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Abstract
We present an approach towards structure elucidation of bilitranslocase, the membrane protein which transports biliru-

bin from blood to liver cells. The sequence and secondary structure information of transmembrane segments of proteins

with known 3D structure is exploited to predict the transmembrane domains of structurally unresolved target protein.

With the help of known structures the transmembrane domains are encoded in such a way that it is possible to group and

classify them with respect to their specific sub-structural characteristics and to build a model for prediction of tran-

smembrane segments. We have shown that the model for prediction of transmembrane segments proposed four tran-

smembrane alpha helices, each containing around 20 amino acids. This result is partially confirmed with experimental

studies using particular antibodies corresponding to parts of amino acid sequences of bilitranslocase. In order to shed

light on the bilitranslocase transport mechanism, we also tested a set of non-congeneric compounds for their competiti-

ve inhibition constants in the investigated protein-substrate system. The information about chemical structure of small

molecules that either pass or block the transmembrane path enabled by bilitranslocase helps us to build a hypothesis

about the transport mechanism of the studied biological system.
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1. Introduction

Biological membranes form multiple barriers
through which both drugs and toxic molecules enter the
organism. Despite the difficulties encountered in bio-
membrane research, investigating mechanisms of mem-
brane transport is basic to understanding the bioactivity of
most drugs. Within this scope, the information about a 3D
structure of a membrane transporter is of great importance
in tackling the study of the protein and small molecule
transport mechanism. Only a limited number of membra-
ne transport proteins have been already solved experimen-
tally for their 3D structure. However, it is not trivial to ob-
tain the X-ray structure of a membrane protein due to a

complex and demanding procedure of heterologous pro-
duction, purification and crystallization, which leaves the
tertiary structure of a large number of membrane proteins
still unresolved. Transmembrane protein molecules are
difficult to crystallize due to their amphiphilic characteri-
stics – hydrophobic transmembrane segments and hydrop-
hilic loops. In the absence of the experimentally obtained
3D structures, in-silico methods may fill the information
gap and offer a possibility to hypothesize the transport
mechanism, providing the in-silico modelling is based on
experimental evidence about the transport potency for
structurally diverse molecules. In turn, for the structural
characterization of membrane proteins, modeling of their
transport activity for molecules of diverse chemical struc-
ture may offer a great contribution.
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Scheme 1. Chemical structure of bilirubin.

The aim of this work was to investigate the mecha-
nism of transport and structural details of bilitranslocase,
the transporter of organic anions, such as bilirubin (Sche-
me 1), from blood to liver cells. It is inhibited competiti-
vely by number of structurally diverse molecules, such as
anthocyanins and their mono- and di-glycosylated deriva-
tives. Bilitranslocase may thus be involved in the bioacti-
vity of flavonoids; it also makes it a good candidate for
being a transport target for other polar molecules with the-
rapeutic application.1,2 One of the goals of this work is to
enrich the experimental data on the transport activity of
bilitranslocase for structurally diverse compounds and de-
velop a data-driven model for prediction of inhibition con-
stants of structurally modified molecules. The benefit of
the computational model is not only the prediction of inhi-
bition constants for new molecules; the interpretation of
structural descriptors and site-specific variables chosen in
the procedure during the model optimization help us to
better understand the influences on the transport mecha-
nism. The lack of knowledge of the secondary structure of
bilitranslocase makes any explanation of the transport
mechanism challenging. For this reason the next goal is to
build a model of 3D structure of bilitranslocase. The final
aim is to combine two approaches: first, the prediction of
transmembrane segments of the protein based on the mat-
hematical descriptors obtained from the information of
membrane proteins of known 3D structure available in
public databases (Protein Data Bank of Transmembrane
Proteins), and second, the information about the transport
mechanism from experimentally tested set of small mole-
cules for their competitive inhibition of bilitranslocase.

