a scalar Fa (and
vice versa) that the constraint remains invariant. In other words, the vector field
constraint is invariant under supergauge transformations (4.45) but not invariant
under an ordinary gauge transformation. As a result, in contrast to the Wess-
Zumino case, the supergauge fixing in our case will also lead to the ordinary
gauge fixing. We will use this supergauge freedom to reduce the scalar field
bilinear SpS∗p to some constant background value and find a final equation for
the gauge function ϕp(x). It is convenient to come to real field basis (4.26) for
scalar fields Spα and Fpα (α = 1, 2), and choose the parameter fields Faα as

Fpα = rαε
p(M + f), rαs

p
α = 0, r2α = 1, εpεp = 1 (4.46)

so that the old Spα fields in (4.45) are related to the new ones spα in the following
way

Spα = spα − rαε
p(M + f), rαs

p
α = 0, SpαS

p
α = spαs

p
α + (M + f)2. (4.47)

where M is a new mass parameter, f(x) is some Higgs field like function, rα is again
the two-component unit ”vector” chosen to be orthogonal to the scalar spα, while εp

is the unit SU(N) adjoint vector. This parametrization for the old fields Spα formally
looks as if they develop the VEV, 〈Spα〉 = −rαε

pM, due to which the related
SO(2)× SU(N) symmetry would be spontaneously violated and corresponding
zero modes in terms of the new fields spα could be consequently produced (indeed,
they they never appear in the theory). Eventually, for an appropriate choice of the
Higgs field like function f(x) in (4.47)

f = −M +
√

M2 − spαs
p
α (4.48)

we come in (4.43) to the condition

ApµA
pµ = M2 . (4.49)

leading, as in the QED U(1) symmetry case [25], exclusively to the time-like SLIV.
Remarkably, thanks to a generic high symmetry of the constraint (4.49) one

can apply the emergence conjecture with dynamically produced massless gauge
modes to any non-Abelian internal symmetry case as well, though SLIV itself
could produce only one zero vector mode. The point is that although we only
propose Lorentz invariance SO(1, 3) and internal symmetry U(1)× SU(N) of the
Lagrangian Lem (4.40), the emerged constraint (4.49) possesses in fact a much
higher accidental symmetry SO(Υ, 3Υ) determined by the dimension Υ = N2 − 1

of the SU(N) adjoint representation to which the vector fields Apµ belong4. This
4 Actually, a total symmetry even higher if one keeps in mind both constraints (4.1) and

(4.49) put on the vector fields Aµ and Aaµ, respectively. As long as they are independent
the related total symmetry is in fact SO(1, 3)× SO(Υ, 3Υ) until it starts breaking.
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symmetry is indeed spontaneously broken at a scale M leading exclusively to
the time-like SLIV case, as is determined by the positive sign in the SUSY SLIV
constraint (4.49). The emerging pseudo-Goldstone vector bosons may be in fact
considered as candidates for non-Abelian gauge fields which together with the
true vector Goldstone boson entirely complete the adjoint multiplet of the in-
ternal symmetry group SU(N). Remarkably, they remain strictly massless being
protected by the simultaneously generated non-Abelian gauge invariance. When
expressed in these zero modes, the theory look essentially nonlinear and contains
many Lorentz and CPT violating couplings. However, as in the SUSY QED case,
they do not lead to physical SLIV effects which due to simultaneously generated
gauge invariance appear to be strictly cancelled out.

As in the pure QED case, one can calculate the gauge functionsϕp(x) compar-
ing the relation between the old and new vector fields in (4.45) with a conventional
SLIV parametrization for non-Abelian vector fields [9]

Apµ = apµ + npµ
√

M2 − n2a2 , npµa
pµ = 0 (a2 ≡ apµapµ). (4.50)

They are expressed through the non-Abelian Goldstone and pseudo-Goldstone
modes apµ

ϕp = εp
∫x
d(nµx

µ)
√

M2 − n2a2 . (4.51)

Here nµ is the unit Lorentz vector being analogous to the vector introduced in
the Abelian case (4.2), which is now oriented in Minkowskian spacetime so as
to be ”parallel” to the vacuum unit npµ matrix. This matrix can be taken in the
”two-vector” form

npµ = nµε
p , εpεp = 1 (4.52)

where εp is the unit SU(N) group vector belonging to its adjoint representation.

4.3.4 Some immediate outcomes

Quite remarkably, an obligatory split symmetry form U(1)× SU(N) (or U(1)×G,
in general) of plausible emergent theories which could exist beyond the prototype
QED case, leads us to the standard electroweak theory with an U(1) × SU(2)
symmetry as the simplest possibility. The potential of type (4.21) written for the
corresponding superfields requires spontaneous SUSY breaking in the visible
sector to avoid the vacuum instability in the theory. Eventually, this requires the
SLIV type constraints to be put on the hypercharge and weak isospin vector fields,
respectively,

BµB
µ = M2 , Wp

µW
pµ = M2 (p = 1, 2, 3). (4.53)

These constraints are independent from each other and possess, as was generally
argued above, the total symmetry SO(1, 3)× SO(3, 9) which is much higher than
the actual Lorentz invariance and electroweak U(1) × SU(2) symmetry in the
theory. Thanks to this fact, one Goldstone and three pseudo-Goldstone zero vector
modes bµ and wpµ are generated to eventually complete the gauge multiplet of
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the Standard Model

Bµ = bµ + nµ

√
M2 − bµbµ , nµbµ = 0 ,

Wp
µ = wpµ + nµε

p
√

M2 −wqµwqµ , nµwpµ = 0 (4.54)

where the unit vectors nµ and εp are defined in accordance with a rectangular unit
matrix npµ taken in the two-vector form (4.52). The true vector Goldstone boson
appear to be some superposition of the zero modes bµ andw3µ. This superposition
is in fact determined by the conventional Higgs doublet in the model since just
through the Higgs field couplings these modes are only mixed [19]. Thus, when
the electroweak symmetry gets spontaneously broken an accidental degeneracy
related to the total symmetry of constraints mentioned above is lifted. As a conse-
quence, the vector pseudo-Goldstones acquire masses and only photon, being the
true vector Goldstone boson in the model, is left massless. In this sense, there is
not much difference for a photon in emergent QED and SM: it emerges as a true
vector Goldstone boson in both frameworks.

Going beyond the Standard Model we unavoidably come to the flipped SU(5)
GUT [27] as a minimal and in fact distinguished possibility. Indeed, the U(1)
symmetry part being mandatory for emergent theories now naturally appears
as a linear combination of a conventional electroweak hypercharge and another
hypercharge belonging to the standard SU(5). The flipped SU(5) GUT has several
advantages over the standard SU(5) one: the doublet-triplet splitting problem is
resolved with use of only minimal Higgs representations and protons are naturally
long lived, neutrinos are necessarily massive, and supersymmetric hybrid inflation
can easily be implemented successfully. Also in string theory, the flipped SU(5)
model is of significant interest for a variety of reasons. In essence, the above-
mentioned natural solution to the doublet-triplet splitting problem without using
large GUT representations is in the remarkable conformity with string theories
where such representations are typically unavailable. Also, in weakly coupled
heterotic models, the flipped SU(5) allows to achieve gauge coupling unification
at the string scale 1017 GeV if some extra vector-like particles are added. They
are normally taken to transform in the 10 and 10 representations, that is easy to
engineer in string theory.

So, supersymmetric emergent theories look attractive both theoretically and
phenomenologically whether they are considered at low energies in terms of the
Standard Model or at high energies as the flipped SU(5) GUTs being inspired by
superstrings.

4.4 Summary

As we have seen above, spontaneous Lorentz violation in a vector field theory
framework may be active as in the composite and potential-based models lead-
ing to physical Lorentz violation, or inactive as in the constraint-based models
resulting in the nonlinear gauge choice in an otherwise Lorentz invariant theory.
Remarkably, between these two basic SLIV versions SUSY unambiguously chooses
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the inactive SLIV case. Indeed, SUSY theories only admit the bilinear mass term in
the vector field potential energy. As a result, without a stabilizing quartic vector
field terms, the physical spontaneous Lorentz violation never occurs in SUSY
theories. Hence it follows that the composite and potential-based SLIV models can
in no way be realized in the SUSY context. This may have far-going consequences
in that supergravity and superstring theories could also disfavor such models in
general.

Though, even in the case when SLIV is not physical it inevitably leads to the
generation of massless photons as vector NG bosons provided that SUSY itself
is spontaneously broken. In this sense, a generic trigger for massless photons to
dynamically emerge happens to be spontaneously broken supersymmetry rather
than physically manifested Lorentz noninvariance. To see how this idea might
work we have considered supersymmetric QED model extended by an arbitrary
polynomial potential of a general vector superfield that induces spontaneous
SUSY violation in the visible sector, and gauge invariance gets broken as well.
Nevertheless, the special gauge invariance is in fact recovered in the broken SUSY
phase that universally protects the photon masslessness.

All basic arguments developed in SUSY QED were then generalized to Stan-
dard Model and Grand Unified Theories. Remarkably, thanks to a generic high
symmetry of the length-fixing SLIV constraint (4.49) put on the vector fields the
emergence conjecture with dynamically produced massless gauge modes can be
applied to any non-Abelian global internal symmetry case due to which it gets
converted into to the local one. For definiteness, we have focused above on the
U(1) × SU(N) symmetrical theories. Such a split group form is dictated by the
fact that in the pure non-Abelian symmetry case one only has the SUSY invariant
phase in the theory that would make it inappropriate for an outgrowth of an emer-
gence process. As we briefly discussed, supersymmetric emergent theories look
attractive both theoretically and phenomenologically whether they are considered
at low energies in terms of the Standard Model or at high energies as the flipped
SU(5) GUTs inspired by superstrings.

However, their most generic manifestations, as I discussed here in Bled about
a year ago [25] (for more details, see also [9]), is related to a spontaneous SUSY
violation in the visible sector that seems to open a new avenue for exploring the
origin of gauge symmetries. Indeed, the photino emerging due to this violation
will be then mixed with another goldstino which stems from a spontaneous
SUSY violation in the hidden sector. Eventually, it largely turns into light pseudo-
goldstino whose physics seems to be of special interest. Such pseudo-Goldstone
photinos might appear typically as the eV scale stable LSP or the electroweak scale
long-lived NLSP, being accompanied by a very light gravitinos in both cases. Their
observation could shed some light on an emergence nature of gauge symmetries.
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b National Research Nuclear University ”MEPHI” (Moscow Engineering Physics Institute),
115409 Moscow, Russia
Centre for Cosmoparticle Physics “Cosmion” 115409 Moscow, Russia
APC laboratory 10, rue Alice Domon et Lonie Duquet 75205 Paris Cedex 13, France

Abstract. Among composite-dark-matter scenarios, one of the simplest and most predictive
is that of O-helium (OHe) dark atoms, in which a lepton-like doubly charged particle O−−

is bound with a primordial helium nucleus, and is the main constituent of dark matter. This
model liberates the physics of dark matter from many unknown features of new physics,
and it demands a deep understanding of the details of known nuclear and atomic physics,
which are still somewhat unclear in the case of nuclear interacting “atomic” shells. So far
the model has relied on the dominance of elastic scattering of OHe with the matter. In
view of the uncertainty in our understanding of OHe interaction with nuclei we study the
opposite scenario, in which inelastic nuclear reactions dominate the OHe interactions with
nuclei. We show that in this case all the OHe atoms bind with extra He nuclei, forming
doubly charged O-beryllium ions, which behave like anomalous helium, causing potential
problems with overabundance of anomalous isotopes in terrestrial matter.

Povzetek. Avtorji obravnavajo model, v katerem sestavljajo temno snov atomi O-helija
(OHe), v katerih se novi lepton O−− z dvojnim nabojem veže z jedrom helija. Sila med
jedrom in leptonom je tedaj elektromagnetna. Kljub preprostosti modela pa je izračun
lastnosti takega atoma pri elastičnem in neelastičnem sipanju na običajni snovi zahteven.
Avtorji študirajo v tem prispevku neelastično sipanje teh atomov na običajni snovi s pred-
postavko, da je to dominanten prispevek temne snovi. Pokažejo, da se tedaj pri sipanju OHe
na helijevih jedrih veže OHe s helijem v O-berilij z dvema elektromagnetnima nabojema.
Avtorji pridejo do zaključka, da bi lahko tak model napovedal preveliko gostoto anomalnih
izotopov na Zemlji.

5.1 Introduction

Direct searches for dark matter have produced surprising results. Since the DAMA
collaboration observed a signal, several other collaborations seem to confirm
an observation, while many others clearly rule out any detection. The current
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experimental situation is reviewed in [1]. This apparent contradiction comes from
the analysis of the data under the assumption that nuclear recoil is the source of
the signal.

Starting from 2006 it was proposed [2–6] that the signal may be due to a
different source: if dark matter can bind to normal matter, the observations could
come from radiative capture of thermalized dark matter, and could depend on
the detector composition and temperature. This scenario naturally comes from
the consideration of composite dark matter. Indeed, one can imagine that dark
matter is the result of the existence of heavy negatively charged particles that bind
to primordial nuclei.

Cosmological considerations imply that such candidates for dark matter
should consist of negatively doubly-charged heavy (∼ 1 TeV) particles, which we
call O−−, coupled to primordial helium. Lepton-like technibaryons, technileptons,
AC-leptons or clusters of three heavy anti-U-quarks of 4th or 5th generation with
strongly suppressed hadronic interactions are examples of such O−− particles (see
[3–6] for a review and for references).

It was first assumed that the effective potential between OHe and a normal
nucleus would have a barrier, preventing He and/or O−− from falling into the
nucleus, allowing only one bound state, and diminishing considerably the in-
teractions of OHe. Under these conditions elastic collisions dominate in OHe
interactions with matter, and lead to a successful OHe scenario. The cosmological
and astrophysical effects of such composite dark matter (dark atoms of OHe) are
dominantly related to the helium shell of OHe and involve only one parameter
of new physics − the mass of O−−. The positive results of the DAMA/NaI and
DAMA/LIBRA experiments are explained by the annual modulations of the rate
of radiative capture of OHe by sodium nuclei. Such radiative capture is possi-
ble only for intermediate-mass nuclei: this explains the negative results of the
XENON100 experiment. The rate of this capture is proportional to the temperature:
this leads to a suppression of this effect in cryogenic detectors, such as CDMS.
OHe collisions in the central part of the Galaxy lead to OHe excitations, and de-
excitations with pair production in E0 transitions can explain the excess of the
positron-annihilation line, observed by INTEGRAL in the galactic bulge [5–10].
In a two-component dark atom model, based on Walking Technicolor, a sparse
WIMP-like component of atom-like state, made of positive and negative doubly
charged techniparticles, is present together with the dominant OHe dark atom and
the decays of doubly positive charged techniparticles to pairs of same-sign leptons
can explain the excess of high-energy cosmic-ray positrons, found in PAMELA
and AMS02 experiments [11].

These astroparticle data can be fitted, avoiding many astrophysical uncertain-
ties of WIMP models, for a mass of O−− ∼ 1 TeV, which stimulates searches for
stable doubly charged lepton-like particles at the LHC as a test of the composite-
dark-matter scenario.

In this paper, we want to explore the opposite scenarion, in which OHe dark
matter interacts strongly with normal matter: OHe is neutral, but a priori it has
an unshielded nuclear attraction to matter nuclei. We first study some effects
of inelastic collisions of OHe in the early Universe and in the terrestrial matter
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and find that such collisions strongly increase the formation of charged nuclear
species with O−− bound in them. Recombination of such charged species with
electrons (even if it is partial) leads to the formation of atoms (or ions) of anomalous
isotopes of helium and heavier elements. The atomic size of such atoms (or ions)
of anomalous isotopes strongly suppresses their mobility in the terrestrial matter,
making them stop near the surface, where anomalous superheavy nuclei are
strongly constrained by the experimental searches. In Section 5.2 we study effect
of inelastic processes during the period of Big Bang Nucleosynthesis and show
that if these processes are not suppressed all the OHe atoms capture additional
He nuclei, forming a doubly charged ion of O-beryllium (OBe). In Section 5.3
we briefly examine the problems of an OBe-dominated universe and show that,
because the mobility of the anomalous isotopes is greatly suppressed even if they
recombine with only one electron, their drift to the center of the Earth is strongly
slowed down, and their abundance increases near the terrestrial surface and in the
World Ocean with the danger of their overabundance. We stress the importance of
solving the open questions of OHe nuclear physics in the Conclusion.

5.2 Inelastic processes with OHe in the early Universe

As soon as all the OHe is formed in the early Universe, inelastic processes between
OHe and OHe itself and between OHe and the primordial He take place and start
consuming the available OHe. The two relevant reactions are:

OHe + OHe→ O2Be (5.1)

OHe + He → OBe (5.2)

Note that in these reactions the addition of a He nucleus to the bound OHe system
will result in merging the two He nuclei into 8Be, since in the presence of O−−, 8Be
becomes stable: we calculated, as in Ref. [13], that the energy of OBe is 2.9 MeV
smaller than that of OHe+He. The temperature T0 at which OHe forms depends
on its binding energy, which has been accurately evaluated as 1.175 MeV in Ref.
[13], and corresponds approximately to T0 = 50 keV. As the cosmological time t is
related to the temperature through t(s) ' 1

T2(MeV)
, processes (5.1) and (5.2) start

at a time t0 ' 1
0.052

= 400 s after the Big Bang and continue until helium freezes
out at t∗ ' 10min = 600 s.

During these 200 s, the OHe atoms are consumed at a rate:

dnOHe

dt
= −3HnOHe − n

2
OHeσ1v1 − nOHenHeσ2v2, (5.3)

where nOHe and nHe are the number densities of OHe and He, H = 1
2t

is the
expansion rate of the Universe during the radiation-dominated era, σ1 and σ2 are
the cross sections of processes (5.1) and (5.2) respectively and v1 and v2 are the
OHe-OHe and OHe-He mean relative velocities. The first term in the right-hand
side of equation (5.3) corresponds to the dilution in an expanding universe. The
number of helium nuclei per comoving volume is assumed to be unaffected by
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reaction (5.2) since the abundance of helium is more than an order of magnitude
higher than that of OHe, so that the only effect on nHe is due to the expansion:

dnHe

dt
= −3HnHe, (5.4)

from which it follows that:

nHe(t) = n
0
He

(
t0

t

)3/2
, (5.5)

where n0He is the number density of He at t = t0 (In the following, we shall use
a superscript 0 to denote quantities taken at the time of the decoupling of OHe,
t = t0).

To take into account the effect of the expansion and calculate the decrease of
the fraction of free OHe atoms due to their inelastic reactions, we study the ratio f
of the number density of OHe atoms to the number desity of He nuclei, f = nOHe

nHe
.

From (5.3) and (5.4), its evolution is given by:

df
dt

= −nHef (σ1v1f+ σ2v2) (5.6)

The capture cross sections σ1 and σ2 are of the order of the geometrical ones:

σ1 ≈ 4π (2rOHe)
2
, (5.7)

σ2 ≈ 4π (rOHe + rHe)
2
, (5.8)

where rOHe is the Bohr radius of an OHe atom and rHe is the radius of a He nucleus.
As both of them are approximately equal to 2 fm, σ1 ≈ σ2 ≈ 64π 10−26 cm2. As the
OHe and He species are in thermal equilibrium with the plasma at temperature T ,
the mean relative velocities v1 and v2 are obtained from the Maxwell-Boltzmann
velocity distributions of OHe and He and are given by:

v1 =

√
8T

πµ1
, (5.9)

v2 =

√
8T

πµ2
, (5.10)

where µ1 = mOHe/2 and µ2 ' mHe are the reduced masses of the OHe-OHe and
OHe-He systems. mOHe = 1000 GeV is the mass of an OHe atom, andmHe = 3.73

GeV that of a He nucleus. Given the time dependence of the temperature during
the radiation-dominated era, Tt1/2 = T0t

1/2
0 , one can use it to express the velocities

(5.9) and (5.10) as functions of time and insert the resulting expressions together
with (5.5) in equation (5.6) and get:

df
dt

= −γ
1

t7/4
f (αf+ β) , (5.11)
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with

α =
σ1√
µ1
, (5.12)

β =
σ2√
µ2
, (5.13)

γ = n0Het
7/4
0

√
8T0

π
. (5.14)

The solution of (5.11) corresponding to the initial condition f(t0) = f0 is given
by:

f(t) =
βf0

exp
(
4
3
βγ
(
t
−3/4
0 − t−3/4

))
(αf0 + β) − α

. (5.15)

The number density of He nuclei at the time of OHe formation, n0He, can be found
from its value n1He today (In the following, the superscript 1 will denote quantities
at the present time). Helium nuclei represent nowadays approximately 10% of
all baryons, which have an energy density ρ1B of about 5% of the critical density

ρ1c: n1He ' 0.1n1B = 0.1
ρ1B
mp
' 0.1 × 0.05 ρ

1
c

mp
, where mp is the mass of the proton.

The present critical density is measured to be ρ1c = 5.67× 10−6mp/cm3, so that
n1He ' 2.8× 10−8 cm−3. As it was assumed that the He number density was not
affected by reaction (5.2), the only effect between t0 and now has been a dilution
due to the expansion, and hence nHe ∝ 1

a3
∝ T3, where a is the scale factor.

Knowing that the temperature of the CMB today is T1 = 2.7 K= 2.33× 10−7 keV,

this gives n0He = n
1
He

(
T0
T1

)3
' 2.8× 10−8

(
50

2.33×10−7

)3
' 2.8× 1017 cm−3.

At the time of OHe formation, all the O−− particles were in the form of OHe,
i.e. the number density of O−− at t = t0, n0O, was equal to that of OHe, n0OHe.
Between t0 and today, O−− particles may have been bound in different structures,
but they have not been created or destroyed, so that their number density has only
been diluted by the expansion in the same way as that of He nuclei, so that the
ratio of the number density of O−− particles to the number density of He nuclei

remains unchanged: n
0
O

n0He
=

n1O
n1He

. Therefore, the initial fraction f0 of OHe atoms can

be calculated from present quantities: f0 =
n0OHe
n0He

=
n0O
n0He

=
n1O
n1He

. n1O is obtained from
the fact that O−− saturates the dark matter energy density, which represents about

25% of the critical density: n1O ' 0.25
ρ1c
mO
' 1.3× 10−9 cm−3, wheremO = 1 TeV is

the mass of O−−. With the previously calculated value of n1He, this gives f0 ' 0.05.
We can now insert the numerical values into Eq. 5.15 and get the fraction of

OHe atoms at the time of helium freeze-out t = t∗ = 600 s:

f(t∗) ' 5× 10−6133 � f0, (5.16)

meaning that no OHe survives reactions (5.1) and (5.2). More precisely, most of the
OHe atoms have captured He nuclei via process (5.2) and are now in the form of
OBe. Indeed, the majority of the suppression of f comes from the exponential term
present in (5.15), evaluated to be e14127. The large argument of the exponential
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represents the number N2 of reactions (5.2) that happened between t0 and t∗, per
OHe atom:

N2 =

∫t∗
t0

nHe(t)σ2v2(t)dt

= n0Het
3/2
0 σ2

√
8T0t

1/2
0

πµ2

∫t∗
t0

1

t7/4
dt

= n0Het
7/4
0

√
8T0

π

σ2√
µ2

(
−
4

3

)(
1

t
3/4
∗

−
1

t
3/4
0

)

=
4

3
βγ

(
1

t
3/4
0

−
1

t
3/4
∗

)
,

where we have used (5.5), (5.10) and Tt1/2 = T0t
1/2
0 to pass from the first to the

second line and the definitions (5.13) and (5.14) for the last line.
Therefore, the realization of the scenario of an OHe Universe implies a very

strong suppression of reaction (5.2), corresponding toN2 � 1. Such a suppression
needs the development of a strong dipole Coulomb barrier in OHe-He interaction.
The existence of this barrier and its effect is one of the most important open
problems of the OHe model.

5.3 Problems of OBe ”dark” matter

Due to Coulomb repulsion further helium capture by OBe is suppressed and one
should expect that dark matter is mostly made of doubly charged OBe, which
recombines with electrons in the period of recombination of helium at the tem-
perature Tod = 2 eV, before the beginning of matter dominance at TRM = 1 eV. It
makes anomalous helium the dominant form of dark matter in this scenario. After
recombination the OBe gas decouples from the plasma and from radiation and
can play the role of a specific Warmer than Cold dark matter, since the adiabatic
damping slightly suppresses density fluctuations at scales smaller than the scale
of the horizon in the period of He recombination. The total mass of the OBe gas
within the horizon in that period is given by analogy with the case of OHe [2,5] by

Mod =
TRM

Tod
mPl(

mPl

Tod
)2 ≈ 2 · 1050 g = 1017M�, (5.17)

whereM� is the solar mass.
At momentum values of interest, one finds that elastic cross sections are

significantly enhanced from their geometrical estimate. In the following, we shall
use the estimate of Ref. [14], based on a compilation of results from general
quantum mechanical scattering and from detailed quantum computations of
hydrogen scattering [15]:

σ = 4π(κr0)
2, κ = 3− 10, (5.18)
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with larger values of κ at low momentum.
For a size of OBe atoms equal to that of helium r0 = 3 · 10−9 cm and one

obtains an elastic scattering cross section on light elements of the order of σ ≈
10−15−10−14 cm2. It makes this ”dark matter” follow the ordinary baryonic matter
in the process of galaxy formation, and makes it collisional on the scale of galaxies.
This causes problems with the explanation of the observations of halo shapes [16].
Presence of OBe in stars can also influence nuclear processes, in particular helium
burning in the red giants. The processes in stars can lead to the capture by OBe
of additional nuclei, thus creating anomalous isotopes of elements with higher
Z. OBe atoms can also be ionized in the Galaxy, but in the following we shall
assume that neutral OBe atoms are the dominant part of this ”dark matter” on
Earth, considering also that slowing down anomalous nuclei in the atmosphere
leads to ionization and their neutralisation through electron capture.

Falling down on Earth OBe atoms are slowed down and due to the atomic
cross section of their collisions have a very low mobility. After they fall down to
the terrestrial surface, the OBe atoms are further slowed down by their elastic
collisions with matter. They drift, sinking down towards the center of the Earth
with velocity

V =
g

nσv
≤ 2.710−11 cm/ s ≈ 270 fm/ s. (5.19)

Here n is the number density of terrestrial atoms, σv is the rate of atomic collisions,
taken at room temperature, and g = 980 cm/ s2. We assimilated the crust of
the Earth as made of SiO2, and got the number density to be n = 0.27 1023

molecules/cm3. Using (5.18), and taking the geometrical radius to be that of
SiO2, i.e. r0 ≈ 2 Å, we obtained σ ≥ 4.5 10−14 cm2, and for collisions on SiO2
v ≈ 3 104cm/s.

The OBe abundance in the Earth is determined by the equilibrium between
the in-falling and down-drifting fluxes. The in-falling O-helium flux from dark
matter halo is given by [4]

F =
n0

8π
· |Vh + VE|,

where Vh is the speed of the Solar System (220 km/s), VE the speed of the Earth
(29.5 km/s) and n0 = 3·10−4 cm−3 is the assumed local density of OBe dark matter
(for an OBe of mass 1 TeV). Furthermore, for simplicity, we didn’t take into account
the annual modulation of the incoming flux and take |Vh + VE| = u ≈ 300 km/ s.

The equilibrium concentration of OBe, which is established in the matter
consisting of atoms with number density n, is given by [4]

noE =
2π · F
V

, (5.20)

and the ratio of anomalous helium isotopes to the total amount of SiO2 is given by

roE =
noE

n
=
2π · Fσv
g

≥ 3.1 10−9, (5.21)

being independent of the atomic number density of the matter. Note that the
migration rate (and the dilution) considered here is of larger than that observed at
the Oklo site for heavy elements [18].
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The upper limits on the anomalous helium abundance are very stringent
[17] roE ≤ 10−19, and our rough estimate is ten orders of magnitude too large.
Together with other problems of OBe Universe stipulated above, this rules out the
OBe scenario.

5.4 Conclusion

The advantages of the OHe composite-dark-matter scenario is that it is minimally
related to the parameters of new physics and is dominantly based on the effects of
known atomic and nuclear physics. However, the full quantum treatment of this
problem turns out to be rather complicated and remains an open.

We have considered here the scenario in which such a barrier does not appear.
This leads to a significant role of inelastic reaction of OHe, and strongly modifies
the main features of the OHe scenario. In the period of Big Bang Nucleosynthesis,
when OHe is formed, it captures an additional He nucleus, so that the dominant ‘
form of dark matter becomes charged, recombining with electrons in anomalous
isotopes of helium and heavier elements. Over-abundance of anomalous isotopes
in terrestrial matter seems to be unavoidable in this case.

This makes the full solution of OHe nuclear physics, started in [12], vital.
The answer to the possibility of the creation of a dipole Coulomb barrier in OHe
interaction with nuclei is crucial. Without that barrier one gets no suppression of
inelastic reactions, in which O−− binds with nuclei. These charged species form
atoms (or ions) with atomic cross sections, and that strongly suppresses their
mobility in terrestrial matter, leading to their storage and over-abundance near
the Earth’s surface and oceans.

Hence, the model cannot work if no repulsive interaction appears at some
distance between OHe and the nucleus, and the solution to this open question of
OHe nuclear physics is vital for the composite-dark-matter OHe scenario.
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16. J. Miralda-Escudé, Astrophys. J.564 (2002) 60-64 [arXiv:0002050 [astro-ph]].
17. F. Muelleret. al., ckwPRL 92 (2004) 022501.
18. D. G. Brookins, Environmental Geology, 4 (1982/83) 201.



i
i

“proc14” — 2014/12/8 — 18:22 — page 75 — #89 i
i

i
i

i
i

BLED WORKSHOPS
IN PHYSICS
VOL. 15, NO. 2

Proceedings to the 17th Workshop
What Comes Beyond . . . (p. 75)

Bled, Slovenia, July 20-28, 2014

6 Notoph-Graviton-Photon Coupling

V.V. Dvoeglazov?

UAF, Universidad de Zacatecas
Apartado Postal 636, Suc. 3 Cruces, Zacatecas 98068, ZAC., México

Abstract. In the sixties Ogievetskiı̆ and Polubarinov proposed the concept of notoph, whose
helicity properties are complementary to those of photon. Later, Kalb and Ramond (and
others) developed this theoretical concept. And, at the present times it is widely accepted.
We analyze the quantum theory of antisymmetric tensor fields with taking into account
mass dimensions of notoph and photon. It appears to be possible to describe both photon
and notoph degrees of freedom on the basis of the modified Bargmann-Wigner formalism
for the symmetric second-rank spinor.

Next, we proceed to derive equations for the symmetric tensor of the second rank
on the basis of the Bargmann-Wigner formalism in a straightforward way. The symmetric
multispinor of the fourth rank is used. It is constructed out of the Dirac 4-spinors. Due
to serious problems with the interpretation of the results obtained on using the standard
procedure we generalize it, and we obtain the spin-2 relativistic equations, which are
consistent with the general relativity. The importance of the 4-vector field (and its gauge
part) is pointed out.

Thus, we present the full theory which contains the photon, the notoph (the Kalb-
Ramond field) and the graviton. The relations of this theory with the higher spin theories are
established. In fact, we deduced the gravitational field equations from relativistic quantum
mechanics. The relations of this theory with scalar-tensor theories of gravitation and f(R)
are discussed. We estimate possible interactions, fermion-notoph, graviton-notoph, photon-
notoph, and we conclude that they will be probably seen in experiments in the next few
years.

Povzetek. V šestdesetih letih sta Ogievetskiı̆ in Polubarinov predlagala delec z lastnostmi,
komplementarnimi fotonu. Poimenovala sta ga notof. Lastnosti delca notof sta kasneje
študirala in dopolnila tudi Kalb in Ramond ter drugi. Zdaj lastnosti tega delca študirajo
številni teoretiki.

Avtor prispevka analizira kvantno teorijo antisimetričnih tenzorskih polj in dopusti,
da nosita foton in notof od nič različno maso. Izkazalo se je, da nekoliko spremenjen
formalizem za simetrične spinorje ranga 2 avtorjev Bargmanna-Wignerja opiše tudi foton
in notof.

Uspe mu preprosta izpeljeva enačbe gibanja za simetrični tenzor ranga 2 iz Bargmann-
Wignerjevega formalizma. Uporabi simetrični multispinor ranga štiri, ki ga izvede iz
Diracovih štiri spinorjev. Standardni postopek posploši, ker so težave z interpretacijo.
Posplošitev ga pripelje do relativistične enačbe za spin 2, ki je skladna s splošno teorijo
relativnosti. Avtor poudari pomen polja 4-vektorjev (in njegovega umeritvenega dela).

Avtor predstavi celovito teorijo, ki vsebuje foton, notof (Kalb-Ramondovo polje) in
graviton. Osvetli relacijo te teorije s teorijami z višjimi spini. Iz relativistične kvantne

? E-mail: valeri@fisica.uaz.edu.mx
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76 V. V. Dvoeglazov

mehanike izpelje enačbe za gravitacijsko polje. Diskutira o povezavi te teorije s skalarno-
tenzorskimi in teorijami gravitacije f(R) , oceni interakcije med fermionom in notofom, med
gravitonom in notofom ter med fotonom in notofom ter napove, da bodo najbrž opazili te
interakcije pri poskusih v prihodnjih nekaj letih.

6.1 Introduction

In the series of the papers [1–5], cf. with Refs. [6–8], we tried to find connection
between the theory of the quantized antisymmetric tensor (AST) field of the second
rank (and that of the corresponding 4-vector field) with the 2(2s + 1) Weinberg-
Tucker-Hammer formalism [9,10].

Several previously published works [11–16], introduced the concept of the
notoph (the Kalb-Ramond field) which is constructed on the basis of the anti-
symmetric tensor “potentials”. It represents itself the non-trivial spin-0 field. The
well-known textbooks [17–20] did not discuss the problems, whether the massless
quantized AST field and the quantized 4-vector field are transverse or longitudi-
nal fields (in the sense if the helicity h = ±1 or h = 0)? can the electromagnetic
potential be a 4-vector in a quantized theory? how should the massless limit be
taken? and many other fundamental problems of the physics of bosons. In my
opinion, the most rigorous works are refs. [22,9,23,21], but it is not easy to extract
corresponding answers even from them.

First of all, we note that 1) “...In natural units (c = ~ = 1) ... a lagrangian
density, since the action is dimensionless, has dimension of [energy]4”; 2) One can
always renormalize the lagrangian density and “one can obtain the same equations
of motion... by substituting L→ (1/MN)L, whereM is an arbitrary energy scale”,
cf. [2]; 3) the right physical dimension of the field strength tensor Fµν is [energy]2;
“the transformation Fµν → (1/2M)Fµν [which was regarded in Ref. [5]] ... requires
a more detailed study ... [because] the transformation above changes its physical
dimension: it is not a simple normalization transformation”. Furthermore, in the
first papers on the notoph [12–14]1 the authors used the normalization of the
4-vector Fµ field2 to [energy]2 and, hence, the antisymmetric tensor “potentials”
Aµν, to [energy]1. We try to discuss these problems on the basis of the generalized
Bargmann-Wigner formalism [22]. Thus, the Proca and Maxwell formalisms are
generalized, see, e. g., Ref. [24].

In the Sections 6.3 and 6.4 we consider the spin-2 equations. The general
scheme for derivation of higher-spin equations has been given in [22]. A field of
the rest mass m and the spin s ≥ 1

2
is represented by a completely symmetric

multispinor of rank 2s. The particular cases s = 1 and s = 3
2

have been considered
in the textbooks, e. g., Ref. [17]. The spin-2 case can also be of some interest because
we can believe that the essential features of the gravitational field are obtained
from transverse components of the (2, 0) ⊕ (0, 2) representation of the Lorentz
group. Nevertheless, questions of the redundant components of the higher-spin
relativistic equations are not yet understood in detail [25].

1 It is also known as the longitudinal Kalb-Ramond field, but the consideration of Ogievet-
skiı̆ and Polubarinov permits to study them→ 0 procedure.

2 It is well known that it is related to the third-rank antisymmetric field tensor.
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In the last Sections we discuss the questions of interactions.

6.2 Photon-Notoph Equations

For spin 1 we start from3

[γαβpαpβ +Apαpα + Bm2]Ψ = 0 , (6.1)

where pµ = −i∂µ and γαβ are the Barut-Muzinich-Williams covariantly - defined
6× 6matrices,

∑
µ γµµ = 0. The determinant of [γαβpαpβ +Apαpα + Bm2] is of

the 12th order in pµ. If we are interested in solutions with E2−p2 = m2, c = ~ = 1,
they can be obtained on using the constraints in the above equation:

B

A+ 1
= 1 ,

B

A− 1
= 1 . (6.2)

We may also have the tachyonic solutions, etc. The particular cases are:

• A = 0, B = 1⇔ we have the Weinberg’s equation for s = 1 with 3 solutions
E = +

√
p2 +m2, 3 solutions E = −

√
p2 +m2, 3 solutions E = +

√
p2 −m2

and 3 solutions E = −
√

p2 −m2. Tachyonic solutions have been reformulated
in various ways, for instance, as the ones leading to the spontaneous symmetry
breaking, and to the non-zero quantum vacuum.

• A = 1, B = 2⇔we have the Tucker-Hammer equation for s = 1. The solutions
are with E = ±

√
p2 +m2 only.

Thus, the addition of the Klein-Gordon equation to (6.1) may change the
physical content even on the free level.

What are the corresponding equations for the antisymmetric tensor field?
They can be the Proca equations in the massive case, and the Maxwell equations
in the massless case. We have shown in Refs. [1,2] that one can obtain four dif-
ferent equations for antisymmetric tensor fields from the Weinberg’s 2(2s+ 1)−
component formalism. First of all, we note that Ψ is, in fact, bivector, Ei = −iF4i,
Bi = 1

2
εijkFjk,, or Ei = −1

2
εijkF̃jk, Bi = −iF̃4i, or their combinations. One can

separate the four cases:

• Ψ(I) =

(
E + iB
E − iB

)
, P = −1, where Ei and Bi are the components of the tensor.

• Ψ(II) =

(
B − iE
B + iE

)
, P = +1, where Ei, Bi are the components of the tensor.

• Ψ(III) = Ψ(I), but (!) Ei and Bi are the corresponding vector and axial-vector
components of the dual tensor F̃µν.

• Ψ(IV) = Ψ(II), where Ei and Bi are the components of the dual tensor F̃µν.

3 In the classic works on this formalism the authors worked in the Euclidean metrics.
However, there is no any problem to write the equations and other formulas in the
pseudo-Euclidean metrics accustomed today; just change the sign of pµpµ, and other
products.
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The mappings of the WTH equations are:

∂α∂µF
(I)
µβ − ∂β∂µF

(I)
µα +

A− 1

2
∂µ∂µF

(I)
αβ −

B

2
m2F

(I)
αβ = 0 , (6.3)

∂α∂µF
(II)
µβ − ∂β∂µF

(II)
µα −

A+ 1

2
∂µ∂µF

(II)
αβ +

B

2
m2F

(II)
αβ = 0 , (6.4)

∂α∂µF̃
(III)
µβ − ∂β∂µF̃

(III)
µα −

A+ 1

2
∂µ∂µF̃

(III)
αβ +

B

2
m2F̃

(III)
αβ = 0 ,

(6.5)

∂α∂µF̃
(IV)
µβ − ∂β∂µF̃

(IV)
µα +

A− 1

2
∂µ∂µF̃

(IV)
αβ −

B

2
m2F̃

(IV)
αβ = 0 . (6.6)

In the Tucker-Hammer case (A = 1, B = 2) we can recover the Proca theory from
(6.3):

∂α∂µFµβ − ∂β∂µFµα = m2Fαβ , (6.7)

(Aν = 1
m2
∂αFαν should be substituted in Fµν = ∂µAν − ∂νAµ, and the result is

multiplied bym2).
We also noted that the massless limit of this theory does not coincide with

the Maxwell theory in some cases, while it contains the latter as a particular case.
In [3,5,30] we showed that it is possible to define various massless limits for the
Duffin-Kemmer-Proca theory. Another one is the Ogievetskiı̆-Polubarinov notoph
(which is also called the Kalb-Ramond field), Ref. [12] in the US literature. The
transverse components of the AST field can be removed from the corresponding
Lagrangian by means of the “new gauge transformation” Aµν → Aµν + ∂µΛν −

∂νΛµ, with the vector gauge function Λµ.
The second (II) case is

∂α∂µFµβ − ∂β∂µFµα = [∂µ∂µ −m2]Fαβ . (6.8)

So, on the mass shell we have [∂µ∂µ −m2]Fαβ = 0, and, hence,

∂α∂µFµβ − ∂β∂µFµα = 0 , (6.9)

which rather corresponds to the Maxwell-like case. However, if we calculate
dispersion relations for the second case, Eq. (6.9), it appears that the equation has
solutions even ifm 6= 0.

Now we are interested in the parity-violating equations for antisymmetric
tensor fields. We investigate the most general mapping of the Weinberg-Tucker-
Hammer formulation to the antisymetric tensor field formulation too. Instead of
Ψ(I−IV) we shall try to use now

Ψ(A) =

(
E + iB
B + iE

)
=
1+ γ5

2
Ψ(I) +

1− γ5

2
Ψ(II) . (6.10)

As a result, the equation for the AST fields is

∂α∂µFµβ − ∂β∂µFµα =
1

2
(∂µ∂µ)Fαβ + [−

A

2
(∂µ∂µ) +

B

2
m2]F̃αβ . (6.11)
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6 Notoph-Graviton-Photon Coupling 79

Of course, Ψ(A)′ =

(
B − iE
E − iB

)
= −iΨ(A), and the equation is unchanged. The

different choice is

Ψ(B) =

(
E + iB
−B − iE

)
=
1+ γ5

2
Ψ(I) −

1− γ5

2
Ψ(II) . (6.12)

Thus, one has

∂α∂µFµβ − ∂β∂µFµα =
1

2
(∂µ∂µ)Fαβ + [

A

2
(∂µ∂µ) −

B

2
m2]F̃αβ . (6.13)

Of course, one can also use the dual tensor (Ei = −1
2
εijkF̃jk and Bi = −iF̃4i) and

obtain analogous equations:

∂α∂µF̃µβ − ∂β∂µF̃µα =
1

2
(∂µ∂µ)F̃αβ + [−

A

2
(∂µ∂µ) +

B

2
m2]Fαβ ,

(6.14)

∂α∂µF̃µβ − ∂β∂µF̃µα =
1

2
(∂µ∂µ)F̃αβ + [

A

2
(∂µ∂µ) −

B

2
m2]Fαβ .

(6.15)

They are connected with (6.11,6.13) by the dual transformations.
The states corresponding to the new functions Ψ(A), Ψ(B) etc are not the parity

eigenstates. So, it is not surprising that we have Fαβ and its dual F̃αβ in the same
equations. In total we have already eight equations.

One can also consider the most general case

Ψ(W) =

(
aF4i + bF̃4i + cεijkFjk + dεijkF̃jk
eF4i + fF̃4i + gεijkFjk + hεijkF̃jk

)
. (6.16)

So, we shall have dynamical equations for Fαβ and F̃αβ with additional parameters
a, b, c, d, . . . ∈ C. We have a lot of antisymmetric tensor fields here. However,

• the covariant form preserves if there are some restrictions on the parameters,
only. Alternatively, we have some additional terms of ∂24 or∇2;

• both Fµν and F̃µν are present in the equations;
• under the definite choice of a, b, c, d . . . the equations can be reduced to the

above equations for the tensorHµν and its dual:

Hµν = c1Fµν + c2F̃µν +
c3

2
εµναβFαβ +

c4

2
εµναβF̃αβ ; (6.17)

• the parity properties of Ψ(W) are very complicated.

Anther way of constructing the equations of high-spin particles has been
given in [22,17].4 Bargmann and Wigner claimed explicitly that they constructed

4 On can also obtain the s = 0 Kemmer equations on using the Bargmann-Wigner proce-
dure. One should use the antisymmetric second-rank multispinor in this case.
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(2s+ 1) states.5 Below we present the standard Bargmann-Wigner formalism for
the spin s = 1 (and turn to the standard pseudo-Euclidean metric):

[iγµ∂µ −m]αβ Ψβγ = 0 , (6.18)

[iγµ∂µ −m]γβ Ψαβ = 0 , (6.19)

If one has
Ψ{αβ} = (γµR)αβAµ + (σµνR)αβFµν , (6.20)

with6

R = eiϕ
(
Θ 0

0 −Θ

)
Θ =

(
0 −1

1 0

)
(6.25)

in the spinorial representation of γ-matrices, we obtain the Duffin-Kemmer-Proca
equations:

∂αFαµ =
m

2
Aµ , (6.26)

2mFµν = ∂µAν − ∂νAµ . (6.27)

In order to obtain these equations one should add the equations (6.18,6.19) and
compare functional coefficients at the corresponding commutators, see Ref. [17].
After the corresponding re-normalization Aµ → 2mAµ (or Fµν → (1/2m)Fµν), we
obtain the standard textbook set:

∂αFαµ = m2Aµ , (6.28)

Fµν = ∂µAν − ∂νAµ . (6.29)

It gives the equation (6.7) for the antisymmetric tensor field. Of course, one can
investigate other sets of equations with different normalization of the Fµν and
Aµ fields. Are all these sets of equations equivalent? As we see, to answer this
question is not trivial. It was argued that the physical normalization is such that
in the massless limit the zero-momentum field functions should vanish in the
momentum representation (there are no massless particles at rest). Moreover, we
advocate the following approach: the massless limit can and must be taken in the
end of all calculations only, i. e., for physical quantities.

How can one obtain other equations following from the Weinberg-Tucker-
Hammer approach? The recipe for the third equation is simple: use, instead of
(σµνR)Fµν, another symmetric matrix (γ5σµνR)Fµν.

5 The Weinberg-Tucker-Hammer theory has essentially 2(2s + 1) components.
6 The reflection operator R has the properties

RT = −R , R† = R = R−1 , (6.21)

R−1γ5R = (γ5)T , (6.22)

R−1γµR = −(γµ)T , (6.23)

R−1σµνR = −(σµν)T . (6.24)
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After taking into account the above observations let us repeat the procedure
of derivation of the Proca equations from the Bargmann-Wigner equations for a
symmetric second-rank spinor. However, we now use

Ψ{αβ} = (γµR)αβ(camAµ + cfFµ) + (σµνR)αρ(cAm(γ5)ρβAµν + cFIρβFµν) ,

(6.30)
with the same R and Θ as above. Matrices γµ are again chosen in the Weyl (spino-
rial) representation, i.e., γ5 is assumed to be diagonal. Constants ci are some
numerical dimensionless coefficients. The properties of the reflection operator R
are necessary for the expansion (6.30) to be possible in such a form, i.e., in order to
have the γµR, σµνR and γ5σµνR to be symmetric matrices.

The substitution of the above expansion into the Bargmann-Wigner equations,
Ref. [17], gives us the new Proca-like equations:

cam(∂µAν − ∂νAµ) + cf(∂µFν − ∂νFµ) = icAm
2εαβµνA

αβ + 2mcFFµν ,(6.31)

cam
2Aµ + cfmFµ = icAmεµναβ∂

νAαβ + 2cF∂
νFµν . (6.32)

In the case ca = 1, cF = 1
2

and cf = cA = 0 they are reduced to the ordinary Proca
equations.7 In the general case we obtain dynamical equations which connect the
photon, the notoph and their potentials. The divergent (in m→ 0) parts of field
functions and those of dynamical variables should be removed by correspond-
ing gauge (or Kalb-Ramond gauge) transformations. It is well known that the
notoph massless field is considered to be the pure longitudinal field after one
takes into account ∂µAµν = 0. Apart from these dynamical equations we can
obtain a number of constraints by means of the subtraction of the equations of the
Bargmann-Wigner system (instead of the addition as for (6.31,6.32)). They read

mca∂
µAµ + cf∂

µfµ = 0 , (6.33)

mcA∂
αAαµ +

i

2
cFεαβνµ∂

αFβν = 0, (6.34)

that suggests F̃µν ∼ imAµν and fµ ∼ mAµ, as in [12].
Thus, after the suitable choice of the dimensionless coefficients ci the La-

grangian density for the photon-notoph field can be proposed:

L = LProca + LNotoph = −
1

8
FµF

µ −
1

4
FµνF

µν +

+
m2

2
AµA

µ +
m2

4
AµνA

µν , (6.35)

The limitm→ 0may be taken for dynamical variables, in the end of calculations
only.

7 We still note that the division by m in the first equation is not the well-defined operation
in the case if someone is interested in the subsequent limiting procedurem→ 0. Probably,
in order to avoid this obscure point one may wish to write the Dirac equations in the
form [(iγµ∂µ)/m − I]ψ(x) = 0, which follows straightforwardly in the derivation of the
Dirac equation on the basis of the Ryder relation [7] and the Wigner rules for the boosts
of the field functions from the zero-momentum frame.
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Furthermore, it is logical to introduce the normalization scalar field ϕ(x), and
consider the expansion:

Ψ{αβ} = (γµR)αβ(ϕAµ) + (σµνR)αβFµν . (6.36)

Then, we arrive at the following set

2mFµν = ϕ(∂µAν − ∂νAµ) + (∂µϕ)Aν − (∂νϕ)Aµ , (6.37)

∂νFµν =
m

2
(ϕAµ) , (6.38)

which in the case of the constant scalar field ϕ = 2m can also be reduced to the
system of the Proca equations. The additional constraints are

(∂µϕ)Aµ +ϕ(∂µAµ) = 0 , (6.39)

∂µF̃
µν = 0 . (6.40)

At the moment it is not yet obvious, how can we account for other equations
in the (1, 0)⊕ (0, 1) representation, e.g. [7b], rigorously. For instance, one can wish
to seek the generalization of the Proca equations on the basis of the introduction
of two mass parametersm1 andm2. But, when we apply the BW procedure to the
Dirac equations we cannot obtain new physical content. Another equation in the
(1/2, 0)⊕ (0, 1/2) representation was discussed in Ref. [26]. It has the form:[

iγµ∂µ −m1 − γ
5m2

]
Ψ(x) = 0 . (6.41)

The Bargmann-Wigner procedure for this system of equations (which include the
γ5 matrix in the mass term) yields:

2m1F
µν + 2im2F̃

µν = ϕ(∂µAν − ∂νAµ) + (∂µϕ)Aν − (∂νϕ)Aµ , (6.42)

∂νFµν =
m1

2
(ϕAµ), (6.43)

with the constraints

(∂µϕ)Aµ +ϕ(∂µAµ) = 0 , (6.44)

∂νF̃µν =
im2

2
(ϕAµ) . (6.45)

In general, we can now use the four different mass parameters in the equations
which are analogous to (6.18,6.19). However, the equality of mass factors8 (m(1)

1 =

m
(2)
1 and m(1)

2 = m
(2)
2 ) is obtained as necessary conditions in the process of

calculations in the system of the Dirac-like equations.
In fact, the results of this paper develop the old results of Ref. [12]. According

to [12, Eqs.(9,10)] we proceed in constructing the “potentials” for the notoph as
follows:9

Aµν(p) = N
[
ε(1)µ (p)ε(2)ν (p) − ε(1)ν (p)ε(2)µ (p)

]
. (6.46)

8 Here, the superscripts (1) and (2) refers to the first and the second equations, respectively,
in the modified Bargmann-Wigner system.

9 The notation is that of Ref. [12] here.
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We use explicit forms for the polarization vectors (e.g., Refs. [21] and [5, formu-
las(15a,b)]) boosted to the momentum p:

εµ(0,+1) = −
1√
2


0

1

i

0

 , εµ(0, 0) =


0

0

0

1

 , εµ(0,−1) =
1√
2


0

1

−i

0

 , (6.47)

and (p̂i = pi/|p|, γ = Ep/m), Ref. [21, p.68] or Ref. [19, p.108],

εµ(p, σ) = Lµ ν(p)ε
ν(0, σ) , (6.48)

L0 0(p) = γ , Li 0(p) = L
0
i(p) = p̂i

√
γ2 − 1 , (6.49)

Li k(p) = δik + (γ− 1)p̂ip̂k . (6.50)

N, the normalization factor, should be taken into account for possible analyses of
propagators and massless limits. After substitutions in the definition (6.46) one
obtains

Aµν(p) =
iN2

m


0 −p2 p1 0

p2 0 m+ prpl
p0+m

p2p3
p0+m

−p1 −m− prpl
p0+m

0 − p1p3
p0+m

0 − p2p3
p0+m

p1p3
p0+m

0

 , (6.51)

i.e., it coincides with the longitudinal components of the antisymmetric tensor ob-
tained in Refs. [7a,Eqs.(2.14,2.17)] and [5, Eqs.(17b,18b)] within the normalization
and different forms of the spin basis. The Aµν(p) potential reduces to zero in the
limiting case (m → 0) under appropriate choice of the normalization N = mα,
α > 1/2. If N =

√
m this reduction of the non-transverse state occurs if a s = 1

particle moves along with the third axisOZ.10 It is also useful to compare Eq. (6.51)
with the formula (B2) in Ref. [8] in order to think about correct procedures for
taking the massless limits.

Next, the Tam-Happer experiments [27] on two laser beams interaction did
not find satisfactory explanation in the framework of the ordinary QED (at least,
their explanation is complicated by huge technical calculations). On the other hand,
in Ref. [28] a very interesting model has been proposed. It is based on gauging the
Dirac field on using the coordinate-dependent parameters αµν(x) in

ψ(x)→ ψ′(x′) = Ωψ(x) , Ω = exp
[
i

2
σµναµν(x)

]
, (6.52)

and, thus, the second “photon” was introduced. The compensating 24-component
(in general) field Bµ,νλ reduces to the 4-vector field as follows (the notation of [28]
is used here):

Bµ,νλ =
1

4
εµνλσaσ(x) . (6.53)

10 But, even in this case we cannot have a good behaviour of the 4-vector fields/potentials
in the massless limit in the instant form of the relativistic dynamics, cf. [8].
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As readily seen, after comparison of these formulas with those of Refs. [12–14], the
second photon is nothing more than the Ogievetskiı̆-Polubarinov notoph within the
normalization. Parity properties are dependent not only on the explicit forms of the
momentum-space field functions of the (1/2, 1/2) representation, but also on the
properties of corresponding creation/annihilation operators. Helicity properties
depend on the normalization.

6.3 The Standard Bargmann-Wigner Formalism Applied for
Spin 2

In this Section we use the commonly-accepted procedure for the derivation of
higher-spin equations [22]. We begin with the equations for the 4-rank symmetric
spinor:

[iγµ∂µ −m]αα′ Ψα′βγδ = 0 , (6.54)

[iγµ∂µ −m]ββ′ Ψαβ′γδ = 0 , (6.55)

[iγµ∂µ −m]γγ′ Ψαβγ′δ = 0 , (6.56)

[iγµ∂µ −m]δδ′ Ψαβγδ′ = 0 . (6.57)

The massless limit (if one needs) should be taken in the end of all calculations.
We proceed expanding the field function in the set of symmetric matrices (as

in the spin-1 case, cf. Ref. [5]). In the beginning let us use the first two indices:11

Ψ{αβ}γδ = (γµR)αβΨ
µ
γδ + (σµνR)αβΨ

µν
γδ . (6.58)

We would like to write the corresponding equations for functions Ψµγδ and Ψµνγδ in
the form:

2

m
∂µΨ

µν
γδ = −Ψνγδ , (6.59)

Ψµνγδ =
1

2m

[
∂µΨνγδ − ∂

νΨµγδ

]
. (6.60)

Constraints (1/m)∂µΨ
µ
γδ = 0 and (1/m)εµναβ ∂µΨ

αβ
γδ = 0 can be regarded as the

consequence of Eqs. (6.59,6.60).
Next, we present the vector-spinor and tensor-spinor functions as

Ψµ
{γδ}

= (γκR)γδG
µ

κ + (σκτR)γδF
µ

κτ , (6.61)

Ψµν
{γδ}

= (γκR)γδT
µν

κ + (σκτR)γδR
µν

κτ , (6.62)

i. e., using the symmetric matrix coefficients in indices γ and δ. Hence, the total
function is

Ψ{αβ}{γδ} = (γµR)αβ(γ
κR)γδG

µ
κ + (γµR)αβ(σ

κτR)γδF
µ

κτ +

+ (σµνR)αβ(γ
κR)γδT

µν
κ + (σµνR)αβ(σ

κτR)γδR
µν

κτ , (6.63)

11 The matrix R can be related to the CP operation in the (1/2, 0)⊕ (0, 1/2) representation.



i
i

“proc14” — 2014/12/8 — 18:22 — page 85 — #99 i
i

i
i

i
i

6 Notoph-Graviton-Photon Coupling 85

and the resulting tensor equations are:

2

m
∂µT

µν
κ = −G ν

κ , (6.64)

2

m
∂µR

µν
κτ = −F ν

κτ , (6.65)

T µν
κ =

1

2m
[∂µG ν

κ − ∂νG µ
κ ] , (6.66)

R µν
κτ =

1

2m
[∂µF ν

κτ − ∂νF µ
κτ ] . (6.67)

The constraints are re-written to

1

m
∂µG

µ
κ = 0 ,

1

m
∂µF

µ
κτ = 0 , (6.68)

1

m
εαβνµ∂

αT βν
κ = 0 ,

1

m
εαβνµ∂

αR βν
κτ = 0 . (6.69)

However, we need to make symmetrization over these two sets of indices {αβ}
and {γδ}. The total symmetry can be ensured if one contracts the function Ψ{αβ}{γδ}

with antisymmetric matrices R−1βγ, (R−1γ5)βγ and (R−1γ5γλ)βγ, and equate all
these contractions to zero (similar to the s = 3/2 case considered in Ref. [17, p. 44].
We obtain additional constraints on the tensor field functions:

G µ
µ = 0 , G[κµ] = 0 , Gκµ =

1

2
gκµG ν

ν , (6.70)

F µ
κµ = F µ

µκ = 0 , εκτµνFκτ,µ = 0 , (6.71)

Tµ µκ = Tµ κµ = 0 , εκτµνTκ,τµ = 0 , (6.72)

Fκτ,µ = Tµ,κτ , εκτµλ(Fκτ,µ + Tκ,τµ) = 0 , (6.73)

R µν
κν = R µν

νκ = R νµ
κν = R νµ

νκ = R µν
µν = 0 , (6.74)

εµναβ(gβκRµτ,να − gβτRνα,µκ) = 0 εκτµνRκτ,µν = 0 . (6.75)

Thus, we encountered with the well-known difficulty of the theory of spin-2
particles in the Minkowski space. We explicitly showed that all field functions
become to be equal to zero. Such a situation cannot be considered as a satisfactory
one (because it does not give us any physical information), and it can be corrected
in several ways.12

6.4 The Generalized Bargmann-Wigner Formalism for Spin 2

We shall modify the formalism in the spirit of Ref. [30]. The field function (6.58) is
now presented as

Ψ{αβ}γδ = α1(γµR)αβΨ
µ
γδ + α2(σµνR)αβΨ

µν
γδ + α3(γ

5σµνR)αβΨ̃
µν
γδ , (6.76)

12 The reader can compare our results of this Section with those of Ref. [29]. I became aware
about their consideration from Dr. D. V. Ahluwalia (personal communications, May 5,
1998). I consider their discussion of the standard formalism in the Sections I and II, as
insufficient.
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with

Ψµ
{γδ}

= β1(γ
κR)γδG

µ
κ + β2(σ

κτR)γδF
µ

κτ + β3(γ
5σκτR)γδF̃

µ
κτ , (6.77)

Ψµν
{γδ}

= β4(γ
κR)γδT

µν
κ + β5(σ

κτR)γδR
µν

κτ + β6(γ
5σκτR)γδR̃

µν
κτ ,(6.78)

Ψ̃µν
{γδ}

= β7(γ
κR)γδT̃

µν
κ + β8(σ

κτR)γδD̃
µν

κτ + β9(γ
5σκτR)γδD

µν
κτ .(6.79)

Hence, the function Ψ{αβ}{γδ} can be expressed as a sum of nine terms:

Ψ{αβ}{γδ} = α1β1(γµR)αβ(γ
κR)γδG

µ
κ + α1β2(γµR)αβ(σ

κτR)γδF
µ

κτ +

+ α1β3(γµR)αβ(γ
5σκτR)γδF̃

µ
κτ ++α2β4(σµνR)αβ(γ

κR)γδT
µν

κ +

+ α2β5(σµνR)αβ(σ
κτR)γδR

µν
κτ + α2β6(σµνR)αβ(γ

5σκτR)γδR̃
µν

κτ +

+ α3β7(γ
5σµνR)αβ(γ

κR)γδT̃
µν

κ + α3β8(γ
5σµνR)αβ(σ

κτR)γδD̃
µν

κτ +

+ α3β9(γ
5σµνR)αβ(γ

5σκτR)γδD
µν

κτ . (6.80)

The corresponding dynamical equations are given by13

2α2β4

m
∂νT

µν
κ +

iα3β7

m
εµναβ∂νT̃κ,αβ = α1β1G

µ
κ , (6.81)

2α2β5

m
∂νR

µν
κτ +

iα2β6

m
εαβκτ∂νR̃

αβ,µν +
iα3β8

m
εµναβ∂νD̃κτ,αβ −

−
α3β9

2
εµναβελδκτD

λδ
αβ = α1β2F

µ
κτ +

iα1β3

2
εαβκτF̃

αβ,µ , (6.82)

2α2β4T
µν

κ + iα3β7ε
αβµνT̃κ,αβ =

α1β1

m
(∂µG ν

κ − ∂νG µ
κ ) , (6.83)

2α2β5R
µν

κτ + iα3β8ε
αβµνD̃κτ,αβ + iα2β6εαβκτR̃

αβ,µν

−
α3β9

2
εαβµνελδκτD

λδ
αβ =

=
α1β2

m
(∂µF ν

κτ − ∂νF µ
κτ ) +

iα1β3

2m
εαβκτ(∂

µF̃αβ,ν − ∂νF̃αβ,µ) . (6.84)

The essential constraints are:

α1β1G
µ
µ = 0 , α1β1G[κµ] = 0 , (6.85)

2iα1β2F
µ

αµ + α1β3ε
κτµ
αF̃κτ,µ = 0 , (6.86)

2iα1β3F̃
µ

αµ + α1β2ε
κτµ
αFκτ,µ = 0 , (6.87)

2iα2β4T
µ
µα − α3β7ε

κτµ
αT̃κ,τµ = 0 , (6.88)

2iα3β7T̃
µ
µα − α2β4ε

κτµ
αTκ,τµ = 0 , (6.89)

13 All indices in this formula are already pure vectorial and have nothing to do with
previous notation. The coefficients αi and βi may, in general, carry some dimension.
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iεµνκτ
[
α2β6R̃κτ,µν + α3β8D̃κτ,µν

]
+ 2α2β5R

µν
µν + 2α3β9D

µν
µν = 0 ,

(6.90)

iεµνκτ [α2β5Rκτ,µν + α3β9Dκτ,µν] + 2α2β6R̃
µν
µν + 2α3β8D̃

µν
µν = 0 , (6.91)

2iα2β5R
µα

βµ + 2iα3β9D
µα

βµ + α2β6ε
να
λβR̃

λµ
µν + α3β8ε

να
λβD̃

λµ
µν = 0 ,

(6.92)

2iα1β2F
λµ
µ − 2iα2β4T

µλ
µ + α1β3ε

κτµλF̃κτ,µ + α3β7ε
κτµλT̃κ,τµ = 0 , (6.93)

2iα1β3F̃
λµ
µ − 2iα3β7T̃

µλ
µ + α1β2ε

κτµλFκτ,µ + α2β4ε
κτµλTκ,τµ = 0 , (6.94)

α1β1(2G
λ
α − gλ αG

µ
µ) − 2α2β5(2R

λµ
µα + 2R µλ

αµ + gλ αR
µν
µν) +

+ 2α3β9(2D
λµ
µα + 2D µλ

αµ + gλ αD
µν
µν)

+ 2iα3β8(ε
µν

κα D̃κλµν − εκτµλD̃κτ,µα) −

− 2iα2β6(ε
µν

κα R̃κλµν − εκτµλR̃κτ,µα) = 0 , (6.95)

2α3β8(2D̃
λµ
µα + 2D̃ µλ

αµ + gλ αD̃
µν
µν) − 2α2β6(2R̃

λµ
µα + 2R̃ µλ

αµ +

+ gλ αR̃
µν
µν) + +2iα3β9(ε

µν
κα Dκλµν − εκτµλDκτ,µα) −

− 2iα2β5(ε
µν

κα Rκλµν − εκτµλRκτ,µα) = 0 , (6.96)

α1β2(F
αβ,λ − 2Fβλ,α + Fβµµ g

λα − Fαµµ g
λβ) −

− α2β4(T
λ,αβ − 2Tβ,λα + T µα

µ gλβ − T µβ
µ gλα) +

+
i

2
α1β3(ε

κταβF̃ λ
κτ + 2ελκαβF̃ µ

κµ + 2εµκαβF̃λ κ,µ) −

−
i

2
α3β7(ε

µναβT̃λ µν + 2ενλαβT̃µ µν + 2εµκαβT̃ λ
κ,µ ) = 0 . (6.97)

They are the results of contractions of the field function (6.80) with six
antisymmetric matrices, as above. Furthermore, one should recover the rela-
tions (6.70-6.75) in the particular case when α3 = β3 = β6 = β9 = 0 and
α1 = α2 = β1 = β2 = β4 = β5 = β7 = β8 = 1.

As a discussion, we note that in such a framework we have physical content
because only certain combinations of field functions can be equal to zero. In
general, the fields F µ

κτ , F̃ µ
κτ , T µν

κ , T̃ µν
κ , and R µν

κτ , R̃ µν
κτ ,D µν

κτ , D̃ µν
κτ can

correspond to different physical states and the equations above describe couplings
one state with another.
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Furthermore, from the set of equations (6.81-6.84) one obtains the second-order
equation for the symmetric traceless tensor of the second rank (α1 6= 0, β1 6= 0):

1

m2
[∂ν∂

µG ν
κ − ∂ν∂

νG µ
κ ] = G µ

κ . (6.98)

After the contraction in indices κ and µ this equation is reduced to

∂µG
µ
α = Fα , (6.99)

1

m2
∂αF

α = 0 , (6.100)

i. e., to the equations connecting the analogue of the energy-momentum tensor
and the analogue of the 4-vector potential (the additional notoph field as opposed
to the Logunov theory?). As we showed in our recent work [30] the longitudinal
potential may have importance in the construction of electromagnetism (see also
the works on the notoph and notivarg concept [31]). Moreover, according to the
Weinberg theorem [9] for massless particles it is the gauge part of the 4-vector
potential ∼ ∂µχ, which is the physical field. The case, when the longitudinal
potential is equated to zero, can be considered as a particular case only. This
case may be relevant to some physical situation but hardly to be considered as a
basis for unification. Further investigations may provide additional foundations
to “surprising” similarities of gravitational and electromagnetic equations in the
low-velocity limit, Refs. [32–34,36].

