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Abstract

Whitney’s inequality established an important connection between vertex and edge con-
nectivity, and the degree of a graph, which was later generalized to digraphs and undirected
hypergraphs. Here we show, using the most common definitions of connectedness for di-
rected hypergraphs, that an analogous result holds for directed hypergraphs. It relates the
vertex connectivity under strong vertex elimination, edge connectivity under weak edge
elimination, and a suitable degree-like parameter and it is a proper generalization of the
situation in both digraphs and undirected hypergraphs. We furthermore relate the connec-
tivity parameters of directed hypergraphs with those of its directed bipartite Konig repre-
sentation.
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1 Introduction

Directed hypergraphs naturally arose as a model of dependencies e.g. in propositional logic,
database theory, and model checking, see e.g. [3, 7] for reviews. Recently they also received
increasing attention as models of biological [6, 9], chemical [2, 1], and transportation
networks [10]. Connectivity parameters are one of the most fundamental characteristics of
a network, and hence are also of directed practical relevance for applications of directed
hypergraphs [6].

It is important to note that directed hypergraphs give rise to many different notions of
connectedness. Here, we only consider the simplest, least restrictive, construction of hy-
perpath, requiring only a single vertex in the overlap of the head of one directed hyperedge
and the tail of the following one. In particular in chemical reactions networks, much more
restrictive notions path and reachability are also of interest, see e.g. [ 1, 2, 6]. The concepts
of connectivity explored here remain closely related to those of bipartite graphs representa-
tion of directed hypergraphs [12] and, as we shall see, admit generalizations of well-known
results for graphs and digraphs.

The connectivity in an undirected graph G is described by two parameters, the vertex
connectivity index x and the edge connectivity index &’. They are defined as the minimum
number of vertices or edges, respectively, whose removal disconnects G or gives a triv-
ial graph. Hassler Whitney [13] showed that all undirected graphs satisfy the inequality
k < k' < 6, where § denotes the minimal vertex degree in G. Later Geller and Harary
found a generalization to digraphs [8]. In hypergraphs, the situation becomes more compli-
cated because there are different, natural ways to delete vertices and hyperedges and thus
to derive sub-hypergraphs [4]. Nevertheless, Whitney’s inequalities for the connectivity
parameters generalize to (undirected) hypergraphs [5].

In the present contribution we show that analogous results also hold for directed hy-
pergraphs with respect to both strong and unilateral connectedness. In Section 2.1 we
introduce the notation and give some simple preliminary results for later use. Section 3
introduces the various connectivity indices and established some universal inequalities be-
tween them. For many pairs of indices, however, we show that they are not comparable in
general. The main theorem, a generalization of Whitney’s inequalities, is the topic of Sec-
tion 4. In the final Section 5 we explore relations between connectivities of Section 5 we
explore relations between connectivities of directed hypergraphs and their bipartite digraph
representation.

2 Notation and preliminaries
2.1 Directed hypergraphs

A directed hypergraph H = (V, E) consists on a vertex set V' and a set of directed hyper-
edges or hyperarcs E = {(T'(e),H(e))} | T(e) CV and H(e) C V}, where H(e) # ()
and T'(e) # (0. The sets T'(e) and H (e) are called the tail and the head of e, respectively.
The support of a hyperedge e € FE is the pair supp(e) = T'(e) U H(e). A directed hyper-
graph is called k-uniform if |T'(e)| = |H(e)| = k for all e € E. Two edges e, e’ € E are
said to be parallel if T'(e) = T'(¢’) and H(e) = H(e’). A directed hypergraph H = (V, E)
is called simple if it has neither parallel hyperarcs and nor loops, that is, edges e with
T(e)N H(e) = (. A (directed) hypergraph is trivial if |V| = 1 and E = (), i.e., H consists
of a single vertex.
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We say that u,v € V are adjacent if there exists a hyperarc e € E such that u € T'(e)
and v € H(e). The neighborhood of a vertex v in a hypergraph (or graph) is the set of all
the vertices adjacent to v not including v. The indegree of a vertex v, denoted as d~(v)
in H, is defined as the number of hyperarcs that contain v in their head. The outdegree
of a vertex v, denoted as d*(v) in H, is defined as the number of hyperarcs that contain
v in their tail. The minimum indegree and minimum outdegree of H will be denoted by
0~ (H) = min{d~ (v) }yev and 6T (H) = min{d™ (v)},cv, respectively. The number of
arcs parallel to e (including e) is the multiplicity of e and it is denoted as m g (e).

Every directed hypergraph H = (V, E) can be represented as a bipartite digraph G(H )
with vertex set V U E and directed arcs x — e iff x € T(e) and e — z iff x € H/(e).
The arcs of G(H) are called the bits of the directed hypergraph. The graph G(H) is
called the incidence digraph, Levi digraph, or Konig digraph of H. There is a one-to-one
correspondence between directed hypergraphs and bipartite graphs for which one partition
(the one corresponding to the hyperarcs E) has neither sources nor sinks (since we do not
allow hyperarcs with empty heads or tails.) For details we refer to [12].

2.2 Subhypergraphs

Substructures of directed hypergraphs can be constructed in two ways: In strong substruc-
tures the hyperedges are either retained or removed as an entity. In weak substructures,
hyperedges can be restricted to a subset of vertices as long as their heads and tails remain
non-empty. More precisely, following [5] we define:

A directed hypergraph H' = (V' E’) is a weak subhypergraph of the directed hyper-
graph H = (V, E) if V! C V and E’ consists of edges ¢’ with T'(¢/) = {v | v € T(e)NV'}
and H(e') = {v | v € H(e) NV'} for some e € E. A directed hypergraph H' = (V', E’)
is a weak induced subhypergraph of the directed hypergraph H = (V, E) if V/ C V and
edgeset B/ = {(T(e)N V', H(e)NV')le€c EAT(e)NV' £ 0OANH(e) NV’ # 0}. A
directed hypergraph H' = (V' E’) is called a strong subhypergraph of the directed hyper-
graph H = (V, E)if V' C Vand E' C E. A strong subhypergraph H' = (V' E") of H =
(V, E), is induced by V" if supp(e) C V' and itis induced by £ if V' = |J, . 5, supp(e’).
H' = (V' E') is a spanning subhypergraph of H = (V, E) if V' = V.

The deletion of vertices and edges from a directed hypergraph will play a key role in
this contribution. Just as the formation of subhypergraphs this can be done in two ways:

Strong vertex deletion of v € V' removes v and all hyperarcs that are incident to v.
Thus it creates the strong subhypergraph H' = (V' E’) of H = (V, E) with vertex set
V=V \{v}andedgeset E' = {e € E | v ¢ T(e) U H(e)}. Forasubset X C V we
write H\ s X to denote the directed hypergraph formed by strongly deleting all the vertices
of X from H.

Weak vertex deletion of v € V' removes v from the vertex set, and all occurrences of
v from the hyperarcs of the directed hypergraph H. This creates the hypergraph H' =
(V',E"Ywhere V' = V\{v}and E' = {(T'(e)NV',H(e)NV')le € EAT(e) NV’ #
OAH(e)NV’' £ (}. We use the notation H \y v to denote the directed hypergraph formed
by weakly deleting the vertex v from H. For any subset X of V' we write H\ X to denote
the directed hypergraph formed by weakly deleting all the vertices of X from H.
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Strong deletion of the hyperarc e € E removes e from the hypergraph and weakly
deletes all the vertices incident with e. Thus it produces the weak subhypergraph H’' =
(V',E") with V! = V\supp(e) and E' = {(T(e)N V', H(e)NV')le€c EAT(e)NV' #
OAH(e)NV' £ 0}. We write H\ e to denote the hypergraph formed by strongly deleting
the edge e from H. For any subset F' of E, we use H\ g F' to denote the directed hypergraph
formed by strongly deleting all the hyper arcs of F' from H.

Weak deletion of the hyperarc e € E simply removes the hyperarc e without affecting
the rest of the hypergraph. Thus it leads to the strong subhypergraph H' = (V, E’) with
E' = E\ {e}. We write H\p e to denote the directed hypergraph formed by weakly
deleting the hyperarc e from H. For any subset F' of E, we write H\y F to denote the
directed hypergraph formed by weakly deleting all the hyperarcs of F' from H.

It follows directly from the definition that the order in which vertices or edges are
deleted has no impact on the final result. Thus the hypergraphs H\sX, H\w X, H\sF,
and H\y F are well-defined.

2.3 Connectedness

A directed walk in a hypergraph H = (V,E) is a sequence P, .,
(vo, €1, 01, €2, ..., €k, V) Where eq,...,ex, € E and vy, ...,v;, € V, such that v;_1 # v,
vi—1 € T(e;) and v; € H(e;). A directed p-path is a walk where the vertices vy, ..., Uk
are all distinct. A directed cycle is a directed walk with k distinct hyperarcs and k distinct
vertices such that vg = vy. The length of a directed walk, directed path, or cycle is the
number of hyperarcs in the sequence; i.e., it is k in the foregoing definitions. Lete € E
where T'(e) = {u1, ...,u} and H(e) = {v1, ..., v;} then the reverse hyperarc of eise € E
such that H(e) = {u1,...,ux} and T'(€) = {v1, ..., v; }.

Definition 2.1. We say that y is reachable from x in H if there is a directed p-path from z
to y in H. For two hyperarcs e and ¢’ we say that ¢’ is reachable from e in H if there is x
in H(e) andy € T(e’) such that y is reachable from x. Furthermore, we say v is reachable
from w in G(H) if there is a directed path from u to v.

There are three natural notions of connectedness in digraphs: A digraph is said to be
strongly connected if, for every pair of vertices x,y € V, x is reachable from y and y
is reachable from z. It is said to be unilaterally connected if, for every pair of vertices
z,y € V, x is reachable from y or from y is reachable from x. A bipartite graph with
vertex set V1 UV is unilaterally connected on V1 if for every pair u, v € Vi, v is reachable
from u or u is reachable from v. Finally, a digraph is weakly connected if its underlying
graph, i.e without direction, is connected. These definitions can be generalized immediately
to hypergraphs.

Definition 2.2. A directed hypergraph H is strongly connected if for every pair of vertices
u,v € V, u is reachable from v and v is reachable from w. It is unilaterally connected if
for every two pair of vertices u, v € V, v is reachable from w or u is reachable from v. It is
(weakly) connected if the underlying hypergraph, is connected.

Corollary 2.3. For every directed hypergraph, “strongly connected” implies “unilaterally
connected”, which in turn implies “weakly connected”.
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Lemma 2.4. A directed hypergraph H is strongly, unilaterally, or weakly connected if and
only if its incidence (di)graph G(H) is strongly connected, unilaterally connected on 'V,
and weakly connected, respectively.

Proof. An undirected hypergraph is connected if and only if its (undirected) incidence
graph is connected, see e.g. [4, 5], hence the statement is true for weak connectedness.

To show the statement for unilateral and strong connectedness we first show that for all
x,y € V there is hyperpath from x to y in H if and only if there is a path from x to y in
G(H). First assume that a directed hyperpath x = vg,e1,v1, €2, ...,Vk_1, €k, Vp = Yy In
H exists. Then the bits (v, e1), (€1,v2), ..., (ex—1,vx) form a directed path for = to y
in G(H). Conversely, suppose such a directed path exists in G(H ). We note that the arcs
(vi—1,€;) and (e;,v;) in G(H) by construction are bits induced by a hyperedge e; with
vi—1 € T(e;) and v; € H (e;). Thus the sequence x = vg, €1, V1, €2, ..., Vk—1, €k, Vk = Y
is a directed hyperpath in H.

If G(H) is strongly connected then in particular there is a directed hyperpath in H
between any pair of vertices, and thus H is strongly connected. Conversely, if H is strongly
connected, we know that there is a directed path between any pair x,y in V. To see that
every e € F is reachable from every x € V in G(H) we recall that every T'(e) # 0, i.e.,
there is u € T'(e). We already know that there is a directed path from x to u in G(H),
which can be extended by the bit (u, ) to a directed path from « to e. Using that H (e) # ()
we see that every x € V is reachable from every e € E. Concatenating a directed from e
to z and from z to €’ we finally see that every ¢’ € F is reachable from every e € F, and
thus G(H) is strongly connected.

It follows immediately that H is unilaterally connected if for every x,y € V there is a
directed path from z to y or from y to x in G(H), i.e., if G(H) is unilaterally connected
onV. O

Note that unilateral connectedness of H does not imply unilateral connectedness of
G(H). As a counterexample consider the directed (hyper)graph H with V' = {u, v, w, x}
and hyperarcs e; = (u,v), e2 = (v,w), e3 = (w, ), and e4 = (u, x). H is unilaterally but
not strongly connected but there is no directed path from es to e4 or vice versa in G(H).

In the following we say that H = (V, E) is €-connected with ¢ € {7, %, W'} is
strongly, unilaterally, or (weakly) connected. Correspondingly, we shall say that H is €-
disconnected if it is not ¥’-connected.

3 Connectivity in directed hypergraphs

The degree of connectedness in an undirected hypergraph H is described by invariants
describing the minimal number of vertices or edges that must be removed by either weak
or strong elimination to disconnect the hypergraph or leave on a trivial hypergraph behind
[5]. The situation becomes even more involved because each of these invariants or indices
can be defined with respect to each of the three concepts of connectedness. We write K,
and k.., where the prime refers to edge deletion, z € {s,w} indicates strong or weak
vertex/edge deletion and refers to strong, unilateral, or weak connectedness. The numbers
Kge and m;%, are the minimum numbers of vertices and hyperedges, respectively, such
that their z-elimination leaves a hypergraph %’-disconnected or trivial.

Let H = (V, E) be a directed hypergraph. A vertex v € V is called a strong (weak) € -
cut vertex of H if H\ v (H\,v) is €-disconnected or trivial. X is a strong (weak) vertex
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AL

Figure 1: Left: T} is the tournament of k vertices, where k is even. In this hypergraph
ks = 1, Ky = %, ksoy = 1, Ky = k, the minimum strong vertex, for s.% and s%
cutis {v} and a minimum weak vertex cut for w. is {u1, us, ..., ux—1} and a weak vertex
cut for wlf is {uy, v, uz, vg, ..., v} . As k increases, an infinite family of hypergraphs for
which this difference grows linearly is obtained. Right: 77 is the tournament of k vertices,
where k is even. In this hypergraph /., = k., = 1 ((u,v) is a disconnecting arc),
Ky = %(all the arcs that have tail v), ! ,, = k + 1(all the arcs that have tail or head u).

€ -cut of H if H\ X (H\,X) is €-disconnected or trivial. We adopt the convention that
kg = 1 for trivial hypergraphs and k.4 = 0 for null hypergraphs. A subset F' C FE is
called a strong (weak) € -disconnecting set of H if H\sF (H\,,F) is €-disconnected or
trivial. We set /., = 1 for trivial hypergraphs and «/,., = 0 for null hypergraphs.

The following inequalities hold for all directed hypergraphs as an immediate conse-
quence of the definition and the implications between the connectedness classes for both
r=sand x = w.

/ / /
Ry S Ry S Raw Ry S A% S Ry (31)

Since # -connectedness coincides with the connectedness of undirected hypergraphs we
focus on € € {., % } in the following. The case of undirected hypergraphs is studied in
detail in [5]. We first consider the relationships between strong and weak elimination:

Lemma 3.1. Let H = (V, E) be a directed hypergraph. Then ksg < Ky for € €
{SL,U}.

Proof. If H is trivial or null, there is nothing to show. If H is ¥ — disconnected, then
Kz¢ = Khe = 0, and the inequalities hold trivially. Now suppose that H is nontrivial and
%-connected. We note that H\ X is a spanning strong subhypergraph of H \,, X for all
X C V. This implies immediately that ks < K¢ for € € {7, % }. O

It is worth noting that x,,« is a poor upper bound for ks¢. Indeed, the difference
between k., — ks can become arbitrarily large as shown in Figure 1(left). It is important
to notice that not every strong vertex cut is contained in a weak vertex cut. The situation
on the left hand side of Figure 1 is an example.

Whitney’s inequalities [5] and their generalization to directed graphs [8] and undirected
hypergraphs [13] relate the connectivity indices with each other. In the case of directed
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Figure 2: Left: In this hypergraph x5 = kg9 = 1 since v is a cut vertex; Ko = 2
since {vg,v4} is a minimum weak vertex cut; k., = k., = 2 since {(vs,v4), (v2,v3)}
is a strong disconnecting set. Right: The hyperarcs in this hypergraph are e; =
({v1, o v}, {ur, oy ur}), €1, e2 = ({ur, oy up }, {we, ..., wr }), €2. We have s, ., =1
by removal of any hyperarc and £, = k since {uq, ..., uy } is the minimal weak vertex.

hypergraphs, however, some of these quantities do not fulfill universal inequalities. We
give some simple counterexamples:

Ksay ; Ky In a directed cycle C,, of length n > 3 we have k39 = 2 and Ky, = 1.
Therefore k59, > k.. On the other hand, the left hand side of figure 2 shows an
example where ks = 1 and Ky v = 2, 1.., Ksy < K.

Koy § ki, In a directed cycle C), of length n > 4 we have s/, ., = 1 and k,, = 2.
Therefore «., > k!, . The hypergraph on the right hand side of Figure 1 has
Kly =land k! , = g For k > 3 we therefore have k,, < k! .

Ks.s § k' 4,. The hypergraph in Figure 2(left) satisfies ks < k.,,. Now consider the
hypergraph in Figure 1(right) with all reverse hyperarcs added. Here, ., = 1 and
ks = 2 since {u, v} is a vertex cut. Thus £/, < Ks.

Ksay § K!4,+ The hypergraph in Figure 2(left) satisfied k49 < k', , while the hypergraph
in Figure 1(right) satisfies k59 = 2 ({u, v} is a minimal strong the vertex cut) and
K.y, = 1. Therefore ', < ks .

Koy § kuw.. Inadirected cycle C,, of length n > 4 we have k,,» = 1 and £, = 2, i.e.,
Kwy < Kl . Again, we consider the hypergraph in Figure 1(right) with the reverse
hyperarcs added. It satisfies ng% =1land kv = 2,1.e., n’s% < Ryp.-

Fow.s § k!, . The hypergraph in Figure 2(right) satisfies x!, ., = 1 and k., = K, i.e.,
Ko < Kus. For the hypergraph in Figure 1(right) we have x,,» = 2 due to the
weak way the vertex cut {u, v}. Furthermore, for k > 4 we have !, , = £ and thus
Kwy < Koy o

Kway § Kuw.s. The hypergraph in Figure 1(right) satisfies ., = 2, the set {u, v} being a
minimum vertex cut. On the other hand, we have mgﬂ% = k+1 in the same example,
hence, for k > 2, we have £,,.» < k! 4, . The hypergraph in Figure 2(right) satisfies
kwy = kand k], = 2, since {ey, €1} is a minimal disconnecting set. Thus, for
k> 2, we have k! ,, < Ky

Fow.s § ﬁ;q{. The hypergraph in Figure 2(right) satisfied x’,, = 1 since every hyperarc
contains a strong cut vertex. On the other hand we have k., » = k and this, for
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Figure 3: In this hypergraph with even k we have k., » = k9 = 1 since the vertex v is a
. ko

cut vertex; Ky, = K, = 145 since {(v, {u1, ..., ur}), (v1,v2), (v3,v4), ..., (Vk—1,V%)})

is a strong disconnecting set.

k> 1, ﬁ;% < Ky In a directed cycle C,, with n > 5 we have k., » = 1 and
kss = 2 and therefore k.o < kg9 .

Kwz = Kl In a directed cycle of length n > 3 we have £/, = 1 and kyg = 2
and this !, < Ky . The hypergraph in Figure 1(right) satisfied s/ , = % and
kwa = 2 since the set {u,v} is a weak vertex cut. Thus, for £ > 4, we have
Koz < Kiy o

Ky § ki, The hypergraph in Figure 2(right) satisfies !, ,, = 2 and £, = k. Thus,
for k > 2 we have k!, < K, . The hypergraph in Figure 1(right) satisfied k9, =
2and k] ,, = k + 1. This, for k > 2 we have k9 < K., 4.

Ksay § ki, Inadirected cycle C,, of length n > 3 we have k!, , = 1 and ks9 = 2, i.e.,
K., < ksz. The hypergraph in Figure 1(right) satisfies x4 = 2 and s/, , = £.
Thus, for k > 4 we have k9 < K., .

Ko ; ks2 - The hypergraph in Figure 1(right) satisfied ., = 1 and ks9y = k + 1, 1i.e.,
k' o < Ksz . For the hypergraph in Figure 2(left) we have ks = 1 and &, = 2
and thus kyy < K, .

Ko ; ks.. The hypergraph in Figure 1(right) satisfies x,, = 1 and k4 = 2, and thus
k! o < Kss. For the hypergraph in Figure 2(left) we have K, = 1 and k,, = 2,
and therefore ks < K, .

Ko § kwe . The hypergraph in Figure 3 satisfies that x, = 1 + % and k., = 1, hence
for k > 2 we have k', > Ky%. The hypergraph in Figure 2(right) satisfies x.o, = 1
and K¢ = k, thus for k > 1 we have K/, < Kye.

Kl o ; kw2 - The hypergraph in Figure 3 satisfies k., = 1 + % and k9 = 1 thus for
k > 2 we have K/, , > k2 . The hypergraph in Figure 2(right) satisfies x’,, = 1
and K9 = k, hence for k > 1 we have k., , < Ky .

Ky ; k!, . The hypergraph in Figure 3 satisfies /., = 1 + % and x/,., = 1, hence for
k > 2 we have k', > K. The hypergraph in Figure 1(left) satisfies /., = 1 and
K = §7 hence for & > 1 we have /., < K .

Kl o ; K4 - The hypergraph in Figure 3 satisfies /,, = 1 + g and k], = 1, hence

for k > 2 we have /., > k% . The hypergraph in Figure 1(left) satisfies /., = 1
and !, = £, hence for k > 1 we have x, , < K.
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4 Whitney’s theorem for directed hypergraphs

Let H = (V, E) a directed hypergraph (or digraph) and v € V. The ftotal degree of the

vertex v is d*(v) = d*(v) + d~(v). Denote by &;4, 0o, and dy the minimum of d—, d*

and d' over all v € V, respectively. Furthermore we introduce

67 = min{d~ (v) + 6;a(H \w v)} and 6% = min{d* (v) + 6,a(H \w v)}.

veV veV

With this notation we define §.» = min{d;q, 6,4} and 67 = min{5%, 5% }. These param-

eters are direct generalizations of the corresponding quantities for directed hypergraphs,

see e.g. [8].

The next theorem is a generalization of Whitney’s inequalities for directed hypergraphs.
The proof follows ideas from [8] for the analogous result for digraphs.

Theorem 4.1. Let H = (V, E) a directed hypergraph. Then kso (H) < K., (H) <
S (H) and ks (H) < K., ,(H) < 6 (H).

Proof. If H is trivial or null, the statements of the theorem are obviously valid.

Let H be a % -connected hypergraph and let w,v € V such that d~ (u) = d;4(H) and
d~(v) = 0;4(H \4 u). Weakly eliminate the hyperarcs such that their heads contain u and
v; in this way, there is no (u, v)-directed path and there is no (v, u)-directed path on H. So
k! o (H) < 0. Applying the same dual argument we conclude that ., (H) < §% and
SO Kl (H) < 0.

On the other hand, if &/, (H) = 1, there is e € E, such that H\,e is not % -
connected. If we eliminate in a strong way the vertex v € T'(e) U H(e) then H\v is
not %/ -connected, so #s9 (H) = 1 and the result is valid. Let «!_,, (H) > 1, for prov-
ing that k.9 (H) < k!, (H) let weakly eliminate set of hyperarcs F, the cardinality
of Fis k!, (H) — 1 such that the directed hypergraph H' = (V' E’) = H\,F has
Kiyq (H') = 1. Let e € (E') a hyperarc such that H'\,e is not unilaterally connected.
Now we strongly eliminate the set of vertices X € V such that each vertex on X is in ex-
actly one hyperarc of F' (there are enough vertices due to | e |[> 1 forall e € E), we denote
this directed hypergraph H” = (V" E"). If e ¢ E” then H" is not unilaterally connected,
s0 ke (H) < Kl 9, (H). If e € E" then &} ,,(H") =1 and ks (H") = k!, ,,(H") =1
S0y (H) = oy (H).

Let H be .-connected hypergraph and let v € V such that d~ (v) = §;4(H). Weakly
eliminate the hyperarcs such that their heads contain v; in this way, there is no (u,v)-
directed path on H forallu € V. So «!, ,(H) < d;,,. Applying the same dual argument
we conclude that x!, o, (H) < doq and so k!, ,(H) < 0..

The proof that ks (H) < k! . (H) parallels the proof of the inequality rs9 (H) <
K’gu% (H) O

Note that Theorem 4.1 reduces the corresponding statement for digraphs whenever all
e € F hyperarcs satisfy |T'(e)| = |H(e)| = 1.
Corollary 4.2. Let H = (V, E) a directed hypergraph. Then ks < Kya and kso <
Koy -

Proof. The first inequality follows from the note at the beginning of the previous section
and Lemma 3.1. The second inequality follows from Theorem 4.1 and Equation 3.1.  [J
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Figure 4: Left: Construction (A); Right: Construction (B)

We next show that the parameters ks (H ), k. (H), kwe (H) and k] . (H) are inde-
pendent for strongly or unilaterally connected directed hypergraphs satisfying ks¢(H) <
min{ sy (H), k0 () ).

Theorem 4.3. For every choice of natural numbers a, b, ¢, d, and e with a < min{c, d},
b < ¢ and max{b,c,d} < e and connectedness classes ¢ € {L, % , W'} there exists a
directed hypergraph such that ks¢(H) = a, K.y (H) = b, kuwe(H) = ¢, Kl,o(H) = d
and 6¢(H) = e.

Proof. We explicitly construct hypergraphs with the desired properties.

Consider unilateral connectedness, i.e., € = %. We construct a hypergraph A form
by five disjoint components: Two tournaments ng and ng/ on p vertices, a tournament 7,
and two single vertices w; and ws; each arc in the tournaments 7}, and 7} has multiplicity
e—p-+1 and each arc in T}, has multiplicity e — g+ 1. We then insert r hyperarcs consisting
of one vertex from TIQ and T, in its tail and a vertex from Tz/r/ in its head involved, with all
reverse hyperarcs added and with one of these hyperarcs with multiplicity ¢. Finally, we
insert ¢ arcs from w; to TI’) and e arcs from wsy to Tzﬁ’ with all reverse arcs added. The arcs
are inserted in such a way that the vertices of the tournaments are covered as uniformly as
possible. The construction is illustrated in Figure 4(left).

Leta = ¢,b = r,c = p,d = t. The minimum strong vertex cut in A is V(1}), the
minimum strong disconnecting set is the r different hyperarcs, a minimum weak vertex cut
is the set V(7)) and the minimum weak disconnecting set is the ¢ arcs (recall that one of the
r hyperarcs has multiplicity ¢); then ¢ = k5%, 7 = Kl4,, p = kw2 and t = k! ,,. Finally
day = e because d~ (wy1) = 0 and d~ (w3) = e, since all the vertices in the tournaments
have in-degree and out-degree at least e, because of the multiplicities of the arcs inside the
tournaments.

Next we consider strongly connectedness, ¢ = .¥. We construct a hypergraph B form
by five disjoint components: Two tournaments 7, and 7} on p vertices, a tournament 7,
and a tournament 7¢; each arc in the tournaments 7}, and 7, has multiplicity e — p + 1
and each arc in T}, has multiplicity e — ¢ 4 1. We then insert  hyperarcs consisting of one
vertex from ng and 77, in its tail and a vertex from T]Q’ in its head involved, with all reverse
hyperarcs added and with all of these hyperarcs with multiplicity ¢. The arcs are inserted
in such a way that the vertices of the tournaments are covered as uniformly as possible.
Finally, we insert ¢ hyperarcs consisting of at least one vertex from 7 in its tail and a



A. S. Arguello and P. F. Stadler: Whitney’s connectivity inequalities 11

vertex from TI',’ in its head involved, all vertices in T, are in a head of these hyperarcs, all
the reverse hyperarcs are added. The construction is illustrated in Figure 4(right).

Leta = ¢,b=r,c=p, and d = ¢. The minimum strong vertex cut in B is V' (T}), the
minimum strong disconnecting set is the r different hyperarcs, the minimum weak vertex
cut is the set V(7)) and a minimum weak disconnecting set is the ¢ arcs from 7, to T}/
(don’t forget that each of the r hyperarcs has multiplicity ¢); then ¢ = ks, 7 = K.,
P = Ky andt = m;ﬂ,. Finally 6 » = e because all the vertices in 7, have indegree and
outdegree e (all the vertices in the other tournaments have indegree and outdegree at least
e, because of the multiplicities of the arcs inside the tournaments).

Next, we consider weak connectedness, 4 = #. We construct a hypergraph C' form
by five disjoint components: Two complete graphs KI’, and KI',’ on p vertices, a complete
graph K, and a complete graph K.; each edge in the complete graphs KI’, and K}’,’ has
multiplicity e —p+-1 and each edge in K, has multiplicity e — ¢+ 1. We then insert r edges
consisting of one vertex from K, K, and K}/, with all of these edges with multiplicity .
The edges are inserted in such a way that the vertices of the complete graphs are covered
as uniformly as possible.

Finally, we insert ¢ edges consisting of at least one vertex from 7, and one vertex from
T,), all vertices in T, are incident with these edges. The explanation of why this hypergraph
has the desired parameters is analogous to the strong case. O

S5 Konig digraph of a directed hypergraph

The connectivity invariants in digraphs are defined in the same way as in directed hy-
pergraphs, the difference is that the weak or strong elimination of vertices or arcs is not
relevant so we only have to consider a single connectivity index for each connectedness
class, which we denote by x¢ and ki with C € {S,U}.

Lemma 5.1. Ler H = (V, E) be a directed hypergraph and let G(H) = (VUE, A) be its
Konig digraph. Then

kse(H) < ke(G(H)) < min{kye (H), ke (H)} (5.1)
holds for C € {U, S}.

Proof. Let S C VU E be a vertex cutin G(H) with |S| = kc(G(H)).
Case1: S C V, then S = {vy, ..., v } is a weak vertex cut in H and so it is a strong vertex
cutin H, so ks¢ (H) < ke(G(H)).
Case 2: Suppose S C E. We step-wisely construct a vertex cut S’ as follows by interacting
over the hyperedges in S. In each step we add to S’ a single vertex v; € e; that is not
contained in J;_, supp(e;). By construction we have |S'| < |S|. Since H \, 5" is not
strongly or unilaterally connected we have ks¢(H) < rkc(G(H)).
Case 3: Suppose SNV # P and SN E # (. We write S = {vy, ..., v, €141, ..., €, } Where
v;eViforie{l,.. l}ande; € Eforiec {l+1,.. k} Let S’ = {vq,..,v;}. We iterate
over the e; € SN E and, in each step, we add to S, if it exists, a vertex v; € e; satisfying
v; ¢ SNV and v; ¢ |, supp(e;). This yields a strong vertex cut containing S NV and
at most one vertex from each e; € S N E, thus |S’| < |S]. So H \, S’ is not strongly or
unilaterally connected and kg4 (H) < ke(G(H)).

Considering the other inequality, let S C V be a minimal weak vertex cut in H with
|S| = kwe(H). Since H\,, S is not strongly or unilaterally connected, then by Lemma 2.4,
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Tk k

oK Ve

Figure 5: Left: Konig graph G(H) of a hypergraph with «! ,, (H) = kyo (H) = k +1
and k!, ,(H) = ks (H) = g + 1. Middle: Konig graph G(H) of a hypergraph with
kse(H) = ki = 1, ky(G(H)) = k+1and k& (G(H)) = k. Right: Kénig graph G(H)
of a hypergraph with k., (H) = !, (H) = 2, k,(G(H)) = 2k and K’s(G(H)) = k+ 5.

Gpg \ S is not strongly or unilaterally connected on V' \ S, s0 k¢(G(H)) < Ky (H). Let
F C FE be a minimal weak disconnecting set in H with |S| = k¢ (H), as H \,, F is not
strongly or unilaterally connected, then by Lemma 2.4, G \ F is not unilaterally connected
onV,so0 ke(G(H)) < Kl (H). Then ke (G(H)) < min{kye (H), Kl (H)}. O

In practice, however, min{ .« (H), &/, (H)} is not a particularly good upper bound
for kc(G(H)) for either strong or unilateral connectedness. We show that the difference,
in fact, can become arbitrarily large. Similarly, the difference x¢(G(H)) — kse(H) can
also become arbitrarily large for both strong and unilateral connectedness.

The graph in the left panel of Figure 5 is the Konig digraph G(H ) of a directed hyper-
graph H = (V, E) with ky(G(H)) = ks(G(H)) = 2 (as seen by removing the vertices
that are not in any 7}, j, subgraph). On the other hand, removing only vertices in V', we
need to eliminate k + 1 vertices for G(H) to destroy unilateral connectedness, namely &
vertices in one of the T}, , in the V' set partition, and one vertex V' that is not in these com-
plete digraphs. We need to remove % + 1 vertices for G(H ) not being strongly connected,
% vertices in any of the T}, ;, in the V' set (the ones that are in- or out-neighbors of a vertex
in E that is not in any T} 1), and a vertex V' that is not in any T}, ;, digraph. Therefore
Kuwy (H) = k+1and Ky (H) = % + 1. The same argument is correct for eliminating
vertices only in E so k!, (H) = k +1and ], ,(H) = £ + 1. As k increases, an infi-
nite family of hypergraphs for which the difference min{x,« (H), k., (H)} — ke (G(H))
grows linearly is obtained.

The middle panel of Figure 5 shows the Konig graph G(H) of a directed hypergraph
H = (V, E) with xs(G(H)) = k+1 (removing the k vertices in of one partition set in T}, j,
and one in the same partition set in the adjacent complete digraph) and k. (G(H)) = k
(removing the k vertices in of one partition set in T}, ;, subgraph and then any neighbor of
any vertex in the other partition set of the same subgraph). In the hypergraph, on the other
hand, it suffices to strongly eliminate any vertex in G(H) to destroy strong connectedness,
since this amount to removing a vertex together with its neighborhood from G(H). Thus
ks (H) = 1. Therefore, kc(G(H)) — ksw(H)k. As k increases, we obtain an infinite
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family of hypergraphs for which this difference grows linearly.

Lemma 5.2. Let H = (V| E) be a directed hypergraph and G(H) = (VUE, A) its Konig
digraph. Then for € € {% ,.7} holds

max{ryy (H), ke (H)} < kpe(G(H)) < 0c(G(H)). (5.2)

Proof. Let S C A be a minimal disconnecting set in G(H) with | S |= ki (G(H)) = k
andlet S’ = {v € V|v € supp(e) Ae € S}. Note that | S" |<| S |. G(H)\ S’ is not strong
or unilaterally connected (and in particular not unilaterally connected on V'). Therefore S’
is a weak disconnecting set in H by Lemma 2.4, and thus we have s« (H) <| S’ |[<| S |=
ke (G(H)). An analogous argument using F' = {e € Ele € supp(e’) A e’ € S} yields
Ky (H) <| S |= Kk (G(H)). The remaining inequalities are the Whitney inequalities for
digraphs [8]. O

Recall that in general we have d¢ (H) < d¢(G(H)). The inequality is strict for some
hypergraphs. This is the case even if max{x! . (H), kwe} = Kuwe. For example in Fig-
ure 2 (right) we have k., (H) = k and d¢% (H) = 1 for both unilateral and strong connec-
tedness assuming max{x. . (H), kue } = Kuwe-

We note, finally, that the difference x(G(H)) — max{kw«(H), K}, (H)} can be ar-
bitrarily large. The right panel of Figure 5 shows the Konig digraph G(H) of a directed
hypergraph H = (V, E') with even k is even and the arcs (v1, a1), (v2, ag) are k parallel
arcs of each direction between these vertices. We r;,(G(H)) = 2k (due to removal of the
2k arcs incident with vy or v or a; or az) and ks (G(H)) = k + £ (due to removal of the
k arcs with tail (or head) any of the vertices vy, va, a1, az). In the hypergraph H, {vy, v}
is a weak vertex cut, hence k., (H) = 2. The same is true for removing {a1,as}, thus
Kl (H) = 2. Thus k4 (G(H)) — max{ky¢(H), ke (H)} > k+ & — 2. We therefore
obtain an infinite family of hypergraphs for which this difference grows linearly with k.

6 Concluding remarks

We have seen that some of the connectivity invariants of directed hypergraphs are “ill-
behaved” in the sense that they are not bounded by any other connectivity invariant. This
is in particular the case for ’.. It is an interesting open question, therefore, whether there
are interesting structural constraints on the directed hypergraph for which ', is bounded
by some of the other connectivity parameters. A class of hypergraphs that is relevant in this
context are those whose minimal cut sets are covered by collections of hyperedges that form
a disconnecting set. It remains a question for future research whether such connectivity
properties are related to classes of hypergraphs that have already received attention in the
literature.
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Abstract

In this paper the problem of minimizing vertex-degree function index H;(G) for k-
generalized quasi-unicyclic graphs of order n is solved for k¥ > 1 and n > 2k + 2 if
the function f is strictly increasing and strictly convex. These conditions are fulfilled by
general first Zagreb index °R,, (G) if a > 1, second multiplicative Zagreb index H(G)

2
and sum lordeg index S L(G). The extremal graph is unique for k = 1,n = 4 and for k > 2

and it consists from a path x1, 22, ...,2,—1 and a new vertex z,, adjacent with xy, xg41
and x4 o.

Keywords: Vertex-degree function index, general first Zagreb index, second multiplicative Zagreb
index, sum lordeg index, k-generalized quasi-unicyclic graph, Jensen inequality.

Math. Subj. Class.: 05C35, 05C75, 05C09

1 Introduction

Let G be a simple graph. By V(G) and E(G) we denote the vertex set and the edge
set of G, respectively. Let e(G) be the number of edges of G. For any z € V(G), we
denote by dg(x) the degree of z, i.e., the number of neighbors of = in G. If the graph G
is clear under the context, then we use d(z) instead of dg(x). A vertex with degree one
will also be referred as a pendant vertex. Suppose that V(G) = {v1,va,...,v,} and the
degree of vertex v; equals d; fori = 1,2,...,n, then 7 = (d1,da,...,d,) is called the
degree sequence of G. We always will enumerate the degrees in non-increasing order, i.e.,
dy >dy > ... > d,. P, and C,, will denote the path and cycle on n vertices.

*The author thanks the referees for valuable comments.
E-mail address: ioan@fmi.unibuc.ro (Ioan Tomescu)
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For S C V(G), the subgraph induced by S is denoted G[S]. For two vertex disjoint
subsets S, T C V(G), the induced bipartite graph between .S and T is denoted by G[S, T'.
For graph G and a subset X of V(G), G — X is the graph obtained from G by removing
the vertices of X and all edges incident to any of them. In particular, when X consists of
only one vertex v, G — {v} is always abbreviated to G — v. Similar notation is G — uv,
where uwv € E(G).

A unicyclic graph G of order n is connected and has n edges. It consists of a cycle C,.,
where 3 < r < n and some vertex-disjoint trees having each a vertex common with C,.. A
bicyclic graph G of order n is a connected graph of size ¢(G) = n + 1. It has two linearly
independent cycles which have a common vertex or a common path P, with a > 2 or they
are connected by a path P, with b > 2. The quasi-tree is a graph G in which there exists a
vertex v € V(G) such that G — v is a tree. Similarly, if graph G has the property that G — v
induces a unicyclic graph for a suitable vertex v, then G is called a quasi-unicyclic graph.
In [14], Xu et. al. generalized the concept of quasi-tree to k-generalized quasi-tree as:

Definition 1.1 ([ 14]). For any integer £ > 1, the connected graph G is called a k-generalized
quasi-tree, if there exists a subset Vi, C V(G) with cardinality k such that G — Vj is a tree
but for every subset Vj,_; of cardinality k¥ — 1 of V' (G), the graph G — V,_1 is not a tree.