2. Data Compilation

Sequences and information regarding transmembra-
ne regions of integral-membrane proteins with known 3D
structures were collected from public databases PDB and
PDBTM.3,4 We considered only alpha transmembrane
proteins, since alpha helix is the more common secondary

structural feature of these proteins. The initial dataset con-
sisted of 824 proteins (all such proteins in PDBTM data-
base as of Jan. 23, 2009). In the first step, sequences of
proteins with low-resolution and theoretically determined
structures were removed. Identical sequences of multime-
ric and same proteins were omitted as well to avoid data
redundancy. We then separated the transmembrane and
non-transmembrane regions of each of the protein chains
in the reduced dataset. Lastly, non-transmembrane regions
were further divided into shorter segments of length com-
parable to the length of transmembrane regions, as the
model gives optimal results if it is built on objects with
comparable parameters. The final dataset consisted of
5800 labeled protein segments, 2545 transmembrane and
3255 non-transmembrane. To compile and refine the data-
set, to prepare the counter-propagation neural network
(CP-ANN)5,6 input, and analyze the prediction model out-
put we developed codes in Perl5.10.0 programming lan-
guage.7

A set of non-congeneric compounds was tested in
order to obtain bilitranslocase inhibition constants (KI). In
Table 1 55 compounds (nucleobases, nucleosides, nucleo-
tides (ID numbers from 1 to 41), and various endogenous
compounds and drugs (ID numbers from 42 to 55)8 are li-
sted together with their ID numbers, molecular weight,
type of activity, i.e. inactive (I), competitive (C) and non-
competitive (NC) inhibition, and experimental values of
inhibition constants (KI) with their standard errors (SE).
Experimental data obtained by testing the interaction of
bilitranslocase with anthocyanines (ID numbers from 101
to 122) and flavonols (ID numbers from 123–143), toget-
her 43 compounds,2 are given in Table 2. The interaction
was assessed by evaluating the kinetics of inhibition of bi-
litranslocase transport activity. The experiments for the
determination of bilitranslocase inhibition constants were
performed with a series of substrate (sulphobromophta-
lein) concentrations, while the investigated molecules we-
re added in stoichiometric concentrations. The experimen-
tal results were the basis for a data-driven modelling study
using artificial neural networks.

Table 1. List of 55 compounds, nucleobases, nucleotides, and nuc-

leosides, with their ID numbers (ID = 1–55), type of activity, and

experimental inhibition constants with their standard errors (SE).

ID Compound Activity KI ± SE
(mmol/L)

11 Adenine I –

21 Adenosine I –

31 Adenosine 3’-monophoshate C 0.95±0.07

43 Adenosine 5’-monophoshate C 2.63±0.19

51 Adenosine 3’. 5’-cyclic I –

monophosphate

62 Adenosine 5’-diphosphate C 1.42±0.10

71 Adenosine 5’-triphosphate C 0.385±0.03

82 Adenosine-5’-diphosphoglucose I –
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ID Compound Activity KI ± SE
(mmol/L)

