
 

373 

Advances	in	Production	Engineering	&	Management	 ISSN	1854‐6250	

Volume	13	|	Number	4	|	December	2018	|	pp	373–388	 Journal	home:	apem‐journal.org	

https://doi.org/10.14743/apem2018.4.297 Original	scientific	paper	

Flexible job shop scheduling using zero‐suppressed binary 
decision diagrams 

Meolic, R.a, Brezočnik, Z.a,* 
aUniversity of Maribor, Faculty of Electrical Engineering and Computer Science, Maribor, Slovenia 

A B S T R A C T A R T I C L E   I N F O	

A	 flexible	 job	 shop	 scheduling	 problem	 (FJSP)	 is	 a	 widely	 studied	 NP‐hard	
combinatorial	problem.	Its	goal	is	to	optimise	the	production	plans	for	simul‐
taneously	produced	parts,	where	each	part	production	consists	of	 executing	
various	 operations.	 Each	 operation	 can	 be	 executed	 on	 several,	 or	 even	 all,
available	machines.	 A	 distinctive	 subproblem	of	 FJSP	 is	 the	 identification	 of	
feasible	solutions.	A	feasible	solution	is	an	allocation	plan	(i.e.	assignment	of	a	
machine	to	a	particular	operation	of	a	part	to	be	produced)	yielding	an	execu‐
tion	 schedule	 satisfying	 the	 given	 resource	 constraints.	 FJSP	 is	 applied
primarily	 in	manufacturing	 systems,	 but	 it	 can	be	used	 to	optimise	 Internet	
traffic,	cloud	computing,	and	other	resource	scheduling	problems	as	well.	So	
far,	 the	exact	methods	 for	 solving	FJSP	have	not	been	considered	attractive,	
since	 they	 seemed	 incapable	 of	 coping	 with	 real‐size	 problems.	 This	 paper	
proposes	a	novel	exact	approach	to	solving	FJSP	which	can	find	and	count	out	
all	schedules	of	relatively	large	systems.	The	approach	is	successful	due	to	the	
power	 of	 a	 special	 data	 structure	 called	 zero‐suppressed	 binary	 decision	
diagrams	 to	 represent	 and	 manipulate	 the	 set	 of	 all	 feasible	 solutions	 effi‐
ciently.	All	the	algorithms	are	implemented	and	tested	by	using	our	free	Bina‐
ry	Decision	Diagram	package	called	Biddy.	

©	2018	CPE,	University	of	Maribor.	All	rights	reserved.	

  Keywords:	
Process	planning;	
Exact	optimization;	
Flexible	job	shop	scheduling;	
Unate	cube	set	algebra;	
Zero‐suppressed	binary	decision	
diagram	

*Corresponding	author:
zmago.brezocnik@um.si	
(Brezočnik,	Z.)	

Article	history:		
Received	17	June	2018	
Revised	13	November	2018	
Accepted	15	November	2018	

1. Introduction

Manufacturing	sites	have	 to	plan	 their	production	 to	ensure	 the	profitability	of	manufacturing	
products,	 resource	 utilization,	 and	 product	 delivery	 time.	 Production	 planning	 involves	many	
attributes	that	can	be	categorised	into	different	domains	[1,	2].	Process	planning	and	scheduling	
are	 the	 two	most	essential	 tasks	 in	 a	manufacturing	 company	 [3].	From	 the	 computer	 science	
perspective,	 they	 are	 formulated	 together	 as	 a	 job	 shop	 scheduling	 problem.	 The	 job	 shop	
scheduling	problem	is	about	the	optimization	of	the	production	of	several	parts	which	are	pro‐
duced	simultaneously.	Each	part	can	be	produced	by	one	or	more	sequences	of	operations.	Op‐
erations	are	executed	using	a	given	set	of	machines.	 In	a	 flexible	 job	shop	scheduling	problem	
(FJSP),	all	machines	can	perform	all	operations	(total	flexibility),	or	each	machine	can	execute	a	
subset	of	operations	(partial	flexibility).	The	processing	time	for	operations	varies	on	different	
machines.	The	following	assumptions	are	also	very	common:	parts	are	produced	independently	
of	 each	other,	 sequences	of	 operations	and	processing	 times	are	 fixed	 and	known	 in	 advance,	
setup	 time	 and	 transport	 time	 are	 either	 negligible,	 or	 included	 in	 the	 processing	 time,	 all	
machines	are	available	all	the	time,	the	operation	execution	cannot	be	interrupted.	
	 Methods	 for	 FJSP	 can	 be	 categorised	 either	 as	 exact	 or	 approximation.	 Exact	methods	 can	
obtain	an	exact	optimal	 solution.	However,	 they	do	not	 scale	well	 for	 solving	 large	FJSP	prob‐



Meolic, Brezočnik 
 

374  Advances in Production Engineering & Management 13(4) 2018

 

lems.	Therefore,	most	of	the	approaches	to	FJSP	resort	to	approximation	methods	such	as	genet‐
ic	and	evolutionary	algorithms.	Such	methods	can	solve	 large‐scale	problems,	but	may	 lack	ei‐
ther	 local	 or	 global	 search	ability.	Our	method	of	 process	planning	and	 scheduling	 is	 oriented	
towards	 the	generation	of	 the	exact	solution,	and	 is	based	on	 the	efficient	 realization	of	unate	
cube	set	algebra	with	Zero‐suppressed	Binary	Decision	Diagrams	(ZBDDs)	[4,	5].	The	previous	
work	that	has	influenced	the	proposed	method	the	most	are	[1]	and	[6].	Takahashi	et	al.	[1]	used	
ZBDDs	to	represent	solution	candidates	that	satisfy	the	constraints	in	process	planning.	Jensen	
et	al.	[6]	implemented	the	task	graph	scheduling	problem	with	uniform	processors	and	arbitrary	
task	execution	 times	as	 a	 state	 space	exploration	problem,	 and	 solved	 it	with	Binary	Decision	
Diagrams	(BDDs)	[7],	but	they	did	not	use	the	unate	cube	set	algebra	and	ZBDDs.	
	 The	remainder	of	this	paper	has	the	following	structure.	The	framework	for	FJSP	is	specified	
in	 Section	 2.	 Generating	 of	 feasible	 solutions	 is	 discussed	 in	 Section	 3.	 The	 novel	 scheduling	
algorithm	 is	 introduced	 in	 Section	 4.	 Section	 5	 gives	 the	 necessary	 background	 on	 ZBDDs,	
operations	 in	 unate	 cube	 set	 algebra,	 and	 gives	 complete	 algorithms	 for	 feasible	 solutions’	
generation	and	scheduling.	Results	of	experimental	studies	are	reported	in	Section	6.	Section	7	
describes	the	conclusions	and	challenges	of	future	work.	

2. Specification of a FJSP test case 

For	 specifying	 the	 framework	 for	 FJSP	we	 use	 the	 approach	 from	 [1].	 The	 factory	 production	
programme	that	will	be	observed	in	this	paper	is	given	in	Fig.	1.	It	contains	eight	different	parts,	
denoted	as	 ௦ܲ,	 ݏ ൌ 1, …,	8.	Each	part	 can	be	produced	 in	 several	different	ways,	 called	process	
sequences.	An	operation	type	ܱ௪	is	performed	at	each	step	of	a	process	sequence.	The	number	of	
operations	is	15.	The	order	of	operations	within	a	process	sequence	is	important.	Operations	are	
denoted	with	 squared	 nodes,	 and	 the	 precedence	 relation	 between	 the	 nodes	with	 an	 arrow.	
Moreover,	 the	 graphical	 representation	 includes	 two	 types	 of	 brackets.	 The	 vertical	 bars	 »||«	
enclosing	nodes	 indicate	alternative	sequences	of	 the	enclosed	nodes,	and	the	square	brackets	
»[]«	mean	the	arbitrary	order	of	the	bracketed	nodes.	For	example,	in	the	manufacturing	of	 ଵܲ,	
there	 are	 three	 selectable	 alternative	 process	 sequences:	 ଵܱ → ܱଶ → ܱଷ,	 ܱଷ → ܱହ → ସܱ,	 or	
ܱଷ → ଵܱ → ସܱ.	On	the	other	hand,	 for	example,	any	process	sequence	 in	 ଷܲ	begins	with	 ସܱ	 fol‐
lowed	by	ܱ	or	with	ܱ	 followed	by	 ସܱ.	Thus,	 the	process	sequences	 for	 ଷܲ	are	 ସܱ → ܱ → ଼ܱ,	
ସܱ → ܱ → ܱଽ,	 ܱ → ସܱ → ଼ܱ,	 or	 ܱ → ସܱ → ܱଽ.	 Finding	 process	 sequences	 for	 other	 parts	 is	
straightforward.	
	

	 	
	

Fig.	1	Process	sequences	for	a	factory	producing	eight	parts		
	 	



Flexible job shop scheduling using zero‐suppressed binary decision diagrams
 

Advances in Production Engineering & Management 13(4) 2018  375
 

In	the	factory,	the	production	of	parts	is	performed	by	a	set	of	machine	instances	of	different	
machine	types	ܯ, ݅ ൌ 1,… , 8.	Each	machine	type	has	a	given	number	of	instances	with	the	same	
performance.	Table	1	shows	information	on	the	available	machine	types,	operations,	number	of	
machine	instances	of	each	machine	type,	and	the	processing	time	for	operation	ܱ௪	on	machine	
type	ܯ.	For	example,	 ଵܱcan	be	processed	on	an	instance	of	the	machine	type	ܯଵ,	ܯଶ,	or	ܯ.	The	
processing	time	of	 ଵܱ	on	the	machine	type	ܯଵ,	ܯଶ,	or	ܯ	is	6,	5,	or	3	time	units,	respectively.	All	
the	values	in	Table	1	are	taken	from	[2].	

A	set	of	machine	instances	installed	in	a	factory	is	called	the	factory	configuration.	We	assume	
that	the	maximum	number	of	installable	machine	instances	in	the	factory	is	equal	to	or	less	than	
the	 factor	 capacity.	 For	 example,	 if	 the	 factory	 capacity	 is	 3,	 then	 the	 set	 of	 valid	 factory	
configurations	includes	the	following	ones:	one	instance	of	ܯଵ,ܯଶ,	and	ܯଷ,	two	instances	of	ܯଵ	
and	one	instance	of	ܯଶ	and	also	one	instance	of	ܯଶ	and	one	instance	of	ܯଷ	as	well,	because	the	
number	of	installed	machines	can	be	smaller	than	the	factory	capacity.	
	

Table	1	Information	on	operations,	machine	types,	number	of	machine	type	instances,	and	processing	time		

	 Operations
Machine	type	
(#instances)	 ଵܱ	 ܱଶ	 ܱଷ	 ସܱ	 ܱହ	 ܱ	 ܱ	 ଼ܱ	 ܱଽ	 ଵܱ	 ଵܱଵ	 ଵܱଶ	 ଵܱଷ	 ଵܱସ	 ଵܱହ	

(3)	1ܯ 6	 ‐ ‐	 6	 9 ‐ 2 ‐ ‐ ‐ ‐ ‐	 3	 ‐	 ‐
(1)	2ܯ 5	 8 ‐	 ‐	 ‐ 5 4 ‐ ‐ ‐ ‐ 4	 ‐	 ‐	 ‐
(1)	3ܯ ‐	 ‐ 10	 ‐	 8 ‐ ‐ 6 ‐ ‐ 8 ‐	 ‐	 ‐	 ‐
(2)	4ܯ ‐	 ‐ 8	 4	 ‐ 6 ‐ ‐ 3 ‐ ‐ ‐	 ‐	 10	 ‐
(1)	5ܯ ‐	 ‐ ‐	 ‐	 7 5 ‐ ‐ ‐ ‐ 5 ‐	 ‐	 ‐	 8
(1)	6ܯ ‐	 4 ‐	 ‐	 ‐ ‐ 1 ‐ ‐ 5 ‐ 2	 2	 ‐	 ‐
(2)	7ܯ 3	 ‐ ‐	 ‐	 ‐ ‐ ‐ ‐ ‐ 2 ‐ 1	 ‐	 ‐	 12
(1)	8ܯ ‐	 ‐ ‐	 ‐	 ‐ ‐ ‐ ‐ 5 ‐ 3 ‐	 4	 14	 ‐

3. Generating feasible solutions for process and resource planning with limits 

A	 feasible	 solution	 is	 a	 combination	 of	 process	 sequences,	 machine	 types,	 and	 valid	 factory	
configuration	which	can	be	used	to	produce	all	required	parts.	For	example,	if	a	factory	produces		
only	part	 ଵܲ	and	 factory	capacity	 is	3,	 then	one	of	 the	 feasible	 solutions	 is	a	process	sequence	
ܱଷ → ଵܱ → ସܱ,	combined	with	the	 information	that	 two	 instances	of	machine	type	ܯଵ	and	one	
instance	of	machine	type	ܯଷ	are	 installed,	and	operation	ܱଷ	 is	processed	on	the	machine	type	
	operation	ଷ,ܯ ଵܱ	is	processed	on	the	first	instance	of	the	machine	type	ܯଵ,	and	operation	 ସܱ	is	
processed	on	the	second	instance	of	the	machine	type	ܯଵ.	Another	feasible	solution	is	a	similar	
one,	 where	 both	 ଵܱ	 and	 ସܱ	 are	 processed	 in	 the	 first	 instance	 of	 the	 machine	 type	 	.ଵܯ It	 is	
expected	that	the	first	mentioned	feasible	solution	would	be	preferred,	due	to	the	fact	that	the	
part	will	be	completed	earlier,	since	operations	ܱଵ	and	 ସܱ	can	be	carried	out	in	parallel.	

