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Abstract. We show that the two complementary pictures of largeNc baryons - the single-

quark orbital excitation about a symmetric core and the meson-nucleon resonance – are

compatible for ℓ = 3 SU(4) baryons. The proof is based on a simple Hamiltonian including

operators up to orderO(N0
c) used previously in the literature for ℓ = 1.

1 The status of the 1/Nc expansion method

The large Nc QCD, or alternatively the 1/Nc expansion method, proposed by
’t Hooft [1] and implemented by Witten [2] became a valuable tool to study

baryon properties in terms of the parameter 1/Nc where Nc is the number of
colors. According to Witten’s intuitive picture, a baryon containing Nc quarks is

seen as a bound state in an average self-consistent potential of a Hartree type and

the corrections to the Hartree approximation are of order 1/Nc.

Ten years after ’t Hooft’s work, Gervais and Sakita [3] and independently
Dashen and Manohar in 1993 [4] derived a set of consistency conditions for the

pion-baryon coupling constants which imply that the large Nc limit of QCD has
an exact contracted SU(2Nf)c symmetry when Nc →∞,Nf being the number of

flavors. For ground state baryons the SU(2Nf) symmetry is broken by corrections

proportional to 1/Nc [5, 6].

Analogous to s-wave baryons, consistency conditions which constrain the

strong couplings of excited baryons to pions were derived in Ref. [7]. These con-

sistency conditions predict the equality between pion couplings to excited states
and pion couplings to s-wave baryons. These predictions are consistent with the

nonrelativistic quark model.

A few years later, in the spirit of the Hartree approximation a procedure
for constructing large Nc baryon wave functions with mixed symmetric spin-

flavor parts has been proposed [8] and an operator analysis was performed for ℓ

= 1 baryons [9]. It was proven that, for such states, the SU(2Nf) breaking occurs
at order N0

c, instead of 1/Nc, as it is the case for ground and also symmetric

excited states [56, ℓ+] (for the latter see Refs. [10, 11]). This procedure has been
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extended to positive parity nonstrange baryons belonging to the [70, ℓ+] with ℓ =

0 and 2 [12]. In addition, in Ref. [12], the dependence of the contribution of the

linear term inNc, of the spin-orbit and of the spin-spin terms in the mass formula
was presented as a function of the excitation energy or alternatively in terms of

the band number N. Based on this analysis an impressive global compatibility
between the 1/Nc expansion and the quark model results forN = 0, 1, 2 and 4 [13]

was found (for a review see Ref. [14]). More recently the [70, 1−] multiplet was

reanalyzed by using an exact wave function, instead of the Hartree-type wave
function, which allowed to keep control of the Pauli principle at any stage of

the calculations [15]. The novelty was that the isospin-isospin term, neglected
previously [9] becomes as dominant in ∆ resonances as the spin-spin term in N∗

resonances.

The purpose of this work is to analyze the compatibility between the 1/Nc

expansion method in the so-called quark-shell picture and the resonance or scattering

picture defined in the framework of chiral soliton models. Details can be found in
Ref. [16].

2 Negative parity baryons

If an excited baryon belongs to a symmetric [56]-plet the three-quark system can
be treated similarly to the ground state in the flavour-spin degrees of freedom, but

one has to take into account the presence of an orbital excitation in the space part

of thewave function [10,11]. If the baryon state is described by amixed symmetric
representation, [70] in SU(6) notation, the treatment becomes more complicated.

In particular, the resonances up to 2 GeV belong to [70, 1−], [70, 0+] or [70, 2+]

multiplets and beyond to 2 GeV to [70, 3−], [70, 5−], etc.

In the following we adopt the standard way to study the [70]-plets which, as
alreadymentioned, is related to the Hartree approximation [8]. An excited baryon

is described by a symmetric core plus an excited quark coupled to this core, see
e.g. [9, 12, 17, 18]. The core is treated in a way similar to that of the ground state.