91 Adenosine 5’-(α.β-methylene) C 1.31±0.14

diphosphate

101 Adenine NC 3.76±0.38

9-β-D-arabinofuranoside

111 Adenosine 3’-phosphate C 0.148±0.01

5’-phosphosulfate

122 S-(5’-Adenosyl)-L-homocysteine C 0.44±0.02

131 S-(5’-Adenosyl)-L-methionine C 0.408±0.03

143 Guanine# Not soluble /

151 Guanosine I –

161 Guanosine 5’-monophosphate C 13.92±1.38

171 Guanosine 3’. 5’-cyclic I –

monophosphate

181 Guanosine 5’-diphosphate C 4.55±0.34

191 Guanosine 5’-triphosphate NC 7.66±0.09 

201 Uracil I –

211 Uridine C 2.58±0.24 

221 Uridine 5’-monophosphate C 4.13±0.38 

232 Uridine 5’-diphosphate C 3.10±0.37 

241 Uridine 5’-triphosphate C 1.425±0.08

251 Uridine 5’-diphosphoglucose I –

261 Uridine 5’-diphosphogalactose C 2.47±0.27 

273 Uridine 5’-diphosphoglucuronic I –

acid

282 Thymine I –

291 Thymidine I –

302 Thymidine 5’-monophosphate C 3.71±0.18 

311 Thymidine 5’-diphosphate C 2.23±0.15 

321 Thymidine 5’-triphosphate C 1.45±0.08 

331 Cytosine I –

341 Cytidine I –

352 Cytidine 2’-monophosphate I –

363 Cytidine 2’:3’-cyclic / /

monophosphate#

371 Cytidine 5’-monophosphate I –

383 Cytidine 5’-diphosphate# / /

393 Cytidine 5’-triphosphate# / /

403 Cytosine β-D-arabinofuranoside# / /

413 Cytosine β-D-arabinofuranoside / /

5’ monophosphate#

421 Uric acid C 1.50±0.18 

431 Ouabain I –

441 Aucubin I –

452 Loganin I –

463 Verbenalin I –

471 Isovitexin I –

481 Vitexin-2’-O-rhamnoside I –

491 Cibacron Blue F3G-A C 0.00347±0.00032

502 Digoxin I –

511 Taurocholate I –

521 Sulfobromophtalein C 0.00532±0.00063

533 Thymol Blue C /

541 Bilirubin C 0.00111±0.00001

552 Biliverdin C 0.00111±0.00002

# compound was not tested   I – inactive compound   

C – competitive inhibitor   NC – non-competitive inhibitor
1 training set   2 test set   3 external validation set

Table 2. List of 43 compounds, anthocyanines and flavonols, with
their ID numbers (ID = 101–143), type of activity, and experimen-
tal inhibition constants with their standard errors (SE).

ID Compound Activity KI ± SE
(mmol/L)

101 Pelargonidin C 22.21±1.65
102 Cyanidin C 17.55±1.68
103 Delfinidin C 5.27±0.38
104 Peonidin C 6.23±0.51
105 Petunidin C 7.57±0.99
106 Malvidin C 7.20±0.40
107 Pelargonidin 3-O– C 2.79±0.18

D-glucopyranoside
108 Cyanidin 3-O–D-glucopyranoside C 5.78±0.39
109 Delfinidin 3-O–D-glucopyranoside C 8.57±0.20
110 Peonidin 3-O–D-glucopyranoside C 1.83±0.19
111 Petunidin 3-O–D-glucopyranoside C 4.03±0.19
112 Malvidin 3-O–D-glucopyranoside C 1.42±0.13
113 Pelargonidin 3.5-di-O– C 6.42±0.29

D-glucopyranoside
114 Cyanidin 3.5-di-O– C 5.77±0.39

D-glucopyranoside
115 Peonidin 3.5-di-O– C 6.81±0.77

D-glucopyranoside
116 Malvidin 3.5-di-O– C 6.36±0.45

D-glucopyranoside
117 Cyanidin 3-O–L-arabinopyranoside C 9.16±0.99
118 Cyanidin 3-O–D-galactopyranoside NC 35.22±0.58
119 Malvidin 3-O-(6-O-acetoyl)– NC 58.33±0.09

D-glucopyranoside
120 Delfinidin 3.5-di-O– / /

D-glucopyranoside#

121 Petunidin 3.5-di-O– / /
D-glucopyranoside#

122 Malvidin 3-O-(6-O-p-coumaroyl)– I –
D-glucopyranoside

123 Galangin NC 60.6±1.0
C –

124 Kaempferol NC 63.9±3.4
C 131.6±3.8

125 Quercetin NC 79.6±3.6
C 21.1±1.7

126 Myricetin I –
127 Syringetin I –
128 Rhamnetin I –
129 Isorhamnetin# / /
130 Quercetin 4’-glucopyranoside I –
131 Quercetin 3,4’-diglucopyranoside I –
132 Quercetin 3-glucopyranoside I –
133 Quercetin 3-xyloside I –
134 Quercetin 3-rhamnoside I –
135 Quercetin 3-galactoside I –
136 Quercetin 3- I –

O-glucopyranosyl-6”-acetate
137 Quercetin 3-O-sulfate I –
138 Isorhamnetin 3-glucoside I –
139 Isorhamnetin 3-O-rutinoside I –
140 Kaempferol-glucoside I –
141 Kaempferol 3-O-rutinoside I –
142 Syringetin 3-galactoside I –
143 Syringetin 3-glucoside I –

I – inactive compound   C – competitive inhibitor   
NC – non-competitive inhibitor
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3. Results and Discussion

Part I: Prediction of Transmembrane Segments

We prepared the amino acid (AA) adjacency matrix
of each transmembrane sequence. The 20-element row-
sum vector of AA adjacency matrix was taken for charac-
terization of protein sequence (protein descriptors). Our
choice was based on assumption that as protein structure
and function depend on its sequence, the transmembrane
proteins must have some specific sequence patterns that
give them characteristic folds and properties, distinguis-
hing them from globular proteins. The sequence patterns
also inherently represent patterns in which amino acids of
particular hydrophobicity occur in the sequence.