3.1 Encoding the process planning problem with unate cube set algebra 

Unate	cube	set	algebra	is	a	mathematical	theory	about	manipulation	of	combination	sets	[4,	5].	
For	the	given	universal	set	of	elements,	a	combination	set	(or	a	cube	set)	is	a	set	of	its	subsets	also	
called	cubes.	For	example,	if	the	universal	set	is	{a,b,c,d},	then	some	of	the	possible	combination	
sets	are	{},	{{}},	{{a},{b,d}},	and	{{},{b,c},{b,c,d}}.	The	first	one	from	this	list	is	an	empty	set.	The	
second	one,	which	consists	of	the	empty	cube	only,	is	called	a	base	set	(in	some	publications	it	is	
called	a	unit	set).	We	shorten	 the	notation	of	 combination	sets	 such	 that	 {{},{a},{b,c},{b,c,d}}	 is	
written	as	{1;a;bc;bcd}.	
	 In	encoding	the	process	planning	problem,	the	elements	of	a	universal	set	are	as	follows:	

 one	ܱ௪,௦ 	element	(called	the	ܱ‐variable)	for	each	possible	combination	of	values	ݏ, 	ݎ	and	ݓ
denoting	operation	ܱ௪,	performed	on	the	r‐th	place	of	a	process	sequence	for	part	 ௦ܲ.		

 one	ܯ ܺ,	element	(called	the	ܺܯ‐variable)	for	each	possible	combination	of	values	݅	and	݆,	
denoting	an	instance	݆	for	machine	type	ܯ.	



Meolic, Brezočnik 
 

376  Advances in Production Engineering & Management 13(4) 2018

 

 one	ܯ
௦,௪,	element	(called	the	ܯ‐variable)	for	each	possible	combination	of	values		ݏ, ,ݓ 	ݎ

and	i,	denoting	a	machine	type	ܯ	for	operation	ܱ௪,	performed	on	the	r‐th	place	of	a	pro‐
cess	sequence	for	part	 ௦ܲ.	

	 For	compatibility	with	[1]	and	[2],	from	now	on,	we	write	ܺܯ‐variables	without	the	letter	X.	
Thus,	ܯ‐variables	and	ܺܯ‐variables	differ	only	in	the	number	of	indices;	the	former	ones	have	4	
and	the	latter	2	indices,	respectively.	

3.2 Algorithms for process and resource planning 

There	 are	 several	 algorithms	 involved	 in	 the	 calculation	 of	 feasible	 solutions	 for	 process	 and	
resource	 planning,	 which	 are	 applied	 consecutively.	 To	 illustrate	 the	 ideas	 of	 the	 algorithms	
involved,	we	use	a	manageable	small	example,	consisting	only	of	part	 ଷܲ	from	Fig.	1	and	machine	
types	ܯଵ,	ܯଶ,	and	ܯଷ	from	Table	1.	For	the	sake	of	simplicity,	let	us	set	the	factory	capacity	to	3.	
	 The	calculation	starts	by	generating	all	possible	process	sequences	 for	 the	production	of	 ଷܲ.	
Process	 sequences	 are	 encoded	 with	 cubes.	 According	 to	 the	 semantics	 of	 the	 graphical	
representation	explained	in	Subsection	2.1,	part	 ଷܲ	is	described	with	a	set	ܺଷ	consisting	of	four	
cubes:	

ܺଷ ൌ ሼ ସܱ,ଵ
ଷ ܱ,ଶ

ଷ ଼ܱ,ଷ
ଷ ; ସܱ,ଵ

ଷ ܱ,ଶ
ଷ ܱଽ,ଷ

ଷ ; ܱ,ଵ
ଷ

ସܱ,ଶ
ଷ ଼ܱ,ଷ

ଷ ; ܱ,ଵ
ଷ

ସܱ,ଶ
ଷ ܱଽ,ଷ

ଷ ሽ  (1)	

	 In	 the	 second	 step,	 a	 process	plan	 is	 generated	 for	 each	part.	A	process	 plan	 is	 a	 set	 of	 all	
possible	process	sequences,	extended	with	the	information	about	the	suitable	machine	types	for	
processing	each	operation.	Because	there	are	many	possibilities	to	complete	an	operation	(e.g.,	
operation	ܱ	 can	be	 completed	either	on	machine	 type	ܯଵ	or	ܯଶ),	we	get	more	combinations	
than	after	the	initial	step.	For	our	simple	example,	we	get	four	combinations:	

ܺଷ ൌ ቊ ସܱ,ଵ
ଷ ଵܯ

ଷ,ସ,ଵܱ,ଶ
ଷ ଵܯ

ଷ,,ଶ଼ܱ,ଷ
ଷ ଷܯ

ଷ,଼,ଷ; ସܱ,ଵ
ଷ ଵܯ

ଷ,ସ,ଵܱ,ଶ
ଷ ଶܯ

ଷ,,ଶ଼ܱ,ଷ
ଷ ଷܯ

ଷ,଼,ଷ;

ܱ,ଵ
ଷ ଵܯ

ଷ,,ଵ
ସܱ,ଶ
ଷ ଵܯ

ଷ,ସ,ଶ଼ܱ,ଷ
ଷ ଷܯ

ଷ,଼,ଷ; ܱ,ଵ
ଷ ଶܯ

ଷ,,ଵ
ସܱ,ଶ
ଷ ଵܯ

ଷ,ସ,ଶ଼ܱ,ଷ
ଷ ଷܯ

ଷ,଼,ଷ ቋ  (2)

	 Please	note	that	by	assigning	machine	types	to	the	process	sequences,	we	also	cut	sequences	
that	are	not	realisable.	For	example,	operation	ܱଽ	is	not	used	in	any	cube	because	it	cannot	be	
completed	using	the	available	set	of	machine	types.		
	 The	third	step	is	the	construction	of	a	comprehensive	process	plan	ܺ	by	computing	a	Cartesian	
product	of	all	parts’	process	plans	under	the	assumption	that	parts	can	be	produced	in	parallel.	
They	are	not	completely	 independent	of	each	other,	because	 they	share	 the	available	machine	
types.	However,	 in	our	small	example,	which	 illustrates	 the	step‐by‐step	evolving	of	 the	set	of	
feasible	solutions,	the	factory	produces	only	one	part,	therefore,	the	comprehensive	process	plan	
is	the	same	as	the	obtained	process	plan	in	the	previous	step	(ܺ ൌ ܺଷ).	In	general,	the	number	of	
cubes	in	the	comprehensive	process	plan	is	a	product	of	cube	numbers	of	all	the	produced	parts.	
	 In	the	 fourth	step,	a	set	of	ܺܯ‐variables	 is	added	to	each	cube.	The	resulting	set	of	 feasible	
solutions	 is	 called	 a	 process	 and	 resource	 plan.	 All	 possible	 factory	 configurations	 should	 be	
considered	up	to	three	installed	machine	type	instances.	A	process	and	resource	plan	is	a	huge	
set	for	any	non‐trivial	problem.	For	our	small	example,	we	get	a	set	of	12	cubes:	

ܺ ൌ

ە
ۖ
ۖ
۔

ۖ
ۖ
ۓ ସܱ,ଵ

ଷ ଵܯ
ଷ,ସ,ଵܱ,ଶ

ଷ ଵܯ
ଷ,,ଶ଼ܱ,ଷ

ଷ ଷܯ
ଷ,଼,ଷܯଵ,ଵܯଷ,ଵܯଵ,ଶܯଵ,ଷ; ସܱ,ଵ

ଷ ଵܯ
ଷ,ସ,ଵܱ,ଶ

ଷ ଵܯ
ଷ,,ଶ଼ܱ,ଷ

ଷ ଷܯ
ଷ,଼,ଷܯଵ,ଵܯଷ,ଵܯଵ,ଶ;

ସܱ,ଵ
ଷ ଵܯ

ଷ,ସ,ଵܱ,ଶ
ଷ ଵܯ

ଷ,,ଶ଼ܱ,ଷ
ଷ ଷܯ

ଷ,଼,ଷܯଵ,ଵܯଷ,ଵ; ସܱ,ଵ
ଷ ଵܯ

ଷ,ସ,ଵܱ,ଶ
ଷ ଶܯ

ଷ,,ଶ଼ܱ,ଷ
ଷ ଷܯ

ଷ,଼,ଷܯଵ,ଵܯଶ,ଵܯଷ,ଵܯଵ,ଶܯଵ,ଷ;

ସܱ,ଵ
ଷ ଵܯ

ଷ,ସ,ଵܱ,ଶ
ଷ ଶܯ

ଷ,,ଶ଼ܱ,ଷ
ଷ ଷܯ

ଷ,଼,ଷܯଵ,ଵܯଶ,ଵܯଷ,ଵܯଵ,ଶ; ସܱ,ଵ
ଷ ଵܯ

ଷ,ସ,ଵܱ,ଶ
ଷ ଶܯ

ଷ,,ଶ଼ܱ,ଷ
ଷ ଷܯ

ଷ,଼,ଷܯଵ,ଵܯଶ,ଵܯଷ,ଵ;

ܱ,ଵ
ଷ ଵܯ

ଷ,,ଵ
ସܱ,ଶ
ଷ ଵܯ

ଷ,ସ,ଶ଼ܱ,ଷ
ଷ ଷܯ

ଷ,଼,ଷܯଵ,ଵܯଷ,ଵܯଵ,ଶܯଵ,ଷ; ܱ,ଵ
ଷ ଵܯ

ଷ,,ଵ
ସܱ,ଶ
ଷ ଵܯ

ଷ,ସ,ଶ଼ܱ,ଷ
ଷ ଷܯ

ଷ,଼,ଷܯଵ,ଵܯଷ,ଵܯଵ,ଶ;

ܱ,ଵ
ଷ ଵܯ

ଷ,,ଵ
ସܱ,ଶ
ଷ ଵܯ

ଷ,ସ,ଶ଼ܱ,ଷ
ଷ ଷܯ

ଷ,଼,ଷܯଵ,ଵܯଷ,ଵ; ܱ,ଵ
ଷ ଶܯ

ଷ,,ଵ
ସܱ,ଶ
ଷ ଵܯ

ଷ,ସ,ଶ଼ܱ,ଷ
ଷ ଷܯ

ଷ,଼,ଷܯଵ,ଵܯଶ,ଵܯଷ,ଵܯଵ,ଶܯଵ,ଷ;