In [14], the authors pointed out that any tree is a quasi-tree since the deletion of any
pendant vertex will produce another tree. Thus, they called any tree a trivial quasi-tree, and
other quasi-tree graphs as non-trivial quasi-trees. With the similar reason, any unicyclic
graph with at least one pendant vertex is also a quasi-unicyclic graph. Motivated from
Definition 1.1, Javaid et. al. [7] generalized the concept of quasi-unicyclic graph to k-
generalized quasi-unicyclic graph as:

Definition 1.2 ([7]). For any integer k£ > 1, the connected graph G is called a k-generalized
quasi-unicyclic graph, if there exists a subset V; C V(G) of cardinality & such that G — V,
is a unicyclic graph but for every subset V;_; of cardinality & — 1 of V(G), the graph
G — Vj_1 is not unicyclic.

It is easily checked that a quasi-unicyclic graph which is not unicyclic is just a 1-
generalized quasi-unicyclic graph. In what follows, we call the vertex set V), of Defini-
tions 1.1 and 1.2 as a k-quasi-vertex set, and we use the symbol ¥ to denote the class of
k-generalized quasi-unicyclic graphs with n vertices.

Notice that a graph may by a k-generalized quasi-unicyclic graph for several non-
consecutive values of k.

For other notations in graph theory, we refer [13].

Among all (vertex) degree-based graph invariants, the first Zagreb index M7 (G) [4] is
a famous topological index. It is defined as

M(G)= Y d*(v).

vEV(G)

The general first Zagreb index (sometimes referred as “zeroth-order general Randié
index” [8]), denoted by °R,, (G was defined [9] as

Ra(@) = 3 dv)°,

veV(G)
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where « is a real number, o € {0, 1}. For a = 2 it is the first Zagreb index M;(G).
Extremal results concerning the first Zagreb index for trees, unicyclic and bicyclic
graphs were obtained in [1, 3, 16].
The second multiplicative Zagreb index or modified Narumi-Katayama index [2, 6] is

defined as
[Ie= 1] dv™= 1] dwd().

2 veV(G) weE(G)
This index is minimum if and only if In H(G) = vev(c) A(v) Ind(v) is minimum.

2
The sum lordeg index is one of the Adriatic indices introduced in [12] and it is defined

by
SLG) = Y d(v)y/Ind(v) = > dw)yInd(v).

eV (@) VeV (G):d(v)>2

The vertex-degree function index H(G) was defined in [15] as

Hi(G)= Y f(dv))

veV(G)

for a function f(x) defined on positive real numbers. In this paper we will impose to func-
tion f(z) to be (i) strictly increasing and (ii) strictly convex. All indices mentioned above
are vertex-degree function indices H¢(G): °R,(G) corresponds to f(z) = x® which
satisfies (i)—(ii) for a > 1; the natural logarithm of the second multiplicative Zagreb in-

dex G) to x) = xInx which satisfies (1)—(11) for x > 1 and sum lordeg index to
= g
2

f(z) = zv1Inz satisfying (i)-(ii) for x > 2 (see [5]).

The rest of the paper is organized as follows. In Section 2, we introduce a function
defined on the partitions of n and give some properties concerning the minimum of this
function. In Section 3, we solve the problem of minimizing the vertex-degree function
index H¢(G), where f(x) verifies (i)—(ii) for k-generalized quasi-unicyclic graphs of order
nfor k > 1 and n > 2k + 2. Section 4 includes an extremal result of this type for
k-generalized quasi-trees when k > 2 and n > 3k.

2 Preliminary results

In what follows we shall suppose that function f(x) satisfies requirements (i)-(ii). The
following lemmas will be used in our proofs.

Lemma 2.1. Lety > 0and x > y + 2. Then

f@)+ fly) > flz—1)+ fly+1).

Proof. The function f(x) being strictly convex, p(z) = f(z + 1) — f(x) is a strictly
increasing function. Since z — 1 > y + 1 > y it follows that p(z — 1) > @(y), or
O

fl@)=flx—-1)> fly+1)— f(y)-

For integers n, p such that n > 1 and p > n denote by D, ;, the set of n-tuples x =
(z1,22,...,2,) such that 1y > o > ... > x, > land ), x; = p. Let the function
F(x) = >.", f(x;). By Lemma 2.1 the minimum of F(x) is reached if and only if
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|x; — :vj| < 1forevery 1 <i < j < n,orequivalently, if and only if 1 + x2 + ... + z,
is an equipartition of p, having almost equal parts. It follows that the point of minimum of
F(x) on D, is unique.

Lemma 2.2. Ifq > p > n then

min F(x) > min F(x).

XEDn,q xeDn,p
Proof. If p = kn+r, where 0 < r < n —1, then the point x* = (z7,...,z}) where F(x)
reaches its minimum is z* = (k, k,..., k) forr = 0. Otherwise, 2] = ... =z =k + 1
andz),, =...=x, = k. Ifx* = (2],...,2),) and y* = (y7,...,y,) denote the points

of minimum of F'(x) in D, ;, and in D, 1, respectively, it follows that there is an index
t,1 <t < nsuchthaty = =} + 1 and y} = z} fori # t. We get F(y*) > F(x*),
therefore

min F(x)> min F(x)>...> min F(x).

x€D, 4 XEDp g1 x€D, p
]
For a natural number s, 1 < s < n — 1, denote by D;"’L’p C D, the set of n-
tuples (z1, %2, ..., %y) € Dy such that the last s components are equal to 1: z,_s11 =

Tp—s42 = ... = &, = 1. The following property also holds by Lemma 2.1:

Lemma23. [fs<t<n—1landp>2n—1t+1then

min F(x) < min F(x).

xeD; x€D}, ,
Proof. Let x* = (x7,...,z;,) be the point of minimum of F'(x) in D}, . It follows that
Ty 4 =...=x, =1 Since p > 2n — t + 1, we deduce that 7 > 3. By rearranging
the numbers 7 —1,25,...,2)_,,2,1,...,11in decreasing order we get the vector denoted
by y*, which belongs to D!} We get that F'(x*) > F(y*) > minp; , F'(x) and lemma
holds. ' O

Since Y., d; = 2e(G) we get:

Lemma 2.4. We have
Hi(G)> min F(x).

xeDn.Ze(G)
Equality may hold only if the point of minimum (x5, 25, ... 2%) of F(z1,2a,...,2Ty) in
Dy, 2¢(c) is graphical, i.e., if there exists a graph G with degrees d; = x} fori=1,...,n.

3 Main results

Letk > landn > 2k+2. By F,, ;, we denote the graph consisting of a path 21, z2, ..., Zp—1
and a new vertex x,, which is adjacent to zj, ;+1 and zp42. For k > 2 and n > 2k + 2,
this bicyclic graph belongs to the class U* of k-generalized quasi-unicyclic graphs with
n vertices. For k = 1 and n = 4 this graph, denoted F} ;, consists of two cycles C3
having a common edge and belongs to the class ;. For k > 2 we have Hy(F, ;) =
4f(3) + (n —6)f(2) + 2f(1) and this expression does not depend on k.
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Theorem 3.1. If G € U} and n > 4, then we have H¢(G) > 2f(3) + (n — 2) f(2).

The equality is reached if and only if G has two vertices of degree three and n — 2 vertices
of degree two, i.e., it consists of two vertex disjoint cycles joined by a path Ps or two cycles
having a common path Py,where s,t > 2. The extremal graph is unique only for n = 4,
when it coincides to Fy ;.

Proof. Suppose that G € U} has minimum H;(G). Since G € U}, there exists a vertex
vg such that G — vg is a connected unicyclic graph with n — 1 vertices and n — 1 edges.
We first will prove that dg(vg) = 2. Since k = 1, by Definition 1.2, G is not a unicyclic
graph and so dg(vg) > 2. We assume that dg(vg) > 3. If vou is an edge of G, denote
Gy = G —vu. Let H =G — vy = G1 — vy, which is a unicyclic graph. G is not
unicyclic because its number of edges equals |E(H )|+ dg(vo) —1 > n+ 1. It follows that
G1 € U}. Since G; = G — vou we get H¢(G) > Hs(G1), a contradiction, since function
f () is strictly increasing.

Consequently, G hasn — 1 + 2 = n + 1 edges. In D,, 5,,+2 the minimum of the function
F(x) is reached for the n-tuple (3, 3,2,2,...,2), since 3+3+2+.. .42 is an equipartition
of 2n + 2 with n almost equal parts. The degree sequence (32,2"~2) is graphical and any
graphical realization consists of two vertex disjoint cycles joined by a path P or two cycles
having a common path P, where s,t > 2 since G is connected. All these graphs belong to
U}L and we are done. For n = 4 the extremal graph is Fy ;, composed from two C's with a
common edge, for n = 5 there are two extremal graphs: GG; and G2, consisting of Cy and
a new vertex adjacent to two adjacent and nonadjacent vertices, respectively, of C. For
n = 6 there exist five extremal graphs and so on. O

The following result was proved in [10]:

Theorem 3.2 ([10]). Ifk > 2,n > 2k + 2 and G € UF, then M,(G) > 4n + 14, with
equality if and only if G = F,, .

An extension of this result is:

Theorem 3.3. For k > 2 andn > 2k + 2, if G € UF then we have
Hy(G) 2 4f(3) + (n = 6)f(2) + 2f(1).
The equality is reached if and only if G = F,, .

Proof. Let G € U¥ such that H;(G) is minimum. By Definition 1.2, there exists a k-
quasi-vertex set, which is a subset V;, C V(G) with cardinality &k such that G — V}, is a
unicyclic graph but for every subset Vj,_ of cardinality k£ — 1 of V(G), the graph G — V},_1
is not unicyclic. Let W,,_, = G — Vj. If there exists a vertex v € V}, which is adjacent
with a single vertex from W,,_y, then V;,_y = Vj — v has the property that G — Vj,_; is
unicyclic, which contradicts the Definition 1.2. It follows that every vertex of Vj is not
adjacent to any vertex of W,,_j or is adjacent to at least two vertices from W,,_j. Suppose
that the subgraph G[Vj] has » > 1 connected components A;, As, ..., A,. Since G is
connected, we deduce that in each component there is at least one vertex which is adjacent
with at least two vertices from W, _;. Indeed, since GG is connected, it follows that for
every i,1 < i < r, in component A; of G[V}] there is a vertex v; which is adjacent to at
least one vertex in W, _j. If v; would be adjacent to a single vertex in W,,_, this would
contradict the property that every vertex of Vj is not adjacent to any vertex or is adjacent to
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at least two vertices of W,,_j. Each component ¢ has at least | 4;| — 1 edges and equality
holds if and only if this component is a tree. It follows that the number of edges of G
having at least one end in Vy is atleast 2r+ ., (JA4;|—1) = 2r+k—r =k+r > k+1.
Since W, _y, is a unicyclic graph it has n — k edges. We get that the number of edges of
Gisatleast k + 1+ n — k = n + 1. Equality holds only if » = 1 and G[Vj] has exactly
[Vi| — 1 edges, i.e., G[V%] is a tree. In other words, this happens when G[V] is a tree with
k vertices and exactly one vertex, say w of this tree is adjacent with exactly two vertices of
W, —k. In this case G is bicyclic, having e(G) = n + 1 edges.

Now the proof splits into the following two cases: Case 1. ¢(G) = n + 1 and Case 2.
e(G) > n+2.

Case 1. In this case G has at least one pendant vertex, since G[Vj] is a tree with k > 2
vertices and exactly one vertex of this tree, denoted by w is adjacent to two vertices from
Wi —k. Other four subcases may hold: Subcase 1.1. G has one pendant vertex. Subcase
1.2. G has two pendant vertices. Subcase 1.3. G has three pendant vertices. Subcase 1.4.
G has at least four pendant vertices.

Subcase 1.1. Since G is a connected bicyclic graph of size n + 1 with one pendant
vertex one obtains that G[V;] is a path w,y1,99,...,yx—1 and dg(w) = 3,dg(y1) =
2,...,dg(yp—2) = 2and dg(yr_1) = 1. The degree sequence may be m; = (33,2774, 1),
7y = (4,3,2"73,1) or m3 = (5,2"72,1). We shall prove that in all cases G ¢ U*. If
the degree sequence is 71 then G contains two cycles C,. and C; having a common path

P = u,...,v where u # v or C, and C are vertex disjoint and they are joined by P
and w # wu,v. In this case we can find a vertex z # w,y1,¥2,---,Yk_1,U, v such that
if Vier = {y2,...,Yk—1,2} then G — V},_ is unicyclic, a contradiction. If the degree

sequence of G is 7, then C). and Cs have a common vertex and a similar conclusion as
for 71 holds. In case of w3, w coincides with the common vertex of C',. and Cj, but in
this situation G — V4 is not a unicyclic graph being disconnected, which contradicts the
hypothesis.

Subcase 1.2. In this case G has two pendant vertices. We further prove that the unique
graph in this situation belonging to U” is F’, 1. We consider other two subcases: Subcase
1.2.1. G[V%] is a path, as in the subcase 1.1. Subcase 1.2.2. The tree G[V}] has two pendant
vertices and the vertex w is adjacent to two vertices of W,, _.

Subcase 1.2.1. In this case, as in the subcase 1.1, G consists of two cycles, C;. and Cs,
where r, s > 3, apath P = u, ..., v connecting cycles C,. and C or being a common path
of C, and Cs and a path w,y,...,yr—1. Since G has two pendant vertices there exists
another path having an end denoted by ¢ # w, where w,q € V(C,.) UV (Cs) UV (P).
If cycles C, and Cj are disjoint or max{r,s} > 4 and cycles have a common path or
cycles have only a common vertex we can always find a vertex z such that G — Vj,_; is
unicyclic, where Vi1 = {y2,...,yx—1, 2}, a contradiction. The remaining case is when
C, = Cs = C3 and the cycles have a common edge. In this last case G = F}, j, € Llff.

Subcase 1.2.2. In this situation G[V] consists of two paths having a common vertex
w or it contains one vertex of degree three different from w. In both cases we can find a
subset X C V; of cardinality k& — 2 such that G[V}, — X is an edge with an end w. As in the
previous cases, G contains two cycles C'. and C's having a common path P = u, ..., v or
C, and Cj are vertex disjoint and they are joined by P, or the cycles have only a common
vertex (when v = v), w € V(C,) UV (Cs) UV (P) and w # u,v. In this case we can
find a vertex z € Vi, U {u, v} such that G — V},_1 is unicyclic, where Vj,_; = X U {z}, a
contradiction.
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Subcase 1.3. Since k£ > 2 we have n > 2k +2 > 6. We shall consider the cases n = 6;
n="7Tandn > 8.

If n = 6 then minyeps F(x) is reached for x* = (42,3,1%) by Lemma 2.1 and
H;(G)> F(x*)=2f(4)+ FB3)+3f£(1) > Hy(Fs,2) =4f(3)+2f(1), acontradiction,
since this inequality is equivalent to

2/(4) + (1) > 3/(3). G.D)

Since f is strictly convex by Jensen inequality we get f(4) + f(2) > 2f(3) and by
Lemma 2.1 we deduce f(4) + f(1) > f(3) + f(2). By summing up these inequalities
we find (1).

Similarly, for n = 7 we deduce Hf(G) > minyeps | o F(x). This minimum is reached
for x* = (4,3%,1%) by Lemma 2.1 and F(x*) = f(4) +3f(3) + 3f(1) > Hs(Fy2) =
4f(3) + f(2) +2f(1), a contradiction since this inequality is equivalent to f(4) + f(1) >
fB3)+1(2).

If n > 8 then min,cps | F(x) is reached for x* = (3%,277813) by Lemma 2.1

and Hy(G) > F(x*) = 57(3) + (n — §)7(2) + 3£(1) > Hp(Fuz) = 4/(3) + (n -
6)f(2)+2f(1), a contradiction, since this inequality is equivalent to f (3)+ f(1) > 2£(2).
The last inequality follows by Jensen inequality since f is strictly convex.

Subcase 1.4. Suppose that G has s > 4 pendant vertices. By Lemma 2.3 we have
mingeps , ., F(x) > Milyeps | F(x), which implies H¢(G) > H(F, k), which is
again a contradiction.

Case 2. If ¢(G) = n + 2 then minkep, ,,,,, F(x) is reached for x* = (3*,2"7*) by
Lemma 2.1. We get H¢(G) > F(x*) = 4f(3) + (n —4)f(2) > Hy(Fnx) = 4f(3) +
(n—6)f(2) +2f(1),0or 2f(2) > 2f(1), which is true because f is strictly increasing and
this fact contradicts the hypothesis about the minimality of G.

If e(G) > n + 3 Lemmas 2.4 and 2.2 yield that H;(G) > mingep, ,,,c F(x) >
minkep,, 4,4 F(x) > Hy(F, 1), which contradicts the hypothesis. Thus, the theorem
holds. O

4 Concluding remarks

In this paper we have solved a minimization problem concerning the vertex-degree function
index H(G) in the class of k-generalized quasi-unicyclic graphs of order n for k£ > 1 and
n > 2k + 2 if the function f is strictly increasing and strictly convex. This includes the
case of general first Zagreb index ° R, (G) if o > 1, second multiplicative Zagreb index
H(G) and sum lordeg index SL(G). For general first Zagreb index ° R, (G) this problem

2
was solved in [10] by other means for o = 2.

By similar methods one can prove that for £ > 2 and n > 3k the k-generalized quasi-
trees of order n which reach the minimum of H;(G) consist of three vertex-disjoint paths
1,3 T3 YL, Ypand 21, ..., 2z, Where p, ¢ > k and p+q = n—Fk and three additional
edges x1y1, y121 and zyx1. This minimum equals 3f(3) 4+ (n —6) f(2) +3f(1). The same
result has been already obtained in [ | 1] by using different arguments.
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Abstract

Rotation distances measure the differences in structure between rooted ordered binary
trees. The one-dimensional skeleta of associahedra are rotation graphs, where two vertices
representing trees are connected by an edge if they differ by a single rotation. There are no
known efficient algorithms to compute rotation distance between trees and thus distances
in rotation graphs. Limiting the allowed locations of where rotations are permitted gives
rise to a number of notions related to rotation distance. Allowing rotations at a minimal
such set of locations gives restricted rotation distance. There are linear-time algorithms to
compute restricted rotation distance, where there are only two permitted locations for rota-
tions to occur. The associated restricted rotation graph has an efficient distance algorithm.
There are linear upper and lower bounds on restricted rotation distance with respect to the
sizes of the reduced tree pairs. Here, we experimentally investigate the expected restricted
rotation distance between two trees selected at random of increasing size and find that it
lies typically in a narrow band well within the earlier proven linear upper and lower bounds.
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1 Introduction

Binary trees capture hierarchical relationships in a wide range of settings. For example,
when there is an order on leaves, binary search trees have broad use, see Knuth [16]. Sim-
ple local changes, called rotations, at nodes give rise to rotation distance and the rotation
graph, where two trees are connected by an edge in the rotation graph if they differ by a
single rotation. There are no known algorithms for computing rotation distance exactly in
polynomial time, though there are some estimation algorithms which run in polynomial
time of Baril and Pallo [1] and Cleary and St. John [1 1] and the problem is known to be
fixed-parameter tractable, see Cleary and St. John [10]. But there is thus no known algo-
rithm for calculating distances efficiently in rotation graphs. Given the apparent difficulty
of computing rotation distance exactly, there are a number of related notions that have been
considered, such as restricted rotation distance of Cleary [4], right-arm rotation distances of
Cleary and Taback [12] and level-restricted rotation distances of Luccio, Pagli, and Mesa
Enriquez [18]. In each of these, the locations where rotations are permitted is restricted
in some way. If we only allow rotations either all along the right arm of the tree or only
at the root and right child of the root, then there are linear-time algorithms for computing
the resulting right-arm rotation and restricted rotation distances, see Cleary [4] and Cleary
and Taback [12]. Thus we can explore the properties of distance in the related graph as-
sociated to restricted rotation distance. Here, we experimentally study the distributions of
restricted rotation distance between randomly selected trees of increasing size and find that
the distances appear to grow on average quite linearly with size with a linear coefficient of
between three and four, with the distances distributed centrally arranged near the average
in relatively narrow spreads.

This gives insight into the distribution of distances between pairs of trees in the re-
stricted rotation graph which is not presently feasible at this scale for the rotation graph,
and equivalently into the distribution of distances between vertices of the restricted rotation
graph.

2 Background and definitions

In the following, by free we mean a rooted binary tree where each node has either zero or
two children, a left child and a right child. Such trees are sometimes called 0-2 trees or
proper binary trees, see Knuth [16]. A node with no children is a leaf, and a node with two
children is an internal node. The size of a tree T is the number of internal nodes in 7. We
number the n + 1 leaves in a tree with n internal nodes from left to right from 0 to n.

We encode binary trees via the standard encoding of a preorder traversal where an
internal node is denoted by 1 and a leaf node by 0. So the left hand tree in Figure 1 has
encoding 1101100101000 and the right hand tree has encoding 1101110001000. A rotation
at a node P is the operation depicted in Figure 1 where one grandchild of P is promoted
to become a child of P, one child is demoted to become a grandchild, and where one
grandchild’s parent node is switched in an order-preserving way. In terms of encodings,
a left rotation at a node can be regarded as a string substitution of the form ... 1lzlyz...
becoming ...1lzyz ... where z,y, and z are encodings of subtrees, with a right rotation
the inverse string substitution operation.

Given two trees S and T of size n, Culik and Wood [13] showed that there is always
at least one sequence of rotations transforming .S to 7" and thus defined rotation distance.
Rotation distance between S and T', denoted d(S, T'), is the minimum number of rotations
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Figure 1: An example of a left rotation at node P, with a rotation promoting child node C
to C’ and demoting parent node P to P’. The left hand tree has encoding 1101100101000
and the right hand tree is 1101110001000. All other nodes are unaffected by the rotation
at P. Right rotation at C"’ is the inverse operation, taking the tree on the right to the tree on
the left.

needed to transform S to 7" where the rotations are permitted at any nodes present. We need
not have rotations permitted at every node to transform any tree to any other- a minimal set
of permitted rotations has size 2, as described by Cleary [4]. We take those two locations
to be the root and the right child of the root, giving restricted rotation distance between S
and T, denoted d (S, T), as the minimum number of rotations needed to transform S to T’
where the rotations are permitted only at the root node (always present) and the right child
of the root node, if present.

The rotation graph RG(n) of size n is the graph whose vertices are rooted binary trees
of size n and where two vertices are connected by an undirected edge if there is a single
rotation transforming the one tree to the other. The rotation graph is the one-dimensional
skeleton of the associahedron of the appropriate size. The notions foundational to the
geometric realization of associahedra go back to Tamari [22] and Stasheff [21] and were
first published concretely by Lee [17]. Here, we consider distances in the related restricted
rotation graph RRG(n) where the vertices are again trees and an edge is present between
trees S and 7 if they differ by a single rotation at either the root or the right child of the
root. We note that the restricted rotation graph does not enjoy the same set of symmetries
as the ordinary rotation graph- in fact, not even the valence is the same for every vertex.
Most vertices have valence 4, corresponding to left and right rotations at the root and right
child of the root, but some have smaller valence if the right child of the root is not present
or if rotation in a direction is not possible at one of those two nodes. There are vertices
of valence 1 in this graph, whereas the rotation graph has high symmetry, arising from the
dihedral symmetries inherited from the full associahedron.

A tree pair (S,T) is a pair of trees of the same size. A tree pair (S, T) is unreduced if
there are nodes in both .S and T such that leaf node children numbered as 7 and 7 + 1, via
preorder traversal of the tree, are the same in both trees. A reduction in a tree pair is the
removal of such a pair of identically numbered siblings in each tree, replacing them with a
single leaf ¢, and then renumbering to get a new tree pair (S’,T") of one smaller size, see
Cannon, Floyd and Parry [3] for background as well as for connections with Thompson’s
group F. A tree pair (S, T) is said to be reduced if there are no possible reductions. Note
that for both rotation distance and restricted rotation distances, the distances between S and
T are the same as between the representatives of their reduced tree pair S’ and 7’ as the
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Figure 2: A tree of size 6 with leaves numbered in red from O to 6 and with internal nodes
numbered from O to 5. Nodes 0 and 5 are left nodes and all other internal nodes are interior
nodes.

same sequence of rotations will perform the required transformations, see [4]. The binary
address of a node in a tree is a sequences of 0’s and 1’s representing the path from the root
to the node with a 0 for each left child and 1 for each right child. For example, the address
of node C' in Figure 1 in the left hand tree is 011 as the path from the root to C'is a left
edge followed by two right edges.

A right node of a tree is one whose binary address consists only of 1’s and has at least
one 1. A left node is one whose binary address consists only of 0’s. The root node is thus a
left node but not a right node. All non-right and non-left nodes of a tree are interior nodes.
We number nodes with an in-order traversal of the tree, and a node pair from a tree pair
(S,T) is a pair of nodes numbered the same in such traversals. Figure 2 shows leaves and
nodes numbered in the resulting left-to-right in-order traversals of leaves and interior nodes
respectively.

To calculate restricted rotation distance, we use the methods of Fordham [15]. His
methods were designed to calculate word length exactly in Thompson’s group F' with re-
spect to the generating set {x¢, z, Ly, 331_1}, and give minimal length representatives of
a word with respect to that generating set. The generator x( corresponds to right rotation at
the root, with z ! correspondingly the inverse which is a left rotation at the root. Similarly,
a1 and its inverse correspond to rotations at the right child of the root. So word length in F'
translates into restricted rotation distance between trees, as described in [4, 12].

Fordham’s method takes as input two trees forming a reduced tree pair, and classifies
each interior node as one of seven types as follows:

Ly: The first node on the left side of the tree.

* Ly Any left node other than the leftmost node.
e Jy: An interior node with no right child.

¢ Ig: An interior node with a right child.

* Rp: Any right node numbered £ whose immediate successor node &+ 1 is an interior
node.
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Ry | Ryt | BRr | Ly | Ip | Ir

Ro | 0] 2 [ 2 113

Rnr 2 2 2 1 1 3
Ry 2 2 2 1 3 3

L, 1 1 1 2 2 2

Iy 1 1 3 2 2 4

Ir 3 3 3 2 4 4

Table 1: Weights for caret pairs by caret pair types.

* Ry A right node which is not of type R; but for which there is some successor
interior node.

* Ryp: A right node with no successor interior node.

A primary result of Fordham [15] is that the word length |w| in Thompson’s group F'
with respect to the standard finite generating set can be calculated by classifying node pairs
into those seven types and summing the totals from the Table 1. Note that the first node
pair is always of type (Lg, Lo) and adds weight 0, and the single Lo in each tree must
necessarily be paired, so the caret type Ly is not listed in Table 1.

As described [12], since all non-Lg carets contribute at least one to word length (and
thus at least one to restricted rotation distance), and since a caret can contribute at most 4
to word length, analysis of caret types and configurations give that for two trees forming a
reduced pair of size n, the restricted rotation distance between lies between n—1 and 4n—8
and is sharp for n > 3. Fordham’s method goes further and can be in fact used to not only
find restricted rotation distances, but also to find and enumerate all possible minimal length
paths between the relevant trees. We note that there have been computations to calculate
the number of words of Thompson’s group F' of increasing word length with respect to
the standard generating set (and thus restricted rotation distances) of increasing sizes by
Burillo, Cleary, and Weist [2] and Elder, Fusy, and Rechnitzer [14], with the latter giving
the first 1500 terms of the OEIS sequence A156945 [20] which are the number of elements
of increasing word length size. The relationship between word length size and tree size is
linear but knowing word length gives only linear bounds on the tree size.

3 Distributions of restricted rotation distance

We study computationally the distribution of restricted rotation distance between rooted
binary trees. This is equivalent to analyzing distances in the restricted rotation graph
RRG(n) between vertices. Work of Cleary and Maio [6] analyzes distributions of ordinary
rotation distances. Here, we address similar questions for restricted rotation distances. The
general question is: given two trees of the same size n, what is the expected restricted ro-
tation distance between them? We anticipate that on average, larger tree pairs have larger
distances between them, but we would like to estimate the rates of growth as well as the
dispersal. Work of Cleary and Taback [12] gave sharp lower and asymptotically sharp up-
per bounds for restricted rotation distances, and we find that the vast majority of instances
are clustered quite centrally and not near the bounds.
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Tree size range | # sampled | Avg. red. frac. | Avg. RRD ratio
10-19 138999 0.907533 2.24473
20-29 161500 0.917172 2.64333
30-39 150500 0.920593 2.83326
40-49 133000 0.922663 2.9421
50-59 144000 0.923896 3.00793
60-69 134500 0.924459 3.05513
70-79 129000 0.924884 3.08993
80-89 119000 0.925221 3.1151
90-99 118500 0.925659 3.13679

100-199 685191 0.92646 3.19676
200-299 509390 0.927268 3.24813
300-399 310962 0.927496 3.26887
400-499 111460 0.927678 3.27999
500-599 89580 0.92783 3.28727
600-699 100600 0.927795 3.29198
700-799 102600 0.9279 3.29606
800-899 43600 0.927921 3.29866
900-999 45450 0.928027 3.30121
1000-1249 89200 0.928008 3.30416
1250-1499 86000 0.928002 3.3069
1500-1749 99000 0.928071 3.30908
1750-1999 35600 0.928121 3.31039
2000-2249 20000 0.928089 3.31145
2250-2499 19800 0.928089 3.31235
2500-2749 18764 0.928117 3.31311
2750-2999 13900 0.928124 3.31386
3000-3249 12124 0.928094 3.31407
3250-3499 8044 0.928185 3.31517
3500-3999 3072 0.928024 3.31562
40004500 800 0.928023 3.31568

Table 2: Tree pair restricted rotation distances for unreduced tree pairs. Given are the
average fractions of the reduced tree pairs size of the originally generated tree pair size and
the average ratio of restricted rotation distance to the generated tree pair size.
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Figure 3: Restricted rotation distance vs. raw size for randomly selected tree pairs of
increasing sizes.
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Figure 4: Restricted rotation distance vs. reduced size for randomly selected tree pairs of
increasing sizes, by the size of the resulting reduced tree pair after reduction.



8 Art Discrete Appl. Math. 5 (2022) #P1.03

Tree size range | Number of tree pairs sampled | Average RRD size
10-19 168846 2.609
20-29 166650 2.96244
30-39 145364 3.12548
40-49 152971 3.22228
50-59 144317 3.28264
60-69 139509 3.32627
70-79 132652 3.35818
80-89 126454 3.38269
90-99 94370 3.40162

100-199 700470 3.45925
200-299 504029 3.50732
300-399 272408 3.52717
400499 116513 3.53867
500-599 97243 3.54577
600-699 107923 3.55041
700-799 74740 3.55356
800-899 48099 3.55662
900-999 40737 3.55859
1000-1249 94865 3.56172
1250-1499 100074 3.56451
1500-1749 77950 3.56616
1750-1999 22109 3.56769
2000-2249 21630 3.56872
2250-2499 20622 3.5695
2500-2749 15851 3.57045
2750-2999 13158 3.57073
3000-3249 8342 3.57162
3250-3499 2607 3.57268
3500-3999 821 3.57276
40004500 717 3.57285

Table 3: Tree pair restricted rotation distances divided by tree pair size, for reduced tree
pairs of increasing size ranges. There are examples with ratios as small as 1 and approach-
ing 4 for all n.
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We sample rooted binary tree pairs at random using Remy’s algorithm [19] for each
tree, which guarantees a uniform randomly generated tree of size n. Work on the asymp-
totic density of isomorphism classes of subgroups of Thompson’s group F' of Cleary, El-
der, Rechnitzer and Taback [5] addresses the question of the expected fraction of tree pairs
which are reduced, and later work of Cleary, Rechnitzer and Wong [9] describes the asymp-
totics of the expected sizes of reduced components of tree pairs.

Here, we study two main questions:

* Given two trees selected at random of size n, what is the expected restricted rotation
distance between them?

* Given a reduced tree pair of size n, what is the expected restricted rotation distance
between the pair?

We also seek to understand the deviations from the means of these distances. We gen-
erated tree pairs (S, 7T) at random, then calculated the reduced representatives (S’, T") of
each tree pair, then the corresponding restricted rotation distance, dg(S,T) = dr(S’,T"),
which are the same as the reductions reflect commonality which does not change the dis-
tance.

We note that generating reduced tree pairs of a specified size is not as feasible as gen-
erating tree pairs generally. As described in [O] and [5], a tree pair selected at random is
likely to have a number of reductions, and the resulting reduced representative is on average
about 10% smaller. But of course there is a (increasingly small) chance that the generated
tree is already reduced, and also a (vanishingly small) chance that it reduces all the way
down to the empty tree pair. Cleary, Rechnitzer and Wong [9] analyze some properties of
the distribution of the resulting sizes of reduced tree pairs. Cleary and Maio [8] have an
algorithm which guarantees to produce not only a reduced tree pair of a specified size, but
is difficult in an additional sense as well- not having any obvious initial first moves along
minimal length paths. Unfortunately, though that algorithm is efficient, it does not choose
uniformly from among the possible ones. The particular number of such difficult instances
is not even known precisely, though Cleary and Maio [7] calculate the number of such cases
exhaustively for small sizes and approximately for larger ones.

By generating large families of trees across a range of sizes and then performing reduc-
tions, we get a range of reduced tree pairs to consider and analyze. The resulting reduced
tree pairs are necessarily smaller than the generated, possibly reducible, tree pairs, but since
the number of reductions vary, there is a dispersal in the resulting sizes of the reduced tree
pairs. That is, if we generate 1400 tree pairs of size 1000, the smallest resulting reduced
pair may be 896 and the largest 955, with a mean and median of about 928 with the most
commonly occurring being 929 with 73 occurrences. The tree pairs were generated of fixed
sizes, often 500 apart. Thus, after reductions, these sizes would reduce to different extents
which may lead to gaps in the resulting reduced sizes. So we generate many examples
across a range of increasing sizes in an effort to get representative samples across a broad
range.

4 Experiments and discussion

For the computational experiments we described, we generated about 3.6 million tree pairs
of sizes ranging from 10 to 4400. We reduced each tree pair to a reduced representative,
and then calculated the restricted rotation distances using Fordham’s method.
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To compare average restricted rotation distances across a range of sizes, we consider
the RRD ratio, which for a tree pair (S, T') of size n is dg(S, T)/n. This gives a somewhat
normalized measure of the typical contribution of tree carets to the restricted rotation dis-
tance and a sense of how quickly the restricted rotation distance grows with increased tree
size. We note that trees realizing the lower bound of restricted rotation distance from [12]
would have an RRD ratio limiting to 1, and those realizing the upper bound would have an
RRD ratio limiting to 4.

Table 2 tabulates the results across a range of unreduced sizes, with Figure 3 plotting
the results for these unreduced sampled tree pairs. We see tight linear behavior of distance
with respect to raw size, despite the fact that the amount of reductions varies considerably
and the resulting sizes have a large influence on the corresponding distances.

Owing to the time of computation, larger size tree pairs were not sampled as exten-
sively as the smaller ones. In Figure 3 the sampling increments of size 500 are visible, and
in Figure 4 the fact that those sizes have dispersed somewhat as the reductions in size vary
is visible. The fraction of common edges in a more general sense was computed asymptot-
ically by Cleary, Rechnitzer and Wong [9] to be 6 — ;—6 ~ 0.907, so the observed fractions
of reduced size from generated size of about 0.928 is consistent with that. That asymptotic
analysis allowed reductions of internal common edges in addition to the peripheral ones
relevant to the tree reductions considered here.

In the remaining analyses, we restrict our attention to the resulting generated reduced
tree pairs as the distances are more tightly related to the sizes after reduction.

Table 3 tabulates the distances observed across a range of reduced tree pair sizes, and
Figure 4 plots these results. We can again see tight linear behavior, where the reduced trees
have on average larger rotation distances and a smaller spread in the observed reduced
instances relative to the unreduced sizes.

The examples from Cleary and Taback [12] giving the bounds of n — 1 < dg(S,T) <
4n — 8 are clearly quite constrained, as the vast majority of the sampled lengths lie close to
about 3.57n, well away from the upper and lower bounds. We note that in both cases, the
maximum possible distances (about 4 times the size) and minimal possible distances (one
less than the size) lie far away from the randomly-generated instances. This is not surprising
as those examples to show the sharpness of the bounds were carefully constructed in a very
specific manner to realize those bounds.

We note that the only entries in Table 1 that contribute 4 to restricted rotation distance
are (Ig,Ip) and (Ir,Ir) which involve interior carets being paired with interior carets.
Given that the average distances are well above 3, such caret pairings are necessarily quite
common and cannot occur in the examples realizing the lower bounds of n — 1.

Not surprisingly, given the strong linear behavior observed, a fitted linear model agrees
with the sampled data exceptionally well, giving dg(S,T) ~ 3.31941n — 17.0321 for re-
stricted rotation distance in terms of unreduced tree pair sizes n, and dg(S,T') ~ 3.57612n—
16.1551 correspondingly for reduced tree pairs of size n.

We see that the standard deviations of the observed RRD ratios of restricted rotation
distance are relatively small and stable, dropping steadily from about 0.33 for the smallest
size trees sampled, to about 0.025 for tree sizes in the hundreds, then dropping to about
0.01 for tree sizes in the hundreds, with an observed average standard deviation of ratios of
0.009 for the largest tree sizes sampled. These are for the normalized ratios- the standard
deviations do increase with size, albeit somewhat more slowly.

The distributions of restricted rotation for reduced tree pairs of a fixed size show an
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Figure 5: Distribution of restricted rotation distances for 24,067 randomly-produced re-
duced tree pairs of size 19. The sample mean is about 53.5 and the sample standard devia-
tion is about 4.58.
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Figure 6: Distribution of restricted rotation distances for 19,307 randomly-produced re-
duced tree pairs of size 29. The sample mean is about 88.5 and the sample standard devia-
tion is about 5.45.
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Figure 7: Distribution of restricted rotation distances for 17,196 randomly-produced re-
duced tree pairs of size 47. The sample mean is about 152.3 and the sample standard
deviation is about 6.36.
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Figure 8: Distribution of restricted rotation distances for 14,155 randomly-produced re-
duced tree pairs of size 68. The sample mean is about 227.1 and the sample standard
deviation is about 7.20.
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Figure 9: Distribution of restricted rotation distances for 11,258 randomly-produced re-
duced tree pairs of size 120. The sample mean is about 412.6 and the sample standard
deviation is about 8.79.
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Figure 10: Distribution of restricted rotation distances for 8266 randomly-produced re-
duced tree pairs of size 238. The sample mean is about 834.3 and the sample standard
deviation is about 11.4.
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Figure 11: Distribution of restricted rotation distances for 1200 randomly-produced re-
duced tree pairs of size 714. The sample mean is about 2536.4. and the sample standard
deviation is about 18.4. A normal distribution with the same mean and standard deviation
is superimposed for comparison.

approximately normal shape, slightly skewed to the left for smaller sizes but less so for
larger sizes. Here, we chose a few sizes for which there were a reasonable number of
observed instances, shown in Figures 5 to Figure 11. These distributions have characteristic
normal shapes, and further suggest that the extremely short and extremely long cases shown
earlier to be possible are exceptionally rare. The vast majority of randomly-selected cases
lie in relatively narrow bands concentrated on a line well away from the lowest and highest
possible bounds. For the largest million tree pairs sampled, less than 175,000 were more
than 1% away from the distance predicted by the linear model, and all but 1054 were
within 3% of the linear prediction, with the largest observed deviation from the linearly
fitted model being less than 5% away from the predicted distance. For the size 714 case
illustrated in Figure 11, the lower bound of 713 is nearly 100 standard deviations below
the sample mean and the upper bound of 2848 is about 17 standard deviations above the
sample mean of 2536.