6.5 Interactions with Fermions

The possibility of terms as σ · [A×A∗] appears to be related to the matters of chiral
interactions [38,39]. As we are now convinced, the Dirac field operator can be
always presented as a superposition of the self- and anti-self charge conjugate field
operators (cf. Ref. [37]). The anti-self charge conjugate part can give the self charge
conjugate part after multiplying by the γ5 matrix, and vice versa. We derived14

[iγµD∗µ −m]ψs1 = 0 , (6.102)

or15

[iγµDµ −m]ψa2 = 0 . (6.104)

14 The anti-self charge conjugate field function ψ2 can also be used. The equation has then
the form:

[iγµD∗µ +m]ψa2 = 0 . (6.101)

15 The self charge conjugate field function ψ1 also can be used. The equation has the form:

[iγµDµ +m]ψs1 = 0 . (6.103)

As readily seen, in the cases of alternative choices we have opposite charges in the terms
of the type σ · [A×A∗] and in the mass terms.
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Both equations lead to the terms of interaction such as σ · [A×A∗] provided that
the 4-vector potential is considered as a complex function(al). In fact, from (6.102)
we have:

iσµ∇µχ1 −mφ1 = 0 , (6.105)

iσ̃µ∇∗µφ1 −mχ1 = 0 . (6.106)

And, from (6.104) we have

iσµ∇∗µχ2 −mφ2 = 0 , (6.107)

iσ̃µ∇µφ2 −mχ2 = 0 . (6.108)

The meanings of σµ and σ̃µ are obvious from the definition of γmatrices. The
derivatives are defined:

Dµ = ∂µ − ieγ5Cµ + eBµ , ∇µ = ∂µ − ieAµ , (6.109)

and Aµ = Cµ + iBµ. Thus, relations with the magnetic monopoles can also be
established.

¿From the above system we extract the terms as ±e2σiσjAiA∗j , which lead to
the discussed terms [38,39].16 Furthermore, one can come to the same conclusions
not applying to the constraints on the creation/annihilation operators (which we
have previously chosen for clarity and simplicity in Ref. [39]). It is possible to
work with self/anti-self charge conjugate fields and the Majorana anzatzen. Thus,
in the considered cases it is the γ5 transformation which distinguishes various
field configurations (helicity, self/anti-self charge conjugate properties etc) in the
coordinate representation.

6.6 Boson Interactions

The most general relativistic-invariant Lagrangian for the symmetric 2nd-rank
tensor is

L = −α1(∂
αGαλ)(∂βG

βλ) − α2(∂αG
βλ)(∂αGβλ)−

− α3(∂
αGβλ)(∂βGαλ) +m

2GαβG
αβ . (6.110)

It leads to the equation[
α2∂

2 +m2
]
G{µν} + (α1 + α3)∂

{µ| (∂αG
α|ν}) = 0 . (6.111)

In the case α2 = 1 > 0 and α1 + α3 = −1 it coincides with Eq. (6.98). There is no
any problem to obtain the dynamical invariants for the fields of the spin 2 from
the above Lagrangian. The mass dimension of Gµν is [energy]1.

16 I am grateful to Prof. S. Esposito for the e-mail communications (1997-98) on the alterna-
tive proof of the considered interaction. We would like to note that the terms of the type
σ · [A×A∗] can be reduced to (σ · ∇)V , where V is the scalar potential.
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We now present possible relativistic interactions of the symemtric 2nd-rank
tensor. They should be the following ones:

Lint(1) ∼ GµνF
µFν , (6.112)

Lint(2) ∼ (∂µGµν)F
ν , (6.113)

Lint(3) ∼ Gµν(∂
µFν) . (6.114)

The term ∼ (∂µG
α
α)F

µ vanishes due to the constraint of tracelessness. Obviously,
these interactions cannot be obtained from the free Lagrangian (6.110) just by the
covariantization of the derivative ∂µ → ∂µ + gFµ.

It is also interesting to note that thanks to the possible terms

V(F) = β1(FµF
µ) + β2(FµF

µ)(FνF
ν) (6.115)

we can give the mass to the G00 component of the spin-2 field. This is due to the
possibility of the Higgs spontaneous symmetry breaking [40]

Fµ(x) =


v+ ∂0χ(x)

g1

g2

g3

 , (6.116)

with v being the vacuum expectation value, v2 = (FµF
µ) = −β1/2β2 > 0. Other

degrees of freedom of the 4-vector field are removed since they can be interpreted
as the Goldstone bosons. It was stated that “for any continuous symmetry which
does not preserve the ground state, there is a massless degree of freedom which de-
couples at low energies. This mode is called the Goldstone (or Nambu-Goldstone)
particle for the symmetry”. As usual, the Higgs mechanism and the Goldstone
modes should be important in giving masses to the three vector bosons.17 As one
can easily see, this expression does not permit an arbitrary phase for Fµ, which is
possible only if the 4-vector would be the complex one.

Next, due to the Lagrangian interaction of fermions with notoph are of the
order e2 since the beginning (as opposed to the interaction with the 4-vector
potential Aµ), it is more difficult to observe it. However, as far as I know the
theoretical precision calculus in QED (the Landé factor, the anomalous magnetic
moment, the hyperfine splittings in positronium and muonium, and the decay rate
of o-Ps and p-Ps) are about the order corresponding to the 4th-5th loops, where
the difference may appear with the experiments [41,42].

17 It is interesting to note the following statement (given without references in
wikipedia.org): “In general, the phonon is effectively the Nambu-Goldstone boson for
spontaneously broken Galilean/Lorentz symmetry. However, in contrast to the case of
internal symmetry breaking, when spacetime symmetries are broken, the order parameter
need not be a scalar field, but may be a tensor field, and the corresponding independent
massless modes may now be fewer than the number of spontaneously broken generators,
because the Goldstone modes may now be linearly dependent among themselves: e.g.,
the Goldstone modes for some generators might be expressed as gradients of Goldstone
modes for other broken generators.”
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6.7 Conclusions

We considered the Bargmann-Wigner formalism to derive the equations for the
AST field and for the symmetric tensor of the 2nd rank. We introduced additional
scalar normalization field in the Bargmann-Wigner formalism in order to take
into account possible physical significance of the Ogievetskiı̆-Polubarinov–Kalb-
Ramond modes. We introduced the additional symmetric matrix in the Bargmann-
Wigner expansion (γ5σµνR) in order to take into account the dual fields. The
consideration is similar to Ref. [43].

Furthermore, we discussed the interactions of notoph, photon and graviton
(and, probably, notivarg18). For instance, the interaction notoph-graviton may
give the mass to spin-2 particles in the way which is similar to the spontaneous-
symmetry-breaking Higgs formalism.
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Abstract. Within the framework of a local SU(3) family symmetry model, we report a
general analysis of the mechanism for neutrino mass generation and mixing, including light
sterile neutrinos. In this scenario, ordinary heavy fermions, top and bottom quarks and tau
lepton, become massive at tree level from Dirac See-saw mechanisms implemented by the
introduction of a new set of SU(2)L weak singlet vector-like fermions, U,D, E,N, with N
a sterile neutrino. Right-handed and the NL,R sterile neutrinos allow the implementation
of a 8 × 8 general Majorana neutrino mass matrix with four or five massless neutrinos
at tree level. Hence, light fermions, including light neutrinos get masses from radiative
corrections mediated by the massive SU(3) gauge bosons. We report the corresponding
Majorana neutrino mass matrix up to one loop. Previous numerical analysis of the free
parameters show out solutions for quarks and charged lepton masses within a parameter
space region where the vector-like fermion masses MU , MD , ME, and the SU(3) family
gauge boson masses lie in the low energy region of O(1 − 20)TeV, with light neutrinos
within the correct order of square neutrino mass differences: m22 −m

2
1 ≈ 7 × 10−5 eV2,

m23 −m
2
1 ≈ 2× 10−3 eV2, and at least one sterile neutrino of the order ≈ 0.5 eV. A more

precise fit of the parameters is still needed to account also for the quark and lepton mixing.

Povzetek. Avtor pojasnjuje pojav družin pri leptonih tako, da uporabi za opis družin
model z lokalno simetrijo SU(3). Trem družinam kvarkov in leptonov doda še družinski
triplet desnoročnih nevtrinov, ki nosi samo družinski naboj, levoročni in desnoročni U in
prav tak D kvark, ki nosijo poleg barve le hiper naboj, levoročni in desnoročni nevtrino, ki
ne nosita nobenega naboja, ter levoročni in desnoročni elektron s hipernabojem (−2). Vsi ti
novi delci so masivni. Novi fermioni poskrbijo na drevesnem nivoju samo za maso tretje
družine kvarkov in leptonov. Lahkim fermionom, tudi lahkim nevtrinom, priskrbijo maso
popravki v naslednjih redih pri interakciji z masivnimi bozoni, ki nosijo družinsko kvantno
število. Avtor izračuna masno matriko 8x8 za Majoranine nevtrine do prvega reda. Proste
parametre modela določi z izmerjenimi masami in mešalnimi matrikami. Po dosedanjih
izračunih so primerne vrednosti za mase fermionovMU , MD , ME in za maso družinskega
tripleta umeritvenega bozona v intervalu O(1 − 20)TeV, za izmerjene masne razlike lahkih
nevtrinov m22 −m12 ≈ 7 × 10−5 eV2, m32 −m12 ≈ 2 × 10−3 eV2 lahko avtor poskrbi
s še vsaj enim sterilnim nevtrinom, ki ima maso ≈ 0.5 eV. Avtor pričakuje, da bo z bolj
natančnimi izračuni lahko s pomočjo tega modela pojasnil mešalne matrike kvarkov in
leptonov.

? E-mail: albino@esfm.ipn.mx
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7.1 Introduction

Although the standard picture with three light flavor neutrinos has been successful
to describe the neutrino oscillation data. On the other hand, there have been
recent hints from the LSND and MiniBooNe short-baseline neutrino oscillation
experiments[1,2] on the possible existence of at least one light sterile neutrino
in the eV scale, which mix with the active neutrinos. On the other hand, an
explanation of the strong hierarchy of quark and charged lepton masses is still a
big challenge in particle physics. This hierarchy have suggested to many model
building theorists that light fermion masses could be generated from radiative
corrections, while those of the top and bottom quarks and the tau lepton are
generated at tree level. This may be understood as the breaking of a symmetry
among families , a horizontal symmetry.

In this report we update the general features of a ”Beyond the Standard
Model”(BSM) proposal which introduces a SU(3) [3] gauged family symmetry
1 commuting with the Standard Model group. Previous reports[4] within this
scenario showed that this model has the features and particle content to account
for a realistic spectrum of charged fermion masses and quark mixing. This BSM
model introduce a hierarchical mass generation mechanism in which the light
fermions obtain masses through one loop radiative corrections, mediated by the
massive bosons associated to the SU(3) family symmetry that is spontaneously
broken, while the masses for the top and bottom quarks as well as for the tau lepton,
are generated at tree level from ”Dirac See-saw”[5] mechanisms implemented by
the introduction of a new generation of SU(2)L weak singlets vector-like fermions.

The SU(3) family symmetry model allows one to address the problem of quark and
lepton masses and mixing, including active and light sterile neutrinos.

7.2 SU(3) flavor symmetry model

7.2.1 Fermion content

Before ”Electroweak Symmetry Breaking”(EWSB) all ordinary, ”Standard Model”(SM)
fermions remain massless, and the global symmetry in this limit of all quarks and
leptons massless, including R-handed neutrinos, is:

SU(3)qL ⊗ SU(3)uR ⊗ SU(3)dR ⊗ SU(3)lL ⊗ SU(3)νR ⊗ SU(3)eR (7.1)

⊃ SU(3)qL+uR+dR+lL+eR+νR ≡ SU(3) (7.2)

We define the gauge group symmetry G ≡ SU(3)⊗GSM, where Eq.(7.2) defines
the SU(3) gauged family symmetry, and GSM ≡ SU(3)C ⊗ SU(2)L ⊗ U(1)Y is
the ”Standard Model” gauge group, with gH, gs, g and g′ the corresponding

1 See [3,4] and references therein for some SU(3) family symmetry models.
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coupling constants. The content of fermions assumes the ordinary quarks and
leptons assigned under G as:

ψoq = (3, 3, 2,
1

3
)L , ψou = (3, 3, 1,

4

3
)R , ψod = (3, 3, 1,−

2

3
)R

ψol = (3, 1, 2,−1)L , ψoe = (3, 1, 1,−2)R ,

where the last entry corresponds to the hypercharge Y, and the electric charge is
defined by Q = T3L +

1
2
Y. The model also includes two types of extra fermions:

• Right handed neutrinos Ψoν = (3, 1, 1, 0)R required to cancel anomalies[6], and
• the SU(2)L singlet vector-like fermions:

UoL,R = (1, 3, 1,
4

3
) , DoL,R = (1, 3, 1,−

2

3
) (7.3)

NoL,R = (1, 1, 1, 0) , EoL,R = (1, 1, 1,−2) , (7.4)

which conserve the previous anomaly cancellation. The transformation of these
vector-like fermions allows the mass invariant mass terms

MU Ū
o
L U

o
R + MD D̄

o
L D

o
R + ME Ē

o
L E

o
R + h.c. , (7.5)

and

mD N̄
o
LN

o
R + mL N̄

o
L (N

o
L)
c + mR N̄

o
R (N

o
R)
c + h.c (7.6)

These SU(2)L weak singlets vector-like fermions have been introduced to give
masses at tree level only to the third family of known fermions through Dirac
See-saw mechanisms. MU ,MD ,ME play a crucial role to implement a hierar-
chical spectrum for quarks and charged lepton masses and mixing, meanwhile
mD ,mL ,mR play a similar role for neutrino masses and lepton mixing, all
together with the radiative corrections.

7.3 SU(3) family symmetry breaking

The corresponding SU(3) gauge bosons are defined through their couplings to
fermions as

iLint =
gH

2

(
f̄o1γµf

o
1 − f̄

o
2γµf

o
2

)
Zµ1 +

gH

2
√
3

(
f̄o1γµf

o
1 + f̄

o
2γµf

o
2 − 2f̄

o
3γµf

o
3

)
Zµ2

+
gH√
2

(
f̄o1γµf

o
2 Y

+
1 + f̄o1γµf

o
3 Y

+
2 + f̄o2γµf

o
3 Y

+
3 + h.c.

)
(7.7)

fo1 = uo, do, eo, νoe , f
o
2 = co, so, µo, νoµ and fo3 = to, bo, τo, νoτ . To implement a

hierarchical spectrum for charged fermion masses, and simultaneously to achieve
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the SSB of SU(3), we introduce the flavon scalar fields: ηi = (3, 1, 1, 0), i = 1, 2, 3,
transforming as the fundamental representation under SU(3) and being standard
model singlets, with the ”Vacuum Expectation Values” (VEV’s):

〈η1〉T = (Λ1, 0, 0) , 〈η2〉T = (0,Λ2, 0) , 〈η3〉T = (0, 0,Λ3) . (7.8)

Actually, let us point out here that only two scalar flavons in the fundamental representa-
tion are needed to completely break down the SU(3) symmetry. The most convenient way
to accomplish the spontaneous breaking of the SU(3) family symmetry is under current
study. Thus, the contribution to the horizontal gauge boson masses from Eq.(7.8)
read

• η1 :
g2H1

Λ21
2

(Y+1 Y
−
1 + Y+2 Y

−
2 ) +

g2H1
Λ21
4

(Z21 +
Z22
3

+ 2Z1
Z2√
3
)

• η2 :
g2H2

Λ22
2

(Y+1 Y
−
1 + Y+3 Y

−
3 ) +

g2H2
Λ22
4

(Z21 +
Z22
3

− 2Z1
Z2√
3
)

• η3 :
g2H3

Λ23
2

(Y+2 Y
−
2 + Y+3 Y

−
3 ) + g

2
H3
Λ23

Z22
3

Therefore, neglecting tiny contributions from electroweak symmetry breaking, we obtain
the gauge boson mass terms

(M2
1 +M

2
2) Y

+
1 Y

−
1 + (M2

1 +M
2
3) Y

+
2 Y

−
2 + (M2

2 +M
2
3) Y

+
3 Y

−
3

+
1

2
(M2

1 +M
2
2)Z

2
1 +

1

2

M2
1 +M

2
2 + 4M

2
3

3
Z22 +

1

2
(M2

1 −M
2
2)
2√
3
Z1 Z2 (7.9)

M2
1 =

g2H1Λ
2
1

2
, M2

2 =
g2H2Λ

2
2

2
, M2

3 =
g2H3Λ

2
3

2
(7.10)

Z1 Z2

Z1 M
2
1 +M

2
2

M21−M
2
2√

3

Z2
M21−M

2
2√

3

M21+M
2
2+4M

2
3

3

Table 7.1. Z1 − Z2 mixing mass matrix

From the diagonalization of the Z1 − Z2 squared mass matrix, we obtain the
eigenvalues

M2
− =

2

3

(
M2
1 +M

2
2 +M

2
3 −

√
(M2

2 −M
2
1)
2 + (M2

3 −M
2
1)(M

2
3 −M

2
2)

)

M2
+ =

2

3

(
M2
1 +M

2
2 +M

2
3 +

√
(M2

2 −M
2
1)
2 + (M2

3 −M
2
1)(M

2
3 −M

2
2)

)
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M2
Y1
Y+1 Y

−
1 +M2

Y2
Y+2 Y

−
2 +M2

Y3
Y+3 Y

−
3 +M2

−

Z2−
2

+M2
+

Z2+
2

(7.11)

where

M2
Y1

=M2
1 +M

2
2 , M2

Y2
=M2

1 +M
2
3 , M2

Y3
=M2

2 +M
2
3 (7.12)

(
Z1
Z2

)
=

(
cosφ − sinφ
sinφ cosφ

)(
Z−

Z+

)
(7.13)

cosφ sinφ =

√
3

4

M2
1 −M

2
2√

(M2
2 −M

2
1)
2 + (M2

3 −M
2
1)(M

2
3 −M

2
2)
,

with the hierarchy M1,M2 �MW
2. Due to the Z1 − Z2 mixing we diagonalize

the propagators involving Z1 and Z2 gauge bosons according to Eq.(7.13):

Z1 = cosφ Z− − sinφ Z+ , Z2 = sinφ Z− + cosφ Z+

〈Z1Z1〉 = cos2φ 〈Z−Z−〉+ sin2φ 〈Z+Z+〉

〈Z2Z2〉 = sin2φ 〈Z−Z−〉+ cos2φ 〈Z+Z+〉

〈Z1Z2〉 = cosφ sinφ (〈Z−Z−〉− 〈Z+Z+〉)

7.4 Electroweak symmetry breaking

Recently ATLAS[7] and CMS[8] at the Large Hadron Collider announced the
discovery of a Higgs-like particle, whose properties, couplings to fermions and
gauge bosons will determine whether it is the SM Higgs or a member of an
extended Higgs sector associated to a BSM theory. The electroweak symmetry
breaking in the SU(3) family symmetry model involves the introduction of two
triplets of SU(2)L Higgs doublets.

To achieve the spontaneous breaking of the electroweak symmetry to U(1)Q,
we introduce the scalars:Φu = (3, 1, 2,−1) and Φd = (3, 1, 2,+1), with the VEVs:

〈Φu〉 =

〈Φu1 〉〈Φu2 〉
〈Φu3 〉

 , 〈Φd〉 =

〈Φd1 〉〈Φd2 〉
〈Φd3 〉

 , (7.14)

〈Φui 〉 =
1√
2

(
vui
0

)
, 〈Φdi 〉 =

1√
2

(
0

vdi

)
, (7.15)

2 Notice that in the limitM2
1 =M

2
2; sinφ = 0, cosφ = 1
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contribute to the W and Z boson masses:

g2

4
(v2u + v2d)W

+W− +
(g2 + g′

2
)

8
(v2u + v2d)Z

2
o

v2u = v2u1+ v
2
u2+ v

2
u3 , v2d = v2d1+ v

2
d2+ v

2
d3. Hence, if we defineMW = 1

2
g v, we

may write v =
√
v2u + v2d ≈ 246 GeV.

7.5 Tree level neutrino masses

Now we describe briefly the procedure to get the masses for ordinary fermions.
The analysis for quarks and charged leptons has already discussed in [4]. Here,
we introduce the procedure for neutrinos.

7.5.1 Tree level Dirac neutrino masses

With the fields of particles introduced in the model, we may write the Dirac type
gauge invariant Yukawa couplings

hD Ψ̄
o
l Φ

uNoR + h1 Ψ̄
o
ν η1N

o
L + h2 Ψ̄

o
ν η2N

o
L + h3 Ψ̄

o
ν η3N

o
L

+ MD N̄
o
LN

o
R + h.c (7.16)

hD, h1, h2 and h3 are Yukawa couplings, andMD a Dirac type, invariant neutrino
mass for the sterile neutrinos NoL,R. After electroweak symmetry breaking, we
obtain in the interaction basis Ψoν

T
L,R = (νoe , ν

o
µ, ν

o
τ , N

o)L,R, the mass terms

hD
[
v1 ν̄

o
eL + v2 ν̄

o
µL + v3 ν̄

o
τL

]
NoR +

[
h1Λ1 ν̄

o
eR + h2Λ2 ν̄

o
µR + h3Λ3 ν̄

o
τR

]
NoL

+MD N̄
o
LN

o
R + h.c. (7.17)

7.5.2 Tree level Majorana masses:

Since NoL,R, Eq.(7.4), are completely sterile neutrinos, we may also write the left
and right handed Majorana type couplings

hL Ψ̄
o
l Φ

u(NoL)
c + mL N̄

o
L (N

o
L)
c + h.c (7.18)

and

h1R Ψ̄
o
ν η1 (N

o
R)
c + h2R Ψ̄

o
ν η2 (N

o
R)
c + h3R Ψ̄

o
ν η3 (N

o
R)
c

+ mR N̄
o
R (N

o
R)
c + h.c , (7.19)

respectively. After spontaneous symmetry breaking, we also get the left handed
and right handed Majorana mass terms
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hL
[
v1 ν̄

o
eL + v2 ν̄

o
µL + v3 ν̄

o
τL

]
(NoL)

c + mL N̄
o
L (N

o
L)
c + h.c. , (7.20)

+
[
h1RΛ1 ν̄

o
eR + h2RΛ2 ν̄

o
µR + h3RΛ3 ν̄

o
τR

]
(NoR)

c + mR N̄
o
R (N

o
R)
c+h.c. , (7.21)

(νoeL)
c (νoµL)

c (νoτL)
c (NoL)

c νoeR νoµR νoτR NoR
νoeL 0 0 0 hL v1 0 0 0 hD v1

νoµL 0 0 0 hL v2 0 0 0 hD v2

νoτL 0 0 0 hL v3 0 0 0 hD v3

NoL hL v1 hL v2 hL v3 mL h1Λ1 h2Λ2 h3Λ3 mD

(νoeR)
c 0 0 0 h1Λ1 0 0 0 h1RΛ1

(νoµR)
c 0 0 0 h2Λ2 0 0 0 h2RΛ2

(νoτR)
c 0 0 0 h3Λ3 0 0 0 h3RΛ3

(NoR)
c hD v1 hD v2 hD v3 mD h1RΛ1 h2RΛ2 h3RΛ3 mR

Table 7.2. Tree Level Majorana masses

Thus, in the basis

Ψoν
T =

(
νoeL , ν

o
µL , ν

o
τL , N

o
L , (ν

o
eR)

c , (νoµR)
c , (νoτR)

c , (NoR)
c
)
, (7.22)

the Generic 8× 8 tree level Majorana mass matrix for neutrinosMo
ν, from Table

7.2, Ψ̄oνMo
ν (Ψoν)

c, read

Mo
ν =

Mo
L Mo

D

MoT
D Mo

R

 (7.23)

where

Mo
L =


0 0 0 α1
0 0 0 α2
0 0 0 α3
α1 α2 α3 mL

 , Mo
R =


0 0 0 β1
0 0 0 β2
0 0 0 β3
β1 β2 β3 mR

 (7.24)

and
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Mo
D =


0 0 0 a1
0 0 0 a2
0 0 0 a3
b1 b2 b3 mD

 , (7.25)

αi = hL vi , ai = hD vi , bi = hiΛi , βi = hiRΛi (7.26)

Diagonalization ofM(o)
ν , Eq.(7.23), yields four zero eigenvalues, associated to the

neutrino fields:

a2

ap
νoeL −

a1

ap
νoµL ,

a1 a3

apa
νoeL +

a2 a3

apa
νoµL −

ap

a
νoτL, (7.27)

b2

bp
νoeR −

b1

bp
νoµR ,

b1 b3

bpb
νoeR +

b2 b3

bpb
νoµR −

bp

b
νoτR , (7.28)

ap =
√
a21 + a

2
2 , bp =

√
b21 + b

2
2 , a =

√
a21 + a

2
2 + a

2
3 , b =

√
b21 + b

2
2 + b

2
3 .

Assuming for simplicity h1R
h1

= h2R
h2

= h3R
h3
≡ cR, that is

αi

ai
=
hL

hD
= cL ,

βi

bi
=
hiR

hi
= cR ,

the Characteristic Polynomial for the nonzero eigenvalues ofMo
ν reduce to the

one of the matrixm43, Eq.(7.29), where

m4 =


0 α 0 a

α mL b mD
0 b 0 β

a mD β mR

 , U4 =


u11 u12 u13 u14
u21 u22 u23 u24
u31 u32 u33 u34
u41 u42 u43 u44

 (7.29)

α =
√
α21 + α

2
2 + α

2
3 , β =

√
β21 + β

2
2 + β

2
3 .

UT4 m4U4 = Diag(m
o
5 ,m

o
6 ,m

o
7 ,m

o
8) ≡ d4 , m4 = U4 d4U

T
4 (7.30)

Eq.(7.30) impose the constrains

u211m
o
5 + u

2
12m

o
6 + u

2
13m

o
7 + u

2
14m

o
8 = 0 (7.31)

u231m
o
5 + u

2
32m

o
6 + u

2
33m

o
7 + u

2
34m

o
8 = 0 (7.32)

u11u31m
o
5 + u12u32m

o
6 + u13u33m

o
7 + u14u34m

o
8 = 0 , (7.33)

3 The relation ab = αβ would yield five massless neutrinos at tree level.
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corresponding to the (m4)11 = (m4)33 = (m4)13 = 0 zero entries, respectively.

Therefore,Mo
ν is diagonalized by the orthogonal matrix

Uoν =



a2
ap

a1 a3
aap

0 0 a1
a
u11

a1
a
u12

a1
a
u13

a1
a
u14

−a1
ap

a2 a3
aap

0 0 a2
a
u11

a2
a
u12

a2
a
u13

a2
a
u14

0 −ap
a

0 0 a3
a
u11

a3
a
u12

a3
a
u13

a3
a
u14

0 0 0 0 u21 u22 u23 u24

0 0 b2
bp

b1 b3
bbp

b1
b
u31

b1
b
u32

b1
b
u33

b1
b
u34

0 0 −b1
bp

b2 b3
bbp

b2
b
u31

b2
b
u32

b2
b
u33

b2
b
u34

0 0 0 −
bp
b

b3
b
u31

b3
b
u32

b3
b
u33

b3
b
u34

0 0 0 0 u41 u42 u43 u44



(7.34)

(Uoν)
TMo

νU
o
ν = Diag(0, 0, 0, 0,mo5 ,m

o
6 ,m

o
7 ,m

o
8) (7.35)

7.6 One loop neutrino masses

After tree level contributions the fermion global symmetry, Eq.(7.1), is broken
down to

SU(2)qL ⊗ SU(2)uR ⊗ SU(2)dR ⊗ SU(2)lL ⊗ SU(2)νR ⊗ SU(2)eR . (7.36)

Therefore, in this scenario light neutrinos may get extremely small masses from
radiative corrections mediated by the SU(3) heavy gauge bosons.

7.6.1 One loop Dirac Neutrino masses

After the breakdown of the electroweak symmetry, neutrinos may get tiny Dirac
mass terms from the generic one loop diagram in Fig. 7.1, The internal fermion
line in this diagram represent the tree level see-saw mechanisms, Eqs.(7.16-7.21).
The vertices read from the SU(3) family symmetry interaction Lagrangian

iLint =
gH

2

(
ν̄oeγµν

o
e − ν̄

o
µγµν

o
µ

)
Zµ1+

gH

2
√
3

(
ν̄oeγµν

o
e + ν̄

o
µγµν

o
µ − 2ν̄oτγµν

o
τ

)
Zµ2

+
gH√
2

(
ν̄oeγµν

o
µ Y

+
1 + ν̄oeγµν

o
τ Y

+
2 + ν̄oµγµν

o
τ Y

+
3 + h.c.

)
(7.37)
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The contribution from these diagrams may be written as

cY
αH

π
mν(MY)ij , αH =

g2H
4π
, (7.38)

mν(MY)ij ≡
∑

k=5,6,7,8

mok U
o
ikU

o
jk f(MY ,m

o
k) , (7.39)

f(MY ,m
o
k) =

M2
Y

M2
Y
−mo2

k

ln
M2
Y

mo2
k

,

νokR

Y

No No νosL

νojR νoiL
M

< ηk > < Φu >
Fig. 7.1. Generic one loop diagram contribution to the Dirac mass termmij ν̄

o
iLν

o
jR. M =

MD,mL,mR

νoeR νoµR νoτR NoR
ν̄oeL Dν 11 Dν 12 Dν 13 0

ν̄oµL Dν 21 Dν 22 Dν 23 0

ν̄oτL Dν 31 Dν 32 Dν 33 0

N̄oL 0 0 0 0

Table 7.3. One loop Dirac mass terms αH
π
Dν ij ν̄

o
iL ν

o
jR

mν(MY)i,4+j =
ai bj

ab
Fν(MY) (7.40)

Fν(MY) = u11u31m
o
5 f(MY ,m

o
5) + u12u32m

o
6 f(MY ,m

o
6)

+ u13u33m
o
7 f(MY ,m

o
7) + u14u34m

o
8 f(MY ,m

o
8) (7.41)
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Dν 11 =
a1b1

ab

[
1

4
Fν(MZ1) +

1

12
Fν(MZ2) + Fν,m

]
+
1

2

[
a2b2

ab
Fν(MY1) +

a3b3

ab
Fν(MY2)

]
,

Dν 12 =
a1b2

ab

[
−
1

4
Fν(MZ1) +

1

12
Fν(MZ2)

]
,

Dν 13 =
a1b3

ab

[
−
1

6
Fν(MZ2) − Fν,m

]
,

Dν 21 =
a2b1

ab

[
−
1

4
Fν(MZ1) +

1

12
Fν(MZ2)

]
,

Dν 22 =
a2b2

ab

[
1

4
Fν(MZ1) +

1

12
Fν(MZ2) − Fν,m

]
+
1

2

[
a1b1

ab
Fν(MY1) +

a3b3

ab
Fν(MY3)

]
,

Dν 23 =
a2b3

ab

[
−
1

6
Fν(MZ2) + Fν,m

]
,

Dν 31 =
a3b1

ab

[
−
1

6
Fν(MZ2) − Fν,m

]
,

Dν 32 =
a3b2

ab

[
−
1

6
Fν(MZ2) + Fν,m

]
,

Dν 33 =
1

3

a3b3

ab
Fν(MZ2) +

1

2

[
a1b1

ab
Fν(MY2) +

a2b2

ab
Fν(MY3)

]
,

Fν(MZ1) = cos2φFν(M−) + sin2φFν(M+)

Fν(MZ2) = sin2φFν(M−) + cos2φFν(M+)

Fν,m =
1

2
√
3

cosφ sinφ [Fν(M−) − Fν(M+)] , (7.42)

7.6.2 One loop L-handed Majorana masses

Neutrinos also obtain one loop corrections to L-handed and R-handed Majorana
masses from the diagrams of Fig. 7.2 and Fig. 7.3, respectively. A similar procedure
as for Dirac Neutrino masses leads to the one loop Majorana mass terms
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mν(MY)i,j =
ai aj

a2
Gν(MY) (7.43)

Gν(MY) = mo5 u
2
11 f(MY ,m

o
5) +m

o
6 u

2
12 f(MY ,m

o
6) +m

o
7 u

2
13 f(MY ,m

o
7)

+mo8 u
2
14 f(MY ,m

o
8) (7.44)

Y

νo
kL No No νo

sL

νo
jL νo

iL

M

< Φu > < Φu >
Fig. 7.2. Generic one loop diagram contribution to the L-handed Majorana mass term
mij ν̄

o
iL(ν

o
jL)
T . M =MD,mL,mR

νoeL νoµL νoτL NoL
νoeL Lν 11 Lν 12 Lν 13 0

νoµL Lν 12 Lν 22 Lν 23 0

νoτL Lν 13 Lν 23 Lν 33 0

NoL 0 0 0 0

Table 7.4. One loop L-handed Majorana mass terms αH
π
Lν ij ν̄

o
iL (νojL)

T
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Lν11 =
a21
a2

[
1

4
Gν(MZ1) +

1

12
Gν(MZ2) + Gν,m

]
,

Lν22 =
a22
a2

[
1

4
Gν(MZ1) +

1

12
Gν(MZ2) − Gν,m

]
,

Lν33 =
1

3

a23
a2
Gν(MZ2) ,

Lν12 =
a1a2

a2

[
−
1

4
Gν(MZ1) +

1

12
Gν(MZ2) +

1

2
Gν(M1)

]
,

Lν13 =
a1a3

a2

[
−
1

6
Gν(MZ2) +

1

2
Gν(M2) − Gν,m

]
,

Lν23 =
a2a3

a2

[
−
1

6
Gν(MZ2) +

1

2
Gν(M3) + Gν,m

]

Gν(MZ1) = cos2φGν(M−) + sin2φGν(M+)

Gν(MZ2) = sin2φGν(M−) + cos2φGν(M+)

Gν,m =
1

2
√
3

cosφ sinφ [Gν(M−) − Gν(M+)] , (7.45)

7.6.3 One loop R-handed Majorana masses

mν(MY)4+i,4+j =
bi bj

b2
Hν(MY) (7.46)

Hν(MY) = mo5 u
2
31 f(MY ,m

o
5) +m

o
6 u

2
32 f(MY ,m

o
6) +m

o
7 u

2
33 f(MY ,m

o
7)

+mo8 u
2
34 f(MY ,m

o
8) (7.47)
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Y

νokR No No νosR

νojR νoiR
M

< ηk > < ηs >

Fig. 7.3. Generic one loop diagram contribution to the R-handed Majorana mass term
mij ν̄

o
iR(ν

o
jR)

T . M =MD,mL,mR

νoeR νoµR νoτR NoR
νoeR Rν 11 Rν 12 Rν 13 0

νoµR Rν 12 Rν 22 Rν 23 0

νoτR Rν 13 Rν 23 Rν 33 0

NoR 0 0 0 0

Table 7.5. One loop R-handed Majorana mass terms αH
π
Rν ij ν̄

o
iR (νojR)

T

Rν11 =
b21
b2

[
1

4
Hν(MZ1) +

1

12
Hν(MZ2) +Hν,m

]
,

Rν22 =
b22
b2

[
1

4
Hν(MZ1) +

1

12
Hν(MZ2) −Hν,m

]
,

Rν33 =
1

3

b23
b2
Hν(MZ2) ,

Rν12 =
b1b2

b2

[
−
1

4
Hν(MZ1) +

1

12
Hν(MZ2) +

1

2
Hν(M1)

]
,

Rν13 =
b1b3

b2

[
−
1

6
Hν(MZ2) +

1

2
Hν(M2) −Hν,m

]
,

Rν23 =
b2b3

b2

[
−
1

6
Hν(MZ2) +

1

2
Hν(M3) +Hν,m

]
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Hν(MZ1) = cos2φHν(M−) + sin2φHν(M+)

Hν(MZ2) = sin2φHν(M−) + cos2φHν(M+)

Hν,m =
1

2
√
3

cosφ sinφ [Hν(M−) −Hν(M+)] , (7.48)

where Fν,m , Gν,m andHν,m, Eqs.(7.42,7.45,7.48), come from Z1−Z2 mixing diagram
contributions.

Thus, in the Ψoν basis, Eq.(7.22), we may write the one loop contribution for
neutrinos as Ψ̄oνMo

1ν (Ψoν)
c,

Mo
1 ν =



Lν 11 Lν 12 Lν 13 0 Dν 11 Dν 12 Dν 13 0

Lν 12 Lν 22 Lν 23 0 Dν 21 Dν 22 Dν 23 0

Lν 13 Lν 23 Lν 33 0 Dν 31 Dν 32 Dν 33 0

0 0 0 0 0 0 0 0

Dν 11 Dν 21 Dν 31 0 Rν 11 Rν 12 Rν 13 0

Dν 12 Dν 22 Dν 32 0 Rν 12 Rν 22 Rν 23 0

Dν 13 Dν 23 Dν 33 0 Rν 13 Rν 23 Rν 33 0

0 0 0 0 0 0 0 0



αH

π
(7.49)

7.6.4 Neutrino mass matrix up to one loop

Finally, we obtain the general symmetric Majorana mass matrix for neutrinos up
to one loop

Mν = (Uoν)
TMo

1νU
o
ν +Diag(0, 0, 0, 0,mo5 ,m

o
6 ,m

o
7 ,m

o
8) , (7.50)

where explicitly
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(Uoν)
TMo

1 νU
o
ν =



N11 N12 N13 N14 N15 N16 N17 N18

N12 N22 N23 N24 N25 N26 N27 N28

N13 N23 N33 N34 N35 N36 N37 N38

N14 N24 N34 N44 N45 N46 N47 N48

N15 N25 N35 N45 N55 N56 N57 N58

N16 N26 N36 N46 N56 N66 N67 N68

N17 N27 N37 N47 N57 N67 N77 N78

N18 N28 N38 N48 N58 N68 N78 N88



αH

π
(7.51)

Majorana L-handed:

N11 =
a21a

2
2

a2pa
2
(GZ1 − G1) (7.52)

N12 = −
a1a2a3

2a3
[
a22 − a

2
1

a2p
(GZ1 − G1) + G2 − G3 − 6Gm] (7.53)

N22 =
a23
a2

[
1

4

(a22 − a
2
1)
2

a2p a
2

(GZ1 − G1) +
a22
a2

(G2 − G3)

+
a2p

4 a2
(G1 + 3GZ2 − 4G2) − 3

a22 − a
2
1

a2
Gm

]
(7.54)

Dirac:

N13 =
1

2apbpab

{
(a21b

2
1 + a

2
2b
2
2)F1 + a3b3(a2b2F2 + a1b1F3)

+2a1b1a2b2FZ1 } (7.55)

N14 =
1

2apbpab

b3

b

{
b1b2(a

2
2 − a

2
1)F1 + a3b3(a2b1F2 − a1b2F3)

+a1a2(b
2
1 − b

2
2)FZ1 + 6a1a2 bp2 Fm

}
(7.56)
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N23 =
1

2apbpab

a3

a

{
a1a2(b

2
2 − b

2
1)F1 + a3b3(a1b2F2 − a2b1F3)

+b1b2(a
2
1 − a

2
2)FZ1 + 6b1b2 ap2 Fm

}
(7.57)

N24 =
1

apbpa2 b2{
a3b3[a1b1a2b2F1 +

1

4
(a21 − a

2
2)(b

2
1 − b

2
2)FZ1 +

3

4
ap2 bp2 FZ2 ]

+
1

2
(a23b

2
3 + ap

2 bp2)(a1b1F2 + a2b2F3) + 3a3b3(a21b21 − a22b22)Fm
}

Majorana R-handed:

N33 =
b21b

2
2

b2pb
2
(HZ1 −H1) (7.58)

N34 = −
b1b2b3

2b3
[
b22 − b

2
1

b2p
(HZ1 −H1) +H2 −H3 − 6Hm] (7.59)

N44 =
b23
b2

[
1

4

(b22 − b
2
1)
2

b2p b
2

(HZ1 −H1) +
b22
b2

(H2 −H3)

+
b2p

4 b2
(H1 + 3HZ2 − 4H2) − 3

b22 − b
2
1

b2
Hm

]
(7.60)
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Majorana L-handed and Dirac:

N15 = G15 u11 +m13 u31 ; N16 = G15 u12 +m13 u32 (7.61)

N17 = G15 u13 +m13 u33 ; N18 = G15 u14 +m13 u34 (7.62)

G15 = −
a1 a2

2 ap a

[
a22 − a

2
1

a2
(GZ1 − G1) +

a23
a2

(G3 − G2) + 2
(2 a23 − a

2
p)

a2
Gm

]

m13 =
1

2apab2

{
b1b2(a

2
2 − a

2
1)F1 + a3b3(a2b1F2 − a1b2F3)

+a1a2(b
2
1 − b

2
2)FZ1 + 2a1a2 (bp2 − 2b23)Fm

}

N25 = G25 u11 +m23 u31 ; N26 = G25 u12 +m23 u32 (7.63)

N27 = G25 u13 +m23 u33 ; N28 = G25 u14 +m23 u34 (7.64)

G25 =
a3

4 ap a4{
(a22 − a

2
1)
2 (GZ1 − G1) + 2 a22(a23 − a2p) (G3 − G2) − a4p (GZ2 − G1)

−2 a2p(a
2
3 − a

2
p) (GZ2 − G2) + 4 (a22 − a21) (a23 − 2a2p)Gm

}

m23 =
1

apa2 b2{
a3[a1b1a2b2F1 +

1

4
(a21 − a

2
2)(b

2
1 − b

2
2)FZ1 +

1

4
ap2(bp2 − 2b23)FZ2 ]

+
1

2
b3(a

2
3 − ap

2)(a1b1F2 + a2b2F3) + a3[a21(3b21 − b2) + a22(b2 − 3b22)]Fm
}
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Dirac and Majorana R-handed:

N35 = m31 u11 +H35 u31 , N36 = m31 u12 +H35 u32

N37 = m31 u13 +H35 u33 , N38 = m31 u14 +H35 u34

m31 =
1

2bpa2 b

{
a1a2(b

2
2 − b

2
1)F1 + a3b3(a1b2F2 − a2b1F3)

+b1b2(a
2
1 − a

2
2)FZ1 + 2b1b2(ap2 − 2a23)Fm

}

H35 = −
b1 b2

2 bp b

[
b22 − b

2
1

b2
(HZ1 −H1) +

b23
b2

(H3 −H2) + 2
(2 b23 − b

2
p)

b2
Hm

]

N45 = m32 u11 +H45 u31 , N46 = m32 u12 +H45 u32 (7.65)

N47 = m32 u13 +H45 u33 , N48 = m32 u14 +H45 u34 (7.66)

m32 =
1

bpa2 b2{
b3[a1b1a2b2F1 +

1

4
(a21 − a

2
2)(b

2
1 − b

2
2)FZ1 +

1

4
bp2(ap2 − 2a23)FZ2 ]

+
1

2
a3(b

2
3 − bp

2)(a1b1F2 + a2b2F3) + b3[b21(3a21 − a2) + b22(a2 − 3a22)]Fm
}

H45 =
b3

4 bp b4{
(b22 − b

2
1)
2 (HZ1 −H1) + 2 b22(b23 − b2p) (H3 −H2) − b4p (HZ2 −H1)

−2 b2p(b
2
3 − b

2
p) (HZ2 −H2) + 4 (b22 − b21) (b23 − 2b2p)Hm

}
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Majorana L-handed, Dirac and Majorana R-handed:

N55 = G55 u211 + 2m33 u11 u31 +H55 u231 (7.67)

N56 = G55 u11 u12 +m33 (u11 u32 + u12 u31) +H55 u31 u32 (7.68)

N57 = G55 u11 u13 +m33 (u11 u33 + u13 u31) +H55 u31 u33 (7.69)

N58 = G55 u11 u14 +m33 (u11 u34 + u14 u31) +H55 u31 u34 (7.70)

N66 = G55 u212 + 2m33 u12 u32 +H55 u232 (7.71)

N67 = G55 u12 u13 +m33 (u13 u32 + u12 u33) +H55 u32 u33 (7.72)

N68 = G55 u12 u14 +m33 (u14 u32 + u12 u34) +H55 u32 u34 (7.73)

N77 = G55 u213 + 2m33 u13 u33 +H55 u233 (7.74)

N78 = G55 u13 u14 +m33 (u14 u33 + u13 u34) +H55 u33 u34 (7.75)

N88 = G55 u214 + 2m33 u14 u34 +H55 u234 (7.76)

G55 =
a21 a

2
2

a4
G1 +

a21 a
2
3

a4
G2 +

a22 a
2
3

a4
G3 +

(a22 − a
2
1)
2

4 a4
GZ1 +

(2a23 − a
2
p)
2

12 a4
GZ2

+
(a22 − a

2
1) (2 a

2
3 − a

2
p)

a4
Gm

m33 =
1

a2 b2{
a1b1a2b2F1 +

1

4
(a21 − a

2
2)(b

2
1 − b

2
2)FZ1 +

1

12
(ap2 − 2a23)(bp

2 − 2b23)FZ2

+a3b3(a1b1F2 + a2b2F3) + [a21b
2
1 − a

2
2b
2
2 + a

2
3(b

2
2 − b

2
1) + b

2
3(a

2
2 − a

2
1)]Fm

}

H55 =
b21 b

2
2

b4
H1 +

b21 b
2
3

b4
H2 +

b22 b
2
3

b4
H3 +

(b22 − b
2
1)
2

4 b4
HZ1 +

(2b23 − b
2
p)
2

12 b4
HZ2

+
(b22 − b

2
1) (2 b

2
3 − b

2
p)

b4
Hm
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7.6.5 Quark (VCKM)4×4 and (VPMNS)4×8 mixing matrices

Within this SU(3) family symmetry model, the transformation from massless to
physical mass fermion eigenfields for quarks and charged leptons is

ψoL = VoL V
(1)
L ΨL and ψoR = VoR V

(1)
R ΨR ,

and for neutrinos Ψoν = UoνUν Ψν. Recall now that vector like quarks, Eq.(7.3), are
SU(2)L weak singlets, and hence, they do not couple toW boson in the interaction
basis. In this way, the interaction of L-handed up and down quarks; fouL

T =

(uo, co, to)L and fodL
T = (do, so, bo)L, to theW charged gauge boson is

g√
2
f̄ouLγµf

o
dLW

+µ =
g√
2
Ψ̄uL [(VouL V

(1)
uL )3×4]

T (VodL V
(1)
dL )3×4 γµΨdL W

+µ ,

(7.77)
g is the SU(2)L gauge coupling. Hence, the non-unitary VCKM of dimension 4× 4
is identified as

(VCKM)4×4 = [(VouL V
(1)
uL )3×4]

T (VodL V
(1)
dL )3×4 (7.78)

Similar analysis of the couplings of active L-handed neutrinos and L-handed
charged leptons toW boson, leads to the lepton mixing matrix

(UPMNS)4×8 = [(VoeL V
(1)
eL )3×4]

T (UoνUν)3×8 (7.79)

7.7 Conclusions

We reported an updated and general analysis for the generation of neutrino masses
and mixing within the SU(3) family symmetry model. The right handed neutrinos
(νe νµ ντ)R, and the vector like completely sterile neutrinos NL,R, the flavon
scalar fields and their VEV’s introduced to break the symmetries: Φu,Φd, η1, η2
and η3, all together, yields a 8 × 8 general Majorana neutrino mass matrix with
four or five massless neutrinos at tree level. Therefore, light neutrinos get tiny
masses from radiative corrections mediated by the heavy SU(3) gauge bosons.
Neutrino masses and mixing are extremely sensitive to the parameter space region,
and a global fit for all quark masses and mixing together with neutrino masses
and lepton mixing is in progress.
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Abstract. Electromagnetic and gravitational central-field problems are studied with rela-
tivistic quantum mechanics on curved space-time backgrounds. Corrections to the transition
current are identified. Analogies of the gravitational and electromagnetic spectra suggest
the definition of a gravitational fine-structure constant. The electromagnetic and gravita-
tional coupling constants enter the Einstein–Hilbert–Maxwell Lagrangian. We postulate
that the variational principle holds with regard to a global dilation transformation of the
space-time coordinates. The variation suggests is consistent with a functional relationship
of the form αQED ∝ (αG)

1/2, where αQED is the electrodynamic fine-structure constant, and
αG its gravitational analogue.

Povzetek. Avtorji obravnavajo Diracov delec v elektromagnem in gravitacijskem cen-
tralno simetričnem polju. Poiščejo popravke za emisijo fotona v prisotnosti gravitacijskega
polja. Po analogiji s spektrom elektrona v centralnosimetričnem potencialu definirajo tudi
konstanto gravitacijske fine strukture. Predpostavijo, da velja variacijsko načelo za trans-
formacijo koordinat prostor-časa z globalno dilatacijo. Predlagana variacija je skladna s
funkcijsko zvezo oblike αQED ∝ (αG)

1/2, kjer je αQED konstanta elektrodinamične fine
strukture, ki ima gravitacijski analog αG.

8.1 Introduction

If we are ever to gain a better understanding of the relationship of gravitational
interactions and electrodynamics in the quantum world, then a very practical
approach is to try to solve a number of important example problems in grav-
itational theory, whose solution is known in electromagnetic theory, to try to
generalize the approach to the gravitational analogue, and to compare. In order
to proceed, it is not necessarily required to quantize space-time itself [1]. Indeed,
the formulation of quantum mechanics on curved-space backgrounds in itself
constitutes an interesting problem [2–6]. A priori, one might think that the simple
substitution ∂/∂xi → ∇i is the Schrödinger equation might suffice. Here, ∂/∂xi is
the ith partial derivative with respect to the ith spatial coordinate, whereas∇i is
the ith covariant derivative. However, this naive approach is destined to fail; the
gravitational theory of Einstein and Hilbert inherently is a relativistic theory, and

? E-mail: ulj@mst.edu
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the only way to describe quantum particles on curved space-times is to start from
a fully relativistic wave function. The Dirac equation

(iγµ∂µ −m)ψ(x) = 0 (8.1)

generalizes as follows to a curved space-time background [2–6],

(iγµ(x)(∂µ − Γµ) −m)ψ(x) = 0 . (8.2)

The Dirac algebra [7–9] needs to be generalized to the local metric gµν(x),

{γµ(x), γν(x)} = 2 gµν(x) , σµν(x) =
i
2
[γµ(x), γν(x)] . (8.3)

The spin connection matrix Γµ is given as

Γµ = −
i
4
gρα(x)

(
∂bν

β(x)

∂xµ
aαβ(x) − Γ

α
νµ

)
σρν(x) , (8.4)

where repeated indices are summed. Finally, the a and b coefficients belong to the
square root of the metric,

γρ(x) = bρ
α(x)γα , γα(x) = aαρ(x)γ

ρ, (8.5)

where the γα are the flat-space Dirac matrices, which are preferentially used in
the Dirac representation [9–11,1,12]. The Christoffel symbols are Γανρ ≡ Γανρ(x).

8.2 Central–Field Problem

8.2.1 Foldy–Wouthuysen Method

The Foldy–Wouthuysen method [13,14] is a standard tool for the extraction of the
physical, nonrelativistic degrees of freedom, from a fully relativistic Dirac theory.
The general paradigm is as follows: The positive and negative energy solutions of
a (generalized) Dirac equation are intertwined in the fully relativistic formalism.
One has to separate the upper and lower spinors in the bispinor solution, and in
order to do so, one eliminates the “off-diagonal couplings” of the upper and lower
spinor components order by order in some perturbative parameters, possibly,
using iterated (unitary) transformations.

For the plain free Dirac Hamiltonian, a standard method exists to all orders
in perturbation theory, while for more difficult problems, one manifestly has to
resort to a perturbative formalism [13,14]. A suitable expansion parameter in a
general case is the particle’s momentum operator. Let us consider a space-time
metric of the form

gµν = diag
(
w2(r),−v2(r),−v2(r),−v2(r)

)
. (8.6)
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Fig. 8.1. The flat-space photon emission vertex (left figure) is promoted to a curved-space
vertex (right figure) in general relativity. The curved background leads to higher-order
corrections to the transition current, which are summarized, for the Schwarzschild metric,
in Eq. (8.12).

The Schwarzschild metric in isotropic coordinates (see Sec. 43 of Chap. 3 of
Ref. [15]), involves the Schwarzschild radius rs,

w =
(
1−

rs

4r

) (
1+

rs

4r

)−1
=
4r− rs
4r+ rs

≈ 1− rs

2r
,

v =
(
1+

rs

4r

)2
≈ 1+ rs

2r
,

w

v
=
16 r2 (4r− rs)

(4r+ rs)3
≈ 1− rs

r
. (8.7)

The Schwarzschild radius reads as rs = 2GM, where G is Newton’s gravitational
constant, and M is the mass of the planet (or “black hole”). The Hamiltonian
or time translation operator is necessarily “noncovariant” in the sense that the
time coordinate needs to be singled out. If we insist on using the time translation
with respect to the time coordinate dt in the metric ds2 = w2(r)dt2 − v2(r)d~r2

and bring the Hamiltonian into Hermitian form [see Ref. [16] and Eqs. (9)–(13) of
Ref. [10]], then we obtain

HDS =
1

2

{
~α · ~p,

(
1−

rs

r

)}
+ βm

(
1−

rs

2r

)
, (8.8)

where αi = γ0 γi is the Dirac α matrix (we here use the Dirac representation).
The Foldy–Wouthuysen transformed Dirac–Schwarzschild Hamiltonian is finally
obtained as [10]

HFW = β

(
m+

~p 2

2m
−

~p 4

8m3

)
− β

mrs

2 r
(8.9)

+ β

(
−
3rs

8m

{
~p 2,

1

r

}
+
3πrs

4m
δ(3)(~r) +

3rs

8m

~Σ · ~L
r3

)
.

The parity-violating terms obtained in Refs. [17,16] are spurious.
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8.2.2 Transition Current

As we couple the Dirac–Schwarzschild Hamiltonian (8.8) to an electromagnetic
field (see Fig. 8.1), it is clear that the transition current in the interaction Hamilto-
nian is Hint = −~j · ~A. takes the form

ji =
1

2

{
1−

rs

r
, αi exp(i~k · r)

}
. (8.10)

We now employ the multipole expansion

αi exp(i~k · r) ≈ αi + αi (i~k ·~r) − 1

2
αi(~k · r)2 (8.11)

A unitary transformation with the same generators are used for the Dirac–Schwarzschild
Hamiltonian then yields the result [10],

jiFW =
pi

m
−
pi ~p 2

2m
−

i
2m

(
~k× ~σ

)i
+
1

2

{
pi

m
, (i~k ·~r)

}

−
1

4

{
(~k ·~r)2, p

i

m

}
+

1

2m

(
~k ·~r

)
(~k× ~σ)i

−
3

4

{
pi

m
,
rs

r

}
+
rs

2r

(~σ×~r)i

mr2
−
1

2

{(
i~k ·~r

)
,

{
pi

m
,
rs

r

}}

+
3irs
4r

(~k× ~σ)i

m
+
1

4

{
rs

r
(i~k ·~r), p

i

m

}
. (8.12)

This result contains a gravitational kinetic correction, and gravitational corrections
to the magnetic coupling, in addition to the known multipole and retardation
corrections [14,18].

8.2.3 Spectrum

The bound-state spectrum resulting from the Hamiltonian (8.8) has recently been
evaluated as [12],

En`j = −
α2Gmec

2

2n2
+ α4Gmec

2

(
15

8n4
(8.13)

−
(7j+ 5) δ`,j+1/2

(j+ 1) (2j+ 1)n3
−

(7j+ 2) δ`,j−1/2

j (2j+ 1)n3

)
=−

α2Gmec
2

2n2
+
α4Gmec

2

n3

(
15

8n
−

14κ + 3

2 |κ| (2κ + 1)

)
,

where ` is the orbital angular momentum, j is the total angular momentum of the
bound particle, and κ is the (integer) Dirac angular quantum number,

κ = 2(`− j) (j+ 1/2) = (−1)j+`+1/2
(
j+

1

2

)
. (8.14)
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For a bound electron-proton system, the coupling constant entering the gravita-
tional spectrum given in Eq. (8.13) reads as

αG =
Gmemp

~ c
= 3.21637(39)× 10−42 . (8.15)

The coupling αG is much larger than for particles bound to macroscopic objects.
By contrast, the electrodynamic coupling parameter

αQED =
e2

4π~ε0c
≈ 1

137.036
(8.16)

is just the fine-structure constant.

8.3 Global Dilation Transformation

8.3.1 Lagrangian

The analogy of the leading (Schrödinger) term in Eq. (8.13) for the nonrelativistic
contribution to the bound-state energy (under the replacement αG → αQED) may
encourage us to look for connections of gravitational and electromagnetic interac-
tions on a more global scale, possibly, using scaling transformations [19]. Indeed,
the first attempts to unify electromagnetism with gravity are almost 100 years
old [20,21]. Let us apply a scaling transformation to the boson and fermion fields,

Aµ → λAµ , Aµ → λAµ , ψ→ λψ , (8.17)

combined with a transformation of the coordinates,

xµ → λ−1/2 xµ , xµ → λ−1/2 xµ , (8.18)

and of the metric
gµν → λgµν , gµν → λ−1 gµν , (8.19)

Under this transformation, the space-time intervals, the integration measure, the
Ricci tensor Rµν and the curvature scalar R, transform as follows,

ds2 = gµν dxµ dxν = gµν dxµ dxν → ds2 , (8.20a)

d4x = d4x→ d4x
λ2

, det g = det gµν → λ4 det g , (8.20b)

Rµν → λRµν , R = gµν Rµν → R . (8.20c)

The Einstein–Maxwell Lagrangian, with a coupling to the fermion terms, is given
as

S =

∫
d4x

√
−detg

{
R

16πG
−
1

4
Fµν Fµν

+ψ(x) [iγµ (∇µ − eAµ) −m] ψ(x)
}
. (8.21)
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It transforms into

S ′ =

∫
d4x
λ2

√
−λ4 detg

{
R

16πG
−
λ2

4
Fµν Fµν

+λ2 ψ(x)
[
i λ−1/2 γµ

(
λ1/2∇µ − e λAµ

)
−m

]
ψ(x)

}
, (8.22)

which can be rearranged into

S ′′ =
S ′

λ2
=

∫
d4x

√
−detg

{
R

16πGλ2
−
1

4
Fµν Fµν

+ψ(x)
[
iγµ

(
∇µ − e λ1/2Aµ

)
−m

]
ψ(x)

}
. (8.23)

The Lagrangian S ′′ is the same S, but with scaled coupling constants,

G→ λ2G , e2 → λ e2 . (8.24)

This scaling suggests a deeper connection of the coupling constants of electro-
magnetic and gravitational interactions, which is explored in further detail in
Ref. [19].

8.3.2 Coupling Constants

If we assume that the scaling (8.24) holds globally, with the current Universe
“picking” a value of λ, then this scaling might suggest a relationship of the type

α2QED ∝ e4 ∝ λ2 ∝ G . (8.25)

Indeed, as discussed in Ref. [19], a relationship of the type αQED ∝
√
G is otherwise

suggested by string theory; the rough analogy being that gravitational interactions
in string theory correspond to “closed” strings while electromagnetic interactions
correspond to “open” strings. The product of two “open” string amplitudes is pro-
portional to e2 ∝ g20 ∝ αQED, while the “closed”-string amplitude is proportional
to κ ∝ gc ∝

√
G. According to Eq. (3.7.17) of Ref. [22], the proportionality

g2o ∝ gc ⇔ α2QED ∝
√
G (8.26)

therefore is suggested by string theory. A simple analytic form of the proportion-
ality factor in the relationship α2QED ∝

√
G has recently been given in Eq. (8) of

Ref. [1].

8.4 Conclusions

We have performed an analysis of the gravitationally coupled Dirac equation in
the curved space-time surrounding a central gravitating object, which is described
by the (static) Schwarzschild metric. The Foldy–Wouthuysen method leads to grav-
itational zitterbewegung terms and the gravitational spin-orbit coupling, which
is also known as the Fokker precession term. In a curved space-time, the photon
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emission vertex receives additional corrections due to the curved background,
which can be given, within the multipole expansion and for a conceptually simple
background metric (e.g., the Schwarzschild metric), in closed analytic form (at least
for the first terms of the multipole and retardation expansion). The gravitational
bound states display a certain analogy for the gravitational as compared to the
electromagnetic (Schrödinger) central-field problem. Based on this analogy, one
may explore possible connections of the gravitational and electromagnetic cou-
pling constants, based on scaling arguments. Such a scaling transformation gives
additional support for the relationship α2QED ∝

√
G, which has been suggested by

string theory [22].
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Abstract. The spin-charge-family theory [1–12,14], in which spinors carry besides the Dirac
spin also the second kind of the Clifford object, no charges, is a kind of the Kaluza-
Klein theories [13]. The Dirac spinors of one Weyl representation in d = (13 + 1) mani-
fest [1,4,3,10,14,15] in d = (3+ 1) at low energies all the properties of quarks and leptons
assumed by the standard model. The second kind of spins explains the origin of families.
Spinors interact with the vielbeins and the two kinds of the spin connection fields, the gauge
fields of the two kinds of the Clifford objects, which manifest in d = (3 + 1) besides the
gravity and the known gauge vector fields also several scalar gauge fields. Scalars with the
space index s ∈ (7, 8) carry the weak charge and the hyper charge (∓ 1

2
,± 1

2
, respectively),

explaining the origin of the Higgs and the Yukawa couplings. It is demonstrated in this
paper that the scalar fields with the space index t ∈ (9, 10, . . . , 14) carry the triplet colour
charges, causing transitions of antileptons and antiquarks into quarks and back, enabling
the appearance and the decay of baryons. These scalar fields are offering in the presence of
the right handed neutrino condensate, which breaks the CP symmetry, the answer to the
question about the matter-antimatter asymmetry.

Povzetek. V teoriji spinov-nabojev-družin [1–12,14] nosijo spinorji dve vrsti kvantnih števil,
ki jih določata dve vrsti operatorjev γa: Diracovi operatorji γa in avtoričini γ̃a, obe sta
povezani z množenjem Cliffordovih objektov, ena vrsta z leve, druga z desne. Obe vrsti
spina sta neodvisni in tvorita druga drugi ekvivalentne upodobitve. Analiza Lorentzove
grupe SO(13, 1) s podgrupami te grupe pokaže, da vsebuje ena Weylova upodobitev Dira-
covih spinorjev v d = (13 + 1) vse kvarke in leptone (ter antikvarke in antileptone) s
kvantnimi števili kot jih predpiše standardni model pred elektrošibko zlomitvijo, le da so
desnoročni nevtrini enakopravni partnerji elektronom [1,4,3,10,14,15]. Druga vrsta spina
pojasni izvor družin. Spinorji interagirajo s tetradami in s polji dveh vrst spinskih povezav,
ki so umeritvena polja obeh vrst operatorjev gamma. Po zlomitvi simetrij, tedaj pri opa-
zljivih nizkih energijah, določajo ta polja, skupaj z vektorskimi svežnji, gravitacijo in vsa
znana umeritvena vektorska polja. Določajo pa tudi skalarna polja. Skalarna polja s pros-
torskim indexom s = (7, 8) so šibki dubleti (τ13 = ∓ 1

2
, Y = ± 1

2
), kar pojasni izvor Higg-

sovega skalarnega polja in Yukawinih sklopitev. Skalarna polja s prostorskim indeksom
t ∈ (9, 10, . . . , 14) pa so barvni tripleti, ki povzročajo prehode antileptonov in antikvarkov
v kvarke in obratno, kar omogoči nastanek in razpad barionov. Vsa skalarna polja nosijo
glede na kvantna števila, ki jih določajo Diracovi γa in družinski γ̃a, tudi družinska in
Diracova kvantna števila v adjungirani upodobitvi grup. Lepota te teorije je, da en sam kon-
denzat iz dveh desnoročnih nevtrinov z družinskimi kvantnimi števili, ki niso družinska
kvantna števila spodnjih štirih družin, zlomi diskretno simetrijo CP in poskrbi za maso
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vseh skalarnih polj, ter še neopaženega vektorskega polja. Ta skalarna polja ponujajo v
prisotnosti kondenzata desnoročnih nevtrinov, ki zlomi simetrijo CP , odgovor na vprašanje
kako je v našem vesolju nastala opazljiva asimetrija med snovjo in antisnovjo. Skalarna polja
s prostorskim indexom s = (7, 8) zlomijo z neničelno vakuumsko pričakovano vrednostjo
še šibki in hipernaboj, in spremenijo tudi lastno maso, ter tako pojasnijo vse privzetke
standardnega modela. Ker teorija napoveduje dve ločeni gruči po štiri družine kvarkov in
leptonov, pojasni stabilna od zgornjih širih družin izvor temne snovi. Teorija pa napoveduje
tudi, da bodo na LHC izmerili četrto k trem že opaženim družinam, izmerili pa bodo tudi
več skalarnih polj.

9.1 Introduction

The spin-charge-family [1–12,14] theory is offering, as a kind of the Kaluza-Klein
like theories, the explanation for the charges of quarks and leptons (right handed
neutrinos are in this theory the regular members of a family) and antiquarks and
antileptons [15,16], and for the existence of the corresponding gauge vector fields.
The theory explains, by using besides the Dirac kind of the Clifford algebra objects
also the second kind of the Clifford algebra objects (there are only two kinds [5–
7,3,17,18,20,19], associated with the left and the right multiplication of any Clifford
object), the origin of families of quarks and leptons and correspondingly the origin
of the scalar gauge fields causing the electroweak break. These scalar fields are
responsible, after gaining nonzero vacuum expectation values, for the masses
and mixing matrices of quarks and leptons [9–11] and for the masses of the weak
vector gauge fields. They manifest, carrying the weak charge and the hyper charge
equal to (±1

2
, ∓1

2
, respectively) [14], as the Higgs field and the Yukawa couplings

of the standard model.
The spin-charge-family theory predicts two decoupled groups of four fami-

lies [3,4,9–11]: The fourth of the lower group will be measured at the LHC [10],
while the lowest of the upper four families constitutes the dark matter [12].

This theory also predicts the existence of the scalar fields which carry the
triplet colour charges. All the scalars fields carry the fractional quantum numbers
with respect to the scalar index s ≥ 5, either the ones of SU(2) or the ones of
SU(3), while they are with respect to other groups in the adjoint representations.
Neither these scalar fields nor the scalars causing the electroweak break are the
supersymmetric scalar partners of the quarks and leptons, since they do not carry
all the charges of a family member.