In this method each SU(2Nf) × O(3) generator is separated into two parts

Si = si + Si
c; Ta = ta + Ta

c ; Gia = gia +Gia
c ; ℓi = ℓiq + ℓic, (1)

where si, ta, gia and ℓiq are the excited quark operators and Si
c, T

a
c , Gia

c and ℓic
the corresponding core operators.

2.1 The quark-shell picture

In the quark-shell picture we use the procedure of Ref. [19], equivalent to that of

Ref. [20], later extended in Ref. [21]. We start from the leading-order Hamiltonian
including operators up to order O(N0

c) which has the following form

H = c1 l1 + c2ℓ · s+ c3

1

Nc

ℓ(2) · g ·Gc (2)

This operator is defined in the spirit of a Hartree picture (mean field) where the

matrix elements of the first term are proportional to Nc on all baryons [2]. The
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spin-orbit term ℓ · s which is a one-body operator and the third term - a two-

body operator containing the tensor ℓ(2)ij of O(3) - have matrix elements of order

O(N0
c). The neglect of 1/Nc corrections in the 1/Nc expansion makes sense for

the comparison with the scattering picture in the large Nc limit, described in the

following section.

One can see that the Hamiltonian (2) reproduces the characteristicNc scaling

for the excitation energy of baryons which is N0
c [2].

The nucleon case In largeNc the color part of the wave function is antisymmetric
so that the orbital-spin-flavor part must be symmetric to satisfy the Pauli princi-

ple. A quanta of orbital excitation requires the orbital part to be mixed symmetric,

the lowest state having the partition [Nc − 1, 1]. We have the following [Nc − 1, 1]

spin-flavor (SF) states which form a symmetric state with the orbital ℓ = 3 state of

partition [Nc − 1, 1]

1. [Nc − 1, 1]SF =
[

Nc+1
2
, Nc−1

2

]

S
×

[

Nc+1
2
, Nc−1

2

]

F
, Nc ≥ 3

with S = 1/2 and J = 5/2, 7/2

2. [Nc − 1, 1]SF =
[

Nc+3
2
, Nc−3

2

]

S
×

[

Nc+1
2
, Nc−1

2

]

F
, Nc ≥ 3

with S = 3/2 and J = 3/2, 5/2, 7/2, 9/2.

They give rise to matrices of a given J either 2 × 2 or 1 × 1 depending on the

multiplicity of J. States of symmetry [Nc − 1, 1]SF with S = 5/2, like for ∆ (see
below), which together with ℓ = 3 could give rise to J = 11/2, are not allowed for

N, by inner products of the permutation group [22]. Therefore the experimentally
observed resonance N(2600)I11/2 should belong to the N = 5 band (ℓ = 5). For

Nc = 3 the above states correspond to the 28 and 48 multiplets of SU(2) × SU(3)

respectively.

The ∆ case In this case the Pauli principle allows the following states

1. [Nc − 1, 1]SF =
[

Nc+1
2
, Nc−1

2

]

S
×

[

Nc+3
2
, Nc−3

2

]

F
, Nc ≥ 3

with S = 1/2 and J = 5/2, 7/2,
2. [Nc − 1, 1]SF =

[

Nc+3
2
, Nc−3

2

]

S
×

[

Nc+3
2
, Nc−3

2

]

F
, Nc ≥ 5

with S = 3/2 and J = 3/2, 5/2, 7/2, 9/2,
3. [Nc − 1, 1]SF =

[

Nc+5
2
, Nc−5

2

]

S
×

[

Nc+3
2
, Nc−3

2

]

F
, Nc ≥ 7

with S = 5/2 and J = 1/2, 3/2, 5/2, 7/2, 9/2, 11/2.

As above, they indicate the size of a matrix of fixed J for the Hamiltonian (2). For

example, the matrix of ∆5/2 is 3×3, because all three states can have J = 5/2. For
Nc = 3 the first state belongs to the 210multiplet. The other two types of states do

not appear in the real world with Nc = 3. Note that both forNJ and ∆J states the
size of a given matrix equals the multiplicity of the corresponding state indicated

in Table 1 of Ref. [21] for ℓ = 3.