Thus we have developed some understanding of typical behavior of distances in re-
stricted rotation graphs RRG(n) for a decent range of distances. Note that analyzing the
corresponding questions for the rotation graphs RG(n) are not presently feasible beyond
size about 20, even experimentally, due to the difficulty of computing ordinary rotation dis-
tance exactly, where the best known algorithms have exponential running time in the size
of the trees.
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Abstract

For a graph X without isolated vertices and without isolated edges, a product-irregular
labelling w : E(X) — {1,2,...,s}, first defined by Anholcer in 2009, is a labelling of
the edges of X such that for any two distinct vertices v and v of X the product of labels of
the edges incident with w is different from the product of labels of the edges incident with
v. The minimal s for which there exists a product irregular labeling is called the product
irregularity strength of X and is denoted by ps(X). Clique cover number of a graph is
the minimum number of cliques that partition its vertex-set. In this paper we prove that
connected graphs with clique cover number 2 or 3 have the product-irregularity strength
equal to 3, with some small exceptions.

Keywords: Product irregularity strength, clique-cover number.

Math. Subj. Class.: 05C15, 05C70, 05C78

1 Introduction

Throughout this paper let X be a simple graph, that is, a graph without loops or multiple
edges, without isolated vertices and without isolated edges. Let V' (X) and F(X) denote
the vertex set and the edge set of X, respectively. Let w : E(X) — {1,2,...,s} be an
integer labelling of the edges of X. Then the product degree pdx (v) of a vertex v € V(X))
in the graph X with respect to the labelling w is defined by

pdx (v) = Hw(e).
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If the graph X is clear from the context, then we will simply use pd(v). A labelling w
is said to be product-irregular, if any two distinct vertices v and v of X have different
corresponding product degrees, that is, pdx (u) # pdx (v) for any u and v in V(X)) (u #
v). The product irregularity strength ps(X) of X is the smallest positive integer s for
which there exists a product-irregular labelling w : E(X) — {1,2,...,s}.

This concept was first introduced by Anholcer in [1] as a multiplicative version of the
well-studied concept of irregularity strength of graphs introduced by Chartrand et al. in
[4] and studied later quite extensively (see for example [3, 7, 8, 11]). A concept similar
to product-irregular labelling is the product anti-magic labeling of a graph, where it is
required that the labeling w is bijective (see [9, 12]). It is clear that every product anti-
magic labeling is product-irregular. Another related concept is the so-called multiplicative
vertex-colouring (see [13, 14]), where it is required that pd(u) # pd(v) for every pair of
adjacent vertices u and v, while non-adjacent vertices can have the same product degrees.
It is easy to see that every product-irregular labelling is a multiplicative vertex-colouring.

In [1] Anholcer gave upper and lower bounds on product irregularity strength of graphs.
The main results in [ 1] are estimates for product irregularity strength of cycles, in particular
it was proved that for every n > 2

and that for every € > 0 there exists ng such that for every n > nyg

ps(Cp) < [(14&)V2n1nn).

Anbholcer in [2] considered product irregularity strength of complete bipartite graphs
and forests. Anholcer proved that for two integers m and n such that 2 > m > n it holds
ps(Kpm,n) = 3ifand onlyif n > (" ?). The main result in [2] is about product irregularity
strength of almost all forests F' such that A(F') = D for arbitrary integer D > 3, ny = 0,
nog < 0 and ny = 0 of the forest F' with all pendant edges removed, where n, denotes the
number of vertices of degree d. Anholcer proved that in this case ps(F) = nq.

In [5], Darda and Hujdurovié proved that for any graph X of order at least 4 with at most
one isolated vertex and without isolated edges we have ps(X) < |V(X)| — 1. Connections
between product irregularity strength of graphs and multidimensional multiplication table
problem was established, see [6, 10] for some results on multidimensional multiplication
problem.

It is easy to see that the lower bound for the product irregularity strength of any graph
is 3. In this paper we will give some sufficient conditions for a graph to have product
irregularity strength equal to 3. In particular we will prove that graphs of order at least 3
with clique-cover number 2 have product irregularity strength 3 (see Corollary 3.5), where
clique cover number of a graph is the minimum number of cliques that partition the vertex
set of the graph. Moreover, we will prove that for a connected graph such that its vertex set
can be partitioned into 3 cliques of sizes at least 4 then its product irregularity strength is 3
(see Corollary 4.14).

The paper is organized as follows. In section 2 we rephrase the definition of product-
irregular labellings in terms of the corresponding weighted adjacency matrices and give
some constructions that will be used for proving our main results. In section 3 we will
determine the product irregularity strength of graphs with clique cover number 2, while in
section 4 we study product irregularity strength of graphs with clique cover number 3.
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2 Product-irregular matrices

In this section we will rephrase the definition of product irregular labelling of graphs using
weighted adjacency matrices. We start with the definition of a weighted adjacency matrix.

Definition 2.1. Let w be an integer labelling of the edges of a graph X of order n with
V(X) = {v1,v2,...,v,}. Weighted adjacency matrix of X is n x n matrix M where
M;; = w({vs,v;}) if v; and v; are adjacent and M;; = 0 otherwise.

Definition 2.2 (Product-irregular matrices and product degree for matrices). Assume that
we have weighted adjacency n x n matrix M (n > 2). Then for a k-th row of a matrix
M, denoted My, define pd(My,) := H M, ; to be the product of all non-zero elements
My, #0

of the k-th row. We say that M is product-irregular if Vi,j € {1,2,...,n} fori # j
pd(M;) # pd(M;). We will work with matrices with entries a;; € {0, 1,2, 3} therefore to
simplify reading for a row v from matrix M if pd(v) = 2% - 3° then we will use notation
pd(v) := (a,b). Also define pd(v)[1] := a and pd(v)[2] := b.

Observation 2.3. A graph labelling is product-irregular if and only if the corresponding
weighted adjacency matrix is product-irregular.

Let n > 4 and let M, (z,y, z) be n X n matrix such that M,,(z,y, z) = (m;;) where
0, ifi=j
z, ifj<n—i+landi#j

z, if (4,5) = (k,n)or (4,7) = (n, k) fork = [§] +1
y, otherwise

mi; =

For example:

0O 2z z =z = o x
r 0 2 x = x y
r z 0 = vy y

M (z,y,z)=|z =z = 0 y y y 2.1
r z x y 0 y =z
r z yyy 0y
zyyy zy 0

We will denote with A @ B the direct sum of matrices A and B, that is

A 0
wopo(20),

where 0 denotes the zero matrix of appropriate size.

2.1 Properties of M,

Let x;, y; and z; be the number of =, y and z respectively appearing in the i-th row of
matrix M, (z,y,z). For fixed n with k we denote k := [§] + 1. Then the rows of the
matrix M, (z,y, z) can be separated into 3 types:

Ist type: (:Cknykazk) = ([nT_l—‘a [%-' - 2; 1)s
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2nd type: (24, ¥i,%) = (n —4,4— 1,0) fori < k and (x;,v;,%) = (n —i+ 1,9 — 2,0)
forn > >k,

3rd type: (Zn,Yn,2n) = (1,n— 3,1).

We denote by m;) (M) arow of type i for i € {1,2,3} of matrix M, where M is matrix
M, (z,y, z) (if the matrix M, (x,y, z) is clear from the context, then we will simply use
my;)). We start by proving the following nice property of matrix M.

Proposition 2.4. If {x,y, z} is a set of distinct pairwise relatively prime integers, then
M, (x,y, z) is product irregular matrix for any n > 4.

Proof. Suppose contrary, that is there exist 1m; and m; (that are rows of matrix M, (z,y, z))
for some ¢ # j such that pd(m;) = pd(m;). There are 3 types of rows therefore it is enough
to check the equality above not for all rows, but for all types of rows. Observe that for every
it €{1,2,...,n} the sum z; + y; + 2z; = n — 1 and pd(m;) = pd(m;) for some i # j if
and only if x; = x5, y; = y; and z; = z;. It follows that:

1. If pd(m)) = pd(m)) then ([2517,[2] —2,1) = (1,n — 3,1), so n = 3 which
is a contradiction.

2. Since rows of second type have value 0 at 3rd coordinate and rows of first and third
types have value 1 at 3rd coordinate, then pd(m(2y) # pd(m;) fori € {1,3}.

3. Itis clear that (x;, y;, 2;) # (x},9;,2;) fori < kand k < j < ni.e. product degrees
of different rows of type 2 are different.

We were considering different rows, that means we did not have to consider pd(m;)) =
pd(m;) for every i € {1,3}. O

We will define 3 matrices of class M, (x,y, z) for specific x,y and z. Assign matrix
A, =M, (1,2,3), B, := M,(2,3,1) and C,, := M,(3,1,2).

2.2 Properties of A,, & B,,

Lemma 2.5. Foreverym > n > 4, A,® By, is product irregular if (n,m) & {(4,4), (5,5),
(6,6)}.

Proof. Suppose contrary, that is there exist a; and b; (that are rows of matrices A,, and
B, respectively) for some i and j such that pd(a;) = pd(b;). There are 3 types of rows
therefore it is enough to check all of the 9 possibilities for different types of rows:

1. If pd(a(1y) = pd(ba)) then ([2] —2,1) = ([2517, [2] — 2) which contradicts
with m > n.

2. If pd(aqr)) = pd(bw)) then ([5] —2,1) = (m —j,j —1)or ([5] —2,1) =
(m — j + 1,j — 2) which contradicts with m > n > 4.

3. If pd(agy) = pd(b)) then ([5] —2,1) = (1,m — 3), so (n,m) = (5,4) or
(n,m) = (6,4) Wthh contradicts with m > n.

4. 1f pd(agz)) = pd(b)) then (i — 1,0) = (["5+],[%] —2) or (i — 2,0) =

([7:1], 121 — 2), som = 3 or m = 4, thus i = n = 4 which is a contradiction.
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5. If pd(a(z)) = pd(b(2)) then we have that in both possible cases (( — 1,0 = (m —
Joj—1))and (i —2,0) = (m—j+1,j —2)) we geti = m > n which is a
contradiction.

6. If pd(a(2)) = pd(b(s)) then pd(a(2y)[2] = 0 and pd(b(3))[2] > 0 which is a contra-
diction.

7. If pd(acs)) = pd(ba)) then (n — 3,1) = ([271],[2] — 2), so (n,m) = (5,5) or
(n,m) = (6,6) which is a contradiction.

8. prd((l(g) pd(b2y) then (n — 3,1) = (m — j,j — 1) or (n —3,1) = (m — j +

1,7 — 2), so n > m in both cases which is a contradiction.
9. If pd(a(s)) = pd(bs)) then (n — 3,1) = (1,m — 3), so (n,m) = (4,4) which is a
contradiction.
This finishes the proof. O

For the next lemma we need to consider weighted adjacency matrix
01 2
T:=(1 0 3 2.2)
2 30

Observe that pd(T) = (1,0), pd(T2) = (0,1), pd(T3) = (1,1) = ps(K3) = 3.

Lemma 2.6. Let T be the matrix defined in (2.2). For every n > 5T ® B, is product
irregular.

Proof. Observe that {pd(T;) : i € {1,2,3}} C {pd((44):) : i € {1,2,3,4}} and we
know from Lemma 2.5 that Vn > 5 A4 & B,, is product irregular. O

3 Graphs with clique-cover number 2

In this section we consider product irregularity strength of connected graphs with clique
cover number two. Suppose that G is a graph with clique-cover number 2, that is the vertex
set of G can be partitioned into two cliques C and C', of sizes n and m respectively. Then
it follows that G has a spanning subgraph isomorphic to K,, + K,,, where for two graphs
H, and H,, H; + H> denotes the disjoint union of H; and H,. Then by [5, Lemma 1]
it follows that 3 < ps(G) < ps(K,, + K,,). Hence we will start by considering product
irregularity strength of K,, + K,,.

It can be proved that any 4 x 4 weighted adjacency matrix M (with weights 1,2 and
3) is product irregular if and only if there exist row m € M such that pd(m) = (1,1).
Therefore ps(K4 + K4) > 3. There are a lot of graphs of the form K,, + K, for some
integers n and m with product irregularity strength greater than 3. But since such graphs
are disconnected, we will define operation of adding an edge between components of these
graphs, i.e. we will consider minimal connected graphs with clique cover number 2.

Definition 3.1 (+edge). Let G; and G4 be two graphs with disjoint vertex sets. With
G1 + G2 + edge we denote a graph obtained by taking disjoint union of (G; and G2 and
adding an edge between two vertices of G; and G.

Lemma 3.2. Vn > 4, ps(Ks + K,, + edge) = 3.
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Proof. Consider weighted adjacency (n + 2) x (n + 2) matrix

013 0 -0

100 0 - 0

30
L=1|: : 3.1
00 B,

00

where Ly 3 = L3 ; = 3. Clearly, L is weighted adjacency matrix of the graph K> + K,.
We will show that L is product-irregular. Since we have that pd((B,,);) = pd(L;+2) for
every i € {2,3,...n} itis enough to show that product degrees of first 3 rows of matrix L
are different and do not belong to the set {pd((By);), % € {2,3,...,n}}.

1. It is clear that those rows are different and that first two rows of L are not in the set
{pd((Bn)i), i € {2,3,...,n}}.

2. For the row L3 we have that pd(L3) = pd((By)1) + (0,1) = (n — 1, 1). Therefore
pd(L3)[1] + pd(L3)[2] =n—1+1>n—1 = pd((Bn);)[1] + pd((Bn);)[2] for
any j € {2,3,...,n}.

This finishes the proof. O
Corollary 3.3. For everyn > 4, ps(K; + K,, + edge) = 3.

Proof. Consider matrix L’ obtained from matrix L from (3.1) by deleting second row and
column. Clearly, L’ is product-irregular. O

Theorem 3.4. For every positive integers n and m such that n+m > 2 we have ps(K,, +
K,, + edge) = 3.

Proof. Consider some cases that were not covered by previous Lemmas:

(i) ps(K5 + K5) = 3. For proving this fact we can take direct sum of the following
weighted adjacency matrices:

03 111 02 2 2 1

301 3 2 2 0 3 3 3
Ts:=|1 1 0 1 1| andT5:=|2 3 0 2 3 (3.2)

1 310 2 2 32 0 1

1 2120 1 3310

(ii) ps(Ks + Kg) = 3. For proving this fact we can take direct sum of the following
weighted adjacency matrices:

01 2 3 1 3 012 3 3 3
1013 11 102 3 3 2
2101 2 2 _ 22 0 2 1 2

Ts=13 317 01 1|®™Te:=|3 3 9 9 3 1 3.3)
11210 1 33130 3
312110 32 2130
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Also consider some cases that could not be proved without adding edges between
cliques.

(i) ps(K4 + K4 + edge) = 3. For proving this fact we will consider the following
product-irregular matrix:

01 110000
10120000
11030000
12303000
0003022 2 3.4
000020 2 3
00002201
00002310

(iv) ps(Ks3 + K4 + edge) = 3. For proving this fact we will consider the following
product-irregular matrix:

01 20000
103 00 0O
23 03 000
0 0 3 02 2 2 (3.5)
0 00 20 2 3
0 00 2 2 01
000 2310

Observe that this matrix is obtained from matrix (3.4) by deleting first row and col-
umn.

(v) ps(K3 + K3 + edge) = 3. For proving this fact we will consider the following
product-irregular matrix:

(3.6)

O OO == O
O OO WwWwo
W o oo W
NN O OO
WO NO OO
S W Wo o

(vi) ps(Ky + K3 + edge) = 3. For proving this fact we will consider the following
product-irregular matrix:

0300 0
3000 3
000 2 2 (3.7)
002 0 3
03 2 3 0

Observe that this matrix is obtained from matrix (3.6) by deleting first row and col-
umn.
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(vii) ps(K;7 + K3 + edge) = 3. For proving this fact we will consider the following
product-irregular matrix:

0 00 3
00 2 2
020 3 (3:8)
32 30
Observe that this matrix is obtained from matrix (3.7) by deleting first row and col-

umn.

We are left with some trivial cases and it is straihtforward to check that ps(Ky +
Ky + edge) = ps(Py) = 3 and ps(K; + K + edge) = ps(Ps) = 3.

The proof now follows by Lemmas 2.5, 2.6 and 3.2 and Corollary 3.3. O

Corollary 3.5. If G is a connected graph of order at least 3 with clique-cover number 2
then ps(G) = 3.

Observe that K7 + K7 + edge = P5 is an isolated edge, for which product-irregular
labelling is not defined, i.e. 2 is the lower bound of the sum n + m in Theorem 3.4.

4 Graphs with clique-cover number 3

In this section we consider the product irregularity strength of graphs with clique-cover
number 3. Observe that a graph G has clique cover number 3, if and only if its complement
has chromatic number equal to 3. If G is a graph with clique cover number 3, then its
vertex set can be partitioned into three cliques, of sizes n, m and [. Then it follows that G
has a spanning subgraph isomorphic to K,, + K,, + K, hence we will first investigate the
product irregularity strength of such graphs.

4.1 Propertiesof A,, ® B,, ® C
Lemma 4.1. Foreveryn > 7 and m > 4, A,, ® C,, is product irregular.

Proof. Suppose contrary, that is 3a, and c; (that are rows of matrices A,, and Cy, respec-
tively) for some i and j such that pd(a;) = pd(c;). We will use the same type of proof as
in the Lemma 2.5.

1. If pd(a(1)) = pd(cyy) then ([2] —2,1) = (1,[2Z51]), son = 5orn = 6 and
m = 2 or m = 3 which is a contradiction.

2. prd(a(l)) = pd(c(g)) then ((%1—2, 1) = (0,m—j) or((%l—Q, 1) = (0,m—j+1).
In both cases n = 3 or n = 4 which is a contradiction.

3. If pd(a(1y) = pd(ce)) then ([5] —2,1) = (1,1),s0n = 5 orn = 6 which is a
contradiction.

4. If pd(a(2)) = pd(cq)) then (i — 1,0) = (1,[252]) or (i — 2,0) = (1, [2Z51]). In
both cases m = 1 which is a contradiction.

5. For pd(a(s)) = pd(c(2)) we have that pd(a(s))[2] = 0 and pd(c(2))[2] > 0 which is
a contradiction.

6. If pd(ac)) = pd(ce)) then (i —1,0) = (1,1) or (i — 2,0) = (1,1)) which is,
clearly, a contradiction.
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7. If pd(ags)) = pd(cq1)) then (n—3,1) = (1, [251]), so n = 4 which is a contradic-
tion.

8. If pd(a(s)) = pd(c(2y) then (n —3,1) = (0,m — j) or (n —3,1) = (0,m — j + 1),
so n = 3 which is a contradiction.

9. If pd(a(s)) = pd(c(sy) then (n — 3,1) = (1,1), so n = 4 which is a contradiction.
This finishes the proof. 0
Lemma4.2. Foreveryn > m > 5, B,®Cy, is product irregular if (n,m) & {(5,5), (6,6)}.

Proof. Suppose contrary, that is there exist b; and c; (that are rows of matrices B,, and C',
respectively) for some i and j such that pd(b;) = pd(c;). We will use the same type of
proof as in the Lemma 2.5.

1. If pd(b1)) = pd(cqr)) then ([251],[2] —2) = (1,[2L]),son = 20rn = 3
which is a contradiction.

2. 16 pd(bry) = pd(c(zy) then (12521, T3] = 2) = (0,m — ) or (2521, [2] - 2) =
(0,m — j 4+ 1), son = 1, a contradiction.

3. If pd(b(1y) = pd(cz)) then ([2517,[2] —2) = (1,1),son = 2orn = 3, a

contradiction.
4. If pd(b(2)) = pd(c(1y) then (n —i,i — 1) = (1,[251]) or (n — i+ 1,0 — 2) =
(1,[™527). In the first case we have that [%1] = i — 1 = n — 2, which implies

that 2n — 4 < m < 2n — 3, so, in particular, 2n — 4 < m < n, therefore n < 4, a
contradiction. In the second case we have that n = ¢ which is a contradiction.

5. For pd(b(2)) = pd(c(2)) we have that pd(b(2))[1] > 0 and pd(c(2))[1] = 0 which is a
contradiction.

6. If pd(b(z)) = pd(ces)) then (n —i,i —1) = (1,1) or (n —i+1,i —2) = (1,1), s0
n = 3 which is a contradiction.

7. 1f pd(bz)) = pd(c(1y) then (1,n — 3) = (1,[2:1]), som = 2(n — 3) or m =
2(n — 3) + 1 which is a contradiction because for n > 7 we have that m > n and for
5 < n < 7 we have that (n, m) € {(5,5), (6,6)}.

8. If pd(bs)) = pd(cz)) then (1,n —3) = (0,m — j)or (1,n —3) = (0,m —j + 1)
which is a contradiction.

9. If pd(bes)) = pd(c(s)) then (1,n — 3) = (1, 1), so n = 4 which is a contradiction.
This finishes the proof. O

Theorem 4.3. For every n, m and | such thatm >1>n > 7 A, ® B,, ® C; is product
irregular.

Proof. Proof follows by Lemmas 2.5, 4.1 and 4.2. O

Corollary 4.4. For all positive integers n, m and | greater than or equal to 7 it holds that
ps(K, + K., + K;) = 3.

Lemma 4.5. For all positive integers n and m greater than 6 and k € {4,5,6}, ps(K,, +
K, + Ki) =3
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Proof. Let m > n and consider matrix A,, & B,, ® C. From Lemmas 2.5, 4.1 and 4.2 we
can conclude that this matrix is product-irregular. O
Lemma 4.6. For all positive integer n > 7 ps(Kg + K¢ + K,,) = 3.

Proof. Consider T & T @ B,, which is product-irregular because for every row b of matrix
By, pd(b)[1] + pd(b)[2] > 5, while for every row ¢ of matrices T and T we have that
pd(t)[1] + pd(t)[2] < 4. O

Lemma 4.7. For all positive integer n > 7 ps(K5 + Kg + K,,) = 3.

Proof. Consider the following matrix:

@ B, 4.1

== NN NN O
=W W w o N
WO WN
N = O N W N
— O = W W
S =N =
S
—_ =W O
N W~ O W
== O = =
N O = W
O = DN =

M is product-irregular because for every row b of matrix B,, pd(b)[1]+pd(b)[2] > 5, while
for every row v of first two blocks of our matrix M we have that pd(v)[1] + pd(v)[2] <
4. O

Lemma 4.8. For all positive integers n > 6, ps(Ks + K5 + K,,) = 3.

Proof. Consider weighted adjacency matrices 75 and T from (3.2) in the first item of the
proof of Theorem 3.4:

1. VYn > 7 we have T5 & Tg, @ B,, is product irregular because for every row b of matrix
By, pd(b)[1] + pd(b)[2] = 5.
2. For n = 6 we have that T5 @& T5 @ Pg is product-irregular, where

Py = 4.2)

NN NN O
WNNDNON
W WO
=W O NN N
WO WWN N
O W= W w =

This finishes the proof. O

Consider the graph K4 + K4 + K4. Suppose that ps(K4 + K4 + K4) = 3. Then there
exist a product-irregular adjacency matrix K of the form K = P, @ P, @ Ps of our graph
K4+ K4+ K4, where P; is a product-irregular adjacency matrix of a graph K for every
i € {1, 2, 3}. Therefore, we have that for every row v of matrix K pd(v)[1]+pd(v)[2] < 4.
Also, it is clear that for every row v of matrix K we have pd(v)[1] < 4 and pd(v)[2] < 4.
But there exist only 10 different pairs of the form (z,y) suchthat0 < z,y < dandz+y <
4, which implies that there exist two rows v and u of matrix K such that pd(v) = pd(u).
Therefore, ps(K4 + K4 + K4) > 3.
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There are a lot of graphs of the form K,, + K,,, + K} for some integers n, m and k
with product irregularity strength greater than 3. But since such graphs are disconnected,
we will define operation of adding 2 edges between components of these graphs such that
the resulting graph will be connected, i.e. we will consider minimal connected graphs with
clique cover number 3.

Definition 4.9 (+2edges). Let +2edges for graphs G; + G2 + G3 be the operation of
adding edges, i.e. applying two times +edge between any 2 different pairs of different
sets V(G1),V(G2) and V(G3). We will use the following notation for that operation:
G1+ G2 + G3 + 2edges.

Now we will describe this operation using matrix language. Consider weighted adja-
cency matrices A, B, C of sizes nxn, mxm and [ x[ respectively. Let T12(A, B, C, i, j, w)
be (n+m+1) x (n+m~+1) matrix with all zeros except elements with coordinates (i, n+5)
and (n+ j,) of value w, where 1 < ¢ <mand1 < j < m. In a similar way we can define
matrices T13(A, B, C, 1, j,w) and To3(A, B, C, 1, j, w) for which coordinates of non-zero
elements are (i,n + m + j) and (n + m + j,i), where 1 < i < nand1 < j <[ and
(n+i,n+m+j)and (n+m+ j,n+1), where 1 <i<mand 1 < j <[ respectively.

For example one of the weighted adjacency matrices for graph K, + K,,, + K; +2edges
where the edges between cliques are between vertices a; and b; of weight w; and between
vertices b; and ¢, of weight we where a; € V(K,),b; € V(K,,) and ¢, € V(K)) is
Ay @ By @ Cr + Tha(An, B, C1yd, j, w1) + Tos(An, B, G, j, by we).

Definition 4.10 (In-degree and in-edges). Consider graph G := G + G5 + G3 + 2edges.
Let G’ := G1 + G2 + G35 be a subgraph of the graph G. Let g € V(G) and let dg/(g)
be the degree of the vertex ¢ € V(G’). Then define in-degree of vertex g € V(G) to be
d*(g) :=d(g) — dg'(g). We say that for some ¢ € {1,2,3} G; has t in-edges if and only

if
Y df(g) =t
geV(Gi)

For the next theorem we will define the following matrix. Let M, (z,y) == My,(z,y,y)
and matrices A, B,, and C,, to be M,,(1,2), M,,(2, 3) and M,,(3, 1) respectively.

Theorem 4.11. For all positive integers n, m and [ that are greater than or equal to 5 we
have that ps(K,, + K, + K; + 2edges) = 3.

Proof. Consider some cases that were not covered by previous Lemmas:

1. For (n,m,l) = (6,6,6) consider the following product-irregular matrix:

01 1111 022 2 2 2 03333 3
103 112 2 01 2 2 3 302 3 3 1
13012 2 2 10 2 3 3 3203 11
11102 2[% 2220339333011
11220 2 2 2330 3 33110 1
122220 2 33330 311110

4.3)

2. For (n,m,l) = (5,6,6) we can consider the same matrix as in (4.3) without first
row (and column), i.e. without row (and column) v such that pd(v) = (0,0).
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3. For (n,m,l) = (5,5,5) we will consider Ay ® By @ Cs + 2edges. Let Bs to have
2 in-edges, then we have:

(1) If Bs has 2 in- edges from one vertex, then we can take weighted adjacency
matrix A5@B5EBC5+T12(A57 B5, 057 3,3 3)+T23(A5, 357 05, 3,3, 2) which
is product-irregular.

(2) If B; has 2 in- edges from different vertices then we can take weighted adja-
cency matrix A5 @35@05 +T12(A5, B5, C5, 3 3 3)+T23(A5, B5, C5, ]. 3 )
which is product-irregular.

The proof now follows by the above argumentation, together with Theorem 4.3 and Lem-
mas 4.5, 4.6, 4.7 and 4.8. O

Lemma 4.12. For all positive integers n > 7 and m € {5,6} we have that ps(K4 + K,, +
K,)=3.

Proof. Consider three different cases for different m:

1. For m = 6 and n > 8 consider matrix A4 & Bg & B,, which is product-irregular
using Theorem 3.4.

2. Form = 6 and n = 7 consider matrix A4 ® By @ Ts which is product-irregular
(where T§ is defined in (3.3)).

3. For m = 5 consider matrix A4 ® B,, ® T5 which is product-irregular (where T5 is
defined in (3.2)). O

Theorem 4.13. For all positive integers n, m and [ that are greater than or equal to 4 we
have that ps(K,, + K, + K; + 2edges) = 3.
Proof. Consider some cases that were not covered by previous Lemmas and Theorems:

1. For (n,m,l) = (4,5, 6) consider the following product-irregular matrix:

0

A @ @ Bg 4.4

=N NN
W= W o N
W N O W
= O N =N
O = W W~

Notice that the second block of this matrix is obtained from 75 from (3.2) by chang-
ing the values to4 and ¢4 from 3 to 1.

2. For (n,m,1) = (4,6, 6) consider the matrix Cy + Ag + T which is product-irregular
(where T§ is defined in (3.3)).
Consider some cases for which we will add some edges between cliques:

3. For (n,m,l) = (4,5,5) we will consider Ay ® By ® Cs + 2edges.

(Bs) For the case when dt(Bs) = 2 we have two options:

(1) If B; has 2 in- -edges from one vertex, then we can take weighted adjacency
matrix A4 @® Bs ® C5 -‘1-1—'12(1447 B5, 05, 2,3, 3) +T23(A4, Bs, C5, 3,3, )
which is product-irregular.
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(2) If Bs has 2 in-edges from different vertices then we can take weighted ad-
jacency matrix A5EBB5@C5+T12(A4, Bs,C5, 3,3, 3)+T23 (A4, Bs,Cs, 1,
3,2) which is product-irregular.
(A4) For the case when d*(A,) = 2 we have two options:

(1) If A, has 2 in- -edges from one vertex then we can take weighted adjacency
matrix A4 D B5 D Cr +T12(A47 B57 05, 2,3 2) + T13(A47 Bs, C5, 2,3, 2)
which is product-irregular.

(2) If A4 has 2 in- edges from different vertices then we can take weighted ad-
]acency matrix A4@B5@C5+T12(A4, B5, 05, 2 3 2)+T13 (A4, B5, 05,
3,2) which is product-irregular.

4. For (n,m) = (4,4) and [ > 5 we will consider A; @ B; & C + 2edges.

(B;) For the case when d*(B;) = 2 we have two options:

(1) If B; has 2 in- -edges from one vertex then we can take weighted adjacency
matrix A4 & B & C4 + T12(A4, Bh 04, 2,3, 3) + TQJ(AAL, By, 04, 3,2 2)
which is product-irregular.

(2) If B; has 2 in- edges from different vertices then we can take weighted ad] a-
cency matnx A4€BB[€BC4+T12 (A4, Bl, 04, 2 3 3)—|—T23 (A4, Bl7 04,

2) which is product-irregular.
(C4) For the case when d*(Cy) = 2 we have two options:

(1) If Cy has 2 in- -edges from one vertex then we can take weighted adjacency
matrix A4 D Bl D 04 + T13(A4, Bl, 04, 2,2, 3) + T23(A4, Bl, 04, 3,2, 3)
which is product-irregular.

(2) If Cy has 2 in-edges from different vertices then we can take weighted ad-
jacency matrix 144@3[@@4—{-7—‘13(144, Bl, 64, 2,2, 3>+T23 (/14, Bl, 6'4, 3,
1, 3) which is product-irregular.

5. For (n,m,1) = (4,4,4) we will consider A; & By @ Cy + 2edges. Let Cy to have
2 in-edges.

(1) If Cy has 2 in- edges from one vertex then we can take weighted adjacency
matrix A4EBB4@C4 +T13(A47 B47 04, 2, 2, 3)+T23 (A4, B4, 04, 3 2 3) which
is product-irregular.

(2) If Cy has 2 in- edges from different vertices then we can take weighted adja-
cency matrix A4@B4@C4—|—T13(A4, B47 04, 2, 2, 3)—|—T23(A4, B47 04, 3, 1, 3)
which is product-irregular.

The proof now follows by the above argumentation, together with Theorem 4.11 and
Lemma 4.12. O

Corollary 4.14. If G is a connected graph such that its vertex set can be partitioned into 3
cliques of sizes at least 4 then ps(G) = 3.

We would like to conclude the paper with proposing the following problem for possible

further research.

Problem 4.15. Are there only finitely many connected graphs with clique cover number 4
and product irregularity strength more than 3?



14

Art Discrete Appl. Math. 5 (2022) #P1.04

ORCID iDs
Daniil Baldouski "= https://orcid.org/0000-0001-5350-9343

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

(13]

(14]

M. Anholcer, Product irregularity strength of graphs, Discrete Math. 309 (2009), 6434-6439,
doi:10.1016/j.disc.2008.10.014.

M. Anholcer, Product irregularity strength of certain graphs, Ars Math. Contemp. 7 (2014),
23-29, doi:10.26493/1855-3974.258.2a0.

T. Bohman and D. Kravitz, On the irregularity strength of trees, J. Graph Theory 45 (2004),
241-254, doi:10.1002/jgt.10158.

G. Chartrand, M. S. Jacobson, J. Lehel, O. R. Oellermann, S. Ruiz and F. Saba, Irregu-
lar networks, Graph theory, 250th Anniv. Conf., Lafayette/Indiana 1986, Congr. Numeran-
tium 64, 197-210 (1988)., 1988, https://www.researchgate.net/publication/
265701559_TIrregular_networks.

R. Darda and A. Hujdurovié, On bounds for the product irregularity strength of graphs, Graphs
Comb. 31 (2015), 1347-1357, doi:10.1007/s00373-014-1458-5.

K. Ford, The distribution of integers with a divisor in a given interval, Ann. Math. (2) 168
(2008), 367—433, doi:10.4007/annals.2008.168.367.

A. Frieze, R. J. Gould, M. Karoniski and F. Pfender, On graph irregularity strength, J. Graph
Theory 41 (2002), 120-137, doi:10.1002/jgt.10056.

M. Kalkowski, M. Karoniski and F. Pfender, A new upper bound for the irregularity strength of
graphs, SIAM J. Discrete Math. 25 (2011), 1319-1321, doi:10.1137/090774112.

G. Kaplan, A. Lev and Y. Roditty, Bertrand’s postulate, the prime number theorem and product
anti-magic graphs, Discrete Math. 308 (2008), 787-794, doi:10.1016/j.disc.2007.07.049.

D. Koukoulopoulos, Localized factorizations of integers, Proc. Lond. Math. Soc. (3) 101
(2010), 392426, doi:10.1112/plms/pdp056.

P. Majerski and J. Przybylo, On the irregularity strength of dense graphs, SIAM J. Discrete
Math. 28 (2014), 197-205, doi:10.1137/120886650.

O. Pikhurko, Characterization of product anti-magic graphs of large order, Graphs Comb. 23
(2007), 681-689, doi:10.1007/s00373-007-0748-6.

J. Skowronek-Kaziéw, Multiplicative vertex-colouring weightings of graphs, Inf. Process. Lett.
112 (2012), 191-194, doi:10.1016/j.ipl.2011.11.009.

J. Skowronek-Kaziéw, Graphs with multiplicative vertex-coloring 2-edge-weightings, J. Comb.
Optim. 33 (2017), 333-338, doi:10.1007/s10878-015-9966-7.


https://orcid.org/0000-0001-5350-9343
https://www.researchgate.net/publication/265701559_Irregular_networks
https://www.researchgate.net/publication/265701559_Irregular_networks

THE ART oF DISGRETE AND
APPLIED MATHEMATICS

@creative
commons

ISSN 2590-9770

The Art of Discrete and Applied Mathematics 5 (2022) #P1.05
https://doi.org/10.26493/2590-9770.1396.3c7
(Also available at http://adam-journal.eu)

A tight relation between series—parallel graphs
and bipartite distance hereditary graphs®

Nicola Apolloniof
Istituto per le Applicazioni del Calcolo, M. Picone, v. dei Taurini 19, 00185 Roma, Italy

Massimiliano Caramia
Dipartimento di Ingegneria dell’ Impresa, Universita di Roma “Tor Vergata”, v. del
Politecnico 1, 00133 Roma, Italy
Paolo Giulio Franciosa
Dipartimento di Scienze Statistiche, Sapienza Universita di Roma,
p.le Aldo Moro 5, 00185 Roma, Italy
Jean-Francois Mascari*
Istituto per le Applicazioni del Calcolo, M. Picone, v. dei Taurini 19, 00185 Roma, Italy

Received 25 September 2020, accepted 06 December 2020, published online 21 March 2021

Abstract

Bandelt and Mulder’s structural characterization of bipartite distance hereditary graphs
asserts that such graphs can be built inductively starting from a single vertex and by re-
peatedly adding either pendant vertices or twins (i.e., vertices with the same neighborhood
as an existing one). Dirac and Duffin’s structural characterization of 2—connected series—
parallel graphs asserts that such graphs can be built inductively starting from a single edge
by adding either edges in series or in parallel. In this paper we give an elementary proof
that the two constructions are the same construction when bipartite graphs are viewed as
the fundamental graphs of a graphic matroid. We then apply the result to re-prove known
results concerning bipartite distance hereditary graphs and series—parallel graphs and to
provide a new class of polynomially-solvable instances for the integer multi-commodity
flow of maximum value.

Keywords: Series-parallel graphs, bipartite distance hereditary graphs, binary matroids.
Math. Subj. Class.: 05C

*We are sincerely grateful to the referee for the careful reading of the paper and for his comments and detailed
suggestions which helped us to improve considerably the manuscript.

fCorresponding Author. Supported by the Italian National Research Council (C.N.R.) under national research
project “MATHTECH”.

Supported by the Italian National Research Council (C.N.R.) under national research project “MATHTECH”.

©@@® This work is licensed under https://creativecommons.org/licenses/by/4.0/


https://orcid.org/0000-0001-6089-1333
https://orcid.org/0000-0002-9925-1306
https://orcid.org/0000-0002-5464-4069
https://orcid.org/0000-0002-0210-3375

2 Art Discrete Appl. Math. 5 (2022) #P1.05

1 Introduction

Distance hereditary graphs are graphs with the isometric property, i.e., the distance func-
tion of a distance hereditary graph is inherited by its connected induced subgraphs. This im-
portant class of graphs was introduced and thoroughly investigated by Howorka in [24, 25].
A bipartite distance hereditary (BDH for short) graph is a distance hereditary graph which
is bipartite. Such graphs can be constructed starting from a single vertex by means of the
following two operations [6]:

(BDH1) adding a pendant vertex, namely a vertex adjacent exactly to an existing vertex;

(BDH2) adding a twin of an existing vertex, namely adding a vertex and making it adja-
cent to all the neighbors of an existing vertex.

Taken together the two operations above will be referred to as Bandelt and Mulder’s con-
struction.

A graph is series—parallel [7], if it does not contain the complete graph K4 as a mi-
nor; equivalently, if it does not contain a subdivision of K. This is Dirac’s [14] and
Duffin’s [15] characterization by forbidden minors. Since both K5 and K3 3 contain a sub-
division of K, by Kuratowski’s Theorem any series—parallel graph is planar. Like BDH
graphs, series—parallel graphs admit a constructive characterization which justifies their
name: a connected graph is series—parallel if it can be constructed starting from a single
edge by means of the following two operations:

(SP1) adding an edge with the same end-vertices as an existing one (parallel extension);
(SP2) subdividing an existing edge by the insertion of a new vertex (series extension).

Taken together the two operations above will be referred to as Duffin’s construction. Here
and throughout the rest of the paper we consider only 2—connected series—parallel graphs
which can be therefore obtained by starting from a pair of a parallel edges rather than by
starting from a single edge.

The close resemblance between operations (BDH1) and (BDH2) and operations (SP1)
and (SP2) is apparent. It becomes even more apparent after our Theorem 3.1, which estab-
lishes that the constructions defining BDH and series—parallel graphs, namely, Bandelt and
Mulder’s construction and Duffin’s construction, are the same construction when bipartite
graphs are viewed as fundamental graphs of a graphic matroid (Theorem 3.1). Although
this fact is fairly well known and short proofs can be given using the deep and refined
notions of branch width and tree width of graphs and matroids' (combined with classical
results on graph minors), neither an elementary proof nor an explicit statement seem to be
at hand.