These scalar fields with the triplet colour charges cause transitions of antilep-
tons into quarks and antiquarks into quarks and back, offering, in the presence
of the condensate of the two right handed neutrinos with the family quantum
numbers belonging to the upper four families which breaks the CP symmetry, the
explanation for the matter-antimatter asymmetry. This is the topic of the present
paper.

Let me point out that the spin-charge-family theory overlaps in many points
with other unifying theories [26–31], since all the unifying groups can be seen
as the subgroups of the large enough orthogonal groups, with family groups
included. But there are also many differences. While the theories built on chosen
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groups must for their choice propose the Lagrange densities designed for these
groups and representations (which means that there must be a theory behind
this effective Lagrange densities), the spin-charge-family theory starts with a very
simple action, from where all the properties of spinors and the gauge vector and
scalar fields follow, provided that the breaks of symmetries occur.

Consequently this theory differs from other unifying theories in the degrees of
freedom of spinors and scalar and vector gauge fields which show up on different
levels of the break of symmetries, in the unification scheme, in the family degrees
of freedom and correspondingly also in the evolution of our universe.

It will be demonstrated in this paper that one condensate of two right handed
neutrinos makes all the scalar gauge fields and all the vector gauge fields massive
on the scale of the appearance of the condensate, except the vector gauge fields
which appear in the standard model action before the electroweak break as massless
fields. The scalar gauge fields, which cause the electroweak break while gaining
nonzero vacuum expectation values and changing their masses, then explain
masses of quarks and leptons and of the weak bosons.

It is an extremely encouraging fact, that one scalar condensate and the nonzero
vacuum expectation values of some scalar fields, those with the weak and the
hyper charge equal to by the standard model required charges for the Higgs’s scalar,
can bring the simple starting action in d = (13+1) to manifest in d = (3+1) in the
low energy regime the observed phenomena of fermions and bosons, explaining
the assumptions of the standard model and can possibly answer also the open
questions, like the ones of the appearance of family members, of families, of the
dark matter and of the matter-antimatter asymmetry.

The paper leaves, however, many a question connected with the break of
symmetries open. Although the scales of breaks of symmetries can roughly be
estimated, for the trustworthy predictions a careful study of the properties of
fermions and bosons in the expanding universe is needed. It stays to be checked
under which conditions in the expanding universe, the starting fields (fermions
with the two kinds of spins and the corresponding vielbeins and the two kind of
the spin connection fields) after the spontaneous breaks manifest in the low energy
regime the observed phenomena. This is a very demanding study, a first simple
step of which was done in the refs. [12,22]. The present paper is a step towards
understanding the matter-antimatter asymmetry within the spin-charge-family
theory.

In the subsection 9.1.1 I present the action and the assumptions of the spin-
charge-family theory, with the comments added.

In sections (9.2, 9.4, 9.5, 9.3) the properties of the scalar and vector gauge fields
and of the condensate are discussed. In appendices the discrete symmetries of the
spin-charge-family theory and the technique used for representing spinors, with
the one Weyl representation of SO(13, 1) and the families in SO(7, 1) included, is
briefly presented. The final discussions are presented in sect. 9.7.

9.1.1 The action of the spin-charge-family theory and the assumptions

In this subsection all the assumptions of the spin-charge-family theory are presented
and commented. This subsection follows to some extend a similar subsection of
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the ref. [14].
i. The space-time is d(= (13+ 1)) dimensional. Spinors carry besides the internal
degrees of freedom, determined by the Dirac γa’s operators, also the second kind
of the Clifford algebra operators [5–7,4], called γ̃a’s.
ii. In the simple action [3,1] fermions ψ carry in d = (13 + 1) only two kinds
of spins, no charges, and interact correspondingly with only the two kinds of the spin
connection gauge fields,ωabα and ω̃abα, and the vielbeins, fαa.

S =

∫
ddx E Lf +∫
ddx E (αR+ α̃ R̃) ,

Lf =
1

2
(ψ̄ γap0aψ) + h.c.,

p0a = fαap0α +
1

2E
{pα, Ef

α
a}−,

p0α = pα −
1

2
Sabωabα −

1

2
S̃abω̃abα,

R =
1

2
{fα[afβb] (ωabα,β −ωcaαω

c
bβ)}+ h.c. ,

R̃ =
1

2
fα[afβb] (ω̃abα,β − ω̃caαω̃

c
bβ) + h.c. . (9.1)

Here 1 fα[afβb] = fαafβb − fαbfβa. Sab and S̃ab are generators (Eqs.(9.5, 9.37,
9.37) of the groups SO(13, 1) and S̃O(13, 1), respectively, expressible by γa and
γ̃a.
iii. The manifold M(13+1) breaks first into M(7+1) times M(6) (which mani-
fests as SU(3) ×U(1)), affecting both internal degrees of freedom, SO(13+ 1) and
S̃O(13 + 1). After this break there are 2((7+1)/2−1) massless families, all the rest
families get heavy masses 2.
Both internal degrees of freedom, the ordinary SO(13 + 1) one (where γa deter-
mine spins and charges of spinors) and the S̃O(13+1) (where γ̃a determine family
quantum numbers), break simultaneously with the manifolds.
iv. There are additional breaks of symmetry: The manifoldM(7+1) breaks further

1 fαa are inverted vielbeins to eaα with the properties eaαfαb = δab, e
a
αf
β
a = δβα, E =

det(eaα). Latin indices a, b, ..,m, n, .., s, t, .. denote a tangent space (a flat index), while
Greek indices α, β, .., µ, ν, ..σ, τ, .. denote an Einstein index (a curved index). Letters from
the beginning of both the alphabets indicate a general index (a, b, c, .. and α, β, γ, .. ),
from the middle of both the alphabets the observed dimensions 0, 1, 2, 3 (m,n, .. and
µ, ν, ..), indices from the bottom of the alphabets indicate the compactified dimensions
(s, t, .. and σ, τ, ..). We assume the signature ηab = diag{1,−1,−1, · · · ,−1}.

2 A toy model [22,23,15] was studied in d = (5 + 1) with the same action as in Eq.‘(9.1).
For a particular choice of vielbeins and for a class of spin connection fields the manifold
M5+1 breaks into M(3+1) times an almost S2, while 2((3+1)/2−1) families stay massless
and mass protected. Equivalent assumption, although not yet proved that it really works,
is made also in the case that M(13+1) breaks first into M(7+1) ×M(6). The study is in
progress.
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intoM(3+1)×M(4).
v. There is a scalar condensate of two right handed neutrinos with the family
quantum numbers of the upper four families, bringing masses of the scale above
the unification scale, to all the vector and scalar gauge fields, which interact with
the condensate.
vi. There are nonzero vacuum expectation values of the scalar fields with the
scalar indices (7, 8), which cause the electroweak break and bring masses to the
fermions and weak gauge bosons, conserving the electromagnetic and colour
charge.

Comments on the assumptions:
i.: There are, as already written above, two (only two) kinds of the Clifford

algebra objects. The Dirac one (Eq.(9.35)) (γa) will be used to describe spins of
spinors (fermions) in d = (13+ 1), manifesting in d = (3+ 1) the spin and all the
fermion charges, the second one (Eq.(9.35)) (γ̃a) will describe families of spinors.
The representations of γa’s and γ̃a’s are orthogonal to one another 3. There are
correspondingly two groups determining internal degrees of freedom of spinors
in d = (13+ 1): The Lorentz group SO(13, 1) and the group S̃O(13, 1).
One Weyl representation of SO(13, 1) contains, if analysed [1,3,4,15] with respect to
the standard model groups, all the family members, assumed by the standard model,
with the right handed neutrinos included (the family members are presented in ta-
ble 9.3). It contains the left handed weak (SU(2)I) charged and SU(2)II chargeless
colour triplet quarks and colourless leptons (neutrinos and electrons), the right
handed weakless and SU(2)II charged quarks and leptons, as well as the right
handed weak charged and SU(2)II chargeless colour antitriplet antiquarks and
(anti)colourless antileptons, and the left handed weakless and SU(2)II charged
antiquarks and antileptons. The reader can easily check the properties of the repre-
sentations of spinors (table 9.3), presented in the ”technique” (appendix 9.9) way,
if using Eqs. (9.5, 9.8, 9.9, 9.11, 9.14).
Each family member carries the family quantum numbers, originating in γ̃a’s
degrees of freedom. Correspondingly S̃ab changes the family quantum numbers,
leaving the family member quantum number unchanged.
ii.: This starting action enables to represent the standard model as an effective low
energy manifestation of the spin-charge-family theory, which explains all the stan-
dard model assumptions, with the families included. There are gauge vector fields,
massless before the electroweak break: gravity, colour SU(3) octet vector gauge
fields, weak SU(2) (it will be named SU(2)I) triplet vector gauge field and ”hyper”
U(1) (it will be named U(1)I) singlet vector gauge fields. All are superposition of
fαc ωabα. There are (eight rather than the observed three) families of quarks and
leptons, massless before the electroweak break.
These eight families are indeed two decoupled groups of four families, in the
fundamental representations with respect to twice S̃U(2)× S̃U(2) groups, the

3 One can learn in Eq. (9.44)of appendix (9.9) that Sab transforms one state of the represen-
tation into another state of the same representation, while S̃ab transforms the state into
the state belonging to another representation.
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subgroups of S̃O(3, 1)× S̃O(4) ∈ S̃O(7, 1). The scalar gauge fields, determining
the mass matrices of quarks and leptons, carry with respect to the scalar index
s ∈ (7, 8) the weak and the hyper charge of the scalar Higgs, while they carry if
they are the superposition of fσs ω̃abσ two kinds of the family quantum numbers
in the adjoint representations, representing two (orthogonal) groups, each of the
group contains two triplets (with respect to S̃U(2)

S̃O(3,1)
× S̃U(2)

S̃O(4)
).

The scalar fields with the quantum numbers (Q,Q ′, Y ′, which are the superposi-
tion of fσs ωabσ) are the three singlets, again carrying the weak and the hyper
charge of the scalar Higgs. One group of two triplets determine, together with the
three singlets, after gaining nonzero expectation values, the Higgs’s scalar and
the Yukawa couplings of the standard model. The starting action contains also the
additional SU(2)II (from SO(4)) vector gauge field and the scalar fields with the
space index s ∈ (5, 6) and t ∈ (9, 10, 11, 12), as well as the auxiliary vector gauge
fields expressible (Eqs. (9.56, 9.55) in the appendix 9.10) with vielbeins. They all
remain either auxiliary (if there are no spinor sources manifesting their quantum
numbers) or become massive after the appearance of the condensate.
iii., iv.: The assumed break fromM(13+1) first intoM(7+1) timesM(6) (manifest-
ing the symmetry SU(3) ×U(1)II) explains why the weak and the hyper charge
are connected with the handedness of spinors. In the spinor representation of
SO(7, 1) there are left handed weak charged quarks and leptons with the hyper
charges (1

6
, −1

2
, respectively) and the right handed weak chargeless quarks with

the hyper charge either 2
3

or −1
3

, while the right handed weak chargeless leptons
carry the hyper charge either 0 or (−1). A further break fromM(7+1) intoM(3+1)

×M4), manifesting the symmetry SO(3, 1) ×SU(2)I × SU(2)II ×U(1)II× SU(3),
explains the observed properties of the family members - the coloured quarks, left
handed weak charged and SU(2)II chargeless and right handed weak chargeless
and SU(2)II charged and colourless leptons, again left handed weak charged and
SU(2)II chargeless and right handed weak chargeless and SU(2)II charged, quarks
with the ”spinor” charge 1

6
and leptons with the ”spinor” charge −1

2
- and of the

observed vector gauge fields and the scalar fields (through Higgs’s scalar and
Yukawa couplings).
Since the left handed members distinguish from the right handed partners in the
weak and the hyper charges, the family members of all the families stay massless
and mass protected up to the electroweak break 4. Antiparticles are accessible
from particles by the CN and PN , as explained in refs. [15,16] and briefly also in
the appendix (9.8). This discrete symmetry operator does not contain γ̃a’s degrees
of freedom. To each family member there corresponds the antimember, with the
same family quantum number.
v.: It is a condensate of the two right handed neutrinos with the quantum
numbers of the upper four families (table 9.2), appearing in the energy region

4 As long as the left handed family members and their right handed partners carry different
conserved charges, they can not behave as massive particles, they are mass protected. It
is the appearance of nonzero vacuum expectation values of the scalar fields, carrying the
weak and the hyper charge, which cause non conservation of these two charges, which
makes the superposition of the left and the right handed family members possible, and
breaks the mass protection.
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above the unification scale, which makes all the scalar gauge fields (those with the
space index (5, 6, 7, 8), as well as those with the space index (9, . . . , 14)) and the
vector gauge fields, manifesting nonzero quantum numbers τ4, τ23, Q ,Y, τ̃4, τ̃23,
Q̃ ,Ỹ,Ñ3R (Eqs. (9.8, 9.9, 9.11, 9.12, 9.13, 9.14)) massive.
vi.: At the electroweak break the scalar fields with the space index s = (7, 8),
triplets with respect to the family index (originating in ω̃abs, Eq. (9.16)) and the
three singlets carrying the charges (Q,Q ′, Y ′) (originating inωts ′s, Eq. (9.15)), all
with the weak and the hyper charge equal to (∓1

2
,±1

2
, respectively), get nonzero

vacuum expectation values, changing also their masses and breaking the weak
and the hyper charge symmetry. These scalars determine mass matrices of twice
the four families, as well as the masses of the weak bosons.
All the rest scalar fields keep masses of the condensate scale and are correspond-
ingly unobservable in the low energy regime 5. The fourth family to the observed
three ones will (sooner or later) be observed at the LHC. Its properties are under
the consideration [10], while the stable of the upper four families is the candidate
for the dark matter constituents.

The above assumptions enable that the starting action (Eq. (9.1)) manifests
effectively in d = (3 + 1) in the low energy regime fermion and boson fields as
assumed by the standard model.

To see this [3,1,4–8,2,9,10,12,14], let us formally rewrite the Lagrange density
for a Weyl spinor of (Eq.(9.1)), as follows

Lf = ψ̄γm(pm −
∑
Ai

gAτAiAAim )ψ+

{
∑
s=7,8

ψ̄γsp0s ψ}+

{
∑

t=5,6,9,...,14

ψ̄γtp0t ψ} ,

p0s = ps −
1

2
Ss
′s"ωs ′s"s −

1

2
S̃abω̃abs ,

p0t = pt −
1

2
St
′t"ωt ′t"t −

1

2
S̃abω̃abt , (9.2)

where m ∈ (0, 1, 2, 3), s ∈ 7, 8, (s ′, s") ∈ (5, 6, 7, 8), (a, b) (appearing in S̃ab) run
within ∈ (0, 1, 2, 3) and ∈ (5, 6, 7, 8), t ∈ (5, 6, 9, . . . , 13, 14), (t ′, t") ∈ (5, 6, 7, 8)

and ∈ (9, 10, . . . , 14). ψ represents all family members of all the families. The
generators of the charge groups τAi (expressed in Eqs. (9.3), (9.9), (9.11) in terms
of Sab) fulfil the commutation relations

τAi =
∑
a,b

cAiab S
ab ,

{τAi, τBj}− = iδABfAijkτAk . (9.3)

5 Correspondingly d = (13 + 1) manifests in d = (3 + 1) spins and charges as if there
would be d = (9+ 1), since the plane (5, 6) and the plane in which the vector τ4 lies, are
unobservable at low energies.
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The spin generators are defined in Eq. (9.8). These group generators determine
all the internal degrees of freedom of one family members as seen from the point
of view of d = (3 + 1): The colour charge (SU(3) with the generators ~τ3) and
the ”spinor charge” (U(1)II) with the generator τ4 originating in SO(6), the weak
charge SU(2)I with the generators ~τ1 and the second SU(2)II charge with the gen-
erators ~τ2 originating in SO(4) (SU(2)II breaks in the presence of the condensate
into U(1)I, defining together with τ4 the hyper charge Y (= τ23 + τ4) and the spin
determined by SO(3, 1).
The condensate of two right handed neutrinos with the family quantum numbers
of the upper four families bring masses (of the unifying scale≥ 1016 GeV or above)
to all the scalar and those vector gauge fields which are not observed at so far
measurable energies.
The scalar fields causing, when getting nonzero vacuum expectation values, the
electroweak phase transitions changing at the transition also their own masses,
bring masses to the eight families and to the weak bosons. We shall comment all
these fields in what follows.

The first line of Eq. (9.2) describes [1,3] before the electroweak break the
dynamics of eight families of massless fermions in interaction with the massless
colour ~A3m, weak ~A1m and hyper AYm (= sin ϑ2A23m + cos ϑ2A4m) gauge fields, all
are the superposition ofωabm 6.

The second line of the same equation (Eq. (9.2)) determines the mass term,
which after the electroweak break brings masses to all the family members of the
eight families and to the weak bosons. The scalar fields responsible - after getting
nonzero vacuum expectation values - for masses of the family members and of the
weak bosons are namely included in the second line of Eq. (9.2) as (−1

2
Ss
′s"ωs ′s"s−

1
2
S̃ãb̃ ω̃ãb̃s, s =∈ (7, 8) , (s ′, s") ∈ (5, 6, 7, 8), (ã, b̃) ∈ (0̃, 1̃, . . . , 8̃)) 7. The properties

of these scalar fields are discussed in sect. (9.4), where the proof is presented
that they all carry the weak charge and the hyper charge as the standard model
Higgs’s scalar, while they are either triplets with respect to the family quantum
numbers or singlets with respect to the charges Q,Q ′ and Y ′. While the two
triplets (~̃A1s , ~̃AÑLs ) interact with the lower four families, interact (~̃A2s , ~̃AÑRs ) with
the upper four families. These twice two triplets are superposition of 1

2
S̃ãb̃ ω̃ãb̃s,

s =∈ (7, 8), Eq. (9.16). The three singlets (AQs , AQ
′

s and AY
′

m ) are superposition of
ωs ′s"s, Eq.(9.15). They interact with the family members of all the families, ”seeing”
family members charges.

The third line of Eq. (9.2) represents fermions in interaction with all the rest
scalar fields. Scalar fields become massive after interacting with the condensate.
Those which do not gain nonzero vacuum expectation values, keep the heavy
masses of the order of the scale of the condensate up to low energies. The massive

6 These superposition can easily be found by using Eqs. (9.11, 9.9). They are explicitly
written in the ref. [3]. The interaction with the condensate makes the fields AY

′
m , Eq. (9.14),

A21m and A22m very massive (at the scale of the condensate).
7 To point out that Sab and S̃ab belong to two different kinds of the Clifford algebra objects

are the indices (a, b) are in S̃ab in this paragraph written as (ã, b̃). Normally only (a, b)

will be used for Sab and S̃ab.
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scalars with the space index t ∈ (5, 6) transform (table 9.3) uR-quarks into dL-
quarks and νR-leptons into eL-leptons and back, as well as ūR-antiquarks into
d̄L-antiquarks and back and ν̄R-antileptons into ēL-antileptons and back, breaking
in the presence of the condensate the Q global symmetry. Those scalar fields
with the space index t = (9, 10, · · · , 14) transform antileptons into quarks and
antiquarks into quarks and back. They are offering in the presence of the scalar
condensate breaking the CP symmetry the explanation for the observed matter-
antimatter asymmetry, as we shall show in sect. 9.2.

Let us write down the part of the fermion action which in the presence of the
condensate offers the explanation for the observed matter/antimatter asymmetry.

Lf ′ = ψ† γ0 γt {
∑

t=(9,10,...14)

[pt − (
1

2
Ss
′s"ωs ′s"t +

1

2
St
′t ′′ ωt ′t"t

+
1

2
S̃ab ω̃abt )]} ψ , (9.4)

where (s ′, s") ∈ (5, 6, 7, 8), (t, t ′, t") ∈ (9, 10, . . . , 14) and (a, b) ∈ (0, 1, 2, 3) and ∈
(5, 6, 7, 8), in agreement with the assumed breaks in sect. (9.1). Again operators S̃ab

determine family quantum numbers and Sab determine family members quantum
numbers. Correspondingly the superposition of the scalar fields ω̃abt and the
superposition of the scalar fields ωabt carry the quantum numbers determined
by either the superposition of S̃ab or by the superposition Sab in the adjoint
representations, while they carry the colour charge, determined by the space index
t ∈ (9, 10, . . . , 14), in the triplet representation of the SU(3) group, as we shall see.
Similarly the scalars with the space index s ∈ (7, 8) carry the weak and the hyper
charge in the doublets representations.

The condensate of two right handed neutrinos with the family quantum
numbers of the upper four families carries (table 9.2) τ4 = 1, τ23 = −1, τ13 = 0,
Y = 0, Q = 0, and the family quantum numbers of the upper four families and
gives masses to scalar and vector gauge fields with the nonzero corresponding
quantum numbers. The only vector gauge fields which stay massless up to the
electroweak break are the hyper charge field (AYm), the weak charge field (~A1m) and
the colour charge field (~A3m).

The standard model subgroups of the SO(13 + 1) and S̃O(13 + 1) groups and
the corresponding gauge fields This section follows to large extend the refs. cite-
JMP,NscalarsweakY2014. To calculate quantum numbers of one Weyl representa-
tion presented in table 9.3 in terms of the generators of the standard model charge
groups τAi (=

∑
a,b c

Ai
ab S

ab) one must look for the coefficients cAiab (Eq. (9.3)).
Similarly also the spin and the family degrees of freedom can be expressed.

The same coefficients cAiab determine operators which apply on spinors and
on vectors. The difference among the three kinds of operators - vector and two
kinds of spinor - lies in the difference among Sab, S̃ab and Sab.

While Sab for spins of spinors is equal to

Sab =
i

4
(γa γb − γb γa) , {γa , γb}+ = 2ηab , (9.5)
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and S̃ab for families of spinors is equal to

S̃ab =
i

4
(γ̃a γ̃b − γ̃b γ̃a) , {γ̃a , γ̃b}+ = 2ηab ,

{γa , γ̃b}+ = 0 , (9.6)

one must take, when Sab apply on the spin connectionsωbde (= fαe ωbdα) and
ω̃b̃d̃e (= fαe ω̃b̃d̃α), on either the space index e or the indices (b, d, b̃, d̃), the
operator

(Sab)ceAd...e...g = i(ηacδbe − η
bcδae )A

d...e...g . (9.7)

This means that the space index (e) ofωbde transforms according to the require-
ment of Eq. (9.7), and so do b, d and b̃, d̃. Here I used again the notation b̃, d̃
to point out that Sab and S̃ab (= S̃ãb̃) are the generators of two independent
groups[14].

One finds [1,3–8,2] for the generators of the spin and the charge groups, which
are the subgroups of SO(13, 1), the expressions:

~N±(= ~N(L,R)) : =
1

2
(S23 ± iS01, S31 ± iS02, S12 ± iS03) , (9.8)

where the generators ~N± determine representations of the two SU(2) invariant
subgroups of SO(3, 1), the generators ~τ1 and ~τ2,

~τ1 : =
1

2
(S58 − S67, S57 + S68, S56 − S78) , (9.9)

~τ2 : =
1

2
(S58 + S67, S57 − S68, S56 + S78) , (9.10)

determine representations of the SU(2)I× SU(2)II invariant subgroups of the
group SO(4), which is further the subgroup of SO(7, 1) (SO(4), SO(3, 1) are sub-
groups of SO(7, 1)), and the generators ~τ3, τ4 and τ̃4

~τ3 :=
1

2
{S9 12 − S10 11 , S9 11 + S10 12, S9 10 − S11 12,

S9 14 − S10 13, S9 13 + S10 14 , S11 14 − S12 13 ,

S11 13 + S12 14,
1√
3
(S9 10 + S11 12 − 2S13 14)} ,

τ4 := −
1

3
(S9 10 + S11 12 + S13 14) ,

τ̃4 := −
1

3
(S̃9 10 + S̃11 12 + S̃13 14) , (9.11)

determine representations of SU(3)×U(1), originating in SO(6), and of τ̃4 origi-
nating in S̃O(6).

One correspondingly finds the generators of the subgroups of S̃O(7, 1),

~̃NL,R : =
1

2
(S̃23 ± iS̃01, S̃31 ± iS̃02, S̃12 ± iS̃03) , (9.12)



i
i

“proc14” — 2014/12/8 — 18:22 — page 133 — #147 i
i

i
i

i
i

9 Can Spin-charge-family Theory Explain Baryon Number Non-conservation? 133

which determine representations of the two S̃U(2) invariant subgroups of S̃O(3, 1),
while

~̃τ1 : =
1

2
(S̃58 − S̃67, S̃57 + S̃68, S̃56 − S̃78) ,

~̃τ2 : =
1

2
(S̃58 + S̃67, S̃57 − S̃68, S̃56 + S̃78) , (9.13)

determine representations of S̃U(2)I× S̃U(2)II of S̃O(4). Both, S̃O(3, 1) and S̃O(4),
are the subgroups of S̃O(7, 1).

One further finds [3]

Y = τ4 + τ23 , Y ′ = −τ4 tan2 ϑ2 + τ23 , Q = τ13 + Y , Q ′ = −Y tan2 ϑ1 + τ13 ,

Ỹ = τ̃4 + τ̃23 , Ỹ ′ = −τ̃4 tan2 ϑ̃2 + τ̃23 , Q̃ = Ỹ + τ̃13 , Q̃ ′ = −Ỹ tan2 ϑ̃1 + τ̃13 .

(9.14)

The scalar fields, responsible [1–3] - after getting in the electroweak break
nonzero vacuum expectation values - for the masses of the family members and of
the weak bosons, and presented in the second line of Eq. (9.2), can be expressed in
terms ofωabc fields and ω̃abc fields as presented in Eq. (9.15), 9.16).

One can find the below expressions by taking into account Eqs. (9.9, 9.11, 9.12,
9.13) and Eq. (9.14).

−
1

2
Ss
′s"ωs ′s"s = −(g23 τ23A23s + g13 τ13A13s + g4 τ4A4s) ,

g13 τ13A13s + g23 τ23A23s + g4 τ4A4s = gQQAQs + gQ
′
Q ′AQ

′

s + gY
′
Y ′AY

′

s ,

A4s = −(ω9 10 s +ω11 12 s +ω13 14 s) ,

A13s = (ω56s −ω78s) , A23s = (ω56s +ω78s) ,

AQs = sin ϑ1A13s + cos ϑ1AYs ,

AQ
′

s = cos ϑ1A13s − sin ϑ1AYs ,

AYs = sin ϑ2A23s + cos ϑ2A4s ,

AY
′

s = cos ϑ2A23s − sin ϑ2A4s ,

(s ∈ (7, 8)) . (9.15)

In Eq. (9.15) the coupling constants were explicitly written to see the analogy with
the gauge fields in the standard model.

−
1

2
S̃ãb̃ ω̃ãb̃s = −(~̃τ1̃ ~̃A1̃s +

~̃NL̃
~̃A
ÑL̃
s + ~̃τ2̃ ~̃A2̃s +

~̃NR̃
~̃A
ÑR̃
s ) ,

~̃A1̃s = (ω̃5̃8̃s − ω̃6̃7̃s, ω̃5̃7̃s + ω̃6̃8̃s, ω̃5̃6̃s − ω̃7̃8̃s) ,

~̃A
ÑL̃
s = (ω̃2̃3̃s + i ω̃0̃1̃s, ω̃3̃1̃s + i ω̃0̃2̃s, ω̃1̃2̃s + i ω̃0̃3̃s) ,

~̃A2̃s = (ω̃5̃8̃s + ω̃6̃7̃s, ω̃5̃7̃s − ω̃6̃8̃s, ω̃5̃6̃s + ω̃7̃8̃s) ,

~̃A
ÑR̃
s = (ω̃2̃3̃s − i ω̃0̃1̃s, ω̃3̃1̃s − i ω̃0̃2̃s, ω̃1̃2̃s − i ω̃0̃3̃s) ,

(s ∈ (7, 8)) . (9.16)
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Scalar fields from Eq. (9.16) couple to the family quantum numbers, while those
from Eq. (9.15) distinguish among family members.

Expressions for the vector gauge fields in terms of the spin connection fields
and the vielbeins, which correspond to the colour charge (~A3m), the SU(2)II charge
(~A2m), the weak charge (SU(2)I) (~A1m) and the U(1)II charge originating in SO(6)
(~A4m), can be found by taking into account Eqs. (9.9, 9.11). Equivalently one finds
the vector gauge fields in the ”tilde” sector. One really can use just the expressions
from Eqs. (9.15, 9.16), if replacing the scalar index swith the vector indexm.

9.2 Properties of scalar and vector gauge fields, contributing to
transitions of antileptons into quarks

In this - the main - part of the present paper the properties, quantum numbers
and discrete symmetries of those scalar and vector gauge fields appearing in the
action (Eqs.(9.1, 9.2), 9.4) of the spin-charge-family theory [1–9,12] are studied, which
cause transitions of antileptons into quarks and back, and antiquarks into quarks
and back.

These scalar gauge fields carry the triplet or antitriplet colour charge (see
table 9.1) and the fractional hyper and electromagnetic charge.

The Lagrange densities from Eqs. (9.1, 9.2, 9.4) manifest CN · PN invariance
(appendix (9.8)). All the vector and the spinor gauge fields are before the appear-
ance of the condensate massless and reactions creating particles from antiparticles
and back goes in both directions equivalently. Correspondingly there is no matter-
antimatter asymmetry.

The spin-charge-family theory breaks the matter-antimatter symmetry by the
appearance of the condensate (sect. 9.3) and also by nonzero vacuum expectation
values of the scalar fields causing the electroweak phase transition (sect. 9.4). I
shall show that there is the condensate of two right handed neutrinos which breaks
this symmetry, giving masses to all the scalar gauge fields and to all those vector
gauge fields which would be in contradiction with the observations.

Let us start by analysing the Lagrange density presented in Eq. (9.4) before
the appearance of the condensate. The term γt 1

2
Ss
′s"ωs ′s"t in Eq. (9.4) can be

rewritten, if taking into account Eq. (9.42), as follows

γt
1

2
Ss
′s"ωs ′s"t =

∑
+,−

∑
(t t ′)

tt ′

(±©)
1

2
Ss
′s"ω

s"s"
tt ′
(±©)

,

ω
s"s"

tt ′
(±©)

: = ω
s"s"

tt ′
(±)

= (ωs ′s"t ∓ iωs ′s"t ′) ,

tt ′

(±©): =
tt ′

(±)= 1

2
(γt ± γt

′
) ,

(t t ′) ∈ ((9 10), (11 12), (13 14)) . (9.17)

I introduced the notations
tt ′

(±©) andω
s"s"

tt ′
(±©)

to distinguish among different super-

position of states in equations below.
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Using Eqs. (9.9, 9.11) the expression
tt ′

(±©) 1
2
Ss
′s" ω

s"s"
tt ′
(±©)

can be further

rewritten as follows

tt ′

(±©)
1

2
Ss
′s"ω

s"s"
tt ′
(±©)

=

tt ′

(±©) { τ2+A2+
tt ′
(±©)

+ τ2−A2−
tt ′
(±©)

+ τ23A23
tt ′
(±©)

+ τ1+A1+
tt ′
(±©)

+ τ1−A1−
tt ′
(±©)

+ τ13A13
tt ′
(±©)

} ,

A
2±
tt ′
(±©)

= (ω
58
tt ′
(±©)

+ω
67
tt ′
(±©)

) ∓ i(ω
57
tt ′
(±©)

−ω
68
tt ′
(±©)

) ,

A23
tt ′
(±©)

= (ω
56
tt ′
(±©)

+ω
78
tt ′
(±©)

) ,

A
1±
tt ′
(±©)

= ω
58
tt ′
(±©)

−ω
67
tt ′
(±©)

) ∓ i(ω
57
tt ′
(±©)

+ω
68
tt ′
(±©)

) ,

A13
tt ′
(±©)

= (ω
56
tt ′
(±©)

−ω
78
tt ′
(±©)

) . (9.18)

Equivalently one expresses the term γt 1
2
S̃ab ω̃abt in Eq. (9.4), by using Eqs. (9.12,

9.13), as

γt
1

2
S̃ab ω̃abt =

tt ′

(±©)
1

2
S̃ab ω̃

ab
tt ′
(±©)

=

tt ′

(±©) { τ̃2+ Ã2+
tt ′
(±©)

+ τ̃2− Ã2−
tt ′
(±©)

+ τ̃23 Ã23
tt ′
(±©)

+ τ̃1+ Ã1+
tt ′
(±©)

+ τ̃1− Ã1−
tt ′
(±©)

+ τ̃13 Ã13
tt ′
(±©)

+

Ñ+
R Ã

NR+
tt ′
(±©)

+ Ñ−
R Ã

NR−
tt ′
(±©)

+ Ñ3R Ã
NR3
tt ′
(±©)

+ Ñ+
L Ã

NL+
tt ′
(±©)

+ Ñ−
L Ã

NL−
tt ′
(±©)

+ Ñ3L Ã
NL3
tt ′
(±©)

} ,

Ã
NR±
tt ′
(±©)

= (ω̃
23
tt ′
(±©)

− i ω̃
01
tt ′
(±©)

) ∓ i(ω̃
31
tt ′
(±©)

− i ω̃
02
tt ′
(±©)

) ,

ÃNR3
tt ′
(±©)

= (ω̃
12
tt ′
(±©)

− i ω̃
03
tt ′
(±©)

) ,

Ã
NL±
tt ′
(±©)

= (ω̃
23
tt ′
(±©)

+ i ω̃
01
tt ′
(±©)

) ∓ i(ω̃
31
tt ′
(±©)

+ i ω̃
02
tt ′
(±©)

) ,

ÃNR3
tt ′
(±©)

= (ω̃
12
tt ′
(±©)

+ i ω̃
03
tt ′
(±©)

) , (9.19)

with Ã
2±
tt ′
(±©)

, Ã23
tt ′
(±©)

, Ã
1±
tt ′
(±©)

and Ã13
tt ′
(±©)

following from expressions for A
2±
tt ′
(±©)

, A23
tt ′
(±©)

, A
1±
tt ′
(±©)

and A13
tt ′
(±©)

, respectively, in (Eq.(9.18)), if replacingω
s"s"

tt ′
(±©)

by ω̃
s"s"

tt ′
(±©)

.

There is the additional term in Eq. (9.4): γt 1
2
St
′t"ωt ′t"t. This term can be

written with respect to the generators St
′t" as one colour octet scalar field and one

U(1)II scalar field (Eq. 9.11)

γt
1

2
St"t

′"ωt"t ′"t =
∑
+,−

∑
(t t ′)

tt ′

(±©) { ~τ3 · ~A3
tt ′
(±©)

+ τ4 ·A4
tt ′
(±©)

} ,

(t t ′) ∈ ((9 10), 11 12), 13 14)) . (9.20)
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Taking all above equations (9.17, 9.18, 9.19, 9.20) into account Eq. (9.4) can be
rewritten, if we leave out p tt ′

(±©)

since in the low energy limit the momentum does

not play any role, as follows

Lf" = ψ† γ0(−) {
∑
+,−

∑
(t t ′)

tt ′

(±©) ·

[ τ2+A2+
tt ′
(±©)

+ τ2−A2−
tt ′
(±©)

+ τ23A23
tt ′
(±©)

+ τ1+A1+
tt ′
(±©)

+ τ1−A1−
tt ′
(±©)

+ τ13A13
tt ′
(±©)

+ τ̃2+ Ã2+
tt ′
(±©)

+ τ̃2− Ã2−
tt ′
(±©)

+ τ̃23 Ã23
tt ′
(±©)

+ τ̃1+ Ã1+
tt ′
(±©)

+ τ̃1− Ã1−
tt ′
(±©)

+ τ̃13 Ã13
tt ′
(±©)

+ Ñ+
R Ã

NR+
tt ′
(±©)

+ Ñ−
R Ã

NR−
tt ′
(±©)

+ Ñ3R Ã
NR3
tt ′
(±©)

+ Ñ+
L Ã

NL+
tt ′
(±©)

+ Ñ−
L Ã

NL−
tt ′
(±©)

+ Ñ3L Ã
NL3
tt ′
(±©)

+ τ3iA3i
tt ′
(±©)

+ τ4A4
tt ′
(±©)

] }ψ , (9.21)

where (t, t ′) run in pairs over [(9, 10), . . . (13, 14)] and the summation must go
over + and − of tt ′

(±©)

.

Let us calculate now quantum numbers of the scalar and vector gauge fields
appearing in Eq. (9.21) by taking into account that the spin of gauge fields is
determined according to Eq. (9.7) ((Sab)cdAd...e...g = i(ηacδbd − ηbcδad)A

d...e...g,
for each index (∈ (d . . . g)) of a bosonic field Ad...g separately). We must take into
account also the relation among Sab and the charges (the relations are, of course,
the same for bosons and fermions) (Eqs. (9.8, 9.9, 9.11)).

On table 9.1 properties of the scalar gauge fields appearing in Eq. (9.21) are
presented.

The scalar fields with the scalar index s = (9, 10, · · · , 14), presented in ta-
ble 9.1, carry one of the triplet colour charges and the ”spinor” charge equal to
twice the quark ”spinor” charge, or the antitriplet colour charges and the anti
”spinor” charge. They carry in addition the quantum numbers of the adjoint rep-
resentations originating in Sab or in S̃ab. Although carrying the colour charge
in one of the triplet or antitriplet states, these fields can not be interpreted as
superpartners of the quarks as required by, let say, the N = 1 supersymmetry. The
hyper charges and the electromagnetic charges are namely not those required by
the supersymmetric partners to the family members.

Let us have a look what do the scalar fields, appearing in Eq. (9.21) and in
table 9.1, do when being applied on the left handed members of the Weyl repre-
sentation presented on table 9.3, containing quarks and leptons and antiquarks
and antileptons [4,21,15]. Let us choose the 57th line of table 9.3, which represents
in the spinor technique the left handed positron, ē+L . If we make, let say, the choice

of the term (γ0
910

(+) τ2� ) A2�9 10
(⊕)

(the scalar field A2�9 10
(⊕)

is presented in the 7th line in

table 9.1 and in the second line of Eq. (9.21)), the family quantum numbers will



i
i

“proc14” — 2014/12/8 — 18:22 — page 137 — #151 i
i

i
i

i
i

9 Can Spin-charge-family Theory Explain Baryon Number Non-conservation? 137

field prop. τ4 τ13 τ23 (τ33, τ38 ) Y Q τ̃4 τ̃13 τ̃23 Ñ3
L
Ñ3
R

A
1±

9 10
(±©)

scalar ∓© 1
3
± 1 0 (±© 1

2
, ±© 1

2
√
3

) ∓© 1
3

∓© 1
3

+ ∓ 1 0 0 0 0 0

A13
9 10
(±©)

scalar ∓© 1
3

0 0 (±© 1
2
, ±© 1

2
√
3

) ∓© 1
3

∓© 1
3

0 0 0 0 0

A
1±

11 12
(±©)

scalar ∓© 1
3
∓ 1 0 (∓© 1

2
, ±© 1

2
√
3

) ∓© 1
3

∓© 1
3

+ ∓ 1 0 0 0 0 0

A13
11 12
(±©)

scalar ∓© 1
3

0 0 (∓© 1
2
, ±© 1

2
√
3

) ∓© 1
3

∓© 1
3

0 0 0 0 0

A
1±

13 14
(±©)

scalar ∓© 1
3
∓ 1 0 (0, ∓© 1√

3
) ∓© 1

3
∓© 1
3

+ ∓ 1 0 0 0 0 0

A13
13 14
(±©)

scalar ∓© 1
3

0 0 (0, ∓© 1√
3

) ∓© 1
3

∓© 1
3

0 0 0 0 0

A
2±

9 10
(±©)

scalar ∓© 1
3

0 ± 1 (±© 1
2
, ±© 1

2
√
3

) ∓© 1
3

+ ∓ 1 ∓© 1
3

+ ∓ 1 0 0 0 0 0

A23
9 10
(±©)

scalar ∓© 1
3

0 0 (±© 1
2
, ±© 1

2
√
3

) ∓© 1
3

∓© 1
3

0 0 0 0 0

· · ·

Ã
1±

910
(±©)

scalar ∓© 1
3

0 0 (±© 1
2
, ±© 1

2
√
3

) ∓© 1
3

∓© 1
3

0 ± 1 0 0 0

Ã13
910
(±©)

scalar ∓© 1
3

0 0 (±© 1
2
, ±© 1

2
√
3

) ∓© 1
3

∓© 1
3

0 0 0 0 0

· · ·

Ã
2±

910
(±©)

scalar ∓© 1
3

0 0 (±© 1
2
, ±© 1

2
√
3

) ∓© 1
3

∓© 1
3

0 0 ± 1 0 0

Ã23
910
(±©)

scalar ∓© 1
3

0 0 (±© 1
2
, ±© 1

2
√
3

) ∓© 1
3

∓© 1
3

0 0 0 0 0

· · ·

Ã
NL±

910
(±©)

scalar ∓© 1
3

0 0 (±© 1
2
, ±© 1

2
√
3

) ∓© 1
3

∓© 1
3

0 0 0 ± 1 0

Ã
NL3

910
(±©)

scalar ∓© 1
3

0 0 (±© 1
2
, ±© 1

2
√
3

) ∓© 1
3

∓© 1
3

0 0 0 0 0

· · ·

Ã
NR±

910
(±©)

scalar ∓© 1
3

0 0 (±© 1
2
, ±© 1

2
√
3

) ∓© 1
3

∓© 1
3

0 0 0 0 ± 1

Ã
NR3

910
(±©)

scalar ∓© 1
3

0 0 (±© 1
2
, ±© 1

2
√
3

) ∓© 1
3

∓© 1
3

0 0 0 0 0

· · ·

A3i
9 10
(±©)

scalar ∓© 1
3

0 0 (± 1+ ±© 1
2
, ±© 1

2
√
3

) ∓© 1
3

∓© 1
3

0 0 0 0 0

· · ·
A4
910
(±©)

scalar ∓© 1
3

0 0 (±© 1
2
, ±© 1

2
√
3

) ∓© 1
3

∓© 1
3

0 0 0 0 0

· · ·
~A3m vector 0 0 0 octet 0 0 0 0 0 0 0

A4m vector 0 0 0 0 0 0 0 0 0 0 0

Table 9.1. Quantum numbers of the scalar gauge fields carrying the space index t =

(9, 10, · · · , 14), appearing in Eq. (9.21), are presented. To the colour charge of all these scalar
fields the space degrees of freedom contribute one of the triplets values. These scalars are
with respect to the two SU(2) charges, (~τ1 and ~τ2), and the two S̃U(2) charges, (~̃τ1 and
~̃τ2), triplets (that is in the adjoint representations of the corresponding groups), and they
all carry twice the ”spinor” number (τ4) of the quarks. The quantum numbers of the two
vector gauge fields, the colour and the U(1)II ones, are added.
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not be affected and they can be any. The state carries the ”spinor” (lepton) number
τ4 = 1

2
, the weak charge τ13 = 0, the second SU(2)II charge τ23 = 1

2
and the

colour charge (τ33, τ38) = (0, 0). Correspondingly, its hyper charge (Y(= τ4+τ23))
is 1 and the electromagnetic charge Q(= Y + τ13) is 1.

So, what does the term γ0
910

(+) τ2� A2�9 10
(⊕)

make on this spinor? Making use

of Eqs. (9.44, 9.46, 9.54) of appendix 9.9 one easily finds that operator γ0
910

(+) τ2−

transforms the left handed positron into
03

(+i)
12

(+) |
56

[−]
78

[−] ||
9 10

(+)
11 12

(−)
13 14

(−) , which

is dc1R , presented on line 3 of table 9.3. Namely, γ0 transforms
03

[−i] into
03

(+i),
910

(+)

transforms
9 10

[−] into
9 10

(+), while τ2− (= −
56

(−)
78

(−)) transforms
56

(+)
78

(+) into
56

[−]
78

[−].
The state dc1R carries the ”spinor” (quark) number τ4 = 1

6
, the weak charge τ13 = 0,

the second SU(2)II charge τ23 = −1
2

and the colour charge (τ33, τ38) = (1
2
, 1

2
√
3
).

Correspondingly its hyper charge is (Y = τ4 + τ23 =) −1
3

and the electromagnetic
charge (Q = Y + τ13 =) −1

3
. The scalar field A2�9 10

(⊕)

carries just the needed quantum

numbers as we can see in the 7th line of table 9.1.
If the antiquark ūc̄2L , from the line 43 (it is not presented, but one can very

easily construct it) in table 9.3, with the ”spinor” charge τ4 = −1
6

, the weak charge
τ13 = 0, the second SU(2)II charge τ23 = −1

2
, the colour charge (τ33, τ38) =

(1
2
,− 1

2
√
3
), the hyper charge Y(= τ4 + τ23 =) −2

3
and the electromagnetic charge

Q(= Y + τ13 =) −2
3

submits the A2�9 10
(⊕)

scalar field, it transforms into uc3R from

the line 17 of table 9.3, carrying the quantum numbers τ4 = 1
6

, τ13 = 0, τ23 = 1
2

,
(τ33, τ38) = (0,− 1√

3
), Y = 2

3
and Q = 2

3
. These two quarks, dc1R and uc3R can

bind together with uc2R from the 9th line of the same table (at low enough energy,
after the electroweak transition, and if they belong in a superposition with the left
handed partners to the first family) into the colour chargeless baryon - a proton.
This transition is presented in figure 9.1.

The opposite transition at low energies would make the proton decay.
Let us look at one more example. The 63th line of table 9.3 represents in the

spinor technique the right handed positron, ē+R . Since we shall again not have a
look on a transition, in which scalar fields with the nonzero family quantum num-
bers are involved, the family quantum number of this positron is not important.
The state carries the ”spinor” (lepton) number τ4 = 1

2
, the weak charge τ13 = 1

2
,

the second SU(2)II charge τ23 = 0 and the colour charge (τ33, τ38) = (0, 0). Corre-
spondingly, its hyper charge (Y = τ4 + τ23) is 1

2
and the electromagnetic charge

Q = Y + τ13 is 1.

What does, let say, the term γ0
910

(+) τ1� A1�9 10
(⊕)

(the scalar field A1�9 10
(⊕)

is pre-

sented in the first line of table 9.1) make on ē+R ? Making use of Eqs. (9.44, 9.46,
9.54) of appendix 9.9 one easily finds that the right handed positron transforms

under the application of γ0 τ1−
910

(+) into
03

[−i]
12

(+) |
56

[−]
78

(+) ||
9 10

(+)
11 12

(−)
13 14

(−) , which

is dc1L presented on line 5 of table 9.3. Namely, γ0 transforms
03

(+i) into
03

[−i],
910

(+)
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uc2R
τ4= 1

6
,τ13=0,τ23= 1

2

(τ33,τ38)=(− 1
2
, 1
2
√

3
)

Y= 2
3
,Q= 2

3

uc2R

ūc̄2L
τ4=− 1

6
,τ13=0,τ23=− 1

2

(τ33,τ38)=( 1
2
,− 1

2
√

3
)

Y=− 2
3
,Q=− 2

3

uc3R
τ4= 1

6
,τ13=0,τ23= 1

2

(τ33,τ38)=(0,− 1√
3

)

Y= 1
6
,Q= 2

3

ē+
L

τ4= 1
2
,τ13=0,τ23= 1

2

(τ33,τ38)=(0,0)
Y=1,Q=1

dc1R

τ4= 1
6
,τ13=0,τ23=− 1

2

(τ33,τ38)=( 1
2
, 1
2
√

3
)

Y=− 1
3
,Q=− 1

3

•

A2�
9 10
(+)

,
τ4=2×(− 1

6
),τ13=0,τ23=−1

(τ33,τ38)=( 1
2
, 1
2
√

3
)

Y=− 4
3
,Q=− 4

3

•

Fig. 9.1. The birth of a proton out of an positron ē+L , antiquark ūc̄2L and quark (spectator)
uc2R . The family quantum number can be any.

transforms
9 10

[−] into
9 10

(+), while τ1� (=
56

(−)
78

(+)) transforms
56

(+)
56

[−] into
56

[−]
56

(+). The
state dc1L carries the ”spinor” (quark) number τ4 = 1

6
, the weak charge τ13 = −1

2
,

the second SU(2)II charge τ23 = 0 and the colour charge (τ33, τ38) = (1
2
, 1

2
√
3
).

Correspondingly its hyper charge is (Y = τ4 + τ23 =) 1
6

and the electromagnetic
charge (Q = Y + τ13 =) −1

3
. The scalar field A1�9 10

(⊕)

carries all the needed quantum

numbers, as one can see in figure 9.1.
If the antiquark ūc̄2R , from the line 47 in table 9.3 (the reader can easily find

the expression
03

(+i)
12

(+) |
56

[−]
78

(+) ||
9 10

(+)
11 12

(−)
13 14

[+] ), with the ”spinor” charge
τ4 = −1

6
, the weak charge τ13 = −1

2
, the second SU(2)II charge τ23 = 0, the

colour charge (τ33, τ38) = (1
2
,− 1

2
√
3
), the hypercharge (Y = τ4 + τ23 =) −1

6
and

the electromagnetic charge (Q = Y + τ13 =) −2
3

, submits the A1�9 10
(⊕)

scalar field,

it transforms into uc3L from the line 23 of table 9.3 (
03

[−i]
12

(+) |
56

(+)
78

[−] ||
9 10

[−]
11 12

(−)
13 14

[+] ), carrying the quantum numbers τ4 = 1
6

, τ13 = 1
2

, τ23 = 0, (τ33, τ38) =

(0,− 1√
3
), Y = 1

6
and Q = 2

3
. These two quarks, dc1L and uc3L , can bind (at low

enough energy, when making after the electroweak transition the superposition
with the right handed partners) together with uc2L from the 15th line of the same
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table, into the colour chargeless baryon - a proton. This transition is presented in
figure 9.2.

The opposite transition would make the proton decay.

uc2L
τ4= 1

6
,τ13= 1

2
,τ23=0

(τ33,τ38)=(− 1
2
, 1
2
√

3
)

Y= 1
6
,Q= 2

3

uc2L

ūc̄2R
τ4=− 1

6
,τ13=− 1

2
,τ23=0

(τ33,τ38)=( 1
2
,− 1

2
√

3
)

Y=− 1
6
,Q=− 2

3

uc3L
τ4= 1

6
,τ13= 1

2
,τ23=0

(τ33,τ38)=(0,− 1√
3

)

Y= 1
6
,Q= 2

3

ē+
R

τ4= 1
2
,τ13= 1

2
,τ23=0

(τ33,τ38)=(0,0)

Y= 1
2
,Q=1

dc1L

τ4= 1
6
,τ13=− 1

2
,τ23=0

(τ33,τ38)=( 1
2
, 1
2
√

3
)

Y= 1
6
,Q=− 1

3

•

A1�
9 10
(+)

,
τ4=2×(− 1

6
),τ13=−1,τ23=0

(τ33,τ38)=( 1
2
, 1
2
√
3

)

Y=− 1
3
,Q=− 4

3

•

Fig. 9.2. The birth of a proton out of a positron ē+R , antiquark ūc̄2R and quark (spectator) uc2L .
The family quantum number can be any.

Similar transitions go also with other scalars from Eq. (9.21) and table 9.1. The
~̃A1
t ′ t"
(+)

, ~̃A2
t ′ t"
(+)

, ~̃ANL
t ′ t"
(+)

and ~̃ANL
t ′ t"
(+)

fields cause transitions among the family members,

changing a particular member into the antimember of another colour and of

another family. The term γ0
910

(+) Ñ−
R A

ÑR−
9 10
(⊕)

transforms ē+R into uc1L , changing the

family quantum numbers.
The action from Eqs. (9.1, 9.2, 9.4) manifests CN ·PN invariance. All the vector

and the spinor gauge fields are massless.
Since no one of the scalar fields from table 9.1 have been observed and also

no vector gauge fields like ~A2m, A4m and other scalar and vector fields, we shall
discuss this topic in sect. 9.5, it must exist a mechanism, which makes the non
observed scalar and vector gauge fields massive enough.

Scalar fields from table 9.1 carry the colour and the electromagnetic charge.
Therefore their nonzero vacuum expectation values would not be in agreement
with the observed phenomena. One, however, notices that all the scalar gauge



i
i

“proc14” — 2014/12/8 — 18:22 — page 141 — #155 i
i

i
i

i
i

9 Can Spin-charge-family Theory Explain Baryon Number Non-conservation? 141

fields from table 9.1 and several other scalar and vector gauge fields (see sect. 9.5)
couple to the condensate with the nonzero quantum number τ4 and τ23 and
nonzero family quantum numbers.

It is not difficult to recognize that the desired condensate must have spin zero,
Y = τ4+ τ23 = 0,Q = Y + τ13 = 0 and ~τ1 = 0 in order that in the low energy limit
the spin-charge-family theory would manifest effectively as the standard model.

I make a choice of the two right handed neutrinos of the VIIIth family coupled
into a scalar, with τ4 = −1, τ23 = 1, correspondingly Y = 0, Q = 0 and ~τ1 = 0,
and with family quantum numbers (Eqs. (9.13, 9.12)) τ̃4 = −1, τ̃23 = 1, Ñ3R = 1,
and correspondingly with Ỹ = τ̃4 + τ̃23 = 0, Q̃ = Ỹ + τ̃13 = 0, and ~̃τ1 = 0. The
condensate carries the family quantum numbers of the upper four families.

The condensate made out of spinors couples to spinors differently than to
antispinors - ”anticondensate” would namely carry τ4 = 1, and τ23 = −1 - break-
ing correspondingly the CN · PN symmetry: The reactions creating particles from
antiparticles are not any longer symmetric to those creating antiparticle from
particles.

Such a condensate leaves the hyper field AYm (= sin ϑ2A23m + cos ϑ2A4m) (for
the choice that sin ϑ2 = cos ϑ2 and g4 = g2, there is no justification for such a
choice, AYm = 1√

2
(A23m + A4m)) massless, while it gives masses to A2±m and AY

′

m

(= 1√
2
(A4m − A23m ) for sin ϑ2 = cos ϑ2) and it gives masses also to all the scalar

gauge fields from table 9.1, since they all couple to the condensate through τ4.
The weak vector gauge fields, ~A1m, the hyper charge vector gauge fields, AYm,

and the colour vector gauge fields, ~A1m, stay massless.
The scalar fields with the scalar space index s = (7, 8) - those which couple to

all eight families, those which couple only to the upper and those which couple
only to the lower four families - carrying the weak and the hyper charges of the
Higgs’s scalar - wait for getting nonzero vacuum expectation values to change
their masses while causing the electroweak break.

The condensate does what is needed so that in the low energy regime the spin-
charge-family manifests as an effective theory which agrees with the standard model
to the extend that it is in agreement with the observed phenomena, explaining the
standard model assumptions and predicting new fermion and boson fields.

It also may hopefully explain also the observed matter-antimatter asymmetry
if the conditions in the expanding universe would be appropriate (9.6). The work
needed to check these conditions in the expanding universe within the spin-charge-
family theory is very demanding. Although we do have some experience with
following the history of the expanding universe [12], this study needs much more
efforts, not only in the calculations, but also in understanding the mechanism
of appearing the condensate, relations among the velocity of the expansion, the
temperature and the dimension of space-time in the period of the appearance of
the condensate. This study has not yet been really started.

9.3 Properties of the condensate

In table 9.2 the properties of the condensate of the two right handed neutrinos
(|νVIIIR >1 |ν

VIII
R >2 ), one with spin up and another with spin down (table 9.3, line
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25 and 26), carrying the family quantum numbers of the VIIIth family (table 9.4 ),
are presented. The condensate carries the quantum numbers of SU(2)II, τ23 = 1
(Eq. (9.9)), of U(1)II originating in SO(6), τ4 = −1 (Eq.9.11), correspondingly
Y = 0, Q = 0, and the family quantum numbers (table 9.4) τ̃4 = −1 (Eq. (9.11)),
τ̃23 = 1 (Eq. (9.13)), and Ñ3R = 1 (Eq. (9.12)). Each of the two neutrinos could
belong to a different family of the upper four families. In this case the family
quantum numbers of the condensate change.

The condensate is presented in the first line of table 9.2 as a member of a triplet
of the group SU(2)II with the generators τ2i. Correspondingly the condensate
couples to all the vector gauge fields which carry nonzero τ2i, τ4, τ̃2i, ÑiR and τ̃4.
The fields AYm, ~A3m and ~A1m stay massless. The condensate couples also to all the
scalar gauge fields with the scalar indices s ∈ (5, 6, 7, 8, 9, . . . , 14), since they all
carry nonzero either τ4 or τ23.

state S03 S12 τ13 τ23 τ4 Y Q τ̃13 τ̃23 τ̃4 Ỹ Q̃ Ñ3L Ñ
3
R

(|νVIII
1R >1 |νVIII

2R >2) 0 0 0 1 −1 0 0 0 1 −1 0 0 0 1

(|νVIII1R >1 |e
VIII
2R >2) 0 0 0 0 −1 −1 −1 0 1 −1 0 0 0 1

(|eVIII1R >1 |e
VIII
2R >2) 0 0 0 −1 −1 −2 −2 0 1 −1 0 0 0 1

Table 9.2. The condensate of the two right handed neutrinos νR, with the VIIIth family
quantum number, coupled to spin zero and belonging to a triplet with respect to the
generators τ2i, is presented, together with its two partners. The condensate carries ~τ1 = 0,
τ23 = 1, τ4 = −1 and Q = 0 = Y. The triplet carries τ̃4 = −1, τ̃23 = 1 and Ñ3R = 1, Ñ3L = 0,
Ỹ = 0, Q̃ = 0. The family quantum numbers are presented in table 9.4.

Coupling of the scalar gauge fields to the condensate is proportional to

(< νVIII1R |1 < ν
VIII
2R |) (γ0

tt ′

(±©) τAiAAi
tt ′
(±©)

)†(γ0
tt ′

(±©) τAiAAi
tt ′
(±©)

)(|νVIII1R >1 |νVIII2R >)

∝ (AAi
tt ′
(±©)

)† (AAi
tt ′
(±©)

) ,

(tt ′) ∈ [(56), (78), (9 10), . . . , (13 14)] . (9.22)

The condensate does break the CN · PN symmetry. (The ”anticondensate”
would namely carry τ23 = −1 and τ4 = 1).

The condensate gives masses to all the scalars from table 9.1, either because
they couple to the condensate due to τ4 or due to τ4 and τ23 quantum numbers. It
gives masses also to all the scalar fields with s ∈ (5, 6, 7, 8), since they couple to the
condensate due to the nonzero τ23. The scalar fields with the quantum numbers of
the upper four families couple in addition through their family quantum numbers.

The condensate couples also to all the vector gauge fields except to the gauge
colour octet field ~A3m, the hyper charge vector fields AYm and the weak charge
vector triplet fields ~A1m, since they carry zero τ23, τ4 and Y quantum numbers.

The spin connection fields, of either ”tilde” (S̃ab) or ”nontilde” (Sab) origin,
which do not couple to the spinor condensate, are auxiliary fields, expressible with
vielbeins fields (abstract (9.10)).
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Below the scalar and vector gauge fields are presented, which get masses
through the interaction with the condensate.

A
2±
tt ′
(±©)

, A23
tt ′
(±©)

, A
1±
tt ′
(±©)

, A13
tt ′
(±©)

, ~A3
tt ′
(±©)

,

Ã
2±
tt ′
(±©)

, Ã23
tt ′
(±©)

, Ã
1±
tt ′
(±©)

, Ã13
tt ′
(±©)

,

Ã
NL±
tt ′
(±©)

, ÃNL3
tt ′
(±©)

, Ã
NR±
tt ′
(±©)

, ÃNR3
tt ′
(±©)

,

(tt ′) ∈ [(9 10), (11 12), (13 14)] ,

A
2±
ss ′
(±©)

, AY
′

ss ′
(±©)

=
1√
2
(A23

ss ′
(±©)

−A4
ss ′
(±©)

) ,

(ss ′) ∈ [(56), (78)] ,

A
2±
m , AY

′

m =
1√
2
(A23m −A4m) ,

~̃A2m , Ã
4
m ,

~̃ANRm ,

m ∈ (0, 1, 2, 3) . (9.23)

In expression for AY
′

m,s ϑ2 =
π
4

is chosen, just for simplicity, with no justification
so far.

It stays as an open question what does make the right handed neutrinos to
form such a condensate in the history of the universe.

Since AAis , s ∈ (5, 6) couple to the condensate and get masses, while (by
assumption) they do not get nonzero vacuum expectation values during the
electroweak break (what changes the masses of the scalar fields AAis , s ∈ (7, 8))
the restriction in the sum in Eq. (9.2) is justified.

The scalar fields, causing the birth of baryons, have the triplet colour charges.
They resemble the supersymmetric partners of the quarks, but since they do not
carry all the quantum numbers of the quarks, they are not.

9.4 Properties of scalar fields which determine mass matrices of
fermions

This section is a short overview of the ref. [14].
There are two kinds of the scalar gauge fields, which gain at the electroweak

break nonzero vacuum expectation values and determine correspondingly the
masses of the families of quarks and leptons and to the masses of gauge weak
bosons: The kind originating in ω̃ãb̃s and the kind originating in ωtt ′s, ω56s
and ω78s, both kinds have the space index s = (7, 8) and both carry the weak
and the hyper charge as the Higgs’s scalar. These scalar fields are presented in
the Lagrange density for fermions (Eq. (9.2)) in the second line. The ”tilde” kind
influences the family quantum numbers of fermions, the ”Dirac” kind influences
the family members quantum numbers.
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The two triplets ( ~̃A1s , ~̃ANLs ) influence the lower four families (the lowest three
already observed), while ( ~̃A2s , ~̃ANRs ) influence the upper four families, the stable
of which constitute the dark matter. Recognizing that ~̃τ1 ~̃A1s + ~̃NL

~̃ANLs +~̃τ2 ~̃A2s

+ ~̃NR
~̃ANRs = 1

2
S̃ab ω̃abs, s = (7, 8), one easily finds, taking into account Eqs. (9.12,

9.13), the expressions

~̃A1s = (ω̃58s − ω̃67s, ω̃57s + ω̃68s, ω̃56s − ω̃78s) ,

~̃ANLs = (ω̃23s + i ω̃01s, ω̃31s + i ω̃02s, ω̃12s + i ω̃03s) ,

~̃A2s = (ω̃58s + ω̃67s, ω̃57s − ω̃68s, ω̃56s + ω̃78s) ,

~̃ANRs = (ω̃23s − i ω̃01s, ω̃31s − i ω̃02s, ω̃12s − i ω̃03s) ,

s = (7, 8) , (9.24)

presented already in Eq. (9.16). Similarly one finds, taking into account Eqs. (9.8,
9.9, 9.11, 9.14), the expressions for AQs , AYs and AY

′

s , presented in Eqs. (9.15).
The scalar fields AQs , AYs and AY

′

s distinguish among the family members,
coupling to the family members quantum numbers through Q (= τ13 + Y) , Y
(= τ23 + τ4) and Y ′ = τ23 − tan ϑ2 τ4, τ4 = −1

3
(S9 10 + S11 12 + S13 14). The

scalars originating in ω̃abs and distinguishing among families, couple the family
quantum numbers through (~̃τ1 and ~̃NL), or through (~̃τ2 and ~̃NR), all in the adjoint
representations of the corresponding groups.

Let us now prove that all the scalar fields with the space (scalar with respect
to d = (3+ 1)) index s = (7, 8) carry the weak and the hyper charge (τ13, Y) equal
to either (−1

2
, 1
2

) or to (1
2
,−1

2
). Let us first simplify the notation, using a common

name AAis for all the scalar fields with the scalar index s = (7, 8)

AAis = (AQs , A
Q ′

s , A
Y ′

s , Ã
4
s ,

~̃A2s ,
~̃A1s ,

~̃ANRs , ~̃ANLs ) , (9.25)

and let us rewrite the term
∑
s=7,8 ψ̄ γ

s p0sψ in Eq. (9.2) as follows∑
s=7,8

ψ̄ γs p0sψ ,

= ψ̄{
78

(+) p0++
78

(−) p0−}ψ ,

p0± = (p07 ∓ ip08) ,
(p07 ∓ ip08) = (p7 ∓ ip8) − τAi (AAi7 ∓ iAAi8 )
78

(±)= 1

2
(γ7 ± iγ8) . (9.26)

Let us now apply the operators Y,Q, Eq. (9.14), and τ13 = 1
2
(S56 − S78), Eq. (9.9),

on the fields AAi78
(±)

= (AAi7 ∓ iAAi8 ). One finds

τ13 (AAi7 ∓ iAAi8 ) = ± 1
2
(AAi7 ∓ iAAi8 ) ,

Y (AAi7 ∓ iAAi8 ) = ∓ 1
2
(AAi7 ∓ iAAi8 ) ,

Q (AAi7 ∓ iAAi8 ) = 0 , (9.27)
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This is, with respect to the weak, the hyper and the electromagnetic charge, just what the
standard model assumes for the Higgs’ scalars. The proof is complete.

One can check also, using Eq. (9.44), that γ0
78

(−) transforms the uc1R from the
first line of table 9.3 into uc1L from the seventh line of the same table, or νR from
the 25th line into the νL from the 31th line of the same table.

The scalars AAi78
(−)

obviously bring the weak charge 1
2

and the hyper charge −1
2

to the right handed family members (uR, νR), and the scalars AAi78
(+)

bring the weak

charge −1
2

and the hyper charge 1
2

to (dR, eR).
Let us now prove that the scalar fields of Eq. (9.25) are either triplets with re-

spect to the family quantum numbers ( ~̃NR, ~̃NL, ~̃τ2, ~̃τ1; Eqs. (9.12, 9.13)) or singlets
as the gauge fields ofQ = τ13+Y, Q ′ = τ13−Y tan2 ϑ1 and Y ′ = τ23− tan2 ϑ2 τ4.
One can prove this by applying ~̃τ2, ~̃τ1, ~̃NR, ~̃NL and Q,Q ′, Y ′ on their eigenstates.
Let us calculate, as an example, Ñ3L and Q on ÃNL378

(±)

and on AQ78
(±)

, taking into

account Eqs. (9.12, 9.11,9.9, 9.7)

Ñ3L Ã
NL±
78
(±)

= ± Ã
NL±
78
(±)

, Ñ3L Ã
NL3
78
(±)

= 0 ,

QAQ78
(±)

= 0 ,

Ã
NL±
78
(±)

= {(ω̃
23
78
(±)

+ i ω̃
01
78
(±)

) ∓ i (ω̃
31
78
(±)

+ iω̃
02
78
(±)

)} ,

ÃNL378
(±)

= (ω̃
12
78
(±)

+ iω̃
03
78
(±)

)

AQ78
(±)

= sin ϑ1A1378
(±)

+ sin ϑ1(−)(ω
9 10

78
(±)

+ω
11 12

78
(±)

+ω
13 14

78
(±)

) , (9.28)

with Q = S56 + τ4 = S56 − 1
3
(S9 10 + S11 12 + S13 14), and with τ4 defined in

Eq. (9.11)).
Nonzero vacuum expectation values of the scalar fields (Eq. (9.25)), which

carry the scalar index s = (7, 8), and correspondingly the weak and the hyper
charges, break the mass protection mechanism of quarks and leptons of the lower
and the upper four families. In the loop corrections contribute to all the matrix
elements of mass matrices of any family members besides ÃAis and the scalar fields
which are the gauge fields of Q,Q ′, Y ′ also the vector gauge fields.