ܱ,ଵ
ଷ ଶܯ

ଷ,,ଵ
ସܱ,ଶ
ଷ ଵܯ

ଷ,ସ,ଶ଼ܱ,ଷ
ଷ ଷܯ

ଷ,଼,ଷܯଵ,ଵܯଶ,ଵܯଷ,ଵܯଵ,ଶ; ܱ,ଵ
ଷ ଶܯ

ଷ,,ଵ
ସܱ,ଶ
ଷ ଵܯ

ଷ,ସ,ଶ଼ܱ,ଷ
ଷ ଷܯ

ଷ,଼,ଷܯଵ,ଵܯଶ,ଵܯଷ,ଵ ۙ
ۖ
ۖ
ۘ

ۖ
ۖ
ۗ

	 (3)

	 	 In	 the	 presented	 result	we	 have	 taken	 into	 account	 the	 fact	 that	 configurations	 of	 the	
same	length	consisting	of	the	same	machine	types	(e.g.	൛ܯଵ,ଵ,ܯଵ,ଶൟ, ሼܯଵ,ଵ,ܯଵ,ଷሽ,	and	ሼܯଵ,ଶ,ܯଵ,ଷሽ),	
yield	symmetric	results	and,	thus,	it	is	enough	to	keep	only	one	of	them.	We	keep	a	configuration	



Flexible job shop scheduling using zero‐suppressed binary decision diagrams
 

Advances in Production Engineering & Management 13(4) 2018  377
 

consisting	of	variables	that	are	declared	earlier	(in	this	case	൛ܯଵ,ଵ,ܯଵ,ଶൟ),	and	remove	the	others.	
A	less	effective	approach	is	used	in	[1]	and	[2].	There,	the	authors	first	generate	a	process	and	
resource	 plan	 without	 considering	 the	 mentioned	 redundancy,	 and	 then	 have	 to	 restrict	 the	
result	by	an	extra	algorithm.	
	 In	 the	 last	 step,	 the	 result	 is	 limited	 to	 the	 factory	 capacity.	 Only	 six	 cubes	 meet	 the	
requirement	that	the	maximum	number	of	the	installed	machine	types	instances	in	the	factory	is	
three.	This	last	step	gives	us	the	set	of	all	feasible	solutions:	

ܺ ൌ ൞
ସܱ,ଵ
ଷ ଵܯ

ଷ,ସ,ଵܱ,ଶ
ଷ ଵܯ

ଷ,,ଶ଼ܱ,ଷ
ଷ ଷܯ

ଷ,଼,ଷܯଵ,ଵܯଷ,ଵܯଵ,ଶ; ସܱ,ଵ
ଷ ଵܯ

ଷ,ସ,ଵܱ,ଶ
ଷ ଵܯ

ଷ,,ଶ଼ܱ,ଷ
ଷ ଷܯ

ଷ,଼,ଷܯଵ,ଵܯଷ,ଵ;

ସܱ,ଵ
ଷ ଵܯ

ଷ,ସ,ଵܱ,ଶ
ଷ ଶܯ

ଷ,,ଶ଼ܱ,ଷ
ଷ ଷܯ

ଷ,଼,ଷܯଵ,ଵܯଶ,ଵܯଷ,ଵ; ܱ,ଵ
ଷ ଵܯ

ଷ,,ଵ
ସܱ,ଶ
ଷ ଵܯ

ଷ,ସ,ଶ଼ܱ,ଷ
ଷ ଷܯ

ଷ,଼,ଷܯଵ,ଵܯଷ,ଵܯଵ,ଶ;

ܱ,ଵ
ଷ ଵܯ

ଷ,,ଵ
ସܱ,ଶ
ଷ ଵܯ

ଷ,ସ,ଶ଼ܱ,ଷ
ଷ ଷܯ

ଷ,଼,ଷܯଵ,ଵܯଷ,ଵ; ܱ,ଵ
ଷ ଶܯ

ଷ,,ଵ
ସܱ,ଶ
ଷ ଵܯ

ଷ,ସ,ଶ଼ܱ,ଷ
ଷ ଷܯ

ଷ,଼,ଷܯଵ,ଵܯଶ,ଵܯଷ,ଵ

ൢ	 (4)

4. Job shop scheduling algorithm  

In	general,	the	job	shop	scheduling	problem	consists	of	two	subproblems:	determining	the	best	
feasible	solution,	and	determining	the	best	schedule	for	this	solution.	After	creating	the	set	of	all	
feasible	solutions,	we	solve	these	subproblems	jointly.	The	state	space	is	examined	step	by	step	
until	we	 find	 the	 first	 set	 of	 feasible	 solutions	 (containing	 either	 one	 single	 solution	 or	more	
solutions)	 that	 completes	 the	 production	 of	 all	 parts.	 Alternatively,	 the	 computation	 may	
continue	until	all	feasible	solutions	are	examined.	
	 The	straightforward	criterion	for	job	shop	scheduling	is	the	amount	of	time,	called	makespan,	
needed	to	produce	all	parts.	Other	criteria	can	be	observed	as	well,	such	as	the	total	workload	
(the	sum	of	working	times	of	all	machines),	and	the	workload	of	the	critical	machine	(the	work‐
ing	time	of	the	most	loaded	machine).	

4.1 Extending the universal set 

The	 proposed	 scheduling	 algorithm	 is	 an	 extension	 of	 the	 approach	 to	 generate	 feasible	
solutions.	A	similar	scheduling	algorithm	was	introduced	in	[6],	but	it	is	not	based	on	unate	cube	
set	algebra.	
	 For	scheduling,	we	extend	the	universal	set	with	the	following	elements:	

 one	ܹ௦,	element	(called	the	ܹ‐variable)	for	each	possible	combination	of	values	ݏ	and	ݎ,	
denoting	that	processing	of	the	part	type	 ௦ܲ	is	waiting	to	start	the	ݎ‐th	operation,	

 one	ܴ௦,	element	(called	the	ܴ‐variable)	 for	each	possible	combination	of	values	ݏ	and	ݎ,	
denoting	that	production	of	the	part	type	 ௦ܲ	is	running	the	ݎ‐th	operation,	

 one	ܤ,	 element	 (called	 the	ܤ‐variable)	 for	each	possible	 combination	of	 values	 ݅	 and	 ݆,	
denoting	that	the	݆‐th	instance	of	machine	type	ܯ	is	busy,	

 several	 ܶ
௦	elements	(called	ܶ‐variables)	for	each	possible	combination	of	values	ݏ	and	݊,	

denoting	that	processing	of	the	part	type	 ௦ܲ	needs	݊	time	units	to	complete,	
 one	 ܵ,

௦,	element	(called	the	ܵ‐variable)	for	each	possible	combination	of	values	ݏ, ,ݎ ݅,	and	
݆,	denoting	that	the	ݎ‐th	operation	of	a	process	sequence	of	the	part	type	 ௦ܲ	is	scheduled	to	
a	݆‐th	instance	of	machine	type	ܯ,	

 one	 	ܵܨ element	 (called	 the	 	ܵܨ variable)	 for	 each	 possible	 value	 of	 ݊,	 denoting	 that	 ݊	
different	machines	type	instances	(not	݊	different	machines	types)	are	needed,	and	

 some	 ௧ܩ
௦,	 elements	 (called	 	ܩ variables),	 denoting	 that	 the	 	th‐ݎ operation	 of	 a	 process	

sequence	of	the	part	type	 ௦ܲ	started	after	ݐ	time	units	from	the	beginning	of	the	scheduling.		

4.2 Scheduling algorithm 

Let	 us	 continue	 the	 example	 from	 Subsection	 3.2,	 where	 six	 feasible	 solutions	 were	 found.	
Before	 the	 scheduling	 begins,	 the	 initialization	 is	 carried	 out.	 It	 transforms	 the	 set	 of	 feasible	
solutions	into	a	working	set	of	cubes	in	the	following	way:	



Meolic, Brezočnik 
 

378  Advances in Production Engineering & Management 13(4) 2018

 

1. The	size	of	factory	configuration	is	added	to	each	cube	by	appending	the	appropriate	ܵܨ‐
variable.	 These	 variables	 help	 sorting	 the	 obtained	 solutions	 at	 the	 end,	 and	 also	make	
scheduling	algorithm	more	efficient.		

2. Each	part	is	marked	with	“waiting	to	start	the	first	operation”	by	adding	the	appropriate	
ܹ‐variable.	

	

	 In	our	 small	 example	 that	 illustrates	 the	production	of	 a	 single	part	 ଷܲ,	 all	 cubes	 require	 a	
factory	 with	 either	 two	 or	 three	 machine	 instances.	 The	 working	 set	 of	 cubes	 ܺ	 is	 obtained	
immediately	after	the	initialization	by	transforming	the	set	of	feasible	solution	(Eq.	4):	

ܺ ൌ

ە
ۖ
ۖ
۔

ۖ
ۖ
ܹۓ

ଷ,ଵ
ସܱ,ଵ
ଷ ଵܯ

ଷ,ସ,ଵܱ,ଶ
ଷ ଵܯ

ଷ,,ଶ଼ܱ,ଷ
ଷ ଷܯ

ଷ,଼,ଷܯଵ,ଵܯଷ,ଵܯଵ,ଶܵܨଷ;

ܹଷ,ଵ
ସܱ,ଵ
ଷ ଵܯ

ଷ,ସ,ଵܱ,ଶ
ଷ ଵܯ

ଷ,,ଶ଼ܱ,ଷ
ଷ ଷܯ

ଷ,଼,ଷܯଵ,ଵܯଷ,ଵܵܨଶ;

ܹଷ,ଵ
ସܱ,ଵ
ଷ ଵܯ

ଷ,ସ,ଵܱ,ଶ
ଷ ଶܯ

ଷ,,ଶ଼ܱ,ଷ
ଷ ଷܯ

ଷ,଼,ଷܯଵ,ଵܯଶ,ଵܯଷ,ଵܵܨଷ;

ܹଷ,ଵܱ,ଵ
ଷ ଵܯ

ଷ,,ଵ
ସܱ,ଶ
ଷ ଵܯ

ଷ,ସ,ଶ଼ܱ,ଷ
ଷ ଷܯ

ଷ,଼,ଷܯଵ,ଵܯଷ,ଵܯଵ,ଶܵܨଷ;

ܹଷ,ଵܱ,ଵ
ଷ ଵܯ

ଷ,,ଵ
ସܱ,ଶ
ଷ ଵܯ

ଷ,ସ,ଶ଼ܱ,ଷ
ଷ ଷܯ

ଷ,଼,ଷܯଵ,ଵܯଷ,ଵܵܨଶ;

ܹଷ,ଵܱ,ଵ
ଷ ଶܯ

ଷ,,ଵ
ସܱ,ଶ
ଷ ଵܯ

ଷ,ସ,ଶ଼ܱ,ଷ
ଷ ଷܯ

ଷ,଼,ଷܯଵ,ଵܯଶ,ଵܯଷ,ଵܵܨଷ ۙ
ۖ
ۖ
ۘ

ۖ
ۖ
ۗ

	 (5)

	 Scheduling	 consists	 of	 three	 phases.	 In	 the	 first	 phase,	 every	 cube	 in	 the	 working	 set	 is	
checked	whether	it	includes	a	part	waiting	to	start	the	next	operation.	If	such	a	part	exists,	then	
it	is	scheduled	for	all	appropriate	free	machine	instances.	Indeed,	if	there	is	more	than	one	such	
instance,	 the	 number	 of	 cubes	 in	 the	 working	 set	 is	 increased.	 All	 of	 the	 waiting	 parts	 are	
scheduled	simultaneously.	All	parts	that	can	be	scheduled	are	scheduled	(see	Subsection	5.4	for	
notes	about	omitting	this	requirement).	In	any	case,	two	parts	cannot	both	be	scheduled	to	the	
same	machine	instance.	More	formally,	the	transformation	is	described	by	Rule	TR1.	
	

Rule	TR1:	 If	a	cube	includes	ܹ௦,,	ܯ
௦,௪,,	ܯ,,	and	does	not	include	ܴ௦,	and	ܤ,,	then	remove	

ܯ
௦,௪,and	ܹ௦,	and	add	ܴ௦,,	ܤ,,	 ܵ,

௦,,	 ܶ
௦,	and	ܩ௧

௦,,	where	݊	is	the	number	of	time	units	needed	
to	 complete	 operation	 ܱ௪	 on	 machine	 type	 	,ܯ and	 	ݐ is	 the	 number	 of	 time	 units	 from	 the	
beginning	of	the	scheduling	(determined	by	the	number	of	repetitions	of	a	scheduling	loop).	
	

