ISSN 2590-9770 The Art of Discrete and Applied Mathematics 2 (2019) #P1.07 https://doi.org/10.26493/2590-9770.1251.b76 (Also available at http://adam-journal.eu) Parallelism of stable traces Jernej Rus ∗ Abelium d.o.o., Kajuhova 90, 1000 Ljubljana, Slovenia Received 18 May 2018, accepted 19 September 2018, published online 8 August 2019 Abstract A parallel d-stable trace is a closed walk which traverses every edge of a graph exactly twice in the same direction and for every vertex v, there is no subset X ⊆ N(v) with 1 ≤ |N | ≤ d such that every time the walk enters v from X , it also exits to a vertex in X . In the past, d-stable traces were investigated as a mathematical model for an innovative biotechnological procedure – self-assembling of polypeptide structures. Among other, it was proven that graphs that admit parallel d-stable traces are precisely Eulerian graphs with minimum degree strictly larger than d. In the present paper we give an alternative, purely combinatorial proof of this result. Keywords: Eulerian graph, parallel d-stable trace, nanostructure design, self-assembling, polypep- tide. Math. Subj. Class.: 05C45, 05C85, 94C15 ∗The author is grateful to Sandi Klavžar and anonymous reviewers for several significant remarks and sug- gestions which were of great help. The authors acknowledge the financial support from the Slovenian Research Agency H2020 SME2 and the SPIRIT Slovenia - Public Agency for Entrepreneurship, Internationalization, Fore- ign Investments and Technology - KKIPP. E-mail address: jernej.rus@gmail.com (Jernej Rus) cb This work is licensed under https://creativecommons.org/licenses/by/3.0/ ISSN 2590-9770 The Art of Discrete and Applied Mathematics 2 (2019) #P1.07 https://doi.org/10.26493/2590-9770.1251.b76 (Dostopno tudi na http://adam-journal.eu) Paralelnost stabilnih obhodov Jernej Rus ∗ Abelium d.o.o., Kajuhova 90, 1000 Ljubljana, Slovenia Prejeto 18. maja 2018, sprejeto 19. septembra 2018, objavljeno na spletu 8. avgusta 2019 Povzetek Paralelen d-stabilen obhod je sklenjen sprehod, ki vsako povezava grafa prečka natanko dvakrat v isti smeri, pri tem pa za vsako vozlišče v velja, da ne obstaja taka podmnožica njegovih sosedov X ⊆ N(v), 1 ≤ |X| ≤ d, da vsakič, ko sprehod pride v v iz vozlišča v X , tudi zapusti v v smeri proti vozlišču v X . V preteklosti so bili d-stabilni obhodi, kot matematični model za nove in inovativne biotehnološke raziskave, že raziskani. Med drugim so bili grafi, ki vsebujejo paralalne d-stabilne obhode karakterizirani kot Eulerjevi grafi z minimalno stopnjo δ > d. V pričujočem članku je podan alternativni (kombina- torični) dokaz tega rezultata. Ključne besede: Eulerjev graf, paralelni d-stabilni obhodi, oblikovanje nanostruktur, samosestavlji- vost, polipeptidi. Math. Subj. Class.: 05C45, 05C85, 94C15 ∗Avtor je hvaležen Sandiju Klavžarju in anonimnim recenzentom za vse pripombe, ki so mu bile v ve- liko pomoč. Prav tako avtor hvaležno priznava podporo s strani Slovenian Research Agency H2020 SME2 in SPIRIT Slovenia - Public Agency for Entrepreneurship, Internationalization, Foreign Investments and Technol- ogy - KKIPP. E-poštni naslov: jernej.rus@gmail.com (Jernej Rus) cb To delo je objavljeno pod licenco https://creativecommons.org/licenses/by/3.0/