The gauge fields of ~̃NR and ~̃τ2 contribute only to masses of the upper four
families, while the gauge fields of ~̃NL and ~̃τ1 contribute only to masses of the
lower four families. The triplet scalar fields with the scalar index s = (7, 8) and the
family charges ~̃NR and ~̃τ2 transform any family member belonging to the group of
the upper four families into the same family member belonging to another family
of the same group of four families, changing the right handed member into the left
handed partner, while those triplets with the family charges ~̃NL and ~̃τ1 transform
any family member of particular handedness and belonging to the lower four
families into its partner of opposite handedness, belonging to another family of
the lower four families.
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The scalars AQ78
(±)

(Eq. (9.28)), AQ
′

78
(±)

(= cos ϑ1A1378
(±)

− sin ϑ1A478
(±)

) and AY
′

78
(±)

(Eq. (9.23)) contribute to all eight families, distinguishing among the family mem-
bers and not among the families.

The mass matrix of any family member, belonging to any of the two groups
of the four families, manifests - due to the S̃U(2)(R,L) × S̃U(2)(II,I) (either (R, II)

or (L, I)) structure of the scalar fields, which are the gauge fields of the ~̃NR,L and
~̃τ2,1 - the symmetry presented in Eq. (9.29)

Mα =


−a1 − a e d b

e −a2 − a b d

d b a2 − a e

b d e a1 − a


α

. (9.29)

In the ref. gn2014 the mass matrices for quarks, which are in the agreement with
the experimental data, are presented and predictions made.

9.5 Condensate and nonzero vacuum expectation values of
scalar fields make spinors and most of scalar and vector
gauge fields massive

Let us shortly overview properties of the scalar and the vector gauge fields after a.
two right handed neutrinos (coupled to spin zero and with the family quantum
numbers (table 9.4) of the upper four families) make a condensate (table 9.2) at the
scale ≥ 1016 GeV and after b. the electroweak break, when the scalar fields with
the space index s = (7, 8) get nonzero vacuum expectation values.

All the scalar gauge fields AAit , t ∈ (5, 6, 7, 8, 9, . . . , 14) (Eqs. (9.2, 9.21, 9.23),
table 9.1) interact with the condensate through the quantum numbers τ4 and τ23,
those with the family quantum numbers of the upper four families interact also
through the family quantum numbers ~̃τ2 or ~̃NR, getting masses of the order of the
condensate scale (Eq.(9.23)).

At the electroweak break the scalar fields AAis , s ∈ (7, 8), from Eqs. (9.25, 9.25)
get nonzero vacuum expectation values, changing correspondingly their own
masses and determining masses of quarks and leptons, as well as of the weak
vector gauge fields.

The vector gauge fields A
2±
m , A

Y ′

m , ~̃A
2±
m , ÃY

′

m and ~̃ANRm (Eq. (9.23)) get masses
due to the interaction with the condensate through τ23 and τ4, the first two, and/or
also due to the family quantum numbers of the upper four families, the last three,
respectively.

The vector gauge fields ~A3m,
~A1m, and AYm stay massless up to the electroweak

break when the scalar gauge fields, which are weak doublets with the hypercharge
making electromagnetic charge Q equal to zero, give masses to the weak bosons

(A
1±
m = 1√

2
(A11m ∓ iA11m ) andAQ

′

m = cos ϑ1A13m − sin ϑ1A4m), while the electromag-

netic vector field (AQm = sin ϑ1A13m + cos ϑ1A4m) and the colour vector gauge field
stay massless.
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At the electroweak break, when the nonzero vacuum expectation values of
the scalar fields break the weak and the hypercharge global symmetry, also all the
eight families of quarks and leptons get masses. Until the electroweak break the
families were mass protected, since the right handed partners distinguished from
the left handed ones in the weak and hyper charges, what disabled them to make
the superposition manifesting masses.

9.6 Sakharov conditions as seen in view of the spin-charge-family
theory

The condensate of the right handed neutrinos, as well as the nonzero vacuum
expectation values of the scalar fields AAi78

(±)

- if leading to the complex matrix

elements of the mixing matrices - cause the CN PN violation terms, which generate
the matter-antimatter asymmetry.

It is the question whether both generators of the matter-antimatter asymmetry
- the condensate and the complex phases of the mixing matrices of quarks and
leptons (this last alone can not with one complex phase and also very probably
not with the three complex phases of the lower four families) - can explain at all
the observed matter-antimatter asymmetry of the ”ordinary” matter, that is the
matter of mostly the first family of quarks and leptons.

The lowest of the upper four families determine the dark matter. For the dark
matter any relation among matter and antimatter is so far experimentally allowed.

Both origins of the matter-antimatter asymmetry - the condensate and the
nonzero vacuum expectation values of the scalar fields carrying the weak and the
hyper charge - (are assumed to) appear spontaneously.

Sakharov [24] states that for the matter-antimatter asymmetry three conditions
must be fulfilled:
a. (CN and) CN PN must not be conserved.
b. Baryon number non conserving processes must take place.
c. Thermal non equilibrium must be present not to equilibrate the number of
baryons and antibaryons.

Sakharov uses for c. the requirement that CPT must be conserved and that
{CPT,H}− = 0. In a thermal equilibrium the average number of baryons < nB >=
Tr(e−βHnB) = Tr(e−βHCPTnB(CPT)

−1) = < n̄B >. Therefore < nB > − <

n̄B >= 0 at the thermal equilibrium and there is no excess of baryons with respect
to antibaryons. In the expanding universe, however, the temperature is changing
with time. It is needed that the discrete symmetry CN PN is broken to break the
symmetry between matter and antimatter, if the universe starts with no matter-
antimatter asymmetry.

The spin-charge-family theory starting action (Eq.(9.1)) is invariant under the
CN PN symmetry. The scalar fields (Eq.(9.21)) of this theory cause transitions, in
which a quark is born out of a positron (figures (9.1, 9.2)) and a quark is born
out of antiquark, and back. These reactions go in both directions with the same
probability, until the spontaneous break of the CN PN symmetry is caused by the
appearance of the condensate of the two right handed neutrinos (table 9.2).
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But after the appearance of the condensate (and in addition of the appearance
of the non zero vacuum expectation values of the scalar fields with the space index
s ∈ (7, 8)), family members ”see” the vacuum differently than the antimembers.
And this might explain the matter-antimatter asymmetry. It is also predicting the
proton decay.

It is, of course, the question whether both phenomena can at all explain the
observed matter-antimatter asymmetry. I agree completely with the referee of this
paper that before answering the question whether or not the spin-charge-family
theory explains this observed phenomena, one must do a lot of additional work to
find out: i. Which is the order of phase transition, which leads to the appearance
of the condensate. ii. How strong is the thermal nonequilibrium, which leads to
the matter-antimatter asymmetry during the phase transition. iii. How rapid is the
appearance of the matter-antimatter asymmetry in comparison with the expansion
of the universe. iv. Does the later history of the expanding universe enable that the
produced asymmetry survives up to today.

Although we do have some experience with solving the Boltzmann equations
for fermions and antifermions [12] to follow the history of the dark matter within
the spin-charge-family theory, the study of the history of the universe from the very
high temperature to the baryon production within the same theory in order to see
the matter-antimatter asymmetry in the present time is much more demanding
task. These is under consideration, but still at a very starting point since a lot of
things must be understood before starting with the calculations.

What I can conclude is that the spin-charge-family theory does offer the oppor-
tunity also for the explanation for the observed matter-antimatter asymmetry.

9.7 Conclusions

The spin-charge-family [1,3–8,2,9,12,14,15] theory is a kind of the Kaluza-Klein theo-
ries in d = (13+ 1) but with the families introduced by the second kind of gamma
operators - the γ̃a operators in addition to the Dirac γa in d = (13+ 1). The theory
assumes a simple starting action (Eq. (9.1)) in d = (13+1). This simple action man-
ifests in the low energy regime, after the breaks of symmetries (subsection 9.1.1),
all the degrees of freedom assumed in the standard model, offering the explanation
for all the properties of quarks and leptons (right handed neutrinos are in this
theory the regular members of each family) and antiquarks and antileptons. The
theory explains the existence of the observed gauge vector fields. It explains the
origin of the scalar fields (the Higgs and the Yukawa couplings) responsible for
the quark and lepton masses and the masses of the weak bosons and carrying the
weak and the hyper charge of the standard model Higgs ([14]).

The theory is offering the explanation also for the matter-antimatter asymme-
try and for the appearance of the dark matter.

The spin-charge-family theory predicts two decoupled groups of four fami-
lies [3,4,9,12]: The fourth of the lower group of four families will be measured
at the LHC [10] and the lowest of the upper four families constitutes the dark
matter [12] and was already seen. It also predicts that there might be several scalar



i
i

“proc14” — 2014/12/8 — 18:22 — page 149 — #163 i
i

i
i

i
i

9 Can Spin-charge-family Theory Explain Baryon Number Non-conservation? 149

fields observable at the LHC. The upper four families manifest, due to their high
masses, a new ”nuclear force” among their baryons.

All these degrees of freedom are already contained in the simple starting
action. The scalar fields with the weak and the hyper charges equal to (∓1

2
,±1

2
),

respectively (section 9.4), have the space index s = (7, 8), while they carry in
addition to the weak and the hyper charges also the family quantum numbers,
originating in S̃ab (they form two groups of twice SU(2) triplets), or the family
members quantum numbers, originating in Sab (they form three singlets with the
quantum numbers (Q,Q ′, Y ′)). These scalar fields cause the transitions of the right
handed family members into the left handed partners and back. Those with the
family quantum numbers cause at the same time transitions among families within
each of the two family groups of four families. They all gain in the electroweak
break nonzero vacuum expectation values, giving masses to both groups of four
families of quarks and leptons and to weak bosons (changing also their own
masses).

There are in this theory also the scalar fields with the space index s = (5, 6);
They carry with respect to this degree of freedom they the weak charge equal to
the hyper charge (∓1

2
,∓1

2
, respectively). They carry also additional quantum num-

bers Eq.(9.23) like all the scalar fields: The family quantum numbers, originating
in S̃ab and the family members quantum numbers originating in Sab.

And there are also the scalar fields with the scalar index s = (9, 10, · · · , 14).
These scalars carry the triplet colour charge with respect to the space index and the
additional quantum numbers (table 9.1), originating in family quantum numbers
S̃ab and in family members quantum numbers Sab.

There are no additional scalar gauge fields.
There are the vector gauge fields with respect to d = (3 + 1): AAim , with Ai

staying for the groups SU(3) and U(1) (both originating in SO(6) of SO(13, 1)), for
the groups SU(2)II and SU(2)I (both originating in SO(4) of SO(7, 1)) and for the
groups SU(2)× SU(2) (∈ SO(3, 1)), in both sectors, the Sab and S̃ab ones.

The condensate of the two right handed neutrinos with the family charges
of the upper four families (table 9.2) gives masses to all the scalar and vector
gauge fields, except to the colour octet vector, the hyper singlet vector and the
weak triplet vector gauge fields, to which the condensate does not couple. It
gives masses also to all the vector gauge fields to which the condensate couples.
Those vector gauge fields of either Sab or S̃ab origin, which do not couple to the
condensate, are expressible with the corresponding vielbeins (appendices 9.55,
9.56). The condensate breaks the CN PN symmetry (sections (9.3, 9.8)).

There are no additional vector gauge fields in this theory.
Nonzero vacuum expectation values of the scalar gauge fields with the space

index s = (7, 8) and the quantum numbers as explained in the fourth paragraph
of this section change in the electroweak break their masses, while all the other
scalars or vectors either stay massless (the colour octet, the electromagnetic field),
or keep the masses of the scale of the condensate. The only before the electroweak
massless vector fields, which become at the electroweak break massive, are the
heavy bosons.
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It is extremely encouraging that the simple starting action of the spin-charge-
family offers at low energies the explanations for so many observed phenomena, although
the starting assumptions (section 9.1.1) wait to be derived from the initial and
boundary conditions of the expanding universe.

This paper is a step towards understanding the matter-antimatter asymmetry
within the spin-charge-family theory, predicting also the proton decay. The theory
obviously offers the possibility that the scalar gauge fields with the space index
s = (9, 10, · · · , 14) explain, after the appearance of the condensate, the matter-
antimatter asymmetry. To prove, however, that this indeed happen, requires the
additional study: Following the universe through the phase transitions which
breaks the CN PN symmetry at the level of the condensate and further through
the electroweak phase transition up to today, to check how much of the matter-
antimatter asymmetry is left. The experience when following the history of the
expanding universe to see whether the spin-charge-family theory can explain the
dark matter content [12] is of some help. However, answering the question to
which extend this theory can explain the observed matter-antimatter asymmetry
requires a lot of additional understanding and a lot of work.

Let me conclude with the recognition, pointed out already in the introduction,
that the spin-charge-family theory overlaps in many points with other unifying
theories [26–31], since all the unifying groups can be recognized as the subgroups
of the large enough orthogonal groups, with family groups included. But there
are also many differences: The spin-charge-family theory starts with a very simple
action, from where all the properties of spinors and the gauge vector and scalar
fields follow, provided that the breaks of symmetries occur in the desired way.
Consequently it differs from other unifying theories in the degrees of freedom
of spinors and scalar and vector gauge fields which show up on different levels
of the break of symmetries, in the unification scheme, in the family degrees of
freedom and correspondingly also in the evolution of our universe.

9.8 APPENDIX: Discrete symmetry operators [15]

I present here the discrete symmetry operators in the second quantized picture,
for the description of which the Dirac sea is used. I follow the reference [15].
The discrete symmetry operators of this reference are designed for the Kaluza-
Klein like theories, in which the total angular momentum in higher than (3+ 1)

dimensions manifest as charges in d = (3 + 1). The dimension of space-time is
even, as it is in the case of the spin-charge-family theory.

CN =

3∏
=γm,m=0

γm Γ (3+1) K Ix6,x8,...,xd ,

TN =

3∏
<γm,m=1

γm Γ (3+1) K Ix0 Ix5,x7,...,xd−1 ,

PN = γ0 Γ (3+1) Γ (d) I~x3 . (9.30)
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The operator of handedness in even d dimensional spaces is defined as

Γ (d) := (i)d/2
∏
a

(
√
ηaa γa) , (9.31)

with products of γa in ascending order. We choose γ0, γ1 real, γ2 imaginary, γ3

real, γ5 imaginary, γ6 real, alternating imaginary and real up to γd real. Operators
I operate as follows:

Ix0x
0 = −x0;

Ixx
a = −xa;

Ix0x
a = (−x0,~x);

I~x~x = −~x;

I~x3x
a = (x0,−x1,−x2,−x3, x5, x6, . . . , xd);

Ix5,x7,...,xd−1(x0, x1, x2, x3, x5, x6, x7, x8, . . . , xd−1, xd) =

(x0, x1, x2, x3,−x5, x6,−x7, . . . ,−xd−1, xd);

Ix6,x8,...,xd(x
0, x1, x2, x3, x5, x6, x7, x8, . . . , xd−1, xd) =

(x0, x1, x2, x3, x5,−x6, x7,−x8, . . . , xd−1,−xd), d = 2n.

CN transforms the state, put on the top of the Dirac sea, into the corresponding
negative energy state in the Dirac sea.

The operator, it is named [1,16,15] CN , is needed, which transforms the start-
ing single particle state on the top of the Dirac sea into the negative energy state
and then empties this negative energy state. This hole in the Dirac sea is the an-
tiparticle state put on the top of the Dirac sea. Both, a particle and its antiparticle
state (both put on the top of the Dirac sea), must solve the Weyl equations of
motion.

This CN is defined as a product of the operator [1,16] "emptying", (making
transformations into a completely different Fock space)

"emptying" =
∏
<γa

γa K = (−)
d
2
+1
∏
=γa

γa Γ (d)K , (9.32)

and CN

CN =

d∏
<γa,a=0

γa K

3∏
=γm,m=0

γm Γ (3+1) K Ix6,x8,...,xd

=

d∏
<γs,s=5

γs Ix6,x8,...,xd . (9.33)

We shall need inded only the product of operators CNPN , TN and CNPN TN ,
since either CN or PN have in even dimensional spaces with d = 2(2n+ 1) an odd
number of γa operators, transforming accordingly states from the representation
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of one handedness in d = 2(2n+ 1) into the Weyl of another handedness.

CNPN = γ0
d∏

=γs,s=5

γs I~x3 Ix6,x8,...,xd ,

CNPNTN =

d∏
=γa,a=0

γa K Ix . (9.34)

9.9 APPENDIX: Short presentation of technique [6,18,20]

I make in this appendix a short review of the technique [18,20], initiated and
developed [5–8] when proposing the spin-charge-family theory [5,6,8,4,1,2,12,9]
assuming that all the internal degrees of freedom of spinors, with family quantum
number included, are describable in the space of d-anticommuting (Grassmann)
coordinates [6], if the dimension of ordinary space is d. There are two kinds of
operators in the Grassmann space, fulfilling the Clifford algebra, which anticom-
mute with one another. The technique was further developed in the present shape
together with H.B. Nielsen [18,20] by identifying one kind of the Clifford objects
with γs’s and another kind with γ̃a’s.

The objects γa and γ̃a have properties

{γa, γb}+ = 2ηab , {γ̃a, γ̃b}+ = 2ηab , , {γa, γ̃b}+ = 0 ,

γ̃aB := i(−)nBBγa |ψ0 >,

B = a0 + aaγ
a + aabγ

aγb + · · ·+ aa1···adγa1 . . . γad)|ψ0 > (9.35)

for any d, even or odd. I is the unit element in the Clifford algebra. The two
kinds of the Clifford algebra objects are connected with the left and the right
multiplication of any Clifford algebra objects B. In Eq. (9.35) B is expressed as a
polynomial of γa, (−)nB = +1,−1, when the object B has a Clifford even (+1) or
odd (+1) character, respectively. |ψ0 > is a vacuum state on which the operators
γa apply.

If B is a Clifford algebra object, let say a polynomial of γa, then one finds

(γ̃aB : = i(−)nB Bγa ) |ψ0 >,

B = a0 + aa0γ
a0 + aa1a2γ

a1γa2 + · · ·+ aa1···adγa1 · · ·γad , (9.36)

where |ψ0 > is a vacuum state, defined in Eq. (9.50) and (−)nB is equal to 1 for the
term in the polynomial which has an even number of γb’s, and to −1 for the term
with an odd number of γb’s.

In this last stage we constructed a spinor basis as products of nilpotents and
projections formed as odd and even objects of γa’s, respectively, and chosen to be
eigenstates of a Cartan subalgebra of the Lorentz groups defined by γa’s and γ̃a’s.

The technique can be used to construct a spinor basis for any dimension d
and any signature in an easy and transparent way. Equipped with the graphic
presentation of basic states, the technique offers an elegant way to see all the
quantum numbers of states with respect to the two Lorentz groups, as well as
transformation properties of the states under any Clifford algebra object.
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The Clifford algebra objects Sab and S̃ab close the algebra of the Lorentz
group

Sab : = (i/4)(γaγb − γbγa) ,

S̃ab : = (i/4)(γ̃aγ̃b − γ̃bγ̃a) ,

{Sab, S̃cd}− = 0 ,

{Sab, Scd}− = i(ηadSbc + ηbcSad − ηacSbd − ηbdSac) ,

{S̃ab, S̃cd}− = i(ηadS̃bc + ηbcS̃ad − ηacS̃bd − ηbdS̃ac) , (9.37)

We assume the “Hermiticity” property for γa’s and γ̃a’s

γa† = ηaaγa , γ̃a† = ηaaγ̃a , (9.38)

in order that γa and γ̃a are compatible with (9.35) and formally unitary, i.e.
γa † γa = I and γ̃a †γ̃a = I.

One finds from Eq.(9.38) that (Sab)† = ηaaηbbSab.
Recognizing from Eq.(9.37) that two Clifford algebra objects Sab, Scd with

all indices different commute, and equivalently for S̃ab, S̃cd, we select the Cartan
subalgebra of the algebra of the two groups, which form equivalent representations
with respect to one another

S03, S12, S56, · · · , Sd−1 d, if d = 2n ≥ 4,
S03, S12, · · · , Sd−2 d−1, if d = (2n+ 1) > 4 ,

S̃03, S̃12, S̃56, · · · , S̃d−1 d, if d = 2n ≥ 4 ,
S̃03, S̃12, · · · , S̃d−2 d−1, if d = (2n+ 1) > 4 . (9.39)

The choice for the Cartan subalgebra in d < 4 is straightforward. It is useful to
define one of the Casimirs of the Lorentz group - the handedness Γ ({Γ, Sab}− = 0)
in any d

Γ (d) : = (i)d/2
∏
a

(
√
ηaaγa), if d = 2n,

Γ (d) : = (i)(d−1)/2
∏
a

(
√
ηaaγa), if d = 2n+ 1 . (9.40)

One proceeds equivalently for Γ̃ (d), subtituting γa’s by γ̃a’s. We understand the
product of γa’s in the ascending order with respect to the index a: γ0γ1 · · ·γd. It
follows from Eq.(9.38) for any choice of the signature ηaa that Γ † = Γ, Γ2 = I.We
also find that for d even the handedness anticommutes with the Clifford algebra
objects γa ({γa, Γ }+ = 0) , while for d odd it commutes with γa ({γa, Γ }− = 0).

To make the technique simple we introduce the graphic presentation as fol-
lows

ab

(k): =
1

2
(γa +

ηaa

ik
γb) ,

ab

[k]:=
1

2
(1+

i

k
γaγb) ,

+◦: = 1

2
(1+ Γ) ,

−•:= 1

2
(1− Γ), (9.41)
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where k2 = ηaaηbb. It follows then

γa =
ab

(k) +
ab

(−k) , γb = ikηaa (
ab

(k) −
ab

(−k)) ,

Sab =
k

2
(
ab

[k] −
ab

[−k]) (9.42)

One can easily check by taking into account the Clifford algebra relation (Eq.9.35)
and the definition of Sab and S̃ab (Eq.9.37) that if one multiplies from the left hand

side by Sab or S̃ab the Clifford algebra objects
ab

(k) and
ab

[k], it follows that

Sab
ab

(k)=
1

2
k
ab

(k) , Sab
ab

[k]=
1

2
k
ab

[k] ,

S̃ab
ab

(k)=
1

2
k
ab

(k) , S̃ab
ab

[k]= −
1

2
k
ab

[k] , (9.43)

which means that we get the same objects back multiplied by the constant 1
2
k in

the case of Sab, while S̃ab multiply
ab

(k) by k and
ab

[k] by (−k) rather than (k). This

also means that when
ab

(k) and
ab

[k] act from the left hand side on a vacuum state
|ψ0〉 the obtained states are the eigenvectors of Sab. We further recognize that γa

transform
ab

(k) into
ab

[−k], never to
ab

[k], while γ̃a transform
ab

(k) into
ab

[k], never to
ab

[−k]

γa
ab

(k)= ηaa
ab

[−k], γb
ab

(k)= −ik
ab

[−k], γa
ab

[k]=
ab

(−k), γb
ab

[k]= −ikηaa
ab

(−k) ,

γ̃a
ab

(k)= −iηaa
ab

[k], γ̃b
ab

(k)= −k
ab

[k], γ̃a
ab

[k]= i
ab

(k), γ̃b
ab

[k]= −kηaa
ab

(k) .(9.44)

From Eq.(9.44) it follows

Sac
ab

(k)
cd

(k) = −
i

2
ηaaηcc

ab

[−k]
cd

[−k] , S̃ac
ab

(k)
cd

(k)=
i

2
ηaaηcc

ab

[k]
cd

[k] ,

Sac
ab

[k]
cd

[k] =
i

2

ab

(−k)
cd

(−k) , S̃ac
ab

[k]
cd

[k]= −
i

2

ab

(k)
cd

(k) ,

Sac
ab

(k)
cd

[k] = −
i

2
ηaa

ab

[−k]
cd

(−k) , S̃ac
ab

(k)
cd

[k]= −
i

2
ηaa

ab

[k]
cd

(k) ,

Sac
ab

[k]
cd

(k) =
i

2
ηcc

ab

(−k)
cd

[−k] , S̃ac
ab

[k]
cd

(k)=
i

2
ηcc

ab

(k)
cd

[k] . (9.45)

From Eqs. (9.45) we conclude that S̃ab generate the equivalent representations
with respect to Sab and opposite.

Let us deduce some useful relations

ab

(k)
ab

(k) = 0 ,
ab

(k)
ab

(−k)= ηaa
ab

[k] ,
ab

(−k)
ab

(k)= ηaa
ab

[−k] ,
ab

(−k)
ab

(−k)= 0 ,
ab

[k]
ab

[k] =
ab

[k] ,
ab

[k]
ab

[−k]= 0 ,
ab

[−k]
ab

[k]= 0 ,
ab

[−k]
ab

[−k]=
ab

[−k] ,
ab

(k)
ab

[k] = 0 ,
ab

[k]
ab

(k)=
ab

(k) ,
ab

(−k)
ab

[k]=
ab

(−k) ,
ab

(−k)
ab

[−k]= 0 ,
ab

(k)
ab

[−k] =
ab

(k) ,
ab

[k]
ab

(−k)= 0,
ab

[−k]
ab

(k)= 0 ,
ab

[−k]
ab

(−k)=
ab

(−k) .

(9.46)
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We recognize in the first equation of the first line and the first and the second
equation of the second line the demonstration of the nilpotent and the projector

character of the Clifford algebra objects
ab

(k) and
ab

[k], respectively. Defining

ab
˜(±i)= 1

2
(γ̃a ∓ γ̃b) ,

ab
˜(±1)= 1

2
(γ̃a ± iγ̃b) , (9.47)

one recognizes that

ab
˜(k)
ab

(k) = 0 ,
ab
˜(−k)

ab

(k)= −iηaa
ab

[k] ,
ab
˜(k)
ab

[k]= i
ab

(k) ,
ab
˜(k)

ab

[−k]= 0 . (9.48)

Recognizing that

ab

(k)

†

= ηaa
ab

(−k) ,
ab

[k]

†

=
ab

[k] , (9.49)

we define a vacuum state |ψ0 > so that one finds

<
ab

(k)

†
ab

(k) >= 1 ,

<
ab

[k]

†
ab

[k] >= 1 . (9.50)

Taking into account the above equations it is easy to find a Weyl spinor
irreducible representation for d-dimensional space, with d even or odd.

For d even we simply make a starting state as a product of d/2, let us say,

only nilpotents
ab

(k), one for each Sab of the Cartan subalgebra elements (Eq.(9.39)),
applying it on an (unimportant) vacuum state. For d odd the basic states are
products of (d − 1)/2 nilpotents and a factor (1 ± Γ). Then the generators Sab,
which do not belong to the Cartan subalgebra, being applied on the starting state
from the left, generate all the members of one Weyl spinor.

0d

(k0d)
12

(k12)
35

(k35) · · ·
d−1 d−2

(kd−1 d−2) ψ0
0d

[−k0d]
12

[−k12]
35

(k35) · · ·
d−1 d−2

(kd−1 d−2) ψ0
0d

[−k0d]
12

(k12)
35

[−k35] · · ·
d−1 d−2

(kd−1 d−2) ψ0
...

0d

[−k0d]
12

(k12)
35

(k35) · · ·
d−1 d−2

[−kd−1 d−2] ψ0
od

(k0d)
12

[−k12]
35

[−k35] · · ·
d−1 d−2

(kd−1 d−2) ψ0
... (9.51)

All the states have the handedness Γ , since {Γ, Sab} = 0. States, belonging to
one multiplet with respect to the group SO(q, d − q), that is to one irreducible
representation of spinors (one Weyl spinor), can have any phase. We made a choice
of the simplest one, taking all phases equal to one.
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The above graphic representation demonstrate that for d even all the states
of one irreducible Weyl representation of a definite handedness follow from a

starting state, which is, for example, a product of nilpotents
ab

(kab), by transforming

all possible pairs of
ab

(kab)
mn

(kmn) into
ab

[−kab]
mn

[−kmn]. There are Sam, San, Sbm, Sbn,
which do this. The procedure gives 2(d/2−1) states. A Clifford algebra object γa

being applied from the left hand side, transforms a Weyl spinor of one handedness
into a Weyl spinor of the opposite handedness. Both Weyl spinors form a Dirac
spinor.

For d odd a Weyl spinor has besides a product of (d − 1)/2 nilpotents or

projectors also either the factor
+◦:= 1

2
(1+ Γ) or the factor

−•:= 1
2
(1− Γ). As in the

case of d even, all the states of one irreducible Weyl representation of a definite
handedness follow from a starting state, which is, for example, a product of (1+ Γ)

and (d− 1)/2 nilpotents
ab

(kab), by transforming all possible pairs of
ab

(kab)
mn

(kmn)

into
ab

[−kab]
mn

[−kmn]. But γa’s, being applied from the left hand side, do not change
the handedness of the Weyl spinor, since {Γ, γa}− = 0 for d odd. A Dirac and
a Weyl spinor are for d odd identical and a ”family” has accordingly 2(d−1)/2

members of basic states of a definite handedness.
We shall speak about left handedness when Γ = −1 and about right handed-

ness when Γ = 1 for either d even or odd.
While Sab which do not belong to the Cartan subalgebra (Eq. (9.39)) generate

all the states of one representation, generate S̃ab which do not belong to the Cartan
subalgebra(Eq. (9.39)) the states of 2d/2−1 equivalent representations.

Making a choice of the Cartan subalgebra set (Eq.(9.39)) of the algebra Sab

and S̃ab a left handed (Γ (13,1) = −1) eigen state of all the members of the Cartan
subalgebra, representing a weak chargeless uR-quark with spin up, hyper charge
(2/3) and colour (1/2 , 1/(2

√
3)), for example, can be written as

03

(+i)
12

(+) |
56

(+)
78

(+) ||
9 10

(+)
11 12

(−)
13 14

(−) |ψ〉 =
1

27
(γ0 − γ3)(γ1 + iγ2)|(γ5 + iγ6)(γ7 + iγ8)||

(γ9 + iγ10)(γ11 − iγ12)(γ13 − iγ14)|ψ〉 . (9.52)

This state is an eigen state of all Sab and S̃ab which are members of the Cartan
subalgebra (Eq. (9.39)).

The operators S̃ab, which do not belong to the Cartan subalgebra (Eq. (9.39)),
generate families from the starting uR quark, transforming uR quark from Eq. (9.52)
to the uR of another family, keeping all the properties with respect to Sab un-
changed. In particular S̃01 applied on a right handed uR-quark, weak charge-
less, with spin up, hyper charge (2/3) and the colour charge (1/2 , 1/(2

√
3)) from

Eq. (9.52) generates a state which is again a right handed uR-quark, weak charge-
less, with spin up, hyper charge (2/3) and the colour charge (1/2 , 1/(2

√
3))

S̃01
03

(+i)
12

(+) |
56

(+)
78

(+) ||
910

(+)
1112

(−)
1314

(−)= −
i

2

03

[ +i]
12

[ + ] |
56

(+)
78

(+) ||
910

(+)
1112

(−)
1314

(−) .

(9.53)
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Below some useful relations [4] are presented

N±+ = N1+ ± iN2+ = −
03

(∓i)
12

(±) , N±− = N1− ± iN2− =
03

(±i)
12

(±) ,

Ñ±+ = −
03
˜(∓i)

12
˜(±) , Ñ±− =

03
˜(±i)

12
˜(±) ,

τ1± = (∓)
56

(±)
78

(∓) , τ2∓ = (∓)
56

(∓)
78

(∓) ,

τ̃1± = (∓)
56
˜(±)

78
˜(∓) , τ̃2∓ = (∓)

56
˜(∓)

78
˜(∓) . (9.54)

I present at the end one Weyl representation of SO(13+1) and the family quantum
numbers of the two groups of four families.

One Weyl representation of SO(13 + 1) contains left handed weak charged
and the second SU(2) chargeless coloured quarks and colourless leptons and right
handed weak chargeless and the second SU(2) charged quarks and leptons (elec-
trons and neutrinos). It carries also the family quantum numbers, not mentioned
in this table. The table is taken from the reference [15].

i |aψi > Γ(3,1) S12 Γ(4) τ13 τ23 τ33 τ38 τ4 Y Q

Octet, Γ(1,7) = 1, Γ(6) = −1,

of quarks and leptons

1 uc1
R

03
(+i)

12
(+) |

56
(+)

78
(+) ||

9 10
(+)

11 12
(−)

13 14
(−) 1 1

2
1 0 1

2
1
2

1
2
√
3

1
6

2
3

2
3

2 uc1
R

03
[−i]

12
[−] |

56
(+)

78
(+) ||

9 10
(+)

11 12
(−)

13 14
(−) 1 − 1

2
1 0 1

2
1
2

1
2
√
3

1
6

2
3

2
3

3 dc1
R

03
(+i)

12
(+) |

56
[−]

78
[−] ||

9 10
(+)

11 12
(−)

13 14
(−) 1 1

2
1 0 − 1

2
1
2

1
2
√
3

1
6

− 1
3

− 1
3

4 dc1
R

03
[−i]

12
[−] |

56
[−]

78
[−] ||

9 10
(+)

11 12
(−)

13 14
(−) 1 − 1

2
1 0 − 1

2
1
2

1
2
√
3

1
6

− 1
3

− 1
3

5 dc1
L

03
[−i]

12
(+) |

56
[−]

78
(+) ||

9 10
(+)

11 12
(−)

13 14
(−) -1 1

2
-1 − 1

2
0 1

2
1
2
√
3

1
6

1
6

− 1
3

6 dc1
L

03
(+i)

12
[−] |

56
[−]

78
(+) ||

9 10
(+)

11 12
(−)

13 14
(−) -1 − 1

2
-1 − 1

2
0 1

2
1
2
√
3

1
6

1
6

− 1
3

7 uc1
L

03
[−i]

12
(+) |

56
(+)

78
[−] ||

9 10
(+)

11 12
(−)

13 14
(−) -1 1

2
-1 1

2
0 1

2
1
2
√
3

1
6

1
6

2
3

8 uc1
L

03
(+i)

12
[−] |

56
(+)

78
[−] ||

9 10
(+)

11 12
(−)

13 14
(−) -1 − 1

2
-1 1

2
0 1

2
1
2
√
3

1
6

1
6

2
3

9 uc2
R

03
(+i)

12
(+) |

56
(+)

78
(+) ||

9 10
[−]

11 12
[+]

13 14
(−) 1 1

2
1 0 1

2
− 1
2

1
2
√
3

1
6

2
3

2
3

10 uc2
R

03
[−i]

12
[−] |

56
(+)

78
(+) ||

9 10
[−]

11 12
[+]

13 14
(−) 1 − 1

2
1 0 1

2
− 1
2

1
2
√
3

1
6

2
3

2
3

· · ·

17 uc3
R

03
(+i)

12
(+) |

56
(+)

78
(+) ||

9 10
[−]

11 12
(−)

13 14
[+] 1 1

2
1 0 1

2
0 − 1√

3
1
6

2
3

2
3

18 uc3
R

03
[−i]

12
[−] |

56
(+)

78
(+) ||

9 10
[−]

11 12
(−)

13 14
[+] 1 − 1

2
1 0 1

2
0 − 1√

3
1
6

2
3

2
3

· · ·

25 νR

03
(+i)

12
(+) |

56
(+)

78
(+) ||

9 10
(+)

11 12
[+]

13 14
[+] 1 1

2
1 0 1

2
0 0 − 1

2
0 0

26 νR

03
[−i]

12
[−] |

56
(+)

78
(+) ||

9 10
(+)

11 12
[+]

13 14
[+] 1 − 1

2
1 0 1

2
0 0 − 1

2
0 0

27 eR

03
(+i)

12
(+) |

56
[−]

78
[−] ||

9 10
(+)

11 12
[+]

13 14
[+] 1 1

2
1 0 − 1

2
0 0 − 1

2
−1 −1

28 eR

03
[−i]

12
[−] |

56
[−]

78
[−] ||

9 10
(+)

11 12
[+]

13 14
[+] 1 − 1

2
1 0 − 1

2
0 0 − 1

2
−1 −1

29 eL

03
[−i]

12
(+) |

56
[−]

78
(+) ||

9 10
(+)

11 12
[+]

13 14
[+] -1 1

2
-1 − 1

2
0 0 0 − 1

2
− 1
2

−1

30 eL

03
(+i)

12
[−] |

56
[−]

78
(+) ||

9 10
(+)

11 12
[+]

13 14
[+] -1 − 1

2
-1 − 1

2
0 0 0 − 1

2
− 1
2

−1

31 νL

03
[−i]

12
(+) |

56
(+)

78
[−] ||

9 10
(+)

11 12
[+]

13 14
[+] -1 1

2
-1 1

2
0 0 0 − 1

2
− 1
2

0

32 νL

03
(+i)

12
[−] |

56
(+)

78
[−] ||

9 10
(+)

11 12
[+]

13 14
[+] -1 − 1

2
-1 1

2
0 0 0 − 1

2
− 1
2

0

33 d̄c̄1
L

03
[−i]

12
(+) |

56
(+)

78
(+) ||

9 10
[−]

11 12
[+]

13 14
[+] -1 1

2
1 0 1

2
− 1
2

− 1
2
√
3

− 1
6

1
3

1
3

34 d̄c̄1
L

03
(+i)

12
[−] |

56
(+)

78
(+) ||

9 10
[−]

11 12
[+]

13 14
[+] -1 − 1

2
1 0 1

2
− 1
2

− 1
2
√
3

− 1
6

1
3

1
3

35 ūc̄1
L

03
[−i]

12
(+) |

56
[−]

78
[−] ||

9 10
[−]

11 12
[+]

13 14
[+] - 1 1

2
1 0 − 1

2
− 1
2

− 1
2
√
3

− 1
6

− 2
3

− 2
3

Continued on next page
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i |aψi > Γ(3,1) S12 Γ(4) τ13 τ23 τ33 τ38 τ4 Y Q

Octet, Γ(1,7) = 1, Γ(6) = −1,

of quarks and leptons

36 ūc̄1
L

03
(+i)

12
[−] |

56
[−]

78
[−] ||

9 10
[−]

11 12
[+]

13 14
[+] -1 − 1

2
1 0 − 1

2
− 1
2

− 1
2
√
3

− 1
6

− 2
3

− 2
3

37 d̄c̄1
R

03
(+i)

12
(+) |

56
(+)

78
[−] ||

9 10
[−]

11 12
[+]

13 14
[+] 1 1

2
-1 1

2
0 − 1

2
− 1
2
√
3

− 1
6

− 1
6

1
3

38 d̄c̄1
R

03
[−i]

12
[−] |

56
(+)

78
[−] ||

9 10
[−]

11 12
[+]

13 14
[+] 1 − 1

2
-1 1

2
0 − 1

2
− 1
2
√
3

− 1
6

− 1
6

1
3

39 ūc̄1
R

03
(+i)

12
(+) |

56
[−]

78
(+) ||

9 10
[−]

11 12
[+]

13 14
[+] 1 1

2
-1 − 1

2
0 − 1

2
− 1
2
√
3

− 1
6

− 1
6

− 2
3

40 ūc̄1
R

03
[−i]

12
[−] |

56
[−]

78
(+) ||

9 10
[−]

11 12
[+]

13 14
[+] 1 − 1

2
-1 − 1

2
0 − 1

2
− 1
2
√
3

− 1
6

− 1
6

− 2
3

41 d̄c̄2
L

03
[−i]

12
(+) |

56
(+)

78
(+) ||

9 10
(+)

11 12
(−)

13 14
[+] -1 1

2
1 0 1

2
1
2

− 1
2
√
3

− 1
6

1
3

1
3

· · ·

49 d̄c̄3
L

03
[−i]

12
(+) |

56
(+)

78
(+) ||

9 10
(+)

11 12
[+]

13 14
(−) -1 1

2
1 0 1

2
0 − 1√

3
− 1
6

1
3

1
3

· · ·

57 ēL

03
[−i]

12
(+) |

56
(+)

78
(+) ||

9 10
[−]

11 12
(−)

13 14
(−) -1 1

2
1 0 1

2
0 0 1

2
1 1

58 ēL

03
(+i)

12
[−] |

56
(+)

78
(+) ||

9 10
[−]

11 12
(−)

13 14
(−) -1 − 1

2
1 0 1

2
0 0 1

2
1 1

59 ν̄L

03
[−i]

12
(+) |

56
[−]

78
[−] ||

9 10
[−]

11 12
(−)

13 14
(−) -1 1

2
1 0 − 1

2
0 0 1

2
0 0

60 ν̄L

03
(+i)

12
[−] |

56
[−]

78
[−] ||

9 10
[−]

11 12
(−)

13 14
(−) -1 − 1

2
1 0 − 1

2
0 0 1

2
0 0

61 ν̄R

03
(+i)

12
(+) |

56
[−]

78
(+) ||

9 10
[−]

11 12
(−)

13 14
(−) 1 1

2
-1 − 1

2
0 0 0 1

2
1
2

0

62 ν̄R

03
[−i]

12
[−] |

56
[−]

78
(+) ||

9 10
[−]

11 12
(−)

13 14
(−) 1 − 1

2
-1 − 1

2
0 0 0 1

2
1
2

0

63 ēR

03
(+i)

12
(+) |

56
(+)

78
[−] ||

9 10
[−]

11 12
(−)

13 14
(−) 1 1

2
-1 1

2
0 0 0 1

2
1
2

1

64 ēR

03
[−i]

12
[−] |

56
(+)

78
[−] ||

9 10
[−]

11 12
(−)

13 14
(−) 1 − 1

2
-1 1

2
0 0 0 1

2
1
2

1

Table 9.3. The left handed (Γ (13,1) = −1) multiplet of spinors - the members of the SO(13, 1)
group, manifesting the subgroup SO(7, 1) - of the colour charged quarks and anti-quarks
and the colourless leptons and anti-leptons, is presented in the massless basis using the
technique presented in Appendix 9.9. It contains the left handed (Γ (3,1) = −1) weak charged
(τ13 = ± 1

2
) and SU(2)II chargeless (τ23 = 0) quarks and the right handed weak chargeless

and SU(2)II charged (τ23 = ± 1
2

) quarks of three colours (ci = (τ33, τ38)) with the ”spinor”
charge (τ4 = 1

6
) and the colourless left handed weak charged leptons and the right handed

weak chargeless leptons with the ”spinor” charge (τ4 = − 1
2

). S12 defines the ordinary spin
± 1
2

. The vacuum state |vac >fam, on which the nilpotents and projectors operate, is not
shown. The reader can find this Weyl representation also in the refs. [21,3]. Left handed
antiquarks and anti leptons are weak chargeless and carry opposite charges.

The eight families of the first member of the eight-plet of quarks from Table 9.3,
for example, that is of the right handed u1R quark, are presented in the left column
of Table 9.4 [3]. In the right column of the same table the equivalent eight-plet of
the right handed neutrinos ν1R are presented. All the other members of any of the
eight families of quarks or leptons follow from any member of a particular family
by the application of the operators N±R,L and τ(2,1)± on this particular member.

The eight-plets separate into two group of four families: One group contains
doublets with respect to ~̃NR and ~̃τ2, these families are singlets with respect to ~̃NL

and ~̃τ1. Another group of families contains doublets with respect to ~̃NL and ~̃τ1,
these families are singlets with respect to ~̃NR and ~̃τ2.

The scalar fields which are the gauge scalars of ~̃NR and ~̃τ2 couple only to the
four families which are doublets with respect to these two groups. The scalar fields
which are the gauge scalars of ~̃NL and ~̃τ1 couple only to the four families which
are doublets with respect to these last two groups.
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9.10 APPENDIX: Expressions for the spin connection fields in
terms of vielbeins and the spinor sources [14]

The expressions for the spin connection of both kind, ωabα and ω̃abα in terms
of the vielbeins and the spinor sources of both kinds are presented, obtained by
the variation of the action Eq.(9.1). The expression for the spin connection ωabα is
taken from the ref. [32].

ωabα = −
1

2E

{
eeαebγ ∂β(Ef

γ[efβa]) + eeαeaγ ∂β(Ef
γ
[bf
βe])

− eeαe
e
γ ∂β

(
Efγ[af

β
b]

)}
−
eeα

4

{
Ψ̄

(
γe Sab +

3i

2
(δebγa − δeaγb)

)
Ψ

}
−

1

d− 2

{
eaα

[
1

E
edγ∂β

(
Efγ[df

β
b]

)
+
1

2
Ψ̄γdSdb Ψ

]
− ebα

[
1

E
edγ∂β

(
Efγ[df

β
a]

)
+
1

2
Ψ̄γdSda Ψ

}]
. (9.55)

One notices that if there are no spinor sources, carrying the spinor quantum
numbers Sab, thenωabα is completely determined by the vielbeins.

Equivalently one obtains expressions for the spin connection fields carryin
family quantum numbers

ω̃abα = −
1

2E

{
eeαebγ ∂β(Ef

γ[efβa]) + eeαeaγ ∂β(Ef
γ
[bf
βe])

− eeαe
e
γ ∂β

(
Efγ[af

β
b]

)}
−
eeα

4

{
Ψ̄

(
γe S̃ab +

3i

2
(δebγa − δeaγb)

)
Ψ

}
−

1

d− 2

{
eaα

[
1

E
edγ∂β

(
Efγ[df

β
b]

)
+
1

2
Ψ̄γd S̃db Ψ

]
− ebα

[
1

E
edγ∂β

(
Efγ[df

β
a]

)
+
1

2
Ψ̄γd S̃da Ψ

}]
. (9.56)

Acknowledgments

The author acknowledges funding of the Slovenian Research Agency.

References
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18. N.S. Mankoč Borštnik and H.B. Nielsen, J. of Math. Phys. 43 (2002) 5782 [hep-

th/0111257].
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2
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Abstract. One Weyl representation of SO(13+ 1) contains [1–7], if analysed with respect to
the charge and the spin groups of the standard model, left handed weak (SU(2)I) charged and
SU(2)II chargeless colour triplet quarks and colourless leptons, and right handed weakless
and SU(2)II charged quarks and leptons (neutrinos and electrons). In the spin-charge-family
theory [1–12] spinors carry also the family quantum numbers, explaining the origin of
families and correspondingly the masses of fermions and weak bosons and the origin of
the scalar Higgs and Yukawa couplings. I am demonstrating in this paper that all the fields
appearing in the simple starting action of the spin-charge-family theory in d = (13 + 1) with
the scalar index with respect to d = (3 + 1) and determining masses of quarks and leptons
(and correspondingly also of the weak boson fields) carry the weak and the hyper charge
required by the standard model for the scalar Higgs.

Povzetek. Ena Weylova upodobitev SO(13 + 1) vsebuje [1–7], če jo analiziramo glede
na grupe nabojev in spinov standardnega modela, levoročne kvarke z barvnim tripletnim
nabojem in brezbarvne leptone s šibkim nabojem (SU(2)I), ki nimajo naboja SU(2)II ter
desnoročne barvne triplete kvarkov in brezbarvnih leptonov, ki ne nosijo šibkega naboja,
nosijo pa naboj SU(2)II. V teoriji spinov-nabojev-družin [1–12] nosijo spinorji tudi kvantna
števila družin, kar pojasni izvor družin in tudi mase fermionov in šibkih bozonov ter izvor
Higgsovega skalarja in Yukawinih sklopitev. V tem prispevku pokažem, da nosijo vsa polja
s skalarnim indeksom glede na d = (3+ 1) s = (7, 8), ki nastopajo v enostavni začetni akciji
teorije spinov-nabojev-družin v d = (13 + 1) in določajo mase kvarkov in leptonov, s tem
pa tudi mase šibkih bozonov, šibki in hiper naboj tak, kot ju zahteva standardni model za
skalarno Higgsovo polje. Teorija tako ponudi razlago za izmerjene lastnosti Higgsovega
skalarja ter Yukawinih sklopitev.

10.1 Introduction

The standard model assumed and the LHC confirmed the existence of the Higgs
scalar - the only so far observed bosons with the charge in the fundamental
representation.

I am demonstrating in this paper that the spin-charge-family theory explains
the appearance of the scalar fields with the charges of the Higgs scalar fields. There
are, namely, in this theory, in its simple starting action in d = (13+ 1), the fields
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with the scalar index with respect to d = (3 + 1), which have the properties of
the higgs and explain masses of quarks and leptons together with the Yukawa
couplings, and correspondingly also the masses of the weak vector boson fields.

Let me add that all the scalars, that is all the gauge fields of this theory with
the space index ≥ 5, have in the starting action the corresponding charges with
respect to the scalar index in the fundamental representations: They are either
doublets with respect to the two SU(2) groups (the weak SU(2)I and the second
SU(2)II, which correspondingly result in the properties of the Higgs scalars with
respect to the weak and the hyper charge) or they are colour triplets (the properties
of these triplets are discussed in a separate paper [13]). All these scalar fields carry
the additional charges (the charges not originating in the space index - the family
charges, for example) in adjoint representations.

The referee of this paper stated that it is not at all remarkable that there are
the scalar fields which are doublets with respect to the weak charge after starting
with so many independent fields.

It is, of course, true that a large enough orthogonal group can contain any
desired subgroups. But this is not what the spin-charge-family theory proposes: It
starts with an (very simple) action for spinors and the corresponding gauge fields,
manifesting very limited properties, and it is not at all self-evident that some of
these fields manifest the desired properties in the low energy regime while all the
other spinors and vector and scalar gauge fields - unobserved in the low energy
regime - get high masses through the interaction with only one scalar condensate,
what is happening in the spin-charge-family theory.

On the contrary, it is an extremely encouraging fact that one scalar condensate
makes all the vector and the scalar gauge fields appearing in the spin-charge-family
theory, except those which are observable at the low energy regime (the gravity, the
colour vector gauge field, the weak and the hyper charge vector gauge fields, and
the eight families of quarks and leptons, decoupled into two times four families),
very massive with respect to the weak scale and correspondingly unobservable in
the low energy regime. Several scalar gauge fields, however, which when gaining
nonzero vacuum expectation values (changing in this case also their masses) cause
the electroweak break, have the weak charge equal to ±1

2
and the hyper charge

correspondingly ∓1
2

, as the scalar Higgs in the standard model, while they have
all the other quantum numbers in the adjoint representations. All the rest of the
scalar fields are colour triplets with respect to the scalar space index.

Those who are proposing unifying theories, must offer for the chosen groups
and the chosen representations of these groups also the Lagrange densities, de-
signed for those groups and representations, what calls for the theory beyond
those effective actions. I am proposing a simple starting action, out of which - after
the breaks of symmetries triggered by boundary conditions in a complicated many
body problem - manifests in the low energy regime the observable phenomena.

Let me make in this introduction make a short overview of the spin-charge-
family theory [1,2,7,6,3–5,8–12], pointing out that this theory is offering the expla-
nation for the assumptions of the standard model: For the properties of quarks and
leptons (right handed neutrinos are in this theory the regular members of a family)
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and antiquarks and antileptons, and for the existence of the gauge vector fields 1

of the charges. It is offering also the explanation for the existence of the families
of quarks and leptons and correspondingly for the scalar gauge fields, which are
responsible for masses of quarks and leptons and of weak gauge fields and for
Yukawa couplings.

There are, namely, (only) two kinds [3–5,7,16–18] of the Clifford algebra
objects (connected by the left and the right multiplication of any Clifford object):
the Dirac γa’s and the second γ̃a’s, respectively. These two Clifford algebra objects
(Eq. (9.35)) anticommute, forming the equivalent representations with respect to
each other. If using the Dirac γa’s in d = (13 + 1) to describe in d = (3 + 1) the
spin and all the charges, then γ̃a’s describe families.

All predictions of the spin-charge-family theory in the low energy regime
(after the break of the starting symmetry) follow from the simple starting ac-
tion (Eq.(10.1)) in d = (13+ 1) for spinors carrying two kinds of a spin (no charges)
and for the vielbeins and the two kinds of spin connection fields, with which
spinors interact.

Let us first tell that one Weyl representation of SO(13, 1) contains [1,2,7,6,14],
if analysed with respect to the subgroups SO(3, 1)× SU(2)I× SU(2)II × SU(3)
×U(1), all the family members, required by the standard model, with the right
handed neutrinos in addition: It contains the left handed weak (SU(2)I) charged
and SU(2)II chargeless colour triplet quarks and colourless leptons (neutrinos and
electrons), and right handed weakless and SU(2)II charged quarks and leptons,
as well as right handed weak charged and SU(2)II chargeless colour antitriplet
antiquarks and (anti)colourless antileptons, and left handed weakless and SU(2)II
charged antiquarks and antileptons. The antifermions are reachable from the
fermions by the application of the discrete symmetry operator CN PN , presented
in ref. [14].

The theory accordingly explains how and why is the weak charge connected
with the handedness determined by the spin degrees of freedom in d = (3+1). One
Weyl (one family) representation of spinors of the group SO(13, 1) is presented in
table 9.3. Each state is written as a product of nilpotents and projectors defined in
the ”technique” [4,16,18,17], short version of which can be found in appendix 9.9.
Quantum numbers of each of the family members, all are presented in table 9.3
together with the quantum numbers, are defined in Eqs. (10.8, 10.9, 10.10).

The symmetry of both kinds of groups, SO(13, 1) and S̃O(13, 1) (are assumed
to) break simultaneously, influencing family members and families of spinors, as
well as the gauge fields. After the break of symmetries from the manifoldM(13+1)

to M(7+1) × M(6), which makes all the families, except the 2
7+1
2

−1 ones deter-
mined by the group S̃O(7, 1), massive 2, carries each family member the family

1 In this sense the spin-charge-family is the Kaluza-Klein like theory [15].
2 In this paper the break of symmetries in the way that only 2

(7+1)
2

−1 families stay massless,
while all the others get high masses of the order above the unifying scale, is just assumed.
This assumption, however, is supported by several works on the toy model with the
same starting action (Eq. (10.1)) but with d = (5 + 1), ref. [20,23], while the preliminary
work on this more complex case is in progress.
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quantum numbers, belonging in S̃O(7, 1) to two times S̃U(2) × S̃U(2) groups,
originating in S̃O(3, 1) and in S̃O(4), respectively (where S̃O(n) represent the sub-
groups the generators of which are expressed by γ̃a). The families correspondingly
decouple to two times four families.

The generators of the corresponding subgroups of the family group S̃O(7, 1),
are defined in Eqs. (10.11, 10.12). To each family member of each family the
antimember corresponds, accessible from the member by the discrete symmetry
operator CN PN , which does not depend on γ̃a’s, as explained in the ref. [14,25].

Let us add that since all the charges, with the family charge included, emerge
from the spins, correspondingly all the charges are quantized.

Quarks and leptons have the ”spinor” quantum number (τ4, originating
in SO(6), Eq. (10.10)) 1

6
and −1

2
, respectively 3, with the sum of both equal to

3× 1
6
+ (−1

2
) = 0.

The spin-charge-family theory therefore predicts that there are two decoupled
groups of four families: The fourth [1,7,6,9] to the already observed three families
of quarks and leptons should (sooner or later) be measured at the LHC [11], while
the lowest of the upper four families constitute the dark matter [10].

Let me summarize this first part of the introduction with the statement: The
spin-charge-family theory is offering the explanation for the assumptions of the standard
model, having correspondingly a chance to be the right step beyond the standard
model.

This paper presents in section 10.2 that the properties of the scalar field, the
weak and the hyper charge of the scalar Higgs, which are in the standard model
just assumed to properly ”dress” the right handed members by the weak and the
hyper charge, appear in the spin-charge-family naturally, offering the explanation for
the appearance of the scalar fields, observed so far as the scalar Higgs.

In the subsection of this introductory section the simple starting action of
the spin-charge-family theory is presented, as well as all the assumptions made to
achieve that the theory manifests at low energies the observed phenomena.

In section 10.3 the resume and conclusions are presented. In the first ap-
pendix 9.9 a short review of the technique, used in this paper to manifest properties
of the spinor states, as well as the expressions for the two kinds of spin connection
fields, in terms of vielbeins and the spinor sources, are added.

In section 10.3 the resume and conclusions are presented. In appendix a short
review of the technique, used in this paper to manifest properties of the spinor
states, as well as the expressions for the two kinds of spin connection fields, in
terms of vielbeins and the spinor sources, are added.

10.1.1 The action of the spin-charge-family theory and the assumptions

Let me present the assumptions on which the theory is built, starting with the
(simple) action in d = (13+ 1):

3 In the Pati-Salam model [21] this ”spinor” quantum number is named B−L
2

quantum
number and is twice the ”spinor” quantum number, for quarks equal to 1

3
and for leptons

to −1.
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i. In the simple action [7,1] fermions ψ carry in d = (13+ 1) as the internal
degrees of freedom only two kinds of spins, no charges, and interact correspondingly with
only the two kinds of the spin connection gauge fields,ωabα and ω̃abα, and the vielbeins,
fαa.

S =

∫
ddx E Lf +∫
ddx E (αR+ α̃ R̃) ,

Lf =
1

2
(ψ̄ γap0aψ) + h.c.,

p0a = fαap0α +
1

2E
{pα, Ef

α
a}−,

p0α = pα −
1

2
Sabωabα −

1

2
S̃abω̃abα,

R =
1

2
{fα[afβb] (ωabα,β −ωcaαω

c
bβ)}+ h.c. ,

R̃ =
1

2
fα[afβb] (ω̃abα,β − ω̃caαω̃

c
bβ) + h.c. . (10.1)

Here 4 fα[afβb] = fαafβb − fαbfβa. Sab and S̃ab are generators of the groups
SO(13, 1) and S̃O(13, 1), respectively, expressible by γa and γ̃a.

ii. The manifoldM(13+1) breaks first intoM(7+1) timesM(6) (which man-
ifests as SU(3) ×U(1)), affecting both internal degrees of freedom - the one rep-
resented by γa and the one represented by γ̃a, leading to 2((7+1)/2−1) massless
families, all the rest families get heavy masses 5. Both internal degrees of free-
dom, the ordinary SO(13 + 1) one (where γa determine spins and charges of
spinors) and the S̃O(13 + 1) (where γ̃a determine family quantum numbers),
break simultaneously with the manifolds.

iii. There are additional breaks of symmetry: The manifoldM(7+1) breaks
further intoM(3+1)×M(4).

iv. There is a scalar condensate of two right handed neutrinos with the
family quantum numbers of the upper four families, bringing masses of the scale
above the unification scale, to all the vector and scalar gauge fields, which interact
with the condensate.

4 fαa are inverted vielbeins to eaα with the properties eaαfαb = δab, e
a
αf
β
a = δβα, E =

det(eaα). Latin indices a, b, ..,m, n, .., s, t, .. denote a tangent space (a flat index), while
Greek indices α, β, .., µ, ν, ..σ, τ, .. denote an Einstein index (a curved index). Letters from
the beginning of both the alphabets indicate a general index (a, b, c, .. and α, β, γ, .. ),
from the middle of both the alphabets the observed dimensions 0, 1, 2, 3 (m,n, .. and
µ, ν, ..), indices from the bottom of the alphabets indicate the compactified dimensions
(s, t, .. and σ, τ, ..). We assume the signature ηab = diag{1,−1,−1, · · · ,−1}.

5 A toy model [23,24,14] was studied in d = (5 + 1) with the same action as in Eq.‘(10.1).
For a particular choice of vielbeins and for a class of spin connection fields the manifold
M5+1 breaks into M(3+1) times an almost S2, while 2((3+1)/2−1) families stay massless
and mass protected. Equivalent assumption, although not yet proved that it really works,
is made also in the case that M(13+1) breaks first into M(7+1) ×M(6). The study is in
progress.
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v. There are nonzero vacuum expectation values of the scalar fields with
the scalar indices (7, 8), which cause the electroweak break and bring masses to
the fermions and weak gauge bosons, conserving the electromagnetic and colour
charge.

Comments on the assumptions:
i.: This starting action enables to represent the standard model as the ef-

fective low energy manifestation of the spin-charge-family theory, explaining all
the standard model assumptions, with the families included. There are (before the
electroweak break all massless) observable gauge fields: gravity, colour (SU(3),
from SO(6)) octet vector gauge fields, weak (SU(2)I from SO(4)) triplet vector
gauge field and ”hyper” (U(1) from SO(6)) singlet vector gauge fields. All are
superposition of fαc ωabα. And there are (before the electroweak break all mass-
less) observable (eight rather than observed three) families of quarks and leptons.
(There are indeed two decoupled groups of four families, in the fundamental
representations of twice S̃U(2)× S̃U(2) groups, the subgroups of S̃O(3, 1)× S̃O(4).
There are correspondingly the scalar fields with the weak and the hyper charge
of the scalar Higgs and with either two kinds of the family quantum numbers
in the adjoint representations - they are two times two triplets, emerging from
the superposition of fσsω̃abσ with s ∈ (7, 8), in accordance with twice S̃U(2)×
S̃U(2) groups, the subgroups of S̃O(3, 1)× S̃O(4) - or with the quantum num-
bers (Q,Q ′, Y ′) emerging from the superposition of fσsω̃abσ. Both determine the
Yukawa couplings.) The starting action contains also the additional SU(2)II (from
SO(4)) vector gauge field and the scalar fields with the space index s ∈ (5, 6) and
t ∈ (9, 10, 11, 12), as well as the auxiliary vector gauge fields expressible with viel-
beins, which are the superposition of fµmω̃abµ. They all remain either auxiliary
or become massive after the appearance of the condensate.

ii., iii.: The assumed breaks explain why the weak and the hyper charge are
connected with the handedness of spinors, manifesting the observed properties of
the family members - the quarks and the leptons, left and right handed - and of
the observed vector gauge fields. Since the left handed members are weak charged
while the right handed are weak chargeless, the family members stay massless
and mass protected up to the electroweak break. Antiparticles are accessible from
particles by the CN and PN , as explained in refs. [14,25]. This discrete symmetry
operator does not contain γ̃a’s degrees of freedom. To each family member there
corresponds the antimember, with the same family quantum number.

iv.: It is the condensate of two right handed neutrinos with the quantum
numbers of the upper four families, which makes all the scalar gauge fields (with
the index (5, 6, 7, 8), as well as those with the index (9, . . . , 14)) and the vector
gauge fields, manifesting nonzero τ4, τ23, Q ,Y, τ̃4, τ̃23, Q̃ ,Ỹ,Ñ3R (Eqs. (10.8, 10.9,
10.10, 10.11, 10.12, 10.13)) massive [13].

v.: At the electroweak break the scalar fields with the space index s = (7, 8),
originating in ω̃abs, as well as some superposition ofωs ′s"s, those which conserve
the electromagnetic charge, get nonzero vacuum expectation values, what changes
also their masses. They determine mass matrices of twice the four families, as well
as the masses of the weak bosons. All the rest scalar fields keep masses of the
condensate scale and are correspondingly (so far) unobservable in the low energy
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regime 6. The fourth family to the observed three ones will (sooner or later) be
observed at the LHC. Its properties are under the consideration [11], while the
stable of the upper four families is the candidate for the dark matter.

The above assumptions enable that the starting action (Eq. (10.1)) manifests
effectively in d = (3+ 1) in the low energy regime by the standard model required
degrees of freedom of fermions and bosons [1,2,7,6,3–5,8–12], that is the quarks
and the leptons, left and right handed, the families of quarks and leptons and all
the known gauge fields, with (several, explaining the Yukawa couplings) scalar
fields included.

To see this let us rewrite formally the action for the Weyl spinor of (Eq.(10.1))
as follows

Lf = ψ̄γm(pm −
∑
A,i

gAτAiAAim )ψ+

{
∑
s=7,8

ψ̄γsp0s ψ}+

{
∑

t=5,6,9,...,14

ψ̄γtp0t ψ} ,

p0s = ps −
1

2
Ss
′s"ωs ′s"s −

1

2
S̃abω̃abs ,

p0t = pt −
1

2
St
′t"ωt ′t"t −

1

2
S̃abω̃abt , (10.2)

where m ∈ (0, 1, 2, 3), s ∈ 7, 8, (s ′, s") ∈ (5, 6, 7, 8), (a, b) (appearing in S̃ab) run
within (0, 1, 2, 3) and (5, 6, 7, 8), t ∈ (5, 6, 9, . . . , 13, 14).

The first line of Eq. (10.2) determines the kinematics and dynamics of spinor
fields in d = (3+ 1), coupled to the vector gauge fields. The generators τAi of the
charge groups are expressible in terms of Sab through the complex coefficients
cAiab, as presented in Eqs. (10.9, 10.10, 10.13)

τAi =
∑
a,b

cAiab S
ab , (10.3)

and the commutation relations

{τAi, τBj}− = iδABfAijkτAk . (10.4)

The corresponding vector gauge fields AAim are expressible with the spin connec-
tion fieldsωstm, with (s, t) either ∈ (5, 6, 7, 8) or ∈ (9, 10, . . . , 13, 14), in agreement
with the assumptions ii. and iii.. Before the electroweak break the vector gauge
fields appearing in the first line of Eq. (10.2) are all massless: ~A3m carries the colour
charge SU(3) (originating in SO(6)), ~A1m carries the weak charge SU(2)I (SU(2)I
and SU(2)II are the subgroups of SO(4)) and AYm = sin ϑ2A23m + cos ϑ2A4m (Y is
defined in Eq. (10.13), τ4 in Eq. (10.10), the corresponding U(1) group originates
in SO(6)), A4m is defined in Eq. (10.15), if the scalar space index s is replaced by

6 Correspondingly d = (13+ 1) manifests in d = (3+ 1) spins and charges as if one would
start with d = (9 + 1) instead of with d = (13 + 1), since the plane (5, 6) and the plane in
which the vector τ4 lies, are unobservable at low energies.
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the space vector indexm, A23m is the third component of the second SU(2)II field
~A2m. The corresponding charges (~τ3, ~τ1, Y) are the conserved charges.

Before the appearance of the condensate of the two right handed neutrinos
with the quantum numbers of the upper four families (properties of the condensate
are presented in table 10.1) at the scale far about the electroweak scale, all the three
components of the field ~A2m are massless. The condensate gives the mass of the or-
der of the scale of the appearance of the condensate toAY

′

m = cos ϑ2A23m−sin ϑ2A4m,
and to all the scalar gauge fields, presented in the second and the third line of
Eq. (10.2), leading to AAis , s ∈ (5, 6, . . . , 13, 14) and ÃAit , t ∈ (5, 6, . . . , 13, 14).