The Hamiltonian (2) is diagonalized in the bases defined above. Let us de-

note the eigenvalues either bym
(i)

NJ
orm

(i)

∆J
with i = 1, 2 or 3, depending on how
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many eigenvalues are at a fixed J. The Hamiltonian has analytical solutions, all

eigenvalues being linear functions in the coefficients c1, c2 and c3. It is remarkable

that the 18 available eigenstates with ℓ = 3 fall into three degenerate multiplets,
like for ℓ = 1. If the degenerate masses are denoted bym ′

2,m3 andm4 we have

m ′
2 = m

(1)

∆1/2
= m

(1)

N3/2
= m

(1)

∆3/2
= m

(1)

N5/2
= m

(1)

∆5/2
= m

(1)

∆7/2
, (3)

m3 = m
(2)

∆3/2
= m

(2)

N5/2
= m

(2)

∆5/2
= m

(1)

N7/2
= m

(2)

∆7/2
= m

(1)

∆9/2
, (4)

m4 = m
(3)

∆5/2
= m

(2)

N7/2
= m

(3)

∆7/2
= m

(1)

N9/2
= m

(2)

∆9/2
= m

(1)

∆11/2
, (5)

where

m ′
2 = c1Nc − 2c2 −

3

4
c3, (6)

m3 = c1Nc −
1

2
c2 +

15

16
c3, (7)

m4 = c1Nc +
3

2
c2 −

5

16
c3. (8)

The notationm ′
2 is used to distinguish this eigenvalue fromm2 of Ref. [19].

In the following subsection we shall see that the scattering picture gives an
identical pattern of degeneracy in the quantum numbers, but the resonance mass

is not quantitatively defined. Therefore only a qualitative compatibility can be

established.

2.2 The meson-nucleon scattering picture

Here we are concerned with nonstrange baryons, as above, and look for a degen-

eracy pattern in the resonance picture. The starting point in this analysis are the
linear relations of the S matrices Sπ

LL ′RR ′IJ and Sη
LRJ of π and η scattering off a

ground state baryon in terms of K-amplitudes. They are given by the following

equations [19, 21]

Sπ
LL ′RR ′IJ =

∑

K

(−1)R ′−R
√

(2R + 1)(2R ′ + 1)(2K + 1)

{
K I J

R ′ L ′ 1

}{
K I J

R L 1

}

sπKLL ′ ,

(9)
and

S
η
LRJ =

∑

K

δKLδ(LRJ)s
η
K, (10)

where sπKL ′L and sηK are the reduced amplitudes. The notation is as follows. For

π scattering R and R ′ are the spin of the incoming and outgoing baryons respec-
tively (R =1/2 forN and R = 3/2 for ∆), L and L ′ are the partial wave angular mo-

mentum of the incident and final π respectively (the orbital angular momentum

L of η remains unchanged), I and J represent the total isospin and total angular
momentum associated to a given resonance and K is the magnitude of the grand

spin K = I + J. The 6j coefficients imply four triangle rules δ(LRJ), δ(R1I), δ(L1K)

and δ(IJK).
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These equations were first derived in the context of the chiral soliton model

[23,24]where the mean-field breaks the rotational and isospin symmetries, so that

J and I are not conserved but the grand spin K is conserved and excitations can be
labelled by K. These relations are exact in large Nc QCD and are independent of

any model assumption.

The meaning of Eq. (9) is that there are more amplitudes Sπ
LL ′RR ′IJ than there

are sπKLL ′ amplitudes. The reason is that the IJ as well as the RR ′ dependence is

contained only in the geometrical factor containing the two 6j coefficients. Then,
for example, in the πN scattering, in order for a resonance to occur in one channel

there must be a resonance in at least one of the contributing amplitudes sπKLL ′ .