The error of prediction of transmembrane segments
for the external validation set was below 10%. Moreover,
as the comparison shows, the model is able to predict all
the proposed transmembrane regions for an unknown pro-
tein with far better accuracy than most of the other avai-
lable methods.9 In Table 3 an example of testing seven
transmembrane and seven globular proteins for potential
presence of alpha transmembrane regions is given.

abundances10 the following transmembrane alpha helices
in bilitranslocase were predicted:
TM1 24–48 FTKCILVSSSFLLFYTLLPHGLLED

TM2 75–94 FCLFVATLQSPFSAGVSGLC

TM3 220–238 GSVQCAGLISLPIAIEFTY

TM4 254–276 PNIFPLIACILLLSMNSTLSLFS

The remaining protein consists of five loops given
below:
LOOP 1–23 MLIHNWILTFSIFREHPSTVFQI

LOOP 49–74 LMRRVGDSLVDLIVICEDSQGQHLSS

LOOP 95–219 KAILLPSKQIHVMIQSVDLSIGITNS 

LTNEQLCGFGFFLN

VKTNLHCSRIPLITNLFLSARHMSL 

DLENSVGSYHPRMIW

SVTWQWSNQVPAFGETSLGFGM 

FQEKGQRHQNYEFPCRCIGTCGR

LOOP 239–253 QLTSSPTCIVRPWRF

LOOP 277–340 FSGGRSGYVLMLSSKYQDSFTS

KTRNKRENSIFFLGLNTF

TDFRHTINGPISPLMRSLTRSTVE

As the second TM (TM2) region is just after the bi-
lirubin binding motif (residue 65–75, as evident from an-
tibody studies),11,12 it indicates that TM2 may form the

Table 3. Seven transmembrane and seven globular proteins from PDB database tested for presence of transmembrane (TM) alpha helices.

Alpha transmembrane proteins Globular proteins
PDB Id Total TM Pred TM False False PDB Id Helices Predicted as 

positive Negative present TM helices
2npk 11 7 0 4 3gak 14 0

1bha 2 2 0 0 3h9e 13 1

BTL – 4 – – 3b97 21 0

1otu 10 6 1 4 3cls 10 0

2bhw 3 3 0 0 3h1v 19 0

2ahy 2 2 0 0 2wu8 31 1

3c9m 7 7 0 0 1i7y 9 0

As shown in Table 3, of the six transmembrane pro-
teins of known transmembrane regions, 27 out of 35 re-
gions are predicted correctly. There are only eight false
negative and one false positive. Moreover, all the four pro-
bable transmembrane regions of bilitranslocase are pre-
dicted correctly. In case of globular proteins, only two fal-
se positive predictions were obtained, what means that
two alpha helices out of 117 present in seven proteins we-
re predicted as transmembrane segments. The error in
these seven cases was thus 1.7%, however, for testing a
larger number of proteins some improvement of the deve-
loped software is needed towards automation of the proce-
dure.

The model for prediction of alpha transmembrane
segments was challenged with bilitranslocase containing
340 amino acid residues. The model proposed four tran-
smembrane alpha helices, each containing around 20 ami-
no acids. After additional constraints obtained from a de-
tailed statistical analysis of position-specific amino acid

wall of the transporting channel with the binding motif
close to it that initiates the active transport.

Part II: On Transport Mechanism 
of Small Molecules

The information about 3D chemical structures (mi-
nimal energy conformation from Mopac)13 of the molecu-
les tested for their bilitranslocase inhibition constants we-
re represented by molecular descriptors calculated with
the Codessa software.14 The molecular descriptors,15 to-
gether with the corresponding bilitranslocase inhibition
constants were used to train the counter-propagation neu-
ral network, designed for classification and prediction
purposes. The Kohonen neural network was applied for
visualization, clustering purpose and for the division of
the data set.5,6 From distribution of all 98 compounds in
the Kohonen top map (see Figure 1) we have observed
that the nucleobases, nucleotides and nucleosides are
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completely separated from the flavonoids (anthocyanins
and flavonols). For that reason we have divided dataset in-
to two datasets; nucleobases and their derivatives (IDs
from 1 to 55) and flavonoids (IDs from 101 to 143). The
two datasets were modeled separately but with the same
modeling procedure.