Vector gauge fields AYm, ~A1m and ~A3m do not couple to the condensate (ta-
ble 10.1).

In Eqs. (10.15, 10.14) the expressions for the scalars with the scalar index (7, 8)

in terms of both kinds of the spin connection fields are presented. These scalar
fields (the second line in Eq. (10.2)) determine after the electroweak break the mass
matrices of the two decoupled groups of four families. Getting nonzero vacuum
expectation values they cause the electroweak break, changing also their own
masses. These scalar fields determine also the masses of the gauge bosons.

state S03 S12 τ13 τ23 τ4 Y Q τ̃13 τ̃23 τ̃4 Ỹ Q̃ Ñ3L Ñ
3
R

(|νVIII
1R >1 |νVIII

2R >2) 0 0 0 1 −1 0 0 0 1 −1 0 0 0 1

(|νVIII1R >1 |e
VIII
2R >2) 0 0 0 0 −1 −1 −1 0 1 −1 0 0 0 1

(|eVIII1R >1 |e
VIII
2R >2) 0 0 0 −1 −1 −2 −2 0 1 −1 0 0 0 1

Table 10.1. The condensate of the two right handed neutrinos νR, with the VIIIth family
quantum numbers, coupled to spin zero and belonging to a triplet with respect to the
generators τ2i, is presented, together with its two partners. The right handed neutrino has
Q = 0 = Y. The triplet carries τ̃4 = −1, τ̃23 = 1 and Ñ3R = 1, Ñ3L = 0, Ỹ = 0, Q̃ = 0. The
family quantum numbers are presented in table 9.4, taken from the ref. [13].

Among the vector gauge fields ~A3m and ~̃A3m and the corresponding vielbeins
only one of these three vector gauge fields is the propagating one, while the rest
two are the auxiliary fields as one can learn from Eqs. (9.55, 9.56) of the second
appendix section 9.10, if taking into account that there is no spinor (fermion)
sources with the corresponding quantum numbers. Equivalently, also only one
of the three vector gauge fields ~A1m, ~̃A1m and the corresponding vielbein field is
the propagating field, the other two are the auxiliary fields, as well as only one of
the three vector gauge fields ~ANLm , ~̃ANLm and the corresponding vielbein field is the
propagating field, while ~ANRm is massive due to the interaction with the condensate
of the two right handed neutrinos through quantum numbers ~̃NR, presented in
Eqs. (10.8, 10.11).

Let me summarize this subsection: The starting action (Eq.(10.1)) of the spin-
charge-family theory manifests under the assumptions i.-v. in the low energy regime
properties of the standard model, explaining the standard model assumptions: Before
the electroweak break all the scalar gauge fields and the vector gauge fields -
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except the colour, the weak and the hyper vector fields (and the gravity), which
stay massless - are massive, due to the interaction with the scalar condensate of
the two right handed neutrinos with the family quantum numbers of the upper
four families. There are also the two decoupled massless groups of four families.

At the electroweak break the scalar gauge fields, carrying the scalar space
index and keeping the electromagnetic charge conserved and changing their own
masses, bring masses to all the fermions and all the gauge fields, except to the
gavity, electromagnetic and the colour ones.

Let me comment that in the presence of the spinor fields (as it is the con-
densate, for example) all three gauge fields - the vielbeins and the two kinds of
the spin connection fields - are in general the propagating fields. If there are no
spinors present, only one of the three fields is the propagating field, the other
two are expressible with the propagating one (as it is well known). In the second
appendix 9.10 the expressions for the spin connection fields of both kinds in terms
of the vielbeins and the spinor sources are presented, taken from the ref. [20].

The assumed breaks should occur spontaneously, determined by the starting
action and the boundary conditions. To prove that this really can happen is a
very difficult (many body) problem. Although several studies made so far, for
either a toy model in d = (5 + 1) or for the d = (13 + 1) case, support these
assumptions, yet several additional studies are needed to justify the assumptions
and to clarify further the properties of the scalar and vector gauge fields and of
the spinor families, appearing in the starting action. Also the comparison with
all the other works made on the unifying theories are needed to see to which
extend predictions of this theory coincide with the other theories in the literature,
in which sense and what one can learn out of them.

The standard model subgroups of the SO(13+ 1) and of the S̃O(13+ 1) group
and the corresponding gauge fields To calculate quantum numbers of one Weyl
representation presented in table 9.3 in terms of the generators of the standard
model groups τAi (=

∑
a,b c

Ai
ab S

ab) one must look for the coefficients cAiab
(Eq. (10.4)). The generators τAi are the generators of the charge groups. Similarly
one expresses also the spin and the family degrees of freedom.

The same coefficients cAiab determine operators which apply on spinors and
on vectors. The difference among the three kinds of operators - vectors and two
kinds of spinors - lies in Sab.

While Sab for spins of spinors is equal to

Sab =
i

4
(γa γb − γb γa) , (10.5)

and S̃ab for families of spinors is equal to

S̃ab =
i

4
(γ̃a γ̃b − γ̃b γ̃a) , (10.6)

one must take, when Sab apply on the spin connectionsωbde (= fαe ωbdα) and
ω̃b̃d̃e (= fαe ω̃b̃d̃α), on either the space index e or the indices (b, d, b̃, d̃), the
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operator

(Sab)ceAd...e...g = i(ηacδbe − η
bcδae )A

d...e...g . (10.7)

This means that the space index (e) ofωbde transforms according to the require-
ment of Eq. (10.7), and so do b, d and b̃, d̃. I used the notation b̃, d̃ to point out that
Sab and S̃ab (= S̃ãb̃) are generators of two independent groups.

One finds [1,7,6,3–5,8,12] for the generators of the spin and the charge groups,
which are the subgroups of SO(13, 1), the expressions:

~N±(= ~N(L,R)) : =
1

2
(S23 ± iS01, S31 ± iS02, S12 ± iS03) , (10.8)

where the generators ~N± determine representations of the two SU(2) subgroups
of SO(3, 1), generators ~τ1 and ~τ2,

~τ1 : =
1

2
(S58 − S67, S57 + S68, S56 − S78) ,

~τ2 : =
1

2
(S58 + S67, S57 − S68, S56 + S78), (10.9)

determine representations of the SU(2)I× SU(2)II invariant subgroups of the
group SO(4), which is further the subgroup of SO(7, 1) (SO(4), SO(3, 1) are sub-
groups of SO(7, 1)), and the generators ~τ3, τ4 and τ̃4

~τ3 :=
1

2
{S9 12 − S10 11 , S9 11 + S10 12, S9 10 − S11 12,

S9 14 − S10 13, S9 13 + S10 14 , S11 14 − S12 13 ,

S11 13 + S12 14,
1√
3
(S9 10 + S11 12 − 2S13 14)} ,

τ4 := −
1

3
(S9 10 + S11 12 + S13 14) ,

τ̃4 := −
1

3
(S̃9 10 + S̃11 12 + S̃13 14) , (10.10)

determine representations of SU(3)×U(1), originating in SO(6), and of τ̃4 origi-
nating in S̃O(6).

One correspondingly finds the generators of the subgroups of S̃O(7, 1),

~̃NL,R : =
1

2
(S̃23 ± iS̃01, S̃31 ± iS̃02, S̃12 ± iS̃03) , (10.11)

which determine representations of the two S̃U(2) invariant subgroups of S̃O(3, 1),
while

~̃τ1 : =
1

2
(S̃58 − S̃67, S̃57 + S̃68, S̃56 − S̃78) ,

~̃τ2 : =
1

2
(S̃58 + S̃67, S̃57 − S̃68, S̃56 + S̃78) , (10.12)

determine representations of S̃U(2)I× S̃U(2)II of S̃O(4). Both, S̃O(3, 1) and S̃O(4)
are the subgroups of S̃O(7, 1).



i
i

“proc14” — 2014/12/8 — 18:22 — page 173 — #187 i
i

i
i

i
i

10 The Spin-charge-family Theory Explains Why the Scalar Higgs Carries. . . 173

One further finds

Y = τ4 + τ23, Y ′ = −τ4 tan2 ϑ2 + τ23, Q = τ13 + Y, Q ′ = −Y tan2 ϑ1 + τ13,

Ỹ = τ̃4 + τ̃23, Ỹ ′ = −τ̃4 tan2 ϑ̃2 + τ̃23, Q̃ = Ỹ + τ̃13, Q̃ ′ = −Ỹ tan2 ϑ̃1 + τ̃13.

(10.13)

The scalar fields, responsible [1,2,7] - after getting in the electroweak break
nonzero vacuum expectation values - for masses of the family members and of
the weak bosons, are presented in the second line of Eq. (10.2). These scalar fields
are included in the covariant derivatives as −1

2
Ss
′s"ωs ′s"s −

1
2
S̃ãb̃ω̃ãb̃s, s ∈ (7, 8),

(ã, b̃), ∈ (0̃, 1̃, . . . , 8̃), where ã, b̃ is again used to point out that (a, b) belong in
this case to the ”tilde” space.

One finds, by taking into account Eqs. (10.11, 10.12) and Eq. (10.13), for the
choice of the ω̃ãb̃s scalar gauge fields, contributing to the electroweak break, the
expressions

−
1

2
S̃ãb̃ ω̃ãb̃s = −(~̃τ1̃ ~̃A1̃s +

~̃NL̃
~̃A
ÑL̃
s + ~̃τ2̃ ~̃A2̃s +

~̃NR̃
~̃A
ÑR̃
s ) ,

~̃A1̃s = (ω̃5̃8̃s − ω̃6̃7̃s, ω̃5̃7̃s + ω̃6̃8̃s, ω̃5̃6̃s − ω̃7̃8̃s) ,

~̃A
ÑL̃
s = (ω̃2̃3̃s + i ω̃0̃1̃s, ω̃3̃1̃s + i ω̃0̃2̃s, ω̃1̃2̃s + i ω̃0̃3̃s) ,

~̃A2̃s = (ω̃5̃8̃s + ω̃6̃7̃s, ω̃5̃7̃s − ω̃6̃8̃s, ω̃5̃6̃s + ω̃7̃8̃s) ,

~̃A
ÑR̃
s = (ω̃2̃3̃s − i ω̃0̃1̃s, ω̃3̃1̃s − i ω̃0̃2̃s, ω̃1̃2̃s − i ω̃0̃3̃s) ,

(s ∈ (7, 8)) . (10.14)

Amongωabs, which contribute to the mass matrices of quarks and leptons, one
finds when using Eqs. (10.9, 10.10, 10.13), the expressions

−
1

2
Ss
′s"ωs ′s"s = −(g23 τ23A23s + g13 τ13A13s + g4 τ4A4s) ,

g13 τ13A13s + g23 τ23A23s + g4 τ4A4s = gQQAQs + gQ
′
Q ′AQ

′

s + gY
′
Y ′AY

′

s ,

A4s = −(ω9 10 s +ω11 12 s +ω13 14 s) ,

A13s = (ω56s −ω78s) , A23s = (ω56s +ω78s) ,

AQs = sin ϑ1A13s + cos ϑ1AYs ,

AQ
′

s = cos ϑ1A13s − sin ϑ1AYs ,

AY
′

s = cos ϑ2A23s − sin ϑ2A4s ,

(s ∈ (7, 8)) . (10.15)

Scalar fields from Eq. (10.14) couple to the family quantum numbers, while
those from Eq. (10.15) distinguish among family members. In Eq. (10.15) the
coupling constants were explicitly written to see the analogy with the gauge fields
in the standard model.

Expressions for the vector gauge fields in terms of the spin connection fields
and the vielbeins, which correspond to the colour charge (~A3m), the SU(2)II charge
(~A2m), the weak charge (SU(2)I) (~A1m) and the U(1) charge originating in SO(6)
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(~A4m), can be found by taking into account Eqs. (10.9, 10.10). Equivalently one finds
the vector gauge fields in the ”tilde” sector. One really can use just the expressions
from Eqs. (10.15, 10.14), if replacing the scalar index swith the vector indexm.

Let me summarize this subsubsection: The expressions for the operators τAi

are presented, either in terms of Sab (Eq. (10.5)) or (in this case we name them
τ̃Ai) in terms of S̃ab (Eq. (10.6)), valid also in terms of Sab (Eq. (10.7)), affecting
correspondingly spinors spin and charges quantum numbers, spinors families
quantum numbers and scalar or vector gauge fields, respectively. Also the expres-
sions for those scalar gauge fields, which contribute to the electroweak break by
getting nonzero vacuum expectation values, in terms of the corresponding spin
connection fields are presented (Eqs.(10.15, 10.14)). When the scalar index s is
replaced by the vector indexm, the expressions for the vector gauge fields in terms
of spin connection fields follow.

10.2 Scalar fields contributing to the electroweak break are
weak charge doublets

In this main part of the paper is demonstrated that all the scalar gauge fields with
the scalar index s ∈ (7, 8), which get nonzero vacuum expectation values causing
the electroweak break, carry the weak and the hyper charge as does the scalar
Higgs of the standard model.

All the scalars (the gauge fields with the scalar index with respect to d =

(3+ 1)) of the action (Eq. 10.1) contribute charges in the fundamental representa-
tions: The scalars with the space indices s ∈ (7, 8) and s ∈ (5, 6) are, with respect
to this scalar space degree of freedom, before the appearance of the condensate (ta-
ble 10.1), the weak (SU(2)I) and the second SU(2)II doublets. After the appearance
of the condensate only the weak and the hyper charge Y remain the conserved
charges, so that it is the third component of τ23, which determines the hyper
charge (Y = τ23 + τ4, Eq. (10.13)) of these scalar fields, since τ4 applied on the
scalar index of these scalar fields gives zero, according to Eqs. (10.9, 10.10, 10.7).

The scalars with the space indices s ∈ (9, 10, . . . , 13, 14) are, again with respect
to this scalar space degree of freedom, colour triplets [13]. There are no additional
scalar indices and therefore no additional corresponding scalars with respect to
the scalar indices in this theory.

The scalars, however, carry additional quantum numbers Ai, the states of
which belong to the adjoint representations with respect to either τ̃Ai or τAi.
While, to reproduce the low energy phenomena, the scalar fields of all the family
quantum numbers are allowed, only those τAi are acceptable, which conserve after
the electroweak break the electromagnetic charge. The scalar fields with nonzero
vacuum expectation values carrying nonzero weak charge also due to ~τ1 would
cause nonconservation of the electromagnetic charge (see the assumption v. and
the corresponding comments in subsection 10.1.1).

The colour triplet scalars contribute to transition from antileptons into quarks
and antiquarks into quarks and back, unless the scalar condensate of the two right
handed neutrions, presented in table 10.1, breaks matter-antimatter symmetry
[13]. This condensate breaks also the SU(2)II symmetry, leaving massless (besides
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gravity) only the colour, weak and the hyper charge vector gauge fields. Also all
the scalar fields get masses through the interaction with the condensate.

When at the electroweak break the scalar fields with the scalar indices s ∈
(7, 8) originating either in ω̃abs or in those superposition ofωs ′s ′′s which conserve
the electromagnetic charge (Eq. (10.16)) get nonzero vacuum expectation values,
changing also their own masses, they bring masses to all the massless fermions
(spinors), breaking their mass protection, and to weak bosons.

Let us recognize, by taking into account Eq. (9.44) and table 9.3, that γ0 γs

appearing in {
∑
s=7,8 ψ̄γ

sp0s ψ} in the second line of Eq. (10.2), transform for
either s = 7 or s = 8 the right handed u-quark (uc1R ), weak chargeless, with the
hyper charge Y = 2

3
from the first line of table 9.3 to the left handed weak charged

u-quark (uc1L ) with the hyper charge 1
6

from the seventh line of the same table, or
that γ0 γs transform the right handed ν-lepton (νR), weak chargeless, with the
hyper charge Y = 0 from the 25th line of the same table 9.3 to the left handed weak
charged ν-lepton (νL) with the hyper charge −1

2
from the 31st line of the same

table.
Now is the time to prove that the scalar fields with the scalar index s ∈ (7, 8)

from the second line of Eq. (10.2) and with quantum numbers of Eq. (10.16) really
carry the weak and the hyper charge as required by the standard model. I introduce
in Eq. (10.16) common notation AAis for all these scalar fields, independently of
whether they origin inωabs - in this case they do not carry the additional weak or
hyper charge due to ~τA - or ω̃ãb̃s fields.

AAis ⊃ (AQs , A
Y
s , A

Y ′

s ,
~̃A1̃s ,

~̃A
ÑL̃
s , ~̃A2̃s ,

~̃A
ÑR̃
s ) ,

τAi ⊃ (Q, Y, Y ′ = − tan2 ϑ2τ4 + τ23, ~̃τ1, ~̃NL, ~̃τ2, ~̃NR) . (10.16)

These scalars, the gauge scalar fields of the generators τAi and τ̃Ai (Eqs. (10.11,
10.12, 10.9, 10.10)), are expressible in terms of the spin connection fields (Eqs. (10.14,
10.15)).

One expects that the solutions with nonzero momentum lead to higher masses
of the fermion fields in d = (3 + 1) [23,24]. We shall correspondingly pay no
attention to the momentum ps , s ∈ (4, 8), when having in mind the lowest energy
solutions, manifesting at low energies.

Scalars, which do not get nonzero vacuum expectation values, keep masses
on the condensate scale.

Let me now, by taking into account Eqs. (10.7, 10.9), calculate properties of all
scalar fields AAis of Eq. (10.13).

To do this let us first recognize

τ
1±

=
1

2
[(S58 − S67) ∓ i (S57 + S68)] , τ13 = 1

2
(S56 − S78) ,

Y = τ23 + τ4 , Q = Y + τ13 ,

and rewrite the scalar fields AAis , which determine masses of fermions and weak
bosons in Eq. (10.2), appearing in the second line of Eq. (10.2), as follows (the
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momentum ps is left out)∑
s=(7,8),Ai

ψ̄ γs (−τAiAAis ) =

−ψ†γ0{
78

(+) τAi (AAi7 − iAAi8 )+
78

(−) (τAi (AAis + iAAi8 )ψ } ,

78

(±)= 1

2
(γ7 ± i γ8 ) , (10.17)

with the summation over Ai performed, since AAis represent the scalar fields (AQs ,
AYs , AY

′

s , Ã4̃s , ~̃A1̃s , ~̃A2̃s , ~̃AÑRs and ~̃ANLs ).
Application of the operators Y and τ13 on the fields (AAi7 ∓ iAAi8 ), leads after

using Eq. (10.7) for Sab and expressions for τ13 and Y (Eq. (10.17)), to

τ13 (AAi7 ∓ iAAi8 ) = ± 1
2
(AAi7 ∓ iAAi8 ) ,

Y (AAi7 ∓ iAAi8 ) = ∓ 1
2
(AAi7 ∓ iAAi8 ) ,

Q (AAi7 ∓ iAAi8 ) = 0 . (10.18)

Since Y and τ13 give zero, if applied on the upper indices (Q, Y, Y ′) of (AQs , AYs
and AY

′

s ), as one can read from Eq. (10.15), and since Y and τ13 commute with
the family quantum numbers, one sees that the scalar fields AAis (AQs , AYs , AY

′

s ,
Ã4̃s , ÃQ̃s , ~̃A1̃s , ~̃A2̃s , ~̃AÑRs , ~̃AÑLs ), rewritten as follows, AAi± = (AAi7 ∓ iAAi8 ) , are eigen
states of τ13 and Y having the quantum numbers of the standard model Higgs’
scalars.

Let us make the notation

AAi78
(±)

= (AAi7 ∓ iAAi8 ) , (10.19)

and let us calculate what does the operator τ1± (Eq. (10.17)) make if applied on
AAi78

(±)

. Taking into account Eqs. (10.7, 10.9) one finds that

τ1�AAi78
(±)

= (AAi5 ∓ iAAi6 ) =: AAi56
(±)

,

τ1�AAi78
(±)

= 0 . (10.20)

The scalar fieldsAAi56
(±)

are all massive fields with the masses of the condensate scale

(table 10.1), while the scalar fields AAi78
(±)

change masses at the electroweak break.

Using Eqs. (9.46, 9.44, 9.54) one finds that γ0
78

(−)AAi78
(−)

transforms the right

handed uc1R quark from the first line of table 9.3 into the leftt handed uc1L quark
from the seventh line of the same table, which can be also interpreted in the
standard model way, namely, that AAi78

(−)

”dress” uc1R giving it the weak and the hyper

charge of the left handed uc1L quark, while γ0 changes handedness. Equivalently
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happens to νR from the 25th line, which the action of γ0
78

(−) AAi78
(−)

on it transforms

into the νL from the 31th line, which again can be interpreted in the standard model
way: With the action of γ0 and the ”dressing” of AAi78

(−)

on νR, transforming it into
νL.

The action of γ0
78

(+) AAi78
(+)

transform dc1R from the third line of the same table

into dc1L from the fifth line of this table, or eR from the 27th line into the eL from the
29th line. One can use in this two cases, knowing the properties of the scalar fields
(Eq. (10.18)), again the standard model interpretation, in which the scalar fields AAi78

(+)

take care of the weak and the hyper charges of the right handed members dc1R
and eR by ”dressing” them with the appropriate weak and the hyper charges,
while γ0 changes handedness. In the standard model there is the scalar Higgs and
the Yukawa couplings, which take care of fermion and also of the weak boson
properties.

In the spin-charge-family theory there are several scalar fields, which determine
the mass matrices of the two groups of four families.

When the scalar fields (AQ78
(±)

, AY78
(±)

, AY
′

78
(±)

, ~̃A1̃78
(±)

, ~̃A
ÑL̃
78
(±)

, ~̃A2̃78
(±)

, ~̃A
ÑR̃
78

(pm)

) from

Eq. (10.16) get nonzero vacuum expectation values, they determine mass ma-
trices of family members - of quarks and leptons - of the lower (carrying the family
quantum numbers (~̃τ1, ~̃NL)) and the upper (carrying the family quantum numbers
(~̃τ2, ~̃NR)) four families, since they carry the weak and the hyper charge (Eqs. (10.9,
10.10)) which breaks the mass protection mechanism of quarks and leptons.

We clearly see that all the scalars AAi78
(±)

have the following properties:

(τ13 , Y)AAi78
(±)

= ± (
1

2
,−
1

2
)AAi78

(±)

. (10.21)

The scalars AAi78
(−)

obviously bring the right quantum numbers to the right handed

partners (uR, νR), and the scalars AAi78
(+)

give the right quantum numbers to (dR,

eR).
The scalar fields AAi78

(±)

are in the spin-charge-family theory triplets with respect to

the family quantum numbers ( ~̃NR, ~̃NL, ~̃τ2, ~̃τ1; Eqs. (10.11, 10.12)) or singlets as the
gauge fields of Q = τ13 + Y, Y = τ23 + τ4 and Y ′ = − tan2 ϑ2τ4 + τ23.

One can prove this by applying τ̃23, τ̃13, Ñ3R and Ñ3L on their eigen states. Let
us do this for ÃNLi78

(±)

and for AQ78
(±)

, taking into account Eqs. (10.11), and recognizing
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that Ã
NL±
78
(±)

= ÃNL178
(±)

∓ i ÃNL278
(±)

(Eq. (10.7)).

Ñ3L Ã
ÑL±
78
(±)

= ± Ã
ÑL±
78
(±)

, Ñ3L Ã
ÑL3
78
(±)

= 0 ,

Ã
ÑL±
78
(±)

= {(ω̃
2̃3̃
78
(±)

+ i ω̃
0̃1̃
78
(±)

) ∓ i (ω̃
3̃1̃
78
(±)

+ i ω̃
0̃2̃
78
(±)

)} ,

ÃÑL378
(±)

= (ω̃
1̃2̃
78
(±)

+ i ω̃
0̃3̃
78
(±)

)

QAQ78
(±)

= 0 ,AQ78
(±)

= ω
56
78
(±)

− (ω
9 10

78
(±)

+ω
11 12

78
(±)

+ω
13 14

78
(±)

) , (10.22)

with Q = S56 + τ4 = S56 − 1
3
(S9 10 + S11 12 + S13 14), and with τ4 defined in

Eq. (10.10)).
To masses of the lower four families only the scalar fields, which are the

gauge fields of ~̃NL and ~̃τ1 contribute. (To masses of the upper four families only
the gauge fields of ~̃NR and ~̃τ2 contribute.) The three scalar fields AQ78

(±)

, AY78
(±)

and

A478
(±)

”see” the family members quantum numbers and contribute correspondingly

to all the families.
The scalar fields, with the weak and the hyper charge in the fundamental

representations (Eq. (10.21)) and the family charges in the adjoint representations,
transform any family member of the lower four families into the same family
member belonging to one of the lower four families (while those with the family
charges of the upper four families transform any family member into the same
family member belonging to one of the upper four families).

In loop corrections all the scalar and vector gauge fields which couple to
fermions contribute.

The mass matrix of any family member, belonging to any of the two groups
of the four families, manifests - due to the S̃U(2)(L,R) × S̃U(2)(I,II) (either (L, I) or

(R, II)) structure of the scalar fields, which are the gauge fields of the ~̃NR,L and
~̃τ2,1 - the symmetry presented in Eq. (10.23) 7.

Mα =


−a1 − a e d b

e −a2 − a b d

d b a2 − a e

b d e a1 − a


α

. (10.23)

Let us summarize this section: It is proven that all the scalar fields with the
scalar index s ∈ (7, 8), which gain nonzero vacuum expectation values and keep
the electromagnetic charge conserved, carry the weak and the hyper charge quan-
tum numbers as required by the standard model for the scalar Higgs (Eq. (10.21)):

7 Since the upper four families interact with the condensate of the two right handed
neutrinos, which carry the family quantum numbers of the upper four families, the
symmetry of the mass matrix presented in Eq. (10.23) is the symmetry of the upper four
families.
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(τ13 , Y)AAi78
(±)

= ± (1
2
,−1

2
)AAi78

(±)

. These are the only scalar fields in this theory with

the quantum numbers of Higgs’ field.
These scalar fields carry additional quantum numbers: The family quantum

numbers. The nonzero vacuum expectation values of the scalars with the space
index s =∈ (7, 8) determine on the tree level the mass matrices of the two groups
of four families. While the scalars with the family quantum numbers (~̃1, ~̃NL)
contribute to mass matrices of the lower four families, contribute those with the
family quantum numbers (~̃2, ~̃NR) to masses of the upper four families and those
with the family members quantum numbers (Q, Y, Y ′) to any of these two groups
of four families. In loop corrections in all orders the mass matrices of the two
groups of four families follow.

All the other scalar fields: AAis , s ∈ (5, 6) and AAitt ′ , (t, t
′) ∈ (9, . . . , 14) have

masses of the order of the condensate scale and contribute to matter-antimatter
asymmetry.

10.3 Conclusions

The spin-charge-family [1,2,7,6,3–5,8,12,9,10] theory, a kind of the Kaluza-Klein
theories [15] with the families introduced by the second kind of gamma operators
(γ̃a in addition to the Dirac γa), is offering the explanation for the properties of
quarks and leptons (right handed neutrinos are in this theory regular members
of each family) and antiquarks and antileptons, for the appearance of the gauge
vector fields and of the scalar Higgs and Yukawa couplings. All these are in the
standard model just assumed.

The theory offers the explanation why are the weak and hyper charges of
fermions connected with their handedness (table 9.3) and where do the scalar
fields originate (Eqs. (10.14, 10.15)).

It also explains why do the scalar fields carry the weak and the hyper charges
as assumed by the standard model (Eq. (10.18)): (τ13 , Y)AAi78

(±)

= ± (1
2
,−1

2
)AAi78

(±)

,

where τ13 denotes the third component of the weak charge, Y the hyper charge,
Ai denotes (Q, Y, Y ′) (originating in the first kind γa of the Clifford algebra objects)
and all the family quantum numbers (originating in the second kind of the Clifford
algebra objects γ̃a). While γa, through Sab, determine all the spin and the charges
of families, determine γ̃a, through S̃ab, the family quantum numbers.

The spin-charge-family therefore, starting with the simple action (Eq.(10.1)) in
d = (13+ 1) for spinors (carrying two kinds of gamma operators) and interacting
with the gravity only (with the vielbeins and the two kinds of the spin connection
fields), differs essentially from the unifying theories of Pati and Salam [21], Georgi
and Glashow [27] and other SO(10) and SU(n) theories [28], although all these
unifying theories are answering some of the open questions of the standard model
and accordingly have many things in common - among themselves and with the
spin-charge-family theory.

The spin-charge-family theory predicts two decoupled groups of four fami-
lies [7,6,9,10]: The fourth of the lower group of families will be measured at the
LHC [11] and the lowest of the upper four families constitute the dark matter [10].
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It also predicts that there will be several scalar fields observed sooner or later at
the LHC.

Besides the scalar fields with the space index s ∈ (7, 8), which by getting
non zero vacuum expectation values cause the electroweak break and take care of
massless of fermions and the weak bosons, all the other scalar fields get, through
the interaction with the scalar condensate of two right handed neutrinos with the
family quantum numbers of the upper four families, masses of the condensate
scale. There are also only weak, hyper and the colour vector gauge bosons which
stay massless up to the condensate scale, since they do not interact with the
condensate. The scalar fields with the scalar space index s =∈ (9, . . . , 14) are
colour triplets with respect to the scalar space index and cause, after interacting
with the condensate, matter-antimatter asymmetry [13].

All the scalar fields are in the fundamental representations (Eq. ([13])) with
respect to the space index. They resemble the supersymmetry particles, although
they are not, since they do not meet all the requirements for the bosonic partners
of fermions.

Starting with few assumptions, presented in the introduction 10.1 (i.- iv.), I
show that the spin-charge-family theory is not only offering the explanation for the
so far measured phenomena, with the origin of the dark matter and the scalar
fields included, but offers also the predictions for new families (the fourth to the
observed three families will be measured at the LHC, the fifth - the lowest of the
upper four families - forming baryons [10] explains the appearance of the dark
matter) and new scalar fields (there are two triplets and three singlets: AQs , AYs ,
AY

′

s , ~̃A1̃s , ~̃AÑLs , Eqs. (10.14, 10.15, 10.16), which determine properties of the four
lower families - the Higgs and the Yukawa couplings of the standard model [2,1]).
The theory might be able also to answer questions about the (ordinary, mainly
made out of the first family) matter/antimatter asymmetry, which is discussed
in a separate paper [13]. The quantum numbers of the condensate, responsible
for breaking C P symmetry, are presented in this paper (table 10.1). The same
condensate makes massive scalar and vector gauge fields which would otherwise
be as massless observed at low energies.

Although the spin-charge-family theory starts in d = (13 + 1) dimensional
space with the spin connection fields of two kinds (having the origin in γa and
in γ̃a) and with the vielbeins - all these look like having a very large number of
degrees of freedom - it leads under the assumption that there is a condensate of
two right handed neutrinos carrying the quantum numbers of the upper four
families and that there are scalar fields, which obtain nonzero vacuum expectation
values causing the electroweak break, naturally (what means that all unobserved
fields of both origins get masses without additional requirements) at the low
energy regime to the observed fermion and vector gauge boson fields.

This paper presents, by explaining that in this theory there are the scalar fields,
which carry the quantum numbers of the scalar Higgs scalars and correspondingly
offering the explanation for the appearance of the scalar Higgs and the Yukawa
couplings, a further step towards understanding the properties of quarks and
leptons and in particular of those scalar fields (section 10.2), which determine
mass matrices of quarks and leptons.
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It stays to be solved, why and how does the condensate of the two right
handed neutrinos with the family quantum numbers of the upper four families
appear and why do scalars, with the weak and the hyper charge required by the
standard model, gain non zero vacuum expectation values.
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DMFA Založništvo, Ljubljana December 2013, p. 31-51, [arxiv:1403.4441].
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Holger Bech Nielsen, Colin Froggatt, Dragan Lukman, DMFA, Založništvo, Ljubljana,
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Abstract. Bosonic string theory with the possibility for an arbitrary number of strings —i.e.
a string field theory— is formulated by a Hilbert space (a Fock space), which is just that
for massless noninteracting scalars. We earlier presented this novel type of string field
theory, but now we show that it leads to scattering just given by the Veneziano model
amplitude. Generalization to strings with fermion modes would presumably be rather
easy. It is characteristic for our formulation /model that: 1) We have thrown away some
null set of information compared to usual string field theory, 2)Formulated in terms of
our “objects” (= the non-interacting scalars) there is no interaction and essentially no time
development(Heisenberg picture), 3) so that the S-matrix is in our Hilbert space given as
the unit matrix, S = 1, and 4) the Veneziano scattering amplitude appear as the overlap
between the initial and the final state described in terms of the “objects”. 5) The integration
in the Euler beta function making up the Veneziano model appear from the summation
over the number of “objects” from one of the incoming strings which goes into a certain
one of the two outgoing strings.

Povzetek. Novo bozonsko teorijo strun sta avtorja formulirala na Hilbertovem (Fockovem)
prostoru brezmasnih skalarjev, ki ne interagirajo. Teorija dopušča posplošitev na poljubno
število strun, tedaj na strunsko teorijo polja. Avtorja v tem prispevku pokažeta, da je njuna
sipalna amplituda enaka amplitudi v Venezianovem modelu. Kaže, da je posplošitev njune
bozonske teorije strun na fermionsko enostavna. Bistveno za njuno teorijo strun je: 1) V
primerjavi z običajno strunsko teorijo ima njuna teorija manjše število privzetkov. 2) Njuno
struno sestavljajo enaki skalarni ”objekti”, med katerimi ni nobene interakcije in v bistvu
tudi nobenega časovnega razvoja (Heisenbergova slika). 3) Sipalna matrika S je v njunem
Hilbertovem prostoru kar enotska matrika, S = 1. 4) Venezianova sipalna amplituda sledi iz
prekrivanja med začetnim in končnim stanjem njunih skalarnih ”objektov”. 5) Integriranje
Eulerjeve beta funkcije Venezianovega modela sledi v njunem primeru iz seštevanja po
skalarnih ”objektih” ene od prihajajočih strun, ki gre v eno od dveh odhajajočih strun.

? OIQP-14-10
?? E-mail: hbech@nbi.dk, hbechnbi@gmail.com

??? E-mail: msninomiya@gmail.com
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11.1 Introduction. . .

We have already earlier put forward [1–3] ideas towards a novel string field theory
(meaning a second quantized theory of strings from string theory [4–7,9]), which
of course means the theory[10–18] in which you can describe several strings like
one describes several particles at a time in in quantum field theory. It may be
understood that we as other string field theories in or theory have a Hilbert space
or Fock space the vectors of which describe states of the whole universe in the
string theory. Our model is similar to the formulation of Thorn [19] and also use a
discretization like ourselves, but we discretize after having separated right and left
movers as we shall see below. This Hilbert space, which describes the states of the
universe, turns in our model/formulation out to be really surprisingly simple in
as far as it is simply the second quantized Fock space of a non-interacting massless
scalar 25 +1 dimensional particle theory in the bosonic string case!

Let it be immediately be stated that although our formulation/model is
supposed just a rewriting of string theory - and thus in its goal there is nothing
new fundamentally - it is definitely new because we throw away compared to
usual string theory and usual string field theory as Kakku and Kikkawa’s and
Witten’s a null set of information. The information, which we throw away is the one
about how the different pieces of strings hang together. That is to say we rather
only keep the information about where in target space time you will find a string
and where not. Due to this throwing away of information and other technically
doubtful treatment of the string theory by us it is a priori no longer guaranteed
that our string field theory appearing as just the non-interacting massless scalar
theory in 25+1 dimensions is indeed just a rewriting of string theory. Rather one
should see our progresses such as the derivation of the string spectrum [3] in
reproducing usual properties of string theory from our model/formulation as
tests that indeed our model is in spite of the null set of information thrown away
indeed the full string theory.

The major achievement in the present work is also such a test, namely testing
that our model/formulation leads to the Veneziano model scattering amplitude
for scattering of strings formulated in our novel string field theory.

The particles that formally occurs in the construction of our Hilbert space or
Fock space of our model or formulation of string theory we call “even objects”
and each such “even object” has in our formulation a kind of momentum variable
set Jµ ( it is proportional to a contribution to the total momentum of the string to
which it belongs). Really this Jµ has as some technical details got its longitudinal
momentum (in target space time of 25 +1 dimensions) component J+ = J0 + J25

fixed by what corresponds to a gauge choice in the string parameterization to be

J+ =
aα ′

2
, (11.1)

(We shall below that we end up being driven to also allow J+ = −aα
′

2
) and its

infinite momentum frame energy proportional component J− = J0 − J25 is written
just by the mathematical expression ensuring the light-likeness

(Jµ)2 = ηµνJ
µJν = 0 (11.2)



i
i

“proc14” — 2014/12/8 — 18:22 — page 185 — #199 i
i

i
i

i
i

11 Deriving Veneziano Model in a Novel String Field Theory. . . 185

of the “even object” momentum-like Jµ variable. Thus the only genuine degrees of
freedom components of this even object variables Jµ are the “transverse” compo-
nents corresponding to the first 24 components, namely those having µ = i where
i = 1, 2, 3, ..., 24, i.e. Ji. In addition the “even objects” have 24 conjugate momenta
Πi, conjugate to the Ji’s, so that

[Πi, Jj] = iδij (11.3)

for Πi and Jj belonging to the same even object of course.
Our Hilbert space for states of the universe corresponds now simply to a set

of harmonic oscillators, one for every set of Ji-value combinations (of 24 real num-
bers), and the creation operator for an “even object” with its Ji’s being Ji is denoted
a†(Ji). Since there is a calculational relation between the set Ji of the transverse
components and the full 26-vector Jµ given by adding the equations (11.1, 11.2), we
could equally well use as the symbol in the creation and annihilation operators Jµ

as the symbol Ji, and so we have by just allowing both notations a†(Ji) = a†(Jµ),
where it is understood that the Jµ is calculated from the only important transverse
components Ji. Similarly the destruction operators are a(Jµ) = a(Ji) and we shall
think of the Hilbert space describing the states of the Universe (in a string theory
world) as having basis vectors of the type

a†(Ji(1))a†(Ji(2)) · · ·a†(Ji(L))|0 > . (11.4)

To tell the truth we though better reveal the little technical detail, that this simple
situation with only one type of “ even objects” that can exist in the states described
by (Ji, Πi) is only true for the case of a string theory model with open strings, while
we for the case of a string theory with only closed strings must have two kind of
even objects that can be put into the 24 or 26=25+1 dimensional (Minkowski) space,
one right denoted by R and one left denoted by L. So in the only closed string
case we could even naturally consider it that the two types of even objects “live”
in two different Minkowski spaces - one R and one L-. The figure 11.1 illustrates
these two slightly different cases. The connection between the strings present in a
given state of the universe and the even objects corresponding to a set of strings is
a priori not completely trivial and has to be described. It is not hundred percent
true that the strings consist of even objects, but there is so much about it that there
is an actually infinite number of even objects corresponding to each string present.
This divergent number of many even objects in a string is given as a function of
the small parameter a already mentioned in formula (11.1).

11.2 Correspondence from Strings to Objects

The crux of the matter in the formulation of our string field theory model or
formulation is to put forward the rule for how a given string state is translated
into a state described in terms of a state of what we call “even objects”:

In the case of a theory with only closed strings we shall make use of the
solution in the conformal gauge for the 26-position fields Xµ(σ, τ) in terms of right and
left movers. Remember that the time-development of a string in string theory is
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described by letting its timetrack - which of course becomes a two-dimensional
surface in the 25+1 dimensional “target space” - be parameterized by the two
real variables called σ and τ. At first one may think of these parameters as pa-
rameterizing the timetrack surface in an arbitrary way and therefore one even
has to have an action - the Nambu(-Goto) action - chosen so as to be invariant
under reparameterization, meaning that one goes over to a new set of coordinates
parameterizing the timetrack (σ ′, τ ′) = (σ ′(σ, τ), τ ′(σ, τ)). This requirement of
reparametrization invariance fixes up to an overall constant the action to be given
by the area of the timetrack surface

Single string action = SNambu ∝ area =

∫√
det

(
(Ẋµ)2 Ẋµ · X ′µ
Ẋµ · X ′µ (X ′µ)2

)
dσdτ,

(11.5)
where we have as usual denoted

Ẋµ(σ, τ)
def
=
∂Xµ(σ, τ)

∂τ
(11.6)

X ′µ(σ, τ)
def
=
∂Xµ(σ, τ)

∂σ
. (11.7)
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For an open string the timetrack is like a band extending in the time direction, while
for a closed string the track is topologically like a tube/cylinder also extending
roughly in time direction.

Now one usually in steps fix the “gauge” meaning the parameterization, i.e.
the choice of a new set of coordinates which we again may call (σ, τ)(leaving out
the prime on (σ ′, τ ′)). The first step in the gauge choosing is what is called con-
formal gauge choice and corresponds to arranging the coordinate equal constant
curves to be orthogonal seen from the external/target space of 25+1 dimensions.
Often in literature one works with Euclideanized σ and τ as if the string timetrack
were a two dimensional Euclidean space, but thinking physically on a true string
the space felt by a being living attached onto the string would be a 1+1 dimensional
space time with one time dimension and one spatial dimension. For the thinking
of the present article and our foregoing works on our novel string field theory we
shall take this latter - more physical - point of view that the internal space time is
indeed a space-time. We think of τ as the time coordinate and of σ as the spatial
coordinate along the string.

After having chosen the “conformal gauge” the equation of motion derived
from the Nambu action at first simplifies and together with the constraints ap-
pearing due to the reparameterization symmetry of the original action we can
summarize the equations in the conformal gauge:

�Xµ(σ, τ) = 0(equation of motion) (11.8)

(Ẋµ(σ, τ))2 − (X ′µ(σ, τ))2 = 0 (constraint) (11.9)

Ẋµ(σ, τ) · X ′µ(σ, τ) = 0(constraint also). (11.10)

Here the D’Alambertian

� = ∂2τ − ∂
2
σ = (∂τ − ∂σ)(∂τ + ∂σ), (11.11)

and the eqations of motion are easily solved by the ansatz

Xµ(σ, τ) = XµR(τ− σ) + X
µ
L(τ+ σ), (11.12)

which is importance for our novel string field theory in as far as it is actually the
τ-derivatives of the 26-vectorial functions in the solution XµR(τ− σ) and XµL(τ+ σ),
which are going to be identified as we shall see soon by our “objects”. Note
immediately, that these right and left mover variables XµR and XµL only depend on

one variable each, namely respectively on τR
def
= τ− σ and τL

def
= τ+ σ, so that the

equations of motion with τ conceived of as the time have indeed been solved. The
ansatz functions XµR and XµL are more like initial conditions for the solution.

In terms of these initial condition variables XµR and XµL the constraints take the
very simple form

(ẊµR(τR))
2 = (ẊµR(τ− σ))

2 = 0(constraint) (11.13)

(ẊµR(τL))
2 = (ẊµR(τ+ σ))

2 = 0(constraint) (11.14)

The overview of description of our object rewriting of the string theory is that
we let there be an object for every point in (a period for) the coordinates τR and
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τL in the case of only closed strings, and that the objects are closely related to the
variables ẊµR and ẊµL . For continuity of these variables as functions of respectively
τR and τL the images of these functions ẊµR and ẊµL are - except for fluctuations at
least - smooth curves, because of the constraints (11.14) these curves must lie on
the lightcone(s).

Since we can also consider the variables τR and τL as σ-variables for constant
τ the periodicity w.r.t. σ of the position variables etc. - for in fact both open and
closed strings- but at least clearly for the closed strings, comes to imply that the
just mentioned images for ẊµR and ẊµL become closed curves on the light cone.

Two points further are illustrated by the figure 11.3: 1) We “discretize”, so
that we replace the in principle continuum infinity of τR or τL values by a series
of discrete points with a “distance between these points” being proportional to a
small quantity a later taken to go to zero. 2) We treat the even numbered and the
odd numbered “discretized points” differently, as is on the figure illustrated by
them being denoted differently by dots and crosses.

11.2.1 Open String Case

The open string case has a tiny technical complication:
At the boundaries of the open string one has boundary conditions which are

translated into our model favorite language of ẊµR and ẊµL implies

ẊµL(τ) = Ẋ
µ
R(τ)from boundary at σ = 0

ẊµL(τ) = Ẋ
µ
R(τ− 2π)from the σ = π end boundary., (11.15)
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where we assumed the notation that the length of the string in σ-parameter lan-
guage is π. These two boundary conditions (11.15) imply that we can identify, for
the open string, the ẊR = ẊL and have that this common (differentiated)“initial
condition variable” must be periodic with the period 2π meaning twice the σ-
variable range corresponding to the string length. Thus in the beginning an-
nounced we got the fact that while we for only closed string theories have to
distinguish ẊR and ẊL, this is no longer needed for an open string.

11.2.2 More Precise Correspondence between Strings and “even objects”

More precisely we shall divide up into “discretized” pieces the σ range around
a closed string or the tour forward and backward along an open string into, let
us say, N pieces. What we really want, is to divide up a period for say ẊµR in its
argument τR (and in the closed case the same for ẊL, while in the open string case
just identify the left and right mover variables because of boundary conditions).
The precise way of dividing up could be thought of as dividing in equal steps in the
variable, say τR, but there is still some coordinate specification/gauge choice left
even after the conformal gauge choice. In fact one can still as such a rudimentary
freedom of choosing coordinates select any (increasing) function τ ′R(τR) and any
(increasing) function τ ′L(τL) as a new set of coordinates (having in the background
of the mind the identifications τ ′ = τ − σ ′ and τL = τ + σ). By discretizing we
replace essentially a variable as τR by an integer valued variable - counted modulo
N ifN corresponds to the period -, so that the τR value corresponding to the integer
I is denoted τR(I). Interpolating we can easily make an approximate sense of even
τR defined for non-integer values of I. Thus we formally associate any string with
a series something we call “objects”- and which is something only defined in our
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model -, which are characterized each by a set of degrees of freedom (as if it were
particles): JµR and the conjugate variables Πµ or better only Πi where the i only
runs over the transverse coordinates i = 1, 2, ..., 24. The reader may crudely think
of these objects as a kind of partons, but really we simply have to define them by
their relation to the ẊµR (and for the closed string case also to the separate ẊµL). To
every discretization point on the τR axis say, let us say discretization point number
I, we associate an “object” for which the dynamical variables JµR(I) are given as

JµR(I) = X
µ
R(τR(I+ 1/2)) − X

µ
R(τR(I− 1/2)). (11.16)

Notice that since the difference between the two argument values τR(I− 1/2) and
τR(I+ 1/2) is small this definition of JµR(I) for a discretization point on the τR-axis
in reality means that

JµR(I) ≈ Ẋ
µ
R

dτR

dI
, (11.17)

and so indeed as announced our variables JµR assigned to the “objects” are “essen-
tially” the τR-derivative ẊµR of the right mover XR part of the solution.

11.2.3 The Even Odd Detail

Now there is an important technical detail in the setup of our model:
We have the problem that if one shall make creation and annihilation operators

for some “objects” in a way analogous to how one in usual quantum field theory
have creation and annihilation operators for particles, one shall describe these
creation and annihilation operators by having an argument for a set of variable
describing the “object”, a set of variables which commute with each other. It is
indeed well-known that one must in quantum field theory either take the creation
and annihilation operators to be functions of the spatial momenta of the particles
created/annihilated or one can use instead position variables, and that corresponds
to working with the second quantized fields φ(x). But the usual simple mutual
commutation rules for creation and annihilation operators could not be obtained if
one would attempt to construct them to correspond to a combination of dynamical
variables for the particles that did not commute with each other. What could also
a creation operator depending on mutually complementary variables for a single
particle correspond to creating ? It could not create a particle with the specified
quantum numbers in such a case because that would be against the Heisenberg
uncertainty relation. In the corresponding way we must choose whatever variables
we let our “objects”, to be associated with creation, and annihilation operators
depend on be arranged so as to commute. But then we have problem, because
does our ẊµR ’s which are proportional to the object-variables JµR commuting? No,
they do not commute in as far as the theory of a single starting from the Nambu
Lagrancian e.g. in the conformal gauge leads to

[ẊµR(τ
′
R), Ẋ

ν
R(τR)] ∝ gµνδ ′(τ ′R − τR). (11.18)

Thinking discretizing, such a derivative of a delta-function commutator means
that in the discretized chain the ẊR or equivalently JR ’s which are next neighbors
do NOT commute.
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So we had to invent a trick to avoid to have to make creation and annihilation
operators for “objects” sitting in the chains of “objects” along the variable τR as
neighbors in the discretization.

The trick which we have chosen consists in only using in the creation and
annihilation operators every second of the by discretization by (11.16) defined “object”-
variables JR. That is to say we choose to only construct creation and annihilation
operators for those “objects”, which in the discretized series of objects for a given
string have got an even number I. One could say that we in our model construct
our Hilbert space only in terms of such “even objects”, and one could almost say
only consider these “even objects” as “really existing” in our basic Hilbert space
description.

But then we are coming to the problem that we need to a full description of
the string states also the “odd objects”: what to do about them? We say that when
you have a series of the “even objects” on a string, we make the rule to construct
in between any two next to neighboring “even objects” (i.e. two “even objects ”
deviating in number by just 2) an “odd object” from the conjugate momenta Πi

say of the neighboring “even objects”. ( There is another technical detail connected
with the + and - components in the infinite momentum frame we have chosen
to work with, so we shall avoid discussing conjugate momenta to other than the
transverse components JiR - the first 24 components -. Therefore we only consider
these first 24 components of conjugate momenta to the JR’s). In fact we have to
take the following rule for constructing the “odd object” JiR components for the
“odd object” number I (where I then is an odd integer (modulo the even number
N)),

JiR = −πα ′(ΠiR(I+ 1) − ΠR(I− 1)), (11.19)

in order to obtain the commutation rule corresponding to the derivative of delta
function commutation rule (11.18) discretized.

The reader should check and understand that with this construction of the
“odd objects” any quantum state of the string expressed as a state of the variables
ẊiR ( and for the closed string also ẊiR) can be expressed as a corresponding
quantum state of a set of N/2 ( Nmust be even) “even objects”, because the even
object commutation rules

[JiR(I), Π
k
R(K)] = iδ

ikδIK (11.20)

corresponds just to the commutation rules for the ẊiR ( and ẊiL). There is though
one little technical detail to be studied in later works: The absolute position of
the string were differentiated away from our discussion by dotting the XR and
XLand correspondingly the formula for the “odd objects” does not make use of
the sum over all the “even object” conjugate variables ΠiR around the closed chain.
So there is suggestively the possibility of identifying the average position of the
string proportional to this sum over all the conjugate to even object variables.

11.2.4 Several Strings

So far we should have now given the prescription for constructing a cyclically
ordered chain of “even objects” corresponding to a given quantum state of a single
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open string. (If one wants a closed string one shall construct two cyclically ordered
chains of “even objects” one for right movers consisting of JR “even objects” and
consisting JL left mover “even objects”). Since the commutators were arranged to
isomorphic to the discretized ẊR ( and ẊL) it should be possible to construct such
an “even object” state. It is then of course also trivial and completely analogous to
usual quantum field theory construction of a state withN/2 particles to construct a
Hilbert space ( Fock space) state forN/2 of our “even objects”. Corresponding to a
single open string we thus simply have Hilbert space state with the large (divergent
in the limit of a→ 0) infinitely many (= N/2) “even objects” sitting approximately
in a cyclic chain on the light cone in a 25 +1 dimensional (Minkowskian) JµR-space.

But now it is the main point of a model being a string field theory (SFT),
that such a model can describe several strings in one Hilbert space state. Once we
have made our formulation of one string in our “even object” formulation it is,
however, rather trivial to construct states with an arbitrary number of strings. One
can just act on the “zero even object” with all the product of creation operators
corresponding to the various strings - we want to have in the state to be described -
each creating the “even objects” associated with the string in question. So to speak
if string number 1 is described by the product

C1|0 > =

∫
Ψ1(J

I
R(0), J

i
R(2), ..., J

i
R(N− 2)) ·

ΠI=0,2,4,...,N−2a
†(JiR(I))

·ΠI=0,2,...,N−2Πi=1,2,...,24dJ
i
R(I)|0 >, (11.21)

where Ψ1(JIR(0), J
i
R(2), ..., J

i
R(N− 2)) is the wave function for the state of the single

string 1 described in terms of “even objects”, and the string number 2 by an
analogous expression, then a state with both string 1 and string 2 (say they are
open) is given as

C1C2|0 > =

∫
Ψ1(J

I
R(0), J

i
R(2), ..., J

i
R(N− 2))

ΠI=0,2,4,...,N−2a
†(JiR(I))ΠI=0,2,...,N−2Πi=1,2,...,24dJ

i
R(I)

·
∫
Ψ2(J

I
R(0), J

i
R(2), ..., J

i
R(N− 2))ΠI=0,2,4,...,N−2a

†(JiR(I))

ΠI=0,2,...,N−2Πi=1,2,...,24dJ
i
R(I)|0 > . (11.22)

Luckily the commutation of the creation operators for “even objects” makes it
unnecessary to specify any order in which the creation operator products corre-
sponding to different strings have to be written.

We thus have a scheme for constructing Hilbert space states - in the Hilbert
space which is really that of massless scalar “even objects” conceived of as particles
in an ordinary Fock space - corresponding to any number of strings wanted. In
this sense we have a string field theory.

11.2.5 Final Bit of Gauge Choice

As already mentioned the choice of parameterization (often called gauge choice)
were not finished by the conformal gauge, since we could still transform the vari-



i
i

“proc14” — 2014/12/8 — 18:22 — page 193 — #207 i
i

i
i

i
i

11 Deriving Veneziano Model in a Novel String Field Theory. . . 193

ables τR and τL by replacing them by some increasing function of themselves. In
the “infinite momentum frame gauge” the choice is to fix this freedom by requiring
the density of P+ = P0 + P25 (longitudinal momentum we can say) momentum
is constantly measured in say τR = τ − σ or say in σ. When we discretize as
described above and take it that the τR distance between neighboring “objects”
along the τR-axis should be the same all along, then this gauge choice comes to
mean that each object gets the same P+ momentum. We can therefore describe this
gauge choice - which is essentially the usual one in infinite momentum frame, just
discretized our way - by saying that we impose some fixed small value for the +

component of our “object”(-variables)

J+R =
aα ′

2
in our first attempt (later problem comes). (11.23)

With this gauge choice we have made the number of objects N and thus of “even
objects” N/2 proportional to the P+ = P0 + P25 component of the 26-momentum
of the string in question. So e.g. the conservation of this component of momentum
corresponds to the conservation of the number of say “even objects”. After this
choice of gauge extremely little is left to be chosen for the reparameterization: you
can still for the closed string shift the starting point called σ = 0, but that is all.
Corresponding to this extremely little reparameterization left unfixed you can still
cyclically shift along the topological circles on which the objects of a string sits,
and that turn out due to the possibility for adding a constant to τ also to be true
for the open string. The objects corresponding to a cycle for a string are cyclically
order but the starting point is still an unchosen gauge ambiguity. To an open string
we have one such loop or cycle, and to a closed one we have two.

11.3 Comparing Our String Field Theory to Other Ones

It should be stressed that our “novel” string field theory really is novel/new,
since it deviates from earlier ones like Kakku and Kikkawa or Wittens string field
theories in important ways even if some calculations should soon turn out similar:

• 1. The information kept in our formalism is not the full one kept by the theories
by Kaku Kikkawa or by Witten, but deviates by having relative to these other
string field theories thrown out - actually only a null set of - information. It is
the information about how the strings hang together, that is thrown out. We
could say that we - Ninomiya and Nielsen - only in our rewritten string states
keep track of where in the space time you may see a piece of string, but not of
how one piece hangs together with another piece. If a couple of strings cross
each other there is a point in target space wherein four pieces of string meet,
two belonging to each of the crossing strings. In usual string field theories,
such as Kaku and Kikkawa [10] and Witten’s[11], it is part of the information
kept in the Hilbert space vector describing the state of the universe which
of these 4 pieces are connected to which. In our formulation, however, this
information has been dropped.
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• 2. A further consequence of this drop of information is that if two strings scat-
tering by just exchanging tails - as one must think scattering should typically
happen classically - then really nothing have to happen at all in our formalism.
Indeed it is a second characteristic property of our string field theory model,
that in the scattering counted in terms of our “even objects” (which are the
ones truly represented in the Hilbert space; the odd ones are just mathematical
constructions from the conjugate variables for the “even” ones) nothing hap-
pens! The scattering process is not represented in the Hilbert space formalism
of ours.

• 3. A consequence of item2. is that the S-matrix gets calculated formally as an
overlap of the initial with the final state.

• 4. And this fact is also connected with that the Hilbert space or Fock space
of our formulation is the extremely simple free massless scalar Fock space.
Actually though there is gauge fixing, that makes the states of the “even objects”
even have their J+ components fixed by (11.1). This is contrary to the other
string field theories which have much more complicated structures.

• 5. But perhaps the most important distinction for the other string field theories
is that we use a description in terms of something quite different from the strings
themselves, namely our ‘even objects”, while the other string field theories have
quite clearly all through their formalism the strings one started from. In ours
the string has been hit to the extent that we at the end must ask: What hap-
pened to the string? The answer is roughly that there is no string sign left in
the Hilbert space structure of being only that of free massless scalars. Rather
the string in our formalism only finds way into the calculations via the initial and final
states put in! That is to say that in our formalism it looks that the whole story
of the strings only will appear because there is an extra “stringy” assumption
put in about the initial state - and presumably it is necessary even to put it in
for the final state - so that the whole string story is not part of the structure
of the theory nor of the equation of motion, but rather on an equal level with
the cosmological start of the Universe, or the initial conditions of low entropy
allowing there to be a second law of thermodynamics. If it should turn out that
indeed even extra assumptions about the final states are needed to make our
formalism function as a string theory, then one could say that in our formalism
an influence from future is required.

With all these deviations from the usual string field theories, one may worry
whether our rewriting truly is a rewriting and thus can count as a true string field
theory, because does it indeed describe the conventional string theory, or could it
be that we had thrown away too much (even though only a null set)?

Because of this possibility that our model does not truly represent string
theory at the end it becomes important - also for the purpose of testing if our
model is string theory - to check the various wellknown features of string theory.
We have not long ago published an article [3] in which we showed that the mass
spectrum of the strings in our string field theory became the usual one. This is one
such little check that our model/string field theory is on the right track. In the
succession of this article we shall concentrate on sketching the calculation of the
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scattering amplitude for two ground state strings (tachyons) scattering elastically
into two also tachyonic ground state open strings.

Actually it turned out that we were not quite right in the first run, because
we only get one term out of three terms that should be present in the correct
Veneziano model. This little shock we sought to repair by modifying our gauge
fixing condition and allowing “even objects” also with negative J+. As we shall see
later we think it reflects a more general problem with infinite momentum frame.

11.4 Yet More Technical Details

11.4.1 The + and − components of JR

Especially if one wants to get an idea about our work [3] checking the spectrum
of our strings it is necessary to keep in mind that it is only the components JiR for
i = 1, 2, ..., 24, which are simply independent dynamical variables for the “even
object”. The remaining two components are not independent. Rather:

• +: The J+R components of actually both even and odd objects are fixed to
±aα

′

2
as a remaining gauge choice after the conformal gauge has been used to

gauge fix to the largest extend. This would have been the infinite momentum
frame choice basically, once we assumed that the distances in say σ-variable
per object were (put) equal for all the objects. It really means that number
of “objects” represent the P+-momentum of the string associated with those
objects.

• −: Next the components J−R are fixed from the requirement gotten from the
constraints in string theory, namely that (JµR)

2 = 0. This condition fixes the
−component (essentially energy) in terms of the 24 transverse components JiR
and the gauge fixed J+R . Remembering that the “odd objects” are constructed
from the even ones by means of (11.19) we can write the −components as :

For even objects: (11.24)

J−R (even I) =

∑
i=1,2,...,24(J

i
R)
2

2 · aα ′/2
(11.25)

For odd I object(constructed): (11.26)

J−R (odd I) =
π2α ′

∑
i=1,2,...,24(Π

i
R(I+ 1) − Π

i
R(I− 1))

2

a
(11.27)

It may be interesting to have in mind that from the point of view of our Hilbert
space description with a Fock space only having “even objects”, and even those
only with their transverse - the 24 components - the odd objects as well as both
the + and the - components are just “mathematical constructions” simply put up
as mathematicians definitions. In this manner the two of the 26 dimensions are
pure “construction”! as well as half the number of objects.

It were basically by means of these “constructions” for a cyclical chain of
first even, then filled out by odd ones in between, that we in our previous ar-
ticle[3] checked the spectrum of masses. We ran, however, into a slight species
doubler problem: Because of our discretization of the τR-variable we were seeking
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a spectrum of latticized theory (in one spatial dimension, the τR), and thus we got
according to our theorem that one gets species doublers when seeking to make
only right mover in fact a species doubler[23]. In order to get rid of that we propose
to impose a continuity rule as a postulate.

11.4.2 The Non-Parity Invariant Continuity Rule

The continuity rule which we saw earlier we had to impose to avoid a doubling of
the usual string spectrum in our model is actually just the continuity rule, which
you would any expect. Crudely it just is that you require the variation of the object
JµR or JiR to vary slowly from object to the next object. So physically it is extremely
reasonable to assume this continuity rule. But we assume it - and have to assume
it so - for both even and odd “objects”, and then because of the antisymmetry of
the definition of the odd JiR in terms of the conjugate of the even ones, we obtain a
condition that is not symmetric under the shift of sign of the object enumeration number
I. Intuitively you expect that if a chain of numbers JiR say, enumerated by I vary
smoothly with I counted in positive direction, then it should also vary smoothly, if
we count in the opposite direction. Because of our ‘strange” definition of the odd
object JR-values, however, the continuity concept we are driven towards does not
have this intuitive property of being inversion invariant. Let us in fact write our
smooth variation or continuity requirement for three successive “objects” in the
chain - with an odd one in the middle say -

JiR(I+ 1) ≈ −πα ′(ΠiR(I+ 1) − Π
i
R(I− 1)) ≈ JiR(I− 1) (11.28)

Imposing this non-reflection invariant continuity rule not only is a way to
at least assume away the species doubler from the lattice, but it also gives an
orientation to the τR-variable. For instance when we below shall match wave
functions for strings in initial and final states to calculate the overlap, this oriented
continuity condition can let us ignore possible overlaps, if the two, to be matched,
chains of “objects” are not oriented - in terms of the continuity condition - in the
matching way. This rule reduces significantly the possibilities for forming overlap
contributions. From a symmetry point of view it may be quite natural that working
with only right mover say there should be some asymmetry under reflection.

Thinking, however, on our model as the fundamental theory representing a
seeming world with a string theory, it means that this rather strange “continuity
principle” not being reflection invariant has somehow to be imposed by the laws
of nature. But now as already stated the Hilbert space structure and the dynamics
in terms of “even objects” are just the free massless scalar theory, and there is no
place for such a reflection non-invariant continuity condition, except in initial and
“final state conditions” So in terms of our “even objects” we must have a truly
rather funny initial state assumption: The “even objects” sit in chains that are
continuous or smooth in our special sense in one direction, but therefore cannot
be it in the opposite direction!

Of course in some way this continuity is a description of the continuity of the
strings, their hanging together.
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11.5 Sketch of Calculation

As one - and perhaps the most important - tests of whether our string field theory in
fact leads to the Veneziano model scattering amplitude (at least up to some overall
factor, which we shall leave for later works, and modulo a rather short treatment
only of the rather important appearance of the Weyl anomaly in 2 dimensions,
which happens to be where the dimension of 26 is needed in our calculation). We
shall also reduce the troubles of calculation by choosing a very special Lorentz
frame, something that would not in principle have mattered provided the theory
of ours had been known to be Lorentz invariant. However, since we use infinite
momentum frame - which is not manifestly Lorentz invariant - it is in principle
dangerous to choose a special frame.