The intimate relationship between BDH graphs and series—parallel graphs was also
already observed by Ellis-Monhagan and Sarmiento in [16]. The authors, motivated by
the aim of finding polynomially computable classes of instances for the vertex—nullity in-
terlace polynomial introduced by Arratia, Bollobas and Sorkin in [5], under the name of
interlace polynomial, related the two classes of graphs via a topological construction in-
volving the so called medial graph of a planar graph. By further relying on the relationships

E-mail addresses: nicola.apollonio@cnr.it (Nicola Apollonio), caramia@disp.uniroma2.it (Massimiliano
Caramia), paolo.franciosa@uniromal.it (Paolo Giulio Franciosa), g.mascari @iac.cnr.it (Jean-Frangois Mascari)
!In section 5, we give one of such a proof kindly supplied by an anonymous referee of an earlier version of the

paper.
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between the Martin polynomial and the symmetric Tutte polynomial of a planar graph, they
proved a relation between the the symmetric Tutte polynomial of a planar graph H, namely
t(H; z, x)—recall that the Tutte polynomial is a two variable polynomial-and the interlace
polynomial ¢(G; x) of a graph G derived from the medial graph of G (Theorem 4.1). Such
a relation led to the following three interesting consequences:

— the #P—completeness of the interlace polynomial of Arratia, Bollobds and Sorkin [5]
in the general case;

— a characterization of BDH graphs via the so-called v invariant, (i.e., the coefficient
of the linear term of the interlace polynomial);

— an effective proof that the interlace polynomial is polynomial-time computable within
BDH graphs.

In view of a result due to Aigner and van der Holst (Theorem 4.6), the latter two con-
sequences in the list above are straightforward consequences of Theorem 3.1 (see Sec-
tion 4.1).

Besides the new direct proofs of these results, Theorem 3.1 has some more applications.

— Syslo’s characterization’s of series—parallel graphs in terms of Depth First Search
(DFS) trees: the characterization asserts that a connected graph H is series—parallel if
and only if every spanning tree of H is a DFS-tree of one of its 2—isomorphic copies.
In other words, up to 2—isomorphism, series—parallel graphs have the characteristic
property that their spanning trees can be oriented to become arborescences so that
the corresponding fundamental cycles become directed circuits (cycles whose arcs
are oriented in the same way). Recall that an arborescence is a directed tree with a
single special node distinguished as the root such that, for each other vertex, there is
a directed path from the root to that vertex.

— New polynomially solvable instances for the problem of finding integer multi-commo-
dity flow of maximum value: if the demand graph of a series—parallel graph is a co—
tree, then the maximum value of a multi-commodity flow equals the minimum value
of a multi-terminal cut; furthermore both a maximizing flow and a minimizing cut
can be found in strongly polynomial time.

Organization of the paper. The rest of the paper is organized as follows: in Section 2
we give the basic notions used throughout the rest of the paper. In Section 3 we prove our
main result (Theorem 3.1) (two more proofs are given in Section 5) and discuss how it fits
within circle graphs and how it relates with edge-pivoting. Theorem 3.1 is then applied in
Section 4: in Section 4.1, we re-prove the previously mentioned couple of results in [16];
in Section 4.2 we re-prove Syslo’s characterization of series—parallel graphs and give a sort
of hierarchy of characterizations of 2—connected planar graphs by the properties of their
spanning trees; finally in Section 4.3, we give an application to multi-commodity flow in
series—parallel graphs.

2 Preliminaries

For a graph G the edge e with endvertices « and y will be denoted by xy. The graph
induced by U C V(G) is denoted by G[U]. If F C E(G), the graph G — F is the graph
(V(G), E(G) = F).
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A digon is a pair of parallel edges, namely a cycle with two edges. A hole in a bipartite
graph is an induced subgraph isomorphic to C, for some n > 6. A domino is a subgraph
isomorphic to the graph obtained from C§ by joining two antipodal vertices by a chord.
The domino is denoted by H. A bipartite graph G is a chordal bipartite graph if G has
no hole. Let F be a family of graphs. We say that G is F—free if G does not contain any
induced copy of a member of F. If G is F—free and F = {Gy}, then we say that G is
Go—free.

Graphs dealt with in this paper are, in general, not assumed to be vertex-labeled. How-
ever, when needed, vertices are labeled by the first n naturals where n is the order of G. We
denote labeled and unlabeled graphs with the same symbol. If u and v are two vertices of
G, then a label swapping at u and v (or simply uv-swapping) is the labeled graph obtained
by interchanging the labels of « and v. For a bipartite graph G with color classes A and B,
let A € {0,1}%B be the reduced adjacency matrix of G, namely, A is the matrix whose
rows are indexed by the vertices of A, whose columns are indexed by the vertices of B and
where A,, , = 1 if and only if v and v are adjacent vertices of G. The incidence graph of a
matrix A € {0, 1} is the bipartite graph with color classes A and B and where u € A
and v € B are adjacent if and only a,,, = 1.

We review very briefly some basic notions in matroid theory [28, 36, 37]. For a {0, 1}-
matrix A the binary matroid generated by A, denoted by M (A), is the matroid whose
elements are the indices of the columns of A and whose independent sets are those subsets
of elements whose corresponding columns are linearly independent over GF'(2). A binary
matroid is a matroid isomorphic to the binary matroid generated by some {0, 1}-matrix
A. If T is a basis of a binary matroid M and f ¢ T, then T'U {f} contains a unique
minimal non independent set C'(f,T'). Thus, if F is a proper subset of C(f,T'), then F' is
an independent set of M. Such a set C'(f,T) is the so called fundamental circuit through
f with respect to T and C(f,T) — {f} is the corresponding fundamental path. A partial
representation of a binary matroid M is a {0, 1}-matrix A whose columns are the incidence
vectors over the elements of a basis of the fundamental circuits with respect to that basis.

A fundamental graph of a binary matroid M is simply the incidence bipartite graph of
any of its partial representations. Therefore a bipartite graph G is the fundamental graph
of a binary matroid M if G is isomorphic to the graph By (T') with color classes T and T
for some basis 7" and co-basis T (i.e., the complement of a basis) of M and where there is
an edge of G between e € T and f € T if e € C(f,T), where C(f,T) is the fundamental
circuit through f with respect to T'. If Aisa partial representation of a binary matroid M,
then M = M ([1|A]), thatis M is isomorphic to the matroid generated by [| | A]. Clearly,
Aisa partial representation of M with rows and columns indexed by the elements of the
basis 7" and of the co-basis T, respectively, if and only if A is the reduced adjacency matrix
of By (M), where the color class T indexes the rows of A.

The cycle matroid (also known as graphic matroid) of a graph H, denoted by M (H), is
the matroid whose elements are the edges of H and whose independent sets are the forests
of H.If H is connected, then the bases of M (H ) are precisely the spanning trees of H and
its co-bases are precisely the co-trees, namely the subgraphs spanned by the complement
of the edge—set of a spanning tree. A matroid M is a cycle matroid if it is isomorphic to the
cycle matroid of some graph H. Cycle matroids are binary: if M is a cycle matroid, then
there are a graph H and a spanning forest of H such that M = M([I|A]) where A is the
{0, 1}-matrix whose columns are the incidence vectors over the edges of a spanning forest
of the fundamental cycles with respect to that spanning forest.
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A fundamental graph of a graph H is simply the fundamental graph of its cycle ma-
troid M (H). For a graph H and one of its spanning forests 7', we abridge the notation
Barry(T) into By (T') to denote the fundamental graph of H with respect to 7" (see Fig-
ure 1, where H 2 K,). If H is 2—connected, then By (T') is connected. Moreover, By (T)
does not determine H in the sense that non-isomorphic graphs may have isomorphic funda-
mental graphs. This because, while it is certainly true that isomorphic graphs have isomor-
phic cycle matroids, the converse is not generally true (see Figure 2). Two graphs having
isomorphic cycle matroids are called 2—isomorphic.

Bie, (T")

Figure 1: Two fundamental graphs of K4 with respect to two spanning trees T and T along
with the corresponding matrices and the respective fundamental graphs. The fundamental
graph with respect to 7" arises from the one with respect to T by pivoting along edge aa.

Figure 2: Two 2-isomorphic graphs that are not isomorphic: z > 2z’ maps bijectively
fundamental cycles of the graph on the left to fundamental cycles of the graph on the right.
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3 BDH graphs are fundamental graphs of series parallel graphs

In this section we prove our main result.

Theorem 3.1. A connected bipartite graph G is a bipartite distance hereditary graph if
and only if G is a fundamental graph of a 2—connected series—parallel graph.

Proof. For a bipartite graph G let M “ denote the binary matroid generated by the reduced
adjacency matrix of GG. Let us examine preliminarily the effect induced on a fundamental
graph By (T') of a 2—connected graph H by series and parallel extensions and, conversely
(and in a sense “dually”), the effect induced on M by extending a connected bipartite
graph G through the addition of violated vertices and twins. If M is a graphic matroid
and H is one of the 2—isomorphic graphs whose cycle matroid is isomorphic to M, then
Table | summarizes these effects.

Operation on H Operation on By (T')

Parallel extension on edge a of T ¢+ adding a pendant vertex in color class T
adjacent to a

Series extension on edge a of T' <> adding a twin of a in color class T’

Parallel extension on edge 3 of T« adding a twin of 3 in color class T’

Series extension on edge 3 of T’ < adding a pendant vertex in color class T’
adjacent to .

Table 1: The effects of series and parallel extension on H on its fundamental graph By (7).

We can now proceed with the proof. The only if direction is proved by induction on
the order of GG. The assertion is true when G has two vertices because K5 is a BDH graph
and at the same time is also the fundamental graph of a digon. Let now G have n > 3
vertices and assume that the assertion is true for BDH graphs with n — 1 vertices. By
Bandelt and Mulder’s construction G is obtained from a BDH graph G’ either by adding a
pendant vertex or a twin. Let H' be a series—parallel graph having G’ as fundamental graph
with respect to some spanning tree. Since, by Table 1, the last two operations correspond
to series or parallel extension of H’, the result follows by Duffin’s construction of series—
parallel graphs. For the if direction, let G be the fundamental graph of a series—parallel
graph H with respect to some tree 7. By Duffin’s construction of series—parallel graphs
and Table 1, G can be constructed starting from a single edge by either adding twins or
pendant vertices. Therefore, G is a BDH graph by Bandelt and Mulder’s construction. [

Before going through applications, let us discuss how Theorem 3.1 relates to circle
graphs, a thoroughly investigated class of graphs which we now briefly describe.

A double occurrence word w over a finite alphabet X is a word in which each letter
appears exactly twice, where w is cyclic word, namely, it is the equivalence class of a
linear word modulo cyclic shifting and reversal of the orientation. Two distinct symbols
of X in w are interlaced if one appears precisely once between the two occurrences of the
other. By wrapping w along a circle and by joining the two occurrences of the same symbol
of w by a chord labeled by the same symbols whose occurrences it joins, one obtains a pair
(S,C) consisting of a circle S and a set C of chords of S. In knot theory terminology, such
a pair is usually called a chord diagram and its intersection graph, namely the graph whose
vertex set is C and where two vertices are adjacent if and only if the corresponding chords



N. Apollonio et al.: A tight relation between series—parallel graphs and bipartite distance ... 7

intersects, is called the interlacement graph of the chord diagram or the interlacement
graph of the double occurrence word.

A graph is an interlacement graph if it is the interlacement graph of some chord dia-
gram or of some double occurrence words. Interlacement graphs are probably better known
as circle graphs. The name interlacement graph comes historically from the Gauss Real-

ization Problem of double occurrence words [13, 31, 34].
Distance hereditary graphs are circle graphs [8]. Thus BDH graphs form a proper
subclass of bipartite circle graphs. De Fraysseix [1 |, 2] proved the following.

Theorem 3.2 ([1 1, 12]). A bipartite graph is a bipartite circle graph if and only if it is the
fundamental graph of a planar graph.

Therefore Theorem 3.1 specializes de Fraysseix’s Theorem to the subclass of series—
parallel graphs.

3.1 BDH graphs and edge—pivoting

It follows from Theorem 3.1 that with every 2—isomorphism class of 2—connected series—
parallel graphs one can associate all the BDH graphs that are fundamental graphs of each
member in the class. Therefore BDH graphs that correspond to the same 2—isomorphism
class are graphs in the same “orbit”. In this section we make precise the latter sentence and
draw the graph-theoretical consequences of this fact.

Given a {0, 1}-matrix A, pivoting A over GF'(2) on a nonzero entry (the pivot element)

means replacing
< 1 a ~ 1 a
AZ(b D) by AZ(b D+ba)

where a is a row vector, b is a column vector, D is a submatrix of A and the rows and
columns of A have been permuted so that the pivot elementis aq 1 ([10, p. 69], [32, p. 280]).
If A is the partial representation of the cycle matroid of a graph H (or more generally a bi-
nary matroid), then pivoting on a nonzero entry, C'(e, f), say, yields a new tree (basis) with
f in the tree (basis) and e in the co-tree (co-basis) and the matrix obtained after pivoting
is a new partial representation matrix of the same matroid. Clearly the fundamental graphs
associated with the two bases change accordingly so that pivoting on {0, 1}-matrices in-
duces an operation on bipartite graphs whose concrete interpretation is a change of basis in
the associated binary matroid. The latter operation on bipartite graph will be still referred
to as edge—pivoting or simply to as pivoting in analogy to what happens for matrices (see
also Figure 1). In the context of circle graphs, the operation of pivoting is a specialization
to bipartite graph of the so called edge—local complementation. Since any bipartite graph
is a fundamental graph of some binary matroid, the operation of pivoting can be described
more abstractly as follows.

Given a bipartite graph with color classes A and B, pivoting on edge wv € E(G) is
the operation that takes G into the graph G** on the same vertex set of G obtained by
complementing the edges between Ng(u) \ {u} and Ng(v) \ {v} and then by swapping
the labels of w and v (if G is labeled). More formally, if £ : V(G) — N is a labeling of
the vertices of GG, then

G"" = (V(G), E(G)A((Ng(u) \ {u}) x (Na(v) \ {v})))

and {guv is defined by fguv (u) = £g(v), Lguw (v) = Llg(u) and Lguw (w) = Lg(w) if
w & {u,v}. If e € F(G) has endpoints uv, then we use G€ in place of G**.
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We say that a graph G is pivot-equivalent to a graph G, written G~ G, if for some
k € N, there is a sequence G, ..., G} of graphs such that G; = G, G, = G and, for
i=1,...,k—1,Gi+1 =G, e; € E(G,;). The orbit of G, denoted by [G], consists of all
graphs that are pivot-equivalent to G.

For later reference, we state as a lemma the easy though important facts discussed
above. Figure 1 illustrates the contents of the lemma.

Lemma 3.3. Let M be a connected graphic matroid. Then M determines both a class
[G] of pivot-equivalent graphs and a class [H] of 2—isomorphic graphs. In particular, any
graph in [G] is the fundamental graph of some 2—isomorphic copy of H and the fundamen-
tal graph of any graph in [H] is pivot-equivalent to G.

The operations of pivoting and of taking induced subgraphs commute in (bipartite)
graphs.

Lemma 3.4 (see [5]). Let G a bipartite graph, U C V(G) and e be an edge whose end-
vertices are in U. Then G¢[U] = (G[U])".

The next lemma relates in the natural way minors of a cycle matroid to the induced
subgraphs of the fundamental graphs associated with the matroid.

Lemma 3.5. Let M and N be cycle matroids. Let G be any of the fundamental graphs of
M and let K be any of the fundamental graphs of N. Then N is a minor of M if and only
if K is an induced subgraph in some bipartite graph in the orbit of G. Equivalently, N is a
minor of M if and only if G contains some induced copy of a graph in the orbit of K.

To get acquainted with pivoting, the reader may check Lemma 3.6 with the help of
Figure 3. Refer to Section 2 for the definition of domino and hole.

f
(IR B Oy =
G, G§

Gl G§

0

EE:] -
Gl Ge

e,e
1 Gl

Gy G4

Figure 3: The effect of pivoting a graph G along some of its edges when G = H, Cs, Cg.
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Lemma 3.6. Let k > 6 be an even integer.

— If either H = B or H = CY, then for each uwv € E(H) there exists an induced
subgraph H' of H"" such that either H' = B or H' = C},.

— If G = CY, then there is a graph G in the orbit of H such that G contains an induced
copy of either &3 or Cg.

Proof. By inspecting Figure 3 one checks that if G = B, then either G° = H or G¢ = (.
If G = Cg, then G® = B for every e € E(G). If G = Cy, k > 6, then by pivoting on
wv € E(G) and deleting v and v results in a graph G’ 2 C};,_. In particular, by repeatedly
pivoting on new formed edges (like edge € of graph G¢ in Figure 3), one obtains a graph
in the orbit of G which contains an induced copy of either 5 or Cs. The second part of the
proof is left to the reader. O

We are ready to extract the graph-theoretical consequence of Theorem 3.1. To this end
let us recall that besides their constructive characterization, Bandelt and Mulder character-
ized the class of BDH graphs also by forbidden induced subgraphs as follows.

Theorem 3.7 ([6, Corollaries 3 and 4]). Let G be a connected bipartite graph. Then G is
BDH if and only if G contains neither holes nor induced dominoes.

The following two corollaries follow straightforwardly from Theorem 3.1 after Theo-
rem 3.7 and assert that the class of BDH graphs—that is, of {hole, domino}-free graphs—is
closed under pivoting, namely, that the orbit of a bipartite {hole, domino}—free graph con-
sists of {hole, domino}—free graphs.

Corollary 3.8. The following statements about a chordal bipartite graph G are equivalent:
(i) G does not contain any induced domino;
(ii) any graph in the orbit of G is a chordal bipartite graph.

Corollary 3.9. Let G be a bipartite domino-free graph. If G is chordal, then so is any
other graph in its orbit.

4 Applications
4.1 BDH graphs and the interlace polynomial

As already mentioned, Ellis-Monaghan and Sarmiento related series—parallel graphs and
BDH graphs topologically, via the medial graph. Let H be a plane graph (or even a 2-cell
embedded graph in an oriented surface). For our purposes, we can assume that H is 2—
connected. The medial graph m(H) of H is the graph obtained as follows: first place a
vertex v, into the interior of each edge e of H. Then, for each face I of H, join v, to vy
by an edge lying in F' if and only if the edges e and f are consecutive on the boundary of
F. Notice that if F' is bounded by a digon {e, e’} or if e and e’ share a degree-2 endpoint
in H, then vertices v, and v are joined by two parallel edges. Let m(H) be the plane
(2-cell embedded) graph obtained in this way. The graph underlying m(H) is the medial
graph of H. The medial graph is clearly 4-regular, as each face creates two adjacencies for
each edge on its boundary. Moreover, it can be oriented so that each vertex is entered by 2
arcs and left by 2 arcs. Given a 4-regular labeled graph /N and one of its Eulerian circuits
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C, we can associate with NV a double occurrence word w which is the word consisting of
the labels of the vertices of C cyclically met during the tour on C. The circle graph formed
from C' and chords between repeated pairs of letters of w is called the the circle graph
of N. Ellis-Monaghan and Sarmiento, building also on the relations between the Martin
polynomial and the symmetric Tutte polynomial, proved the following relation between the
symmetric Tutte polynomial ¢(H; x, ) of a planar graph H and the vertex nullity interlace
polynomial ¢(G;x) of a graph G derived, as described in the theorem below, from the
medial graph of any of its plane embedding.

Theorem 4.1 ([16]). If H is a plane embedding of a planar graph and G is the circle graph
of some Eulerian circuit of the medial graph of H, then q(G;x) = t(H; x, x).

The results were then specialized so as to give the following characterization of BDH
graphs.

Theorem 4.2 ([16]). G is a BDH graph with at least two vertices if and only if it is the
circle graph of an Euler circuit in the medial graph of a plane embedding of a series—
parallel graph H.

Using Theorem 4.1 and Theorem 4.2, the authors deduced the following consequences
stated below as Corollary 4.3, Corollary 4.4 and Corollary 4.5.

Corollary 4.3. Computing the vertex-nullity interlace polynomial is #P-hard in general.
Corollary 4.4. If G is a BDH graph, then q(G; x) is polynomial-time computable.

Corollary 4.4 follows because the Tutte polynomial is polynomial-time computable for
series—parallel graphs [29].

Corollary 4.5. A connected graph G is a BDH graph if and only if the coefficient of the
linear term of q(G; x) equals 2.

The latter coefficient referred to in Corollary 4.5, denoted by v(G), is called the ~-
invariant of G in analogy with the Crapo invariant 3(G) which is the common value of the
coefficients of the linear terms of ¢(G; 2, y) where G has at least two edges. By a result due
to Brylawski [9] (in the more general context of matroids) series—parallel graphs can be
characterized by the value of the Crapo invariant as follows: a graph G is a series—parallel
graph if and only if 5(G) = 1. Both the corollaries above can be deduced directly by
Theorem 3.1 after the following result due to Aigner and van der Holst [1].

Theorem 4.6 ([1]). If G is a bipartite graph, then
q(G;z) = t(M%; z, x)

where MS is the binary matroid generated by the reduced adjacency matrix of G and
t(M%; x,z) is the Tutte polynomial of M©.

Theorem 3.1 and Theorem 4.6 have the following straightforward consequence which
re-proves directly Corollary 4.4 and Corollary 4.5.

Corollary 4.7. If G is BDH graph, then
q(G;x) = t(H;x,x)

Sor some series—parallel graph H having G as fundamental graph and where t(H; x, x) is
the Tutte polynomial of H, namely the Tutte polynomial of the cycle matroid of H.
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4.2 Characterizing series—parallel graphs by DFS-trees

As credited by Syslo [35], Shinoda, Chen, Yasuda, Kajitani, and Mayeda, proved that
series—parallel graphs can be completely characterized as in Theorem 4.8 by a property
of their spanning trees, and Syslo himself gave a constructive algorithmic proof of the
result [35].

Theorem 4.8 (S. Shinoda et al., 1981; Syslo, 1984). Every spanning tree of a connected
graph H is a DFS-tree of one of its 2—isomorphic copies if and only if H is a series—parallel
graph.

When H is assumed to be 2—connected (an assumption that guarantees the connected-
ness of its fundamental graphs), Theorem 4.8 will be equivalently stated as statement (1)
below.

Let 7 be a family of trees (or a family of oriented trees) and let GG be a bipartite graph
with color classes A and B. We say that G is a path/ T bipartite graph on A if there exist
a member T of T and a bijection {: A — E(T) such that, for each v € B, {{w | w €
N¢(v)} is the edge—set (arc—set if T is oriented) of a simple cycle (directed circuit if 7" is
oriented) in the (oriented) graph (V(T'), AU B). Path/T bipartite graphs on B are defined
similarly. G is a path/ T bipartite graph if it is a path/ T bipartite graph on A or on B. G
is a self~dual path/ T bipartite graph if it is a path/ 7 bipartite graph on both A and B. In
any case 1" will be referred to as a supporting tree for G. For instance, it G = K; 3 and G
has color classes A = {a} and B = {«, 3,7} and if T is any family of paths containing
paths of order 2 and order 4, then G is a path/ 7 bipartite graph: G is supported on A by a
path of order 2 whose unique edge is labeled a and G is supported on B by a path of order
4 with three edges labeled «, 5 and ~.

Recall that an arborescence is a directed tree with a single special node distinguished as
the root such that, for each other vertex, there is a directed path from the root to that vertex.
A DFSS tree for a connected graph H (in the sense of [35]), is a pair (T, ¢) consisting of
a spanning tree 7' and an orientation ¢ of H, such that ¢1" is a spanning arborescence of
¢H and for each f € E(H) \ E(T), ¢C(f,T) is a directed circuit in ¢H (i.e, all arcs
of ¢C(f,T) are oriented in the same way). By choosing for 7 the class arborescence of
arborescences, one can reformulate Theorem 4.8 in the following way

(1) H is series—parallel if and only if for each spanning tree 1" of H the fundamental
graph By (H) is a self—dual path/arborescence bipartite graph.

Indeed, if (T, ¢) is a DFS-tree in a 2-isomorphic copy H’ of H, then T is a spanning
tree of graph H' whose cycle matroid is M (H); hence By (T) = By/(T) and ¢T is a
supporting arborescence for By (T). Conversely, suppose that G is a fundamental graph
of H and that G is a path/arborescence bipartite graph. Let G have color classes A and
B. Since G is a path/arborescence bipartite graph, then there is a supporting arborescence
T for G that induces an orientation ¢ of the graph H' = (V(T), AU B), T being the

underlying undirected graph of T Clearly (T, ¢) is a DFS tree in H’ which in turn is
2—-isomorphic to H because G is one of its fundamental graphs (i.e., H and H’ have the
same cycle matroid).

Statement (1) is now a rather straightforward consequence of Corollary 3.8 and the
fact that BDH graphs are self—dual path/arborescence bipartite graphs as shown by the
following result proved in [4].
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Theorem 4.9 ([4]). Every connected BDH graph is a self-dual path/arborescence bipartite
graph.

Proof of (1). Let H be a 2—connected series—parallel graph. Then, by Theorem 3.1 By (T')
is BDH for each spanning tree T of H. Hence, for every spanning tree T of H, By (T) is
a self—dual path/arborescence bipartite graph by Theorem 4.9. Conversely, suppose that
for every spanning tree 7" of a 2—connected graph H, the fundamental graph By (T) is a
path/arborescence bipartite graph. Thus By (T') is chordal (see, e.g., [8]). Moreover, since
if T' is any other spanning tree of H, then By (T") is in the orbit of By (T'), we conclude
that each bipartite graph in the orbit of By (T) is a chordal bipartite graph. Therefore
By (T) is a BDH graph by Corollary 3.8 and, consequently, H is a series—parallel graph.

O

It is worth observing that, in the same way as Theorem 3.1 specializes de Fraysseix’s
Theorem 3.2, Statement (1) specializes the following statement (see also [12]):

(2) a bipartite graph is a bipartite circle graph if and only if it is a self—dual path/tree
bipartite graph, tree being the class of trees.

Proof. By Whitney’s planarity criterion [38] a graph is planar if and only if its cycle ma-
troid is also co-graphic, namely, it is the dual matroid of another cycle matroid. Let now
G be the fundamental graph of a 2—connected graph H with respect to some spanning tree
T of H. Let A be the reduced adjacency matrix of G' with rows indexed by the edges of
T and columns indexed by the edges of 7. Then, while [I|A] generates M (H), [I|A?]
generates M *(H ), the dual of M (H). Hence, when H is planar, by Whitney’s planarity
criterion, M*(H) is the cycle matroid of a 2—isomorphic copy of a plane dual H* of H.
Therefore the neighbors of each vertex in the color class 7" spans a path in the co-tree T
which is in turn a spanning tree of a 2—isomorphic copy of plane dual H* of H. O

In view of such a discussion it is reasonable to wonder whether there is a class of self
dual path/ 7y bipartite graphs closed under edge—pivoting, where 7y is a family of trees
sandwiched between trees and arborescences. The next result gives a negative answer in
a sense. In what follows di-tree is the class of oriented trees.

Theorem 4.10. If G is a connected bipartite graph whose orbit consists of self-dual
path/di-tree bipartite graphs, then the orbit of G consists of path/arborescence bipartite
graphs.

Proof. Path/di-tree bipartite graphs are balanced (see [2]). Recall that a bipartite graph
I' is balanced if its reduced adjacency matrix does not contain the vertex-edge adjacency
matrix of a chordless cycle of odd order. Equivalently, I" is balanced if each hole of T’
has order congruent to zero modulo 4. Hence, since G and any other graph in its orbit is
a self—dual path/di-tree bipartite graph, then G, and any other graph in its orbit must be
balanced as well. Let G be any member of [G] and suppose that G contains a hole C'. Let
e € E(C). The order t of C is at least eight, because G is balanced. Nevertheless G°
contains a hole of order ¢t — 2 by Lemma 3.6. Since ¢t — 2 = 2 (mod 4) we conclude
that any graph in the orbit of G must be hole-free. Therefore GG is BDH by Corollary 3.9,
and, by Theorem 3.1, it is the fundamental graph of a series—parallel graph. The thesis now
follows by Statement (1). O
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Remark 4.11. It is worth observing that by the proof above, if A is a class of balanced
matrices closed under pivoting over GF(2), then A consists of totally balanced matrices,
namely those matrices whose bipartite incidence graph is hole-free. Actually, and more
sharply, in view of Corollary 3.9, every member of A is the incidence matrix of a y-acyclic
hypergraph [3].

4.3 Packing paths and multi-commodity flows in series—parallel graphs

In this section we give an application of Theorem 3.1 in Combinatorial Optimization. We
show that a notoriously hard problem contains polynomially solvable instances when re-
stricted to series—parallel graphs. Let H = (V| E) be a graph and let F' C E be a set of
prescribed edges of H called the nets of H. Following [19] a path P of H will be called
F-admissible if it connects two vertices s,t of V with st € Fand E(P) C E — F. Let
U be the set of end-vertices of the nets. In the context of network-flow, vertices of U are
thought of as terminals to be connected by a flow of some commodity (the nets are in fact
also known as commodities). Let Pr denote the family of all F-admissible paths of G
and let Pr s C Pp be the family of those F-admissible paths connecting the endpoints
s,t of net f. An F-multiflow (see e.g. [33]), is a function \: Pr — R;, P — Ap. The
multifiow is integer if A is integer valued. The value of the F'-multifiow on the net f is
¢f = > pepy., Ap- The total value of the multifow is the number ¢ = 3 ;- ¢. Let
w: B — F — Z4 be a function to be though of as a capacity function. An F-multiflow
subject to w in H is an F-multiflow such that,

> Ap<uwle), Vee E-F 4.1)
PePr:E(P)3e

When w(e) = 1 forall e € E — F, an integer multiflow is simply a collection of edge—
disjoint F-admissible paths of H. The F'-Max- Multiflow Problem is the problem of find-
ing, for a given capacity function w, an F-multiflow subject to w of maximum total value.
An F-multicut of H is a subset of B edges of ' — F' that intersects the edge—set of each
F-admissible path. The name F-multicut is due to the fact that the removal of the edges of
B from H leaves a graph with no F-admissible path: in the graph H — B it is not possi-
ble to connect the terminals of any net. The capacity of the F-multicut B is the number
Yocp wle).

Multiflow Problems are very difficult problems (see [1&], [19] and Vol. C, Chapter 70 in
[33]). In [20] it has been shown that the Max-Multiflow Problem is NP-hard even for trees
and even for {1, 2}-valued capacity functions. The problem though is shown to be polyno-
mial time solvable for constant capacity functions by a dynamic programming approach.
However, even for constant functions, the linear programming problem of maximizing the
value of the multiflow over the system of linear inequalities (4.1) has not even, in general,
%Z—Valued optimal solutions. In [26], the NP-completeness of the Edge-Disjoint—Multi
commodity Path Problem for series—parallel graphs (and partial 2—trees) has been estab-
lished while, previously in [39], the polynomial time solvability of the same problem for
partial 2—trees was proved under some restriction either on the number of the commodities
(required to be a logarithmic function of the order of the graph) or on the location of the
nets.

Theorem 4.12. Let H = (V, E) be a 2—connected series—parallel graph and let F' be the
edge—set of any of its spanning co-trees. Then the maximum total value of an F-multiflow
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equals the minimum capacity of an F-multicut. Furthermore, both a maximizing multiflow
and a minimizing multicut can be found in strongly polynomial time.

Proof. Let A be a {0,1}™*"—valued matrix and b € Z7' be a vector. Let 14 be the all
ones vector in R?. Consider the linear programming problem

max {17x | Ax < b} 4.2)
xGRi
and its dual
in {bTy ATy >1,}. 4.3
juin {b"y | ATy > 1.} .3)

By the results of Hoffman, Kolen and Sakarovitch [23] and Farber [17], if A is a totally
balanced matrix (i.e., A is the reduced adjacency matrix of a bipartite chordal graph), then
both the linear programming problems above have integral optimal solutions and, by linear
programming duality, the two problems have the same optimum value. Furthermore, an
integral optimal solution x* to the maximization problem in (4.2) satisfying the additional
constraint

x* <1, 4.4)

and an integral optimal solution y* to the minimization problem in (4.3) satisfying the
additional constraint
y* <1, (4.5)

can be found in strongly polynomial time.

Let now H be a 2—connected graph and let F be the edge—set of a co—tree T' of some
spanning 7" tree of H. By giving a total order on the edge—set of 7', one can define a vector
b whose entries are the values of the capacity function w: F(H) — F — Z,. If A is the
incidence matrix of Pr, namely the matrix whose columns are the incidence vectors of the
F-admissible paths of H, then A is a partial representation of M (H). Moreover, if H is
series—parallel, then A is totally balanced: by Theorem 3.1, A is the reduced adjacency ma-
trix of a BDH graph which is chordal being hole-free (by Theorem 3.7). On the other hand,
integral solutions to the problem in (4.2) satisfying constraint (4.4) and to the problem
in (4.3) satisfying constraint (4.5) are incidence vectors of F'-multiflows and F'-multicuts,
respectively. Hence, both an F-multiflow of maximum value and an F-multicut of mini-
mum capacity can be found in strongly polynomial-time by solving the linear programming
problems above. Moreover, linear programming duality implies that the maximum value
of an F-multiflow and the minimum capacity of an F'-multicut coincide. O

5 Two more proofs of Theorem 3.1

In this section, we give two more proofs of Theorem 3.1: one is due to an anonymous
referee of an earlier version of the paper and it relies on the deep and refined notion of
branch- and rank-width of a matroid (for the undefined terms given in the proof we address
the reader to the references therein); the other fits the theory of double occurrences words
and relies on a result in [5].

Second proof of Theorem 3.1. Suppose that a connected bipartite graph G is a fundamental
graph of a 2-connected series parallel graph H. Since 2-connected graphs of branch-width
at most 2 are exactly 2-connected series parallel graphs ([30]), the branch-width of H is
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at most 2. As proved in [22], the branch-width of a graph equals that of its cycle matroid.
Hence, the branch-width of H equals the branch-width of M (H). By a result in [27], the
branch-width of a binary matroid (in particular of a cycle matroid) equals the rank-width
of any of its fundamental graphs plus 1. By definition, G is a fundamental graph of M (H)
and thus rw(G) + 1 = bw(M (H)) = bw(H) < 2, where rw(+) and bw(+) denote the rank-
width and branch-width parameters, respectively. Hence the rank-width of G is at most 1
and we conclude that G is bipartite distance hereditary because, still by a result in [27],
distance hereditary graphs are precisely the graphs of rank-width at most 1.

For the other direction, suppose that a connected bipartite graph G is distance-hereditary.
Let M be the binary matroid generated by the reduced adjacency matrix of G. By the
same reasons (and the same notation) given above, it holds that bw(M ) = rw(G)+1 < 2.
By aresultin [21], M G is a series parallel matroid (see [30] for the definition) and any
such a matroid is the cycle matroid of a series parallel graph (see Lemma 4.2.12 in [36]).
Hence MY = M(H) for some series parallel graph H. Furthermore, H is 2-connected,
otherwise, GG is disconnected. O

The third proof will require a result in [5]. Let C' be an Eulerian cycle in a 4-regular
labeled graph H and let w be the double occurrence word it induces (Section 3, following
the first proof of Theorem 3.1). Recall that two vertices, say labeled a and b, are interlaced
in w if w = uaxbyaz for some (possibly empty) intervals u, x, y and z of w. For
two vertices u and v, labeled a and b, respectively, the uv-transposition of w is the word
w"’ = uaybxaz [5]. Thus a uv-transposition of w amounts to replace one of the subpaths
of C connecting v and v with the other one. The relation between uwv-transposition and uv
pivoting is given in the next lemma which specializes a more general result in [5] (see also

[13D.

Lemma 5.1. Let H be a 4-regular graph and let w be any of the double occurrence words it
induces. Further, let G(H,w) denote the interlacement graph of w. Suppose that G(H, w)
is a bipartite graph. Then, for any edge wv of G(H,w) of H, one has G(H,w)*¥ =
G(H,w").

Third proof of Theorem 3.1. If G is a fundamental graph of a series—parallel graph, then
M€ is a binary matroid with no M (K4) minor by Dirac and Duffin’s characterization.
Dominoes are fundamental graphs of K4 and holes can be pivoted to either dominoes or
Cg (recall Lemma 3.6)—notice that Cy is a fundamental graph of K as well (Figure 1)-it
follows that G is BDH-free by Lemma 3.3. Conversely, if G is BDH, then by Theorem 4.2
(in the language of Lemma 5.1), G = G(m(H),w) for some series—parallel graph H
(observe that m(H) is a 4-regular graph) and some code w. By Lemma 5.1, pivoting
on edges G affects neither H nor m(H). Consequently, every graph in [G] is a BDH.
Therefore M “ has no M (K,) minor by Lemma 3.3 and Lemma 3.5 and G is a fundamental
graph of such a matroid and therefore the fundamental graph of a series—parallel graph. [J
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Abstract

If H; and H, are r-uniform hypergraphs and f is a function from the set of all (r — 1)-
element subsets of V' (H;) into V' (Hz), then the Sierpinski product H; ® y Hs is defined to
have vertex set V' (H;) x V(Hz) and hyperedges falling into two classes:

(ga hl)(gvh2) T (gahr), such thatg € V(Hl) and hth o 'hr € E(HQ)v

and

(glvf({92v937 s 797”}))(927.]0({917937 cee agT})) T (grvf({glv927 s 7g7“—1}))7

such that g;go - -+ g € E(H;). We develop the basic structure possessed by this product
and offer proofs of numerous extremal properties involving connectivity, clique numbers,
and strong chromatic numbers.

Keywords: Hypergraph products, cliques, chromatic numbers.

Math. Subj. Class.: 05C65, 05C15, 05C40

1 Introduction

Sierpinski graphs were first introduced in 1997 by Klavzar and Milutinovi¢ [8] stemming
from their work on the Tower of Hanoi problem. Since then, numerous properties and gen-
eralizations of Sierpinski graphs have been extensively studied (e.g., see [0, 7,9, 10, 12, 13],
and [14]). Recently, Kovi¢, Pisanski, Zemlji¢, and Zitnik [11] have used Sierpiriski graphs
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as a motivation for a graph product structure, which they referred to as a Sierpinski product.
Their introductory work on this product included proofs of the product’s basic properties
involving connectivity, planarity, automorphism groups, and a consideration of the prod-
uct with multiple factors. The present paper seeks to generalize the Sierpifiski product to
the setting of r-uniform hypergraphs and to describe its structure, with an emphasis on
extremal properties.

We begin with the construction of a Sierpinski product in the setting of graphs. Given
graphs G1 and G, and a function f : V(G) — V(G2), the Sierpinski product G ® f G2
is defined to have vertex set V(G1) x V(G2) and edge set consisting of edges that fall into
two classes:

(g,h)(g,h"), suchthatg € V(G1) and hh' € E(G2),
(9, f(g"))(g', f(g)), suchthat gg" € E(Gh).

Edges in these classes are referred to as inner and connecting edges, respectively. Ob-
serve that regardless of the choice of function f, the graph G1 ® s G2 is a subgraph of the
lexicographic product G [G2], defined to have vertex set V' (G1) x V(Hz) and edge set

E(G1]Gs]) = {(g,h)(¢', ") | (9 = ¢' and hh' € E(G>)) or g¢' € E(Gy)}.

Like the lexicographic product, the Sierpinski product is not commutative in general.
For each vertex g € V(G1), the subgraph induced by the set

9G2 ={(g,h) | h € V(G2)}

is isomorphic to Go. It follows that when |V (G1)| = 1, the Sierpiriski product G1 ®; G
is isomorphic to Go, regardless of the choice of f. It is also easily confirmed that when
|[V(G2)| = 1, the function f must be constant and the Sierpifiski product G1 ®5 G is
isomorphic to G;. Among these properties, it was provenin [ 1 1] that G1® y G2 is connected
if and only if G; and G5 are both connected.