	 Rule	TR1	is	applied	maximally,	i.e.	each	cube	is	transformed	in	the	form	for	which	the	rule	is	
no	longer	applicable.	To	get	rid	of	different	but	equally	efficient	solutions	if	more	instances	of	the	
same	machine	 type	 are	 free,	we	 create	 only	 a	 cube	where	 the	 operation	 is	 scheduled	 for	 the	
instance	 with	 the	 smallest	 index	 ݆.	We	 get	 the	 following	 working	 set	 of	 cubes	 (variables	 are	
ordered	using	the	ordering	that	turns	out	to	be	the	most	efficient	for	the	ZBDD	representation,	
as	explained	in	Subsection	5.6):	

ܺ ൌ

ە
ۖ
ۖ
۔

ۖ
ۖ
ܩۓ

ଷ,ଵܤଵ,ଵ ଶܶ
ଷܴଷ,ଵ ଵܵ,ଵ

ଷ,ଵܱ,ଵ
ଷ

ସܱ,ଶ
ଷ ଵܯ

ଷ,ସ,ଶ଼ܱ,ଷ
ଷ ଷܯ

ଷ,଼,ଷܯଵ,ଵܯଷ,ଵܯଵ,ଶܵܨଷ;

ܩ
ଷ,ଵܤଵ,ଵ ଶܶ

ଷܴଷ,ଵ ଵܵ,ଵ
ଷ,ଵܱ,ଵ

ଷ
ସܱ,ଶ
ଷ ଵܯ

ଷ,ସ,ଶ଼ܱ,ଷ
ଷ ଷܯ

ଷ,଼,ଷܯଵ,ଵܯଷ,ଵܵܨଶ;

ܩ
ଷ,ଵܤଵ,ଵ ܶ

ଷܴଷ,ଵ ଵܵ,ଵ
ଷ,ଵ

ସܱ,ଵ
ଷ ܱ,ଶ

ଷ ଵܯ
ଷ,,ଶ଼ܱ,ଷ

ଷ ଷܯ
ଷ,଼,ଷܯଵ,ଵܯଷ,ଵܯଵ,ଶܵܨଷ;

ܩ
ଷ,ଵܤଵ,ଵ ܶ

ଷܴଷ,ଵ ଵܵ,ଵ
ଷ,ଵ

ସܱ,ଵ
ଷ ܱ,ଶ

ଷ ଵܯ
ଷ,,ଶ଼ܱ,ଷ

ଷ ଷܯ
ଷ,଼,ଷܯଵ,ଵܯଷ,ଵܵܨଶ;

ܩ
ଷ,ଵܤଵ,ଵ ܶ

ଷܴଷ,ଵ ଵܵ,ଵ
ଷ,ଵ

ସܱ,ଵ
ଷ ܱ,ଶ

ଷ ଶܯ
ଷ,,ଶ଼ܱ,ଷ

ଷ ଷܯ
ଷ,଼,ଷܯଵ,ଵܯଶ,ଵܯଷ,ଵܵܨଷ;

ܩ
ଷ,ଵܤଶ,ଵ ସܶ

ଷܴଷ,ଵܵଶ,ଵ
ଷ,ଵܱ,ଵ

ଷ
ସܱ,ଶ
ଷ ଵܯ

ଷ,ସ,ଶ଼ܱ,ଷ
ଷ ଷܯ

ଷ,଼,ଷܯଵ,ଵܯଶ,ଵܯଷ,ଵܵܨଷۙ
ۖ
ۖ
ۘ

ۖ
ۖ
ۗ

	 (6)

	 As	 said	 above,	we	 decided	 to	 explain	 the	 scheduling	 algorithm	 for	 a	 small	 example	with	 a	
single	part	 ଷܲ	 to	 keep	 the	number	 of	 cubes	 in	 the	 evolving	working	 sets	 as	 small	 as	possible.	
Therefore,	 only	 one	 operation	 (the	 first	 one	 in	 each	 process	 sequence)	 is	 scheduled	 in	 every	
cube	of	Eq.	6.	In	general,	if	the	factory	produces	several	different	part	types,	many	operations	are	
scheduled	simultaneously.	
	 In	the	second	scheduling	phase,	each	cube	in	the	working	set	is	checked	whether	it	includes	
an	 active	part.	 If	 such	 a	part	 exists,	 its	 “time	 to	 finish”	 is	decreased	by	one.	This	procedure	 is	
realised	by	adapting	all	ܶ‐variables	and	can	be	described	formally	by	Rule	TR2.	
	
  	



Flexible job shop scheduling using zero‐suppressed binary decision diagrams
 

Advances in Production Engineering & Management 13(4) 2018  379
 

Rule	TR2:	If	the	cube	includes	 ܶ௦	and	݊  0,	then	remove	 ܶ௦	and	add	 ܶିଵ
௦ .	

	 As	before,	the	rule	is	applied	maximally.	For	our	example,	the	result	of	the	second	scheduling	
phase	is	the	same	as	given	before,	only	all	variables	 ܶଷ	are	replaced	with	variables	 ܶିଵ

ଷ .	
	 In	the	third	scheduling	phase,	every	cube	in	the	working	set	is	checked	whether	it	includes	a	
part	 that	 has	 completed	 the	 operation.	 If	 such	 a	 part	 exists,	 the	 busy	 machine	 instance	 is	
released,	and	the	part	is	moved	forward	into	the	“waiting	to	start	the	next	operation”	state.	This	
procedure	is	expressed	formally	by	Rule	TR3:	
	

Rule	TR3:	If	the	cube	includes	ܴ௦,,	 ܵ,
௦,,	and	 ܶ

௦,	then	remove	ܴ௦,,	 ܶ
௦,	and	ܤ,,	and	add	ܹ௦,ାଵ.	

	

	 In	the	obtained	working	set	of	cubes,	none	of	the	parts	has	completed	an	operation.	Thus,	the	
third	scheduling	phase	does	not	change	anything.	All	three	scheduling	phases	are	then	repeated,	
and	the	following	working	set	of	cubes	is	obtained	after	applying	Rule	TR2	for	the	second	time:	

ܺ ൌ

ە
ۖ
ۖ
۔

ۖ
ۖ
ܩۓ

ଷ,ଵܤଵ,ଵ ܶ
ଷܴଷ,ଵ ଵܵ,ଵ

ଷ,ଵܱ,ଵ
ଷ

ସܱ,ଶ
ଷ ଵܯ

ଷ,ସ,ଶ଼ܱ,ଷ
ଷ ଷܯ

ଷ,଼,ଷܯଵ,ଵܯଷ,ଵܯଵ,ଶܵܨଷ ;

ܩ
ଷ,ଵܤଵ,ଵ ܶ

ଷܴଷ,ଵ ଵܵ,ଵ
ଷ,ଵܱ,ଵ

ଷ
ସܱ,ଶ
ଷ ଵܯ

ଷ,ସ,ଶ଼ܱ,ଷ
ଷ ଷܯ

ଷ,଼,ଷܯଵ,ଵܯଷ,ଵܵܨଶ ;

ܩ
ଷ,ଵܤଵ,ଵ ସܶ

ଷܴଷ,ଵ ଵܵ,ଵ
ଷ,ଵ

ସܱ,ଵ
ଷ ܱ,ଶ

ଷ ଵܯ
ଷ,,ଶ଼ܱ,ଷ

ଷ ଷܯ
ଷ,଼,ଷܯଵ,ଵܯଷ,ଵܯଵ,ଶܵܨଷ	;

ܩ
ଷ,ଵܤଵ,ଵ ସܶ

ଷܴଷ,ଵ ଵܵ,ଵ
ଷ,ଵ

ସܱ,ଵ
ଷ ܱ,ଶ

ଷ ଵܯ
ଷ,,ଶ଼ܱ,ଷ

ଷ ଷܯ
ଷ,଼,ଷܯଵ,ଵܯଷ,ଵܵܨଶ	;

ܩ
ଷ,ଵܤଵ,ଵ ସܶ

ଷܴଷ,ଵ ଵܵ,ଵ
ଷ,ଵ

ସܱ,ଵ
ଷ ܱ,ଶ

ଷ ଶܯ
ଷ,,ଶ଼ܱ,ଷ

ଷ ଷܯ
ଷ,଼,ଷܯଵ,ଵܯଶ,ଵܯଷ,ଵܵܨଷ ;

ܩ
ଷ,ଵܤଶ,ଵ ଶܶ

ଷܴଷ,ଵܵଶ,ଵ
ଷ,ଵܱ,ଵ

ଷ
ସܱ,ଶ
ଷ ଵܯ

ଷ,ସ,ଶ଼ܱ,ଷ
ଷ ଷܯ

ଷ,଼,ଷܯଵ,ଵܯଶ,ଵܯଷ,ଵܵܨଷ ۙ
ۖ
ۖ
ۘ

ۖ
ۖ
ۗ

	 (7)

	 Now,	the	last	two	cubes	include	the	completed	operations.	Thus,	Rule	TR3	is	applied:	

ܺ ൌ

ە
ۖ
ۖ
۔

ۖ
ۖ
ܩۓ

ଷ,ଵܤଵ,ଵ ସܶ
ଷܴଷ,ଵ ଵܵ,ଵ

ଷ,ଵ
ସܱ,ଵ
ଷ ܱ,ଶ

ଷ ଵܯ
ଷ,,ଶ଼ܱ,ଷ

ଷ ଷܯ
ଷ,଼,ଷܯଵ,ଵܯଷ,ଵܯଵ,ଶܵܨଷ ;

ܩ
ଷ,ଵܤଵ,ଵ ସܶ

ଷܴଷ,ଵ ଵܵ,ଵ
ଷ,ଵ

ସܱ,ଵ
ଷ ܱ,ଶ

ଷ ଵܯ
ଷ,,ଶ଼ܱ,ଷ

ଷ ଷܯ
ଷ,଼,ଷܯଵ,ଵܯଷ,ଵܵܨଶ ;

ܩ
ଷ,ଵܤଵ,ଵ ସܶ

ଷܴଷ,ଵ ଵܵ,ଵ
ଷ,ଵ

ସܱ,ଵ
ଷ ܱ,ଶ

ଷ ଶܯ
ଷ,,ଶ଼ܱ,ଷ

ଷ ଷܯ
ଷ,଼,ଷܯଵ,ଵܯଶ,ଵܯଷ,ଵܵܨଷ	;

ܩ
ଷ,ଵܤଶ,ଵ ଶܶ

ଷܴଷ,ଵܵଶ,ଵ
ଷ,ଵܱ,ଵ

ଷ
ସܱ,ଶ
ଷ ଵܯ

ଷ,ସ,ଶ଼ܱ,ଷ
ଷ ଷܯ

ଷ,଼,ଷܯଵ,ଵܯଶ,ଵܯଷ,ଵܵܨଷ	;

ܩ
ଷ,ଵ

ଵܵ,ଵ
ଷ,ଵܱ,ଵ

ଷ ܹଷ,ଶ
ସܱ,ଶ
ଷ ଵܯ

ଷ,ସ,ଶ଼ܱ,ଷ
ଷ ଷܯ

ଷ,଼,ଷܯଵ,ଵܯଷ,ଵܯଵ,ଶܵܨଷ ;

ܩ
ଷ,ଵ

ଵܵ,ଵ
ଷ,ଵܱ,ଵ

ଷ ܹଷ,ଶ
ସܱ,ଶ
ଷ ଵܯ

ଷ,ସ,ଶ଼ܱ,ଷ
ଷ ଷܯ

ଷ,଼,ଷܯଵ,ଵܯଷ,ଵܵܨଶ ۙ
ۖ
ۖ
ۘ

ۖ
ۖ
ۗ

	 (8)

	 Scheduling	is	continued	by	repeating	all	 three	phases.	 If	a	cube	without	ܯ‐variables	and	ܴ‐
variables	appears	in	the	working	set,	it	represents	a	solution	to	the	scheduling	problem.	For		the	
example	under	consideration,	this	happens	after	14	time	units,	when	we	get	the	following	result:	