11.5.1 The Veneziano Model to be Derived

Let us shortly - and especially with also a purpose of the extra factor in the
integrand, for which we shall need the anomaly for the Weyl symmetry - recall
what Veneziano model amplitude we shall derive, if we shall claim that it is a
success for supporting that our model/our string field theory is indeed describing
string theory of the bosonic 25+1 dimensional type, the most simple string theory
having though as a little problem, a tachyon. Since it is the simplest and historically
the first to have a Veneziano amplitude for four external particles [20], firstly
later we generalized to larger number of external particles [4], we shall start by
deriving the Veneziano model for four external particles, although not in the
phenomenologically supports case of Veneziano, 3π + ω. Rather we consider here
just four external tachyons each having mass square

m2 = −
1

α ′
(11.29)

where α ′ is slope of the - before inclusion of loops - assumed “linear Regge
trajectories”, the leading one of which has the expression

α(t) = α(0) + α ′t, (11.30)

where
α(0) = −α ′m2 = 1. (11.31)

The four point Veneziano model is basically given by the Euler Beta function,
which can be defined by the integral

B(x, y) =

∫1
0

zx−1(1− z)y−1dz (11.32)

being used say for (11.33)

B(−α(t),−α(s)) =

∫1
0

z−α(t)−1(1− z)−α(s)−1dz. (11.34)
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In writing such four point amplitudes one uses normally the Mandelstam variables

s = (p1 + p2)
2 = (p3 + p4)

2 (11.35)

t = (p1 − p4)
2 = (p2 − p3)

2 (11.36)

u = (p1 − p3)
2 = (p2 − p4)

2 (11.37)

obeying the relation (11.38)

s+ t+ u = m21 +m
2
2 +m

2
3 +m

2
4 = 4m

2 = −4/α ′. (11.39)

Here the four- or rather 26-momenta pi = pµi (i = 1, 2, 3, 4) are the external
momenta for the tachyonic string states we consider as scattering states in the
simplest case considered here, all four counted the physical way, i.e. with positive
energies p0i for the process

1+ 2− > 3+ 4, (11.40)

being considered. Since we consider the case of pure strings without any Chan-
Paton factor giving quarks at the ends, the full scattering amplitude becomes a sum
over three terms of the betafunction form. In front there is a factor g2 involving
the coupling constant g for the string or Veneziano theory being its square g2. We
shall, however, postpone the presumably a bit complicated but very interesting
question of the overall normalization in our theory to a later article. Thus the full
amplitude expected is

A(s, t, u) = g2 {B(−α(s),−α(t)) (11.41)

+B(−α(s),−α(u)) + B(−α(t),−α(u))} (11.42)

= g2(

∫1
0

z−2α
′p1·p2−4(1− z)−α

′p1·(−p4)−4dz+ (11.43)∫1
0

z−2α
′p1·p2−4(1− z)−α

′p1·(−p3)−4dz+ (11.44)∫1
0

z−2α
′p1·(−p4)−4(1− z)−α

′p1·(−p3)−4dz). (11.45)

Since we have chosen to set up our model in what deserves to be called infinite
momentum frame and to use the gauge that each object carries the same p+ or
rather having the fixed value J+ = aα ′/2 according to (11.1), our formalism is a
priori highly non-Lorentz invariant, and it almost requires a miracle for it to turn out
at the end Lorentz invariant. It is therefore non-trivial and a priori dangerous only
as we have chosen in the beginning to compared our model to the Veneziano model
in the special case that the four external particles have the same p+ components,

p+1 = p+2 = p+3 = p+4 (11.46)

and consequently (11.47)

N1 = N2 = N3 = N4, (11.48)

where the (even) integers Ni (i=1,2,3,4) denote the numbers of “objects” attached
to the four external particles. This choice of a special coordinate frame leads to a
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simplification of the term without poles in the s-channel:

g2B(−α(t),−α(u)) = (11.49)

g2B(−1− α ′(p1 − p4)
2,−1− α ′(p1 − p3)

2) = (11.50)

g2B(−1+ α ′(~pT1 − ~pT4)
2,−1+ α ′(~pT1 − ~pT3)

2) = (11.51)

g2
∫1
0

z−2+α
′(~pT1−~pT4)

2

(1− z)−2+α
′(~pT1−~pT3)

2

dz . (11.52)

Here we have denoted the “transverse” parts - meaning the first 24 components
by

~pT = {pi}i=1,2,...,24. (11.53)

The simplification comes about because the +- term in the contraction with the
metric in, say, (p1 − p4)2 drops out because of our very special frame choice so
that (p1 − p4)+ = 0,and so the (p1 − p4)

− does not matter, and

(p1 − p4)
2 = −(~pT1 − ~pT4)

2. (11.54)

11.5.2 Amplitude in Our Model, Principle of No Interaction!

Whereas in string theory there seems to be an interaction between the strings, it is
rather surprising - and a hallmark for our theory - that in the formulation of ours
in terms of the object states the S-matrix elements, that shall give the Veneziano
amplitude as we shall show, is simply equal to the overlap! That is to say it is
calculated as if the genuine S-matrix is just the unit operator. More precisely the
S-matrix < 1+ 2|S|3+ 4 >, that shall describe the scattering of say, two incoming
open strings 1+2 into two outgoing 3+4 is obtained by writing the states in our
formalism - in terms of even “objects” - corresponding or representing the two
string state 1+2, say |1+ 2 >eo and also to the two string state 3+4 corresponding
state in even object space, say |3+ 4 >eo, and then simply one takes the overlap of
these incoming and outgoing states:

< 1+ 2|S|3+ 4 > = < 1+ 2|eo|3+ 4 >eo . (11.55)

Here the subindex eo stands for “even objects” and means the state described
in our even object notation. This means that in terms of our string field theory
= “even object formulation” a scattering goes on without anything happening
(whatever might happen in reality must have been thrown out in the construction
of our string field theory model). Symbolically this formula for the S-matrix is
shown on the figure 11.4:

11.5.3 Procedure

The main tasks in order to evaluate the scattering amplitude are

• A. First we must evaluate in some useful notation the wave functions for the
incoming and outgoing strings - we shall in this article only consider scattering
of two open strings coming in and two open strings coming-out, all in the
tachyonic ground states.
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Fig. 11.4.

• B. We must figure out in how many different ways the “even objects” associ-
ated to the strings 1 and 2 in the initial state of the scattering can be identified
with “even objects” associated with the final state strings.
• C. For each way of identification of every “even object” in the initial state(i.e.

associated with one of the incoming strings/particles) with an “even object”
in the final state (i.e. associated with one of these outgoing particles), we have
in principle two wave functions for the “even objects” and shall compute the
overlap of these two wave functions.

• D. Then we have to find the total overlap by summing over all the different
ways of identifications, considered under B.
• E. This summation under D. will turn out to be approximated by an integral

and we shall indeed see, that it becomes essentially the integration in the Euler
Beta function definition thus providing the Veneziano model.

In performing this procedure we make some important approximations and
simplifications:

• a. We shall assume that due to the continuity of the object series it is by far
more profitable for obtaining a big overlap contribution to keep as many of the
pairs of neighboring “objects” in the initial state, say strings 1 and 2, remain
neighbors again in the final state. This means that we assume that the as
contributions to the overlap dominating identification - in the sense of B. - are
those in which the largest unbroken series of “even objects” go from one initial
state string to one of the outgoing strings. This means the most connected or
simplest pattern of identification.
In fact the not yet quite confirmed though speculation is, that the successively
more and more broken up pattern of identification of initial and final “even
objects” will turn out to correspond to higher and higher (unitarity correction)
loops in dual models(=Veneziano models). Thus we expect, that considering
only the least broken transfer of the “even objects” from the initial to the final
strings shall give us the lowest order Veneziano model (the original Veneziano
model without unitarity corrections).
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• b. We shall of course use, that we take the limit a→ 0 and correspondingly, that
the numbers N1, N2, N3, N4 of “objects” associated with the various strings
go to infinity. Thus we can integrate over the number of objects in a chain
going some definite way, say from string 1 to string 4.

• c. To simplify our calculations we choose the very special case of the four
strings - the two incoming 1 and 2 and the two outgoing 3 and 4 - all are
associated with same number of “even objects” N/2 (and then of course N ‘ob-
jects” altogether). This assumption is with our letting the number of “objects”
be proportional to the P+-component of the 26-momentum of the string in
question, i.e. just the choice of Lorentz frame, so as to have all the four external
strings/particles have the same P+. So it looks like just being a coordinate
choice, but there is the little problem strictly speaking: that our use of infinite
momentum frame makes our theory not guaranteed to be Lorentz invariant.
Anyway we do it only this non-invariant way in the present article and leave
it for later, either to prove Lorentz invariance of our model, or to do it in a
more general frame.

• d. As a further strengthening of point b. above about the chains coming in
as long pieces as possible being dominant we remember, that our continuity
condition (11.28) was not reflection invariant. It would therefore be extremely
little overlap, if we should attempt to identify the “even objects” of a series
in the initial state with a series in the final state in the opposite order. That
is to say we require, that the orientation in the pieces of series going over as
hanging together from initial to final state are kept. Otherwise the contribution
is assumed negligible.
Together b. and this item d. means that the dominant contributions come when
possibly the longest connected pieces go over from one initial to one final
without changing orientation of the piece.

We shall in the following seek a way to progress, that relatively quickly leads
to string-theory-like expressions and thinking. But the reader shall have in mind
that even, if we shall approach string-theory-like expressions, we have at the
outset had a formulation - namely our string field theory - in which at first the
stringyness is far from obvious. Rather it seemed that the stringy structure only
comes in with the initial and final states, while the structure of our free massless
scalar Hilbert space or Fock space is too trivial to contain any sign of being a string
theory. It is therefore still interesting to calculate the results of our theory, even if it
quickly should go into to run along lines extremely similar to usual string theory.

11.5.4 Construction of Wave Functions for Cyclically Ordered Chains
Corresponding to Strings

The wave functions for open strings were in fact investigated in our previous article
[3] in as far as the quantum system of N objects forming a cyclically ordered chain
corresponding to an open string were resolved into harmonic oscillators and thus
a Gaussian wave function were obtained in a high (of order N) dimensional space.
The trick we shall use here is to write the wave function of this character by means
of a functional integral so reminiscent of the Feynman-Dirac-Wentzel functional
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integral for a string propagation already put into the conformal gauge, that we
can say that we already managed to “sneak in” the string by this technology.

In fact one considers in single string description functional integrals of the
type: ∫

exp(−
∫
A

(~∂φ(σ1, σ2))2dσ1dσ2)Dφ, (11.56)

with some boundary conditions along the edge of the region A say in (σ1, σ2)

space, over which the integral in the exponent is performed. We shall for our
purpose of making an expression for the wave function in terms of our “even
objects” for a string state consider that the region A is taken to be a unit disk and
at the edge we imagine putting a series of “even objects” each being assigned a
small interval along the circular boundary. Then we identify for example the object
JiR with the difference of the values of a φi taken at the two end points of the little
interval on the circle surrounding A assigned to the object in question. That is to
say for say object number I (here I is even) having as its interval, say, the little
region between the points on the circle marked by the angles

θbeg = 2π ∗ I− 1
N

(11.57)

θend = 2π ∗ I+ 1
N

(11.58)

we identify (e.g.) the difference

JiR(I)
ident.
= φi(exp(iθend)) − φi(exp(iθbeg)), (11.59)

where we have of course taken a new φi for each of the 24 i-marked components
of JR and where we have identified the (σ1, σ2)- space with the complex plane by
considering φi a function of σ1 + iσ2.

The idea, which we seek to use here is that - possibly by some minor modi-
fications, which we must state - we should imagine, that we want to construct a
prescription for obtaining a wave function of the type Ψ(JiR(0), J

i
R(2), ..., J

i
R(N−2))

as used in the expression (11.21), describing say the ground state of a string in our
formalism by imposing a boundary condition - depending on a set of values for all
the “even objects” in a chain - on the functional integral(s). With these boundary
conditions imposed at the end the functional integral become the wave function
value Ψ(JiR(0), J

i
R(2), ..., J

i
R(N − 2)) for the in the boundary condition used JiR(i)

values.
Let us before fixing the details immediately reveal that we shall have an extra

boundary condition in the center of the disk A at which point we shall cut off an
infinitesimally little disk and use the thereby opened boundary conditions to “let
in the (transverse components of) the 26-momentum of the string in question”.
This “letting in” means in principle that we put on the inside of the little circle a
series of JR arranged to correspond to string with the right 26-momentum, but
due to the smallness of the little circle the details except for this total momentum
does not matter. In the figure we illustrate this situation on which we think: The
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line ending at the center and ascribed a P symbolize the just mentioned “in-let” in
this center. The small tags on the edge of the disk symbolize the attachments of the
“even objects”, the values of which are used to fix the boundary conditions for the
functional integral. Crudely the idea behind this procedure could be considered
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Fig. 11.5.

to be that we let a (here open) string propagate along during an imaginary time (say an
imaginary τ), whereby only the lowest mass state survives. The heavier eigenstates of
mass decay in amplitude faster that the lightest state by such an imaginary being
spent. Thus one gets after infinite imaginary “time” the ground state selected out.
Thus investigating the wave function reached after such an infinite imaginary
“time” it should turn out being the ground state wave function, and so we should
be able to use it as the Ψ we want, if we want the wave function for a ground
state string (the tachyon). Then the idea is of course to write the infinite imaginary
“time” development by means of Wentzel-Dirac-Feynman path way integration.

Thus we get into our way of presenting the wavefunction

Ψ(JiR(0), J
i
R(2), ..., J

i
R(N− 2))

a functional integral with at first having a region, like A, being an infinite half
cylinder. The axis along the half infinite cylinder is the imaginary part of the
infinite imaginary ‘time”, while the coordinate around the cylinder is rather the
parameter, τR, enumerating the objects in the cyclically ordered chain of objects
associated with an open string.

Then the type of functional integral here considered is “essentially” (meaning
except for an anomaly becoming very important at the end) invariant under
conformal transformations of the region A. Thus ignoring - or seeing that they
are not there in the case considered - anomalies we can transform the infinite half
cylinder into the unit disk with the little hole in the middle, through which we “let
in” the momentum of the string.
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Note how the string here comes in (only): We got to a functional integral
strongly related to what one usually work with in string theory, just with the
purpose of constructing a wave function Ψ(JiR(0), J

i
R(2), ..., J

i
R(N − 2)) describing the

string state in terms of our objects. But there is nothing “stringy” in our Hilbert space
structure of our object-theory. The string only comes in via this wave function.

But of course it still means, that after we have got this wave function in, we
get our calculations being so similar to usual string theory, that we can almost stop
our article there, and the string theorist may have exercised the rest so often, that
we do not need to repeat. But logically we have to repeat because we are logically
doing something else:

There is in our formulation in terms of the ‘objects” a priori no strings. We
are on the way to see, that after all the strings must be there, because otherwise it
would be strange, that we just get the Veneziano amplitude for scattering.

11.5.5 Adjustment of the Details of the Functional Integral

A few details about the functional integral may be good or even rather important
to have in mind:

• I. As long we - as here - just seek to write the exponential for the wave function
(which as we know for harmonic oscillators have the Gaussian form - of an
exponential of a quadratic expression in the JiR(I)’s (even I) -) we could use
the old proposal by David Fairlie and one of us (HBN) of evaluating the
exponential as the heat production in a resistance constructed as the surface
region A as a conducting sheet with specific resistance π(2?)α ′. Then one shall
identify the boundary conditions by letting the current running out at the
interval assigned to a certain “even object” be equal to the JiR(I) for that “even
object”.

• II. There a is little problem, which we have to solve one way or the other
with getting the “continuity condition” (11.28) discussed in 11.4.2. Having
fixed only the boundary condition to the “even objects” through their JiR(I)
but not involving the conjugate variables ΠiR(I) there is of course no way
in which the strange non-reflection symmetric continuity condition of our
could be imposed. Concerning the classical approximation one may actually
find out that one easily can find the classical φi solution over the complex
plane introduced above after the formula (11.59) which reflects the continuity
condition as well as you can require for a classical solution by extracting only
the analytical part of the saddle point for φi(σ1 + iσ2).
Indeed one might - and we probably ought to do it - construct a model, in
which we use both even and odd JiR’s on the boundary, in the sense that we
assign only half as long intervals on the border for each object - meaning that
we replace (11.58) by

θbeg = 2π ∗ I− 1/2
N

(11.60)

θend = 2π ∗ I+ 1/2
N

(11.61)
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and use it for both even I and odd I.
But now what are we to impose for the odd object intervals on the disk border?
We want to obtain a wave function Ψ(JiR(0), J

i
R(2), ..., J

i
R(N − 2)) expressed

only as a function of the “even object” JiR’s, while no ΠiR are accessible among the
variables, on which the wave function depends.
However, in functional integrals one can easily extract what corresponds to
the conjugate variable; they are so to speak related to the time derivatives, by
relations of the type that the conjugate to a variable q in a general Lagrangian
theory is given by

p =
∂L

∂q̇
. (11.62)

On the other hand the continuity condition tells us that approximately the
odd JiR’s can be replaced by their even neighbors. Thus the proposal is being
pointed out that we identify the appropriate time derivatives with the values
of the neighboring even JiR(I)’s. Putting up this proposal is rather easily seen
to correspond to, that the boundary condition relating φi near the boundary
to the even object JR’s, which we are allowed to use, get decoupled from
say the anti-analytic component in φi. So with such a boundary inspired by
the non-reflection invariant continuity condition would lead to an arbitrary
solution for say the anti-analytical part, while the analytical part would get
coupled. We should like to develop this approach in further paper(s), but it
may not really be needed.
Instead of seeking to put our continuity condition (11.28) into the functional
integral formalism, we here shall use it is as a rule for which pieces of cyclically
ordered chains can be identified, and then we shall get only oriented two
dimensional surfaces - looking formally like string-surfaces for closed oriented
strings although what we are talking about are open strings (but remember
that we get the diagrams for open look like the ones say Mandelstam have for
closed) -.

• III. Although it is in fact functional integrals like (11.56), that we basically need,
it is so that such a functional integral has divergences. These divergences must
in principle be cut off. But now it turns out that the cut off necessarily comes to
depend on a metric. Therefore we should rather write our functional integral
(11.56) as if depending on a metric tensor gαβ(σ1, σ2) in the 2-dimensional
space time, although it formally would look that there is actually no such
dependence on the metric, at least as long as we just scale it up or down by Weyl
transformations. This seemingly metric dependent functional integral looks like∫

exp(
∫
gαβ∂αφ(σ

1, σ2)
√
gdσ1dσ2)Dφ, (11.63)

where then boundary conditions and region of the (σ1, σ2)-parameterization
must be further specified. The cut off procedure should also be specified; it
could for instance be a lattice curt off, a lattice in the (σ1, σ2) variables, say.
Then the importance of the metric is that you need the metric to describe the
lattice spacing. Note though also that formally a scaling of the metric/Weyl
transformation

gαβ → exp 2ωgαβ, (11.64)
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even when the scaling function exp 2ω depends on the (σ1, σ2) does seemingly
not change anything, because the determinant g of the two by two matrix gαβ
just scales with exp 4ω so that the square root just compensates for the scaling
of the upper index gαβ metric. The Weyl transformation symmetry is only
broken by the cut off (the lattice) depending on gαβ. It is via this cut off the
anomaly can come in.

11.5.6 Overlap Contributions

The crucial step in calculating the Veneziano model amplitude in our model/string
field theory is to see what are the possibilities for identifying all the even objects
associated with the initial strings/particles 1 and 2 to the ones associated with
the final state strings/particles 3 and 4 in a way that to the largest extend keep
neighboring (or better next to neighboring, since we only consider the “even
objects”) “even objects” going into neighboring ones in the same order(same
succession).

To simplify the possibilities, we have to consider what we have chosen to
assume - basically by appropriate choice of coordinate system - namely that each
of the four strings or particles are associated with the same number of “objects”.
We may remember that by our gauge choice the number of “objects” N associated
with say an open string is proportional to the P+ component of its momentum,
so that choosing a frame, wherein all the four external particles have equal P+

implies that they have an equal number of associated “objects” also.
Now to keep the “objects” most in the succession they already have in the

initial state also in the final state we must let connected pieces of ”even objects”
pass from say string 1 to string 4. Then the rest of the “even objects” associated
with string 1 must go to string 3. Now the “even object” numbers on string 2 that
must go to respectively to 3 and to 4 is already fixed for what happened for string
1. Since they have to sit in succession and a cyclic rotation of the cyclically ordered
chains is the very last rudiment of gauge choice, there is no physically significant
freedom in the identification except for the starting number of how many objects
go from 1 to 4.

On the figure it is illustrated how different series of “even objects” from 1 or 2
marked with some signature are refound - with same signature - in 3 or 4. The idea
of course is that each of the four series marked by the four different signatures
are refound in both initial (1+2) and final (3+4) states, and really are the same. It
is understood that the series of “even objects” identified to be in both initial and
final states are identified “even object” for “even object” in same succession.

To get the contributions to the overlap - and thereby amplitude - from all
the physically different “identification ways” one shall sum over the various
values, a non-negative integer number, of “even objects” from 1 that are refound
in 4. Since such numbers are of order N - which means it goes to infinity as our
cut off parameter a → 0 - the actual overlap contribution from each separate
value of the number summed over varies slowly and smoothly (we may check
by our calculation) and we can replace it by an integral over say the fraction of
the “even objects” in 1 (i.e. associated with 1) that are identified with ‘even objects”
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associated with 4. It is this integration that shall turn out to be the integration in
the integration in the Euler Beta function making up the Veneziano model.

11.5.7 The Overlap for One Identification

But before integrating or summing we have to write down the overlap as obtained,
if one only includes the possibility of one single “identification” (correspondence
between the “even objects” in the initial state 1+2 with them in the final 3+4). This
overlap of two states 1+2 and of 3+4 with a fixed “identification” is of course
simply the Hilbert product of the two states of the set ofN/2+N/2 “even objects”
- at least if one ignores the low probability of two “even objects” in say 1 and 2
being in the same state - so that we calculate it as an inner product in anN/2+N/2
particle/“even object” system. It becomes an inner product of the form∫

Ψ∗ 3+4,
with

identificationI

((JiR(0), J
i
R(2), ..., J

i
R(N− 2))|1, (J

i
R(0), J

i
R(2), ..., J

i
R(N− 2))|2)

×Ψ1+2((JiR(0), JiR(2), ..., JiR(N− 2))|1, (J
i
R(0), J

i
R(2), ..., J

i
R(N− 2))|2)

×Πi,I=0,2,...,N−2,k=1,2dJ
i
R(I)|k. (11.65)

Now the crucial point of our technique is that this inner product integration
over the JiR-values for all the “even objects” associated with 1 or 2 (and identified
with “even objects” in 3 or 4) when the wave functions are written as the functional
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integrals, we use, can be interpreted as just gluing functional integral regions
together. The point is that the functional integrals basically are just - when cut off
- integrals over φi values in all the different “lattice” points along the region A
boarder say. At the boarders there is specified linear relations of theφi values there
- or rather the derivatives, but they are also linear relations - to the JiR(i)’s assigned
places on this border. One now has to argue that apart from an overall constant
factor we can consider the integration over the JiR(I)’s in (11.65) going in as part of
the functional integration in a functional integral in which the regions A for the
two sides (initial and final) are glued together to one big functional integral. Since
the integration over the “even object”-variables JiR(I)|k have now been interpreted
as part of the functional integration, the new resulting functional integral has no
longer any boundary conditions associated with such JiR(I)|k’s. Rather the ‘big’
functional resulting - and expressing the overlap for a specific “identification” -
only has as boundary conditions the inlets of the external 26-momenta(or rather
their transverse components only),P1, P2, P3, P4.

One should notice how this picturing by functional integrals come to look
really extremely analogous to gluing together strings. There is though a little
deviation from the usual open string theory at first, because we have cyclically
ordered chains topologically of form as circles as would be closed strings to
represent the open strings. Corresponding to this little deviation we get at first
that final contribution from “identification” of “even objects” between final and
initial states, becomes conformally equivalent to a Riemann sphere with the four
inlets from the four external strings being attached to this Rieman sphere. This
is what you would expect for closed string scattering in the usual string theory,
but we obtain this for open strings! It turns, however, out that all our four “inlets” -
where the momentum boundary conditions are imposed - come by a calculation
we shall sketch - to sit on a circle on the Riemann sphere. Thus there is “reflection”
symmetry between the two sides of this sphere and mathematically our overlap
for the fixed identification come to be equal to a functional integral as usually used
for open strings. In this way our model has the possibility of agreeing exactly with
usual string theory.

11.5.8 Seeing the Hope

A bit of imagination of how our topologically infinite half cylinders can glue
together would reveal, that we could arrange to get them pressed down in a plane
but with - we must stress though - in two layers. In such a form we could have
arranged that the result would look like a double layer four string bands meeting
along intervals with their neighbors but only in one point with their opposite
string. In order that we could bring it to look like this, we should put the two
incoming strings opposite and the two outgoing strings opposite to each other.
This would be the usual string gluing picture for the open strings - just doubled,
but that essentially does not matter - for the B(−α(t),−α(u)) term. This means
that it is extremely promising that we should obtain this term of the Veneziano
model.

But !:
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• 1. What happens to the other two terms B(−α(s),−α(t)) and B(−α(s),−α(u)),
which we should also have gotten, to get the full Veneziano model?
• 2. We have in principle to check that our model predicts the correct weight

factor on the integrand in the Veneziano model. We mean that the integrand,
which we obtain does not only have the right dependence on the external mo-
menta, but also the right dependence as a function of the integration variable -
which in our model comes from the summation over the different “identifica-
tions”.
Since in our model this integration comes from the simple summation over
“identifications” our model has a very clear rule for what weighting to obtain
and one just has to calculate carefully not remembering the anomaly in the
functional integral evaluation etc.

• 3. So far we were sloppy about the + and - components, or rather we only
started calculating the factors in the integrand coming from the transverse
momenta or transverse JiR components so far.

11.5.9 Integrand weighting Calculation

If we want to evaluate the integrand meaning the contribution from one specific
identification more carefully, we have to be specific about how we for such an
“identification” make the construction of the full surface on which the functional
integration φi at the end gets defined. We obtain - using the idea that the overlap
integration can be absorbed into the functional integration - that we must glue
together four (either infinite half cylinders or) disks corresponding to the four
external strings. To be concrete it is easiest to represent the two final state strings 3
and 4 by exteriors of a disk rather than by a disk as we represent the initial strings
1 and 2. The inlets for the final state strings are then at infinity of the Riemann
surface, while those of the initial strings are at zero.

Now however, we have two incoming and two outgoing, and so we are forced
to work with a complex plane with two layers.

We take say one layer where the complement of the unit disk is put to be the
essential disk for string 3, while the other layer belongs then to string 4. Similarly
we must have two layers for the initial strings, but now the important point is
that the initial and the final ones are to be glued together in a slightly complicated
way, depending also on the integration variable, which is essentially given by the
number of “even objects” going from 1 to 4 say.

Having settled on giving 3 and 4 each their layer in the complex plane in
the complement of the unit disk, we have let these outside unit disk layers be
glued to the inside the unit disk ones associated with the two incoming particles 1
and 2 along the unit circle of course. But now the length measured say in angle
- or in number of “even objects” proportional to the angle - along which say the
layer in the inside assigned to string 1 has to be glued together with complement
of disk region layer assigned to string 4 along a piece of circle proportional to
the amount/number of “even objects” passing from string 1 to string 4 in the
“identification” we consider. along the rest of the unit circle then of course the
disk assigned to string 1 is identified with the outside disk layer connected to
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string 3. Similarly along the first piece of circle - where 1 is connected to 4 - of
course the layer of string 2 shall be connected along the circle to the layer of
string 3 (in the outside). Correspondingly along the “rest” of the unit circle the
layer assigned to string 2 (inside) is attached (identified with) the layer of string
4. In the figure 11.7 you may see an attempt to give an idea of what to do before
having put on the final state strings associated with the complements of the unit
disk in their two layers. But on the figure the inner layers are prepared for the
gluing together. Now modulo the anomaly - i.e. naively - the functional integrals
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Fig. 11.7.

considered are conformally invariant, so that we are postponing the anomaly
allowed to perform a conformal transformation of the combined region - now
lying in two layers - of the four disks or complements of disks associated with the
four external strings, and the result of the functional integral being proportional
to the overlap contribution from the “identification” in question should not be
changed.

Since the angle θ (circle piece length) along which say layer of string 1 is
identified with the layer of string 4 is proportional to the number of “even objects”
we shall simply integrate to get the an expression proportional to the full overlap
(and thus to the Veneziano amplitude hopefully) integrate simply with the measure
dθ.

At first it looks that we have a little problem by only having wave functions as
functions of the 24 transverse coordinates so that seemingly the + and - components
of the 26-momenta cannot appear in our hoped for Veneziano model integral.
However, luckily for the term we actually obtain B(−α(u), α(t)) we found above
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in equation (11.52) that in fact all the terms in the exponents for z and (1 − z)

that depend on the external 26-momenta could be arranged to come only from the
transverse momenta provided we have made the very special frame choice that the
four external particles have the same P+ components. So in this our simplifying
the contributions from the + and - components turn out not needed. The point
really was that just having the gauge choice and the frame choice arranging the +
component for the p1 − p4 and for the p1 − p3 become zero the character of the u
and t of having a + component multiplied with a - one made it enough to ignore
but the transverse contributions.

11.5.10 The Conformal Transformation

The way to evaluate the contribution to the overlap of |1 + 2 > with |3 + 4 >

from one “identification” is to rewrite it into a functional integral the region of
which is composed from the four disks or disk complements corresponding to
the four external particles/strings. We obtain at first a manifold described as
double layered in the Riemann sphere. It has two branch points on the unit circle
corresponding to the points where the “even objects” on say 1 shifts from going
to 3 to going to 4 (or opposite). Basically we choose to map this doubled layered
region by a map with two square root singularities at the two branch points.

11.5.11 Anomaly

The anomaly that gives us an extra factor mutiplying the contribution from a
single “identification” is usually written formulated as the trace anomaly

< Tαα >= −#fields ∗ 1

48π

√
g ∗ R, (11.66)

(in the notation of our article with Habara wherein
√
gR = −2∂α∂

αΩ for the
metric tensor of the form gαβ = exp(2Ω)ηαβ,and) where R is the scalar curvature
of the metrical space given by the metric tensor (in two dimensions enumerated
by α = 1, 2;). Here the energy momentum tensor is denoted Tαβ is indeed for the
theory of the field(s) φi which had been Weyl invariant as it formally looks like,
and so the trace Tαα = 0 would be zero. The symbol #fields denotes the number of
fields φi; it would in the 26=25+1 theory be 24.

This anomaly can be seen to come in by having in mind that we want to per-
form a conformal transformation - in fact the one corresponding to the analytical
function

f(z) =

√
z− exp(iδ)
z− exp(−iδ)

− (11.67)

(here we used the notation that the end points of the cut along the unit circle
seperating where sheet 1 connects to 4 from where it connects to the sheet asso-
ciated with particle 3 were arranged to be exp(iδ) and exp(−iδ).) and then the
anomaly gives rise to corrections to the “naive” result that the functional integral
is invariant under a conformal transformation. In fact we may first have in mind
that we shall evaluate the functional integral (11.56) with a lattice or other cut
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off only depending on the internal geometry so that it only can give variations
depending on the metric tensor gαβ, which under a conformal transformation
only changes its scale locally as under a Weyl transformation (11.64). So what
we only need to calculate to obtain the effect of the anomaly is how the overall
factor on the metric tensor varies under the conformal transformation, we shall
use (11.67). Such a scaling is given by the numerical value of the derivative of the
function (here f) representing the conformal transformation,

gαβ → Ωgαβ where thenΩ = |
∂f

∂z
|2. (11.68)

This is to be understood, that the metric tensor describing the complex plane
metric in the f-plane is exp 2Ωgαβ when the metric induced from the z-plane
usual metric is gαβ.

It is easy to see that scaling the metric tensor (locally) with an infinitesimal
scaling factor exp 2Ω with Ω << 1 leads to a correction to the logarithm of the
functional integral by

∫
∆ωTααd

2σ. Since the trace Tαα of the energy momentum
tensor is only non-zero according to (11.66) where there is a non-zero curvature,
and our two layered surface lies mostly in the flat complex plane, we only get
contributions to this Weyl transformation local change of scale from the two
(singular) branche points exp(iδ) and exp(−iδ), where the curvature R has delta-
function contributions.

We can without any change in value of the functional integral make a formal
reparametrization from say the double sheeted complex plane to the single layered

one by means of f =
√

z−exp(iδ)
z−exp(−iδ) provided one then use after the transformation

the transformed metric tensor. With a conformal transformation the transformed
metric inherited from the z-plane into the f-plane will only deviate from the flat
metric ηαβ in the f-plane by a Weyl transformation. We know that there only
shall be curvature - of delta function type - at those points in the f-plane that are
the images of the branch points z = exp(iδ) and z = exp(−iδ), and so the (Weyl
transformed) metric reflecting the metric space from the z-plane into the f-plane,
exp(2Ω)ηαβ, i.e. R = 0 outside these two points f = 0and∞.

This means that the Ω outside those two points in the f-plane must be a
harmonic function of f, meaning the real part of an anlytical function. This outside
the two points harmonic function shall though have singularities at the two points
on the f-plane (or the corresponding Riemann sphere rather) delivering the delta-
function contributions,

R = 4πδ(Re(f))δ(Im(f))at f=0 say., (11.69)

At the branch points, we have points with the property that going around one of
them in the z-plane or system of sheets one get a return angle θ being 2π more
than after the mapping into the f-plane (or Riemann space). Thus the integral over
the curvature delivering this extra amount of parallel transport extra shift angle
should in an infinitesimal region around the image of a branch point - say the
point f = 0 - be 2π. So with a notation with the rule of such an (excess) angle being
given as ∫

area

R
√
gd2σ = 2θ (11.70)
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with θ the extra angle of rotation on return, 1 there will in the metric inherited from
the z-plane in the f-plane be delta function contribution to the curvature scalar R at
the points corresponding to the branch points z = exp(iδ) and z = exp(−iδ) in the
z-plane, and thus f = 0 and f =∞ in the f-plane. One can easily see that because
there is just 2π extra angle to go around such a branch point in the sheeted z-plane
the delta-function contribution becomes e.g. for the f = 0 point

R = 4πδ2(f). (11.72)

If r is the distance to the image of the branch point, say the f = 0 point, so
that r = |f|, the solution to R = −2∂α∂

αΩ for this delta function R is a logarithm
of the form

Ω(r) = ln(r/K). (11.73)

( Here K is some constant in the sense of not depending on r) That implies that
taken at the point r = 0 theΩ(0) is logarithmically divergent so that the integral
to which the anomaly of the logarithm of the correction to the integrand is pro-
portioanal becomes divergent. However, we have anyway given up caculating
in this article the overall normalization of the Veneziano model, we hope to de-
rive. We shall therefore be satisfied with only calculating the contribution in Ω
that varies with the angle δ over which we (finally) integrate. Now the conformal
transformation mapping the two-sheeted z-plane into the one-sheeted f-plane is

f(z) =

√
z− exp(iδ)
z− exp(−iδ)

, (11.74)

and so its logarithmic derivative

df

fdz
=
1

2
(

1

z− exp(iδ)
−

1

z− exp(−iδ)
), (11.75)

and the derivative proper

df

dz
=
1

2
∗

√
z− exp(iδ)
z− exp(−iδ)

∗ ( 1

z− exp(iδ)
−

1

z− exp(−iδ)
). (11.76)

We are interested in a hopefully finite term in the change in going from the
z-plane simple metric to the one in the f-plane, which is the part of

Ωz to f = ln(|
df

dz
|) (11.77)

depending on the “integration variable” δ. This means that make precise the cut
off by saying that we must make the cut off by somehow smoothing out the branch

1 In our notation we have the rule that going around an area and thereby obtaining for for
a parallel transported vector on return a rotation by an angle θ, that the integral over this
area ∫

area

R
√
gd2σ = 2θ (11.71)
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point singularity in a fixed way in the z-plane. This means that we perform a
regularization by putting into our transformation a fixed distance ε in the z-plane
marking the distance of z to one of the branch points. That is to say we consider a
little circle say of points around the exact branch point counted in the z-plane

zon little circle = ε exp(iχ) + exp(iδ) (11.78)

(or analogously using exp(−iδ) instead of exp(iδ).) On this little circle we find
that the scaling - Weyl transformation - going from the z-plane to the f-plane using
(11.76, 11.77)

Ωz to f = ln(|df/dz|circle) ≈ ln(
1

2
√
ε
√
2sin(δ)

) (11.79)

for the z ≈ exp(iδ) case. The δ-dependent part is of course −1
2
∗ ln(sin(δ)). This is

the δ-dependent part ofΩz to f which comes into the anomaly correction for the
logarithm of the full (product over the 24 values of i of the ) functional integral,
according to (11.66) and (11.72) of course with a coefficient proportional to the
number of truly present dimensions in the functional integral - which is only the
transverse dimensions 24 -.

Thus the δ dependent part of the anomaly ends up being in the logarithm of
the contribution to the overlap from one value of δ ( meaning one “identification”):

∆anomaly ln integrand = δ independent + (d− 2) ∗ 1

48π
∗ 1
2

ln sin δ ∗ (4π+ 4π)

=
d− 2

6
∗ ln sin δ+ ... (11.80)

Now we should remember that we have decided in this article to go for the
form of the amplitude but have left for further studies the over all normalization of
the amplitude. This means that the terms in the logarithm of the integrand of the
hopefully to appear Veneziano amplitude which do not depend on the integration
variable δ (which is proportional to the number of (even) objects from string 1 that
goes into string 4) but only so on the cut off parameter ε are neglected.

Now the conformal mapping (11.74) brings the inlet points for external mo-
menta for the four external particles into the positions sketched on the figure 11.8:
Imagining on this figure that one varies the integration variable δ, then the “inlet”
points for the two incomming strings 1 and 2 will remain sitting opposite to each
other one the unit circle and analogously the two final state string inlet points
3 and 4. So the distances between 1 and 2 or between 3 and 4 are constant as
function of δ and so we can ignore the terms comming proportional to in fact
s = −(pi1 + p

i
2)
2 + ... = −(pi3 + p

i
4)
2 + ... from the heat production in the analogue

model from the current running co as to depend on the distance between 1 and
2 or analogously between 3 and 4. In a similar way we are allowed with our
decission to only keep the δ dependent terms to ignore terms involving only one
of the four inlet points. There are such contributions but they depend on the inlet
momentum squared (with a divergent coefficient), but since only on one point the
δ-dependence is not there provided we cut off in a δ independent way of course.
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Fig. 11.8.

The divergences form cut off of the anomaly correction connected with originallly
- in z-plane - branch points come only in to the extend that they get their cut off
small circles scaled to a differnt degree depending on δ.

It is not difficult to see that to seek identification of the δ dependent terms
with the integration variable z ( not to be confused with our complex plane z
which is of course something different) in the Veneziano model we must identify

z = sin2(
1

2
∗ δ) (11.81)

1− z = cos2(
1

2
∗ δ). (11.82)

Very important for stressing how successful our model/rewritting is to repro-
duce the Veneziano model integration measure in the z-integration correctly. In
our model this integration correponds to the summation over the discrete variable
being the number of (even) objects going from string 1 to string 4 and it is propor-
tional to δ, and thus we at first simply the measure of integration is dδ. But now to
compare with the usual Veneziano formula expressions or our slight rewrittings
of it we must of course relate dδ to dz:

dz = cos(
1

2
δ) sin(

1

2
δ)dδ ∝ sin(δ)dδ ∝

√
z(1− z)dδ. (11.83)

This happens to show that the correction factor from the anomaly needed to just
compensate the factor comming from

dδ =
dz

sin(δ)
(11.84)
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would be just cancelled by the anomaly provided

d− 2

6
= 1. (11.85)

( Apart from a little calculational mistake above by a factor 4 ) this means that we
get precisely the right Veneziano model when the number of transverse dimensions
d− 2 = 6 ∗ 1 = shouldbe24. The famous result that the bosonic string must exist
in d=26 space time dimesions.

11.6 Our Shock; Only One Term

When we went through the above sketched calculation and arrived at only the
one term proportional to B(−α(t),−α(u)), which is the term without poles in the
s-channel, it were somewhat unexpected at first. After all we had made up a model
essentially written out so as to make it the string theory and thereby the Veneziano
model. Then it gave only one out of the three terms it should have given. May be
even more strangely, if we imagine investigating crossing symmetry it looks we
would get a different term after what particles are incoming and which outgoing.
So the term we got is not even properly crossing symmetry invariant. Nevertheless
it were very encouraging that we got something so reminiscent of the Veneziano
model as simply one of the terms.

We believe we have found a way to get the two missing terms also come out:
In fact we think that it is in a way the infinite momentum frame gauge, which

we used, that is the reason for the surprising problem for our model: Really one
may say that the infinite momentum frame is a method for avoiding having to
think about the vacuum, which in quantum field theories is usually an enormously
complicated state. In the infinite momentum frame type calculations you imagine
an approximation in which the particles have so high energy that they manage not
to “feel” the vacuum. But such an approximation may not be a good one. So we
thought it might be best somehow to introduce at least some rudimentary effects
of a vacuum even though we want to continue to work with an infinite momentum
frame formalism, especially an infinite momentum frame gauge/parameterization
choice.

The idea, which we here propose, and which actually seems to help to obtain
the lacking two terms in the full Veneziano model amplitude, is to allow not only
as we did at first for “objects” with the +components J+R = aα ′/2 (a positive
number), but also allow “negative objects” having rather their J+R = −aα ′/2. At
least with inclusion of such negative “objects” you make it at least a possibility
to have not totally trivial state with the property of the vacuum of having the
“longitudinal” momentum P+ = 0. The vacuum could so to speak consist of a
compensating number of usual positive say “even objects” and corresponding
number of “negative even objects”.

In fact it looks that we with such “negative” “objects” can imagine some of
our strings represented by an “extended” cyclically ordered chain(replacement).
Hereby we mean that it contains in the “extended” cyclically ordered chain not
only usual positive J+R objects, but also one or more series of negative J+R objects,
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arranged so that the excess of positive ones over negative ones is proportional to
the total P+ component of the 26-momentum for the string in question. With such
“extended” cyclically ordered chains representing some open string we obtain
the possibility of the negative part of say string 2 annihilating with part of the
cyclically ordered chain of string 1. Similarly one of the final state strings could be
produced with content in its cyclically ordered chain of some series of negative
objects having been produced together with some positive ones in another final
state string.

By very similar procedure to the one used above to the term B(−α(u),−α(t)),
but now including the negative objects we seem to be able to produce the two
missing terms. The detail of the calculation to obtain the full Veneziano ampli-
tude/model will appear soon by the authors [21].

11.7 Conclusion and Outlook

We have in the present article sketched how using our string field theory formalism
in which strings are rewritten into be described by states of “even objects” we
can obtain the scattering amplitude to be the usual Veneziano model amplitude.
It must though be immediately admitted that we at first got only one out of the
three terms expected. However, introducing “objects” that can have negative J+R -
components and can function as a kind of holes for objects, we though believe, that
it is promising to obtain the whole Veneziano amplitude. Our model or string field
theory has previously been shown [3] to lead to the usual mass square spectrum
for strings. In this way we collect increasing evidence that our formalism is indeed
another representation of all of string theory.

The way we constructed our formalism working from string theory and only
throwing away though a null set of information, it is of course a priori expected,
that our formalism should be string theory. In so far there sufficient holes in the
“derivation” of our formalism from string theory to be equivalent to the latter, that
we still need the more indirect support from rederiving features of string theory
such as the Veneziano amplitude from our model.

Our model is a formulation in terms of what we called “objects”, and they
“sit” in circular “cyclically ordered chains”, to an open string is assigned one such
circular chain of objects, to a closed string two. The “objects” are supposed to “sit”
as smoothly as they can from quantum fluctuations - which put severe constraints
though, since the odd numbered “objects” in cyclically ordered chain are not independent
dynamical variables, but rather given in terms of (the conjugate variables ΠiR for) the
neighboring “even numbered objects” by equation (11.19).

Actually we even stressed that the smoothness or continuity condition because
of the dependence of the odd objects on differences of the conjugate momenta of
neighboring even ones become non-reflection invariant. That is to say that a
cyclically ordered chain being smooth would not remain smooth, if one puts the
objects in the opposite order! The crux of the matter is that we have a genuine
string field theory in the sense that we construct a state space of Hilbert vectors
describing a whole universe in a string theory governed world. Then of course
there can in the various states of this Hilbert space exist different numbers of
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strings, well this is not hundred percent true, because contrary to other string
field theories: our Hilbert space is described in terms of the “even objects” and
the number of strings perfectly accurately given once you have a Hilbert space
state. The “even objects” can namely be associated to strings in slightly different
ways, so that the number of strings only approximately can be derived from a given
state; even there are no exact eigenstates for the number of strings. But in practice
we believe the approximate access to the number of strings in our description is
sufficient. But that the number of strings is not cleanly defined feature of a state in
our Hilbert space, is clear from the fact that we have scattering even scattering that
change the number of strings, such as if two strings scattered and became three,
but that nothing happen in our formalism under a scattering. We just obtained the
Veneziano model scattering amplitude as an overlap of initial and final state just
corresponding to that nothing happens in the object formulation. In this sense the
strings resulting from the scattering must have been there all the time.

One may look at our model as solution of string theory in the sense that we
have “even object ” description that does not even develop with time so that the
“even object” state is more like a system of initial data to a solution of string theory.

11.7.1 Outlook

We foresee that there must be really very much it would be reasonable to do in
our formalism, which is in many ways simpler than usual string theory especially
than usual string field theory.

Presumably it will be very easy to make the superstring version; if nothing
else should work one could in principle bosonize the fermionic modes and then
treat the resulting bosons similar to the way we treated in our model of the bosonic
modes.

Of course we should really also properly finish getting the Veneziano model
calculation remaining details. A special interest might be connected with the
overall normalization, which we left completely out here, since our formalism has
no obvious candidate for the string coupling g, so the latter should come out from
whatever parameters such as our cut off parameter a and α ′ and possible vacuum
characteristic, but we did not use openly vacuum properties in the calculation
sketched.

Most interesting might be to use our formalism to obtain a better understand-
ing of the Maldacena conjecture by developing our formalism for the Ads space
and then see that the corresponding CFT can also be written by our formalism.
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Discussion Section

The discussion section is meant to present in the workshop discussed open
problems, which might start a collaboration among participants or at least stimu-
late them to start to think about possible solutions in a different way. Since the time
between the workshop and the deadline for the contributions for the proceedings
is very short and includes for most of participants also their holidays, it is not
so easy to prepare besides their presentation at the workshop also the common
contributions to the discussion section. However, the discussions, even if not
presented as a contribution to this section, influenced participants’ contributions,
published in the main section.

This year quite a lot of started discussions have not succeeded to appear in
this proceedings. Organizers hope that they will be developed enough to appear
among the next year talks. Consequently this year discussion section has three
contributions only.

Most of discussions concerned searches for the theory which would offer
a trustable step beyond the standard models and the need to find the overlaps
among all possible searches for the theory beyond the standard model. Participants
were trying to understand, as deeply as possible, all the assumptions of differ-
ent approaches: How much have they in common, as well as how far have the
assumptions of different models, first of all of the standard model, influenced the ex-
perimental results and also how is the choice of the groups of symmetries, through
which the universe went in its evolution, connected with smallness of the group
representations? And others.

Discussions about the direct dark matter measurements are presented at the
end of the talk of Rita Bernabei. She is answering the participants’ questions.

The three written contributions concern: a. The toy model following the spin-
charge-family theory within d = (5+ 1) (instead of (13+ 1)), from where one can
learn how the break of symmetries, global, local and discrete, occur and how
do they influence the properties of families and of the scalar and vector gauge
fields. b. The idea that the future influences the past and the such an influence is
already observed. c. The space can emerge from randomness and diffeomorphism
symmetry.

All discussion contributions are arranged alphabetically with respect to the
authors’ names.
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Udeleženci velikega dela diskusij niso uspeli zapisati pravočasno v obliko, da
bi ga lahko vključili v letošnji zbornik. Organizatorji upamo, da bodo te diskusije
dozorele do oblike, da jih bo mogoče predstaviti na naslednji delavnici. Tako ima
ta sekcija samo tri prispevke.

Največ diskusije je teklo okoli vprašanja, kaj mora ponuditi teorija, da ji
bo mogoče zaupati, da ponuja pravi naslednji korak k razumevanju lastnosti
osnovnih delcev in in evolucije vesolja in razloži ne le predpostavke teh dveh
modelov ampak tudi opažene pojave, ki jih modela ne vključujeta. Udeleženci so
poskušali razumeti in razčleniti vse predpostavke različnih predlogov, pa tudi,
kako so ti predlogi, predvsem pa standardni model, vplivali na rezultate meritev,
ter tudi, denimo, kako je vesolje ,,izbiralo” grupe simetrij v svoji evoluciji in kako
je ta izbor povezan z velikostjo upodobitev grup.

Diskusija o tem, kako skrbno so očiščeni vseh nečistoč njihovi eksperimeni,
kako so poskrbeli, da med delce temne snovi ne prištejejo že poznane delce
ter kakšen je vzrok, da ostali eksperimenti (še) niso potrdili njihovih meritev,
najde bralec kot dodatek k prispevku Rite Bernabei, v katerem odgovarja vodja
laboratorija DAMA/LIBRA na zahtevna vprašanja udeležencev.

Trije prispevki te sekcije obravnavajo: a. Teorijo spina-nabojev-družin pri pred-
postavki, da je prostor primarno (5 + 1)-razsežen in ne (13 + 1)-razsežen, ki naj
pomaga razumeti, kako pride do spontane zlomitve simetrij, globalnih, lokalnih in
diskretnih in kako te zlomitve spremenijo lastnosti spinorjev ter lokalnih skalarnih
in vektorskih polj. b. Idejo, kako vgraditi v teorijo vpliv prihodnosi na preteklost,
ki je opazljiv. c. Kako prostor vznikne iz neurejenosti, ki ji dodamo simetrijo na
difeomorfizme.

Prispevki v tej sekciji so, tako kot prispevki v glavnem delu, urejeni po abeced-
nem redu priimkov avtorjev.
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Abstract. We studied in the refs. [1,2] properties of spinors in a toy model in d = (5 + 1),
whenM(5+1) breaks to an infinite disc with a zweibein which makes a disc curved on an
almost S2 and with a spin connection field which allows on such a sphere only one massless
spinor state, as a step towards realistic Kaluza-Klein theories in non compact spaces. In
the ref.[3] we allow on S2 two kinds of the spin connection fields, those which are gauge
fields of spins in and those which are the gauge fields of the family quantum numbers, both
as required for this toy model by the spin-charge-family theory [4,5]. This time we study,
by taking into account families of spinors interacting with several spin connection fields,
properties of massless and massive solutions of equations of motion, with the discrete
symmetries [9,10] (CN , PN , TN ) included. We also allow nonzero vacuum expectation
values of the spin connection fields and study the masses.

Povzetek. Da bi bolje razumeli zlomitve simetrij v teoriji spinov-nabojev-družin in njhove
posledice, študirata avtorja zlomitve na preprostem modelu v prostoru-času d = (5 + 1). V
tem modelu zvije vektorski svezenj neskončen disk v peti in šesti dimenziji v skoraj sfero S2,
spinske povezave pa poskrbijo za to, da je v opazljivem prostoru-času (d=(3+1)) sodo število
brezmasnih družin. Ko dovolita spinskim povezavam, da imajo neničelno pričakovano
vrednost, naboj fermionov (S56) ni več dobro kvantno število. Družine pridobijo maso, ki
jim jo določijo skalarna polja. Študirata tudi diskretne simetrije brezmasnih in masivnih
družin fermionov. Študij ponudi globji vpogled v skalarna polja, ki določajo lastnosti
fermionov pred in po zlomitvi simetrije naboja. Medtem ko nosijo skalarna polja v teoriji
”spini-naboji-družine”, kadar je dimenzija d = (13 + 1), polštevilčni šibki in hipernaboj, tak
kot Higgsovo polje v standardnem modelu, pa je v preprostem modelu naboj skalarnih polj
celoštevilčen.

12.1 Introduction

The spin-charge-family theory [4,5], proposed by one of us (N.S.M.B.), is offering the
explanation for the appearance of families of fermions in any dimension. Starting
in d = (13 + 1) with a simple action for massless fermions interacting with the
gravitational interaction only - that is with the vielbeins and the two kinds of
the spin connection fields, the ones originating in the Dirac kind of spin (γa’s)
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and the others originating in the second kind of the Clifford operators (γ̃a’s) - the
theory manifests effectively at low energies the observed properties of fermions
and bosons, offering the explanation for all the assumptions of the standard model:
For the appearance of families, for the appearance of the Higgs’s scalar [6] with
the weak and the hyper charges (∓1

2
, ±1

2
, respectively), for the Yukawa couplings,

for the charges of the family members, for the vector gauge fields, for the dark
matter content, for the matter-antimatter asymmetry [7].

The theory predicts the fourth family, which will soon be observed at the
LHC, and several scalar fields, manifesting in the observed Higgs’s scalar [8] and
the Yukawa couplings, some superposition of which will also be observed at the
LHC.

A simple toy model [1–3], which includes also families in the way proposed
by the spin-charge-family theory [4,5]), is expected to help to better understand
mechanisms causing the breaks of symmetries needed in the case of d = (13+ 1),
where a simple starting action leads in the low energy regime after the breaks to
the observable phenomena.

This contribution is a small further step in understanding properties of the
families after the breaks of symmetries, caused by the scalar fields which are the
gauge fields of the charges of spinors and the scalar fields which are the gauge
fields of the family groups. The discrete symmetries of fermions and bosons in
the case of only one family are studied already in the ref. [10]. Here the discrete
symmetries are studied when the families are taken into account. We allow also
that the spin connection fields gain nonzero vacuum expectation values and study
solutions of the equations of motion for massive spinors.

We start with massless spinors [1–3,10] in a flat manifold M(5+1), which
breaks intoM(3+1) times an infinite disc. The vielbein on the disc curves the disc
into (almost) a sphere S2

esσ = f−1
(
1 0

0 1

)
, fσs = f

(
1 0

0 1

)
, (12.1)

with

f = 1+ (
ρ

2ρ0
)2 =

2

1+ cos ϑ
,

x(5) = ρ cosφ, x(6) = ρ sinφ, E = f−2. (12.2)

The angle ϑ is the ordinary azimuthal angle on a sphere. The last relation follows
from ds2 = esσe

s
τdx

σdxτ = f−2(dρ2 + ρ2dφ2). We use indices (s, t) ∈ (5, 6) to
describe the flat index in the space of an infinite plane, and (σ, τ) ∈ ((5), (6)), to
describe the Einstein index. Rotations around the axis through the two poles of

a sphere are described by the angle φ, while ρ = 2ρ0

√
1−cosϑ
1+cosϑ . The volume of

this non compact sphere is finite, equal to V = π (2ρ0)
2. The symmetry of S2 is a

symmetry of U(1) group.
We take into account that there are two kinds of the Clifford algebra operators:

Beside the Dirac γa also γ̃a, introduced in [4,5,12]. Correspondingly the covariant
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momentum of a spinor on an almost S2 sphere is

p0a = fαa pα +
1

2E
{pα, f

α
aE}− −

1

2
Scdωcda −

1

2
S̃cdω̃cda ,

Sab =
i

4
(γaγb − γbγa) , S̃ab =

i

4
(γ̃aγ̃b − γ̃bγ̃a) , (12.3)

with E = det(eaα) and with vielbeins fαa 1, the gauge fields of the infinitesimal
generators of translation, and with the two kinds of the spin connection fields: i.
ωabα, the gauge fields of Sab and ii. ω̃abα, the gauge fields of S̃ab.

We make a choice of the spin connection fields of the two kinds on the infinite
disc as follows (assuming that there must be some fermion sources causing these
spin connections, the study of such sources of the scalar fieldsωstσ and ω̃abσ are
in progress)

fσs ′ ωstσ = iF56 f εst
es ′σx

σ

(ρ0)2
= −

1

2E
{pσ, Ef

σ
s ′ }− εst 4F56 ,

fσs ′ ω̃stσ = iF̃56 f εst
es ′σx

σ

(ρ0)2
= −

1

2E
{pσ, Ef

σ
s ′ }− εst 4F̃56 ,

fσs ω̃mnσ = −
1

2E
{pσ , Ef

σ
s}− 4F̃mn , F̃mn = −F̃nm ,

s = 5, 6, σ = (5), (6) . (12.4)

We take the starting action in agreement with the spin-charge-family theory for
this toy model in d = (5+ 1), that is the action for a massless spinor (Sf) with the
covariant momentum p0a from Eq. (12.3) interacting with gravity only and for the
vielbein and the two kinds of the spin connection fields (Sb)

S = Sb + Sf , Sf =
∫
ddxELf

Sb =

∫
ddxE (αR+ α̃ R̃) , Lf = ψ† γ0γa p0aψ . (12.5)

The two Riemann scalars, R = Rabcd ηacηbd and R̃ = R̃abcd ηacηbd, are deter-
mined by the Riemann tensors

Rabcd =
1

2
fα[af

β
b] (ωcdβ,α −ωceαω

e
dβ) ,

R̃abcd =
1

2
fα[af

β
b] (ω̃cdβ,α − ω̃ceαω̃

e
dβ) , (12.6)

where [a b] means that the anti-symmetrization must be performed over the two
indices a and b.

1 fαa are inverted vielbeins to eaα with the properties eaαfαb = δab, e
a
αf
β
a = δβα. Latin

indices a, b, ..,m, n, .., s, t, .. denote a tangent space (a flat index), while Greek indices
α, β, .., µ, ν, ..σ, τ.. denote an Einstein index (a curved index). Letters from the beginning
of both the alphabets indicate a general index (a, b, c, .. and α, β, γ, .. ), from the middle
of both the alphabets the observed dimensions 0, 1, 2, 3 (m,n, .. and µ, ν, ..), indices from
the bottom of the alphabets indicate the compactified dimensions (s, t, .. and σ, τ, ..). We
assume the signature ηab = diag{1,−1,−1, . . . ,−1}.
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We assume no gravity in d = (3 + 1): fµm = δµm and ωmnµ = 0 for m,n =

(0, 1, 2, 3), µ = (0, 1, 2, 3). Accordingly (a, b, . . . ) run in Eq. (12.5) only over s ∈
(5, 6). Taking into account the subgroup structure of the operators S̃mn

~̃N(L,R) =
~̃N±© =

1

2
(S̃23 ± iS̃01, S̃31 ± iS̃02, S̃12 ± iS̃03) ,

ÑL
±

= Ñ
⊕±

= Ñ⊕1 ± i Ñ⊕2 , ÑR
±
= Ñ

	±
= Ñ	1 ± i Ñ	2 , (12.7)

we can rewrite the 1
2
S̃cdω̃cda part of the covariant momentum (Eq. 12.3) as follows

−
1

2
f S̃mnω̃mn± =

∑
i

Ñ⊕iÃ⊕i± +
∑
i

Ñ	iÃ	i±

= Ñ⊕�Ã⊕�± + Ñ⊕�Ã⊕�± + Ñ⊕3Ã⊕3±

+ Ñ	�Ã	�± + Ñ	�Ã	�± + Ñ	3Ã	3± ,

ω̃mn± = ω̃mn5 ∓ iω̃mn6 . (12.8)

The notation was used

Ã±©is = fσs Ã
±©i
σ = −fσs{(ω̃23σ ∓ iω̃01σ), (ω̃31σ ∓ iω̃02σ), (ω̃12σ ∓ iω̃03σ)}

= δσs
1

2E
{pσ, Ef}− 4

(
F̃±©1, F̃±©2, F̃±©3

)
,

Ã
⊕±
s =

1

2
(Ã⊕1s ∓ i Ã⊕2s ) , Ã

	±
s =

1

2
(Ã	1s ∓ i Ã	2s ) ,

F̃
⊕±

= (F̃23 ∓ F̃02) − i(±F̃31 + F̃01) , F̃⊕3 = (F̃12 − iF̃03) ,

F̃
	±

= (F̃23 ± F̃02) + i(∓F̃31 + F̃01) , F̃	3 = (F̃12 + iF̃03) ,

σ = ((5), (6)) , s = (5, 6) , (12.9)

withωabc and ω̃abc defined in Eq. (12.4).
We looked in the ref. [3] for the chiral fermions on this sphere, that is for the

fermions of only one handedness in d = (3+ 1) and accordingly mass protected,
without including any extra fundamental gauge fields to the action from Eq.(12.5).

In this contribution we study the influence of several spin connection fields
on the properties of families, looking for the intervals within which the parameters

of both kinds of the spin connection fields (F56, F̃56, F̃⊕±, F̃⊕3, F̃	±, F̃	3) allow
massless solutions of the equation

{γ0γmpm + fγ0γsδσs (p0σ +
1

2Ef
{pσ, Ef}−)}ψ = 0, with

p0σ = pσ −
1

2
Sstωstσ −

1

2
S̃abω̃abσ , (12.10)

for several families of spinors.
We also allow nonzero vacuum expectation values of the scalar (with respect

to d = (3+ 1)) gauge fields and study properties of spinors.
The discrete symmetries of the equations of motion and of solutions are

studied in sections (12.3.1, 12.3).
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We look for the properties of spinors and gauge fields, scalars and vectors
with respect to d = (3+ 1).

In section 12.2 we present spinor states in ”our technique” (see appendix in
the ref. [7]). In section 12.2.1 we discuss massless and massive states of families of
spinors. In section 12.3.1 we present discrete symmetry operators introduced in
the refs. [9,10], in section 12.3 we discuss the properties of spinors and the gauge
fields, the zweibein and the two kinds of the spin connection fields, under the
discrete symmetry operators.

12.2 Solutions of equations of motion for families of spinors

We first briefly explain, following the refs. [5,1–3], the appearance of families in
our toy model, using what is called the technique [12].

There are 2d/2−1 = 4 families in our toy model, each family with 2d/2−1 = 4
members. In the technique [12] the states are defined as a product of nilpotents
and projectors

ab

(±i): = 1

2
(γa ∓ γb),

ab

[±i]:= 1

2
(1± γaγb), for ηaaηbb = −1,

ab

(±): = 1

2
(γa ± iγb),

ab

[±]:= 1

2
(1± iγaγb), for ηaaηbb = 1, (12.11)

which are the eigen vectors of Sab as well as of S̃ab as follows

Sab
ab

(k)=
k

2

ab

(k), Sab
ab

[k]=
k

2

ab

[k], S̃ab
ab

(k)=
k

2

ab

(k), S̃ab
ab

[k]= −
k

2

ab

[k] , (12.12)

with the properties that γa transform
ab

(k) into
ab

[−k], while γ̃a transform
ab

(k) into
ab

[k]

γa
ab

(k) = ηaa
ab

[−k], γb
ab

(k)= −ik
ab

[−k], γa
ab

[k]=
ab

(−k), γb
ab

[k]= −ikηaa
ab

(−k) ,

γ̃a
ab

(k) = −iηaa
ab

[k], γ̃b
ab

(k)= −k
ab

[k], γ̃a
ab

[k]= i
ab

(k), γ̃b
ab

[k]= −kηaa
ab

(k) .(12.13)

After making a choice of the Cartan subalgebra, for which we take: (S03, S12, S56)
and (S̃03, S̃12, S̃56), the four spinor families, each with four vectors, which are eigen
vectors of the chosen Cartan subalgebra with the eigen values from Eq. (12.12) [3],
follow

ϕ1I1 =
56

(+)
03

(+i)
12

(+) ψ0, ϕ1II1 =
56

(+)
03

[+i]
12

[+] ψ0,

ϕ1I2 =
56

(+)
03

[−i]
12

[−] ψ0, ϕ1II2 =
56

(+)
03

(−i)
12

(−) ψ0,

ϕ2I1 =
56

[−]
03

[−i]
12

(+) ψ0, ϕ2II1 =
56

[−]
03

(−i)
12

[+] ψ0,

ϕ2I2 =
56

[−]
03

(+i)
12

[−] ψ0, ϕ2II2 =
56

[−]
03

[+i]
12

(−) ψ0,
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ϕ1III1 =
56

[+]
03

[+i]
12

(+) ψ0, ϕ1IV1 =
56

[+]
03

(+i)
12

[+] ψ0,

ϕ1III2 =
56

[+]
03

(−i)
12

[−] ψ0, ϕ1IV2 =
56

[+]
03

[−i]
12

(−) ψ0,

ϕ2III1 =
56

(−)
03

(−i)
12

(+) ψ0, ϕ2IV1 =
56

(−)
03

[−i]
12

[+] ψ0,

ϕ2III2 =
56

(−)
03

[+i]
12

[−] ψ0, ϕ2IV2 =
56

(−)
03

(+i)
12

(−) ψ0, (12.14)

where ψ0 is a vacuum for the spinor state. One can reach from the first member
ϕ1I1 of the first family the same family member of all the other families by the
application of S̃ab. One can reach all the family members of each family by ap-
plying the generators Sab on one of the family member. If we write the operators
of handedness in d = (5 + 1) as Γ (5+1) = γ0γ1γ2γ3γ5γ6 (= 23iS03S12S56), in
d = (3 + 1) as Γ (3+1) = −iγ0γ1γ2γ3 (= 22iS03S12) and in the two dimensional
space as Γ (2) = iγ5γ6 (= 2S56), we find that all the states of all the families are
left handed with respect to Γ (5+1), with the eigen value −1, the first two states of
the first family, and correspondingly the first two states of any family, are right
handed and the second two states are left handed with respect to Γ (2), with the
eigen values 1 and −1, respectively, while the first two are left handed and the
second two right handed with respect to Γ (3+1) with the eigen values −1 and 1,
respectively.

Having the rotational symmetry around the axis perpendicular to the plane
of the fifth and the sixth dimension we require that ψ(6) is the eigen function of
the total angular momentum operatorM56 = x5p6 − x6p5 + S56 = −i ∂

∂φ
+ S56

M56ψ(6) = (n+
1

2
)ψ(6) . (12.15)

Accordingly we write, when taking into account Eq. (12.14), the most general
wave function ψ(6) obeying Eq. (12.10) in d = (5+ 1) as

ψ(6) = N
∑

i=I,II,III,IV

(Ain
56

(+)iψ
(4i)
(+) + Bin+1 eiφ

56

[−]iψ
(4i)
(−) ) e

inφ. (12.16)

whereAin and Bin depend on xσ, while ψ(4i)
(+) and ψ(4i)

(−) determine the spin and the
coordinate dependent parts of the wave function ψ(6) in d = (3+ 1) in accordance
with the definition in Eq.(12.14), for example,

ψ
(4I)
(+) = αI+

03

(+i)
12

(+) + βI+
03

[−i]
12

[−],

ψ
(4I)
(−) = αI−

03

[−i]
12

(+) + βI−
03

(+i)
12

[−]. (12.17)

56

(+)i =
56

(+), for i = I, II and
56

(+)i =
56

[+] for i = III, IV , while
56

[−]i =
56

[−] for i = I, II

and
56

[−]i =
56

(−) for i = III, IV . Usingψ(6) in Eq. (12.10) and separating dynamics in
(1+3) and on S2, the following relations follow, from which we recognize the mass

termmI: α
i
+

αi−
(p0 − p3) −

βi+
αi−

(p1 − ip2) = mi,
βi+
βi−

(p0 + p3) −
αi+
βi−

(p1 + ip2) = mi,
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αi−
αi+

(p0+p3)+ β−

α+
(p1−ip2) = mi,

βi−
βi+

(p0−p3)+
αi−
βi+

(p1−ip2) = mi. (One notices

that for massless solutions (mi = 0) ψ(4i)
(+) and ψ(4i)

(−) , for each i = I, II, III, IV,

decouple.)
For a spinor with the momentum pm = (p0, 0, 0, p3) in d = (3 + 1) the spin

and coordinate dependent parts for four families are: ψ(4I)
(+) = α

03

(+i)
12

(+) , ψ(4II)
(+) =

α
03

[+i]
12

[+] , ψ(4III)
(+) = α

03

[+i]
12

(+) , ψ(4IV)
(+) = α

03

(+i)
12

[+] .
Taking the above derivation into account (Eqs. (12.16, 12.2, 12.4, 12.17, 12.7,

12.8, 12.9)) the equation of motion for spinors follows [3] from the action (12.5)

if {eiφ2S
56

[(
∂

∂ρ
+
i 2S56

ρ
(
∂

∂φ
)) −

1

2 f

∂f

∂ρ
(1− 2F56 2S

56 − 2F̃56 2S̃
56

−2F̃	� 2Ñ	� − 2F̃	� 2Ñ	� − 2F̃	 3 2Ñ	 3

−2F̃⊕� 2Ñ⊕� − 2F̃⊕� 2Ñ⊕� − 2F̃⊕ 3 2Ñ⊕ 3) ] }ψ(6)

+ γ0γ5mψ(6) = 0. (12.18)

One easily recognizes that, due to the break ofM(5+1) intoM(3+1)× an infinite
disc, which concerns (by our assumption) both, Sab and S̃ab sector, there are two
times two coupled families: The first and the second, and the third and the fourth,
while the first and the second remain decoupled from the third and the fourth. We
end up with two decoupled groups of equations of motion [3] (which all depend
on the parameters F56 and F̃56):

i. The equations for the first and the second family

−if
{
[(
∂

∂ρ
−
n

ρ
) −

1

2f

∂f

∂ρ
(1− 2F56 − 2F̃56 − 2F̃

	3)]AIn

−
1

2f

∂f

∂ρ
2F̃	�AIIn

}
+mBIn+1 = 0 ,

−if
{
[(
∂

∂ρ
+
n+ 1

ρ
) −

1

2f

∂f

∂ρ
(1+ 2F56 − 2F̃56 − 2F̃

	3)]BIn+1

−
1

2f

∂f

∂ρ
2F̃	� BIIn+1

}
+mAIn = 0 , (12.19)

−if
{
[(
∂

∂ρ
−
n

ρ
) −

1

2f

∂f

∂ρ
(1− 2F56 − 2F̃56 + 2F̃

	3)]AIIn

−
1

2f

∂f

∂ρ
2F̃	�AIn

}
+mBIIn+1 = 0 ,

−if
{
[(
∂

∂ρ
+
n+ 1

ρ
) −

1

2f

∂f

∂ρ
(1+ 2F56 − 2F̃56 + 2F̃

	3)]BIIn+1

−
1

2f

∂f

∂ρ
2F̃	� BIn+1

}
+mAIIn = 0 .
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ii. The equations for the third and the fourth family

−if
{
[(
∂

∂ρ
−
n

ρ
) −

1

2f

∂f

∂ρ
(1− 2F56 + 2F̃56 − 2F̃

⊕3)]AIIIn

−
1

2f

∂f

∂ρ
(−2F̃⊕�)AIVn

}
+mBIIIn+1 = 0 ,

−if
{
[(
∂

∂ρ
+
n+ 1

ρ
) −

1

2f

∂f

∂ρ
(1+ 2F56 + 2F̃56 − 2F̃

⊕3)]BIIIn+1

−
1

2f

∂f

∂ρ
(−2F̃⊕�)BIVn+1

}
+mAIIIn = 0 , (12.20)

−if
{
[(
∂

∂ρ
−
n

ρ
) −

1

2f

∂f

∂ρ
(1− 2F56 + 2F̃56 + 2F̃

⊕3)]AIVn

−
1

2f

∂f

∂ρ
(−2F̃⊕�)AIIIn

}
+mBIVn+1 = 0 ,

−if
{
[(
∂

∂ρ
+
n+ 1

ρ
) −

1

2f

∂f

∂ρ
(1+ 2F56 + 2F̃56 + 2F̃

⊕3)]BIVn+1

−
1

2f

∂f

∂ρ
(−2F̃⊕�)BIIIn+1

}
+mAIVn = 0 .