In Section 2, we consider a generalization of the Sierpifiski product to r-uniform hy-
pergraphs and prove several properties regarding connectivity. In Section 3, we turn our
attention to clique numbers and the strong chromatic number. We note that in the case of
the strong chromatic number, Theorems 3.2 and 3.4 and Corollary 3.5 are stated to include
the case r = 2, offering new results involving the chromatic number of Sierpiriski products
of graphs. In Section 4, we conclude by offering some directions for future research and an
alternate generalization of the Sierpinski product of r-uniform hypergraphs.

2 The Sierpinski product of r-uniform hypergraphs

Recall that an r-uniform hypergraph H consists of a nonempty vertex set V(H) and a
hyperedge set E(H), consisting of unordered r-tuples of distinct elements from V (H).
For our purposes, we assume that all r-uniform hypergraphs are simple (i.e., we do not
allow multi-hyperedges). When r = 2, this definition coincides with that of simple graphs.

If H; and H, are r-uniform hypergraphs, then denote by (Vr(flll)) the set of all un-
ordered (r — 1)-tuples of elements in V' (H; ). For a function

() v,
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the Sierpifiski product H; ®¢ Hj has vertex set V(H;) x V(Hz). The hyperedges in
E(H, ®y H») have the following forms:

(ga hl)(gth) T (gahr), such thatg € V(Hl) and hth o 'hr € E(HQ)v

and

(gl7f({927g3? s 797”}))(.9%]0({917937 s agf})) U (g7"7f({glv927 v 7g'f—1}))7

such that g1 g2 - - - g € E(H;). Hyperedges in the first class are called inner hyperedges,
while those in the second class are called connecting hyperedges. This product agrees with
the definition in Section 1 in the case where r = 2.

For each g € V(H), the subhypergraph of H; ® ¢ H; induced by

gHy = {(g,h) | h € V(Ha2)}

is isomorphic to Hs. Among any r distinct g1 Hs, goHo, . . ., g- Ho chosen, there exists at
most a single connecting hyperedge. In total, we find that H; ®¢ Ho contains |V (H1)| -
| E(Hs)| inner hyperedges and | E(H; )| connecting hyperedges.

Before considering examples and properties involving connectivity, we must recall
some definitions. Recall that a Berge path of length ¢ is a sequence of ¢ + 1 distinct
vertices vy, vg, . . ., vg4+1 and distinct hyperedges ey, e, . . ., e, such that v;,v;41 € e; for
alli € {1,2,...,¢}. We write such a path as

P =viejvsey - epvpyq

and observe that although the hyperedges are distinct, each pair of hyperedges may have
numerous vertices in common. A Berge path P = vjejvses - - - egvg4; forms a loose path
if all vertices in P other than vy, vs, ..., v, have degree 1. In this case, all vertices are
necessarily distinct and P has order 7+ (r — 1) (£ — 1). While we have defined Berge paths
and loose paths as “stand alone” hypergraphs, we also refer to subhypergraphs isomorphic
to these hypergraph constructions by the same names.

An r-uniform hypergraph H is called connected if for any distinct pair of vertices, there
exists a Berge path that contains them both. An r-uniform hypergraph that is not connected
is called disconnected. When an r-uniform hypergraph is connected, but the removal of any
hyperedge (while retaining all vertices) disconnects it, then it is called minimally connected
(e.g., see [2]). Given a Berge path P = viejvses - - - egug41, if there exists a hyperedge
e¢41 distinct from ey, es, . . ., e¢ such that vy, vp+1 € egy1, then we say that

C = viejvaes - - - epUpy1€04101

is a Berge cycle. An r-uniform hypergraph is an r-uniform tree if it is connected and does
not contain any Berge cycles. Other equivalent definitions for an r-uniform tree are given
in [2] and [3]. In particular, note that every r-uniform tree is minimally connected, but not
every minimally connected r-uniform hypergraph is an r-uniform tree.

Example 2.1. For example, consider K f’) , the complete 3-uniform hypergraph of order 4,
and denote by P the 3-uniform loose path of size 2. Then if

;. (v(fgf’))) )
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is any constant function that maps to a vertex of degree 1 in P, the Sierpinski product
K f’) ®y P is given in Figure 1. Observe that each copy of gP is isomorphic to P and the
hypergraph spanned by the connecting hyperedges (dashed in Figure 1) is isomorphic to
KP.

Figure 1: The Sierpiriski Product K f) ®¢ P, where P is a 3-uniform loose path of length
2 and f is a constant function whose range consists of a single vertex of degree 1 in P. The
inner hyperedges are solid while the connecting hyperedges are dashed.

Example 2.2. Let C' denote the 3-uniform Berge cycle of size 2 and order 4 containing
exactly two vertices of degree 1. Suppose that V(C) = {z1,x2,x3,24}, where 1 and
x4 have degree 1. Also, let P be the loose path described in Example 2.1, with vertex
set V(P) = {y1,92, Y3, Ya, Y5} such that ys3 is the unique vertex of degree 2. Define the
function f : (V(QC)) — V(P) by

f{{x1,22}) = y1, f{z1,23}) =y, J{z1,94}) = y3,

flzz,2s}) =ys,  f({z2,2a}) =va, f({os, 2a}) = us.
Then the connecting hyperedges in C' ®; P are given by

e1 = (v1,y3)(x2,y2)(x3,91) and ex = (v2,y5)(w3,Ys)(T4,Y3).

Since f is nonconstant, such a hypergraph becomes more difficult to illustrate. So in Fig-
ure 2, we represent the connecting hyperedges by drawing segments from each hyperedge
to the vertices they include. Also, note that the vertex (x;, y;) is labeled ¢j in this figure.

Examples 2.1 and 2.2 provide illustrations of some 3-uniform Sierpifiski products when
the underlying hypergraphs are connected. We note that when f is a constant function (as
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Figure 2: The Sierpiriski Product C'® ¢ P, where C'is a 3-uniform Berge cycle of size 2 and
order 4 containing exactly two vertices of degree 1, P is a 3-uniform loose path of length
2, and f is the surjective function described in Example 2.2.

in Example 2.1), the resulting Sierpifiski product may be considered a hypergraph general-
ization of a rooted product graph (for example, see [5]). In Proposition 2.10 of [11], it was
shown that when G'; and G are graphs, then G1 ® s G2 is connected if and only if G; and
G are connected. The following theorem considers connectivity for higher uniformity.

Theorem 2.3. Assume that v > 3, Hy and Hy are r-uniform hypergraphs, and f :
(Vﬁ{f)) — V(H>) is a function. If Hy and Hy are connected, then Hy @5 Hs is con-
nected. If Hy ®@¢ Hy is connected, then H is connected. If Hy ®@¢ Hy is connected and f

is a constant function, then Hs is connected.

Proof. First, suppose that H; and H» are connected and let (g, k) and (¢’, h’) be vertices
in H, ®y Hy. If g = ¢/, then there exists a Berge path that contains both (g, k) and (g, k')
since gHo is isomorphic to Hy. Otherwise, suppose that g # ¢’. Since H; is connected,
there exists a Berge path

P = geggrergaes - - '9@465719[

in Hy (and we may write ¢ = go and ¢’ = g,). Each hyperedge e; in P corresponds with a
unique hyperedge F; in H; ® y Hs. Suppose that (g, h;) € E;_1 while (g;,k;) € E;. If
h; = k;, then E;_; and E; are adjacent. If h; # k;, then there must exist a Berge path Q;
connecting (g;, h;) to (g;, k;) in g; Ho. Thus, we are able to form a Berge path from (g, )
to (¢',h') in Hy ® H, by following along the hyperedges Ey, E1, ..., E,_1 and taking a
detour along the Berge path Q; in g; H, whenever

E;_1NgHy # E;N g H.
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Finally, if (¢',k) € Ey_1 and k # h’, then we again follow the Berge path connecting
(¢',k) to (¢', ') in g’Hy. Thus, Hy ®¢ Hs is connected. Now assume that H; ®; Hs
is connected. For any pair g,¢’ € V(H), there exists a Berge path from gH> to ¢’ Hy in
H; ® H, that corresponds with a Berge path from g to g’ in Hy. Thus, H; is connected.
Now assume that 1 @ Ho is connected, f is a constant function, and k, k' € E(Hy) are
distinct. Then there exists a Berge path from (g, k) to (g, k) that does not contains any of
the connecting hyperedges in H; ® y Hy since all such hyperedges intersect gH> at a single
vertex. Such a Berge path necessarily corresponds with a Berge path in gH5, from which
it follows that H- must be connected. O]

Theorem 2.3 is not as strong as in the case of graphs. This is demonstrated in Exam-
ple 2.4, where a case is given in which H; ®y Hj is connected, but H is disconnected.

Example 2.4. Consider the Sierpifiski product K\* @ ; 2K, where 2K is the disjoint
. . (3) 3
union of two 3-uniform hyperedges and f : (V(5+7) — V(2KS) by

f({CEl,CCz}) = Ye, f({xth}) =Y, f({55171114}) =Y,
f{z2,23}) = v1, F({z2,24}) = vs, J({z3,24}) = ys.

Here, V(Kf’)) = {x1,29,23,24} and 2K§3) consists of the hyperedges y1y2ys and
Y4YsYe. The connecting hyperedges are given by

e1 = (z1,91) (2, y1)(T3, Ys)
ez = (z1,Y6)(z2, Y1) (T4, Yo)
es = (21, 96) (3, y1) (T4, 41)
ea = (z2,Y6) (3, Y6) (T4, Y1)

From Figure 3, it is clear that K £3) ®r 2K. :53) is connected even though 2K ?()3) is discon-
nected.

Consider the case where Hy ®; Hy is minimally connected and H> is assumed to be
connected. Then by Theorem 2.3, H; is also connected. When an inner hyperedge of
H, ® Hy is removed, the removal of the corresponding hyperedge in H5 disconnects Ho.
When a connecting hyperedge is removed, the removal of the corresponding hyperedge in
H, disconnects H;. We obtain the following corollary.

Corollary 2.5. Assume that r > 3, Hy and Hy are r-uniform hypergraphs, and f :
(Vr(flll)) — V/(Haj) is a function. If Hy ® y Ho is minimally connected and Hs is con-
nected, then Hy and Ho are minimally connected.

In the more restrictive class of r-uniform trees, we obtain the following theorem.

Theorem 2.6. Assume that v > 3, Hy and Ho are r-uniform hypergraphs, and f :
(Vr(fll)) — V(Ha) is a function. If Hi @ Ho is an r-uniform tree and Hs is connected,
then, Hs is an r-uniform tree.

Proof. Assume that Ho is connected. Since H; ®y Hy contains a subhypergraph isomor-
phic to Hy, Hy ® H, will contain a Berge cycle whenever H; contains a Berge cycle. It
follows that H is an r-uniform tree whenever H; ® Hj is an r-uniform tree. O
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46 45 44 43 42 41

Figure 3: The Sierpifski Product K. f’) ®f 2K ?E?’), where f is the function described in
Example 2.4. Observe that K f’) ®r2K. ég) is connected even though 2K 353) is disconnected.

3 Cliques and strong chromatic numbers

In this section, we focus on the clique numbers and chromatic numbers of Sierpinski prod-
ucts. These parameters serve as measures of connectivity and they play important roles in
various extremal aspects of the study of hypergraphs. If H is any r-uniform hypergraph,
then the clique number w(H) is the maximum order of a complete subhypergraph of H.
When r = 2, it is well-known that w(G1[G2]) = w(G1)w(G2) (e.g., see [4]), and since
G1 ®y G is a subgraph of G1[G5] for all f, it follows that

W(Gl Qf GQ) < w(Gl)w(GQ).
When r > 3, we obtain the following theorem.

Theorem 3.1. Let r > 3. If Hy and Hy are r-uniform hypergraphs and f : (Vﬁlf)) —
V' (Hs3) is a function, then

w(H1 ®¢ Hy) < max{w(H1),w(H2)}.

Ifw(Hy) > w(Hy), then
w(H1 ®f HQ) = UJ(HQ).

If f is a constant function, then
w(Hy ®¢ Hy) = max{w(H1),w(H2)}.
Proof. The statement

w(Hy @5 Hy) < max{w(Hy),w(Hz)}
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follows from Theorem 3 of [1], where it was proved that the lexicographic product satisfies
w(H[Hs)) = max{w(H;),w(H2)},

and the observation that H; ® H» is a subhypergraph of H;[H>)]. Since each gH> con-
tained in H; ®; H, is isomorphic to Hy, we find that H; ®; H; contains a complete
subhypergraph at least as large as a clique in Hs. It follows that

w(H1 ®j HQ) = W(HQ)

whenever w(Hs) > w(H7). Finally, if f is a constant function, then the subhypergraph
induced by
Hih ={(g,h) | g € V(H1)}

is isomorphic to H; for the unique vertex h in the image of f. So, H; ®; H> contains
complete subgraphs of orders equal to both w(H7) and w(Hs), giving us

w(Hy ®f Ho) = max{w(H),w(Ha2)}
in this case. O

In the setting of r-uniform hypergraphs, there are many ways to generalize chromatic
numbers. In this paper, we will focus on the strong chromatic number of an r-uniform
hypergraph H. First, define a strong proper vertex coloring of an r-uniform hypergraph H
to be a map

c:V(H)—{1,2,...,n}

such that no two adjacent vertices in H receive the same color. Then the least n for which
a strong proper vertex coloring exists is called the strong chromatic number of H, and
is denoted xs(H). Our reasoning for focusing on this generalization is due to the re-
lationship between the strong chromatic number and the existence of certain hypergraph
homomorphisms. Recall that if H; and Hy are two r-uniform hypergraphs, then a homo-
morphism is a function ¢ : V(H,) — V(Hs) such that if 125 -+ -2, € E(H;), then
o(x1)o(x2) - d(ar) € E(Ha).

For any strong proper vertex coloring ¢ : V(H) — {1,2,...,n}, there is a natural
homomorphism ¢ : V(H) — V(Ky(f)) given by mapping each vertex h € V(H) to a
vertex ¢(h) € V(K,(f)) identified with the color class of h under c¢. This identification
of strong proper vertex colorings of r-uniform hypergraphs with homomorphisms leads
to a useful property. Specifically, if H; and Hy are any r-uniform hypergraphs and if
¢ : V(Hy) — V(Hz) is a homomorphism, then

XS(HI) SXS(HQ)a (31)

since any strong proper vertex coloring of Hs can be applied to H; under ¢.

Theorem 3.2. Forr > 2, let Hy and Hy be r-uniform hypergraphs such that x ;(Hz) = n.
Let ¢ : V(Hy) — V(K}) be a homomorphism. For any function f : (V1) —
V(Hs),

Xs(Hy @5 Hy) < xo(Hy @5 K),

where f* := ¢ o f.
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Proof. Let ¢ : V(Hz) — {1,2,...,n} be a strong proper vertex coloring of Hy such
that ys(H2) = n. Note that ¢ is necessarily surjective. Such a coloring naturally extends

to the surjective homomorphism ¢ : V(Hz) — K,(f) given by sending each vertex in

h € V(H>) to a vertex in K" identified with the color class of A under c. Consider the
map
¢* V(H, @5 Hy) — V(H, @5 K)

given by ¢*(g, h) = (g, ¢(h)). We claim that ¢* is a homomorphism. To prove this claim,
let

(91,h1)(92, h2) -+ (gr, her) € E(H1 @5 Hz)

and consider

(g1, 8(71)) (92, 3(h2)) - -~ (g, d(hy)) € E(Hy @5 KO).

Then either gy = go = --- = g, (in which case, ¢(h1)p(ha) - ¢(h,) € E(KT(LT)) since
hihg -+ h, € E(Hj) and ¢ is a homomorphism) or g1 g - - - g, € F(H;) and

¢(h1) = ¢(f({925g3a cee 7gr})) = f*({g%gl% cee 797’})

¢)(h2) = ¢(f({glag3a s ag7})) = f*({glag?n s 7g7'})

¢(hT) = ¢(f({915927 o agT—l})) = f*({g17g27 ce 797“—1})'

It follows that ¢* is a homomorphism, from which we conclude that
Xs(H1 @5 Ho) < xs(Hy Q-+ KSLT))
by (3.1). O

Note that in the previous theorem, the case » = 2 is included. In this case, x is the
usual chromatic number for graphs. We find that in general, Theorem 3.2 is the strongest
statement that can be made, as the following example demonstrates a case where a strict
inequality is satisfied.

Example 3.3. Consider the complete 3-uniform hypergraph K i ) with vertex set V(K, (3))
{21, %2,23,24} and the 3-uniform loose path P of length 2 with vertex set V(P) =

3)
{1, Y2, Y3, Ya, Y5 }, where y3 is the unique vertex in P with degree 2. Let f : (V(5:7)) —
V(P) be the function

f{zr22}) =91, f({@,23}) =y, f({z1,94}) = v,
f({$2,363}) = Ya, f({332,$4}) = Ys, f({m3a174}) =Ys-

Then the Sierpifiski product K i ) ® ¢ P is given in Figure 4, with vertex (z;,y;) labelled
17. The connecting hyperedges are given by

e1 = (z1,y4)(z2,92) (23, y1)
ez = (z1,95)(z2,y3) (T4, Y1)
es = (1, Y5) (23, y3) (24, y2)
ea = (v2,Y5)(3,Y5) (T4, Ya)
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Since every strong proper vertex coloring of a hypergraph containing at least one hyperedge

requires at least 3 colors, the coloring given in Figure 4 implies that x s (K f’) ®s P)=3.
Note that ys(P) = 3, and we can identify a strong proper vertex coloring of P with the

Figure 4: The Sierpiniski product K f’) ® ¢ P, where P is a 3-uniform loose path of length 2
and f is the function given in Example 3.3. The strong proper vertex coloring given shows
that this hypergraph has a strong chromatic number of 3.

homomorphism ¢ : V(P) — K?(,B) that maps
o) = d(ys) = 21, Py2) = d(ya) = 22, and  ¢(y3) = zs,

where V(K§3)) = {z1,29,23}. Then f* := ¢ o f and the connecting hyperedges in
Kf) @ fr K§3) are given by

ey = (w1, 22) (22, 22) (3, 21)
eh = (w1, 21)(2,23) (24, 21)
ey = (v1,21)(x3, 23) (4, 22)
ey = (wa, 21)(x3, 21) (T4, 22)

The resulting hypergraph K f') @ K 53) is given in Figure 5.

To obtain a strong proper vertex coloring, we begin by focusing on the connecting
hyperedges e}, and ef. Without loss of generality, suppose that (1, z1) is red and (z4, 22)
is blue. This forces (x4, z1) and (x3, z3) to be green and (2, 23) to be blue. Then (x3, z1)
must be red and (z3, z1) must be green. At this point, no color is available for (x4, 22) as
(22, 21) and (22, z3) require it to be different from blue and green, but e already contains

ared vertex. So, (K 4(13) ®p K ?()3)) > 4, and one can continue with this process to obtain
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Figure 5: The Sierpinski product K f’) ®p K 353) given in Example 3.3.

a strong proper vertex 4-coloring of Kf) ® = K(?’), showing that x4 (Kf’) ® = K§3)) =4.
Thus, our example demonstrates that there are cases where equality is not obtained in
Theorem 3.2.

While we can not be precise with the evaluation of the strong chromatic number in
general, an exact evaluation can be found when f is assumed to be constant.

Theorem 3.4. Let r > 2 and suppose that Hy and Hs are r-uniform hypergraphs. If
I (Vr(flll)) — V/(H>) is a constant function, then

Xs(H1 ®p Hy) = max{x,(H1), xs(H2)}.

Proof. When f : (Vr(il)) — V/(H,) is a constant function, the subhypergraph spanned
by the connecting hyperedges is isomorphic to H; and each gH> is isomorphic to Hs. It

follows that
Xs(H1 ® Hy) > max{x,(H1), xs(H2)}.

To prove the opposite inequality, observe that all connecting hyperedges include at most
one vertex from each gH>. Begin with a strong proper vertex coloring of the vertices
spanned by the connecting hyperedges using at most xs(H;). The specific color assigned
for at most one vertex in each gH> does not affect the number of colors needed to form a
strong proper vertex coloring of each gH,. Hence, it is possible to color H; ® ¢ Hj using
max{xs(H1), xs(Hz)} colors, completing the proof. O

An immediate consequence of this theorem is the following corollary.
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Corollary 3.5. Let r > 2 and suppose that Hy and Hy are r-uniform hypergraphs with

Xs(Ho) =n.If f : (Vr(flll)) — V(H>) is a constant function, then

Xs(H1 @5 Ho) = xs(H1 Q@+ KT(LT))~

4 Conclusion

We conclude our investigation of Sierpifiski products of r-uniform hypergraphs by iden-
tifying numerous directions for future study. Our primary focus has been on measures of
connectivity, but there are many additional parameters (e.g., independence numbers, di-
ameters, etc...) and applications worthy of inquiry. As subhypergraphs of lexicographic
products, Sierpiriski products may offer new results in Ramsey theory or bounds for certain
Turdn numbers (e.g., see [1]). Several of the topics studied in Kovi¢, Pisanski, Zemlji¢, and
Zitnik’s paper [11], such as automorphism groups and products involving more than two
factors, have not been considered here and should be considered for hypergraphs.

Finally, the generalization of Sierpifiski products to r-uniform hypergraphs that we have
used seemed like the natural choice, but there are other ways in which one can make such
a generalization. For example, let H; and Hs be r-uniform hypergraphs. For a function
f: V(Hy) — V(Hy), define the product H; @/ Hy to have vertex set V(Hy) x V(H>).
The hyperedges in E(H; ® Hy) have the following forms:

(g7h1)(gvh2) e (gvhr)v such thatg € V(Hl) and hihs---h, € E(HQ)a

and
(91, f(m(91))) (92, f(7(g2))) -~ (gr, f(7(gr))),

such that g1g2- -+ g € E(H;) and 7 is any nontrivial permutation on {g1, g, ..., gr}.
Observe that we have denoted this generalization of the Sierpinski product by writing f as
a superscript rather than a subscript. Perhaps many of the results proved in this paper hold
for this product as well. We leave its investigation for future work.
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1 Introduction

All groups and graphs in this paper are finite. Recall [1] that a digraph I' is said to be a
digraphical regular representation (DRR) of a group G if the automorphism group of I'
is isomorphic to G and acts regularly on the vertex set of I". If a DRR of G happens to
be a graph, then it is also called a graphical regular representation (GRR) of G. Other
terminology and notation can be found in Section 2.

It is well known that if I" is a GRR (or DRR) of G, then I' must be a Cayley graph (or
Cayley digraph, respectively), so there is a subset S of G such that I" 2 Cay(G, S) (and S
is inverse-closed if I is a graph). It is traditional [5, p. 243] to let

Aut(G,S) ={p € Aut(G) | ¢(S) = S }.

Since Aut(G, S) C Aut(Cay(G, S)), it is obvious (and well known) that if Aut(G, S)
is nontrivial, then Cay(G, S) is not a GRR (or DRR). In this paper, we discuss groups for
which the converse holds:

Definition 1.1. We say that a group G is GRR-detecting if, for every inverse-closed subset
S of G, Aut(G,S) = {1} implies that Cay(G, S) is a GRR. Similarly, a group G is
DRR-detecting if for every subset S of G, Aut(G, S) = {1} implies that Cay(G, S) is a
DRR.

Remark 1.2. Every Cayley graph is a Cayley digraph, so every DRR-detecting group is
GRR-detecting.

Definition 1.3. We say that a Cayley (di)graph I' = Cay(G, S) on a group G witnesses
that G is not GRR-detecting (respectively, not DRR-detecting) if Aut(G,S) = {1} butT"
is not a GRR (respectively, not a DRR) for G.

An important class of DRR-detecting groups was found by Godsil. His result actually
deals with vertex-transitive digraphs, rather than only the more restrictive class of Cayley
graphs, but here is a special case of his result in our terminology:

Theorem 1.4 (Godsil, cf. [5, Corollary 3.9]). Let G be a p-group and let Z,, be the cyclic
group of order p. If G admits no homomorphism onto the wreath product Z,, ! Z,, then G is
DRR-detecting (and therefore also GRR-detecting).

Since Z,, ! Z,, is nonabelian, the following statement is an immediate consequence:
Corollary 1.5. Every abelian p-group is DRR-detecting (and therefore also GRR-detecting).

Remark 1.6. Tt is obvious (without reference to Theorem 1.4) that most abelian p-groups
are GRR-detecting. Indeed, it is well known that every abelian group is GRR-detecting
(unless it is an elementary abelian 2-group), because the nontrivial group automorphism
x + 2~ ! is an automorphism of Cay(G, S).

The following result shows that the bound in Godsil’s theorem is sharp, in the sense
that Z,, ! Z,, cannot be replaced with a larger p-group (when p is odd):

Theorem 1.7. If p is an odd prime, then the wreath product Zj, ! Z,, is not GRR-detecting
(and is therefore also not DRR-detecting).
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Remark 1.8. The conclusion of Theorem 1.7 is not true for p = 2, because Zso ! Zso is
GRR-detecting. This is a special case of the fact that if a group has no GRR, then it is
GRR-detecting [4, Theorem 1.4].

The following two results provide additional examples, by showing that direct products
often yield groups that are not DRR-detecting:

Theorem 1.9. If G; and G5 are nontrivial groups that admit a DRR (a GRR, respectively)
and gcd(\Gl [, |G |) = 1, then G; x G4 is not DRR-detecting (not GRR-detecting, respec-
tively).

Theorem 1.10. If G; admits a DRR (a GRR, respectively) and G5 is not DRR-detecting
(not GRR-detecting, respectively), then G X G4 is not DRR-detecting (not GRR-detecting,
respectively).

These two results are the main ingredients in the proof of the following theorem:
Theorem 1.11. Every nilpotent DRR-detecting group is a p-group.

Remark 1.12. The phrase “DRR-detecting” in Theorem 1.11 cannot be replaced with
“GRR-detecting.” For example, every abelian group is GRR-detecting (unless it is an ele-
mentary abelian 2-group), as was pointed out in Remark 1.6.

Here is an outline of the paper. A few definitions and basic results are recalled in Sec-
tion 2. Theorem 1.7 is proved in Section 3. A generalization of Theorem 1.9 is proved
in Section 4, by using wreath products of digraphs. In Section 5, we recall some funda-
mental facts about cartesian products of digraphs and use them to prove Theorem 1.10.
Theorem 1.11 is proved in Section 6.

2 Preliminaries

Definition 2.1. Recall that if S is a subset of a group G, then the Cayley digraph of G (with
respect to the connection set S) is the digraph Cay(G, S) whose vertex set is GG, such that
there is a directed edge from ¢; to g if and only if go = sg; for some s € S. If S is closed
under inverses, then C'ay(G, S) is a graph, and is called a Cayley graph.

See Remark 4.4 for a general definition of the wreath product of two groups. The
following special case is less complicated:

Definition 2.2. Let Z,1 Z,, = Z,, x (Z,,)?, where Z,, acts on (Z,)? by cyclically permuting
the coordinates: for (v, v, ...,vp) € (Zy)P and g € Z,,, we have

(v1,v2,...,0p)7 = (Vg1, Vg2, - -+, Up, U1, V2, . . ., Ug).
We will use the following well-known results.

Theorem 2.3 (Babai [ |, Theorem 2.1]). If a finite group does not admit a DRR, then it is
isomorphic to
Qs. (Z)*, (Z2)?, (Zs)*, or (Z3)?,

where (Jg is the quaternion group of order 8, which means

Qs =(i,j.k|i®=72=k=-1,ij=k).
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Lemma 2.4. Let G be the right regular representation of G. Then:
1. G is contained in Aut(Cay(G, S)) for every subset S of G.
2. The normalizer of G in Aut (Cay(G,S)) is Aut(G, S) x G.
The latter has the following simple consequence:

Lemma 2.5. If I' is a Cayley digraph on G (a Cayley graph on G, respectively), then I'
witnesses that GG is not DRR-detecting (not GRR-detecting, respectively) if and only if the
regular representation of G is a proper self-normalizing subgroup of Aut(I").

3 Proof of Theorem 1.7

Let p be an odd prime. In this section, we show that Z, 1 Z,, is not GRR-detecting. (This
proves Theorem 1.7.) To do this, we will construct a Cayley graph I' on Z,, ¢ Z,, such that
I is not a GRR, but the regular representation of Z, ! Z,, is self-normalizing in Aut(T").
In order to construct this graph, we first construct a certain group G that properly contains
Zip ! L. We will then define I' in such a way that G is contained in Aut(I").

Let A = Z, be a cyclic group of order p, and choose an irreducible representation
of A on a vector space () = (Z2)™ over the finite field with 2 elements, such that n > 2.
Now construct the corresponding semidirect product A x (), which is a nonabelian group
of order 2" p.

Choose a nontrivial 1-dimensional representation x : @ — {£1} C Z (where Z,' de-
notes the multiplicative group of nonzero elements of Z,), and induce it to a representation
of A x () on a vector space V' over Z, [10, §3.3, pp. 28-30]. Since @ has index pin A x Q,
the vector space V has dimension p, so V' = (Z,)P. Let

G=(AxQ)x V.

Since the representation of A x @ on V is induced from a one-dimensional repre-
sentation of the normal subgroup @), the restriction to () decomposes as a direct sum of
one-dimensional representations: V = V| @ --- @ V,,, where each V; is a subgroup of
order p that is normalized by @ (cf. [10, Proposition 22, p. 58]). (More precisely, for
eachi € {1,...,p}, there is some a € A, such that the representation of @) on V; is given
by x%, where x%(g) = X(g‘fl) for g € @, and g" = h='gh for g, h € G.) Note that, since
A normalizes @), it must (cyclically) permute the Q-irreducible summands Vi, ..., V}, so
the Sylow p-subgroup A x V' of G is isomorphic to Z;, ! Zy,.

Fix a nonidentity element a of A. Since A normalizes (), we know that the coset Qa
is fixed by the action of @ on the space Q\G of right cosets of Q). Also fix some nonzero
vy € Vi. Then, foreach i € {1,...,p}, letv; = vflfl, So v; is a nonzero element of V;,
and define z = v1 + v2 + - - - + v}, 50 2 is a generator of the center Z(A x V).

Now let

S = ((v1,02) \ (1)) U (a9 C AV CG,
and let
I'=Cay(Ax V,S).

Since ) normalizes (v1) and (vs), and fixes the coset Qa in Q\G, itis clear that SQ = @SS.
Therefore, after identifying the vertex set A x V of I" with Q\QAV = Q\G in the natural
way, we have G C Aut(T"), via the natural action of G on Q\G. (Note that the action
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of G on Q\G is faithful, because () does not contain any nontrivial, normal subgroup of G.
Otherwise, since the action of A on @ is irreducible, the entire subgroup ) would have to
be normal, which would mean that () acts trivially on Q\G. But this is false, because the
representation of () on V' is nontrivial.) So I" is not a GRR.

Therefore, in order to show that Z,, ! Z,, = A x V is not GRR-detecting, it will suffice
to show that Aut(A x V,.5) is trivial. To this end, let ¢ be an automorphism of A x V that
fixes S. We will show that ¢ is trivial.

Since V is characteristic in A x V' (for example, it is the only abelian subgroup of
order p?), we know that

e(VNS)=VNS=(vy,v) \ {v1) C (v1,v2).
So

o ((v1,v2)) = @ ((v1v2,v2)) = (p(v102), 0(v2)) C ((V NS)) C (v1,v2).

Since ¢ is injective, we conclude that ¢ fixes (v, v2) (setwise). Then ¢ also fixes (vy, va) \
S = (v1).

We have p(a) ¢ V (because a ¢ V and ¢ fixes V), which means p(a) = a*v’ for
some k € pr and v’ € V. Then (since v’ centralizes V, because V is abelian) we have

k

(v1,v2) = ((v1,02)) 3 p(v2) = P(v]) = (V1)) € (11)* = (Vs1),
sok € {0,1} NZ,; = {1}, which means

/

o(a) = av'.
Note that (since ¢(V) = V) this implies
p(aV) =aV.
Since ¢ fixes (v1), we have p(v1) = fv; for some £ € Z). Foreveryi € {1,...,p},

this implies

p(0r) = e ) = (1)?@ ) = (o) = o,

Since {v1,...,v,} generates V, we conclude that
p(v) =Llvforallv € V.

To complete the proof, we will show that v’ is trivial and £ = 1. (This means that ¢
fixes a, and also fixes every element of V. So ¢ is the trivial automorphism, as desired.)
For all zy € 29, we have

a- (v +Lz) = av’ - (lz) = ¢(a) p(20) = p(a )
co(SNnaV)=p(S)NeaV)=SnaV =az°.

Therefore, if we write v = > 0| s;v; (with s; € Zp) and z9 = > -, t;v; (with
t; € {£1}), then we have

s; +0t; € {1} (mod p) for every i.
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For any given i, the representation of () on V; is nontrivial, so we may choose zj so that
t; = —1. Therefore, we have s; — £ = £1 (mod p). On the other hand, by letting zg = =z
(and noting that s; — ¢ # s; + ¢ (mod p)) we see that we also have s; + £ = F1 (mod p).
Adding these two equations and dividing by 2 yields s; = 0 (for all 7). So v’ is trivial
(which means p(a) = a).

All that remains is to show that £ = 1 (which means that ¢ acts trivially on V'). Suppose
this is not true. (That is, suppose £ # 1.) We have

+ =0+ f(:l:l) =s;+lt; € {ﬂ:l} (mod p),

so this implies £ = —1.
For convenience, let Z = (z) = Z(A x V). Note that, since ¢(a) = a, we have

a-(—2)=a-({z)=plaz) €p(SNaV)=SNaV =az@,

so there is some g € @, such that 29 = —z. Since Z = (z), this implies that g is an element
of the normaliser N (Z) of Z in Q. Also note that g is nontrivial, because 29 = —z # z.
Then, since Ng(Z) is normalized by A (because A normalizes ) and Z), the irreducibility
of the representation of A on () implies that Ng (Z) = Q.

Hence, ) acts on Z by conjugation, so Q)/Cq(Z) embeds in the cyclic group Aut(Z) =
Z . Since @ is an elementary abelian 2-group, this implies that |Q/Cq(Z)| < 2. Itis clear
that || > 4 (because ) = (Z2)™ and n > 2), so we conclude that Cg(Z) is nontrivial.
Using once again the fact that the representation of A on @ is irreducible, we conclude that
Co(Z) = @, which means that () centralizes Z. However, since

Z=(z)= (0 +v2+-+up),

and each (v;) = V; is a Q-invariant subspace, this implies that ) centralizes each v;, and
is therefore trivial on V. On the other hand, we have 29 = —z # 2z, and g € Q). This is a
contradiction.

4 Using wreath products to construct witnesses

In this section, we prove Corollary 4.11, which is a generalization of Theorem 1.9.

Notation 4.1. In this section, /N always denotes a normal subgroup of a group G. We let
G = G/N, and use ~: G — G to denote the natural homomorphism.

Notation 4.2. Foreach ¢ € G and each function f: G — N, welet ¢, ¢ be the permutation
on G that is defined by
Qe f(x) = 2c f(T) forxz € G.

Let W(G, N) be the set of all such permutations of G.

Remark 4.3. Informally speaking, an element of W (G, N) is defined by choosing an ele-
ment of G (or, more accurately, by choosing a coset representative) to permute the cosets
of N, and then choosing an element of N to act on each coset. (The elements of N can be
chosen independently on each coset.)

We have ¢, ¢ = ¢ ¢ if and only if there is some n € N, such that ¢ = cn and

f() = n~1f(x) for all Z. From this, it follows that |W (G, N)| = |G| - N|I°l.
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Remark 4.4. The usual definition of the wreath product of two groups K and H is essen-
tially:
KYH=W(K x H {1} x H).

Definition 4.5. Recall that the wreath product X 1Y of two (di)graphs X and Y is the
(di)graph whose vertex set is the cartesian product V(X) x V(Y'), and with a (directed)
edge from (z1,y1) to (22, y2) if and only if either there is a (directed) edge from z; to x2
or 1 = x5 and there is a (directed) edge from y; to yo. This is also known as the lexico-
graphic product of X and Y.

The following two observations are well known (and fairly immediate from the defini-
tions). The first is a concrete version of the Universal Embedding Theorem, which states
that G is isomorphic to a subgroup of (G/N) ¢ N.

Lemma 4.6. Wi(G, N) is a subgroup of the symmetric group on G. It is isomorphic to the
wreath product G ¢ N, and contains the regular representation of G.

Lemma 4.7. Suppose Cay(G, S;) is a loopless Cayley digraph on G, and Cay(N, Ss) is
a Cayley digraphon N. Let S;1 = {g € G| g € S1 }. Then

Cay(G, S1 U Sy) = Cay(G, S1) 1 Cay(N, S2),
and W (G, N) is contained in the automorphism group of Cay(G, Sy U S).

The following result is a special case of the general principle that the automorphism
group of a wreath product of digraphs is usually the wreath product of the automorphism
groups. We have stated it only for DRRs, making use of some straightforward observations
about the automorphism group of a DRR on more than 2 vertices, but the much more
general statement in [3] applies to all vertex-transitive digraphs.

Lemma 4.8 (cf. Dobson-Morris [3, Theorem 5.7]). Assume that the graphs Cay (G, Sy)
and Cay(N, S,) are loopless DRRs, and let S; be as in Lemma 4.7. If either |G| # 2 or
|N| # 2, then

Aut (Cay(G, 51 @] SQ)) = W(G, N)

In light of Lemmas 2.5 and 4.8, it is of obvious interest to us to determine when the
regular representation of G is self-normalizing in W (G, N). Our next result is the answer
to this question. Recall that the abelianization of a group H is the largest abelian quotient
of H, or, in other words, the quotient group H/[H, H], where [H, H] is the commutator
subgroup of H.

Theorem 4.9. Let IV be a normal subgroup of GG. Then the regular representation of G is
self-normalizing in W (G, N) if and only if

1. Z(N) < Z(G), and

2. the order of the abelianization of G/N is relatively prime to |Z(N)].

Proof. (=) We prove the contrapositive. (1) If Z(N) £ Z(G), then there exists n € Z(N)
such that n ¢ Z(G). Conjugation by n is an element of W (G, N) that normalizes the
right regular representation of G, but is not in the right regular representation of G. (2) If
the order of the abelianization of G/N is not relatively prime to |Z(NN)|, then there is a
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nontrivial homomorphism f: G' — Z(IN). We may assume that hypothesis (1) is satisfied,
and then it is straightforward to verify that the corresponding element ¢ of W (G, N)
normalizes the right regular representation of G-

vri(zg) = zg f(Zg) (definition of ¢ 1)
=z f(Tg) g (f(zg) € f(G) C Z(N) C Z(G))
=z f(Z) f(@9) g (f is a homomorphism)
=) f(@)yg (definition of @y 1).

(«<=) By Lemma 2.4, it suffices to show that Aut(G) N W(G, N) is trivial. To this end,
let p € Aut(G) N W(G, N). Since ¢ € W(G, N), there exist c € G and f: G — N,
such that
o(x) = xzc f(T) forall x € G.

Since ¢ is a group automorphism we know (1) = 1 € N, so we may assume ¢ = 1,
after multiplying c on the right by an element of N. Then we must have f(1) = 1. Now,
foreachn € N, we have m = 1, so

pn)=n-f@) =n-fI =n-1=n.
Therefore, for all g € G and n € N, we have

gn- f(g) = gn- f(gn) = ¢(gn) = ¢(g) ¢(n) = g f(9) - n,

son - f(g) = f(g) - n. Since this is true for all n € N, we conclude that f(g) € Z(N).
Since Z(N) C Z(G), this implies f(g) € Z(G) for all g. Therefore, for all g, h € G, we
have

gh- f(gh) = (gh) = (g) w(h) = g f(g) - h f(h) = gh - f(9) f(R).