ܺ ൌ

ە
ۖ
ۖ
۔

ۖ
ۖ
ଵܩۓ

ଷ,ଷܩ
ଷ,ଶܩ

ଷ,ଵܤଷ,ଵ ଶܶ
ଷ

ଵܵ,ଵ
ଷ,ଵ

ସܱ,ଵ
ଷ ܵଶ,ଵ

ଷ,ଶܱ,ଶ
ଷ ܴଷ,ଷܵଷ,ଵ

ଷ,ଷ଼ܱ,ଷ
ଷ ଷܵܨଷ,ଵܯଶ,ଵܯଵ,ଵܯ ;

ଵܩ
ଷ,ଷܩସ

ଷ,ଶܩ
ଷ,ଵܤଷ,ଵ ଶܶ

ଷܵଶ,ଵ
ଷ,ଵܱ,ଵ

ଷ
ଵܵ,ଵ
ଷ,ଶ

ସܱ,ଶ
ଷ ܴଷ,ଷܵଷ,ଵ

ଷ,ଷ଼ܱ,ଷ
ଷ ଷܵܨଷ,ଵܯଶ,ଵܯଵ,ଵܯ ;

଼ܩ
ଷ,ଷܩ

ଷ,ଶܩ
ଷ,ଵ

ଵܵ,ଵ
ଷ,ଵ

ସܱ,ଵ
ଷ

ଵܵ,ଵ
ଷ,ଶܱ,ଶ

ଷ ܵଷ,ଵ
ଷ,ଷ଼ܱ,ଷ

ଷ ܹଷ,ସܯଵ,ଵܯଷ,ଵܯଵ,ଶܵܨଷ	;

଼ܩ
ଷ,ଷܩ

ଷ,ଶܩ
ଷ,ଵ

ଵܵ,ଵ
ଷ,ଵ

ସܱ,ଵ
ଷ

ଵܵ,ଵ
ଷ,ଶܱ,ଶ

ଷ ܵଷ,ଵ
ଷ,ଷ଼ܱ,ଷ

ଷ ܹଷ,ସܯଵ,ଵܯଷ,ଵܵܨଶ	;

଼ܩ
ଷ,ଷܩଶ

ଷ,ଶܩ
ଷ,ଵ

ଵܵ,ଵ
ଷ,ଵܱ,ଵ

ଷ
ଵܵ,ଵ
ଷ,ଶ

ସܱ,ଶ
ଷ ܵଷ,ଵ

ଷ,ଷ଼ܱ,ଷ
ଷ ܹଷ,ସܯଵ,ଵܯଷ,ଵܯଵ,ଶܵܨଷ ;

଼ܩ
ଷ,ଷܩଶ

ଷ,ଶܩ
ଷ,ଵ

ଵܵ,ଵ
ଷ,ଵܱ,ଵ

ଷ
ଵܵ,ଵ
ଷ,ଶ

ସܱ,ଶ
ଷ ܵଷ,ଵ

ଷ,ଷ଼ܱ,ଷ
ଷ ܹଷ,ସܯଵ,ଵܯଷ,ଵܵܨଶ ۙ

ۖ
ۖ
ۘ

ۖ
ۖ
ۗ

	 (9)

	 The	last	 four	cubes	are	solutions.	Now,	the	algorithm	either	stops	and	reports	one	solution,	
reports	 all	 solutions,	 or	merely	 removes	 all	 solutions	 and	 continues	with	 scheduling	 until	 the	
working	set	of	cubes	is	not	empty.	The	remaining	ܹ‐variable	in	every	solution	is	not	significant,	
it	was	only	added	to	mark	that	the	process	sequence	is	finished	(no	process	sequence	for	part	 ଷܲ	
has	the	fourth	operation).	
	 In	 the	observed	small	example,	 the	 factory	 is	producing	only	one	part	 ( ଷܲ),	and	 there	 is	no	
competition	for	resources.	Thus,	every	feasible	solution	has	one	schedule.	In	general,	there	may	
be	 several	 different	 schedules	 for	 the	 same	 feasible	 solution.	 Let	 us	 observe	 another	 problem	
where	parts	 ଵܲ,	 ଶܲ,	and	 ଷܲ	 from	Fig.	1	have	to	be	produced	by	using	machine	types	ܯଵ,	ܯଶ,	ܯଷ,	
and	ܯସ	 from	Table	 1,	while	 the	 factory	 capacity	 is	 2.	 This	 problem	has	 56	 feasible	 solutions.	



Meolic, Brezočnik 
 

380  Advances in Production Engineering & Management 13(4) 2018

 

After	27	 time	units,	 the	 scheduling	algorithm	generates	 a	working	 set	with	763	 cubes,	 among	
which	there	are	three	solutions:	

ଶସܩ
ଷ,ଷܩଶ

ଷ,ଶܩଵ
ଶ,ଷܩଵ

ଵ,ଷܩଽ
ଵ,ଶ଼ܩ

ଶ,ଶܩହ
ଷ,ଵܩ

ଶ,ଵܩ
ଵ,ଵܵସ,ଵ

ଵ,ଵܱଷ,ଵ
ଵ ܵଶ,ଵ

ଵ,ଶ
ଵܱ,ଶ
ଵ ܵସ,ଵ

ଵ,ଷ
ସܱ,ଷ
ଵ ܵଶ,ଵ

ଶ,ଵܱ,ଵ
ଶ ܵସ,ଵ

ଶ,ଶܱଷ,ଶ
ଶ ܵଶ,ଵ

ଶ,ଷܱଶ,ଷ
ଶ ܵଶ,ଵ

ଷ,ଵܱ,ଵ
ଷ ܵସ,ଵ

ଷ,ଶ
ସܱ,ଶ
ଷ ܵସ,ଵ

ଷ,ଷܱଽ,ଷ
ଷ ;ଶܥܨସ,ଵܯଶ,ଵܯ

ଶସܩ
ଷ,ଷܩଶ

ଵ,ଷܩଵ
ଷ,ଶܩଵ

ଶ,ଷܩଽ
ଵ,ଶ଼ܩ

ଶ,ଶܩହ
ଷ,ଵܩ

ଶ,ଵܩ
ଵ,ଵܵସ,ଵ

ଵ,ଵܱଷ,ଵ
ଵ ܵଶ,ଵ

ଵ,ଶ
ଵܱ,ଶ
ଵ ܵସ,ଵ

ଵ,ଷ
ସܱ,ଷ
ଵ ܵଶ,ଵ

ଶ,ଵܱ,ଵ
ଶ ܵସ,ଵ

ଶ,ଶܱଷ,ଶ
ଶ ܵଶ,ଵ

ଶ,ଷܱଶ,ଷ
ଶ ܵଶ,ଵ

ଷ,ଵܱ,ଵ
ଷ ܵସ,ଵ

ଷ,ଶ
ସܱ,ଶ
ଷ ܵସ,ଵ

ଷ,ଷܱଽ,ଷ
ଷ ;ଶܥܨସ,ଵܯଶ,ଵܯ

ଶଷܩ
ଵ,ଷܩଶ

ଷ,ଷܩଵ
ଷ,ଶܩଵ

ଶ,ଷܩଽ
ଵ,ଶ଼ܩ

ଶ,ଶܩହ
ଷ,ଵܩ

ଶ,ଵܩ
ଵ,ଵܵସ,ଵ

ଵ,ଵܱଷ,ଵ
ଵ ܵଶ,ଵ

ଵ,ଶ
ଵܱ,ଶ
ଵ ܵସ,ଵ

ଵ,ଷ
ସܱ,ଷ
ଵ ܵଶ,ଵ

ଶ,ଵܱ,ଵ
ଶ ܵସ,ଵ

ଶ,ଶܱଷ,ଶ
ଶ ܵଶ,ଵ

ଶ,ଷܱଶ,ଷ
ଶ ܵଶ,ଵ

ଷ,ଵܱ,ଵ
ଷ ܵସ,ଵ

ଷ,ଶ
ସܱ,ଶ
ଷ ܵସ,ଵ

ଷ,ଷܱଽ,ଷ
ଷ ଶܥܨସ,ଵܯଶ,ଵܯ

	

	
	 All	three	reported	schedules	are	based	on	the	same	feasible	solution,	because	they	have	the	
same	ܱ‐variables,	ܵ‐variables,	and	ܺܯ‐variables.		

5. Implementation using zero‐suppressed binary decision diagrams  

Unate	cube	set	algebra	can	be	realised	very	efficiently	using	ZBDDs.	These	are	one	of	many	vari‐
ants	of	BDDs,	a	relatively	new	computer	data	structure	studied	intensively	in	the	1990s	[4,	7].	A	
computer	library	that	implements	manipulation	of	BDDs	is	called	a	BDD	package.	Only	some	of	
the	available	BDD	packages	support	ZBDDs.	This	section	gives	the	basic	idea,	describes	the	nec‐
essary	operations,	and	gives	algorithms	used	in	Section	4.	The	implementation	details	of	a	BDD	
package	are	out	of	the	scope	of	this	paper.	The	interested	readers	should	see	[4,	5,	7],	and	the	
source	code	of	the	Biddy	BDD	package	(available	from	biddy.meolic.com),	which	is	free	software	
used	to	implement	all	the	presented	algorithms	[8].	

5.1 Zero‐suppressed binary decision diagrams 

A	ZBDD	is	a	rooted	binary	directed	acyclic	graph.	Every	node	except	the	leaves	is	called	an	inter‐
nal	node	and	has	two	descendants,	called	‘else’	and	‘then’	successors,	respectively.	The	ZBDD	has	
an	edge	to	the	root,	which	is	called	the	top	edge.	Each	node	is	associated	with	a	label.	The	ZBDD	
evaluates	 so	 that	 labels	 in	 internal	 nodes	 are	 treated	 as	 elements,	 and	 combination	 sets	 are	
associated	with	the	edges.	The	leaves	are	labelled	with	0	or	1,	and	are	called	terminal	nodes.	The	
label	in	the	root	is	called	the	top	label.	The	efficiency	of	ZBDDs	is	enhanced	by	fixing	the	order	of	
elements	along	every	path	from	the	root	to	a	leaf	and	minimising	the	graph.	
	 The	combination	set	can	be	determined	precisely	 from	a	ZBDD	by	 finding	all	paths	starting	
with	 the	 top	 edge	 and	 leading	 to	 a	 terminal	 node	 1.	 Each	 such	 path	 represents	 a	 cube.	 An	
element	is	included	in	the	cube	if,	and	only	if,	such	a	path	goes	through	its	‘then’	successor.	The	
resulting	combination	set	 is	a	union	of	the	obtained	cubes.	Examples	of	some	simple	combina‐
tion	sets	are	given	in	Fig.	2.	

While	in	the	worst	case,	the	size	of	ZBDDs	grows	exponentially	with	the	number	of	elements,	
in	many	 practical	 examples	 they	 are	 a	 very	 efficient	 data	 structure	 for	 the	 representation	 of	
combination	 sets.	They	are	especially	 suitable	 for	 representing	 sets	of	 sparse	 cubes,	 i.e.,	 if	 the	
universal	set	has	many	elements	but	the	cubes	include	only	a	few	of	them.	For	example,	a	ZBDD	
representing	an	enormous	combination	set	including	about	32 ൈ 10ଵଶ	cubes	is	represented	with	
only	195	ZBDD	nodes	(see	Section	6).	The	element	order	has	a	huge	 impact	on	the	size	of	 the	
ZBDD.	 To	 represent	 the	 same	 combination	 set	with	 less	 optimal	 element	 order	 could	 require	
millions	of	ZBDD	nodes.	

	
	

Fig.	2	ZBDDs	representing	different	combination	sets	for	a	universal	set	{a,b,c}.	From	left	to	right,	there	are	an	
						empty	set	{},	a	base	set	{{}},	set	{{a}},	and	set	{{a},{a,b},{a,c}}	
	



Flexible job shop scheduling using zero‐suppressed binary decision diagrams
 

Advances in Production Engineering & Management 13(4) 2018  381
 

	
	

Fig.	3	A	ZBDD	representing	a	combination	set	(Eq.	2)	with	four	cubes	
	

We	conclude	this	brief	introduction	of	ZBDDs	with	Fig.	3,	which	gives	a	ZBDD	representing	a	
process	plan	for	production	of	product	P3.	The	universal	set	includes	five	O‐variables	and	seven	
M‐variables.	The	combination	set	in	Fig.	3	has	four	cubes,	as	described	in	Subsection	3.2.	