Let us look for possible normalizable [1,2] massless solutions for each of the two
groups in dependence on the parameters which determine the strength of the spin
connection fields. Both groups, although depending on different parameters of
the spin connection fields, can be treated in an equivalent way. Let us therefore
study massless solutions of the first group of equations of motion.

For m = 0 the equations for AIn and AIIn in Eq. (12.19) decouple from those
for BIn+1 and BIIn+1. We get for massless solutions

AI±n = a± ρ
n f

1
2
(1−2F56−2F̃56) f±

√
(F̃	3)2+F̃	�F̃	�

,

AII±n =
±
√

(F̃	3)2 + F̃	�F̃	� + F̃	3

F̃	�
AI±n ,

BI±n+1 = b± ρ
−n−1 f

1
2
(1+2F56−2F̃56) f±

√
(F̃	3)2+F̃	�F̃	�

,

BII±n+1 =
±
√
(F̃	3)2 + F̃	�F̃	� + F̃	3

F̃	�
BI±n+1 , (12.21)

n is a positive integer. The solutions (AI+n ,AII+n ) and (AI−n ,AII−n ) are two indepen-
dent solutions, a general solution is any superposition of these two. Similarly is
true for (BI±n+1, BII±n+1).

In the massless case also AI,II±n decouple from BI,II±n+1 .
One can easily write down massless solutions of the second group of two

families, decoupled from the first one, when knowing massless solutions of the
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first group of families. It follows

AIII±n = a± ρ
n f

1
2
(1−2F56+2F̃56) f±

√
(F̃⊕3)2+F̃⊕�F̃⊕�

,

AIV±n =
±
√

(F̃⊕3)2 + F̃⊕�F̃⊕� + F̃⊕3

−F̃⊕�
AIII±n ,

BIII±n+1 = b± ρ
−n−1 f

1
2
(1+2F56+2F̃56) f±

√
(F̃⊕3)2+F̃⊕�F̃⊕�

,

BIV±n+1 =
±
√

(F̃⊕3)2 + F̃⊕�F̃⊕� + F̃⊕3

−F̃⊕�
BIII±n+1 , (12.22)

n is a positive integer, a± and b± are normalization factors.
Requiring that only normalizable (square integrable) solutions are acceptable

2π

∫∞
0

Eρdρ (Ai?nAin + Bi?n Bin) <∞ , (12.23)

i ∈ {I, II, III, IV} , one finds that Ain and Bin are normalizable [1,2] under the
following conditions

AI,IIn : −1 < n < 2(F56 + F̃56 ±
√

(F̃	3)2 + F̃	�F̃	� ) ,

BI,IIn : 2(F56 − F̃56 ±
√

(F̃	3)2 + F̃	�F̃	� ) < n < 1 ,

AIII,IVn : −1 < n < 2(F56 − F̃56 ±
√
(F̃⊕3)2 + F̃⊕�F̃⊕� ) ,

BIII,IVn : 2(F56 + F̃56 ±
√
(F̃⊕3)2 + F̃⊕�F̃⊕� ) < n < 1 . (12.24)

One immediately sees that for F56 = 0 = F̃56 there is no solution for the zweibein
from Eq. (12.2). Let us first assume that F̃∓©i = 0 ; i ∈ {1, 2, 3}. Eq. (12.24) tells us
that the strengths F56, F̃56 of the spin connection fields (ω56σ and ω̃56σ) can make
a choice between the massless solutions (AI,IIn , AIII,IVn ) and (BI,IIn ,BIII,IVn ):

For

0 < 2(F56 + F̃56) ≤ 1, F̃56 < F56 (12.25)

there exist four massless left handed solutions with respect to (3+ 1). For

0 < 2(F56 + F̃56) ≤ 1, F̃56 = F56 (12.26)

the only massless solution are the two left handed spinors with respect to (3+ 1)

ψ
(6 I,II)m=0
1
2

= N0 f−F56 −F̃56+1/2
56

(+) ψ
(4 I,II)
(+) . (12.27)

The solutions (Eq.12.27) are the eigen functions ofM56 with the eigen value 1/2.
Since no right handed massless solutions are allowed, the left handed ones are
mass protected. For the particular choice 2(F56 + F̃56) = 1 the spin connection
fields −S56ω56σ− S̃56ω̃56σ compensate the term 1

2Ef
{pσ, Ef}− and the left handed
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spinor with respect to d = (1+ 3) becomes a constant with respect to ρ and φ. To
make one of these two states massive, one can try to include terms like F̃∓©i.

Let us keep F̃⊕i = 0 i ∈ {1, 2, 3} and F56 = F̃56, while we take F̃	3 , F̃	∓

non zero. Now it is still true that due to the conditions in Eq. (12.24) there are
no massless solutions determined by AIII,IV and BIII,IV . There is now only one
massless and mass protected family for F56 = F̃56. In this case the solutions AI−0
and AII−0 are related

AI−0 = N−
0 f

1
2
[1−2F56−2F̃56−2

√
(F̃	3)2+F̃	�F̃	�] ,

AII−0 = −
(
√
(F̃	3)2 + F̃	�F̃	� + F̃	3)

F̃	�
AI−0 . (12.28)

There exists, however, one additional massless state, with AI+0 related to AII+0
and BI+0 related to BII+0 , which fulfil Eq. (12.24). But since we have left and right
handed massless solution present, it is not mass protected any longer.

One can make a choice as well that none of solutions would be massless.
According to Eq. (12.38) from sect. 12.3 the equation of motion presented

in Eqs. (12.5, 12.3) are covariant with respect to the discrete symmetry operator
CN ·PN (Eq. (12.35)), what means that the antiparticle feels the transformed gauge
fields and carry the opposite charge with respect to the starting particle.

Let us conclude this section by recognizing that for F̃⊕± = 0 and F̃	± = 0 all
the families decouple. There is then the choice of the parameters (F56 , F̃56 , F̃⊕3,
F̃	3 ) which determine how many massless and mass protected families exist, if
any.

12.2.1 Solutions after the scalar gauge fields gain nonzero vacuum
expectation values

Let us now assume that the spin connection fields gain nonzero vacuum expecta-
tion values

m
(56)
± : = < ω56± > , m̃

(56)
± :=< ω̃56± > ,

m̃
(ÑRi)
± : = (< ω̃23± − iω̃01± >,< ω̃31± − iω̃02± >,< ω̃12± − iω̃03± >) ,

m̃
(ÑLi)
± : = (< ω̃23± + iω̃01± >,< ω̃31± + iω̃02± >,< ω̃12± + iω̃03± >) ,

(12.29)

breaking the charge S56 symmetry, as well as all the ”tilde charges” (S̃56, ~̃N(R,L)).
Then the equation of motion (12.10) can be rewritten as

{γ0γmp0m + γ0
∑
+,−

56

(±) p0±}ψ = 0 ,

p0m = pm − S56ω56m ,

p0± = p± − S56m
(56)
± − S̃56 m̃

(56)
± −

3∑
i=1

ÑiR m̃
(ÑRi)
± −

3∑
i

ÑiL m̃
(ÑRi)
± .(12.30)
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One finds that requiring the hermiticity of the equations of motion (Eq. (12.30))
leads to the relations

−m
(56)
+ = m

(56)
− , m̃

(56)
+ = m̃

(56)
− , m̃

(ÑRi)
+ = m̃

(ÑRi)
− , m̃

(ÑLi)
+ = m̃

(ÑLi)
− .(12.31)

We also must require, to be consistent with the definition and the Eqs. (12.35, 12.36,
12.37, 12.38) and Eq. (12.30), that

CNPN m(56)
± (CNPN )−1 = −m

(56)
∓ ,

CNPN m̃(56)
± (CNPN )−1 = m̃

(56)
∓ ,

CNPN m̃(ÑRi)
± (CNPN )−1 = m̃

(ÑRi)
∓ ,

CN · PN m̃(ÑLi)
± (CN · PN )−1 = m̃

(ÑLi)
∓ . (12.32)

Eq. (12.30) has then the solutions

mÑL1,2 =
1

2
(m

(56)
− − m̃

(56)
− )±

√∑
i

(m̃
(ÑLi)
− )2 ,

mÑR1,2 =
1

2
(m

(56)
− + m̃

(56)
− )±

√∑
i

(m̃
(ÑRi)
− )2 , (12.33)

with the spinor states with no conserved charge S56 any longer

ψ
(6)ÑL
m(1,2) = N

ÑL {(m̃
(ÑL3)
− ±

√∑
i

(m̃
(ÑLi)
− )2 ) (

03

[+i]
12

(+)
56

[+] −
03

(−i)
12

(+)
56

(−))

+ (m̃
(ÑL1)
− + im̃

(ÑL2)
− ) (

03

(+i)
12

[+]
56

[+] −
03

[−i]
12

[+]
56

(−))}e−imx
0

,

ψ
(6)ÑR
m(1,2) = N

ÑR {(m̃
(ÑR3)
− ∓

√∑
i

(m̃
(ÑRi)
− )2 ) (

03

[+i]
12

[+]
56

(+) −
03

(−i)
12

[+]
56

[−])

+ (m̃
(ÑR1)
− − im̃

(ÑR2)
− ) (

03

(+i)
12

(+)
56

(+) −
03

[−i]
12

(+)
56

[−])}e−imx
0

, (12.34)

while handedness in the ”tilde” sector is conserved.

12.3 Discrete symmetries of spinors and gauge fields of the toy
model

In the subsection of this section 12.3.1 the discrete symmetry operators for particles
and antiparticles in the second quantized picture are presented, as well as for
the gauge fields. This definition for the discrete symmetry operators, as they
manifest from the point of view of d = (3+ 1), is designed for all the Kaluza-Klein
like theories. At least this way of looking for the appropriate discrete symmetry
operators from the point of view of d = (3 + 1) can be helpful in all the Kaluza-
Klein cases to find the appropriate discrete symmetry operators in the observable
dimensions.
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One sees that the operators of discrete symmetries, presented in Eqs. (12.39,
12.41, 12.42), do not depend on the family quantum numbers γ̃a, which means that
every particle, described as a member of one family, transforms under the product
of the two discrete symmetry operators CN and PN , presented in Eq. (12.39) and
Eq. (12.42), into the corresponding antiparticle state, which belongs to the same
family (carrying the same family quantum numbers).

The discrete symmetry operator CN ·PN (Eqs. (12.39, 12.42)) is in our case
with d = (5+ 1) equal to

CN · PN = γ0 γ5 I~x3 Ix6 . (12.35)

It has an even number of γa’s, which guarantees that the operation does not cause
the transformation into another Weyl representation in d = (5+ 1), which means
that we stay within the Weyl representation from which we started.

Let us check what does this discrete symmetry operator CN ·PN do when
being applied on several operators.

One easily finds

CN · PN (γ0, γ1, γ2, γ3, γ5, γ6) (CN · PN )−1 = (−γ0, γ1, γ2, γ3,−γ5, γ6) ,

CN · PN (p0, p1, p2, p3, p5, p6) (CN · PN )−1 = (p0,−p1,−p2,−p3, p5,−p6) ,

CN · PN
56

(±) (CN · PN )−1 =
56

(∓) ,
CN · PN γ̃a (CN · PN )−1 = γ̃a , for each a ,

CN · PN (ω565(x
0,~x3, x

5, x6),ω566(x
0,~x3, x

5, x6)) (CN · PN )−1 =

(−ω565(x
0,−~x3, x

5,−x6),ω566(x
0,−~x3, x

5,−x6)) ,

CN · PN (ω̃5̃6̃5(x
0,~x3, x

5, x6), ω̃5̃6̃6(x
0,~x3, x

5, x6)) (CN · PN )−1 =

(ω̃5̃6̃5(x
0,−~x3, x

5,−x6),−ω̃5̃6̃6(x
0,−~x3, x

5,−x6)) , (12.36)

where we write ω̃5̃6̃s, s = (5, 6) to point out that the first two indices belong to the

S̃O(5, 1) group. We also use the notation
56

(±)= 1
2
(γ5 ± iγ6).

One correspondingly finds, taking into account Eqs. (12.7, 12.9)

CNPN S56 (CNPN )−1 = −S56 ,

CNPN S̃56 (CNPN )−1 = S̃56 ,

CNPN ω56m(x0,~x3) (CN · PN )−1 = −ω56m(x0,−~x3) ,

CNPN (~̃A
±©
5 (x5, x6), ~̃A

±©
6 (x5, x6)) (CNPN )−1 = (~̃A

±©
5 (x5,−x6),−~̃A

±©
6 (x5,−x6)) ,

CNPN ~̃A
±©
± (x5, x6) (CNPN )−1 = ~̃A

±©
∓ (x5,−x6) ,

CNPN A56± (x5, x6) (CNPN )−1 = −A56∓ (x5,−x6) , (12.37)

with A56± = (ω565 ∓ iω566).
From Eqs. (12.36, 12.37) it follows

CN · PN {γ0γm (pm − S56ω56m(x0,~x3))} (CN · PN )−1

= {(−γ0)(−γm) (pm − (−S56) (−ω56
m)(x0,−~x3))}

= {γ0γm (pm − S56ω56m(x0,−~x3))}
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CN · PN {γ0
56

(±) (p± − S56ω56±(x
5, x6) −

1

2
S̃ãb̃ ω̃ãb̃±(x

5, x6))} (CN · PN )−1

= {γ0
56

(∓) (p∓ − S56ω56∓(x
5,−x6) −

1

2
S̃ab ω̃ãb̃∓(x

5,−x6))} .

(12.38)

Taking into account Eq. (12.4) and the equations of (12.38), we see that the equa-
tions of motion are covariant with respect to a particle and its antiparticle: A
particle and its antiparticle carry the same mass, while the antiparticle carries the
opposite charge S56 than the particle and moves in the transformed U(1) field
−ω56

m(x0,−~x3) [15].
The equations of motion for our toy model (Eqs. (12.10,12.4), and correspond-

ingly the solutions (Eq. (12.16)) manifest the discrete symmetries CN · PN , TN and
CN · PN ·TN , with the operators presented in Eqs. (12.39, 12.42). Both, CN ·PN ·Ψ(6)

and CN ·PNΨ(6) (12.42) solve the equations of motion, provided thatω56m(x0,~x3)

is a real field. The field ω56m(x0,~x3) transforms under CN ·PN and CN ·PN to
−ω56

m(x0,−~x3), like the U(1) field must [15].
The starting action (12.5) and the corresponding Weyl equation (12.10) man-

ifest discrete symmetries CN · PN , TN and CN · PN ·TN from Eqs. (12.39,12.42).
Correspondingly all the states with the conserved chargesM56 respect this sym-
metry, transforming particle states into the antiparticle states.

12.3.1 Discrete symmetry operators

To discuss properties of the representations of particle and antiparticle states and
of the gauge fields with which spinors interact let us first define the discrete
symmetry operators as seen from the point of view of d = (3 + 1) in the second
quantized picture as proposed in the ref. [9], where the definition of the discrete
symmetries operators for the Kaluza-Klein kind of theories, for the first and the
second quantized picture was defined, so that the total angular moments in higher
dimensions manifest as charges in d = (3 + 1). The ref. [9] uses the Dirac sea
second quantized picture to make presentation transparent.

The ref. [9] proposes the following discrete symmetry operators

CN =

3∏
=γm,m=0

γm Γ (3+1) K Ix6,x8,...,xd ,

TN =

3∏
<γm,m=1

γm Γ (3+1) K Ix0 Ix5,x7,...,xd−1 ,

P(d−1)
N = γ0 Γ (3+1) Γ (d) I~x3 . (12.39)

The operator of handedness in even d dimensional spaces is defined as

Γ (d) := (i)d/2
∏
a

(
√
ηaa γa) , (12.40)

with products of γa in ascending order. We choose γ0, γ1 real, γ2 imaginary, γ3

real, γ5 imaginary, γ6 real, alternating imaginary and real up to γd real. Operators



i
i

“proc14” — 2014/12/8 — 18:22 — page 236 — #250 i
i

i
i

i
i

236 D. Lukman and N.S. Mankoč Borštnik

I operate as follows:

Ix0x
0 = −x0;

Ixx
a = −xa;

Ix0x
a = (−x0,~x);

I~x~x = −~x;

I~x3x
a = (x0,−x1,−x2,−x3, x5, x6, . . . , xd);

Ix5,x7,...,xd−1(x0, x1, x2, x3, x5, x6, x7, x8, . . . , xd−1, xd) =

(x0, x1, x2, x3,−x5, x6,−x7, . . . ,−xd−1, xd);

Ix6,x8,...,xd(x
0, x1, x2, x3, x5, x6, x7, x8, . . . , xd−1, xd) =

(x0, x1, x2, x3, x5,−x6, x7,−x8, . . . , xd−1,−xd), d = 2n.

CN transforms the state, put on the top of the Dirac sea, into the corresponding
negative energy state in the Dirac sea.

We need the operator, we name [11,10,9] it CN , which transforms the starting
single particle state on the top of the Dirac sea into the negative energy state and
then empties this negative energy state. This hole in the Dirac sea is the antiparticle
state put on the top of the Dirac sea. Both, a particle and its antiparticle state (both
put on the top of the Dirac sea), must solve the Weyl equations of motion.

This CN is defined as a product of the operator [11,10] "emptying", (which is
really an useful operator, although it is somewhat difficult to imagine it, since it is
making transformations into a completely different Fock space)

"emptying" =
∏
<γa

γa K = (−)
d
2
+1
∏
=γa

γa Γ (d)K , (12.41)

and CN

CN =

d∏
<γa,a=0

γa K

3∏
=γm,m=0

γm Γ (3+1) K Ix6,x8,...,xd

=

d∏
<γs,s=5

γs Ix6,x8,...,xd . (12.42)

Let us present also the second quantized notation, following the notation in
the ref. [9]. Let Ψ†p[Ψp] be the creation operator creating a fermion in the state Ψp
and let Ψ†p(~x) be the second quantized field creating a fermion at position ~x. Then

{Ψ†p[Ψp] =

∫
Ψ†p(~x)Ψp(~x)d

(d−1)x } |vac >

so that the antiparticle state becomes

{CN Ψ
†
p[Ψp] =

∫
Ψp(~x) (CN Ψp(~x))d(d−1)x} |vac > .
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The antiparticle operator Ψ†a[Ψp], to the corresponding particle creation operator,
can also be written as

Ψ†a[Ψp] |vac > = CN Ψ
†
p[Ψp] |vac >=

∫
Ψ†a(~x) (CN Ψp(~x))d(d−1)x |vac > ,

CH = "emptying" · CH . (12.43)

While the discrete symmetry operator CN has an odd number of γa operators
and correspondingly transforms one Weyl representation in d = (5 + 1) into
another Weyl representation in d = (5 + 1), changing the handedness of the
representation, stays the operator CN ·PN within the same Weyl. The same is true
for TN and also for the product CN ·PN · TN .

12.4 Conclusions and discussions

We make in this contribution a small step further with respect to the refs. [3,10] in
understanding the existence of massless and mass protected spinors as well as the
massive states in non compact spaces in the presence of families of spinors after
breaking symmetries. We take a toy model inM5+1, which breaks intoM3+1×
an infinite disc curled into an almost S2 under the influence of the zweibein.
Following the spin-charge-family theory we have in this toy model four families.
We study properties of families when allowing that besides the spin connection
field, which are the gauge field of Sst = i

4
(γsγt − γtγs), also the gauge fields of

S̃st = i
4
(γ̃sγ̃t − γ̃tγ̃s), determining families, affect the behaviour of spinors.

We simplify our study by assuming the same radial dependence of all the
spin connection fields (Eq. (12.4)), while the strengths of the fields (F56, F̃56, F̃mn)
are allowed to vary within some intervals.

We found that the choices of the parameters allow within some intervals of
parameters (F56, F̃56, F̃mn) four, two or none massless and mass protected spinors.

We allowed the nonzero vacuum expectation values of all the spin connection
fields, fσs ′ ω56σ, fσs ′ ω̃5̃6̃σ and fσs ′ ω̃m̃ñσ, where σ = ((5), (6)), s = (5, 6),
m̃ = (0̃, 1̃, 2̃, 3̃). All indices ã belong to the S̃O(5, 1) group, while indices a belong
to the SO(5, 1) group. The nonzero vacuum expectation values of all the gauge
fields causes that the U(1) charge (S56) breaks, as well as also all the family
quantum numbers, while the handedness in the ”tilde” degrees of freedom keep
two groups of families non coupled.

We studied also the discrete symmetries of equations of motion and of solu-
tions, for massless and massive states.

We found: a. Almost S2 or any other shape with the symmetry around the
axis, perpendicular to the infinite disc, has the rotational symmetry around this
axis. But almost S2 has not the rotational symmetry around the axis which goes
through the centre of almost sphere because of the singular point on the southern
pole unless we make the translation of the axis. Equivalently the almost torus -
infinite disc curled into an almost torus - has no symmetry. b. Even number of
families stay massless and mass protected for the intervals of parameters. c. Non
zero vacuum expectation values of the scalar gauge fields break all the charges,
while the two handedness in the ”tilde” sector keeps the two groups of families
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separated. d. Let us add that while the weak charge and the hyper charge have
fractional values in the spin-cahreg-family theory in d = (13 + 1), have the scalar
fields in this case of d = (5+ 1) integer valued charges.
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Abstract. It is the purpose of the present article to collect arguments for, that there should
exist in fact -although not necessarily yet found - some law, which imply an adjustment to
special features to occur in the future. In our own “complex action model” we suggest a
version in which the “goal” according to which the future is being arranged is to diminish
the integral over time and space of the numerical square of the Higgs field. We end by
suggesting that optimistically calculated the collected evidences by coincidences runs to
that the chance for getting so good agreement by accident would be of the order of only
1 in 30000. In addition we review that the cosmological constant being so small can be
considered evidence for some influence backward in time. Anthropic principle may be
considered a way of simulating influence backward in time.

Povzetek. Namen tega prispevka je zbrati argumente za trditev, da obstaja nek (najbrž še
ne odkrit) naravni zakon, ki dopušča vpliv prihodnosti na dogodke v sedanjosti. Avtor je v
“modelu kompleksne akcije”, skupaj s sodelavci, predlagal, da je “cilj”, ki določa prihodnost,
povezan z zmanjšanjem integrala vrednosti kvadrata Higgsovega polja po prostor-času.
Avtor meni, da je antropsko načelo lahko način za simulacijo vpliva nazaj v času. Zbere
nekaj primerov, ki jih uporabi za argument, da smo vpliv prihodnosti na sedanjost in
preteklost že opazili. Predlaga poenoteno sliko enačb gibanja in začetnih pogojev. Predstavi
model s kompleksno akcijo, ter povzame napovedi tega modela. Povzame tudi, kako drugi
avtorjevi modeli potrjujejo vpliv prihodnjosti na sedanjost. Tudi majhnost kozmološke
konstante se da pojasniti s vpivom preteklosti na sedanjost.

13.1 Introduction

Since long the present author and various collaborators[1–4] have speculated on
possibilities for a physical theory having in it some preorganization in the sense,
that there is some law that adjust initial condition and/or coupling constants so as
to arrange for special “goals” to occur in the future. In works with K. Nagao[6,8,7,9–
11] we sought to calculate, if effects of an imaginary part of the action of the type
of the works with M. Nimomiya[3,4] could be so well hidden, that such a model
would be viable. One could even say, that it is speculations about, that future
could somehow act back on the present and the past. Usually - since Darwin and
Wallace - it is considered (essentially) a fundamental law of nature, that this kind
of back action does not exist. But is that trustable? In the present article we shall

? E-mail: hbech@nbi.dk, hbechnbi@gmail.com
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collect arguments for the opposite, namely that there truly IS such a back action in
time.

I would like to seek to make a kind of review of the evidence for such an
influence from the future, and use it as an excuse for talking about some relatively
recent works[12], some of which may not immediately seem to be relevant, such
as my work with Masao[15,13,14] Ninomiya on “A Novel String Field Theory”[13–
15]. My real motivation is to look for what the fine tuning problems for the various
coupling constants may tell us about the fundamental laws of physics, which we
seek to find [12].

In other words we could say, that I want to investigate if retro causation is
possible and plan to argue for that there are indications that it is possible.

Although the idea of having retro causation is generally believed not to be
true there were at least one proposal for a theory of that kind proposed, namely the
theory about electromagnetic radiation being radiated in equal amounts backward
and forward in time by Wheeler and Feynman [16].

The work of Feynman and Wheler avoids influence from the future by a
discussion of the absorbers of the light emitted backward and forward, a mecha-
nism a priori rather different form the one we use in our complex action model
already mentioned; but the quantum mechanics interpretation inspired from the
Feynman-Wheeler theory, which is called transactional interpretation and is due
to Cramer[17], is the same one as the one supported by our complex action theory.

The plan of this talk about the influence from future will be like this :

• 1)Introduction
• 2) Listing of arguments for influence from future.
• 3) Discussion of Time reversal
• 4)Why should we NOT unite initial state information with equations of mo-

tion?
• 5) The finiteness of String Theory may hide in mine and Ninomiyas Novel

String Field Theory [13–15] - an influence from the future, and that might be
the reason for it being string theory.

• 6) Some fine-tunings as if “God hated the Higgs squared field
• 7) Bennetts and mine argument that at the time the Cosmological Constant

must already have hat its value, when densities of energy so low as the present
were unknown/did not yet occur.
• 8) The Multiple Point Principle being successful means influence from future.
• 9) If we count optimistically do we have sufficient evidence for a planned

universe development?
• 10) At the end we conclude that one must take the possibility seriously.

13.2 Listing of Arguments

Here I should like to list a series of arguments for that there is indeed some
adjustment going on to achieve some “goals” we may hope to guess some time:

• A) Funny that many religious people imagine, that there is a Governor of the
world, if the principle preventing such government were truly valid.
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• B) Strange that the laws about the initial conditions and equations of motion
behave differently under the CPT-like symmetry (or under time-reversal)

• C) Cosmological constant were very small compared to the energy density
in the beginning; how could it then be selected so small, when it had no
significance at that time (argument with D. Bennett).

• D) Several evidences for anthropic principle, but mostly physicists do not
like it. (Personally I would say: The anthropic principle is much like putting
in the experimental fact that we humans exist into the theory; putting in
experimental results can always help avoiding finetuning problems, so a good
theory should be more ambitious than have to include such an input.)

• E) Multiple Point Principle (almost) successful: Higgs mass, top Yukawa cou-
pling, and Weak scale relative to Planck scale.
• F) Our Complex Action model with Higgs field square taken to dominate

gives[12]:
– 1) n and p+e+antineutrino suppress Higgs field equally much (within

errors).
– 2) The “knee” cut the cosmic ray spectrum down close to the effective

Higgs threshold.
– 3) Nuclear matter has low binding energy.
– 4) Higgs field in vacuum at lowest Higgs field square.
– 5) Smallness of weak scale/Higgs field relative to fundamental/Planck

scale.
• G)It may be very hard to make an ultraviolet cut off, that does not violate

locally in time a little bit. So an ultraviolet meaningful theory may imply
influence from future?

• H) General Relativity allows closed time-like loops...(well known to lead to
time machines by worm holes etc.)

• I) Horowich and Maldacenas influence backward inside the black hole.
• J) The bad luck of SSC and the - though too little - bad luck of LHC would

follow from Higgs machines getting bad luck.
• K)With large extra dimensions there appear in principle a frame dependence

of which moments are earlier than which due to the frame motion in the extra
dimension directions.

• L) Wheeler space time foam and baby universes imply almost unavoidably in-
fluence from future, at least small influences from near future. Baby universes
make effective coupling constant depending on very far away influences in
e.g. Time.

• M) In String theory in the formulation of Ninomiyas and mine (Novel SFT)
the hanging together of “objects to strings, or chains giving strings better, is
put in as an initial condition AND IT LOOKS ALSO AS A FINAL STATE
CONDITION!

The following arguments are even more theoretical speculation arguments for
influence from future:

• N) When we e.g. Astri Kleppes and mine derivation of space time and locality
etc. - seek to derive in Random Dynamics e.g. Feynman path integral we get
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the complex action and thus future influence from it. And seeking to derive
locality we get left with effective couplings, which much like in baby universe
theory depends on, what goes on averaged over all space and time.

• O) Were the many e-foldings in inflationary organized in order to get a big
universe (a miracle) ?

Somewhat aesthetically arguments form the time reversal symmetry should
also be mentioned:

• P) The usual picture: The laws concerning the time development the equations
of motion are perfectly invariant under the CPT-symmetry. Nevertheless the
initial conditions determining the actual solution to these equations of motion
is chosen in a way that makes it look more and more complicated as one
progresses forward in time! (This is the law of increasing entropy) Really the
mystery is not why finally the world ends up in a state in which one can
say almost nothing in a simple way; but we rather should take it that a huge
number of states have same probability/ the heat death state. Rather it is the
mystery why it ever were in a state that could be described rather simply, the
state in early big bang times, with high Hubble expansion rate.

• Q) And even more mysterious we could claim: Why were the Universe in such
a special state in the beginning, but do not also end up in such special and
simple state? Initial State Versus Development Laws (equations of motion)
seem not to have the same symmetry under time reversal (or say instead CPT)
Since Newton we have distinguished between initial state information and the
laws for the time development. Seeking the great theory beyond the Standard
Models our best hope to progress is to unite some of the information about
Nature, which we already have in our literature. One lacking unification is
the unification of initial state information and the equations of motion. One
little may be indicative trouble is that time reversal or better CPT symmetry
is valid for equations of motion but NOT for the initial state information!

13.3 Discussion of Time Reversal-like Symmetry

Let us look now a bit on the problem for the usual point of view and thus the
argument for influence from the future Q). What are the possibilities?:

• 1 Possibility) CPT symmetry could be the more fundamental and the asymme-
try w.r.t. time direction of the initial state information (we know a lot about
the start, but the future gets more and more chaotic) could be due to some sort
of spontaneous break down, as e.g. in mine and Ninomiyas complex action
model:
In principle the “initial state information” could be put in at any time, but due
to some special conditions in a certain time early compared to our era “the
actual solution to the equations of motion chosen to be realized (by Nature)”
became mainly determined by this certain era early compared our era. This
should mean that in that special era the realized solution is arranged to obey
some relatively simply rules, e.g. some strongly expanding universe being the
rule.
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• 2. possibility) The time direction asymmetry might be the more fundamental
and the CPT symmetry just some effective result coming out of an a priori
time and even CPT noninvariant theory. So the initial state CPT noninvariance
were the more fundamental feature, and the CPT symmetry for laws of nature
is only some sort of effective or “accidental” symmetry [5]. It is well known
that CPT largely follows from Lorentz invariance, so that if it were correct
as I have claimed for years, that Lorentz invariance could be a low energy
approximation (only for the “poor physicists”), then also CPT would be a low
energy limit symmetry.

Taking the first possibility means that you have in principle also the possibility
of having some influence from the future, so that our question as to, whether such
influence is at all possible, gets answered by yes; but of course the effect may be
essentially zero such as the situation of the “spontaneous break down ” is realized,
since otherwise we should already have observed it so safely, that we would have
had to believe it.

If the time dominating the fixation of the solution as in mine and Ninomiyas
model becomes a certain time which is earlier than our time - but not necessarily
the very first moment (if such one should exist) - there would be an opposite axis
for the entropy running on the other side of this special time era(that dominantly
fixes the solution being realized). In other words before the solution-determining
time-era the entropy would decrease! So in that “before solution dominating era ”
there would formally be influence from the future. Of course, if we lived in such
an era, we would invert our time axis and still say, that entropy grows, except if
we get contact theoretically or truly to an era with another entropy development
axis.

If the second possibility were realized, we should expect Lorentz non-invariant
effects in principle. We should namely expect CPT not to be fundamentally true,
but then Lorentz invariance could only with violation of other presumably good
assumptions be exact.

If we fundamentally did not have Lorentz invariance it could mean that
there were in the “fundamental terminology” beyond the Lorentz invariance
appearance perhaps some fundamental frame in which the physics would develop
strictly causally, in the sense that it would develop more and more chaotic (i.e.
increasing entropy) and without any influence from the future. But logically it
could nevertheless be so that in some Lorentz frames moving relative to the
fundamental frame there could be influence from future.

13.4 Why Not Unite Initial Conditions and Equations of
Motion

In looking for a unified theory of all physics, one often finds the idea of seeking to
unify the various simple gauge subgroups of the Standard Model gauge group
into some simple gauge group such e.g. SU(5) or groups containing SU(5) as a
subgroup, such as SO(10). But since making progress towards finding the “theory
of everything” is expected to go via successive unifications, one should also
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possibly imagine other types of unifications. Here we then ask: Should we not
unify initial-state conditions with equations of motion? This is actually what our
already in this article suggested complex action model (see subsection 13.6) would
do. It predicts both (something about) the initial conditions and of course the
equations of motion from the form of the action (as usual). In this sense one should
really guess the form of the complex action so that we can obtain relations between
features of the initial state conditions and the equations of motion. We can say
that with a Standard Model real part of the action taken as phenomenologically
suggested the dimensional arguments used to predict that the most important
part of the imaginary part of the action determining (or at least providing some
information concerning initial conditions) and ending with that the mass square
term for the Higgs field, are results of of such a unification. So in this sense our
results from this Higgs-dominated imaginary part can be considered results of a
unification of initial state conditions and equations of motion.

Also the Hawking-Hartle no-boundary assumption for their (and others)
quantum gravity gives information about initial state conditions, and thus it
should be considered a unification of initial conditions and equations of motion.

But now one may have general worries about - this kind of - unifications of
initial conditions and equations of motion, unless one allows for the influence
from the future:

In fact the time reversal or the CPT-like symmetry leads to that the unified
theory presumably should have such a symmetry, at least both in our complex
action theory and in the non-boundary theory there IS cpt-like symmetry, except
that the whole theory is on the manifold. Therefore it gets very hard not to have
also a final state condition. In fact it seems only to be a spontaneous breaking of
the symmetry of this type that is likely to solve the phenomenological problem.
But then there appears indeed easily some remaining effect of influence form the
future.

13.5 String Theory, Regularization Problem, and Our Novel
SFT

Only String Theory Seems to Cope with the Cut Off problem in Nice Way!
Presumably the best argument for believing, that (super)String Theory should

be the theory of everything(T.O.E.), is that it does NOT HAVE THE USUAL
DIVERGENCE PROBLEM. One might wonder how string theory manages to
avoid the problem of divergent loops. It is well know that by summing up the
infinitely many loops from the various string states the integrand for the loop
26-momentum obtain a damping factor going with an exponential of the square
of the loop momentum. Thus the divergence of the usual type got effectively
cut off. A related property of the lowest order scattering amplitudes is, that they
for large transverse momenta fall off even with an exponential in the square of
the transverse momentum. Since String theory has gravity (almost unavoidably)
having such wonderful cut off of loops behavior is remarkable good!
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13.5.1 Cut off in the Light of Mine and Ninomiyas Novel String Field Theory

Let us now consider the for the success of the string theory in coping with the
divergences plaguing the usual quantum field theories so important Gaussian cut
off of the large momenta.

As an orientation let us look at the transverse momentum cut off from the
point of view of mine and Ninomiyas novel string field theory:

The momentum of an open string say in our formalism is given by a sum over
the “contained “objects, each of which has the variables (J, Π), i.e. 24 momenta J
and their conjugates Π, and the total momentum of the open string is proportional
to the sum of the even “objects, because the momentum contribution from the odd
ones become zero due to their construction as difference of conjugate momenta of
the two even neighbors. The scattering is in our SFT-model is simply exchanges
of “even objects, while no true interaction takes place, only strings are divided
and recollected, so that the “even objects in the initial strings get distributed into
various final strings.

So how does the limiting/the strong cutting off of the transverse momenta
come about in the optic of our model?

Although there is a divergent number “objects in any string in our novel string
field theory, these “objects are sitting in chains with strong negative correlation
between the momenta of neighbors (in the chains). So any connected piece of such
a chain never reaches momenta much bigger than of the order of one over square
root of alpha prime

√
α ′, except for the momentum assigned the total strings. So if

we only split the chains of objects into a few connected pieces we cannot get any
combination of the pieces, when recombined to final state strings, to contain big
amounts of momenta compared to the alpha prime order of magnitude value

√
α ′.

It is this restriction that means, that we get in Veneziano model the exponential of
the squared momentum falling off amplitudes.

The limitation actually exponentially with the square of the momentum in
the exponent, i.e. Gaussianly of the amplitude of scattering for large transverse
momenta of strings coming out of collisions of strings in our novel string field
theory (SFT) is due to the very strong anti-correlation of the momenta of the
“objects - crudely functioning as constituents of the strings so that only very
limited momenta are statistically found on connected pieces of object-chains. Since
this so important - for the momentum cut off (anti)correlation of the “objects
on the chains used for strings is put in as INITIAL and even as FINAL STATE
conditions in order to describe the strings by means of “object-chains, one can say
that in mine and Ninomiyas SFT we have arranged the transverse momentum
cut off effectively by the initial or final states having been assumed to have the
appropriate (anti)correlations!

13.5.2 The Limitation of Momenta in Loops

For each limited loop order corresponding in our novel SFT to splitting the “cycli-
cally ordered chains of “objects into a limited number of subchains before being
recollected into new “cyclically ordered chains forming the final state strings
(depending on the order (of loops)) the amount of momentum, that can be sent
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out as transverse momentum in a scattering is limited due to the correlations
among the “objects (neighboring on the chains). The higher the order though the
higher is the effectively allowed order of magnitude of the transverse momentum,
corresponding to the well known fact that higher and higher loop order in unitar-
ity corrections to the Veneziano model has a slower and slower fall off for large
momenta the higher the order (i.e. the larger the number of loops). Roughly this
relevant correlation corresponds to the “stringness” in the sense, that it is also this
correlation (between neighboring “objects”), that ensures that very small pieces of
strings carry only very little momentum. But have in mind, that in OUR theory
the hanging together to strings is only put in as initial state (and even final state)
conditions. Even the alpha prime α ′ scale so needed to make a chance of having a
cut off effectively is in our model only put in as an initial and final state condition
(nothing in the completely trivial and basically non existing dynamics talks about
alpha prime!)

So one really in mine and Ninomiyas novel string field theory must ask: String
theory cut off, from where does it come?

Generally: When one interacts (locally) with the string in our formalism or
in other ones you can only transfer little meaning given by apha prime (inverse
square root 1√

α ′
) momentum into the scattering. Via Heisenberg uncertainty this

is turned into an extension of the strings due to quantum fluctuations. But it is
crucial for the effective cut off, that the string hangs piecewise together; if e.g. in
mine and Ninomiyas novel SFT you could split the “objects in a way, in which
no “objects kept attached to their neighbors almost, then the momentum in the
scattering could be much larger, and very likely a divergence problem would
reappear.

In fact it is well known that the higher loops one consider in string theory
(unitarity corrections to Veneziano model) the slower becomes the coefficient in
the Gaussian fall off of the amplitude with the exponential of the square of the
transverse momenta. This means that the more pieces the string or in our model
the to the strings corresponding “cyclically ordered chains” are cut into and
recollected under the scattering, the larger can the transverse momentum become.

If one would attempt to split up the string to be actually built form discretized
elements, one would be back in quantum field theory and it would be as hard
as usual to avoid divergencies. The continuity of the string or in our novel SFT
formulation the cyclically ordered chains is crucial for the achievements w.r.t.
avoiding divergencies and keep tranverse momenta low.

13.5.3 Looking for a Cut Off Machinery

Let us now look whereto we are led when we look for a way to make a cut off:
Now I would like to speculate as to where we are led to think, if we which to

get sense out of a theory, in e.g. too many dimensions, so that ultraviolet cut off is
truly a necessity:

First we could think of modifying geometry or we may seek to keep it:

• 1) Cut offs like lattices which have a discretized geometry.
• 2) Keep e.g. flat geometry or at least a manifold.
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In this second case where are we led, if we seek a cut off of the ultraviolet
divergencies, but cling to continuous manifold or let us for simplicity say simple
Minkowskian geometry (but continuous space and time) ?

If we use point particles with interactions we have no chance to get any form
factors to rescue us against the ultraviolet divergencies.(we might though use
higher order derivative on the fields in the Lagrangian density, but let us leave
that as another possibility). So we are let in the direction, that we must take the
particles, with which we want to work, to be composite objects / bound states or
rather most importantly extended objects, so that interactions with the various
components have the chance to cancel out couplings to very high momentum
states (which is what cause the divergencies).

Thus let us at least look towards seeking cut off in direction of bound states:
Let us now think along the line, that we replace the particles, we consider

phenomenologically, by bound states or composite structures. That is to say, that
looking more deep inside they shall turn out to consist of some “smaller parts
“partons say. It is fine that we may then get form factors, since they have the chance
to cut off the loop integrals and make them converge.

Now we may talk the language of Bjorken x being the fraction of longitudinal
momentum carried by a “parton.

If the partons have non-zero Bjorken x, then you get parton parton scatter-
ings, when the bound states collide and the situation is much like, if the partons
really existed and we are back to the point particle play: there will finally result
divergencies again.

So if we are looking for avoiding divergencies we are driven in the direction
of taken all the Bjorken x = 0. But that then in succession means that collision of
only a few partons from one particle(=bound state) with partons in the colliding
particle(=bound state) will hardly give any momentum transfer, hardly mean even
a scattering.

Once assuming x = 0 for all the partons we will get negligible momentum
transfer by just scattering a few partons with each other; that is too much cutting off.
The effective way to get some significant scattering to identify with the scattering
of the particles(=bound states), we want phenomenologically, is to exchanges
from one bound state to another one a large number(infinitely many) partons.
This means we are driven towards a picture, in which a scattering is mainly an
exchange of some part of one composite particle with part of another one. But none
of the constituents (=partons) truly interact. Rather the constituents individually
just continue undisturbed as if not interacting at all!

Remark how we got driven towards the picture of String Theory in mine
and Ninomiyas novel string field theory: The bound state, we consider should be
composed from constituents not interacting at all!

These constituents or partons, we are driven towards, are of course to be
identified with the “objects in Ninomiyas and mine novel SFT(= string field
theory); precisely these “objects of our theory do not change at all.

So we for the moment think of “Even Objects as Partons:
Does it matter whether we consider our “Objects as constituents or the true

string interpretation definition of the “Objects J from discretizing right and left
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movers in the string? For this true definition of the “objects” we have to refer to
the other article in the present Bled Conference proceedings 2014 on what comes
beyond the standard models [15] (starting on p. 184).

Very shortly let us though on the definition of the “Objects say:
Since the “objects are defined as the difference between the values of say the

right mover component of Xµ(σ, τ) = XµR(τ−σ)+X
µ
L(τ+σ) i.e. as JµRI = X

µ
R(τR(I+

1/2))−XµR(τR(I−1/2)) (where τR = τ−σ, and we imagine a discretization replacing
τR by an integer number I instead and let τR(I± 1/2) denote the neighboring τR
points around the point corresponding to I in the discretization.) at two near to
each other values of the ONE relevant variable, it is in fact proportional to the
derivative of the right mover component. To reconstruct the position field we both
have to integrate (or sum) up and we need both left and right. On open strings
boundary conditions causes the left and right mover to be the same. But for open
strings they are different.

After we have identified the right with left mover “objects for the open string
(as the boundary condition for open string leads to) the objects describing an
open string sits topologically in a circle, called by us “a cyclically ordered chain of
objects. So the topology of the structure describing the open string by us is a circle
and and not as the open string itself an interval. But the momenta of the open
string is written as a sum over contributions from the “objects sitting along the
cyclically ordered chain (the circle). So as long as one can consider a distribution
of momenta to the various “objects, we can consider the “objects constituents (for
that momentum distribution purpose at least).

So we might ask: Can we forget the string and only think on Our “Objects ?
If you go over to considering the “objects of our model as constituents of the

composite particle(described as the string), you ignore the string as not being the
right way of thinking of the same theory.

Contrary to the string point of view, in which the string moves internally as it
moves along, the “objects are stale and just do not change (Well, their position is a
bit more tricky to consider, so we may think of them as free partons). The “objects
fit with the constituents not interacting but just being exchanged en block from
bound state to bound state. Pieces of String Time Track per Pair of “Objects with
Lightlike Sides Time Track of String from Pieces per Pair of “Objects Lightlike
Sides The Very Scattering Moment, Only Exchange of Pieces

Whatever the string may develop mechanically after a collision it is an almost
pure exchange of parts that take place at the very collision. At least if the hit is only
at ONE POINT of the hitting strings, then from locality nothing can happen at
other places in the very first moment. So in the limit of infinitely many constituents
(like continuum string) the first moment of a scattering ONLY an exchange of
pieces can matter. So, if indeed no parton withx different from 0 is allowed in
order to make a good cut off bound state theory, then when first partons hit we
can ONLY have exchange of pieces interaction: So in this first moment there is in
this sense no true scattering! (Like in mine and Ninomias model).

But there is a need for exchange of pieces
If we have x = 0 bound states, there would without exchange of pieces be no

scattering, no essential momentum transfer at all.
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Now I say: We are driven in seeking for a cut off to a theory with a system of
particles (corresponding to the strings in string theory) being bound states with
all partons having Bjorken x = 0, and they scatter only by exchange of pieces. So
it is essentially only how one thinks the constituents as distributed between the
particles, that change in the scattering.

It is well known that the higher dimensions spacetime has the more severe
are the ultraviolet divergencies: High dimensions give ultraviolet divergences.

13.5.4 Rescuing the Species Doubler Problem by Pushing Chiral Charge to
Central Station in Extra Dimension

In the Standard Model one has a remarkably tricky cancellation of the chiral
anomalies associated with the (chirally coupled) gauge fields. Non of the fermions
in Standard model have their “species doubler (with opposite handedness, but
same charge combination). So it should after mine and Ninomiyas no-go theorem
be impossible to put the Standard Model on a lattice, or for that matter regularize
it in gauge invariant way at all. I.e. No cut off should exist, which can keep gauge
invariance. The way Norma Mankoc Borstnik and I attempted to escape this
problem were the following:

The way we attempted to escape the no-go theorem was by having infinitely
large extra dimensions allowing superfluous fermions to be pushed out to infinity.

Let me look at the nogo theorem problem by thinking of the anomaly telling
that the chiral charge is not conserved, but has a lack of conservation correction
proportional FF̃(with some gauge fields put in for the two F’s).

13.5.5 Anomaly way of Looking at No-Go Anomaly Requires Pushing out or
Fetching in Chiral Fermions

Because of the anomaly we need locally in space-time to be able to obtain extra
chiral fermions in spite of them having conservation laws making that impossible
in the regularized theory. In Norma Mankoč Borštniks and mine attempt to cope
with Wittens no go theorem we propose to have non-compact extra dimensions:
Then the superfluous or missing chiral fermions may be pushed out or be brought
in from the infinitely far away in the extra dimensions. You almost bring them out
to a mysterious central station for pushed out chiral fermions, from where they
may reappear in the practical world later or earlier or somewhere else than from
where they were pushed out.

With such central station whereto chiral particles are brought in and out to
various places or times in the 3 +1 dimensional world is to be imagined in the
model needed (say Norma Mankoc’s and mine), then one may suspect that one
easily get times mixed up having such an exchange station for chiral fermions.
There namely has to be somehow a control that the total number of chiral fermions
of a certain type is conserved in the regularized model. But then how to get the
information of the creation seemingly of one at a certain point in the 3+1 space
time transfered and brought together with the uses or further creations around
space time without endangering the no influence from future principle(which we
attempt to attack in this article)?
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If really the chiral fermions are fundamentally conserved in the regularization
scheme here thought upon as the true theory but just seem not to be because they
are pushed out to an in the extra dimensions infinitely far away place, it may seem
difficult to keep truly no influence from future from the practical 3+1 dimensional
point of view. Would one really could have the number of chiral fermions being
added to the central station for such fermions pushed out be kept to net zero
without some influence back from the future?

13.6 Some Potential Killings of Our Complex Action Turned
Out Supporting It.

Funnily enough I have found a few cases, where seemingly arguments against the
validity of the complex action model with its influence from future, actually get
turned around and leads to evidence for the influence from future instead, because
they turn out rather to show that nature has just some number just finetuned
almost to solve the problem.

13.6.1 Short Review of Complex Action Model

Let me here review a bit the main point of the theory of the complex action. A priori
it would seem obvious that if we took the action S[history] to be complex rather
than as assumed in the usually believed theory, then one would immediately see
that effects of non-unitarity and if one used classical calculation one would also
expect that otherwise real variables would run complex. In other words at first it
would look as if the idea of taking the action complex is phenomenologically so
bad that any hope is out unless the imaginary part is extremely small; and so if real
and imaginary were about equal in size as one would guess there seems at first
to be no chance. But that is according to the calculations or estimations on which
we are still working not true! Most convincingly this is seen in a Hamiltonian
formalism, in which not so surprisingly a complex action would lead to a non-
Hermiten Hamiltonian. In fact the main point is that as long time has past since
the start, almost certainly the universe developing by the now assumed non-
Hermitean Hamiltonian gets increasing probability for being in those states, which
have the largest (eigen)values for the antiHermitean part (divided by i) HI of
the Hamiltonian, if we think of having split it as H = HR + iHI where then
HI = 1

2i
(H − H†). If we now have assumed - as we have to assume to avoid

that the Wentzel-Dirac-Feynmann-path integral shall not be divergent due to the
imaginary part of the action SI[history] going to plus infinity - that there is an
upper bound on the antiHermitean part HI or almost equivalently a lower bound
on the imaginary part of the action SI, then we argue that the system after long
time will arrive to a superposition of states with their (eigen)value for HI close to
the assumed upper bound. Once we have argued the system to be in such a state
we have the suggestive approximation of HI ≈ “upper bound” and can consider
the antiHermitean part HI an approximate c-number and by a time dependent
normalization we can completely remove the effect of this antiHermitean part.
This crude argument thus allows us to suppose that after all the antiHermiteamn
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part HI of the Hamiltonian is not important provided we study what happens
in a universe, that is already very old compared to some fundamental scale for
the theory provided we have just an upper bound on this antiHermitean part.
This may not be totally convincing as written, but we have formal formulations
and it is essentially correct but in order not to have troubles with the Born rule of
quantum mechanics that one shall the probability for measuring a state by using
the numerical square of the coefficient to a normalized states one shall a new inner
product which we call |Q (so that we can write < b|Qa >) with the property that
w.r.t. this inner product the Hamiltonian H gets normal. Normality means that
the antiHermitean part commutes with the Hermitean part i.e. [HR, HI] = 0. (The
Q that occurs as an index to the new inner product |Q to be used instead of the
original inner product | is an operator constructed from the Hamiltonian - using it
diagonalization - and then we defined < a|Qb >=< a|Q|b >.)

Even though now we have argued, that one will obtain a time development
as if there existed a Hermitean Hamiltonian even, when the true Hamiltonian
is not Hermitean, provided one uses the modified inner product |Q, there is
one very interesting and important effect of the antiHermitean part HI or of the
imaginary part SI[history] of the action left: These antiHermitean or imaginary
parts determine the initial condition effectively seen! We saw already just above
that the antiHermitean part of the Hamiltonian were important for the states into
which the likelihood of finding the world got larger and larger as time went on. So
effectively in a late stage of the development of the universe it becomes most likely
to find that this universe is in a state with a high -i.e. close to the upper bound -
value for the (eigen)value of the antiHermitean part HI. This really means that
we shall look at the complex action theory as a model unifying the initial conditions
with the equations of motion.

Such a unification of course is in principle very wellcome, if one can find
it. In the Hamiltonian formalism with a non-Hermitean Hamiltonian one can
see that unless one puts the system/world in a state that has absolutely zero
component after some eigenvectors of the Hamiltonian, it will go so that as time
goes on the various eigenstates in an expansion of the actual state will grow up
exponentially with coefficients going as −itλi where λi is the for the coefficient
relevant eigenvalue of the non-Hermitean Hamiltonian H = HR + iHI. Have
in mind that for non-Hermitean Hamiltonian of course the eigenvalues λi are
typically complex. It is of course the imaginary part of λi which gives rise to
the time development of the numerical value of a coefficient ci exp−tλi to some
eigen vector |λi > (even though these eigenvectors are not orthogonal to each
other, one could still imagine using them in expansion). Exponentially soon a
rather small collection of the eigenstates with the largest - in the sense of most
positive - imaginary parts of their λi’s will soon take over. Thereby a rather
specific development of the universe gets selected out and one can understand
that the antiHermitean part of the Hamiltonian can have strong influence on
which states one at a late stage in time is likely to find such a universe with non-
Hermitean Halmiltonian. Thus it is understandable that there can be something
in the statement that the theory unites initial condition theory with equation of
motion theory.
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Our studies have led to that one may distinguish reasonably defendable ways
of extracting the information from a quantum theory with a given action - two
different ways especially suggestive in the case complex action - namely 1)“with
future” and 2)“without future”.

13.6.2 Guessing the Standard Model Imaginary Part of the Action

At the present conditions in the Universe - but not at all applicable perhaps in the
early times just after a possible big bang say less than 10−12 s say - the Standard
Model seems to work perfectly except perhaps in very high energy accelerators
and in cosmic radiation. So we should expect that at least the real part SR[history]
of the action S[history] should be given well by the action of Standard Model.
Now the very natural guess is, that you get the full complex action by just letting
all the coefficients of the various terms in the Standard Model action become
complex. You might even as the a priori most promising guess think, that the
phases are rather random and of order unity, meaning of the order of 1000, except
though, that the mass term for the Higgs particle deserves special discussion.

Let us remind about the discussion around the hierarchy or the scale problem
for the usual real action Standard Model:

If you imagine a cut off at the Planck scale or some new physics at some GUT
scale at almost Planck energy scale, then one has the problem that corrections
to the bare Higgs mass square as written in the Lagrangian density m2Hbare in
order to obtain from that the measured mass squarem2Hren becomes typically very
large, either it is divergent or by means of fixing some unified scale it becomes
when renormalized to that scale anyway huge compared to the scale of measured
Higgs mass square or the weak scale. So it is a well known finetunig problem how
to get the weak scale be small compared to the huge scales involved in the loop
calculations even if one renormalizes to some unifying scale. You might keep the
corrections smaller by having supersymmetric partners - but the LHC results so
far rather show the surprise that such ones are so far not found -. But whatever
might be the solution to this problem of how the weak scale became so small say
compared to the Planck scale and how to keep it there it might it easily becomes
so that the bare mass squarem2Hbare becomes appreciably bigger than the renor-
malized onem2Hren numerically.In the case when some supersymmetric particles
exist and makes the mass square correction only logarithmically (divergent) the
size of the bare divided by renormalize will though only be “logarithmic”, which
means not so fantastically big after all. But if the supersymmetric partners do not
exist or are very heavy then again the bare mass square will typically be much
larger than the renormalized/observed Higgs mass square.

When we now want to guess the size of the imaginary part of the Higgs mass
square, the suggested guess is that it should be of the same order as the real one;
but now should it be as the real renormalized or as the real bare ? Most likely the
loop corrections for the real and for the imaginary parts are completely different
and huge, so the question becomes: Would the same mysterious fine tuning, which
made the real partm2Hren|R = observed/effective Higgs mass square of the renor-
malized mass square for the Higgs also function for the imaginary part, so that in
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some way - which we may or may not understand - the effective/renormalized
(whatever that might exactly mean) imaginary part of the Higgs mass square
m2Hren|I becomes as small as the real renormalized part order of magnitudewise?

Very likely the solution to the finetuning problem (= the scale problem) of
why the weak scale is so low compared to the Planck scale say will be solved in a
way that will not make also the “renormalized” scale for the imaginary part of the
“Higgs mass square” small compared to say the Planck scale. For instance this is
the case for our own “solution” to this problem by means of the multiple point
principle: This “solution” means, that, if we make the very strong assumption
that there is some finetuning fixing the parameters/coupling constants of the
theory working in nature in a way restricted so that there becomes several different
vacua all having very small energy densities(=dark energies = cosmological constants) (for
purposes of the weak scale we just say exactly zero energy densities are assumed
in the vacua) we how found a viable picture with strongly bound states of 6 top
+ 6 anti-top quarks and a set of three different vacua in the Standard Model, in
which this requirement leads to an exponentially small value of the weak scale
compared the scale of the Higgs field in one of the vacua considered degenerate.
In other words with our assumption of vacua with zero energy density (called
“multiple point principle” (=MPP)) and some in principle calculable speculation
about bound states of quarks and anti quarks the parameters of the standard
model need to to take such values that the renormalized Higgs mass square must
be very small compared to the scale for the Higgs field in one of the by us assumed
vacua. We then add as an extra assumption to our multiple point principle that for
one of the vacua the Higgs field present should be of the order of the Planck energy.
This latter assumption is already supported by the parameters of the Standard
Model if one assumes this Standard Model to be valid up to so high energies (or
Higgs fields). It found a support together with the multiple point principle by the
Higgs mass found in Nature agreeing with our PREdiction.

But really in our complex action model physics coming out of the real and
of the imaginary part of the action are quite different, crudely the real part gives
equation of motion and the imaginary the initial conditions, so to expect that
some mysterious mechanism make the same finetunin on both is not at all likely.
Therefore we shall conclude that it is most likely that there is no finetuning
going on to make the effectively observed/“renormalized” imaginary part of
the Higgs mass square small compared to say the Planck scale value. If so, then
we should expect it to be probably of the order of the Planck scale. Putting into
Standard Model extended to have complex action this size of the Higgs mass
square imaginary part would mean that considering a process of daily life or of
LHC the Higgs mass square term would give contribution to the imaginary part
of the action, which are larger than the contributions from the other terms by
a factor M2

Pl/( TeV
2) ≈ 1034. This means that we from dimensional arguments

think we could argue that the most important term in the imaginary part of the
action should be the part from the Higgs mass (square) term.

With this we argued that we under present conditions can approximate the
imaginary part of the action SI[history] by only the contribution from the Higgs-
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mass-square term

SI[history] ≈
∫
m2Hbare|I|φH(x)|

2√gd4x (13.1)

(the
√
g is just 4-volume measure inserted to make the formula o.k. in the general

relativity case, but really you may use flat space approximation and ignore it). The
Higgs field were denoted φH(x) and depends of course on the event coordinate
(set)x = {xµ}. The integral is, provided we use the “with future”-interpretation of
the complex action theory, to be integrated over all space time including both future
and past, and then it is this quantity (13.1) which at least in first approximation
selects initial conditions or what really happens by letting the true happening
history have the minimal value for the imaginary part of the action SI[history]
among all the say by equations of motion allowed possible histories. For a crude
understanding of our complex action theory one may take it that it predicts roughly
that

SI[true history]
<
= SI[any other history]. (13.2)

(more detailed calculations of some predictions may be found in [9–11] and in
some of the papers with Ninomiya [3]).

One way of putting forward the idea of the universe initial conditions being
arranged in a way governed so as to achieve say small (or preferably numerically
large negative) contributions to SI[history] is to call it a “God” (it is only a god
in quotes(thanks to Mette Høst)) governing the world so as to seek to minimize
the imaginary part of the action SI[history]. In this language our expression
(13.1) means that this “God” only cares for the integral over space time of the
Higgs field; “He”to day mainly care for Higgs particles and modifications in the
Higgs field. Oscillations in the Higgs field meaning physical Higgs particles will
obviously make the square of the Higgs field integrated over all space time bigger.
So producing Higgses should e.g. be hated and avoided by the “God. (Had the
sign been so that it corresponded to “God” loving Higgs bosons instead “He”
would have filled more up with Higgs bosons, say an expectation value of the
Planck order of magnitude at least).

But if “He hates the Higgs “He” should love the particles suppressing in there
neighborhood the Higgs field? And fill the whole Universe with the most favoured
ones.

It is for instance the quarks and the charged leptons that are surrounded
by a Yukawa potential region in which the Higgs field has an additional Higgs
field - the Yukawa potential -, and so a more strong field the bigger the mass
or the lepton causing this field. One may easily understand that the Higgs field
having in vacuum its well known expectation value < φH(x) >= 246 GeV is a
bit diminished numerically in the Yukawa-potential-region around a quark or a
(charged) lepton. Now in principle we do not know whether the square of the
Higgs field |φH(x)|

2 increases or decreases as one enforce a little region in space(-
time) to have a given Higgs field diminished say w.r.t. the usual vacuum Higgs
field. Intuitively one would think the square would decrease when the Higgs field
itself decreases but there could - and indeed there are - be effects causing it to go
oppositely(as have argued for below and in the articles[12]). In any case unless
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there is just an extremum of the square < |φH(x)|
2 > as a function of the Higgs

field itself < φH(x) > in the usual vacuum situation there would be an effect
positive or negative upon the imaginary action SI[history] as given by (13.1) from
the Yukawa-potential regions around the quarks or (charged)leptons, because the
normal Higgs fields a bit suppressed in such Yukawa field neighborhoods.

This means that e.g. the “God” would either love or hate these quarks and
charged leptons, and that the more strongly the heavier they and the stronger they
therefore couple to the Higgsfield.

This in turn means that e.g. a particle like the neutron with its three valence
quarks and further quark pairs inside it will suppress the Higgs field from its usual
vacuum value a bit and then depending on the sign of the derivative d<|phiH(x)|2>

d<φH(x)>

increase or decrease the imaginary part of the action SI[history], thus the neutron
would be respectively hated or loved by “God”.

Now in nature one can by weak interactions get a neutron transformed into
a proton, an electron and an electron-anti-neutrino. Thus if the “God” loved say
the neutron itself more than the proton the electron and the electron-anti-neutrino
together we would expect that “He” would have arranged initial conditions - and
if “He” were allowed to it also that coupling constants or whatever could help - so
as to make there be only neutrons but no protons and electrons etc. We know from
astronomy and our own earth neighborhood that there exist both neutrons and
protons and electrons (and even neutrinos) in rather large amounts, none of them
being truly so much suppressed compared to the other.

At first we may look at this fact there there are both neutrons and protons
in the world today as a falsification of the minimization of imaginary part of
action ideas!

It becomes in our complex action theory an embarrassing question: Why not
only n or only p+e+antineutrino ?

An idea to an attempt to disprove our complex action model with the Higgs
field square integrated as the imaginary part of the action: Why do we not have
either?:

• 1) Only neutrons n and no protons nor electrons, or
• 2) Only protons with their electrons e and antineutrinos, but no neutrons at

all.

Either one or the other would probably be favoured and thus by “God be
arranged to be realized!

13.6.3 Solution to: Why both protons and neutrons?

Actually this problem of why not only protons( with their electrons) or only
neutrons in the world in our complex action model has the “solution”:

If the neutron is exactly equally much “loved” as the the proton the electron and the
electron-anti-neutrino together -in the sense of contributing the same to the imaginary
part of action SI[history], then there would be no reason for “God” to eradicate one of the
two types of particles. But this requires a certain relation between the masses of the quarks
corrected by their Lorentz contraction factors and the electron mass. But remarkably this
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relation is satisfied within calculational accuracy! (light quark masses are rather badly
known so the accuracy is not so high)

Basically[12] in order that there shall be no reason to either remove from the
world the neutrons nor the combinations of protons and electrons (the neutrinos
anyhow contribute much less to the imaginary part than the massive quarks or
leptons) we should get just same imaginary part of action contribution from a
neutron and from such a combination of proton and electron. In an short time the
contribution is estimated as an integral over space of the Higgs field suppression.
We here just assume by Taylor expansion in the presumably rather small Higgs
field around the quarks and leptons, that any effect will in first approximation
be linear in the change in the Higgs field. Now we find small Yukawa-potential
regions of size given by the inverse Higgs mass and centered around quark or
lepton. A crucial little problem making the estimation a bit less trivial and bit
less accurate is, that these regions of significant Yukawa-potentials are Lorentz
contracted, because of the non-zero velocity of say the quark it surrounds. (The
electrons most copiously found in our universe have actually very small velocities
compared to the light velocity, so for them Lorentz contraction is not important.)