So £ is a group homomorphism. Since f(G) is contained in Z(N), which is abelian, we
see from (2) that f must be trivial. Since c is also trivial, we conclude that ¢(z) = z for
all z. Since ¢ is an arbitrary element of Aut(G) "W (G, N), this completes the proof. [

Remark 4.10. A slight modification of the proof of Theorem 4.9 shows that if G is the right
regular representation of G, then the normalizer of G in W (G, N) is

{@ecslceq, feZ (G Z(N))},

where
ZY(G.ZLN)) ={f: G— ZN) | f(gh) = f(g)" f(R) forallg,h € G }
is the set of all “I-cocycles™ or “crossed homomorphisms™ from G to Z(N) (in the termi-

nology of group cohomology [12]). This fact is presumably known.

It may also be of interest to note that hypotheses (1) and (2) in Theorem 4.9 are obvi-
ously satisfied when Z(V) is trivial.
Combining the results of this section, we obtain the following.



D. W. Morris, J. Morris and G. Verret: Groups for which it is easy to detect GRRs 9

Corollary 4.11. Let N be a nontrivial, proper, normal subgroup of G, such that N and
G/N each admit a DRR (or, respectively, a GRR). If

1. Z(N) < Z(G), and
2. the order of the abelianization of G/N is relatively prime to |Z(N)|,

then G is not DRR-detecting (respectively, not GRR-detecting).

More precisely, if we let I'; be a DRR (respectively, GRR) on G/N and I's be a DRR
(respectively, GRR) on IV, then I'1 1" witnesses that G is not DRR-detecting (respectively,
not GRR-detecting).

Proof. Clearly, either |G| # 2 or | N| # 2. It then follows by Lemma 4.7 and Lemma 4.8
that Aut(T'; 1 T's) = W(G, N). By Theorem 4.9, the regular representation of G is self-
normalizing in W (G, N), therefore I'; { 'y witnesses that G is not DRR-detecting (respec-
tively, not GRR-detecting). O

Note that Theorem 1.9 can be obtained from Corollary 4.11 by letting G = G1 X G2
and N = (Gs.

5 Using cartesian products to construct witnesses

Definition 5.1. Recall that the cartesian product X O'Y of two (di)graphs X and Y is the
(di)graph whose vertex set is the cartesian product X X Y, such that there is a (directed)
edge from (z1,y1) to (x2,y2) if and only if either 1 = x5 and there is a (directed) edge
from y; to yo, Or y; = Y2, and there is a (directed) edge from z; to x».

We say that a (di)graph is prime (with respect to cartesian product) if it has more than
one vertex, and is not isomorphic to the cartesian product of two (di)graphs, each with more
than one vertex. It is well known that every (di)graph can be written uniquely as a cartesian
product of prime factors (up to a permutation of the factors), but we do not need this fact.

To avoid the need to consider permutations of the factors, the following result includes
the hypothesis that the factors are pairwise non-isomorphic. (This is not assumed in [11],
which also considers isomorphisms between two different cartesian products, instead of
only automorphisms of a single digraph.) The upshot is that, in this situation, the automor-
phism group of the cartesian product is the direct product of the automorphism groups.

Theorem 5.2 (Walker, cf. [1 ], Theorem 10]). LetI'y,...,['; be weakly connected prime
digraphs that are pairwise non-isomorphic. If ¢ is an automorphism of I'y O - - - O I'y, then
for each ¢, there is an automorphism ¢; of I'; such that, for every vertex (vy,...,vy) of
I'yo---0Tl, we have

o(v1,...,0) = (gol(vl)7 . gpk(vk)).

Prime graphs are quite abundant:

Theorem 5.3 (Imrich [7, Theorem 1]). If I' is a graph (with more than one vertex), such
that neither I nor its complement I is prime, then I" is one of the following:

1. the cycle of length 4 or its complement (two disjoint copies of K5);

2. the cube or its complement (the graph Ky x Ky);
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3. K3 0O K3 (which is self-complementary); or

4. Ko 0 A, where A is the graph obtained by deleting an edge from K4 (which is
self-complementary).

The following is an analogous result for digraphs. (Recall that a digraph is proper if it
is not a graph.)

Theorem 5.4 (Grech-Imrich-Krystek-Wojakowski [6, Theorem 1.2] and Morgan-Morris-
Verret [8, Theorem 2.2]). If I is a proper digraph, then at least one of I" or I is prime.

Corollary 5.5. If a nontrivial group G admits a DRR (respectively, GRR), then it admits a
DRR (respectively, GRR) that is prime (and weakly connected). Furthermore, if G is not
DRR-detecting (respectively, not GRR-detecting), then there is a witness that is prime (and
weakly connected).

Proof. First, note that I" and T have the same automorphism group, so I' is a DRR (GRR,
respectively) for G if and only if T is. Similarly, I is a witness that G is not DRR-detecting
(GRR-detecting, respectively) if and only if T is.

Also note that if a prime digraph I' is not weakly connected, and is either a DRR or a
witness that some group is not DRR-detecting, then I' = K5 (so I is prime and weakly
connected). This is because any vertex-transitive digraph is isomorphic to I'g 0 K,,, where
T'y is a weakly connected component of the digraph, and n is the number of components.

Suppose that I is a GRR for G. By Theorem 5.3, at least one of I or ' is prime with
respect to cartesian product, unless I" is one of the graphs listed in that theorem, but none
of those graphs is a GRR, because the automorphism group does not act regularly on the
set of vertices:

1. the automorphism group of a cycle of length 4 (or its complement) is the dihedral
group of order 8;

2. the automorphism group of the cube (or its complement) is Zy x Sym(4), of order
48;
3. the automorphism group of K3 O K3 is Zg ! Sym(3), of order 72; and

4. the graph K5 O A is not vertex-transitive (it is not even true that all vertices have the
same valency).

Now, suppose that I' is a DRR for G. We may assume that I' is a proper digraph.
(Otherwise, I' is a GRR, so the preceding paragraph applies.) Then, by Theorem 5.4, either
I" or I is prime with respect to cartesian product.

Finally, suppose I' is a witness that G is not DRR-detecting (or not GRR-detecting,
respectively), such that neither I nor T is prime. This implies that I" is one of the graphs
listed in Theorem 5.3. (So G is not GRR-detecting.)

However, it is easy to see that none of the graphs listed in Theorem 5.3 is a witness.
First, recall that a p-subgroup of a group cannot be self-normalizing unless it is a Sylow
subgroup. Therefore (by Lemma 2.5), if a graph I" of prime-power order p* is a witness
that some group is not GRR-detecting, then p* must be the largest power of p that divides
Aut(T"). This shows that the graphs in (1) and (2) are not witnesses. If I" is as described
in (3), then the only regular subgroup of Aut(T") is the unique (Sylow) subgroup of order 9,
which is normal, and is therefore obviously not self-normalizing. Finally, as noted above,
the graphs in (4) are not vertex-transitive. O
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Proof of Theorem 1.10. For simplicity, we consider only DRRs (because the proof is the
same for GRRs). Let I'; = Cay(G1,S1) be a DRR for Gy, and let I'y = Cay(Ga, S2)
be a witness that G5 is not DRR-detecting. By Corollary 5.5, we may assume that I'y
and I's are prime with respect to cartesian product (and are weakly connected). Since I';
is a DRR, but I's is not, we know that I'; 22 I's. Therefore, we see from Theorem 5.2 that
Aut(F1 O FQ) = Aut(Fl) X Aut(Fz)

Since I'; is not a DRR, I'y OT'; is not a DRR. Similarly, since the regular representation
of G is all of Aut(T';) and the regular representation of G5 is self-normalizing in Aut(T's),
the regular representation of G; x Gs is self-normalizing in Aut(I'; Os). SoT'; O g is
a witness that G; x G is not DRR-detecting. O

6 Nilpotent DRR-detecting groups are p-groups

In this section, we prove Theorem 1.11, which states that if a nilpotent group is not a p-
group, then it is not DRR-detecting. In most cases, this follows easily from Theorems 1.9
and 1.10, but there is one special case that requires a different proof:

Lemma 6.1. If H is a nontrivial group of odd order and H % Zs x Zs, then Qg x H is
not DRR-detecting.

Proof. From Theorem 2.3, we see that H admits a DRR (because it has odd order, but is
not Zs x Zs), so we may let Cay(H,S;) be aDRR. Let S = S; U{i}UjH C G. It
suffices to show that Aut(G, S) = {1} and that Cay(G, S) is not a DRR.

Let ¢ € Aut(G,S). We can characterise S as the set of all elements of S that have
odd order. Thus, we must have p(51) = S1, so H = (S7) is fixed setwise by ¢. Since the
identity vertex is also fixed and the induced subgraph on H is a DRR, every element of H
must be fixed by ¢. We can use this fact to distinguish ¢ from the elements of jH (all of
which differ from each other by elements of H), so i is fixed by . Finally, j is the unique
element of order 4 in jH, so it too is fixed by . We now know that ¢ is an automorphism
of G that fixes every element of a generating set for G. So ¢ must be trivial.

All that remains is to show that Cay(G, S) is not a DRR. Fix a nontrivial element
h € H, and define a permutation 7 of G by

@)= if z € j(H, ).

{ x ifx e (H,i);
Note that 7 is a permutation of GG, because right multiplication by h is a permutation of G
that fixes (H, i) setwise.

We claim that 7 is an automorphism of Cay (G, S). First, note that a directed edge of
the form g — s1g or g — ig either has both of its endpoints in (H, ¢), or has both of its
endpoints in j(H,¢). Since right multiplication by A is an automorphism of Cay(G, S), it
is clear that 7 preserves such directed edges. The remaining directed edges are of the form
g — gjh’ for some h' € H. Multiplying either g or g7h’ on the right by & results in another
such directed edge. This completes the proof that 7 is an automorphism of Cay(G, S). O

Proof of Theorem 1.11. Let G be a nilpotent group, and assume that G is not a p-group.
(Note that |G| is divisible by at least two distinct primes.) We will show that G is not
DRR-detecting.
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Case 1. |G| is divisible by at least three distinct primes. Let p be the largest prime
divisor of |G| and let P be a Sylow p-subgroup of G. Since G is nilpotent, we may write
G = P x H for some subgroup H with gcd(|P|,|H|) = 1. Since p is the largest of
at least three primes dividing |G|, neither P nor H is a 2-group or a 3-group, so we see
from Theorem 2.3 that P and H each admit a DRR. Therefore, Theorem 1.9 implies that
G = P x H is not DRR-detecting.

Case 2. |G| is divisible by precisely two distinct primes p and q. Since G is nilpotent, we
have G = P x @, where P is a Sylow p-subgroup and () is a Sylow g-subgroup of G. If P
and @ each admit a DRR, then Theorem 1.9 implies that G = P x @ is not DRR-detecting.

We may thus assume, without loss of generality, that P does not admit a DRR. Using
Theorem 2.3 and Lemma 6.1 and interchanging P and @ if necessary, we may assume that
P is isomorphic to one of (Z2)?, (Z2)3, (Zs)*, or (Z3)*. Thus, we may write P = (Z,)",
with r > 2.

Since (Z,)"~* x @ is not a p-group, we may assume, by induction on |G/, that it
is not DRR-detecting. Also note that Z, admits a DRR. (Take the directed p-cycle C_>’p
if p > 3; or take Ky if p = 2.) Therefore, by applying Theorem 1.10 with G = Z,
and Go = (Z,)" ! x Q, we see that the group G = Z, x ((Z,)"~* x Q) is not DRR-
detecting. O
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Abstract
Let F and G be two t-uniform families of subsets over [k] = {1,2,...,k}, where
|F| = |G|, and let C be the adjacency matrix of the bipartite graph whose vertices are

the subsets in F and G, where there is an edge between A € F and B € G if and only if
AN B # (). The pair (F,G) is g-almost cross intersecting if every row and column of C
has exactly q zeros.

We further restrict our attention to g-almost cross intersecting pairs that have a circulant
intersection matrix C), 4, determined by a column vector with p > 0 ones followed by
q > 0 zeros. This family of matrices includes the identity matrix in one extreme, and the
adjacency matrix of the bipartite crown graph in the other extreme.

We give constructions of pairs (F,G) whose intersection matrix is C, 4, for a wide
range of values of the parameters p and ¢, and in some cases also prove matching upper
bounds. Specifically, we prove results for the following values of the parameters: (1)
1<p<2t—landl1<qg<k—-2t+1.(Q2)2t<p<t? and any ¢ > 0, where k > p+gq.
(3) p that is exponential in ¢, for large enough k.

Using the first result we show that if & > 4t — 3 then Ca;_1 y_2¢41 is a maximal
isolation submatrix of size k x k in the 0, 1-matrix Aj ¢, whose rows and columns are
labeled by all subsets of size ¢ of [k], and there is a one in the entry on row z and column y
if and only if subsets z, y intersect.

Keywords: Circulant matrix, intersecting sets, Boolean rank, isolation set.

Math. Subj. Class.: 05D05, 15834

1 Introduction

One of the fundamental results of extremal set theory is the theorem of Erdds, Ko and
Rado [8], which shows that the size of an intersecting ¢-uniform family of subsets over
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[k] = {1,2, ..., k} is bounded above by (1;:11) . Numerous variations of the original problem
have been suggested and studied over the years. Among them is the problem of cross
intersecting families of subsets (e.g. [4, 10, 14, 17, 21]). Specifically, if 7 and G are two
t-uniform families of subsets over [k], then the pair (F,G) is cross intersecting if every
subset in F intersects with every subset in G and vice versa. Pyber [21] proved that in this
case | F| 9] < (571)"

Many of the extremal combinatorial problems considered so far can be inferred as re-
sults about maximal submatrices of the 0, 1-matrix Ay ; of size (]Z) X (]Z) whose rows
and columns are labeled by all subsets of size ¢ of [k], and there is a one in the entry on
row z and column y if and only if subsets z,y intersect. Hence, in this setting, the re-
sult of Erdds, Ko and Rado can be inferred as stating the size of the largest all-one square
principal submatrix of Ay, ;, and the result of Pyber states the size of the largest all-one
submatrix of Ay ;. We note that considering the classic results of extremal combinatorics
as maximal submatrices of Ay, ;, allows us to employ tools from algebra in addition to the
combinatorial techniques.

Another variation of the problem of cross intersecting families was introduced by Gerb-
ner et al. [11], which defined the notion of a g-almost cross intersecting pair (F,G). Here
every subset in F does not intersect with exactly ¢ subsets in G and vice versa. If F = G
then F is called a g-almost intersecting family of subsets. Hence, if C'is the submatrix of
Ay + whose rows are indexed by the subsets of F and columns by the subsets of G, then
every row and column of C has exactly ¢ zeros. Using a classic theorem of Bollobds [3],
it is possible to prove that the largest square submatrix C' of Ay, ;, representing a 1-almost
cross intersecting pair, is of size (2t) X (Qt). A theorem proved in [11] shows that if C'

t t
is a submatrix of size n x n of Ay ;, with exactly g zeros in each row and column, then

n < (2q — 1)(2tt)

In this paper we consider the problem of finding maximal circulant submatrices of Ay, ¢,
representing an almost cross intersecting pair, for a range of parameters. A circulant matrix
is a matrix in which each row is shifted one position to the right compared to the preceding
row (or alternatively, each column is shifted one position compared to the preceding col-
umn). Therefore, such a matrix C' is determined completely by its first row or first column.
Circulant matrices were studied extensively in the context of the multiplicative commuta-
tive semi-group of circulant Boolean matrices and also when discussing Cayley graphs of
cyclic groups (see e.g. [1, 5, 6, 7, 22]). However, they were not studied in the context of
extremal combinatorics, besides some special cases that will be discussed shortly.

Caa =

)

OO OO ==
O OO - M= =O
OO === OO
O R = 4FEFOOO
i i e i e B e B o B e
== 000000
_H R, OO OoO O
OO OO =

Figure 1: The circulant matrix C), 4, where p = ¢ = 4.

Our focus will be on circulant matrices that are determined by a column vector with
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p ones followed by ¢ zeros. Such a matrix will be denoted by C), ,. See Figure 1 for an
example. Thus, in one extreme, if p = 1 and ¢ > 0, then C}, , is the identity matrix.
The other extreme is ¢ = 1 and p > 0, and then C,, 4 is the adjacency matrix of a crown
graph (where a crown graph is a complete bipartite graph from which the edges of a perfect
matching have been removed). Hence, the structure of the circulant matrix C), , forms
a bridge which connects these two extreme cases, and it is interesting to find a unifying
theorem which determines the maximal size of the matrix C), , as a function of p, ¢, k and
t.

We note that two trivial examples of circulant submatrices of Ay, ; include the case of

g = 0, where we get an all-one submatrix of Ay, ; of maximal size (1::11) X (1::11) , and the

case of p = 0, where we get an all-zero submatrix of Ay ; of maximal size (k{ 2) X (k{ 2).
Hence, the problem of studying the size of circulant submatrices Cj, 4 of Ay, is interesting
only if both p, ¢ > 0. Furthermore, we must require that k > 2t, as otherwise, Ay, ; is the
all-one matrix itself.

As we discuss shortly, one of our results also provides a simple construction of maximal
isolation submatrices of Ay ;, thus providing simple small witnesses to the Boolean rank
of Ay ;. The Boolean rank of a 0, 1-matrix A of size n x m is equal to the smallest integer
r, such that A can be factorized as a product of two 0, 1-matrices, X - Y = A, where X is
a matrix of size n X r and Y is a matrix of size r X m, and all additions and multiplications
are Boolean (thatis,1+1=1,140=0+1=1,1-1=1,1-0=0-1 = 0). A 0, 1-matrix
B of size s x s is called an isolation matrix, if we can select s ones in B, so that no two
of the selected ones are in the same row or column of B, and no two of the selected ones
are contained in a 2 X 2 all-one submatrix of B. It is well known that if B is an isolation
submatrix of size s X s in a given 0, 1-matrix A, then s bounds below the Boolean rank
of A (see [2, 16]). However, computing the Boolean rank or finding a maximal isolation
submatrix in general is an NP-hard problem (see [13, 18, 24]). Hence, it is interesting to
find and characterize families of maximal isolation sets for specific given matrices.

1.1 Our results

Our main goal is to determine the range of parameters, p and g, for which C,, ; is a sub-
matrix of Ay, ;. The constructions and upper bounds we present differ in their structure and
proof methods according to the size of p, ¢ compared to ¢, k.

We first consider the range of values of relatively small p, thatis 1 < p < 2t — 1, and
prove in Section 2 the following positive result.

Theorem 1.1. Letk > 2t, 1 < p <2t —1landl < q< k—-2t+ 1. Then Cpqisa
submatrix of Ay, .

In the extreme case of p = 1 and ¢ = k& — 2¢ + 1, this construction gives the identity
submatrix of size (k — 2t +2) x (k — 2t + 2). Recently, [20] proved that this is the maximal
size of an identity submatrix in Ay ;.

The other extreme is p = 2¢t — 1 and ¢ = k — 2t + 1, in which case we get a circulant
submatrix of size k x k. As we show in Section 2, if & > 4t — 3 then Ca;—1 p—2¢41 is a
maximal isolation submatrix of size k x k in Ay ;. Since the Boolean rank of Ay ; is & for
k > 2t (see [19]), then the size of a maximal isolation submatrix of Ay ; is upper bounded
by k X k, and thus, our result is optimal in this case.

Furthermore, for k = 2t + p — 2 and p > 2, the construction described in Theorem 1.1
provides an isolation submatrix of size (2p — 1) x (2p — 1). We note that [20] gave
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constructions of isolation submatrices in Ay ¢, of the same size as achieved here. However,
the constructions described in [20] are quite complex, and thus, the result described in
Theorem 1.1 provides an alternative simpler construction of a maximal isolation submatrix
in Ay, +, for large enough k.

We then prove the following upper bound that matches the size of the construction given
in Theorem 1.1, for the range of values of 1 < p < 2t — 1 and ¢ > p — 1. The proof of
this result characterizes the structure of the Boolean decompositions of Cp, ; for this range
of parameters.

Theorem 1.2. Let C,, , be a submatrix of Ay, 1, where k > 2t, 1 <p <2t — 1 and q > 0.
Ifq>p—1thenq<k—2t+1.

In Section 3 we address the range of slightly larger values of p, that is, 2t < p < 2,
and provide a different construction of circulant submatrices of Ay, ; of the form C}, 4. As
we show, for this range of values of p, there is no upper bound on the size of ¢, as we had
in Theorem 1.1 and Theorem 1.2, as long as k& > p + q.

Furthermore, the proof for this range of parameters provides a decomposition of C,, ,
into a product of two Boolean circulant matrices X, Y, where X has ¢ ones in each row
and Y has ¢ ones in each column. If we view the rows of X and the columns of Y as
the characteristic vectors of subsets of size ¢, then X and Y each represents a circulant
t-uniform family. Thus, the construction used in the proof of the next theorem, uses a pair
F, G of circulant families to construct Cp 4.

Theorem 1.3. Let 2t < p < t?> and q > 0. Then C,, , is a submatrix of Ay, for k > q+ p.

Finally, in Section 4, we consider the range of large p. Using the result of [11] stated
above, we know that if C,, , is a submatrix of Ay ; of size n x n, thenn < (2¢ — 1) (Qtt),
and [23] proved a conjecture of [12] and showed that for large enough ¢ and ¢, the size of a
g-almost intersecting family F is bounded by (¢+1) (2;:12). Note that this last result refers
to g-almost cross intersecting pairs (F, G) in which 7 = G. Furthermore, the constructions
presented in [23], which achieve this bound, do not have a circulant intersection matrix.

Indeed, we can get a better upper bound for circulant submatrices of the form C,, ,.
Using a theorem of Frankl [9] and Kalai [15] about skew matrices, it is possible to show
that p < (%) — 1. Hence, if C}, , is a submatrix of size n x n of Ay ¢ thenn < (%) +¢—1.

In the extreme case of p = (2:) — 1 and ¢ = 1, the simple construction that takes
all subsets of size ¢ of [2¢] as row and column indices, results in a submatrix Cp , of size

(**) x (%'). This is optimal, as it matches the upper bound of (%) + ¢ — 1.

For larger ¢, we give a simple construction of C), , for p = ¢ - ((Ztt/qq) — 1), when
t mod ¢ = 0 and k is large enough. Note that there is a relatively large gap between the
size of C), 4 stated here, and the upper bound of (2;) + g — 1. As we prove, this gap can be

slightly narrowed for ¢ = 2:

Theorem 1.4. Let ¢ = 2 and p = 2! + 22 — 2, where t > 2. Then C,, , is a submatrix of
Ay ¢ for large enough k.

We conclude by considering the case of ¢ = 2 and p = (2:) — 1 = 5 and fully
characterize it. As we show, in this case, C}, 4 is a submatrix of Ay, for ¢ = 1 and
k > 5,orfor g = 3 and k > 6. Thus, fort = 2,p = 5 and ¢ = 1, 3, we get a result which
matches the upper bound of (2:) + g — 1. However, as we prove, fort = 2,p = 5 and
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q > 0, ¢ # 1,3, there is no k for which C,, , is a submatrix of Ay ;. This implies that the
upper bound of (2:) +¢g—1is not tight in general. It remains an open problem to determine

for what values of ¢ > 1 is Cj, ; a submatrix of Ay, given thatp = (°') — land t > 2.

2 Therangeofl1 < p<2t—1

In this section we prove Theorems 1.1 and 1.2, which address the range of small p, that is,
1 < p < 2t — 1. As stated above, this range of values includes the identity matrix, as well
as allows us to provide a simple construction of maximal isolation sets for large enough k.

It will be useful to identify subsets of [k] with their characteristic vectors. Thus, a
subset of size ¢ of [k] will be represented by a 0, 1-vector of length k with exactly ¢ ones.
Furthermore, in order to show that some matrix C' of size n X m is a submatrix of Ay ¢, it
will be enough to show that there exists a Boolean decomposition C' = X - Y, where X is
a Boolean matrix of size n x k with exactly ¢ ones in each row, and Y is a Boolean matrix
of size k x m with exactly ¢ ones in each column, and all operations are Boolean.

2.1 A constructionof Cp, s for1 < p <2t —1

The following lemma will be useful in proving Theorem 1.1. It shows that it is possible to
decompose a matrix of the form C), , into a product of two circulant matrices of the same
type, for a wide range of parameters.

Lemma 2.1. Let i, j, z be three integers, such thati,j > land i+ j — 1 < z. Then
Cizmi s Cjzmj = Cigj1,2—imjt1-

Proof. 1t is well known that the product of two circulant Boolean matrices is a circulant
Boolean matrix (where all operations are Boolean). Thus, it is enough to determine the
first column ¢ = (¢q, ¢g, ..., ¢;) of the product matrix C; ,_; - C; ,—;, and to show that it
has ¢ 4+ j — 1 ones, followed by 2 — ¢ — 7 4+ 1 zeros. The proof follows directly from the
definition of matrix multiplication using the Boolean operations.

Specifically, it is clear that ¢, = 1 for 1 < s < ¢, since the first element in each of the
first 7 rows of C; ,_; is a 1, and the first element of the first column of C; ,_; is also a 1
(since 7,5 > 1). Next consider element c; ;s for 1 < s < 7 — 1. Note that row ¢ + s of
C;,.—; begins with s zeros and then has 7 ones, and the first j elements of the first column
of C; .—; are ones. Since s < j — 1, then the result of multiplying row i + s of C; ._; with
the first column of C; ., is a one.

It remains to show that the remaining elements of c are all zeros. But the last z—i—j+1
rows of C; ,_; begin with at least j zeros. Therefore, multiplying any of these rows with
the first column of C ,_;, results in a zero. O

Using Lemma 2.1, we can now prove Theorem 1.1.

Proof of Theorem 1.1. Let1 < 4,5 < tsuchthati+j — 1 = p. Let J, ,, be the all-one
matrix of size n X m, and O,, ,,, the all-zero matrix of size n x m. Define, two matrices X
and Y as follows:

Cj,erq*j
X =[Ciprq-iOprqt—jtprat—ils, Y = | Ji—jptq
Ot—i,p-i-q
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Using Lemma 2.1, where z = p + ¢, we have that
XY =Ciprg—i- Cjptq—j = Civj—1prq—i—j+1 = Cpg-

Furthermore, each row of X and each column of Y is a vector with exactly ¢ ones, whose
length is:

p+q)+t—j)+t—i)=p+q+2t—i—j=p+q+2t—(p+1)=q+2t—1.

Therefore, if & > g 4+ 2t — 1, then we can view the rows of X and columns of Y as the
characteristic vectors of subsets in ([IE]). Thus, X - Y = C,, is a submatrix of Ay ; as
claimed. O

As we show next, if k > 4¢ — 3 then the construction described in the proof of Theo-
rem 1.1, provides a maximal isolation submatrix of size k£ x k in Ay, ;. This result is optimal
since the Boolean rank of Ay ; is &k for k > 2t (see [19]).

Corollary 2.2. Let2 < p < 2t — 1 and letk = 2t + p — 2. Then Cy, ,,_1 is an isolation
submatrix of size (2p—1) x (2p—1) in Ay 4. Furthermore, if k > 4t —3 then Coy_1 2141
is an isolation submatrix of size k X k in Ay, ;.

Proof. Letk =2t+p—2.Ifwesetq=k—2t+1=(2t+p—2)—2t+1 = p—1, then by
Theorem 1.1, Cy, 4 is a submatrix of Ay ¢ of size (2p —1) x (2p—1) sincep+¢ = 2p— 1.
It is easy to verify that in this case, since ¢ = p — 1, the ones on the main diagonal of C,, ,
form an isolation set of size p + q.

In the extreme case of p = 2t—1,and if k > 4t—3,thenq = k—2t+1 > 2t—2 > p—1,
and we get an isolation matrix C, 4 of size k X k,sincep+k —2t +1 = k. O

2.2 Upper bounds on the size of Cp s for 1 < p < 2t — 1

We now turn to prove Theorem 1.2, which provides a matching upper bound to the size of
the construction given in Theorem 1.1, for 1 < p < 2¢ — 1 and ¢ > p — 1. We note that
if ¢ > p—1then p+ g < k (for any value of p), since in this case C} 4 is an isolation
submatrix of Ay, ;. Thus, its Boolean rank, which is p + ¢, is bounded above by &, which
is the Boolean rank of A ;. However, the proof of Theorem 1.2, which provides a tight
upper bound on p + ¢, will require a more elaborate proof.

The following simple claim is easy to verify, and will be needed for the proof of Theo-
rem 1.2.

Claim 2.3. Let B be an all-one submatrix of size i X j of Cp 4, where p,q > 0. Then,
1<i,j<pandi+j<p+1

The next lemma is a generalization of a claim proved in [19], which characterizes the
Boolean decompositions of the identity matrix. Here we characterize the Boolean decom-
positions of circulant isolation matrices of the form C,, 4.

Denote by |z| the number of ones in a vector x, and let x ® y denote the outer product
of a column vector = and a row vector y, where both z, y are of length n. Thatis, z ® y is
a matrix of size n X n.

Lemma 2.4. Letp,q > Oandn =p+q. Let X - Y = C}, 4 be a Boolean decomposition
of Cpq, where X is an m x r Boolean matrix and Y is an v X n Boolean matrix. Denote
by x1,...,x, the columns of X, and by y1, . ..,y, the rows of Y. Then:
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1. For each i € [r|, if x; has more than p ones then y; is the all-zero vector, and if y;
has more than p ones then x; is the all-zero vector.

2. Foreachi € [r), if |x;|, lyi| > O, then |z;| + |yi| < p+ 1.

3. If ¢ > p — 1, then there exist n indices i1, ..., in, such that |x; |, |y;,| > 0 for every
Jj € [n].

Proof. For simplicity, denote C' = C,, ,. If we write the decomposition X - Y = C with
outer products, then C' = Y"7_| z; ® y;.

First note that if we have an ¢ such that x; has more than p ones, and y; is not the
all-zero vector, then z; ® y; has a column with more than p ones. Since the addition is the
Boolean addition, then Z;.;l z; ® y; # C. A similar argument shows that if y; has more
than p ones then x; is the all-zero vector. Thus, item (1) follows.

Assume now, by contradiction, that item (2) does not hold. Thus, there exists an ¢, such
that |z;|, |y;| > Oand |x;|+|y;| > p+1. Let|z;| = sand |y;| = ¢, where by our assumption
¢ > p— s+ 2. Thus, the matrix z; ® y; has an all-one submatrix B of size s x £. Since the
addition is Boolean, C), 4, also has an all-one submatrix of size s X £ > s x (p—s+2),in
contradiction to Claim 2.3.

It remains to prove item (3). Since ¢ > p — 1, then C' is an isolation matrix. Therefore,
its Boolean rank is n = p + ¢. Assume by contradiction that there are strictly less than n
pairs z;,y; such that |x;|, |y;| > 0. Note that if 2; or y; is the all-zero vector then z; ® y;
is the all-zero matrix. Thus, we can remove from X any column x; which is the all-zero
vector, and remove the corresponding row y; from Y, and similarly, remove from Y any
row y; which is the all-zero vector, and remove the corresponding column z; from X. We
get two new matrices X', Y”, such that X’ - Y’ = C, where the size of X’ is n x £, the size
of Y’ is £ x n, and by our assumption £ < n. Therefore, the Boolean rank of C is strictly
less than n, and we get a contradiction. O

Lemma 2.5. Letp,q > 0and q > p—1, andletn = p+q. Let X -Y = C}, 4 be a Boolean
decomposition of Cp, 4, where X is an n X r Boolean matrix and Y is an v X n Boolean
matrix. Then the sum of the number of ones in X and the number of ones in 'Y is at most
(p+1)n+ (r—n)n.

Proof. Letxq,...,x, be the columns of X, and y1, ..., y, the rows of Y. By Lemma 2.4,
there exist n indices 41, ..., i,, such that |z; |, |y;;| > O for every j € [n]. Furthermore, for
these indices it holds that |z;, | + |y;;| < p + 1. Assume, without loss of generality, that
these are indices 1, ..., n.

As for the remaining pairs, x;, y;, for n < i < r: by Lemma 2.4, if |x;|, |y;| > O then
|z;| + |yl < p+ 1, and if |z;| > p + 1 then y; is the all-zero vector, and similarly if
lyi| > p+ 1 then z; is the all-zero vector. Thus, |z;| + |y;| is maximized when x; or y; is
the all-zero vector and the other is the all-one vector, since in this case |z;| + |y;| = n =

p+tqg=>p+1L
Hence, the sum of the number of ones in X and the number of ones in Y is at most
(p+1)n+ (r—n)n. O

Proof of Theorem 1.2. Consider the Boolean decomposition X - Y = Ay ;, where X is a

matrix of size (’;) x k and Y is a matrix of size k x (’;), and X and Y each contain all

characteristic vectors of subsets in ([f]).
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Since C), 4 is a submatrix of Ay, then there exist two matrices X "C XY CY,
such that X' - Y’ = C} 4. Notice that X’ is an n x k matrix and Y’ is an k x n matrix,
where n = p + ¢, and the sum of the number of ones in X and the number of ones in Y
is exactly 2nt. But, by Lemma 2.5, the total number of 1’s in both X’ and Y” is at most
(p+1)n+(k—n)n. Thus, 2nt < (p+1)n+ (k—n)n. Hence,p+q=n < k—2t+p+1,
as claimed. O

3 Therangeof 2t < p < 2

The circulant decomposition given in Lemma 2.1 is not suitable for p > 2¢, since if we take
the decomposition Cjyj_1,—i—j+1 = Ci.—i - Cj.—j,andletp =i+ j — land p > 2t,
then i 4+ 5 > 2t 4 1. Thus, either ¢ or j are strictly larger than ¢, and therefore, the rows of
C;.»—; or the columns of C; ,_; cannot represent subsets of size ¢ of [k].

However, Theorem 1.3 stated in Section 1.1 and proved next, shows that when 2¢ <
p < t2, there exists a different circulant decomposition C,, ;, = X - Y, in which each row
of X and each column of Y has exactly ¢ ones as required. See Figure 2 for an illustration,
and note also that since 2t < p < t? then t > 2.

0 0 o0 of[f]o 1[I 100 000 1 1 00 1 1 1 1 1 1
10000 1 0 1 110000 0 1 100 11 1 1 1
11000 010 11100000 i d o0 o 4 A o 4
0 110000 1 011 100 0 0 11100 1 1 1
101 10000 oo 1 1ooo [|T]111100101
01011000 000 1110 0 (O (R T PR o o A
00101 100 00001 1 10 (O T T T
00010 110 000 0 011 1 1 01111110

Figure 2: The construction described in Theorem 1.3 for ¢ = 3,p = 6,q = 2. The
matrices presented are X - Y = W, where W is achieved from C), ; by moving the last
row of Cj 4 as defined in the introduction to be first. The first row z1 of X begins with
q + t — 1 zeros, and then every t positions there is a one outlined with a rectangle. The
remaining positions of x; contain zeros and ones for a total of ¢ ones in x1. The matrix
Y = C},p+q—t- The ones in the columns of Y that intersect the outlined ones in z1 are
also outlined with rectangles.

Proof of Theorem 1.3. Let W be the matrix achieved from C), , by moving the last row
of C} 4 as defined in the introduction to be first. Hence, the first row of W has g zeros
followed by p ones. It is enough to show that there exist two square matrices X, Y, of size
P + g, such that each row of X and each column of Y has exactly ¢t ones, and X - Y = W.

The matrix Y is just the matrix C} 44— as defined in the introduction, and thus each
column has ¢ ones as required. The matrix X is also circulant and is defined as follows. The
first row x1 of X begins with ¢+t — 1 zeros. The remainingp—t+1>2t—t+1=¢t+1
coordinates of z; start with a one and then there is a one every ¢ positions, and a one in the
last position of z1. The remaining positions have ones and zeros in an arbitrary order, for a
total of ¢ ones in x;. Note that there are at most t — 1 zeros between every two consecutive
ones in x1, and in the extreme case of p = t2, there are exactly ¢t — 1 zeros between every
two consecutive ones.
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Finally, we must show that X - Y = W. Since both X and Y are circulant, the resulting
product matrix X - Y is circulant. Thus, it is sufficient to prove that the first row of X - Y
is equal to the first row (0,0, ...,0,1,1,...,1) of W. Let y1, ..., yp+4 be the columns of Y.

* Columns ¥y, ..., Y4 have ones only in positions at most ¢ + ¢ — 1, whereas z; has
zeros in the first ¢ + ¢ — 1 positions. Hence, z; - y; = 0, for 1 <3 < g, as required.

* Now consider the last p columns of Y. Note that for each such column y;, at least
one of the ¢ consecutive ones of y; avoids the ¢ + ¢ — 1 consecutive zeros of x.
Furthermore, every ¢ consecutive columns of Y have a one in a common row. It is
easy to verify that columns y;, for ¢ + 1 < j < ¢ 4+ ¢, intersect with the first one in
x1, as they all have a one in position g + t. The next ¢ columns of Y all have a one
in position g + 2t, and since x; has a one every ¢ coordinates, these columns also
intersect with 1, and so on. The last ¢ columns of Y intersect with the last one of
xIq.

Hence, X - Y = W as claimed, and the theorem follows. O

4 The range of large p

Bollobds [3] proved that for any m pairs of subsets (A;, B;), such that |A;| = a,|B;| = b
for1 < i < m,and A; N B; = () if and only if ¢ = j, it holds that m < (azb). An
immediate corollary of this theorem is that the largest circulant submatrix C, , of Ay ¢, for
q =1, is of size (2;) X (2;) This result is tight.

This theorem has several generalizations. Among them is a result of Frankl [9] and
Kalai [15] that considered the skew version of the problem, and showed that the same
bound holds even under the following relaxed assumptions: Let (4;, B;) be pairs of sets,
such that |4;| = a,|B;| = bforl1 <i < m, A;NB; =0 forevery 1 < i < m, and
A;NB; #0ifi > j. Thenm < (“17).

We immediately get the following corollary, where here and throughout this section we
assume that the first row of C, ; has ¢ zeros followed by p ones.

Corollary 4.1. Let C,, ; be a submatrix of Ay + of size n X n, for a given fixed q. Then,
n < (2;) +q—1, thatis, p < (2;) -1

Proof. Consider the submatrix B of C), 4 that is defined by the first p+ 1 rows and columns
of C,, 4. The matrix B maintains the conditions of the Theorem of Frankl and Kalai, and,
thus, its size is at most (Ztt) X (%f) Hence, n < (%f) +g—1asclaimed, and p < (2;) —-1. O

The following lemma presents a simple construction of a large circulant submatrix C), 4
of Ay, + for a given fixed ¢. See also Figure 3 for an illustration.

Lemma 4.2. Let g > 0, t > g, where t mod q = 0. Then Cy, 4 is a submatrix of Ay, for
p=gq- ((2t/q) —1Dandk >3t —t/q.

t/q

Proof. Letn = (Qtt/qq). The matrix C, ,, where p + ¢ = ¢ - n, can be partitioned into ¢
disjoint submatrices of size n X (p + q), as follows. The ith submatrix, 1 < i < ¢, contains
rowsi+j-q,0 < j <n—1,of Cp 4. Eachsuch submatrix is a blowup of C,_1 1, since we
can partition each row of these ¢ submatrices into blocks of ¢ consecutive entries, where

the blocks of the ¢th submatrix are shifted by one position compared to the blocks of the
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Figure 3: The construction described in Lemma 4.2, for ¢ = 4, p = 10, ¢ = 2. The matrix
Cho,2 is composed of two submatrices, one containing the odd rows and one the even rows.
Each row of these submatrices is partitioned into n = 6 blocks of size ¢ = 2, as outlined
by rectangles. The first submatrix is the intersection matrix of all subsets of size 2 of [4],
and the second submatrix is the intersection matrix of all subsets of size 2 of {a, b, ¢, d},
where in both cases each of the subsets assigned to the columns appears twice (in columns
belonging to the same block). Since the subsets assigned to the first submatrix are disjoint
from the subsets assigned to the second submatrix, and the blocks in the two submatrices
are shifted, this defines an assignment of different subsets of {1, 2, 3,4, a, b, ¢, d}, each of
size at most 4, to the columns and rows of C1g,2.

previous submatrix (in a circulant way). Thus, the entries in each block are identical (either
all ones or all zeros). For example, the first row of the first submatrix starts with a block of
q zeros, followed by n — 1 blocks of g ones.