5.2 Operations in unate cube set algebra 

In	unate	cube	set	algebra	there	are	all	standard	set	operations	and	many	special	operations	on	
cubes.	 We	 define	 here	 only	 those	 used	 further	 in	 the	 paper.	 In	 the	 rest	 of	 this	 section,	 a	
lowercase	 letter	 denotes	 an	 element,	 and	 an	 uppercase	 letter	 denotes	 a	 combination	 set.	
Moreover,	we	use	the	short	notation	of	combination	set	introduced	in	Subsection	3.1.	

 Addition,	 Subtraction,	 and	 Intersection:	 These	 are	 standard	 set	 operations.	 ܨ  	ܩ is	 the	
union	of	ܨ	and	.ܩ	ܨ	  ܨ	.ሽݒሼ	and	ܨ	of	union	the	is	ݒ	 െ 	.ܩ	and	ܨ	between	difference	the	is	ܩ
ܨ ∙ ܨ	when	E.g.,	.ܩ	and	ܨ	between	intersection	the	is	ܩ ൌ 	 ሼܽ; ܾ; ܾܿሽ,	ܩ ൌ ሼܾ; ܿሽ,	and	ݒ	 ൌ ܽ,	
ܨ  ܩ ൌ ሼܽ; ܾ; ܿ; ܾܿሽ	and	ܩ  ݒ ൌ ሼܽ; ܾ; ܿሽ,	ܨ െ ܩ ൌ ሼܽ; ܾܿሽ,	and	ܨ ∙ ܩ ൌ ሼܾሽ.	

 Multiplication:	ܨ ൈ 	.ܩ	and	ܨ	in	cubes	two	of	concatenations	possible	all	of	result	a	is	ܩ
	 E.g.,	 when	 ܨ ൌ ሼܽ; ܾ; ܽܿሽ	 and	 ܩ ൌ ሼܾܽ; ܽܿ݀ሽ,	 ܨ ൈ ܩ ൌ ሼܽሽ ൈ ሼܾܽሽ  ሼܾሽ ൈ ሼܾܽሽ  ሼܽܿሽ ൈ

ሼܾܽሽ  ሼܽሽ ൈ ሼܽܿ݀ሽ  ሼܾሽ ൈ ሼܽܿ݀ሽ  ሼܽܿሽ ൈ ሼܽܿ݀ሽ ൌ ሼܾܽሽ  ሼܾܽሽ  ሼܾܽܿሽ  ሼܽܿ݀ሽ 
ሼܾܽܿ݀ሽ  ሼܽܿ݀ሽ ൌ ሼܾܽ; ܾܽܿ; ܽܿ݀; ܾܽܿ݀ሽ.	

 Division	 and	Modulo:	Quotient	ݒ/ܨ	 is	 obtained	by	 extraction	of	 those	 cubes	 from	ܨ	 that	
include	variable	ݒ,	and	removal	of	ݒ	from	the	extracted	cubes.	Remainder	ݒ%ܨ	is	obtained	
by	extraction	of	those	cubes	from	ܨ	that	do	not	include	variable	ݒ.	

	 E.g.,	when	ܨ ൌ ሼܾܽ; ܾܿ; ܿሽ	and	ݒ ൌ ݒ/ܨ	,ܾ ൌ ሼܽ; ܿሽ	and	ݒ%ܨ ൌ ሼܿሽ.	
 Subset0	and	Subset1:	ܵ0ݐ݁ݏܾݑሺܨ, ,ܨ1ሺݐ݁ݏܾݑܵ	.Modulo	as	operation	same	the	exactly	is	(ݒ 	(ݒ

is	obtained	by	extraction	of	those	cubes	from	ܨ	that	include	variable	ݒ.	
	 E.g.,	when	ܨ ൌ ሼܾܽ; ܾܿ; ܿሽ	and	ݒ ൌ ,ܨ0ሺݐ݁ݏܾݑܵ	,ܾ ሻݒ ൌ ሼܿሽ	and	ܵ1ݐ݁ݏܾݑሺܨ, ሻݒ ൌ ሼܾܽ, ܾܿሽ.	
 Restriction:	ܴ݁ݐܿ݅ݎݐݏሺܨ, 	at	of	superset	a	is	cube	the	that	such	ܨ	from	cubes	the	extracts	ሻܩ

least	one	cube	in	ܩ.	
	 E.g.,	when	ܨ ൌ ሼܾܽ; ܾܽܿ; ܾܿ݀; ݀ሽ	and	ܩ ൌ ሼܾܽܿ; ܾܿሽ, ,ܨሺݐܿ݅ݎݐݏܴ݁ ሻܩ ൌ ሼܾܽܿ; ܾܿ݀ሽ.	
 Change	operation:	݄݁݃݊ܽܥሺܨ, 	from	ݒ	removes	it	that	such	ܨ	from	cubes	the	all	changes	ሻݒ

the	 cubes	 including	 it	 and	 adds	 	ݒ to	 the	 cubes	 not	 including	 it.	 E.g.,	 when	
ܨ ൌ ሼܾܽ; ܾܽܿ; ܾܿ݀; ݀ሽ	and	ݒ ൌ ܾ, ,ܨሺ݄݁݃݊ܽܥ ሻݒ ൌ ሼܽ; ܽܿ; ܿ݀; ܾ݀ሽ.	

 Stretch	operation:	݄ܵܿݐ݁ݎݐሺܨሻ	extracts	the	cubes	from	ܨ	such	that	a	proper	superset	of	the	
cube	is	not	in	F.	E.g.,	when	ܨ ൌ ሼܾܽ; ܾܽܿ; ܾܿ݀; ݀ሽ, ሻܨሺ݄ܿݐ݁ݎݐܵ ൌ ሼܾܽܿ; ܾܿ݀ሽ.	

 Permitsym	 operation:	 ,ܨሺ݉ݕݏݐ݅݉ݎ݁ܲ ݊ሻ	 extracts	 the	 cubes	 from	 	ܨ such	 that	 the	 cube	
consists	 of	 less	 than	 or	 equal	 to	 ݊	 elements.	 E.g.,	 when	 ܨ ൌ ሼܾܽ; ܾܽܿ; ܾܿ݀; ݀ሽ	 and	
݊ ൌ 2, ,ܨሺ݉ݕݏݐ݅݉ݎ݁ܲ ݊ሻ ൌ ሼܾܽ; ݀ሽ.	



Meolic, Brezočnik 
 

382  Advances in Production Engineering & Management 13(4) 2018

 

 Selective	multiplication:	ܨ ൈே 	at	that	such	ܩ	and	ܨ	in	cubes	two	of	concatenations	all	are	ܩ
least	 one	 element	 from	 set	 ܲ	 is	 included	 in	 a	 cube	 from	G,	 all	 elements	 from	 set	 ܲ	 are	
included	in	a	cube	from	F	if	they	are	included	in	a	cube	from	G,	and	also	no	element	from	N	
is	included	in	a	cube	from	F	if	it	is	included	in	a	cube	from	G.	E.g.,	when	ܨ ൌ ሼܽ; ܾ; ܽܿሽ	and	
ܩ ൌ ሼܾܽ; ܽܿ݀ሽ,	F	ൈ	ሼሽ

ሼሽܩ ൌ ሼܽሽ ൈሼሽ
ሼሽ ሼܾܽሽ  ሼܾሽ ൈሼሽ

ሼሽ ሼܾܽሽ  ሼܽܿሽ ൈሼሽ
ሼሽ ሼܾܽሽ  ሼܽሽ ൈሼሽ

ሼሽ ሼܽܿ݀ሽ 

ሼܾሽ ൈሼሽ
ሼሽ ሼܽܿ݀ሽ  ሼܽܿሽ ൈሼሽ

ሼሽ ሼܽܿ݀ሽ ൌ ሼܾܽሽ  ሼ	ሽ  ሼܾܽܿሽ  ሼܽܿ݀ሽ  ሼ	ሽ  ሼ	ሽ ൌ ሼܾܽ; ܾܽܿ; ܽܿ݀ሽ.		
	

	 The	result	of	multiplication	and	selective	multiplication	with	an	empty	set	is	an	empty	set	for	
both	cases	when	F	or	G	is	an	empty	set.	Selective	multiplication	is	not	commutative.	

5.3 Implementation of feasible solutions generation 

To	generate	the	set	of	all	feasible	solutions	we	follow	mainly	the	approach	from	[1].	Algorithms	
are	given	in	Fig.	4.		
	

	
	

Fig.	4	The	functions	involved	in	generating	feasible	solutions	
	
	 In	Fig.	4,	S	denotes	the	number	of	all	part	types,	W	denotes	the	number	of	all	operation	types,	
I	denotes	the	number	of	all	machine	types,	max(s)	is	the	length	of	the	longest	sequence	of	opera‐
tions	to	produce	part	 ௦ܲ,	and	instances(i)	is	the	number	of	instances	of	machine	type	ܯ.	We	use	
Python‐style	pseudocode,	where	the	line	with	a	different	indent	than	the	previous	one	starts	a	
new	block.	Function	getSequences(s)	returns	a	set	of	cubes	such	that	every	cube	corresponds	to	
a	 sequence	 of	 operations	 encoded	 with	 ܱ‐variables.	 Function	 createElements()	 creates	 only	
those	elements	that	are	included	into	a	system.	Functions	findO(),	findM(),	and	findMX()	return	
an	element	with	the	given	indices,	or	0	if	such	an	element	does	not	exist.	For	specifying	the	set	of	
serial	numbers,	we	disobey	the	Python	syntax	and	write	1. . ܵ	for	the	set	of	numbers	ሼ1,2, . . . , ܵሽ.		
	 Function	createProcessPlans()	creates	process	plans	 for	all	parts	(as	Eq.	2	 for	 ଷܲ	 in	Subsec‐
tion	3.2).	The	algorithm	iterates	over	all	values	of	,ݏ	ݓ,	and	ݎ.	If	ܱ௪	is	not	the	ݎ‐th	operation	in	
part	 ௦ܲ,	this	combination	of	indices	is	skipped	for	the	sake	of	efficiency	(line	7).	Othewise,	a	cube	
is	 added	 for	each	machine	ܯ	 that	 can	be	used	 to	 complete	operation	ܱ௪.	This	 is	 achieved	by	
creating	a	union	of	adequate	machines	first	(lines	9‐11)	and	then	calculating	a	product	with	the	



Flexible job shop scheduling using zero‐suppressed binary decision diagrams
 

Advances in Production Engineering & Management 13(4) 2018  383
 

subset	of	those	cubes	from	the	partial	result	ݖ	which	include	the	particular	operation	(line	13).	
Cubes	from	ݖ	which	do	not	include	ܱ௪,௦ 	are	kept	unchanged.	Please	note	that	if	operation	Sub‐
set1	were	used	instead	of	Division,	 line	12	would	be	removed.	Because	efficiency	would	not	in‐
crease	significantly,	we	use	mathematically	more	elegant	solution	with	Division	and	Modulo	[1].	
	 Function	 createComprehensivePlan()	 implements	 a	 simple	 product	 of	 process	 plans	 for	 all	
parts.	This	is	the	point	where	ZBDD	shows	its	strength:	while	the	number	of	cubes	in	the	result	
is	a	product	of	cube	numbers	of	the	individual	process	plans,	the	size	of	resulting	ZBDD	(i.e.	the	
number	of	nodes)	is	about	a	sum	of	sizes	of	involved	ZBDDs	(it	can	be	even	less	than	the	sum!).		
	 Function	createMachineInstances()	creates	viable	factory	configurations	for	each	machine	as	
described	in	Subsection	3.2.	For	example,	if	machine	ܯଵ	has	instances	ܯଵ,ଵ,	ܯଵ,ଶ,	and	ܯଵ,ଷ	then	
viable	 factory	 configurations	 are	 ൛ܯଵ,ଵൟ,	 ൛ܯଵ,ଵ,ܯଵ,ଶൟ,	 and	 ൛ܯଵ,ଵ,ܯଵ,ଶ,ܯଵ,ଷൟ.	 Functions	 createPR‐
plan()	and	restrictToFactoryCapacity()	are	the	same	as	given	and	explained	in	[1].	