The following the reader should have in mind in order to estimate the contri-
bution to the imaginary part of the action SI[history] under the assumption of the
dominant Higgs mass term for a neutron relative a pair of proton and an electron:

• a Of course - unless a linear term should be lacking - the contribution must go
linearly with the Yukawa coupling for the quark or lepton in question. Really
the suppression of the Higgs field around a particle - quark or lepton say -
must go proportionally to the Higgs Yukawa coupling ( for fixed velocity)

• b But it will vary with velocity due to the Lorentz contraction of the Higgs-
Yukawa effective extension volume, around the particle.
• c So at the end the effect on the imaginary action SI[history] becomes propor-

tional to

∆SI[history] ∝ gparticle ∗
m

E
|averaged ∝

m2 < γ >< γ−1 >

Eaverage
(13.3)

wherem is the mass of the quark say (or lepton) and E its actual kinetic energy
including the Einstein energy. The average as the quark flies around in the
nucleon say is denoted of its γ = E/m is denoted < γ >, while the average of
the inverse of this same γ is denoted< γ−1 >. The average kinetic including
Einstein energy E is denoted Eaverage. The combination< γ >< γ−1 >would
in the case of no fluctuations of the actual velocity of the quark be just unity,
and thus we may hope that we can estimate this product somewhat more
accurately than say its two factors separately.

The various types of quarks have of course the deeper Higgs fields around
them the stronger their Higgs Yukawa couplings gparticle. The Higgs field is ef-
fectively extended over a range of size given by the Higgs mass but not dependent
on the species of quark or lepton in question. The extend of the Yukawa potential
rather is over an elliptic region, that is the Lorentz contraction of the spherical
Yukawa potential, which is obtained around a resting particle. So the contribution
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to the integral of the Higgs field or presumably also over its square over all space
from a quark or lepton is proportional to gparticle and to the inverse of E/mwhere
E is the energy and m the mass of the quark or lepton. The Lorentz contraction
factor is for Yukawa potentials for quarks due to motion inside nucleons, if we
have - as is most copiously the case - resting nucleons. Well, really the speed of the
nucleons inside the nuclei is not so negligible again but compared to the speed of
quarks inside nucleons it is small.

Does it Pay for “God to make Only Neutrons or No neutrons ?
The bigger integrated Yukawa potentials around the quarks and leptons the

more the Higgs field is suppressed. The strength of the suppressions is propor-
tional to the Yukawa coupling for particle making the suppression. The extension
is roughly like the Lorentz contracted of a sphere forming an ellipsoid given by
the Higgs mass(as inverse radius of the sphere).

The proton is almost identical to the neutron except, that one up-quark has
been replaced one down-quark.

To keep Universe chargeless a proton should be accompanied by an electron.
A neutrino typically runs so fast that its Yukawa potential is much less ex-

tended in volume than those of quarks and charged leptons.

13.6.4 Contributions to See Whether Neutrons or Non-neutrons Favored My
Prediction from Future Influence

To estimate the contributions coming from a neutron to compared it to that coming
from what is its decay products a proton and an electron and even a not so
significant electron anti neutrino we need the light quark masses which are not so
well determined (and that makes our uncertainty rather large), but let us take

mu = 1.7to3.3MeV (13.4)

md = 4.1to5.8MeV (13.5)

for respectively the up and the down quark masses.
One arrives as also sketched here to the relation√

m2d −m2u =
√
Eqme/‘‘ln

′′ (13.6)

where we have denoted
‘‘ln ′′ =< γ >< γ−1 > (13.7)

because this quantity for light quarks compared to the energy Eaverage tends to
be approximately a logarithm. The relation(13.6) is relatively well satisfied, if we
take the quark masses (13.5), Eq ≈ 160 MeV and ‘‘ln ′′ = 2.37.(see my previous
article for this crude estimate) In fact then we would get (usingme = 0.511 MeV)

R.H.S. =
√
Eqme/‘‘ln

′′ = 3.81 MeV (13.8)

L.H.S. =
√
m2d −m2u =

√
13.9to

√
22.75 MeV (13.9)

= 3.73to4.77MeV. (13.10)
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13.7 Fine Tuning Calls for Influence Going Back in Time

One argument, which Don Bennett and myself would give for some influence
from the future being called for, is this:

We know the fine tuning problem of why the cosmological constant/dark
energy /energy density in the vacuum is so small compared to the energy density
given by the most fundamental constants G, c, and h̄, i.e. the Planck energy
density? The ratio of the actual vacuum energy density to the from the dimensional
arguments expected value is enormously small. So it is clear that there must have
been some enormous fine tuning arranging this enormously small energy density
in the vacuum. Now we expect that the vacuum energy density should be constant
as time has gone on. So even in a time of say minutes after the start of the universe
or Big bang or whatever the vacuum energy should have had the present extremely
small value. But now at these early times there were so big energy densities of
radiation or matter that the present small vacuum energy density would be very
small and insignificant compared to radiation energy density. But when it were at
that time so insignificant, how could at that time any physical effect have made a
so precisely close to zero as the vacuum energy density to day? So it seems that an
influence from the future somehow must have arranged at this early stage already
the exceedingly small energy density in vacuum? It is of course because of an
argument in the direction of this that is the reason for that, when Weinberg looks
through the various explanations for the cosmological constant being so small,
then the most promising explanation is to use anthropic principle. The entropic
principle, which states that parameters shall be so arranged that humans can come
to exist, is namely in reality a method to to arrange a simulated effect of the future
influencing the past. By throwing away the scenarios which happen not to allow
for humans one has got what functions as a back in time effect.

13.8 Our Multiple Point Principle

There is one very general deduction from such a theory with a principle of mini-
mizing some quantity as we above told that the imaginary part SI[history] would
be minimized for the actually realized history. This deduction would be best
achieved if we instead of minimizing over histories of the universe minimized
over combinations/sets of coupling constants, but since one could imagine some
vacuum being selected among several at least the effective coupling constants rele-
vant for the by a quantity like SI[history] selected vacuum would effectively have
been determined as if they were adjusted to minimize something (SI) by adjusting
the coupling constant combination. The deduction related to is found an article
by Ninomiya and myself [18] in the Bled proceedings from 2011. The point is,
however, to imagine that the right combination of coupling constants is achieved
by asking to obtain the minimum for some quantity - in fact our SI, which we
now imagine to depend also on the coupling constants ( with an effective vacuum
providing such couplings this imagination would be true in our model) - under
the restriction that the energy density of the various (local) ground states the vacua
should be positive. This assumption of vacuum energy density being positive may
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be understandable in our model - as well as phenomenologically supported as a
principle - by noting, that if a vacuum gets (appreciably) less energy density than
zero, then the usual vacuum becomes unstable against making a transition to this
low energy density vacuum. From the point of view of the history being selected
such an instability would mean that it would be this vacuum rather than the usual
one that got realized and the potential history meant as a history in the “usual”
vacuum would no longer be realized; so if this latter history gave a smallest SI
that would be a lost achievement if another vacuum tales over. So one should
avoid competing vacuum threatening the stability severely for the realized one, or
one should presumably preferably think that there are several vacua getting their
realization in a turn adjusted to be the most beneficial for the SI being as negative
as possible. Also in such a scenario of several vacua coming to exist as time passes
on, the transition from to the next should not be too quick, they are to exist for of
the order of 13 milliard years. Thus they should be approximately stable and we
would obtain an approximate multiple point principle in such a scenario. In any
case we already earlier argued that once you have the minimization of something
like our SI that just can manage some way to effectively depend on the coupling
constants, then the couplings get very likely adjusted to lead to several degenerate
vacua, meaning multiple point principle.

Having in mind that this multiple point principle is thus to be considered a
deduction from a minimization of some quantity model including future in such a
way that it really means influence from the future, we can now look at successes of
our multiple point point principle (MPP) as also being evidence for there existing
in the laws of nature some influence from the future.

Now I remind the reader that the most impressive confirmation of our multi-
ple point principle were that we - Colin D. Froggatt and myself - PREdicted the
Higgs mass[19] many years before the Higgs boson were found to 135 GeV ± 10
GeV ! With the present calculations and top-mass measured our prediction would
rather have been 129.4 GeV with an uncertainty now rather down to about ±
1 GeV. So although our prediction is now only 3.4 GeV above the experimental
Higgs mass 126 GeV, the deviation compared to the uncertainty may have gone
slightly up compared to the old day PREdiction, but we should still consider it a
great success for the multiple point principle that the Higgs mass is so close to our
prediction!

Historically we - Don Bennett and myself and also in some papers with Colin
D. Froggatt - we looked for some way of justifying to fit fine structure constants
by phase transition couplings in lattice Yang Mills theories. We worked at that
time with what we call Anti-GUT (meaning anti-grand-unification) meaning that
we rather than as were most popular to look for simple groups like SU(5) or
SO(10) etc. we did not unify in the sense that we used the not at all simple group
S(U(2)× U(3))× · · · × S(U(2)× U(3)) (with Ngen cross product factors), rather
meaning that we gave every family of fermions in the Standard Model its own
family of also gauge bosons, so that our “anti grand unifying group” were the cross
product of one Standard Model gauge group, one for each family (the number
Ngen of families not yet known at that time; we had to fit it to the fine structure
constants and PREdict it; luckily we PREdicted Ngen = 3). But the problem for
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which we needed the multiple point principle were to give an explanation or at
least formulate a principle that could imply that the phase transition finestructure
constant values were the ones for which Nature should care. But if we somehow
had derived that Nature should have a couple (or more) energy density wise
degenerate vacua/phases of course if nature really were a lattice Yang Mills theory,
then it would mean that Nature should choose the phase transition value of the
coupling constant/the finestructure constant.

Once we have suggested to believe in such a multiple point principle in
the form of there being many/several energy-wise degenerate vacua, you just
have to find one with an appropriate small cosmological constant and you can
so to speak transfer that small energy density to other vacua, thus explaining
the smallness and even fit the cosmological constant (or the dark energy). Roman
Nevzorov, Froggatt and me did such an application in several versions, explaining
the cosmological constant[20].

We even managed to make a solution of the scale problem (related to the
hierarchy problem) in the sense of using the postulation of the multiple point
principle to fix the scale of the weak interactions (compared to the Planck scale,
taken as the fundamental scale). This we -Colin D. Froggatt, Larisa Laperashvili
and myself - did by speculating up the existence of a further vacuum in which there
is a Boson condensate of bound states of 6 top and 6 anti-top quarks. In the spirit
of the multiple point principle postulating a further vacuum is somewhat natural,
and at least each time we postulate a new vacuum, we get the information out of
multiple point principle that this vacuum shall have the same energy density as the
other vacua. Thus for each new vacuum we postulate - and take to be degenerate
with the other ones - we get one more of the say Standard Model (if that is what
we use) determined, because one more relation among them is obtained. Luckily it
turns out that we essentially may use this new information to fix the weak energy
scale and most importantly:

We get the weak scale out as restriction on between which values of the running
top-Yukawa coupling gt(µ) shall be taken on at 1) the high field scale of the second Higgs
field effective potential minimum (assumed by us to be essentially the Planck scale) and 2)
the weak scale.

Since then the running top Yukawa coupling must “run” between the two pre-
dicted values gt(µ = 1818GeV) and gt(µ = “weak scale”) = 1.02, the ratio of the
weak to the supposed more fundamental scale gets predicted to be “exponentially”
small! Really the point is that with the rather weak couplings of the Standard
Model the ‘running” is actually a bit slow as a function of the logarithm of µ. Thus
to get a given distance of change in the Yukawa coupling an exponentially big
ratio of scales is needed. Actually our prediction of the logarithm of the scale ratio,
the scale problem gets very well!

So our multiple point principle is here a great success: both explaining the
exponential smallness and giving a good value for its logarithm.
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13.9 Do we have Enough Evidence for Influence from Future?

I would like towards the end very optimistically for the hypothesis of there being
indeed an influence form the future to give - the relatively optimistic, but still
crudely true - numbers for how unlikely it would be that our small coincidences
favouring the complex action model with the assumption that the Higgs field
square dominates without such a model being true.

Say we look at the coincidence that the “knee” in cosmic radiation spectrum
just order of magnitude wise happens to coincide with the threshold for Higgs
production. If we say one has studied cosmic rays from some electron volts up
to say 1020 electron volts, we could say over 19 orders of magnitude. Then if one
finds a knee to coincide within one or two orders of magnitude, it represents a
coincidence that should happen by accident only in about 1/10 cases. Similarly
looking at the agreement of our formula (13.6) as being that we get inside the right
interval of length oneMeV for quantities - sides of the equation - being of order
of 4MeV , this is something that should only happen in one out of four cases.

Our argument that the Higgs-field vacuum expectation value should just have
gotten that value, that minimizes the squared Higgs field expectation value - we get
agreement up to some factor of one or two orders of magnitude - means that our
minimization principle led to the right order of magnitude for the weak/Higgs
field scale to say a couple of orders of magnitude out of 17 orders of magni-
tude (taking the Planck scale as the fundamental one). this means again that our
influence from future got the right scale among say 17/2 ≈ 10.

We may even count here the smallness of the binding energy in nuclei com-
pared to the separately bigger kinetic and potential energy of the nucleons, say
one out of 2 cases accident.

These “numerical” coincidences together would give us a one out of 800
coincidence, which is a factor 4 more than 3 standard deviations. Taking this
optimistic estimate seriously we really have more than 3 standard deviation
evidence for the influence from future seeking to minimize the Higgs field square
(integrated over space time), so as to use it to tune some couplings or the like.

Further to support this complex action with Higgs mass (square) term domi-
nating model for the development of the world being supported we should collect
also the evidence coming from the very bad lick of the S.S.C. machine, that would
if it had worked according to plans have produced more Higgs bosons than L.H.C.
has so far, and the - for our model though too little - bad luck of an explosion in
the tunnel, which though were repaired and mainly so far had the effect of making
the physicists choose to postpone the running of the L.H.C. with its planned beam
energy of 7 TeV against 7 TeV (meaning

√
s = 14 TeV) till 2015. Although it now

looks that finally it will come to run, we may though consider it, that this caused
postponing of the full energy could be a result of our complex action model with
Higgs mass term dominance. Together we might consider these after all not so
terribly miraculous bad lucks for Higgs producing machines as something that
would not be at least the very first expectation without theory predicting it like
ours. So we might say e.g. that in at most one out of say 5 cases would so much
bad luck hit the Higgs producing machines.
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If we combine this estimate with the just counted, we would say that now the
Higgs mass square term dominated complex action model has scored a success
corresponding to one out of 800 *5 = 4000 cases!

If we add to this counting the evidence coming from say the Higgs mass being
PREdicted from our multiple point principle, which also would follow from an
influence from the future type theory, and take it that the range for Higgs mass
were at first up to 600 GeV or just use the actually Higgs mass to set the scale for
Higgs masses the deviation 129.4 − 126 GeV = 3.4 GeV (relative to respectively
600GeV or 126 GeV) means a luck for our multiple point principle as one out of
≈ 200 or one out of ≈ 36 respectively.

If we already have counted the luck of our theory of getting the right weak
scale it might no longer be new prediction to use the multiple point principle to
predict the top -Yukawa coupling to be 1.02 ± 14% (oterwise this result should
give a one out of 7 good luck for our model).

Also it would probably be too much to seek to include as a result of our
influence the very remarkable smallness of the cosmological constant because this
influence from future type theory in itself does not predict this smallness, although
firstly it is very hard to see how such a small cosmological constant could come
without an influence from the future and secondly we have works with Roman
Nevzorov et al. [20] in which we actually even fit the cosmological well using the
multiple point principle(which indeed is consequence of an influence from the
future much like the one we discuss here. If we include this cosmological constant
as were it prediction it would increase much our measure of the success since
even counted only as a success on the logarithmic we could a priori have expect
a “Planck energy density value” about 100 orders of magnitude larger. Counting
with natural logarithm say we should then say we succeeded as one ot of 100*2.3
= 230.

But even as presumably most fair leaving out the cosmological constant
proper as being a success for our model(s), but only taking in the Higgs mass
PREdiction from multiple point principle (after replacing the one prediction of
MPP by the Higgs or weak scale gotten by adjusting this scale to minimize the
squared Higgs field integrated over space and time) we get that good luck for our
model is of the order of getting one out of 4000 ∗ 7 ≈ 30000 cases/possibilities
correct!

This of course were optimistically counted, but it sounds that one should take
possibility of there being effects from the future. especially we did not even in this
number include anything from the arguments related to the need for ultraviolet
cut off, which especially for gravity may be very hard without a bit of non-locality,
thereby allowing the influence from the future sneak in in principle.

13.10 Conclusion and Outlook

We have in the present article looked at a series of arguments for that there should
be in the laws of nature some law that makes e.g. the initial conditions or the
coupling constants or both be adjusted as if it were with a special purpose (such
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as as here suggested to make a certain quantity depending on the history “the
imaginary part of the action be minimal).

The main classes of arguments, which I suggested are:

• Numerical or observational successes of assumptions involving such an influ-
ence from the future. This includes:

– The bad luck of SSC, and if we take it seriously the very minute bad luck of
the LHC, both machines (potentially) producing relative to human history
exceptionally many Higgs bosons.

– Our relation relating the light quark mass square difference to the electron
mass square and the fraction of energy carried by the quarks in the nucle-
ons. This relation just organizes that the contribution from a neutron and
from an electron and a proton (and an electron anti neutrino) together to
this imaginary action is same. Thus when this relation - which seems to be
fulfilled within errors in nature - happens to be fulfilled there would be no
gain in minimizing the imaginary part of the action by neither arranging
for more neutrons than for more of its decay products electron + proton (+
anti electron neutrino). The world would potentially be able to exist at a
minimum for the imaginary part of the action.

– analogously I argued that including the effects of virtual top quarks in
the vacuum it could within errors be so that the Higgs field square is in
fact at a minimum with just the present Higgs expectation value in the
vacuum. So indeed the parameters of the Standard Model could have been
arranged just so as to minimize the Higgs field square, and that could
have led just to the from hierarchy problem consideration rather difficult
to accept compared to the Planck scale or Grand Unification scale point of
view exceptionally small value Higgs field expectation value.

– Even the “knee” in the cosmic ray spectrum is so close to the threshold
for the severe production of Higgs bosons that we can claim that it is as if
it had been arranged to be just like that to make the production of Higgs
bosons by the cosmic rays hiding material or planets etc. in the galaxies so
small as possible under some restrictions.
The “God” did not quite switch off the cosmic rays above the effective
Higgs production threshold, but the “knee” looks like a weak attempt to
do so.

• We called attention to that cut off methods which are needed to make especially
renormalizable gravity theories are very hard if at all possible to conceive of
without some non-locality. And then since non-locality really means that
influence from future is getting allowed for small distances, also such cut off
needs in fact calls strongly for that influence from future cannot be totally
avoided. We looked especially as an example on string theory in the recent
formulation of Ninomiya and myself. In this model the for the cut off effectivity
crucial feature - the “stringiness” one could say - is put in as an initial state -
and even as a final state - condition! If instead of or in addition to inclusion
of gravity you also want to have more than the experimental number of
dimensions 3+1, the need for such cut offs that in turn leads to non-locality
and thereby formally admits influence from future gets even stronger.
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• We also mentioned the old worries about that the usually assumed laws of
nature for the initial conditions and those for the equations of motion do not
have the same CPT ot say just time reversal invariance: The initial conditions
usually assumed are only for the initial state, but not for the final state also as a
time reversal invariant theory would have to have it. So again some influence
from future is called for in order to make the symmetry be a least formally
uphold.

• Although I did not go so deeply into it in the present article, it is of course
also one of the arguments for influence future coming into the physical theory
that one in general relativity has wormholes and baby universes. very easily
leading to time machines. Such time machines namely leads to inconsistencies
unless the happenings are finetuned to just make things go in a with the time
machine consistent manner. This has been discussed by Novikov.

We will at the end stress that with the lists of arguments in the present
article one should at least admit that the absolutely safe belief that there is no
influence from the future deserves being investigated and confronted with as
much knowledge as we can collect concerning this question. If one truly will
uphold this absolutely safe belief that nothing from the future can influence us in
any way, there is really no government of the universe - at least no government
with any interest in the future fundamentally - then one would have to throw away
as bad science/misunderstandings or pure (poetic) invention all stories about the
government of God or destinies or the like which may be found in mythology in
the holy texts or the like.

At least I hope to have put a little doubt on the validity of this by now in first
approximation well working law of nature that future cannot influence anything
in past or now and that there is no government of the universe whatsoever.

Instead one could look at it that the strong belief in this no influence from
future nor government arranging for the future will turn out to be only something
humanity believed in a relatively short historical era from Darwin Wallace Lamark
to some day may be next year when a truly bad luck for LHC e.g. would convince
humanity that there exists a “God” (here in quotation marks) that hate the Higgs
sufficiently to stop a Higgs producing machine before it gets produced too many
Higgses!
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Abstract. In an earlier article, we have ”derived” space, as a part of the Random Dy-
namics project. In order to get locality we need to obtain reparametrization symmetry, or
equivalently, diffeomorphism symmetry.

There we sketched a procedure for how to get locality by first obtaining reparametriza-
tion symmetry, or equivalently, diffeomorphism symmetry. This is the object of the present
article.

Povzetek. V enem od prejšnjih člankih sta avtorja v okviru projekta Naključne Dinamike
“izpeljala” pojavnost prostora. Za izpeljavo lokalnosti postora je potrebno vključiti reparame-
trizacijsko simetrijo, to je simetrijo na difeomorfizme. V tem prispevku nakažeta avtorja
izpeljavo postopka, kako do lokalnosti prostora iz reparametrizacijske simetrije.

14.1 Introduction

In an earlier article [1], we have ”derived” space, as a part of the Random Dynamics
project [2]. Since we want to have locality, we also need to derive reparametrization
symmetry, or more generally, diffeomorphism symmetry [3], essentially ensuring
that the choice of coordinates plays no role in the formulation of the physical laws.

We propose that diffeomorphism symmetry comes about as a result of a
selection principle, in reality a selection principle for how Nature ”chooses” its
symmetry groups, a scheme that has been developed by Holger Bech Nielsen
and his collaborators [4]. The initial idea was that the small representations of the
Standard Model gauge group

SMG = S(U(2)×U(3)) (14.1)

is a signature of such a selection principle, singling out groups that have the
“smallest” representations.

In the present article we use similar arguments, but instead of taking the
Standard Model group SMG = S(U(2)×U(3)) as the selected group, we consider
the combined diffemorphism-and-gauge group

B = {(λ,ϕ) |λ ∈ G, ϕ ∈ D} (14.2)

? E-mail: hbech@nbi.dk
?? E-mail: astri.snofrix@org
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268 H.B. Nielsen and A. Kleppe

where G is the group of all gauge transformations that map the four-dimensional
spacetime manifoldM on the 12-dimensional manifold of SMG: the Lie group is
a manifold,

λ :M→ SMG

and D is the group of diffeomorphisms, a diffeomorphism ϕ given by a bijective
differentiable map

ϕ :M→M
14.1.1 An alternative to grand unified models

A major part of the success of the GUT SU(5) model is that the representations
of the SU(5) gauge group automatically represent the SU(5) subgroup S(U(2)⊗
U(3)) with the Standard Model Lie algebra. The GUT SU(5) group thus presents
the needed restrictions on the allowed represenstations of the Standard Model
algebra. Any successful GUT group, like for example SO(10), reproduces the same
restrictions as SU(5) on the representations of the Standard Model Lie algebra,
restrictions corresponding to S(U(2)⊗U(3)).

Any viable alternative to the GUT scheme must thus supply a prediction not
only of the Standard Model Lie algebra, but also of the group structure. There are
however many possible scenarios, so unless one has some guiding principle for
selection the unificaton group, there isn’t much predictive power.

One way to get the Standard Model without a GUT scheme, is by using
some selection principle for how Nature selects the Standard Model group. The
underlying philosophy is that of Random Dynamics, namely that the fundamental
physics is random, and that the observed symmetries are emergent. If only some
symmetries emerge, supposedly by accident, but maybe even by some more
precise mechanism, then the initially random action could be considered as taking
random values for some small region of the value space of the representation of the
group, with the transformation properties of the fields or degrees of freedom under
the group. The elements of a representation of the group in question then move
quite slowly as the group elements themselves vary. (One can vary the group
elements much before one varies the fields or matrices of the representation).
The slower the representation moves as a function of the variation of the group
elements the more likely it is that a symmetry emerges, since displacements inside
the group itself corresponding to a small region (over which we assume essentially
constancy of the action) become bigger with a slower representation motion rate.
A symmetry of the random action is thus more likely to occur when the symmetry
is represented by ”slowly moving” representation elements (e.g. matrices).

By means of some ”goal quantities” we single out the groups that have the
largest chance to emerge from a random action model, favouring the experimental
gauge group and dimension of spacetime.

14.1.2 Groups and algebras

In Yang Mills theories, only the Lie algebra is important, since two groups G1 and
G2 that have the same Lie algebra also have the same Yang Mills system. There
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are however many Lie groups with the same algebra. These groups are locally
similar, but globally they can be very different, with different representations. For
example, SU(2) 6= SO(3), as for SU(2) we have j = 0, 1/2, 1, 3/2, . . ., while for
SO(3) j = 0, 1, 2, . . ., and it is only by studying the representations of Nature like
qL, qR, the Higgs and so on, that we can establish which groups are at stake. To a
group corresponds

• The Lie algebra and thus the structure constants flkm and the Yang-Mills
Lagrangian LYM.

• The system of allowed representations, a given set of representations only
being allowed by some Lie groups.

The covering group (for a given Lie algebra) can manage all the represen-
tations, so the goal is to find the most choosy group, i.e. the one that allows the
fewest representations - which also corresponds to experimental data. Our point
of deparure is the Standard Model Lie algebra

S(U(2)×U(3)) ∼ R× SU(2)× SU(3) ∼ U(1)× SU(2)× SU(3) (14.3)

and since we don’t find all its possible representations in Naure, we will concen-
trate on the Lie group rather than on the Lie algebra. It is so to speak stronger to
”predict” the group S(U(2)×U(3)), such that

det


. . 0 0 0

. . 0 0 0

0 0 . . .

0 0 . . .

0 0 . . .

 = 1,

a group which admits all phenomenological representations, which all obey the
rule

y

2
+ j3 +

1

3
"triality" = 0(mod1) (14.4)

14.2 Skewness

Small representations as one possible selection principle, but another way of
singling out Nature’s chosen group, is by studying group skewness [5], defined as
a lack of symmetry.

Nature seems to select the Lorentz group with the smallest representations;
perhaps space moreover prefers those dimensions that give the skewest Lorentz
group. The Standard Model group SMG = S(U(2)×U(3)) is very skew, and most
probably very ”complicated”.

There is always the worry that the choice of “goal property” is such that it gets
dramatically bigger or smaller with the dimension or some other size parameter
of the group. In the case of choosing a skewness measure, this can be dealt with
by defining it as

ln(number of outer automorphisms)
rank of the group
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14.2.1 Inner and outer automorphisms

The degree of skewness is thus a function of the number of outer automorphisms
of the group G. An automorphism is an isomorphism of the group onto itself,

β : G → G (14.5)

i.e. a correspondance φ of G with itself respecting the group multiplication, and
such that φ is bijective and φ(gh) = φ(g)φ(h), g, h ∈ G.

The map β(g) is an inner automorphism if there is an element h ∈ G, such
that for all g ∈ G,

β(g) = βh(g) = hgh
−1 (14.6)

The group of outer automorphisms O is then defined modulo the inner automor-
phisms in the sense that in the group of all automorphisms A, we discern the
subgroup of inner automorphisms,

Ainn = {βh|h ∈ G}, (14.7)

and then define the group of outer automorphisms as

Aout = {O/{βh|h ∈ G} (14.8)

For the Standard Model group, we have that

• The automorphisms of R (∼ the U(1) factor) are scalings with a factor k 6= 0.
• The SU(2) factor has complex conjugation (in the defining representation) as

an automorphism, it is however an inner automorphism.
• For the SU(3), as for all SU(N) algebras with N ≥ 1, complex conjugation is

an outer automorphism.

All outer automorphisms of the Standard Model algebra are combinations of these,
since an automorphism maps the three invariant subalgebras into three isomorphic
invariant subalgebras. There are infinitely many such automorphisms, but the
Standard Model algebra together with the set of Standard Model properties (the
rule system) is invariant under only one outer automorphism, namely complex
conjugation of the SU(3) combined with the U(1) scaling factor k = −1.

Among all algebras of dimensionality up to 12 dimensions, taking quanti-
zation rule systems into account, there are four combinations of algebras and
rule systems that have no generalized outer automorphisms, namely those with
semisimple algebras su(3) and so(3).

14.3 The size of a representation

The other suggested selection principle, namely the size of a representation, was
inspired by the fact that after the trivial representation, the lowest-dimensional
non-abelian representations in the Standard Model are the remarkably small
representations of SU(2) and SU(3).
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A probablility argument for the presence of a selection principle can be for-
mulated as follows: look at S(U(2)×U(3)) and count the Lie groups of similarly
low rank [6]. It turns out that there are about 28 = 256 groups with low dimen-
sion (up to 12, i.e. the dimension of the SMG). Among these about 256 groups,
S(U(2)×U(3)) is singled out - most probably by means of some selection principle
like the size of the representations.

In order to obtain a more precise formulation of the selection principle, we
need to establish what we mean by the “size” of a representation. For this purpose
we define a measure for this size in terms of the quadratic Casimir operators, which
’tag’ the representations in the sense that they are not defined for the algebra itself,
but only for the representations.

A general Casimir invariant is a function f(F) of the Lie group generators Fj
which is invariant under the group and commutes with all the generators,

[f(F), Fj] = 0.

The generators Fj of the group constitute a basis for the corresponding Lie algebra
and satisfy the commutation relation [Fi, Fk] = f

j
ikFj, i, k, j = 1, 2, . . . ., dG, where

dG is the dimension of the group and fjik are the structure constants by means of
which we can construct a Killing metric tensor gkl = f

j
kif

i
jl. The quadratic Casimir

operator
C2 = gklFkFl (14.9)

is used for measuring the “size” of a representation r. This is done by normalizing
the quadratic Casimir of the representation by dividing it with the quadratic
Casimir for the adjoint representation, which consists of dG × dG matrices Aj,
such that (Aj)kl = −fkjl. The metric can thus be written gkl = Tr(AkAl), and in the
first approximation, the “size” of the representation r is taken to be

S =

(
Cr

CA

)
, (14.10)

where Cr and CA are the Casimirs for the representation r and the adjoint repre-
sentation, respectively.

In the search for the groups with the smallest representations, we thus exam-
ine the quadratic Casimir operators, bearing in mind that the quadratic Casimir
is well defined only for irreducible representations. Our goal is to show that the
combined group B = {(λ,ϕ)|λ ∈ G, ϕ ∈ D} has a measure which is smaller than
the Standard Model group measure,(

Cr

CA

)
B
<

(
Cr

CA

)
SMG

, (14.11)

since this is a way of necessitating the existence of the group of diffeomor-
phisms. When we talk about SMG, it should be noted that we actually have
a SMG in each point of spacetime, corresponding to a product of SMG’s: SMG×
SMG . . .× SMG, this product however has the same size measure as SMG itself,
i.e. (Cr/CA)SMG×SMG... = (Cr/CA)SMG.
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According to Schur’s lemma [7], in an irreducible representation, any operator
that commutes with all the generators of the Lie algebra must be a multiple of the
identity operator. Therefore Cr = gklFkFl = cr1,where 1 is the dr × dr identity
matrix, and cr is a coefficient which only depends on the representation r, so we
have

S =
cr1
cA1

=
cr

cA
(14.12)

The point is to minimize the relation cρ/cA, with some normalization of cA (the
normalization in reality being arbitrary).

We are interested in the SU(N) group, which has the defining representation b1
...

bN


and the group elements are U = NxN complex unitary matrices with determinant
1. The matrices U are ≈ 1, and can be written as U = eiF, with infinitesimal
generators F. These F ′s constitute a real vector space with the dimensionN2−1, i.e.
the dimension of SU(N), and we can choose a basis in the F-space, F1, F2, . . . , FN2−1,
which can be normalized.

In an irreducible representation

ρ : G → (Matrices)

ρ(g) = ρ(1) + iρ(Fj)g
j

the quadratic Casimir gklρ(Fk)ρ(Fl) is only an eigenvalue, but it represents how
intensively ρ(g) varies, in the sense that a small cρ corresponds to a ”lazy” ρ.

The Casimirs thus function as a crude measure for how much the represen-
tation matrix varies as a function of the group element it represents. In a lattice
context we take the contribution from one plaquette to be the trace of some rep-
resentation of the group, the most general action S� is then a linear expansion
on traces of all the possible representations of the gauge group, and the traces of
the smallest representations supposedly dominate. This domination corresponds
to the variation of the action as a function of how the combination of the link
variables varies over the gauge group, and if the action varies relatively slowly
over the group, it’s taken as an indication that it also varies relatively slowly when
we vary the gauge group.

So with an action which is dominated by the contributions from small rep-
resentations, the variation along the gauge variation is presumeably quite small,
a situation corresponding to small quadratic Casimir values. This increases the
chance that an action which was not perceived as invariant under a gauge trans-
formation, would nevertheless appear as gauge invariant.

To get an intuition of this ”smallness” of a representation, consider SU(2)
with its quadratic Casimir~J2. On an irreducible representation,~J2 effectively only
takes one value, i.e. it has the same eigenvalue on the whole representation. With
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~J2 = gijJ
iJj we have a notion of distance, and we can visualise~J2 as performing a

rotation,
~J2|a >= j(j+ 1)|a >

where the ”smallness” of the representation means that |a > is just slightly rotated,

Fig. 14.1.

By means of the Casimir measure we can thus define a size measure, making it
meaningful to say that the representations of the non-abelian parts of the Standard
Model are ”small”. In the abelian case, it is however problematic to establish what
we mean by the ”size” of a representation. We cannot apply a similar reasoning for
the U(1) groups as for non-abelian groups, because in the abelian case we cannot
use the dimension of the representation as a measure, since abelian groups always
have 1-dimensional representations, so dimension doesn’t tell anything. There
simply is no Casimir element defined, since for an abelian Lie algebra the Killing
form is zero.

What we can do is to consider the ratio of the charges of the representation
and refer to a “Quantum of charge”, for example the Millikan unit quantum. The
unique abelian invariant subgroup in the Standard Model gauge group corre-
sponds to the weak hypercharge. That can however not be used as the Quan-
tum, since the quantum for y/2 is 1/6, while right-handed charged leptons have
y/2 = −1, which is 6 times larger than 1/6, and 6 is obviously not the smallest
integer after zero.

So instead we consider non-invariant abelian subgroups, and define an abelian
representation as small if it has relatively many charges (generators of the Lie
algebra) with only the values 0, 1 or -1 measured in the Quantum.

It turns out that the Standard Model has a relatively large set of such charges,
so in this perspective, even from the abelian point of view the Standard Model is a
model with “small” representations.
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14.3.1 The size of a composite group

In order to normalize the measure by means of the Casimir of the adjoint repre-
sentation, we clearly need that there is a well-defined adjoint representation. In
the case of a composed, non-simple group like B = {(λ,ϕ)|λ ∈ G, ϕ ∈ D, }, there
is however no straightforward definition of the adjoint representation. For B, we
therefore must find a way of varying the two adjoint normalizations relative to
each other.

In order to achieve this, we seek to establish a (faithful, 1-1) representation r
of B on which we define a metric, whereby the image of B becomes a manifold
with a metric, allowing us to define a volume.

One way to do this is to establish a (faithful) representation r of B on which
we define a metric. Thus the image of B becomes a manifold with a metric, which
makes it possible to define a volume. The measure (cF/cA)B is then given as the
volume ratio of the two representations, taken to the power 2/dB,(

cF

cA

)
B
=

(
VF

Vadj

)2/dB
In the representation picture cr ∼ gik, i.e.

g
(G)
ik =

cA

cr
g
(r)
ik (14.13)

thus
Vol(G)

Vol(representation r)
=

(
cA

cr

)dG/2
(14.14)

and in the case of
G = G1 × G2 × . . .× Gk (14.15)

where the Gj are simple, the quantity

cr

cA
=

[(
cr1
cA1

)d1 ( cr2
cA2

)d2
. . .

(
crk
cAk

)dk] 1
d1+d2+...+dk

(14.16)

is a ”good quantity”.

14.3.2 Competing groups

For an irreducible representation r, consisting of a set of r × r matrices Mj, the
second-order index I2(r) of the representation is defined by

Tr(Mi
rM

j
r) = I2(r)δ

ij (14.17)

Taking the trace of (14.9), we get for the quadratic Casimir

c2(r) = I2(r)dG/dr (14.18)

where dr is the dimension of the representation r, and dG is the group dimension.
For the defining, fundamental representationN of SU(N) (i.e., in reality the algebra
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su(N)) the second-order index is I2(N) = 1/2, and for the adjoint representation
I2(A) = N and dA = N2 − 1, which gives

(
cN
cA

)
SU(N)

= N2−1
2N2

, thus for SU(2)(
cN
cA

)
SU(2)

= 3/8.

There are presumably other candidates, like SO(N), with the fundamental
representation consisting of N × N real matrices. One can define higher tensor
representations from the defining vector representation N, but there are also addi-
tional, double-valued spinor representations, similar to SO(3) ∼ SU(2), generated
by direct products of the fundamental spinor.

In the case of the SU(N) group, the faithful representation with the smallest
quadratic Casimir, is the fundamental representationN, while for the SO(N) group
the picture is much more complicated, as the faithful representation F with the
smallest quadratic Casimir might be either the vector representation, or the spinor
representation, the spinor representation being the winner for N < 8.

For the vector representation, the second-order index for the SO(N) fun-
damental and adjoint representations are I2(N) = 2 and I2(A) = 2N − 4, re-
spectively, and the dimension of the adjoint representation dA = N(N − 1)/2,
thus

(
cN
cA

)
SO(N)

= N−1
2(N−2) , and for the corresponding spinor representation we

have
(
cN
cA

)spinor
SO(N)

= N−1
2(N−2)

N
8

. Another competitor is sp(2N), with
(
cN
cA

)
sp(2N)

=

2N+1
4(N+1) , thus

(
cN
cA

)vector
SO(N)

= N−1
2(N−2) ,

(
cN
cA

)spinor
SO(N)

= N−1
2(N−2)

N
8(

cN
cA

)
SU(N)

= N2−1
2N2

,
(
cN
cA

)
sp(2N)

= 2N+1
4(N+1)

(14.19)

In the search for the groups chosen by Nature, we examine the (cN/cA) for the
different groups, but we also worry about possible differences between 3+1 and
4 spacetime dimensions. For example, for dimension d = 3 +1, we have for the
Lorentz group SO(3, 1) ∼ SL(2, C), while for d = 4, SO(4) ∼ SU(2)R × SU(2)L. For
both d = 3 + 1 and d = 4, the Lorentz group however has the same small S,

S =

(
cN

cA

)
=
1
2
(1+ 1

2
)

1(1+ 1)
=
3

8
(14.20)

while for d = 2 and d = 5, the value is bigger.
The Lorentz group SO(d − p, p) in reality comes from a symmetric metric

gik = gki. If gki instead had been antisymmetric, we would have symplectic
groups, which are not so competitive, as they have bigger (cN/cA). We consider the
Lorentz group as a function of the dimension d and of the ”geometry”, in the sense
of the dependence on whether gik is symmetric, antisymmetric or nonexistent.
But an antisymmetric gik actually does very poorly, while for d = 3,4 it looks good
for symmetric gik; and for the case without metric for d = 2 [8].

Among simple groups, SU(2) has the smallest (cN/cA), but in order to allow
SU(3) be let in, some cooperation with SU(2) is necessary, since the Spin(5), which
is the covering group of SO(5), in reality seems to outdo SU(3).
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SU(3) however has a relatively big center Z3, so if we divide by the group
center SU(3) is in good shape, since the SO(5) covering group has a smaller center.
For SU(3), the number of elements in the center is 3, while the center of SU(2)
merely has 2 elements, and likewise for Spin(5). We thus redefine our measure of
representations as

S = (
cr

cA
)

1

[(Number of elements in the center)]2/d
(14.21)

We in reality consider volumes:

Vol(SU(3))

Vol(SU(3)/Z3)
= 3

And with SU(2)/Z2 = SO(3),

Vol(SU(2))

Vol(SO(3))
= 2.

the quadratic Casimir being a sort of area in the group.

14.4 The group of diffeomorphisms

We define our group B as the combination of the gauge transformations of SMG
and the group of diffeomorphisms.

A diffeomorphism so to say moves a function, by the operation

xµ → xµ + ηµ

The displacement takes place in a given direction, and if we perceive the dif-
feomorphisms as vectors over a manifold, then for infinitesimal ηµ the set of
displacements {ηµ} constitutes a tangent field. The group of diffeomorphisms does
not have a (usual) Lie algebra, but we take as the Lie algebra a set of fields {εµ}

corresponding to the tangents

f(x) =
∑
µ

εµ∂µ, (14.22)

which amounts to substituting a manifold with a space of functions on the mani-
fold,

[f1(x), f2(x)] = [
∑
µ

εµ∂µ,
∑
ν

εν∂ν], (14.23)

and then we could take
C =

∫
gµνε

µ(x)εν(x)dx (14.24)

as a kind of Casimir. There are scarcely any outer automorphisms for the group of
diffeomorphisms, and if all the automorphisms for the group of diffeomorphisms
are inner, the group of diffeomorphisms is maximally skew. It should however be
noted that the group of diffeomorphisms depends on the topology of the space on
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which it is operating, for example for R4, the diffeomorphism group has a trivial
center.

Even though the Lie algebra for the group of diffeomorphisms is not a usual
Lie algebra, the group is still a Lie group. Consider the mappings of a manifold
onto itself,M, ϕ : x→ x ′, i.e.

ϕ :M→M where ϕ is

• bijective,
• sufficiently many times continuously differentiable,
• a group under the group of diffeomorphisms,

thenϕ :M→M is really a ”Lie group”, which is clear by consideringϕ+δϕ

and take the commutators [δϕ1, δϕ2] = [1+ δϕ1, 1+ δϕ2] 6= 0.
One difficulty we meet with respect to the combined group B is that the

group D of diffeomorphisms is probably simple, while the group G of gauge
transformations is not,

g ∈ G|g : R4 → SMG,

meaning
g : R4 → S(U(2)×U(3));g(x) ∈ S(U(2)×U(3)),

and
f, g : R4 → S(U(2)×U(3)); (fg)(x) = f(x) · g(x)

and for a non-simple group we cannot define a straightforward measure like
(cr/cA) for the size of representation. There is however one possibility to define a
quadratic Casimir replacement, viz.

ln"cN" =

∫
lnC
√
gd4x (14.25)

where g = det(gik). The problem is that we cannot really have a metric, since a
metric would not be diffeomorphism-symmetric. On the other hand, we don’t
quite need the metric gik, but only

√
g.

14.5 The composite group

Our selected group is B|{(λ,ϕ), λ ∈ G, ϕ ∈ D}, composed by the group of gauge
transformations

G = {λ :M→ SMG}

and the group of diffeomorphisms

D = {ϕ :M→M}

In order to investigate the group structure, we determine the action of the
group elements.

Let Ψl be a fermion state, and let (λ,ϕ) operate on Ψl. With the dfinition

(λ,ϕ)[Ψl](x) = ρ
k
l (λ(ϕ(x)))[Ψk](ϕ(x)) (14.26)
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where ρkl is the representation matrix, we want to determine the properties of the
group operation ◦ of B, i.e. of (λ1, ϕ1) ◦ (λ2, ϕ2). First consider

(λ, 1)[Ψk](x) = ρ
l
k(λ(x))[Ψl](x)

(1,ϕ)[Ψk](x) = [Ψk](ϕ(x)) = [Ψk ◦ϕ](x),

thus
(λ, 1) ◦ (1,ϕ)[Ψk](x) = (λ, 1)[Ψk ◦ϕ](x) =

= ρlk(λ(x))[Ψl(ϕ(x))]
(14.27)

Then consider

(1,ϕ) ◦ (λ, 1)[Ψk](x) = (1,ϕ)ρlk(λ(x))[Ψl(x)] =

= ρlk(λ(ϕ(x)))[Ψl(ϕ(x))]

which leads to the conclusion that

(λ,ϕ) 6= (λ, 1) ◦ (1,ϕ)
(λ,ϕ) = (1,ϕ) ◦ (λ, 1)

(14.28)

When investigating (λ1, ϕ1) ◦ (λ2, ϕ2) we use that

(1,ϕ)[χ](x) = (χ ◦ϕ)(x)

thus

(λ1, ϕ1) ◦ (λ2, ϕ2)[Ψk](x) = (λ1, ϕ1)ρ
l
k(λ2(ϕ2(x)))[Ψl(ϕ2(x))]

= (λ1, ϕ1)[ρ
l
k(λ2(ϕ2(x)))(Ψl ◦ϕ2)(x)]

= ρml (λ1(ϕ1(x)))ρ
l
k(λ2(ϕ2 ◦ϕ1(x)))(Ψm ◦ϕ2 ◦ϕ1)(x)

(14.29)
which we identify with

(λ1, ϕ1) ◦ (λ2, ϕ2)[Ψk](x) = (λ3, ϕ3)[Ψk](x) = ρ
m
k (λ3(ϕ3(x)))(Ψm ◦ϕ3(x))

(14.30)
thus

ϕ3 = ϕ2 ◦ϕ1, (14.31)

We demand that for all [Ψk](x)

ρmk (λ3(ϕ3(x))) = ρ
m
l (λ1(ϕ1(x)))ρ

l
k(λ2(ϕ2 ◦ϕ1(x)))

which can only be achieved for a faithful representation, and

λ1(ϕ1) · λ2(ϕ3) = λ3(ϕ3)

(where · is the group operation for G) which applies to all x, a special case being
ϕ−1
3 (x). We perform the substitution x→ ϕ−1

3 (x), thus obtaining

λ1(ϕ1 ◦ϕ−1
3 (x)) · λ2(x) = λ3(x)

and with ϕ3 = ϕ2 ◦ϕ1, we get ϕ1 ◦ϕ−1
3 = ϕ−1

2 and

λ1(ϕ
−1
2 (x)) · λ2(x) = λ3(x), (14.32)
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thus

(λ1, ϕ1) ◦ (λ2, ϕ2) = (λ3, ϕ3) = (λ1(ϕ
−1
2 (·)) · λ2, ϕ2 ◦ϕ1) (14.33)

Now λ1(ϕ
−1
2 (·)) ∈ G, and

(λ1(ϕ
−1
2 (·), 1))Ψk(x) = ρlk(λ1(ϕ−1

2 (x)))Ψl(x),

but exchange of argument in λ, i.e. λ(x)→ λ(ϕ(x)), is an automorphism in G, and
in this sense,

λ1(ϕ
−1
2 (x)) = [Φϕ−1

2
(λ1)](x),

is an automorphism in G. The product of two elements of B finally reads

(λ1, ϕ1) ◦ (λ2, ϕ2) = (λ3, ϕ3) = (Φϕ−1
2

(λ1) · λ2, ϕ2 ◦ϕ1) (14.34)

With the alternative definition (λ,ϕ)[Ψl](x) = ρkl (λ(ϕ
−1(x)))[Ψk](ϕ

−1(x)), we
moreover get that

(λ1, ϕ1) ◦ (λ2, ϕ2) = (λ3, ϕ3) = (Φϕ2(λ1) · λ2, ϕ1 ◦ϕ2) (14.35)

14.5.1 Subgroups of B

Does B = {(λ,ϕ)} have any subgroups? The relation (14.32) seems to indicate that
the gauge group G is a normal (invariant) subgroup of B, which means that for
b ∈ B, bGb−1 ⊆ G.

With (λ,ϕ)[Ψl](x) = ρ
k
l (λ(ϕ(x)))[Ψk](ϕ(x)) and (14.34), i.e.

λ3 = Φϕ−1
2

(λ1) · λ2, ϕ3 = ϕ2 ◦ϕ1

we take

(Λ,ϕ) ◦ (λ, 1) ◦ (Λ,ϕ)−1 = (Λ,ϕ) ◦ (λ, 1) ◦ (Φ−1
ϕ (Λ), ϕ−1) =

= (Φϕ(Λ) ·Φϕ(λ) ·Φ−1
ϕ (Λ), 1) ∈ G

(14.36)

and specifically for (1,ϕ), we get (1,ϕ) ◦ (λ, 1) ◦ (1,ϕ)−1 = (λ, 1), so for these
specific representatives (1,ϕ) of the cosets of

{(λ, 1)|λ :M→ G},
(λ, 1) is similarity transformation invariant, and we conclude that G is a normal
subgroup of B. This implies that B is not simple, but a semi-direct product group,
unless the subgroup D of diffeomorphisms also is normal, i.e.

(λ, 1)(1,ϕ)(λ, 1)−1 ∈ D

Again using (14.34), we get that

(λ,ω)◦ (1,ϕ)◦ (λ,ω)−1 = (λ,ω)◦ (1,ϕ)◦ (Φ−1
ω (λ),ω−1) = (Φ−1

ϕ (λ) ·λ−1, ϕ) /∈ D
(14.37)

thus D is not an invariant subgroup of B, and B is a semidirect product of G and
D,

B = G oD (14.38)

This means that φϕ−1 in (14.34) is a group homomorphism φϕ−1 : D → Aut(G),
where Aut(D) denotes the group of automorphisms of D.
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14.6 To evaluate the size of B

We started out from the Standard Model group SMG, which in itself is a compact,
12-dimensional manifold. When we go to the bigger group B encompassing the
group of gauge transformations extended with the group of diffeomorphims,
we are dealing with an infinite dimensional Lie group. But this does not nec-
essarily have to be so devastating, keeping in mind that the effect of D in B
in reality is nothing more than to dislocate the different SMG in the product
SMG×SMG . . .×SMG, gabρ(Fa)ρ(Fb). Compared to

∏
SMG, the groupB (where

also D is included) will still have the same representations.
In deciding on how to measure the size of a representation, we have encoun-

tered a set of problems,

• How to establish a viable ’size’ for the U(1) group in SMG.
• How do we handle the problem with the adjoint representation in the case of
B?

• How do we define cF/cA for a semidirect product?

In spite of all these problems, let us make an attempt to evaluate the difference
between the measures for SMG and B, respectively. Represent D by the Lorentz
group, taken as SO(3, 1) or SO(4), supposing we are in 3+1 or 4 dimensions, and
use (cF/cA) = 3/8 (with the corresponding group dimension 6). In accordance
with (14.16) we then define a tentative measure for the composite group B = GoD,
as

′′S ′′B =

[(
cF
cA

)d(SU(2))

SU(2)
·
(
cF
cA

)d(SU(3))

SU(3)
·
(
cF
cA

)d(SO(4))

SO(4)

] 1∑
di

=

=
[(
3
8

)3 · (4
9

)8 · (3
8

)6] 117
= 0.406213...

(14.39)

where we for SG have used SSU(2)⊗SU(3), keeping in mind that the quadratic
Casimir for

∏
SMG is the same as for SMG itself, and ignored U(1).

For SMG alone, we get

′′S ′′G =

[(
cF
cA

)d(SU(2))

SU(2)
·
(
cF
cA

)d(SU(3))

SU(3)

] 1∑
di

=

=
[(
3
8

)3 · (4
9

)8] 111
= 0.424320...,

(14.40)

so in this crude approach, ′′S ′′B < ′′S
′′
G .

′′S ′′G =

[(
cF
cA

)d(SU(2))

SU(2)
·
(
cF
cA

)d(SU(3))

SU(3)

] 1∑
di

=

=
[(
3
8

)3 · (4
9

)8] 111
= 0.424320...,

(14.41)

There is however another aspect to this. Let us make no assumption about the
dimensionN in SO(N), and simply plot the expression (14.39) for ′′S ′′B as a function
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of N for N ≤ 8,

′′S ′′B =

[(
cF
cA

)d(SU(2))

SU(2)
·
(
cF
cA

)d(SU(3))

SU(3)
·
(
cF
cA

)d(SO(N))

SO(N)

] 1∑
di

=

=

[(
3
8

)3 · (4
9

)8 · (N(N−1)
16(N−2)

)N(N−1)
2

] 1

11+
N(N−1)

2

,

(14.42)

Fig. 14.2.

corresponding to a minimal value for the size ′′S ′′B at N = 4. These encouraging
results, both for the relative smallness of ′′S ′′B compared to ′′S ′′G , and well as the
singling out of N = 4, are of course based on a coarse evaluation, which is to be
refined with a more precise formulation of the quadratic Casimir for the group B,
in order to accomplish a fair comparison between the sizes of the two groups.

14.7 Conclusion

In this article we have taken the first steps in ”deriving” diffeomorphism symmetry,
which is called for within the framework of the derivation of space. We have
discussed different ”goal quantities”, especially the size of a representation of a
group, identified as the size of the quadratic Casimir, which is connected with
natural metric on the space of unitary matrices in the representations.
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With this ”goal quantity” in mind, we argue that diffeomorphism symmetry
necessarily comes about, because the size of the bigger group, which is the semidi-
rect product of the Standard Model group and the group of diffeomorphisms, is
smaller than the size of th Standard Model group.

The next step will be to calculate the Casimirs for the entire group B, and
more precisely evaluate the size of B as compared with the size of the Standard
Model group.
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Abstract. Virtual Institute of Astroparticle Physics (VIA) is a unique multi-functional
complex of science and education online. VIA website

http://viavca.in2p3.fr/site.html
supports participation in conferences and meetings, various forms of collaborative scientific
work as well as programs of education at distance, combining online videoconferences
with extensive library of records of previous meetings and Discussions on Forum. The
VIA facility is regularly effectively used in the programs of Bled Workshops. At XVII Bled
Workshop it provided a world-wide discussion of the open questions of physics beyond
the standard model.

Povzetek. Virtual Institute of Astroparticle Physics (VIA) predstavlja edinstven večnamenski
kompleks znanosti in izobraževanja na spletu. Njegova domača stran

http://viavca.in2p3.fr/site.html
podpira udeležbo na konferencah in srečanjih, razližne oblike znantsvenega sodelovanja
in programe izobraževanja na daljavo. Kombinira video konference z obsežno knjižnico
digitalnih zapisov prejšnjih srečanj in diskusije na forumu VIA. Možnosti VIA se redno in
obsežno uporabljajo v programih Blejskih delavnic. Na sedemnajsti delavnici je omogočil
diskusijo o odprtih problemih fizike onkraj obeh standardnih modelov udeležencem širom
sveta.

15.1 Introduction

Studies in astroparticle physics link astrophysics, cosmology, particle and nuclear
physics and involve hundreds of scientific groups linked by regional networks (like
ASPERA/ApPEC [1,2]) and national centers. The exciting progress in these studies
will have impact on the knowledge on the structure of microworld and Universe
in their fundamental relationship and on the basic, still unknown, physical laws
of Nature (see e.g. [3,4] for review).

Virtual Institute of Astroparticle Physics (VIA) [5] was organized with the
aim to play the role of an unifying and coordinating structure for astroparticle
physics. Starting from the January of 2008 the activity of the Institute takes place
on its website [6] in a form of regular weekly videoconferences with VIA lectures,
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covering all the theoretical and experimental activities in astroparticle physics and
related topics. The library of records of these lectures, talks and their presentations
was accomplished by multi-lingual Forum. In 2008 VIA complex was effectively
used for the first time for participation at distance in XI Bled Workshop [7]. Since
then VIA videoconferences became a natural part of Bled Workshops’ programs,
opening the virtual room of discussions to the world-wide audience. Its progress
was presented in [8–12]. Here the current state-of-art of VIA complex, integrated
since the end of 2009 in the structure of APC Laboratory, is presented in order to
clarify the way in which VIA discussion of open questions beyond the standard
model took place in the framework of XVII Bled Workshop.

15.2 The structure of VIA complex and forms of its activity

15.2.1 The forms of VIA activity

The structure of VIA complex is illustrated on Fig. 15.1. The home page, presented
on this figure, contains the information on VIA activity and menu, linking to
directories (along the upper line from left to right): with general information on
VIA (About VIA), entrance to VIA virtual rooms (Rooms), the library of records
and presentations (Previous) of VIA Lectures (Previous→ Lectures), records of
online transmissions of Conferences(Previous→ Conferences), APC Colloquiums
(Previous → APC Colloquiums), APC Seminars (Previous → APC Seminars)
and Events (Previous → Events), Calender of the past and future VIA events
(All events) and VIA Forum (Forum). In the upper right angle there are links
to Google search engine (Search in site) and to contact information (Contacts).
The announcement of the next VIA lecture and VIA online transmission of APC
Colloquium occupy the main part of the homepage with the record of the most
recent VIA events below. In the announced time of the event (VIA lecture or
transmitted APC Colloquium) it is sufficient to click on ”to participate” on the
announcement and to Enter as Guest (printing your name) in the corresponding
Virtual room. The Calender links to the program of future VIA lectures and events.
The right column on the VIA homepage lists the announcements of the regularly
up-dated hot news of Astroparticle physics and related areas.

In 2010 special COSMOVIA tours were undertaken in Switzerland (Geneva),
Belgium (Brussels, Liege) and Italy (Turin, Pisa, Bari, Lecce) in order to test stability
of VIA online transmissions from different parts of Europe. Positive results of these
tests have proved the stability of VIA system and stimulated this practice at XIII
Bled Workshop. The records of the videoconferences at the XIII Bled Workshop
are available on VIA site [13].

Since 2011 VIA facility was used for the tasks of the Paris Center of Cos-
mological Physics (PCCP), chaired by G. Smoot, for the public programme ”The
two infinities” conveyed by J.L.Robert and for effective support a participation
at distance at meetings of the Double Chooz collaboration. In the latter case, the
experimentalists, being at shift, took part in the collaboration meeting in such a
virtual way.

The simplicity of VIA facility for ordinary users was demonstrated at XIV Bled
Workshop in 2011. Videoconferences at this Workshop had no special technical
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Fig. 15.1. The home page of VIA site
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support except for WiFi Internet connection and ordinary laptops with their
internal video and audio equipments. This test has proved the ability to use VIA
facility at any place with at least decent Internet connection. Of course the quality
of records is not as good in this case as with the use of special equipment, but still
it is sufficient to support fruitful scientific discussion as can be illustrated by the
record of VIA presentation ”New physics and its experimental probes” given by
John Ellis from his office in CERN (see the records in [14]).

In 2012 VIA facility, regularly used for programs of VIA lectures and transmis-
sion of APC Colloquiums, has extended its applications to support M.Khlopov’s
talk at distance at Astrophysics seminar in Moscow, videoconference in PCCP,
participation at distance in APC-Hamburg-Oxford network meeting as well as to
provide online transmissions from the lectures at Science Festival 2012 in Univer-
sity Paris7. VIA communication has effectively resolved the problem of referee’s
attendance at the defence of PhD thesis by Mariana Vargas in APC. The referees
made their reports and participated in discussion in the regime of VIA videocon-
ference.

In 2013 VIA lecture by Prof. Martin Pohl was one of the first places at which
the first hand information on the first results of AMS02 experiment was presented
[15].

In 2012 VIA facility was first used for online transmissions from the Science
Festival in the University Paris 7. This tradition was continued in 2013, when
the transmissions of meetings at Journes nationales du Dveloppement Logiciel
(JDEV2013) at Ecole Politechnique (Paris) were organized [16].

In 2014 the 100th anniversary of one of the foundators of Cosmoparticle
physics, Ya. B. Zeldovich, was celebrated. With the use of VIA M.Khlopov could
contribute the programme of the ”Subatomic particles, Nucleons, Atoms, Universe:
Processes and Structure International conference in honor of Ya. B. Zeldovich 100th
Anniversary” (Minsk, Belarus) by his talk ”Cosmoparticle physics: the Universe
as a laboratory of elementary particles” [17] and the programme of ”Conference
YaB-100, dedicated to 100 Anniversary of Yakov Borisovich Zeldovich” (Moscow,
Russia) by his talk ”Cosmology and particle physics” [18].

The discussion of questions that were put forward in the interactive VIA
events can be continued and extended on VIA Forum. The Forum is intended to
cover the topics: beyond the standard model, astroparticle physics, cosmology,
gravitational wave experiments, astrophysics, neutrinos. Presently activated in
English,French and Russian with trivial extension to other languages, the Forum
represents a first step on the way to multi-lingual character of VIA complex and
its activity.

One of the interesting forms of Forum activity is the educational work at
distance. For the last five years M.Khlopov’s course ”Introduction to cosmoparticle
physics” is given in the form of VIA videoconferences and the records of these
lectures and their ppt presentations are put in the corresponding directory of the
Forum [19]. Having attended the VIA course of lectures in order to be admitted
to exam students should put on Forum a post with their small thesis. Professor’s
comments and proposed corrections are put in a Post reply so that students
should continuously present on Forum improved versions of work until it is
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accepted as satisfactory. Then they are admitted to pass their exam. The record of
videoconference with their oral exam is also put in the corresponding directory
of Forum. Such procedure provides completely transparent way of evaluation
of students’ knowledge. In 2014 the second part of this course was used for a
test of VIA system as a possible supplementary tool for Massive Online Open
Courses (MOOC) activity [20]. In the context of MOOC VIA facility can be used
for individual online work with advanced students.

15.2.2 Organisation of VIA events and meetings

First tests of VIA system, described in [5,7–9], involved various systems of video-
conferencing. They included skype, VRVS, EVO, WEBEX, marratech and adobe
Connect. In the result of these tests the adobe Connect system was chosen and
properly acquired. Its advantages are: relatively easy use for participants, a possi-
bility to make presentation in a video contact between presenter and audience, a
possibility to make high quality records, to use a whiteboard facility for discus-
sions, the option to open desktop and to work online with texts in any format.

The normal amount of connections to the virtual room at VIA lectures and
discussions usually didn’t exceed 20. However, the sensational character of the
exciting news on superluminal propagation of neutrinos acquired the number
of participants, exceeding this allowed upper limit at the talk ”OPERA versus
Maxwell and Einstein” given by John Ellis from CERN. The complete record of
this talk and is available on VIA website [21]. For the first time the problem of
necessity in extension of this limit was put forward and it was resolved by creation
of a virtual ”infinity room”, which can host any reasonable amount of participants.
Starting from 2013 this room became the only main virtual VIA room, but for
specific events, like Collaboration meetings or transmissions from science festivals,
special virtual rooms can be created. This solution strongly reduces the price of the
licence for the use of the adobeConnect videoconferencing, retaining a possibility
for creation of new rooms with the only limit to one administrating Host for all of
them.

The ppt or pdf file of presentation is uploaded in the system in advance
and then demonstrated in the central window. Video images of presenter and
participants appear in the right window, while in the lower left window the
list of all the attendees is given. To protect the quality of sound and record, the
participants are required to switch out their microphones during presentation and
to use the upper left Chat window for immediate comments and urgent questions.
The Chat window can be also used by participants, having no microphone, for
questions and comments during Discussion. The interactive form of VIA lectures
provides oral discussion, comments and questions during the lecture. Participant
should use in this case a ”raise hand” option, so that presenter gets signal to switch
our his microphone and let the participant to speak. In the end of presentation
the central window can be used for a whiteboard utility as well as the whole
structure of windows can be changed, e.g. by making full screen the window with
the images of participants of discussion.

Regular activity of VIA as a part of APC includes online transmissions of
all the APC Colloquiums and of some topical APC Seminars, which may be of
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interest for a wide audience. Online transmissions are arranged in the manner,
most convenient for presenters, prepared to give their talk in the conference
room in a normal way, projecting slides from their laptop on the screen. Having
uploaded in advance these slides in the VIA system, VIA operator, sitting in the
conference room, changes them following presenter, directing simultaneously
webcam on the presenter and the audience.

15.3 VIA Sessions at XVII Bled Workshop

VIA sessions of XVII Bled Workshop have developed from the first experience
at XI Bled Workshop [7] and their more regular practice at XII, XIII, XIV, XV and
XVI Bled Workshops [8–12]. They became a regular part of the Bled Workshop’s
programme.

In the course of XVII Bled Workshop meeting the list of open questions was
stipulated, which was proposed for wide discussion with the use of VIA facility.
The list of these questions was put on VIA Forum (see [22]) and all the participants
of VIA sessions were invited to address them during VIA discussions. During
the XVII Bled Workshop the test of not only minimal necessary equipment, but
either of the use of VIA facility by ordinary users was undertaken. VIA Sessions
were supported by personal laptop with WiFi Internet connection only, as well
as in 2014 the members of VIA team were physically absent in Bled and all the
videoconferences were directed by M.Khlopov at distance. It proved the possibility
to provide effective interactive online VIA videoconferences even in the absence
of any special equipment and qualified personnel at place. Only laptop with
microphone and webcam together with WiFi Internet connection was proved to
support not only attendance, but also VIA presentations and discussions. In the
absence of WiFi connection, the 3G connection of iPhone was sufficient for VIA
management and presentations.

In the framework of the program of XVII Bled Workshop, M. Khlopov, gave his
Introduction at distance to the M.Laletin’s talk ”Dark Atoms and Their decaying
Constituents” (Fig. 15.2). It provided an additional demonstration of the ability
of VIA to support the creative non-formal atmosphere of Bled Workshops (see
records in [23]).

VIA sessions also included the talks ”Novel string field theory solving string
theory liberating left and right movers” by Holger Bech Nielsen, ”The spin charge
family theory offers the explanation for the assumption of the Standard model,
for the Dark matter, for the Matter-antimatter asymmetry..., making several pre-
dictions” by Norma Mankoc-Borstnik (Fig. 15.3) and”Dark matter particles in the
galactic halo” by Rita Bernabei (Fig. 15.4), followed by discussions with distant
participants. The records of these lectures and discussions can be found in VIA
library [23].

15.4 Conclusions

The Scientific-Educational complex of Virtual Institute of Astroparticle physics
provides regular communication between different groups and scientists, working
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Fig. 15.2. VIA talk by M.Khlopov served as Introduction to M.Laletin’s talk at XVII Bled
Workshop

Fig. 15.3. VIA talk by N. Mankoc-Borstnik at XVII Bled Workshop

Fig. 15.4. VIA talk by R.Bernabei at XVII Bled Workshop
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in different scientific fields and parts of the world, the first-hand information on
the newest scientific results, as well as support for various educational programs at
distance. This activity would easily allow finding mutual interest and organizing
task forces for different scientific topics of astroparticle physics and related topics.
It can help in the elaboration of strategy of experimental particle, nuclear, astro-
physical and cosmological studies as well as in proper analysis of experimental
data. It can provide young talented people from all over the world to get the
highest level education, come in direct interactive contact with the world known
scientists and to find their place in the fundamental research. These educational
aspects of VIA activity can provide nontrivial supplementary tool for MOOC. VIA
applications can go far beyond the particular tasks of astroparticle physics and
give rise to an interactive system of mass media communications.

VIA sessions became a natural part of a program of Bled Workshops, main-
taining the platform of discussions of physics beyond the Standard Model for
distant participants from all the world. The experience of VIA applications at Bled
Workshops plays important role in the development of VIA facility as an effective
tool of science and education online.
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