Hence, we can view each of these ¢ submatrices as the intersection matrix of the two
families of all subsets of size t/q of [2t/q] (since each subset intersects with all subsets
but one), where columns belonging to the same block in a submatrix are assigned the same
subset. Now, if we take disjoint copies of the subsets assigned to each submatrix, and label
each column in C), , with the subset that is the union of all subsets of size t/q assigned
to this column, then we get ¢ - n different subsets, each of size ¢, assigned to the columns
(the subsets are different because the blocks in each submatrix are shifted compared to the
other submatrices). As to the rows, each row is assigned a different subset of size t/q,
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and therefore, we can define ¢ — ¢/q additional new elements that do not belong to any of
the subsets, and add them to each row, so that the rows are also assigned subsets of size ¢.
Finally, by taking the union of all subsets, we getthat k > 2t +t —t/q =3t —t/q. O

The size of the construction given in Lemma 4.2 is quite far from the upper bound
given in Corollary 4.1. As we show in the next subsection, there exists a slightly larger
construction for ¢ = 2. Finally, in Subsection 4.2, we show that the upper bound of
Corollary 4.1 is tight for t = 2,p = (2:) — 1 =>5and g = 1, 3, but there is no k for which
(5,2 is a submatrix of Ay 2 when ¢ # 1, 3.

4.1 Thevaluesq = 2andp = 2t 4 2t=2 — 2

We now prove Theorem 1.4 and show a construction of C), , for ¢ = 2 and p that is
exponential in ¢. The construction we present is recursive in nature, and exploits the fact
that Cj, » has two blocks on the main diagonal, such that each one of these blocks is half
the size of C} 2, and the structure of each block is almost identical to that of C), 4, where
the only difference is that there is a 1 in the first position of the last row instead of a zero
in C}, 4. This small difference complicates the recursive argument. The details of the proof
follow. See Figure 4 for an illustration of the proof of Theorem 1.4.

1 1 3 3 3 1 1 4 4 4

5 2 2 5 7 6 2 2 6 7

8 8 8 8 8 9 1 9 9 9

0 0 1 1 1 1 1 1 1 1 F o .
1 0 0 1 1 1 1 1 1 1 5.9
1 1 0 0 1 1 1 1 1 1 T.3.8
1 T 1 0 0 1 1 1 § 1 ) 1. 2.1,.9
1} 1 1} T 0 0 1 1 1l 1 2.5,

Ce,z =

1 I 1 1 1 0 0 1 1 1 Tl 8
1 I 3 1 1 1 0 0 1 1 7,6,8
1 1 1 1 1 1 1 0 0 1 4,18
1 1 1 1 1 1 1 1 0 0 2,1,8
0 1 1 1 1 1 1 1 1 0 2,63

Figure 4: The construction of C, , described in Theorem 1.4, for ¢ = 2 and p = 2" +
2¢=2 _ 9 where ¢t = 3. The column indices are written above the matrix (3,2 and the row
indices to the right of the matrix.

Proof of Theorem 1.4. Let h = (p + q)/2. We prove by induction on ¢ that Cp , is the
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intersection matrix of two families of ¢-subsets

‘Fayb = {F17 ~-~7Fp+q}7 ga,b = {G17 ~-~7Gp+q}a

where the subsets in JF ; are the row indices and the subsets in G, ; are the column indices,
and a, b are two integers with the following properties:

*a€Gy,....,Gp,anda € Friq, ..., Fppqg1.
e be Gh+1, ...,Gp+q, andb € Fy,..., F_1.

* a,b appear only in the subsets specified above. In particular, a,b & F,+

Let C,, , be the matrix that is achieved from C,, ,, by modifying to 1 the first position of
the last row of Cp 4, and let .7:'[1 » be a family that is identical to F, ; with one difference:
the subset F},;, also contains the element a. It is not hard to verify that if C,, ; is the
intersection matrix of F, ; and G, p, then Cp q 1s the intersection matrix of .Fa p and G, p.

The base of the induction is ¢ = 3, and the construction of Cg 5 is given in Figure 4,
where in this case a = 8,b = 9. Note that if we modify the last row index {2, 6,3} to be
{2,6,3,8}, then we get a construction of Cyg 5 as claimed.

Assume now that ¢t > 3, letp, = 28 + 272 — 2 and p;_; = 2071 + 2173 — 2, and
consider Cy, 4. Then it has the following structure: there are two matrices of the form
Cp,_, 4 on the main diagonal, and two blocks of size (p; + ¢)/2 that are all one, but the
leftmost entry on the bottom row of each of these blocks that is a 0.

By the induction hypothesis there exist, as specified above, two families of (¢ — 1)-
subsets

]:thb = {F17 "'7Fpt71+q}v ga,b = {Gl’ "'7Gpt71+q}7

whose intersection matrix is Cp, , 4.

Let F'y o = {FY,...., F}, ..} be afamily of subsets that is identical to F, 5, but a, b

are interchanged in all subsets. Thatis, for 1 <i < p;_1 + ¢:

FZ\{CL}U{b}, if a € Fj,

F;, ifa,b & F;.
Similarly define ', , = {GY, ... Gpt 1Jrq} which is identical to G, 3, but a, b are inter-
changed in all subsets. Note that since a, b appear only in subsets as specified above, then
it also holds that C,, , , is the intersection matrix of the two families 7’5 , and G’y ,.

Now let ¢, d be two new elements that do not appear in any of the above families, and
define the following families:

-Fd*{Flu{d} Fyu{d}, .. pt 1+q— 1U{d}, Fpt 1+qU{a}}
={F{U{ct, F,U{c} ... F}, yq1Ulch Fy, 4 U{b}}

={G1U{c}, GzU{c} pt i+q ULct
gd ={G} U{d},GhU {d}, wn Gl g U{d})

Finally, define the families F 4, G, q as follows:

Fea=FqUF, Ged =G.UGy.
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It is clear that F. g, G, 4 are two families of ¢-sets, each of size p; + ¢, and their structure
is as claimed above, where c and d are in the role of a and b, respectively. It remains to
prove that Cj,, , is the intersection matrix of F, 4,G. 4. First note that by the induction
hypothesis, and using the structure of the subsets we defined, C'ptfl,q is the intersection
matrix of Fy, G., as well as the intersection of F., G4.

Consider now the matrix C' which is the intersection matrix of Fg4, G4. It is clear that
the first p;_1 + ¢ — 1 rows of C are all ones, since the first p;_; + g — 1 families of Fy, G4
all contain d. We next show that the last row of C' is of the form (0,1,1,...,1). By the
induction hypothesis, the intersection of Fj, ,4, with all subsets of G, ; gives a vector
of the form (0,1,1,...1,0). Thus, since a,b € F,, ,+, and Gy , is identical to G, ;, but
a, b are interchanged in all subsets, then the intersection of of F},, |, with all subsets of
G'p,q results also with the vector (0,1,1,...1,0). Since the last subset of F is defined as

Fy,_,+q U {a} and the last subset of G is G, |, U{d},anda € G}, |, then we get
that F,, _, 4 U{a}and G}, ., U {d} also intersect as required.

A similar argument shows that the intersection matrix of F4, G4 is also a matrix that is
all one, but the first element on the last row of this matrix, which is a zero. This completes
the proof of the theorem. 0

4.2 Thevaluest = 2,p = (2:) —1,g>0

Finally, we address the range of values of ¢t = 2 and p = (Qtt) — 1 = 5. We first show that
Cp,q is a submatrix of Ay, for these values of p and ¢, and for ¢ = 1, 3.

Lemma 4.3. Lett =2andp = (2:) — 1 =25. Then C,, 4 is a submatrix of Ay for g =1
and k > 5, or forq =3 and k > 6.
Proof. Ift =2,p =5,q = 1, then (s ; is a submatrix of A5 ». Simply take as row/column

indices all subsets of size 2 of [4]. As to the case of t = 2,p = 5,q = 3, Figure 5 shows
that C'5 3 is a submatrix of Ay, o, for any k& > 6. O

O O O O O Kk kB -
O o 0o r P P O O
©O - B B O O O O
B =, O O O O O K
O o r OO O Fr O
P © 0 O r © o O
o r O O » O
O 0 Ok 1~ O
» O O kr O O
O O r kB O O
o »r B O O O
O O r O O r
» O O O O ,
o o0 o o - r
O O R B B B B O
O, P P P P O O
B . P BB O O O
B B PR P O O O Kk
P B P OO O Fr K
P k0O O O B B P
B O 0O O R B R R
O O O R B B kB -

Figure 5: A construction of Cp, 4 fort =2,p =5,q = 3.

We conclude by proving that C), 4 is not a submatrix of Ay, fort = 2,p = 5 and
q # 1, 3. Unfortunately, this proof cannot be generalized to the case of p = (Qtt) —1and
t > 2. Thus, it remains an open problem to determine for what values of ¢ > 1is C}, 4 a
submatrix of Ay, ¢, when p = (2;) —landt > 2.

Lemma 4.4. Lett =2, p = (2;) —1=5,¢# 1,3 q> 0. Then C, 4 is not a submatrix
of Ay, ¢+ for any k.
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Proof. Assume by contradiction that Cs 4 is a submatrix of Ay, » for some k, where the first
row of Cj , starts with ¢ # 1, 3 zeros, followed by p ones. Letn =p+qg=¢q+5> 7be
the size of Cs 4, and let A;, B;, 0 < 7 < n — 1, be the 2-uniform subsets defining the row
and column indices, respectively, of Cs .

Assume first that there exists some 4 such that B; N B(j11) mod n = (), that is, two
consecutive column indices are disjoint. Since C’ , is circulant, then we can assume that
1 = 0, that is, By N By = (). Since By and B; both intersect with A3, A4, As, then each of
these three subsets contains one element from each of By, B;. Furthermore, as all subsets
are different and of size 2, then each element of B, B; is contained in at most two of these
three subsets.

Next consider Bs. It also intersects with As, A4, As, and since there is no common
element of By, B; in these three subsets, then B also includes two elements from By U By
(although here By can contain two elements from the same subset By or B).

Now, consider A7 04 n, Where if ¢ = 2 then A7 ,0an = Ao and otherwise,
A7 mod n = Ay. In both cases, since p = 5, the row labeled by A7 04 » Starts with
two zeros followed by a one. Thus, since A7 poqn N B2 # 0, then A7 104 » contains an
element from ByU By, in contradiction to the fact that A7 yod nNBo = A7 mod nNB1 = 0.

Hence, we can assume from now on that B; N B(i11) mod n 7 (), and similarly that
Ai NV AG41) mod n # (0, for 0 < ¢ < m — 1. There are two cases:

* There exists an i such that B; N Bi11) mod n N B(i+2) mod n # (. Since C, 4 is
circulant, then assume that i = 0, and let b € By, By, By. Thus, By = {bg, b}, By =
{b1,b}, By = {by, b}. From this and the structure of C5 4, we can deduce the fol-
lowing:

1. bg € Ay, Ay = {b(),bl}, and b € A3,A4,A5.

2. The row labeled by Ag starts with a zero followed by 5 ones, and so b & Ag.
But Ag N B, 75 @,AG N By 7é (. Thus, Ag = {bl, bg}

3.b ¢ Bsas B3N Az = (. But B3 N By 7é @, and therefore, by € Bs.

4. b, by, by € Bs as also B3 N Ay = (. But B3 N As ?é (¢ and As N Ag 75 0.
Therefore, by € As.

5. Since b, by, b1 ¢ Bz and B3 N A4 # (), then there exists a new element b3 €

B3z N Ay
6. Ay,N By =0andsob ¢ By. Hence, by € By since By N As # (). In a similar
way, b; € Bs.

Hence, the subsets defining the first seven rows and columns of C’ , have the fol-
lowing structure so far, where they are written to the left and above the submatrix:

bo | b1 | bs | b2 | b2 | b1

bl b bs

0]0
bo || L]0]O0
bo,br || L | 1] 00
b |11 ]1]0]0
bos | L|1]1]1]0]0
bbo | L | 1] 111 0
biba O 1| L |1 ]1]1]0
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Now, if ¢ > 4, we already get a contradiction, since in Cj 4 it holds that Ao N Bs = 0,
whereas here by € As N Bs.

Therefore, assume that ¢ = 2, and so all remaining entries in the submatrix above
are ones. From the structure of the submatrix and the information we have so far, we
can deduce that A; = {bg, b3} and hence B;s = {by,bo} (since Bs N A; # () and
Bs N Ay = () and so b3 € Bs). But then since by, by € Ag, we get a contradiction
since Ag N By # (.

BiﬁB(i+1) mod nt(i+2) mod n — [Z)’ but BiﬁB(iJrl) mod n 7é (Z)’ for0 <i¢<n-—1
Thus, B; = {bi, b(i41) mod n }» Where some of the b;’s may be identical.

If all b;’s in the subsets By, Bq11, Byt2, Bg+3, Byt4 are different, then Ay cannot
intersect with these subsets, since |Ag| = 2. Hence, there exist 0 < i # j < 4
such that b, y; = by ;. Assume, without loss of generality, that ¢ = 0 (as the matrix
is circulant). Since the intersection of every three consecutive subsets is empty, and
each subset contains two different elements, then j # 1,2. If j = 3 then b, = by43,
and since A, does not intersect with By, Byy1 then by, bgt1,bg42 & Az. But Ay
intersects with Byyo = {bg+2,bq+3 = by}, and we get a contradiction. A similar
contradiction is achieved if j = 4 when considering As.

Thus, in all cases we get a contradiction and the lemma follows. 0
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Abstract

In this paper, we establish a recurrence relation for finding the generating function
for the number of k-ary words of length n that avoid 1233 for arbitrary k. Comparable
generating function formulas may also be found counting words where a single permutation
pattern of length three is avoided in addition to 1233.

Keywords: k-ary words, Kernel method, Avoiding 1233.
Math. Subj. Class.: 05A15, 05A05

1 Introduction

We denote the set of all words of length n over the alphabet [k] = {1,...,k} by [k]™ and
refer to members of [k]™ as k-ary words. Letm = 7y ---m, € [k]" and T =71 -+ T, €
[£]™ such that each letter from [¢] appears at least once in 7 (possibly with repetitions). We
say that 7 contains T if there exist indices 1 < i; < --- < 4y, < n such that m; ®7;, if
and only if 7, @, for any relation ® € {<,=, >} and a, b € [m]. In this context, the word
T is called a pattern, and it is said that 7 avoids 7 if 7 fails to contain 7 per the preceding
definition.

The area of permutation pattern avoidance has received considerable attention in recent
decades; see, e.g., [13] and references therein. Alon and Friedgut [2] extended this study
to avoidance on k-ary words in obtaining an upper bound on the number of permutations
of length n that avoid a given pattern. The question of pattern avoidance on permutations
was initiated by Knuth [6], who found that the number of permutations of length n that
avoid the pattern 7 for any 7 € Sj is given by the n-th Catalan number —-(*"). Later,

n+1
Simion and Schmidt [|2] extended this result by determining the number of permutations
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of length n that avoid all patterns in any subset 7' of S3. Comparable results involving
k-ary words were found by Burstein [4] and Albert et al. [1], and later by Burstein and
Mansour [5], who allowed patterns to contain repeated letters. See also [1 |, 14] concerning
the avoidance of 123 by words as well as [9] for general enumeration schemes for words
avoiding a permutation pattern.

Concerning avoidance of patterns of length four by k-ary words, only the following
more general results are known:

¢ Regev [10] showed that the number of k-ary words of length n that avoid
12--- (£ + 1) is asymptotic to

=0 pn
=TT T+ — 1)

This result was re-derived by Brindén and Mansour [3].

e The patterns 11---1and 11---121---11 have been considered in [5].

* Brindén and Mansour [3] (see also [8]) suggested an automaton for the enumeration
of k-ary words of length n that avoid a fixed pattern for a given k.

We remark that it is a challenging problem in general to enumerate the k-ary words of
length n that avoid a given pattern where k is arbitrary. Even in the case of a pattern of
length four, the task at hand is still not a simple one. Here, we consider the problem of
enumerating the members of [k]™ that avoid 1233 for arbitrary k. The main purpose of this
paper is to provide a recurrence relation on k for finding the number k-ary words of length
n that avoid 1233, see Theorem 2.2 below. This recurrence represents an improvement in
the case of 1233 over the general procedure described in [3, 8], which was derived using
automata theory. Some further results are found involving avoidance of 1233 and a single
pattern of length three.

2 k-ary words that avoid 1233

Let ay, 1, denote the number of k-ary words 7 of length n that avoid 1233. In order to write
recurrences, we must refine a,, ;, according to the prefix of a word 7. Given s > 1 and
i1,...,1s € [k], let ap k(i1,...,%5) denote the number of 1233-avoiding k-ary words m of
length n having the form @ = 4y - - - is7’, where 7’ is possibly empty. Clearly, we have
an,1 = 1 and a, 2 = 2". Henceforth, we may assume £ > 3. By the definitions, for all
1<i<k-2,

7 k—1
an,k(i) - an,k(ia k) + Z an,k(ivj) + Z an,k(ihj)'
j=1 j=i+1

Note that a,, (i, k) = an—1,(?) and ap k(4,7) = an—15(j) forall 1 < j <i < k—2.
Thus,

an,k(i) = anfl,k(i) + Zanfl,k(j) + Z an,k(ivj)'
=1 =
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Next observe that a k-ary word of the form m = ijn’ with 1 < ¢ < j < k — 1 must
have any letters from [j + 1,k] = {j + 1,5 + 2,..., k} distinct in order to avoid 1233. If
we assume that exactly ¢ letters of 7 belong to [j + 1, k], then there are (kzj ) choices for
these letters, (";2) choices for their positions within 7 and ¢! ways in which to order these
letters within their positions. Thus,

k(i) Z( (7)ot

Hence, forall1 <i¢ <k — 2,

—1 k—j .
k —
an,k( ) = Qn-1 k + § Qn— 1k E E 14 < > ( ) ])an—l—é,j(i)a
Jj=1i+14¢=0
2.1)

with an,k(k) = anvk(k — ].) = Gn-1k-

In order to study the sequence determined by recurrence (2.1), we define the distribution

polynomial
k
= ani(@o,  nk>1,
i=1

with Ag ;(v) = 1 and the generating function

v) =Y App(v)z", k=1L

n>0

Multiplying both sides of (2.1) by v*~!, and summing over i = 1,2,...,k — 2, yields for
n, k > 3 the recurrence
An,k(v) - anfl,k(vkil + ’Ukiz)

:Anfl k( )_an72 k( k_1+vk_2)
—1 k—2

-
+Zan lk 171)
k—1k—j —j ,
+ZZ€'( )( ¢ >(A"—1—47J‘(”)_an—z—e,jvj_l)’

Jj=24=0

which, by a,, , = A, (1), leads to

1
An,k(v) = 1— U(An—l,k(v) - UkAn—l,k(]-))
k k—j n—9 ki ‘
+> ﬂ( , ) ( ¢ ])(Anlz,j(v) — oI A,y 5(1)),
=2 ¢=0
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Multiplying both sides of the last equation by x™, and summing over n > 3, we obtain

Ag(z,v) =14+ ap(v)z(1 + kz)

+ ﬁ(Ak(x,v) —ag(v)r—1-— vak(x, 1)+ PILa kykx)

+ z(Ap(z,v) — 1 — agp(v)z) — v* 2% (A (x, 1) — 1)

k-1
+>  (2(Aj(@,0) = 1= aj(v)z) — /TP (4 (2, 1) — 1))
j=2
S 0+2 k _j ae E—lA j—1 @A 1 22
+ x 0 )t (m j(x,v) —v! et Aj(x, )) (2.2)
=2 =1

Example 2.1 (Case k = 3). Note that A;(z,v) = 14 %= and As(z,v) = 1+ Il(iz) , by
the definitions. For k = 3, we have

Az(z,v) =1+ (1 +v+vH)z(1 + 32)
+ %(Ag(x,v) — (1 +v+0v2)z —1—034A3(z,1) + 0 + 3032)
—v
+ 2(As(z,v) = 1 — (1 + v+ v?)z) — v?2*(Az(z,1) — 1)

+z(Ag(z,v) — 1 — (1 +v)z) — vz (Ag(x, 1) — 1) + xsa% (Az(z,v) —vxAs(z,1)).

1-2z

T to

To solve this functional equation, we make use of the kernel method and take v =
obtain

14+ (1 +v+0?)z(l+ 32) + %(_(1 +v+0v?)r —1—v343(x,1) +0v° + 30°2)
+ (-1 -1 +v+oHz) — v (Az(x, 1) — 1)
+ 2(Az(z,v) = 1 — (1 +v)x) —va?(Az(z,1) — 1)

+ mS% (Az(x,v) —vzAz(x,1)) = 0.

Hence, As(z,1) = % Substituting this expression into the one above for
As(z,v) then yields

(L—2)(1—do+5%)(1+ (v = Y(v +2)7)

As(w,v) = (1 22)

Following Example 2.1, to solve the functional equation (2.2), we use the kernel method.
Taking v = vy = % in (2.2) yields

Ap(z,1) = %

2 e (k=G) 8 e i—1_¢
-(1(k1)x+22x+ ( ¢ )W(m Aj(z,v) —v' 2" Aj(x, 1)) |U—v0).

j=2 =0
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Substituting this expression for A (z, 1) into (2.2), and observing the identity

1+ zag(v) — vE(1 + kx)

k>2
1—w -

) )

a:Zoz] 1(v) = (14 kz)og(z) —

we obtain our main result.

Theorem 2.2. The generating function Ay (z,v) for k > 3 is given by

_(1-0)A-(k=Dz) (z+o(-a))z"!
Ag(z,0) = 1_2;5_@(1—@ N 1—2x_v(1_x) Ag(z,1)

k—1k— - -

J2£0 1-2z—v(l—x)

where A1 (z,v) = 1=, Ax(z,v) =1+ 2049 g

1 1—2z
(1 _ z)k_3
Ag(z,1) = (=221
k—1k—j b\ ot '
~ (1 —(k=Da+3 3 a ( ¢ J) @ T Ay w) — ' A, 1) |1,_v0> ,
j=2 =0
where vy = 1172;.

Note that Theorem 2.2 provides a recurrence formula for finding the generating function
Ag(z,1) (even, more generally, for finding Ag(x,v)). For instance, upon making use of
software such as Maple or Mathematica, one can obtain from Theorem 2.2 the following
explicit formulas for k = 3,4, 5, 6:

(1 —2)(1 — 4z + 52?)

A3(l’, 1) = (1—2.1')4 )
1 — 10z + 442? — 1042 + 1402* — 1002® + 312°
A4 (337 1) = — 7 5
(1-2x)
1 — 152 + 10522 — 4352°% 4+ 11752 — 212925 + 25952° — 204127
Aol 1) — +9462° — 1902°
5($, ) - (1_21:)10 )
1 — 20z + 19222 — 113622 + 4604z — 13380x° + 2859925 — 451547
+52338z% — 433202° + 244012'° — 838621* 4 139112
A6($7 1) = .

(1—2z)®

Remarks: By Theorem 2.2 and induction on k, one can show that the generating function
Apg(z,v) for k > 2 may be expressed in the form Py (z,v)/(1 — 22)**, where oy, > 1 and
Py (z,v) is a polynomial in x and v (and not divisible by 1 — 2z). Upon taking v = 1, it
is seen that there exists a constant ¢y, such that the number of k-ary words of length n that
avoid 1233 is asymptotic to cxnP 2" for some 1 < B < ag, which was also shown in [8].
We conjecture that o, = 3k — 5 = 1, + 1 for all k, the fact of which is demonstrated by
programming for 3 < k£ < 15. Note that Theorem 2.2 provides a recurrence relation for
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finding an explicit formula for the generating function Ay (x, 1) and is an improvement in
the case of 1233 over the more general procedure described in [3, &].

We close this section with some remarks concerning avoidance of the general pattern
123™, where m > 2. Let a%c) denote the number of k-ary words of length n that avoid

123™, with agﬁk) (i1,...,1s) defined analogously as before. If 1 < ¢ < k — 2, then

k—1
a"™ (i) = a +Za§;”>1k N+ Y a7 ).
j=t1+1

To determine a formula for aﬁl";) (i,7), we consider enumerating a restricted class of finite

functions as follows. Given a,b,c > 0, let d(c) denote the number of functions f : [b] —
[a] such that |[{z € [b] : f(z) =i}| < cfor all i € [a]. Such functions could be described
as being at most c-to-1. Upon considering the number ¢ of letters in a word belonging to
[7 + 1, k], we have

k—j

m—1) (T — (m .
d§c —7.4 )( >an )1 Z,]()

if ¢ < j < k. Note that the d( ) factor accounts for the number of ways in which to
select and arrange the elements of [ + 1, k] within ¢ preselected positions such that none
of these elements occur m or more times. Hence, forall 1 <i < k — 2,

k—1 k—
o™ 2 ) ”—2 (m) ,
n, ()_ A lk +Zan llc Z de Y4 Ap_1- Z,j()

Jj=i+1 ¢=0

£=0

with o} (k) = a7 (k — 1) = a{™) .

To write a recurrence for the array d( ), consider the number j of elements in [a] whose
pre-image cardinality is exactly c. This 1mphes fora,b,c > 1,

t
b _
d(C) — a d(C 41) )
ab ;}(j ¢, ...,c,b—jc) aibmie

where t = min{a, |b/c|} and the ¢ index appears exactly j times in the multinomial

coefficient of order j + 1. One may verify the initial conditions d(% = 1foralla,c >0

and d(ci = 0if ac = 0 and b > 1. Note that from the recurrence when ¢ = 1, we have

d(l) 0if b > a, which is in agreement with the pigeonhole principle, whereas if b < a,

then dé l)) =b!(}) = ala—1)---(a—b+1), as it should. Finding a simple explicit formula
for d((lc?) in general appears not to be an easy task. Note that by induction on ¢ using the

recurrence, one has the following multi-sum expression for dflcz

. . —cje . ¢ . b=25_3 i
min{a,| 2]} min{a—jc,|22%e |} min{a—3¢_, jp, | 2522 |}

d((;% = Z Z Z Ra,b(j27~~‘7jc)a

Je=0 Je—1=0 j2=0
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where

a-— Z;CJ:z jp)

. . b!
Ra,b(]Qa L. 7]0) - Nz ... clde (b . Zc ijp
p=

f[ (a - Z;=i+1 jp)
i Ji

3 Further results

As the previous section illustrates, it is challenging in general to ascertain formulas, either
explicitly or by a recurrence, for the number of k-ary words for all k that avoid a single
fixed pattern of length four (or of arbitrary length). Another possible direction to pursue is
that of enumerating words which avoid 1233 and a second pattern 7. Here, we present two
cases when 7 is of length three demonstrating that even this problem is highly non-trivial.
In particular, we consider the cases when 7 = 132 or 7 = 213 and leave the remaining
cases when 7 is a permutation pattern of length three as exercises for the interested reader
(the patterns 231 and 321 apparently requiring a lengthier analysis than the others).

3.1 Case 132

Let Ay (x) denote the generating function (g.f.) for the number of k-ary words of length
n that avoid {132,1233} for each k¥ > 1 and define A(z,y) = 3,5, Ag(x)y*, where

Ag(z) = 1. In order to find a formula for A(zx,y), we let A'(z,y) = % and

Al(z,y) = %, in accordance with [7, Notation 2.2]. Note that yA”(x,y)
represents the restriction of the g.f. A(x,y) to nonempty k-ary words, whereas yA’(x,y)
is the further restriction to such words that contain 1.

We wish to write an equation for A(z,y). Let 7 be a nonempty k-ary word that avoids
{132,1233}. We represent 7 by m = 70k - - - 7(8) kr(s+1)  where each 70 is (k — 1)-ary
and s > 0. Proceeding according to [7, Proposition 2.1], we consider the cases s = 0,
s = 1and s > 2. This yields the following:

¢ If s = 0, then one has a contribution of yA(x, y).

T zy? A (x,
* 1fs =1, then 22 + 2r 0 (A (2,y) +1)° — 1),
e If s > 2, then

Z 8 2( )B/d 1B//
§>2 §>2 d=1
23S 0y ( >B’dA”(x )
5>2 d=0
S (")) e
s>2 d=0
where B’ = % B" = %, and B(z,y) = 1i;fy is the

g.f. for the number of k-ary words of length n that avoid 12 for all n, k > 0.

To realize the last two cases above, first note that yB” is seen to enumerate nonempty,
weakly decreasing k-ary words of length n, whereas yB’ counts such words that contain
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1. Observe further that various sections 7(*) of 7 are accounted for by B’ inthe s > 2
case above, instead of by yB’, since one must divide by y to compensate for the fact the
minimum letter of one section can coincide with the maximum letter of the subsequent
nonempty section. The same also applies when considering the 7() blocks accounted for
by A'(z,y).

Combining all of the above contributions, and simplifying, we have that A(z,y) satis-
fies

- o Ty - 2242 22y?

A=A =14 ) " U0 =) T %yt

z((y — DA(z,y) + D((y — DA(z,y) =2y + 1)(1 —z — y)
(1 —=y)(1 =22 —y+zy) '

Solving for A(x,y) in the last equation, and simplifying, yields the following result.

+

Theorem 3.1. The generating function for the number of k-ary words of length n that
avoid both 132 and 1233 for all n, k > 0 is given by

_ /O =2z—ytay)((A—z—y—zy)’—z(1-z)(1-y))
(1—=)(1-y)

2x(1 -z —y)

1-222—y—2ay

For example, extracting the coefficient of 4/* in the formula for A(z,y) in Theorem 3.1
yields the following formulas for Ay (z) where 1 < k < 5:

1
A(z) = 11—z’
1
Al =15,
1— 3z 4422 — 23
A p—
3@0) = T ea 22
Au(x) = 1 — 4z + 922 — 622 + 22*
=TT 21— 22
1 — 6z + 2122 — 3423 4 322% — 1625 + 425
A5(Z‘) = .

(1—2)3(1—2x)*
3.2 Case 213

By the reverse complement operation, the number of k-ary words of length n that avoid
{213, 1233} is the same as the number that avoid {132, 1123}. Here, it is more convenient
to enumerate the latter. Let By (x) denote the g.f. for the number of k-ary words 7 of
length n that avoid {132,1123} for each k > 1, with By(z) = 1. Consider cases based
on whether 7 can be expressed as 7 = k‘z’, where £ > 0 and 7’ is (k — 1)-ary, or as
7 = k'7"kn'", where 7" is a word on the alphabet [i, k — 1] for some i € [k — 1] such that
i occurs at least once and 7" is (i 4+ 1)-ary on [i] U {k}. Note that 7’ and 7" both avoid
{132,1123}, whereas 7"’ avoids {132, 112}. This implies

Bi(t) = ——Bya(@) + —— S (@) - My (e) Busa—y(a). k21,

1—2x
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where My (x) is the g.f. for the number of k-ary words of the form vk such that y is (k—1)-
ary and avoids {132,112}. Note that the M;(z) — M;_1(x) factor accounts for the fact
that the letter ¢ must occur at least once in the section 7 of 7 above.

We now must determine My (x). Note that M;(x) = x, so assume k > 2. Then p
enumerated by Mj,(z) is either of the form p = (k — 1)*p’k, where £ > 0 and p’ contains
no k — 1, or of the form p = (k — 1)*p" (k — 1)p""k, where p" is a word on [i, k — 2] for
some i € [k — 2] containing at least one ¢ and p"’ is (i + 1)-ary on [i] U {k — 1}. Note
that p’ and p”” both avoid {132,112}, whereas p”” avoids {132, 11}. Furthermore, observe
that within p’”, any (k — 1)’s must occur prior to any ¢’s, for otherwise there would be
a 1123 in p of the form #i(k — 1)k, where the first ¢ occurs in p”. Concerning p’”’, we
therefore consider additional cases based on whether p”’ contains (i) neither 7 nor k& — 1,
(ii) exactly one of i, k — 1 or (iii) both ¢ and k — 1. Note that all (k — 1)’s in p””’ occur as
an initial run in case (iii), for otherwise a 132 would occur. Hence, we get contributions of
M;(x), 2(Miq1(x) = M;i(x)) and 1% (M1 (x) — M;(z)) for (i), (ii) and (iii), respectively.
Considering all possible ¢, and replacing ¢ with k —¢, then gives for all £ > 2 the recurrence

k—1
1 2—x 1
e L) = Lia0) (M) — M)
where Ly () is the g.f. for the number of k-ary words of the form vk that avoid {132, 11}.

Since such words correspond to 132-avoiding permutations whose largest letter is last, we
have Ly (x) = Z;:é C; (kj_.l)ijr1 for k > 1.

Define the bivariate g.f.s by B(z,y) = Y 5o Be(z)y*, M (2, y) = 3oy Mi(2)y"
and L(z,y) = Y.~ Li(z)y*. Then the recurrences above for By,(x) and Mj,(x) imply

(1 - &) B(z,y) = 1+m((1 —y)M(z,y) — zy) (B(%y) -1- 13%)
and

y - (A =y)L(z,y) —2y)((2 -z —y)M(z,y) — (2 — 2)zy)
(1—11,)M(:v7y)—wy+ =% ,

where L(z,y) = {22.C (%) and O(z) = 1=¥1=% = > n>0 Cn2™ denotes the g.f. for
the Catalan number sequence.

Solving the preceding equations for B(x,y) yields after several algebraic steps the
following result.

Theorem 3.2. The generating function for the number of k-ary words of length n that
avoid both 213 and 1233 (132 and 1123) for all n, k > 0 is given by

A(1—22)(1 - 2)? = 2(1 — ) (4 — To +42?)y + (4 — Tw + 42®)y® + 2y, /1 — {2

221 —22)(1—2)2 - (1—2)2—2)3—4x)y +2(1 —2)(3 — 22)y? — (2 — x)y3)

By Theorem 3.2, we have for example the following formulas for By (z) where 1 <
k <5:
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1
Biz) = 1—a’
1
B =
2(2) 1—2z’
1 -3z + 422 — 23
B =
30) = A 22
1— 32 + 622 + 224
B =
@) = A a2
Ba(x) = 1 — 6z + 212” — 34a° + 322 — 262° + 132° 4 82" — 82®
s\t = (1—2)3(1—22) '
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Abstract

Assume G is a finite group, such that |G| = 6pq or 7pq, where p and ¢ are distinct
prime numbers, and let .S be a generating set of G. We prove there is a Hamiltonian cycle
in the corresponding connected Cayley graph Cay(G;.S).
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1 Introduction

Arthur Cayley [!] introduced the definition of Cayley graph in 1878. All graphs in this
paper are undirected (graphs without loops and direction on the edges).

Definition 1.1 ([ 16, Definition 1.1], cf. [1 1, p. 34]). Let S be a subset of a finite group G.
The Cayley graph Cay(G; S) is the graph whose vertices are elements of G, with an edge
joining g and gs, for every g € G and s € S.

Since then, the theory of Cayley graphs has developed into an important branch of alge-
braic graph theory. It is an interesting topic to work on because not only is it related to pure
mathematics problems, but it is connected to fascinating problems studied by computer
scientists, molecular biologists, and coding theorists (see [ 5] for more information).
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Recall that a Hamiltonian cycle is a cycle that visits every vertex of a graph. Finding
Hamiltonian cycles is a fundamental question in graph theory, but in general, it is extremely
difficult. To be precise, it is an NP-complete problem, which means most mathematicians
do not believe there exists an efficient algorithm to determine whether an arbitrary graph
contains such a cycle. Because the general case is so hard, it is natural to look at special
cases.

Cayley graphs are one of these cases that mathematicians are interested in working on.
There have been many papers on the topic of Hamiltonian cycles in Cayley graphs, but it
is still an open question whether every connected Cayley graph has a Hamiltonian cycle.
(See survey papers [5, 24, 21] for more information. We ignore the trivial counterexamples
on 1 or 2 vertices.) The following result combines the main result of this paper with the
previous work of several authors (C. C. Chen and N. Quimpo [2], S. J. Curran, J. Morris
and D. W. Morris [6], E. Ghaderpour and D. W. Morris [9, 10], D. Jungreis and E. Friedman
[13], Kutnar et al. [16], K. Keating and D. Witte [ 14], D. Li [1 7], D. W. Morris and K. Wilk
[20], and D. Witte [23]).

Theorem 1.2 ([16, 20, 23]). Let G be a finite group. If |G| has any of the forms below
(where p, q, and r are distinct primes), then every connected Cayley graph on G has a
Hamiltonian cycle.

1. kp, where 1 < k < 47,
2. kpq, where1 < k <7,
3. pgr,

4. k:p2, where 1 < k <4,
5. k:p3, where 1l < k <2,
6. pk, where 1 < k < 0.

Previously, part (2) of Theorem 1.2 was only known for 1 < k < 5, but we improve
this condition: we show that 5 can be replaced with 7. This is the new part of the above
theorem which is our result. The hard part is when k = 6:

Theorem 1.3. Assume G is a finite group of order 6pq, where p and q are distinct prime
numbers. Then every connected Cayley graph on G contains a Hamiltonian cycle.

This generalizes [10], which considered only the case where ¢ = 5. The proof takes up
all of Section 3, after some preliminaries in Section 2.

Unlike Theorem 1.3, the following observation follows easily from known results, and
may be known to experts. The proof is on page 8.

Proposition 1.4. Assume G is a finite group of order Tpq, where p and q are distinct prime
numbers. Then every connected Cayley graph on G contains a Hamiltonian cycle.

The Introduction of the author’s masters thesis [ | 8] provides additional background and
a description of the methods that are used in the proof of the main theorem.
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2 Preliminaries

This section establishes basic terminology and notation, and proves a number of technical
results that will be used in the proof of Theorem 1.3. In particular, it is shown we may
assume that |G| is square-free (note |G| = 6pgq in Theorem 1.3), so the Sylow subgroups of
G are Cy, C3, C,, and C,, and that |G’| has precisely 2 prime factors, so G is either C,, x C,
or Cg x Cp.

2.1 Basic notation and definitions

Throughout the paper, we have used standard terminology of graph theory and group theory
that can be found in textbooks, such as [11, 12].
The following notation is used throughout the paper:

* The commutator ghg~'h~"! of g and h is denoted by [g, h].

* We will always let G’ = [G, G] be the commutator subgroup of G.

» We define G = G/G’, g = gG' forany g€ G,and S = {g;g € S} forany S < G.
* Cg(S) denotes the centralizer of S in G’.

¢ G x H denotes a semidirect product of groups G and H, where H is normal.

* Dy, denotes the dihedral group of order 2n.

* e denotes the identity element of G.

» For S € G, a sequence (s1, S2,. .., Sp) of elements of S U S-1 specifies the walk
in the Cayley graph Cay(G;S) that visits the vertices: e, 1, $152,...,5152 " Sp.
_ 1 -1 -1
Also, (s1,82,...,8n) L= (51,8, 1, .., 87 ).
* We use (51,532,...,5,) to denote the image of the walk (s1,s2,...,5,) in the

0
Cay(G/G'; S) = Cay(G}; S) which is a Cayley graph on the quotient group G/G".

s For k € Z*, we use (s1, 52, .. ., 5, )" to denote the concatenation of k copies of the
sequence (S1,82, ..., Sm)-

* pand q are distinct prime numbers.
* C,, denotes the cyclic group of order n.

. G = G/C,, when C, is a normal subgroup, we also let G = G/C, when C, is a
normal subgroup, and let G = G /C3 when Cs is a normal subgroup. Also, § = ¢C,,
§g=gCq forany ge G,and S = {g; g€ S}, S = {g;g€ S} forany S < G.

* We let as, as, vp, and a, be elements of G that generate Ca, C3, Cp, and Cg, respec-
tively.