5.4 Implementation of scheduling 

As	 described	 in	 Section	 4,	 the	 proposed	 scheduling	 approach	 is	 an	 extension	 of	 a	method	 for	
generation	 of	 feasible	 solutions.	 Its	 implementation	 is	 described	 formally	with	 the	 algorithms	
given	in	Fig.	5.	There,	functions	findW(),	findR(),	findB(),	findS(),	and	findT()	return	an	element	
with	the	given	indices,	or	0	if	such	an	element	does	not	exist.	
	 The	input	to	the	scheduling	is	a	global	variable	ܺ,	which	is	a	single	ZBDD	representing	the	set	
of	 all	 feasible	 solutions.	 Function	 schedulingInit()	 creates	 sets	 tr,	 setP,	 and	 setN	 (lines	 9‐17),	
which	 are	 stored	 in	 global	 variables	 and	 used	 later	 in	 schedulingPhase	 1.	 Furthermore,	 it	
initialises	scheduling	procedure	by	adding	“waiting	to	start	 the	 first	operation”	 tag	 to	all	parts	
(lines	18‐21).	
	 Function	schedulingPhase1()	utilises	the	Selective	multiplication	operation	for	generating	all	
possible	schedules.	The	result	of	a	single	call	to	selective	multiplication	is	a	set	of	all	cubes	such	
that	one	of	 the	parts	 included	in	the	cube	 is	scheduled	to	start	an	operation.	Sometimes,	more	
than	 one	 part	 can	 start	 an	 operation	 simultaneously,	 and,	 thus,	 there	 is	 a	 loop	 (lines	 27‐29).	
Please	 note	 that	 selective	multiplication	 does	 not	 remove	 anything	 from	 cubes,	 elements	 are	
only	added,	and	thus	operation	Stretch	removes	all	schedules	where	Rule	TR1	is	not	maximally	
applied	 elegantly.	 Searching	 the	 full	 state	 space	 where	 a	 part	 that	 can	 be	 scheduled	 is	 not	
required	to	be	scheduled,	can	be	achieved	by	merely	omitting	the	Stretch	operation	 in	 line	30.	
However,	 this	 yields	 a	 problem	 which	 is	 harder	 to	 calculate,	 while	 rarely	 bringing	 a	 better	
solution.	The	next	action	made	in	scheduling	phase	1	is	removing	schedules	where	an	instance	
with	index	݆	is	occupied	instead	of	a	free	instance	with	a	lower	index	(lines	31‐36).	Finally,	for	
cubes	containing	both	ܴ‐variable	and	ܹ‐variable	with	the	same	indices	(these	denote	processes	
which	 have	 just	 started	 an	 operation),	 the	 corresponding	 ܹ‐variable	 and	 	variable‐ܯ are	
removed,	 and	 also	 an	 appropriate	 	variable‐ܩ is	 added	 (lines	 37‐52).	 Adding	 	variables‐ܩ is	
optional.	 By	 omitting	 line	 45,	 the	 algorithm	 will	 be	 much	 more	 efficient,	 but	 the	 result	 of	
scheduling	 will	 be	 the	 set	 of	 different	 feasible	 solutions	 instead	 of	 a	 number	 of	 different	
schedules	(if	more	than	one	instance	of	some	machines	are	allowed,	then	the	result	may	include	
several	cubes	for	a	single	feasible	solution).	
	 Function	schedulingPhase2()	is	simpler,	since	it	only	decrements	the	second	index	of	every	ܶ‐
variable.	 Function	 schedulingPhase3()	 looks	 for	 cubes	 with	 ܶ‐variables	 that	 have	 the	 second	
index	equal	to	zero	(this	denotes	that	an	operation	has	been	completed).	For	such	cubes,	 it	re‐
moves	the	appropriate	ܶ‐variable,	ܴ‐variable,	and	ܤ‐variable,	and	marks	the	corresponding	part	
with	the	“waiting	to	start	the	next	operation”	tag	(line	85).	Function	removeSolutions	checks	for	
cubes	without	any	ܴ‐variable	and	ܯ‐variable.	They	are	solutions,	and	the	function	reports	and	
then	removes	them	from	the	working	set	of	cubes	(lines	97‐98).	Scheduling	is	running	until	the	
working	set	of	cubes	is	not	empty	(lines	103‐108).	Indeed,	the	algorithm	can	be	modified	in	such	
a	way	that	the	scheduling	is	stopped	after	the	first	solution	set	is	found.	



Meolic, Brezočnik 
 

384  Advances in Production Engineering & Management 13(4) 2018

 

 
	

Fig.	5	Implementation	of	scheduling	
 
5.5 Heuristic approach 

Even	if	the	resulting	ZBDD	representing	a	huge	combination	set	is	small,	a	problem	may	appear	
to	 create	 or	 manipulate	 it	 efficiently.	 Thus,	 a	 heuristic	 is	 needed	 to	 restrict	 the	 state	 space.	
Luckily,	ZBDDs	are	very	suitable	for	such	an	approach.	Here,	we	outline	two	possible	heuristics,	
the	other	ones,	and	especially	the	multi‐objective	optimization,	are	left	for	further	work.	



Flexible job shop scheduling using zero‐suppressed binary decision diagrams
 

Advances in Production Engineering & Management 13(4) 2018  385
 

	 The	heuristic	which	we	can	 introduce	 the	easiest	 is	 an	upper	bound	 for	 the	 total	workload	
(i.e.	total	machine	time).	A	weight	is	assigned	to	ܯ‐variables	such	that	the	weight	of	an	element	
ܯ
௦,௪,	 represents	 the	 time	 needed	 to	 finish	 the	 operation	 ܱ௪	 on	 machine	 type	 	.ܯ All	 other	

variables	 have	 zero	 weights.	 Then,	 the	 sum	 of	 weights	 of	 all	 elements	 in	 a	 cube	 is	 the	 total	
workload	for	the	solution	corresponding	to	this	cube.	In	the	presented	algorithms,	a	single	ZBDD	
is	used	to	represent	the	set	of	all	viable	solutions	and,	thus,	a	single	pass	over	its	nodes	is	enough	
to	bound	the	total	workload	for	all	solutions	simultaneously.	The	algorithm	is	given	in	Fig.	6.	It	
extracts	those	cubes	from	the	given	set	of	solutions	that	have	a	total	workload	less	than	or	equal	
to	the	given	bound.	The	presented	algorithm	uses	C‐syntax,	and	is	a	typical	recursive	algorithm	
for	manipulation	of	BDDs.	Basic	knowledge	about	BDDs	 is	 required	 in	order	 to	understand	 it.	
Please	 compare	 it	with	 the	 algorithms	 given	 in	 [7]	 and	 [4].	 The	 total	workload	 bound	 is	 best	
used	 during	 a	 generation	 of	 feasible	 solutions.	 It	 should	 be	 added	 to	 the	 algorithm	 for	
construction	of	a	comprehensive	process	plan	(i.e.	immediately	after	line	18	in	Fig.	4).	
	

	
	

Fig.	6	A	ZBDD‐based	algorithm	for	bounding	total	workload	
	
	 Another	 interesting	heuristic	 is	a	makespan	 limit.	 It	 can	be	 implemented	by	using	 the	same	
weights	assigned	to	ܯ‐variables	as	already	described.	A	sum	of	weights	is	calculated	separately	
for	each	part	and	each	machine	type.	 If	any	part	or	machine	type	requires	more	time	than	the	
makespan	 limit	 to	 complete,	 the	 corresponding	 cube	 is	 removed	 from	 the	 set	 of	 solutions.	
Indeed,	if	more	than	one	instance	of	a	particular	machine	type	is	allowed,	then	the	limit	for	this	
machine	type	should	be	multiplied	with	the	number	of	instances.	Again,	a	single	pass	recursive	
algorithm	on	the	ZBDD	representing	the	set	of	solutions	is	an	efficient	way	to	consider	the	given	
limit	 for	 makespan.	 We	 refer	 the	 interested	 reader	 to	 check	 the	 available	 source	 code.	 In	
contrast	to	the	total	workload	bound,	applying	the	makespan	limit	is	not	reasonable	during	the	
generation	of	 feasible	solutions.	 It	 is	the	most	beneficial	 if	 this	operation	is	taken	before	every	
scheduling	step	(i.e.	immediately	after	line	103	in	Fig.	5).	

5.6 The element order in the ZBDD 

The	elements	in	ZBDD	are	ordered,	and	the	order	has	a	critical	impact	on	its	size.	Therefore,	we	
report	here	the	order	used	 in	our	 implementation,	which	has	been	determined	experimentally	
(the	element	in	a	node	is	considered	smaller	than	the	elements	in	its	successors):	
	
	>	...	>	ଶ,ܤ	>	ଵ,ܤ ܶଵ	<	ܹଵ,ଵ	<	ܴଵ,ଵ	<	 ܵ,

ଵ,ଵ	<	ܱ௪,ଵ
ଵ 	and	ܯ

ଵ,௪,ଵ	(interleaved)	<	ܹଵ,ଶ	<	ܴଵ,ଶ	<	 ܵ,
ଵ,ଶ	<	ܱ௪,ଶ

ଵ 	

and	ܯ
ଵ,௪,ଶ	(interleaved)	<	...	<	 ܶଶ	<	ܹଶ,ଵ	<	ܴଶ,ଵ	<	 ܵ,

ଶ,ଵ	<	ܱ௪,ଵ
ଶ 	and	ܯ

ଶ,௪,ଵ	(interleaved)	<	...	<	ܯ ܺ,ଵ	
ܯ	> ܺ,ଶ	<	...	<	ܵܨ	<	1	



Meolic, Brezočnik 
 

386  Advances in Production Engineering & Management 13(4) 2018

 

6. Results and discussion 

First,	the	generation	of	all	feasible	solutions	is	observed.	In	Table	2	and	Table	3,	we	report	some	
details	 for	 the	 factory	 in	Fig.	1	 that	produces	eight	different	part	 types	and	has	eight	machine	
types	specified.	The	production	system	involves	15	types	of	operations.	The	comprehensive	pro‐
cess	plan	for	this	system	contains	32,878,483,200,000	cubes,	and	is	represented	by	our	imple‐
mentation	with	 only	 195	 ZBDD	 nodes.	 These	 results	 can	 be	 compared	with	 results	 from	 [1].	
There,	 for	the	factory	with	capacity	8	and	no	restrictions	to	total	workload,	the	authors	report	
exactly	 the	 same	 number	 of	 cubes	 in	 a	 comprehensive	 process	 plan	 and	 the	 process	 and	 re‐
source	 plan,	 but	 they	 needed	 280	 ZBDD	nodes	 and	 19,443	 ZBDD	 nodes	 (our	 result	 is	 13,072	
ZBDD	nodes)	to	represent	them,	respectively.	Without	restrictions,	all	the	results	are	computed	
in	 less	 than	 a	 second,	 and,	with	 a	 restriction	 on	 the	maximal	 total	workload,	 in	 just	 over	 two	
seconds.	Thus,	 the	exact	computation	times	are	 irrelevant	and	not	shown.	When	bounding	the	
total	workload	to	100,	the	comprehensive	process	plan	contains	245,837,448	cubes	and	is	rep‐
resented	by	our	implementation	with	1,744	ZBDD	nodes.	All	the	results	have	been	obtained	on	a	
3.40	GHz	Intel	Core	i7‐4770	processor	with	32	GB	of	RAM	memory.	
	