The Kohonen neural networks were applied for the
division of the two datasets into training (TR), test (TE)
and validation (V) sets.16,17 For predictive purposes the
Counter-propagation neural network (CP-ANN) was
used. Optimized models were validated by previously de-
termined validation set. Genetic algorithm (GA)18 for va-
riable selection was introduced and detailed investigation
of selected descriptors was performed. The root mean
squared error of prediction (RMSEP) of the negative lo-
garithm of inhibition constants (pKI) of flavonoids was
equal to 2.2. For a small dataset such as that investigated
in the flavonoids study this error is expected. We are espe-
cially satisfied with the results after inspection of the ob-
tained clusters of training compounds in the Kohonen
map: the tested molecules were correctly placed in struc-
turally similar clusters. That result proves that the set of
descriptors is properly chosen for prediction of KI value.
The final validation of the neural network model [2] was
performed by testing the inhibition activity of bromosul-
fopthalein, which is an established substrate of bilitranslo-

dels with a large number of descriptors for smaller data-
sets, because the initial mapping of objects into a plane in
fact projects the n-dimensional vectors into 2D plane. The
reduction of variables is nevertheless preferable, because
the robustness of the model decreases with increasing
number of variables. The predicted pKI value was 4.03,
the difference between experimental and predicted value
thus being 1.29.

The set of 55 compounds (see Table 1) including
nucleobase, nucleosides, nucleotides and various endoge-
nous compounds and drugs was treated separately, follo-
wing the same modelling methodology as for the flavo-
noids. The resulting neural network model was able to
predict the pKI values of compounds from the training and
testing set with a RMSEP of 0.51 and 0.26, respectively.
Only three compounds of the available external validation
set had been already tested experimentally, and the RM-
SEP of these compounds was 0.47. In Figure 2 the pre-
dictions of the training, test and validation set are shown
in comparison with the experimental data. Molecular des-

case with the pKI equal to 5.32 ± 0.63 μM. The 3D struc-
ture was prepared in the same way as for all other molecu-
les in the study. Once structural descriptors were obtained,
155 out of 353 descriptors were retained in the model
building for further variable reduction. The nature of the
counter-propagation neural network allows building mo-

Figure 1. Distribution of 98 objects in the Kohonen top map with dimension 10 × 10.  ID numbers from (1 to 41) in black, nucleobases, nucleoti-

des and nucleosides; ID numbers (from 42 to 55) in blue, various endogenous compounds and drugs; ID numbers (from 101 to 122) in green, ant-

hocyanins; ID numbers (from 123–143) in red, flavonols.
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criptors selected in the optimized model are given in Tab-
le 4.

Figure 2. Regression lines of the experimental versus predicted in-

hibition constants pKI obtained by CP-ANN model coupled with

GA for training (red triangles) and test (black squares) compounds,

and the predictions of three compounds (green diamonds) from the

external validation set.

Table 4. Selected descriptors with genetic algorithm (GA) for the

counter-propagation artificial neural network model of purine deri-

vatives.

Selected descriptors
Constitutional:

1 Number of C atoms

2 Number of N atoms

3 Number of double bonds

4 Relative number of double bonds

5 Relative number of aromatic bonds

Topological:
6 Information content (order 1)

7 Complementary Information content (order 0)

8 Average Complementary Information content (order 1)

9 Average Bonding Information content (order 0)

Electrostatic:
10 FPSA-2 Fractional PPSA (PPSA-2/TMSA) [Zefirov’s PC]
11 RPCG Relative positive charge (QMPOS/QTPLUS) 

[Zefirov’s PC]3

12 RNCG Relative negative charge (QMNEG/QTMINUS)

[Zefirov’s PC]
Quantum-chemical:

13 HASA-2 [Semi-MO PC]
14 HA dependent HDSA-2/SQRT(TMSA) [Semi-MO PC]

Among selected influential descriptors are those
describing the ability of molecules to form hydrogen
bonds, such as »Area-weighted surface charge of hydro-
gen bonding acceptor atom« (HASA-2), and »HA depen-
dent area-weighted surface charge of hydrogen bonding
donor atom (HDSA-2)«. Other significant molecular des-

criptors selected describe the shape and compactness of
molecules (Information content), size and distribution of
positive and negative atomic charge, and also a simple
constitutional descriptor, i.e. the number of double bonds.
The former group of descriptors associated with the abi-
lity of hydrogen bond formation support the hypothesis
that the molecules, which are active as inhibitors of the bi-
litranslocase, pass the cell membrane by forming reversib-
le H-bonds to the amino acid sequences of bilitranslocase
positioned within the cell membrane. The same observa-
tion was explained on the set of flavonoids [2]. The weak
H-bonds might enable passing the molecule by attaching
and detaching dynamically to the membrane alpha helices
of the studied transmembrane protein. The latter group of
descriptors reflects the non-even charge distribution, or in
other words, ionic properties of the molecules. A negative
correlation can be found between the relative negative
charge (of the molecule) and inhibition activity of tested
molecules, Figure 3, which indicates that the capacity of
bilitranslocase to transport ionic species and is in agree-
ment with previous experiments.11,12

4. Conclusions

From the model developed in Part I we can conclu-
de that a reliable prediction (estimated error is below 10%
based on external validation) of transmembrane alpha he-
lices can be obtained for structurally diverse transmem-
brane proteins. The prediction of four transmembrane seg-
ments in BTL is not yet confirmed experimentally, howe-
ver, it is not in conflict with the available experimental da-
ta.

In Part II it was found that interactions between bili-
translocase and small molecules rely on the ability to es-
tablish hydrogen bonds, diminishing the involvement of
charge interactions. The results of this work show that,
contrary to dietary anthocyanins, most of dietary flavo-
nols do not interact with bilitranslocase, whereas, some
flavonol aglycones act as poor ligands of that carrier. In
case of nucleobases and their derivatives (nucleotides and
nucleosides) the phosphate group in principle improved
the transport ability by bilitranslocase. The analysis of re-
sulting models revealed that the hydrogen bonding ability
was the main information content in the selected chemical
descriptors. The quantitative analysis of the structure–ac-
tivity relationship led to the identification of parts of li-
gands potentially involved in the binding to bilitransloca-
se, along with a reliable hypothesis on the kind(s) of inte-
raction between the ligand and the target. The details
about specific amino acid residues of bilitranslocase in-
volved in the interactions of passing small molecules
through the membrane will be further investigated. For the
time being we anticipate that the N-terminal flanking part
(residue 65–75) of the second TM segment of BTL should
be considered as initiator of the active transport by bili-
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translocase, and the second TM segment itself is partici-
pating in forming the transport channel wall.
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Povzetek
Predstavljen je pristop k analizi kemijske strukture bilitranslokaze, membranskega proteina, ki prena{a bilirubin iz krvi

v jetrne celice. Zaporedje aminokislin in informacije o sekundarni strukturi transmembranskih segmentov proteinov s

poznano 3D strukturo uporabimo za napovedovanje transmembranskih domen strukturno nere{enih proteinov. S po-

mo~jo poznanih struktur kodiramo transmembranske in ostale domene proteinov na tak na~in, da jih lahko s pomo~jo

ra~unalni{kih programov grupiramo glede na njihove podstrukturne karakteristike in da lahko zgradimo model za napo-

vedovanje transmembranskih segmentov. Prikazan model za napovedovanje transmembranski segmentov identificira

{tiri transmembranske alfa vija~nice, od katerih vsaka vsebuje okoli 20 aminokislin. Ta rezultat je delno potrjen z eks-

perimentalnimi {tudijami uporabe dolo~enih protiteles, ki ustrezajo delom aminokislinskega zaporedja bilitranslokaze.

Da bi razjasnili transportni mehanizem bilitranslokaze, smo testirali tudi niz strukturno raznolikih spojin za dolo~itev

njihove kompetitivne konstante inhibicije v preiskovanem sistemu protein-substrat. Informacija o kemijski strukturi

majhnih molekul, ki ali prehajajo ali blokirajo transmembransko pot preko bilitranslokaze, nam pomaga graditi hipo-

tezo o transportnem mehanizmu {tudiranega biolo{kega sistema.