But as sπKLL ′ contributes in more than one channel, all these channels resonate at
the same energy and this implies degeneracy in the excited spectrum. From the

chiral soliton model there is no reason to suspect degeneracy between different K

sectors.

From the meson-baryon scattering relations (9) and (10) three sets of degen-

erate states have been found for ℓ = 1 orbital excitations [19]. There is a clear

correspondence between these sets and the three towers of states [19, 20] of the
excited quark picture provided by the symmetric core + excited quark scheme [9].

They correspond to K = 0, 1 and 2 in the resonance picture. But the resonance pic-
ture also provides a K = 3 due to the amplitude sπ322. As this is different from the

other sπKL ′L , in Ref. [19] it was interpreted as belonging to the N = 3 band.

Here we extend the work of Ref. [19, 21] to ℓ = 3 excited states which belong
to the N = 3 band. The partial wave amplitudes of interest and their expansion

in terms of K-amplitudes from Eqs. (9) and (10) can be found in Tables I-III of

Ref. [16]. They correspond to L = L ′ = 2, L = L ′ = 4 and L = L ′ = 6 respectively.
From those tables one can infer the following degenerate towers of states with

their contributing amplitudes

∆1/2, N3/2, ∆3/2, N5/2, ∆5/2, ∆7/2, (sπ222, s
η
2), (11)

∆3/2, N5/2, ∆5/2, N7/2, ∆7/2, ∆9/2, (sπ322, s
π
344), (12)

∆5/2, N7/2, ∆7/2, N9/2, ∆9/2, ∆11/2, (sπ444, s
η
4), (13)

∆7/2, N9/2, ∆9/2, ∆11/2, (sπ544, s
π
566), (14)

∆9/2, ∆11/2, (sπ666, s
η
6) (15)

associated to K = 2, 3, 4, 5 and 6 respectively.

We can compare the towers (11)-(15) with the quark-shell model results of
(3)-(5). The first observation is that the agreement of (11) (K = 2) with (3), of

(12) (K = 3) with (4) and of (13) (K = 4) with (5) is perfect regarding the quantum
numbers. Second, we note that the resonance picture can have poles with K = 5, 6

which infer the towers (14) and (15). They have no counterpart in the quark-shell

picture for ℓ = 3. But there is no problem because the poles with K = 5, 6 can
belong to a higher band, namelyN = 5 (ℓ = 5) without spoiling the compatibility.

Comparing these results with those of Ref. [21] one can conclude that one can

associate a common K = 2 to ℓ = 1 and ℓ = 3. For this value ofK the triangular rule
δ(Kℓ1) proposed in Ref [21] is satisfied. The quark-shell picture brings however

more information than the resonance picture due to the fact that it implies an
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energy dependence via the ℓ dependence which measures the orbital excitation.

Note that m ′
2 is different from m2 of ℓ = 1 [19, 20]. Because in the resonance

picture they stem from the same amplitude sπ222, one expects that this amplitude
possesses two poles at two distinct energies, in order to have compatibility. Thus

the number of poles of the reduced amplitudes sπKLL remains an open question.

We anticipate that a similar situation will appear for every value of K associ-
ated to two distinct values of ℓ, satisfying the δ(Kℓ1) rule, for example, for K = 4

which is common to ℓ = 3 and ℓ = 5.

3 Conclusions

Wehave compared two alternative pictures for baryon resonances consistent with

large the Nc QCD limit and found that the two pictures are compatible for ℓ = 3
excited states, as it was the case for ℓ = 1. The quark-shell picture is practical

and successful in describing known resonances and in predicting other members

of the excited octets and decuplets. But the extended symmetry SU(2Nf) × O(3)
where O(3), which is essential to include orbital excitations, does not have a direct

link to largeNc. On the other hand the scattering picture is close to experimental

analysis but it is not clear where the pole positions should lie. It is however very
encouraging that the two pictures give sets of degenerate states with identical

quantum numbers when one works at order O(N0
c). It is a qualitative proof that

the spin-flavor picture is valid and useful for baryon phenomenology.
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