Table	2	Size	of	a	set	of	cubes	representing	the	process	and	resource	plans	for	the	factory	from	Fig.	1	

	
Process	and	resource	plan

(without	restrictions	to	total	workload)	
Process	and	resource	plan	
(max.	total	workload	=	100)	

Factory	
capacity	

Number	of	cubes	 ZBDD	nodes		 Number	of	cubes	 ZBDD	nodes	

3	 169,984	 274 0 1	
4	 284,701,184	 3,000 18488 695
5	 41,207,077,120	 8,193 1,526,572 5,965
6	 1,365,249,188,224	 11,729 26,001,900 16,898
7	 14,411,349,910,656	 12,925 180,702,952 24,620
8	 65,501,043,610,240	 13,072 642,479,776 26,190
9	 164,241,617,343,104	 13,041 1,398,613,308	 26,181
10	 272,777,626,896,512	 13,011 2,158,556,924	 26,162
11	 343,383,824,875,136	 12,994 2,620,121,648	 26,145
12	 364,877,105,061,888	 12,985 2,747,814,784	 26,136

	
	 With	the	help	of	the	heuristic,	we	were	able	to	count	all	the	solutions	for	all	the	systems.	The	
optimal	 lower	 bounds	 for	 total	 workload	 and	makespan	 were	 determined	 experimentally	 by	
repeating	 the	calculation	with	different	parameters.	Table	3	reports	 the	number	of	all	 feasible	
solutions	with	the	given	maximal	total	workload,	of	 feasible	solutions	yielding	to	the	adequate	
schedules,	and	of	adequate	schedules	for	different	combinations	of	parameters,	respectively.	For	
this	 system,	 there	exist	65,501,043,610,240	 feasible	 solutions	 if	 no	 restrictions	on	 total	work‐
load	 and	 factory	 size	 are	 used.	 For	 scheduling,	 the	 algorithm	without	 examining	 the	 full	 state	
space	was	used	(see	Subsection	5.4).	If	full	state	space	is	examined,	the	calculation	takes	much	
longer,	 and	 we	 are	 not	 able	 to	 complete	 it	 in	 most	 cases.	 However,	 in	 the	 case	 when	 the	
makespan	is	fixed	to	15,	and	the	total	workload	is	fixed	to	95,	examining	the	full	state	space	is	
feasible,	and	it	brings	an	interesting	result:	two	feasible	solutions	out	of	9,262,892	possible	ones	
yield	 to	704	adequate	schedules,	none	of	which	can	be	 found	without	examining	 the	 full	 state	
space.	
	

Table	3	Results	for	the	factory	with	eight	parts	and	eight	machine	types	(factory	size	is	required	to	be	exactly	eight	
machine	instances;	the	algorithm	without	examining	full	state	space	is	used)	

	

Total	workload
87	 88	 90 91 95 96	

Number	of	feasible	solutions	restricted	to	the	total	workload	
24	 672	 28,112 116,376 9,262,892	 22,474,516

Makespan	 Number	of	feasible	solutions	yielding	adequate	schedules/Number	of	adequate	schedules
15	 0/0	 0/0	 0/0 0/0 0/0 2/36
16	 0/0	 0/0	 0/0 1/4 236/3,120	 451/5,151
17	 0/0	 0/0	 4/78 30/422 3,350/44,181	 6,525/91,419
18	 0/0	 7/158	 180/5,047 674/14,965 27,658/412,204	 52,895/721,713
24	 4/54	 104/4,074	 3,220/135,960 12,665/	517,086 out	of	memory	 out	of	memory



Flexible job shop scheduling using zero‐suppressed binary decision diagrams
 

Advances in Production Engineering & Management 13(4) 2018  387
 

	
Fig.	7	Solution	with	makespan	15	and	total	workload	95	

	

Determining	 the	 optimal	 solution	 depends	 on	 the	 selected	 goals,	 i.e.	 it	 is	 better	 to	 have	 a	
schedule	with	 a	 shorter	makespan,	 with	 a	 smaller	 total	 workload,	 or	we	want	 to	minimise	 a	
function	combining	these	and	other	objectives	as	well.	Fig.	7	gives	a	Gantt	chart	 for	a	solution	
with	makespan	15	and	total	workload	95,	which	is	quite	hard	to	find	and	is	optimal	in	many	as‐
pects.	

To	 evaluate	 the	 potential	 of	 the	 presented	method,	we	 implemented	 benchmarks	 from	 [9]	
and	[10]	which	have	been	used	recently	to	compare	different	genetic	and	swarm	algorithms	[11,	
12].	Without	examining	the	full	state	space,	we	have	been	able	to	count	adequate	feasible	solu‐
tions	and	schedules	for	all	systems	(see	Table	4).	We	confirm	that	the	most	interesting	solutions	
to	 these	 problems	 have	 been	 already	 found	 and	 reported.	 Still,	we	 can	 present	 some	 original	
schedules.	 For	 example,	 the	 problem	4×5	 can	be	 solved	 equally	well	with	 only	 four	machines	
(Fig.	8),	and	the	problem	10×7	can	be	solved	with	makespan	equal	to	11	and	total	workload	61	
(Fig.	9).	
	

Table	4	Number	of	feasible	solutions	and	schedules	for	benchmarks	from	[9]	and	[10]	found	without	the	full	state	
space	examination;	to	optimise	the	workload	of	the	critical	machine,	maximal	possible	factory	size	was	required		

Problem	 Makespan	 Total	workload	
Number	of

feasible	solutions	
Number	of	
schedules	

Time	to	find	all	
schedules	(s)	

4×5	 11	 32 4 4 0.36

8×8	
14	 77 3 4 3.14
16	 73 1 9 2.17

10×7	
11	 61 138 19,176	 77.34
11	 62 441 44,480	 205.38
12	 60 46 26,576	 74.71

10×10	
7	 42 692 81,953	 152.87
8	 41 704 818,568	 630,35

15×10	 11	 91 60 907,570	 9,003,50

	

	
	

Fig.	8	There	exist	4	schedules	(18	in	the	case	of	the	full	state	space	exploration)	based	on	two	different	feasible	solu‐
tions	to	solve	problem	4×5	with	only	4	machines	such	that	makespan	is	11	and	the	total	workload	is	32	

	

	
	

Fig.	9	Solution	for	problem	10×7	with	makespan	11	and	total	workload	61	



Meolic, Brezočnik 
 

7. Conclusion 
This paper proposes a novel method for generating and counting solutions of a flexible job shop 
scheduling problem. Feasible solutions are represented as cubes of a combination set, and the 
algorithm is implemented as a sequence of operations in unate cube set algebra. The efficiency of 
the approach is achieved by representing combination sets with ZBDDs, a data structure used 
typically in various methods for formal verification of systems. 
 In the proposed algorithm, process planning and scheduling are two sequential steps like in a 
typical non-linear process planning. However, in contrast to all other existing methods, the huge 
set of all feasible solutions is created in the first step. Although this looks like an unreasonable 
and awkward solution, ZBDDs somehow help to complete even the relatively large problems 
successfully. Moreover, in comparison to genetic algorithms, particle swarm optimization algo-
rithms, and other evolutionary approaches, the obtained results are very comprehensive. For 
example, we have found out that the result reported in [13] is simply wrong, because for bench-
mark 8×8 no solution with makespan equal to 15 and total workload equal to 73 exists! 
 In further work, the presented algorithms can be adapted to handle additional constraints, 
such as the production of parts in a required order, production of several instances of each part 
type, and the last acceptable part delivery time. Moreover, dynamic rescheduling can be intro-
duced to take care of eventual machine breakdowns or urgent new orders. 

Acknowledgement 
This work was supported in part by the Slovenian Research Agency through the Research Program Advanced Methods 
of Interaction in Telecommunication under Grant P2-0069. 

References 
[1] Takahashi, K., Onosato, M., Tanaka, F. (2014). Comprehensive representation of feasible combinations of alterna-

tives for dynamic production planning using zero-suppressed binary decision diagram, Journal of Advanced Me-
chanical Design, Systems, and Manufacturing, Vol. 8, No. 4, JAMDSM0061, doi: 10.1299/jamdsm.2014jamdsm 
0061. 

[2] Takahashi, K., Onosato, M., Tanaka, F. (2015). A solution method for comprehensive solution candidates in 
dynamic production planning by zero-suppressed binary decision diagrams, Transactions of the Institute of Sys-
tems, Control and Information Engineers, Vol. 28, No. 3, 107-115, doi: 10.5687/iscie.28.107. 

[3] Phanden, R.K., Jain, A., Verma, R. (2011). Review on integration of process planning and scheduling, In: Katalinic, 
B., (ed.), DAAAM International Scientific Book 2011, DAAAM International, Vienna, Austria, 593-618, doi: 
10.2507/daaam.scibook.2011.49. 

[4] Minato, S.-I. (1993). Zero-suppressed BDDs for set manipulation in combinatorial problems, In: Proceedings of 
30th ACM/IEEE Design Automation Conference, Dallas, Texas, USA, 272-277. 

[5] Minato, S.-I. (2001). Zero-suppressed BDDs and their applications, International Journal on Software Tools for 
Technology Transfer, Vol. 3, No. 2, 156-170. 

[6] Jensen, R.A., Lauritzen, B.L., Laursen, O. (2004). Optimal task graph scheduling with binary decision diagrams, 
from https://pdfs.semanticscholar.org/0fe3/36b2e5e77df4ececfa749d28752694976636.pdf?_ga=2.231505503. 
177204796.1540581701-1029763941.1533058815, accessed May 5 2018. 

[7] Brace, K.S., Rudell, R.L., Bryant, R.E. (1990). Efficient implementation of a BDD package. In Proceedings of the 
27th ACM/IEEE Design Automation Conference (DAC '90), New York, USA, 40-45. doi: 10.1145/123186.123222. 

[8] Meolic, R., (2012). Biddy – A multi-platform academic BDD package, Journal of Software, Vol. 7, No. 6, 1358-1366, 
doi: 10.4304/jsw.7.6.1358-1366. 

[9] Kacem, I., Hammadi, S., Borne, P. (2002). Pareto-optimality approach for flexible job-shop scheduling problems: 
Hybridization of evolutionary algorithms and fuzzy logic, Mathematics and Computers in Simulation, Vol. 60, No. 
3-5, 245-276, doi: 10.1016/S0378-4754(02)00019-8. 

[10] Kacem, I., Hammadi, S., Borne, P. (2002). Approach by localization and multiobjective evolutionary optimization 
for flexible job-shop scheduling problems, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applica-
tions and Reviews), Vol. 32, No. 1, 1-13, doi: 10.1109/TSMCC.2002.1009117. 

[11] Chaudry, I.A., Khan, A.M., Khan, A.A. (2013). A genetic algorithm for flexible job shop scheduling, In: Proceedings 
of the World Congress on Engineering Vol. I, London, U.K., 703-708. 

[12] Yu, M.R., Yang, B., Chen, Y. (2018). Dynamic integration of process planning and scheduling using a discrete par-
ticle swarm optimization algorithm, Advances in Production Engineering & Management, Vol. 13, No. 3, 279-296, 
doi: 10.14743/apem2018.3.290. 

[13] Zhang, H., Gen, M. (2005). Multistage-based genetic algorithm for flexible job-shop scheduling problem, Journal 
of Complexity International, Vol. 11, 223-232. 

388 Advances in Production Engineering & Management 13(4) 2018 
 

https://doi.org/10.1299/jamdsm.2014jamdsm0061
https://doi.org/10.1299/jamdsm.2014jamdsm0061
https://doi.org/10.5687/iscie.28.107
http://www.daaam.info/Downloads/Pdfs/science_books_pdfs/2011/Sc_Book_2011-049.pdf
http://www.daaam.info/Downloads/Pdfs/science_books_pdfs/2011/Sc_Book_2011-049.pdf
https://pdfs.semanticscholar.org/0fe3/36b2e5e77df4ececfa749d28752694976636.pdf?_ga=2.231505503.%20177204796.1540581701-1029763941.1533058815
https://pdfs.semanticscholar.org/0fe3/36b2e5e77df4ececfa749d28752694976636.pdf?_ga=2.231505503.%20177204796.1540581701-1029763941.1533058815
https://doi.org/10.1145/123186.123222
http://www.jsoftware.us/index.php?m=content&c=index&a=show&catid=103&id=1578
https://doi.org/10.1016/S0378-4754(02)00019-8
https://doi.org/10.1109/TSMCC.2002.1009117
https://doi.org/10.14743/apem2018.3.290