Remark 2.1. When |G| = 6pg and it is square free (as is usually the case in Section 3), the
Sylow subgroups are Ca, C3, Cp, and C,. Also, the commutator subgroup G’ will usually be
either C;, x C, or C3 x Cp, so Cp, is a normal subgroup and either C, or C3 is also a normal
subgroup.
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2.2 Basic methods

In this subsection, we explain some of the key ideas in the proof of our main result (Theo-
rem 1.3).

It is easy to see that Cay(G;.S) is connected if and only if S’ generates G ([1 |, Lemma
3.7.4]). Also, if S is a subset of Sy, then Cay(G; S) is a subgraph of Cay(G; Sp) that con-
tains all of the vertices. Therefore, in order to show that every connected Cayley graph on
G contains a Hamiltonian cycle, it suffices to consider Cay(G; S), where S is a generating
set that is minimal, which means that no proper subset of S generates G.

The following well known (and easy) result handles the case of Theorem 1.3 where G
is abelian.

Lemma 2.2 ([3, Corollary on page 257]). Assume G is an abelian group. Then every
connected Cayley graph on G has a Hamiltonian cycle.

Note Cay(Co; {a}) is a Cayley graph with two vertices, where C = {a). We consider
(a, a) as its Hamiltonian cycle which is:

ebaSad=e.

Although graph theorists would not typically consider this a cycle, it satisfies the basic
property of visiting each vertex exactly once. In some of our inductive proofs, we require a
Hamiltonian cycle in a Cayley graph on a quotient group. When this quotient group is Cs,
this Hamiltonian cycle provides the structure we need for our inductive arguments to work.

Theorem 2.3 (Marusic [19], Durnberger [7, 8], and Keating-Witte [14]). If the commutator
subgroup G' of G is a cyclic p-group, then every connected Cayley graph on G has a
Hamiltonian cycle.

Theorem 2.4 (Chen-Quimpo [4]). Let v and w be two distinct vertices of a connected
Cayley graph Cay(G; S). Assume G is abelian, |G| is odd, and the valency of Cay(G; S)
is at least 3. Then Cay(G; S) has a Hamiltonian path that starts at v and ends at w.

The following lemma (and its corollary) often provide a way to lift a Hamiltonian cy-
cle in Cay(G/N; S) to a Hamiltonian cycle in Cay(G;.S). Before stating the results, we
introduce a useful piece of notation.

Notation 2.5. Suppose N is a normal subgroup of G, and C' = (s1, 82, ..., S,) is a walk
in Cay(G;S). If the walk (s1 N, s2N,...,s,N) in Cay(G/N; SN/N) is closed, then
its voltage is the product V(C) = s1s9---s,. This is an element of N. In particular, if
C = (31,382, ..,5,) is a Hamiltonian cycle in Cay (G, S), then V(C) = 5152+ - - 8.

Factor Group Lemma 2.6 ([24, Section 2.2]). Suppose:
» S is a generating set of G,
* N is a cyclic normal subgroup of G,
- G=aN,

e C = (31,%3,...,3y,) is a Hamiltonian cycle in Cay(G/N; S), and

the voltage V(C') generates N.
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Then there is a Hamiltonian cycle in Cay (G} S).
Corollary 2.7 ([10, Corollary 2.3]). Suppose:

* S is a generating set of G,

* N is a normal subgroup of G, such that |N| is prime,

e sN =tN for some s,t € S with s # t, and

e there is a Hamiltonian cycle in Cay(G/N; S) that uses at least one edge labeled 3.
Then there is a Hamiltonian cycle in Cay(G; S).

Lemma 2.8. Assume G = H x (C, x Cy), where G' = C,, x C, and let S be a generating
set of G. As usual, let G = G/G' =~ H. Assume there is a unique element c of S that is not
in H x Cy, and C'is a Hamiltonian cycle in Cay (G} S) such that c occurs precisely once
in C. Then the subgroup generated by V(C') contains Cp,.

Proof. Write C' = (31,52,---,5,), and let Ht = H x C,. By assumption, there is a
unique k, such that s;, = ¢, and all other elements of S are in H . Therefore,

V(C) = s189..6p e HY - HY ... HY .c. HY .H* ... H* = H"cH".

Since ¢ ¢ H™, we conclude that V(C) ¢ HT.
On the other hand, since V(C) is an element of G’ = C,, x C,, we have V(C) = a!~) €
H*~J. Since V(C) ¢ H*, this implies j # 0 (mod p), so a7}, contains Cy,. O

Definition 2.9. The Cartesian product X; o X5 of graphs X; and X5 is a graph such that
the vertex set of X1 o X5 is V(X1) x V(X3) = {(v,v");v € V(X1),v" € V(X3)}, and
two vertices (v1, v2) and (v}, v4) are adjacent in X; o X5 if and only if either

* v1 = v} and vy is adjacent to v} in X5 or

* v9 = vh and vy is adjacent to v] in X;.

Lemma 2.10 ([4, Lemma 5 on page 28]). The Cartesian product of a path and a cycle is
Hamiltonian.

Corollary 2.11 (cf. [4, Corollary on page 29]). The Cartesian product of two Hamiltonian
graphs is Hamiltonian.

Lemma 2.12 ([16, Lemma 2.27]). Let S generate the finite group G, and let s € S, such
that (s) < G. If Cay(G/{s); S) has a Hamiltonian cycle, and either

1. se Z(G), or
2. Z(G) n{s) = {e},

then Cay(G; S) has a Hamiltonian cycle.
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2.3 Some facts from group theory

In this subsection, we state some facts in group theory, which are used to prove our main
result. The following lemma often makes it possible to use Factor Group Lemma 2.6 for
finding Hamiltonian cycles in connected Cayley graphs of G.

Lemma 2.13 ([6, Corollary 4.4]). Assume G = {a,b) and G' is cyclic. Then G’ = {Ja, b]).

Corollary 2.14. Assume G = {a,b)y and gcd(k,|a|) = 1, where k € Z, and G' is cyclic.
Then G' = {[a*,b]).

Proposition 2.15 ([ 12, Theorem 9.4.3 on page 146], cf. [10, Lemma 2.11]). Assume |G| is
square-free. Then:

1. G’ and G/G' are cyclic,
2. Z(G)n G ={e},
3. G=C, x G, forsomeneZ",

4. Ifband ~y are elements of G such that (bG"y = G/G’ and () = G, then{b,v) = G,
and there are integers m, n, and T, such that |y| = m, |b| = n, byb~! = 47,
mn = |G|, ged(t —1,m) =1, and 7 = 1 (mod m).

Lemma 2.16. Assume

e G =(CpxCq) x (Cr xCp),

* G'=(Cr xCy),

saed,

* p, q, , and t are distinct primes.
If[al = pq, then |a| = pq.

Proof. Suppose |a| # pq. Without loss of generality, assume |a| is divisible by r. Then
(after replacing a by a conjugate) the abelian group {a) contains C, x Cq and C,, so C,
centralizes C, x C,. Since C, also centralizes C;, this implies that C, < Z(G). This
contradicts the fact that G’ n Z(G) = {e} (see Proposition 2.15(2)). O

Lemma 2.17 ([22, Exercise 19 on page 43]). Assume |G| = 2k, where k is odd. Then G
has a subgroup of index 2.

Corollary 2.18. Assume |G| = 2k, where k is odd. Then |G'| is odd.

Proof. By Lemma 2.17, there is a normal subgroup H of G such that [G : H] = 2. Now
since G/H has order 2, then G/H is abelian, so G’ € H. Therefore, |G’| is odd. O

Notation 2.19. For 7 as defined in Proposition 2.15(4), we use 71 to denote the inverse
of 7 modulo m (so 77! = 77~! (mod m)).
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2.4 Cayley graphs that contain a Hamiltonian cycle

We show, throughout this subsection, that there exists a Hamiltonian cycle in some con-
nected Cayley graphs with additional assumptions. The following proposition shows that
in our proof of Theorem 1.3 we can assume |G| is square-free, since the cases where |G]|
is not square-free have already been dealt with. At the end of this subsection we prove
Proposition 1.4.

Proposition 2.20. Assume:
* |G| = 6pq, where p and q are distinct prime numbers, and
¢ |G| is not square-free (i.e. {p,q} N {2,3} # &)
Then every connected Cayley graph on G has a Hamiltonian cycle.

Proof. Without loss of generality we may assume ¢ € {2,3}. Then |G| € {12p, 18p}.
Therefore, Theorem 1.2(1) applies. O

Proposition 2.21 ([25, Proposition 5.5]). If n is divisible by at most 3 distinct primes, then
every Cayley diagram (directed Cayley graph) in Ds,, has a Hamiltonian cycle.

The following proposition demonstrates that we can assume |G’| in Theorem 1.3 is a
product of two distinct prime numbers.

Proposition 2.22. Assume |G| = 2pqr, where p, q and r are distinct odd prime num-
bers. If |G'| € {1,pqr} or |G'| is prime, then every connected Cayley graph on G has a
Hamiltonian cycle.

Proof. If |G'| = 1, then G’ = {e}. So G is an abelian group. Therefore, Lemma 2.2
applies. If |G’| is prime, then Theorem 2.3 applies. Finally, if |G’| = pgr, then

G =Cyx (CpxCqxCp)= Dopgyr.
So Proposition 2.21 applies. O

The following lemmas show that some special Cayley graphs have a Hamiltonian cycle,
and we use these facts in Section 3 in order to prove our main result.

Lemma 2.23. Assume G = (C2 x C;) x G', and G' = C, x C,, where p, q and r are
distinct odd prime numbers and let S = {a,b} be a generating set of G. Additionally,
assume |a| € {2,2r}, |b| = r and gcd(|b|,r — 1) = 1. Then Cay(G;S) contains a
Hamiltonian cycle.

Proof. Wehave C = (b, @, 57(“1),6_1) as a Hamiltonian cycle in Cay(G; S). Now

we calculate its voltage
V(C) = b a1 = (b1, a].

Since ged(|b], — 1) = 1, then by Lemma 2.14 we have [b" "1, a] = G’. Therefore, Factor
Group Lemma 2.6 applies. O

Lemma 2.24 (cf. [ 10, Case 2 of proof of Theorem 1.1, pages 3619-3620]). Assume
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e G=(CaxCr)x (CpxCq),
|S| =3,

e S is a minimal generating set of@ = G/C,,

* C, centralizes Cq,

* Cy inverts Cq.
Then, Cay(G; S) contains a Hamiltonian cycle.
Lemma 2.25 ([10, Lemma 2.6]). Assume:

o G = {a)y x {Sy), where {Sy) is an abelian subgroup of odd order,

* |(Sou Syt =3, and

* (So) has a nontrivial subgroup H, such that H < G and H n Z(G) = {e}.
Then Cay(G; Sy U {a}) has a Hamiltonian cycle.

Lemma 2.26 ([10, Lemma 2.9]). If G = Dy, x C,, where p,q and r are distinct odd
primes, then every connected Cayley graph on G has a Hamiltonian cycle.

Now we prove Proposition 1.4 which is on page 2.

Proof of Proposition 1.4. If p # 7 and q # 7, then Theorem 1.2(3) applies. So we may
assume ¢ = 7, which means |G| = 49p (and p # 7). We may also assume that G is not
abelian, for otherwise Lemma 2.2 applies.

If a Sylow p-subgroup P of G is normal, then |G/P| = 49, so the quotient G/P is
abelian. (Because if ¢ is prime, then every group of order ¢ is abelian). Therefore, since
P is normal and G/P is abelian, then G’ is contained in P. So |G'| = p. Therefore,
Theorem 2.3 applies.

Now we may assume P is not normal in G. Then by Sylow’s Theorem, n,|49 and
n, =1 (mod p), where n,, is the number of Sylow p-subgroups in G. Thus, p € {2, 3}, so
|G| € {14¢,21q}. Therefore, Theorem 1.2(1) applies. O

2.5 Some specific sets that generate G

This Subsection presents a few results that provide conditions under which certain 2-
element subsets generate G. Obviously, no 3-element minimal generating set can contain
any of these subsets.

Lemma 2.27. Assume G = (C2 xC3) x G', and G’ = C,, x Cy. Also, assume C¢(C3) = Cq
and Cy & Cer (Co). If (a, b) is one of the following ordered pairs

1. (asaq, agaga’;’yp),
2. (asas, aga’;%), where k # 0 (mod q),
3. (azas3aq, a%a’;'yp), where k # 0 (mod q),

4. (agagamagaga’;’yp), where k # 1 (mod q),
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then {a,b) = G.

Proof. Ttis easy to see that (@, b) = G, so it suffices to show that {a, b) contains C, and C,.
Thus, it suffices to show that G and G are nonabelian, where ¢ = G/(Cs Cp) = Doy and
G =G/C,.

Since ag does not centralize C,,, it is clear in each of (1) — (4) that @ does not central-
ize 7, (and 7, is one of the factors in b), so G is not abelian.

The pair (a, b) is either (aq, azal), (a2, ak) where k # 0 (mod q), (a2aq, ak) where
k # 0 (mod q), or (azag, azak) where k # 1 (mod ¢). Each of these is either a reflec-
tion and a nontrivial rotation or two different reflections, and therefore generates the (non-
abelian) dihedral group Dy, = G. 0

Lemma 2.28. Assume G = (CoxC3)xG’, and G' = C, xCq. Also, assume C(C3) = {e}.
If (a,b) is one of the following ordered pairs

1. (as2as, aéaéa’;%), where k # 0 (mod q),

-
2. (asay, agaly,), where j # 0 (mod 3),
- (

3 ag,azaéa’;vp), where k #£ 0 (mod ¢),

4. (agazay, dsaly,), where j # 0 (mod 3),
then {a,b) = G.

Proof. Ttis easy to see that (@, b) = G, so it suffices to show that {a, b) contains C, and C,.

we need to show that G and G are nonabelian, where G = G/Cp and G = G /Cq, as usual.
As in the proof of Lemma 2.27, since a3 does not centralize Cy, it is clear in each of

(1) — (4) that @ does not centralize v, (and +y, is one of the factors in b), so G is not abelian.

In (1) — (4), aq appears in one of the generators in (a,E), but not the other, and the
other generator does have an occurrence of ag. Since a3 does not centralize a,, this implies
that G is not abelian. O

Lemma 2.29. Assume G = (C2 xCy) x G’, and G’ = C3 x Cp. Also, assume C¢/(Cq) = C3
and C3 & Cq:(C2). If (a, b) is one of the following ordered pairs

1. (azaq, abalal~y,), where k # 0 (mod g),

2. (aqas, agaga’gvp),

3. (abalas, azalyy,), wherem # 0 (mod q),
then G = {a, b).

Proof. It is easy to see that (@,b) = G, so it suffices to show that {a, b) contains C, and
C3. We need to show that  and G are nonabelian, where ¢ = G/(C, x C,) = D and
G =aG/es. .

In each of (1) — (4), a4 appears in “@’, and v, appears in b (but not in ‘@’). Since a,
does not centralize -, this implies that ‘G is not abelian.

In each of (1) — (4), (@, 7) consists of either a reflection and a nontrivial rotation or
two different reflections, so it generates the (nonabelian) dihedral group D¢ = a. O
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3 Proof of the main result

In this section, we prove Theorem 1.3, which is the main result. We are given a generating
set S of a finite group G of order 6pg, where p and q are distinct prime numbers, and we
wish to show Cay(G;.S) contains a Hamiltonian cycle. The proof is a long case-by-case
analysis (see Figures 1, 2 and 3 for outlines of the many cases that are considered). Here
are our main assumptions throughout the whole section.

Assumption 3.1. We assume:

~

. p,q > 7, otherwise Theorem 1.2(1) applies.

|G| is square-free, otherwise Proposition 2.20 applies.
G’ n Z(G) = {e}, by Proposition 2.15(2).

G =~ C, x G', by Proposition 2.15(3).

|G’| € {pg, 3p}, by Corollary 2.18.

S

For every element s € S, |S| # 1. Otherwise, if [5| = 1, then s € G’, so G' = (s) or
|s| is prime. In each case Cay(G/{s);S) has a Hamiltonian cycle by part 2 or 3 of
Theorem 1.2. By Assumption 3.1(3), {s) n Z(G) = {e}, therefore, Lemma 2.12(2)
applies.

7. S is a minimal generating set of G. Note that S must generate G, for otherwise
Cay(G; S) is not connected. Also, in order to show that every connected Cayley
graph on G contains a Hamiltonian cycle, it suffices to consider Cay(G; S), where
S is a generating set that is minimal.

31 Assume |S|=2and G’ = C,, x Cq

In this subsection, we prove the part of Theorem 1.3 where, |S| = 2 and G’ = C,, x C,.
Recall G = G/G’ and G = G/C,,.

Proposition 3.2. Assume
e G =(CaxC3) x (CpxCy),
o |S] =2
Then Cay(G; S) contains a Hamiltonian cycle.
Proof. Let S = {a,b}. Forevery s € S, |3| # 1, by Assumption 3.1(6).

Case 1. Assume S is minimal. Then [al, |b| € {2,3}. When [a| = |b| = 2 or [a| = |b| = 3,
then G # (@, b). Therefore, G # {a, by which contradicts the fact that G = (a, b). So we
may assume |@| = 2 and |b| = 3. Since |b| € {3, 3p, 3¢, 3pq}, then ged(|b|,2) = 1. Thus,
Lemma 2.23 applies.

Case 2. Assume S is not minimal. Then {|a|, ||} is either {6, 2}, {6, 3}, or {6}. We may
assume |a| = 6.



F. Maghsoudi: Cayley graphs of order 6pq and Tpq are Hamiltonian

11

L|S| =2

A. G' =C, x Cy (Section 3.1).
1. S is a minimal generating set.
2. Sis not a minimal generating set.
B. G’ = C3 x C, (Section 3.2).
1. |a| = |b| = 2¢.
2. [a] = q. B
3. |a| = 2qand |b|] = 2.
4. None of the previous cases apply.

Figure 1: Outline of the cases in the proof of Theorem 1.3 where |.S| = 2

II. |S|=3.
A G =C, x (.
a. Ce(C3) # {e} or § is minimal.
i. Car(C3) # {e} (Section 3.3).
1. a = azand b = aqas.
. a=azand b = azaqas.
. a = azag and b = aza,.

. a = agaz and b = asaszay. iii.

2
3
4. a = azas and b = a4as.
5
S

is minimal (Section 3.4).

ii.

3. a = azaz and b = azay,.

4. a = azaz and b = aza,.

5. a = azaz and b = azaza,.

Ca (C3) # {e} (Section 3.6).

1. a = agsas and b = azasza,.

2. a = azaz and b = aza,.
3. a = azaz and b = aza,.
4. a = a3z and b = asa,.
C¢(C2) = {e} (Section 3.7).

1. a = aza3 and b = azaza,.

2. a = agaz and b = aza,.

2 OGI(CQ) = Cq 3. a= asas and b = a3Qgq.
3. Car(Ca) =Cp 4. a = azand b = aza,.
4. Cor(Co) = {e}. ~ B. G’ = C3 x C,. (Section 3.8).
b. Ce(C3) = {e} and S is not mini-
mal. l. a = azagand b = agaflnag.
i. Car(Cy) = Cp x Cy (Section 3.5). 2. a = azaq and b = aza;.

1. a = a3 and b = aga,. 3. a=azaqand b = ag'as.
2. a = a3 and b = azaza,. 4. a = azand b = aqas.

Figure 2: Outline of the cases in the proof of Theorem 1.3 where |S| = 3
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I |S| = 4 (Section 3.9). This part of the proof applies whenever |G| = pgrt with p, g, 7,
and ¢ distinct primes.

1. |G’| has only two prime factors.

2. |G| has three prime factors.

Figure 3: Outline of the cases in the proof of Theorem 1.3 where |S| > 4

Subcase 2.1. Assume |b| = 2. So we have b = @>, then b = a®~, where G’ = (v) for
otherwise {a, by = (a,a®y) = {a,~) # G which contradicts the fact that G = {a, b). Now
by Proposition 2.15(4), we have 7 € Z* such that aya™" = 47 and 76 = 1 (mod pq),
also ged(r — 1,pgq) = 1. This implies that 7 2 1 (mod p) and 7 # 1 (mod ¢). We have

Cy = (a%,b,a 2, 571) as a Hamiltonian cycle in Cay(G; S). Now we calculate its voltage.
V(Cy) = a?ba~2b7! = a2aBya 2y a3 = 775773 _ 773(7271)'

We may assume ged(72 — 1,pq) # 1 for otherwise Factor Group Lemma 2.6 applies.
Without loss of generality let 72 = 1 (mod ¢), then 7 = —1 (mod ¢). We may assume
T % —1 (mod p), for otherwise G = Da,,, x C3, so Lemma 2.26 applies.

Consider G = G/C = C¢x Cq. Since [a| = 6, then by Lemma 2.16 |a| = 6, so |a| = 6.
We may assume |b| = 2, for otherwise Corollary 2.7 applies with s = band ¢t = b~! since

(ay # G, so any Hamiltonian cycle must use an edge labeled b, Thus, b=as ag, Where
{aq) = C4. Since 7 = —1 (mod g), then C3 centralizes C, and Cy inverts C,. Therefore,

G = Dy, x C3. Now we have

Cy = ((@.0,a7°,0)"9",@",0)")
as a Hamiltonian cycle in Cay(é; §) The picture in Figure 4 on page 13 shows the

Hamiltonian cycle when ¢ = 7. If in C; we change one occurrence of (&5,8, 6’5,3) to
(@=5,b,a°,b) we have another Hamiltonian cycle. Note that,

a®ba=5b = a® - a®y - a5 ady = a®ya~2y = VTQH
and

a %ba’h =a""- a3'y ca®- a?’v = a_2'7a27 = ’yfz“.

Since 7* # 0 (mod p) we see that 72 + 1 % 772 + 1 (mod p). Therefore, the voltages
of these two Hamiltonian cycles are different, so one of these Hamiltonian cycles has a
nontrivial voltage. Thus, Factor Group Lemma 2.6 applies.

Subcase 2.2. Assume |b| = 3. Since |b| = 3, then |b| € {3, 3p, 3¢, 3pq}. Since |a| = 6,
then by 2.16 |a| = 6. Since gcd(|b|,2) = 1, then Lemma 2.23 applies.

Subcase 2.3. Assume |b| = 6. Then we have @

—bora = b . Additionally, by
Lemma 2.16 we have |a| = |b| = 6. We may assume @ =

or
b by replacing b with its inverse
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if necessary. Then b = a~y, where G’ = (v), because G = {a, b). We have C' = (@°,b) as

a Hamiltonian

cycle in Cay (G, S). Now we calculate its voltage

V(C) = a®b = d®ay = ay =~

which generates G'. Therefore, Factor Group Lemma 2.6 applies.

32 Assume |S|=2and G' = C3 x Cp,

In this subsection, we prove the part of Theorem 1.3 where, |S| = 2 and G’ = C3 x C,,.
Recall G = G/G’ and G = G/C,,.

Proposition 3.3. Assume

e G=(CyxCy) x (Cg xCp),

. |8 =2

Then Cay(G; S) contains a Hamiltonian cycle.

Figure 4: The Hamiltonian cycle C1: a edges are solid and b edges are dashed.

5
f=e—t ¢ _me——e—
3—>e——>0"" >3 ——me— o3

L e
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Proof. Let S = {a,b}. Since the only non-trivial automorphism of Cs is inversion, C,
centralizes C3. Since G’ n Z(G) = {e} (see Proposition 2.15(4)), C2 does not centralize
Cs.

Case 1. Assume |a| = |b| = 2¢. Then b = @™, where 1 < m < q — 1 by replacing b with
its inverse if needed. Therefore, b = @™+, where G’ = (). Also, gcd(m,2q) = 1. So, by
Proposition 2.15(4) we have aya™! = 47 where 72¢ = 1 (mod 3p) and ged(7 — 1,3p) =
1. Consider G = Ca,.

Subcase 1.1. Assume m > 3. Then we have

2

c=0"a?baba ™25

)

—m—4 71 __(2g—2m—3
am 4,b @ (2¢—2m 3))

as a Hamiltonian cycle in Cay(G; S). Now we calculate its voltage.

V(C) = b 20 2baba— (M2 p—1gm—4p—1,—(2¢—2m=3)

_ ,_y—la—m,y—la—ma—Qam,yaam,ya—m+2,y—la—mam—4,\/—1a—ma—2q+2m+3

_ "y*1(fmv*1a727am+17a7m+2771a74771am+3
_1_7_77n+7_77n—2+7_71_7_77n+1_7_7m73

=7

_ 7_1_,'_7_—1_7_—m+1_7_—m+7_—m—2_7_—m—3

We may assume V(C') does not generate G’ = C3 x C,. Therefore, the subgroup generated
by V(C) either does not contain Cs, or does not contain C,. We already know 7 = —1
(mod 3), then we have

14t o pme2 _pmmeS = 4 — 1 (mod 3).

This implies that the subgroup generated by V(C) contains C3. So we may assume the
subgroup generated by V(C') does not contain C,,, then

O=—1+7t—gmtl _pomy pmm=2_ ;-m=3 (mod p). (1.1A)
Multiplying by —7*3 we have
0=7"" -7 4744 7% — 741 (mod p). (1.1B)

Replacing {@, b} with {6’1,571} replaces 7 with 7~ 1. Therefore, applying the above ar-

gument to {671,571} establishes that 1.1A holds with 7~! in the place of 7, which means
we have
0= 73 g 7mt2 _pm =l 7 1 (mod p). (1.10)
By adding 1.1B and 1.1C we have
O=—7" -7 4413 =2r+ DA -7 (mod p).

If 7 = —1 (mod p), then Cy, inverts Csp, so C, centralizes C,,. This implies that G =
Ds), x Cq, so Lemma 2.26 applies. The only other possibility is 7m=% = 1 (mod p).
Multiplying by 7%, we have 7™ = 7% (mod p). We also know that 72¢ = 1 (mod p).
So 7% = 1 (mod p), where d = ged(m — 4,2q). Since m is odd and m < ¢, then
d = 1. This contradicts the fact that ged(7 — 1, 3p) = 1.
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Subcase 1.2. Assume m < 3. Thereforf, eitherm = lorm = 3. If m = 1,7then a==>
and b = a. So we have C; = (a@*?~!,b) as a Hamiltonian cycle in Cay(G;S). Now we
calculate its voltage.

V(Cy) = a7 b = a*ay =5

which generates G’. Therefore, Factor Group Lemma 2.6 applies. Now if m = 3, then
b = ay and we have

Cy = (62,6‘1,B_l,a‘l,BS,E‘Q,B,EQQ‘H)
as a Hamiltonian cycle in Cay(G; S). We calculate its voltage.
V(Co) = b?a o ta tbPa 2ba? T M

1 3(171(13’)/(13’)/(13’}/(172(13’}/0,711

—11

= aS'yagfya*lfy* a

1

= a3'ya3’ya_17_ a 1’ya3’ya3'ya7a

3

6
T +T
~y

A L e

i o e I R o o

=7
We may assume V(C>) does not generate G’ = C3 x C,,. Therefore, the subgroup generated
by V(C) does not contain either Cs, or C,. We already know 7 = —1 (mod 3), then
0 T P = 141 -141414+1—-1=1 (mod 3).

This implies that the subgroup generated by V(C5) contains C3. So we may assume the
subgroup generated by V(C) does not contain C,, for otherwise Factor Group Lemma 2.6
applies. Then we have
0=7" 4709477475 -5 171173 (mod p)
R B (At T L L G R D
This implies that

0= 47"+ +2 —724+71+4+1 (mod p). (1.2A)
We can replace 7 with 77! in the above equation, by replacing {a,b} with {a !, 571} if
necessary. Then we have

0=7 47 T47 47872477 41 (mod p).

Multiplying 78, then we have
O=1l474+7*+ 70477478 (mod p)
=4 Sy PP 41
Now by subtracting the above equation from 1.2A we have

2

0=7%—7"4+7%—7% (mod p)
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= 7'2(7' — 1)(73 +1).

This implies that 7 = 1 (mod p) or 7 = —1 (mod p). If 7 = 1 (mod p), then it

contradicts the fact that gcd(7 — 1,3p) = 1. Now if 72 = —1 (mod p), then 7 = 1
(mod p). We already know 72¢ = 1 (mod p). Then 7¢ = 1 (mod p), where d =
ged(2q,6). Since ged(2,6) = 2 and ged(q, 6) = 1, then d = 2. This implies that 72 = 1
(mod p), which means C, centralizes C,. Then we have

G =Cy x (C2 x C3p) = Cy x Degp.

So Lemma 2.26 applies.

Case 2. Assume |@| = q. Then |b| € {2,2q}. Thus |b| € {2,2q, 2p, 2pq}. If |b| = 2pq, then
Cq centralizes C,,. This implies that

G:CqX(CQIXCQJ,p);CqXDGp

so, Lemma 2.26 applies. Therefore, we may assume C, does not centralize Cp,, so la| is
not divisible by p. If || = 2p, then Corollary 2.7 applies with s = b and t = b1,
because we have a Hamiltonian cycle in Cay(é ; S ) by Theorem 1.2(3). Since b is the only
generator whose order is even, then any Hamiltonian cycle in Cay(é; S ) must use some
edge labeled b,

We may now assume |b| € {2,2q}. We have C' = (a?"!,b, 67((171),571) as a Hamilto-
nian cycle in Cay(G; S). Now if |a| = ¢, then by Lemma 2.14 we have G’ = {[a?" !, b]).
Therefore, Factor Group Lemma 2.6 applies. So, we may assume |a| = 3¢. Since C, does
not centralize Cy, then after conjugation we can assume a = azaq and b = aza}y,, where
0 < j < g — 1. We already know that C' is a Hamiltonian cycle in Cay(G;S). So we
can assume ged(3q,q — 1) # 1 for otherwise Lemma 2.14 applies, which implies that
Factor Group Lemma 2.6 applies. This implies that gcd(3,g — 1) # 1 which means ¢ = 1
(mod 3).

Consider G = G/Cp,. Then @ = asaq and b = agag. Therefore, there exists 0 < k <
3q — 1 such that b—1ab = a*. Since b inverts a3 and centralizes a4, then we must have

a=bakp! = agka’;, sok = —1 (mod 3)and k =1 (mod g). Since ¢ = 1 (mod 3),

then k = ¢ + 1. Additionally, we have ay,a™! = 'y; , where 79 = 1 (mod p). We also
have 7 % 1 (mod p), because C, does not centralize C,. Now we have

1.3 _ . —1 —j G =1 g+l
b= ab =, a,7azaaza;y, =7, a® .

This implies that

b*laib _ (bflab)i _ (,y;laq+1,yp)i — Py;lai(q+1)7p'
Therefore,

i(q‘i’l),yp = ,y;lai,yp (mod C3)

b~ la'h = ’y;la
We have

~q—=3 7—-1 ~—(q=2) 7 ~—1 7—-1 ~ 7 ~q—2 7—1
01=<aq 7b , @ (a ),b,CL 7b 7a7b7aq 7b )
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Figure 6: The Hamiltonian cycle Cs: a edges are solid and b edges are dashed.

~

a9 bar? b abat b a1 h)

as our first Hamiltonian cycle in Cay(é ; S ). The picture in Figure 5 on page 17 shows the
Hamiltonian cycle. In addition,

is the second Hamiltonian cycle in Cay(é;Y ; S ). The picture in Figure 6 on page 17 shows
the Hamiltonian cycle. We calculate the voltage of C in G =a /Cs. Since a? = e
(mod Cs), we have

V(C1)

—3(b—1a2b) o tab)a 2 (b ab)a 2 (b ab)a (b7 a?b)  (mod Cs)
=a ( ( Cl’}/p) (7;1a37p)a72(7;1a7p) 71(7;1(12%7)
Yy a2 () TraP)a 2 (3] a)a ()

-3 72 -1 —1_73-1 T+T22
=a ’yp a’yp a ’}/p ’)/p a

I e G e e DR G DR Gl )|
%

=a (

Tp)a”
T—l)

_ —2773.37272437 1492
— ’7p .

We may assume this does not generate C,, so
=-27%-37"24+37"1+2 (modp).
Multiplying by 73, we have

0=273+372-37-2=(F-1)(F+2)(27+1) (mod p).
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Since 7 # 1 (mod p), then we may assume 7 = —2 (mod p), by replacing a with a1 if
needed.
Now we calculate the voltage of Cy in G = G/Cs.

V(Cq) = a (b a*b)a (b a2b)a(b~ a?b)

ca” (b7 1a®b)a" (b rab)a(b a7 1b)  (mod Cs)
a (v, taP)aT (3, e ) aly, ey,

-a(y, taPp)a (v, tap)aly, taT )
=a (o tah)a () T alyy )

O L O LICH

1,721 2 7721 -1 721 _—2 #°-1_ _7F-1 2 7711 1
=a vy, a, a a "y, Ay, a a
— 7?*1(?3—1)Jr?(?*z—1)+$2—1+?*2(?5—1)+$*1(%—1)#(?*1_1)

p

3427274171772

» .

We may assume this does not generate C,,, so

2

0=7+272 27 +1-7"1-%"2 (mod p).

Multiplying by 72, we have
0=7 4274273172 72 1 (mod p).
We already know 7 = —2 (mod p). By substituting this in the equation above, we have
0=(-2)°+2(-2)* —2(-2*+(-2)* -~ (-2) —1=21=3-7 (mod p).
Since p > 7, then 21 # 0 (mod p). This is a contradiction.

Case 3. Assume |a| = 2¢ and |b| = 2. Since |a| = 2¢, then by Lemma 2.16 |a| = 2q. We
have b = a?v where G’ = (7).

By Proposition 2.15(4) we have aya~* = 47, where 72¢ = 1 (mod 3p) and ged(7 —
1,3p) = 1. This implies that 7 £ 0,1 (mod p) and 7 = —1 (mod 3).

Suppose, for the moment, that 7 = —1 (mod p). Then G = Dg, x Cq, so Cay(G; S)
has a Hamiltonian cycle by Lemma 2.26. R

We may now assume that 7 # —1 (mod p). Recall that G = G/C,, = Coq x C3. We

may assume a = azaq and b = asas. We have

1

)
)

as the first Hamiltonian cycle in Cay ( ). The picture in Figure 7 on page 19 shows the

Hamiltonian cycle. We also have

b



F. Maghsoudi: Cayley graphs of order 6pq and Tpq are Hamiltonian 19
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Figure 7: The Hamiltonian cycle C;: a edges are solid and b edges are dashed.

as the second Hamiltonian cycle in Cay(C:v ; S ). The picture in Figure 8 on page 21 shows
the Hamiltonian cycle. Now we calculate the voltage of C'.

V(C1) = ((ababa™'b)(aba bab)) T=/2(ababa=3ba " ba>ba’ba™ ba>ba’b)
= ((aaqvaaqva_laq’y)(aaq’ya_laq'yaaq'y))(q_5)/2
- (aa%ya'alya3alva " alya*alya®alya " alya 2 alyataly)
= ((a™'a?™ yaT ) (aT yat T ya Tt y)) @)
AT+ 2y a2y a0 1y gd =3

q+1)(,Yrq+1+1+'r‘”1aq+1))(q75)/2

aq+4

(aTtyat™tyat " yat Ty 7)

_ ((77"+1+7’2+T‘7+1a

) (’YTH]+TS+Tq+2+7+7q+3+T5+Tq+4+T+Tq+5a4+5)
q+1 2 q+1 _
_ ((,)/27' +7 aq+1)(727— +1aq+1))(q 5)/2
. (,qu+5+Tq+4+‘rq+3+‘rq+2+7'q+1+275+27—aq+5)
_ (27T 2t (279 1) 24\ (g—5)/2
= (v a”))
) (77”5-‘—7”4+‘rq+3+‘rq+2+r‘”1+27-5+2~raq+5)
q+1 2 _ q+5 q+4 q+3 q+2 gq+1 5
_ (737' +37 a2)(q 5)/2(,77' +7 +7IT 4 I +27 +27’aq+5)

q+1 2\(_q—5__ 2 _ a+5, _q+4, _q+3, _q+2, _q+1 5
(7(37 +37) (7 1)/(r l)aq 5)(,}/7' +7 +7 +7 +7 +27 +2Taq+5)

,7(3T'1+1+3‘r2)(‘rq_sfl)/(7'271)+rq_5(T'H's+Tq+4+7'q+3+7'q+2+‘rq+l+275+2‘r)

Since 727 = 1 (mod p), we have 7¢ = +1 (mod p).
Let us now consider the case where 77 = 1 (mod p), then by substituting this in the
formula for the voltage of C'; we have
V(Ol) _ ,_Y(3T+37'2)(T_571)/(7271)4’7'_5(7'5+T4+T3+T2+T+2T5+2T)

737’(1-&-7’)(7'75—1)/(7’-&-1)(7‘—1)4—(14—7’71+772+T’3+774+2+2‘r’4)

_ 737(T75—1)/(T—1)+(3+T71+T72+7'73+3T74)
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_ 7(72+2T—3)/(771)'

We may assume this does not generate C,,, then
0=-2+27"2 (mod p).
Multiplying by 73, we have
0=-27r>+2 (mod p).

This implies that 73 = 1 (mod p), which contradicts the fact that 7¢ = 1 (mod p) but

71 (mod p).
Now we may assume 7¢ = —1 (mod p), then substituting this in the formula for the
voltage of C; we have

4—T3—T2—T+2T5+27‘)

2 -5 2 -5 5
V(Cl) _ 7(—37’-}—37’ W=1""=-1)/(7"=1)—7 " °(—=7°—T
_ 737'(7'—1)(—7'75—1)/(T+1)(7‘—1)+(1+T71+Tﬁ2+7’73+7'74—2—2‘r74)

737(77—571)/(r+1)+(71+r‘1+r‘2+r—377—4)

— 7(74'r+27’1+2T’274'r*4)/('r+1)

We may assume this does not generate C,, then

0= —4r +2r '+ 2772 — 4774

(mod p).
Multiplying by (—7%)/2, we have
0=2r 73— 7242
=(r+1)@2r* -2 + 72— 27 +2) (mod p).
Since we assumed 7 2% —1 (mod p), then the above equation implies that
0=2r*-27" +72 - 27 +2 (mod p). (3A)
Now we calculate the voltage of Cs.

V(Cy) = (aba™ bab) =) (a*ba®ba~ba"3ba*ba~3ba " baba’b)

= (aaqﬂya_laq'yaaq'y)(q_& (a?’aqva?aqﬂy

~a talyaPalvaPalva P alva " alyatalvaPaly)
— (aq+1,yaq71,yaq+1,y)(q75) (aq+3,yaq+2,yaq71

q—3 q+3 q+2 q+3
~ya’va a® ya’y)

q+1 q+1 _ q+3 5 q+4 q+4 q 2 q+5
_ (’YT +147 aq+1>(q 5) (77' B S S o R o o S e S aq+5)

yad 3 ya? y

_ (727'q+1+1aq+1)(q—5) (,qu+5+2Tq+4+Tq+3+Tq+T5+T2+27'aq+5)
= (»Y(Q‘fq“+1)(("’q+1)(q75)—1)/(Tq+1—1)a(q4—1)(¢1—5))

. (77_(1+5+2Tq+4+7_q+3+7_q+7_5+7_2+27_aq+5>
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12 1 2 3 4 5 6 10 9

Figure 8: The Hamiltonian cycle Cs: a edges are solid and b edges are dashed.

_ ,y(zrqﬂ+1)((T‘1+1)<‘1*5>—1)/(T‘1+1—1)+T<q+1><ﬁr5>(rq+5+2T‘1+4+T‘1+3+ﬂ+75+72+27)

Since we are assuming 7¢ = —1 (mod p), then by substituting this in the above formula
we have

V(CQ) _ 7(—27’4—1)((—7‘)75—1)/(—7’—1)—7’75(—75—274—73—1+75+72+27)

7(27*4+2T—T*5—1)/(—7—1)+1+2f1+r*2+7*5”—1—f3—2r*4

7(277373771+37*3+37—*4727—75)/(7771)

We may assume this does not generate C,, then
21 =337 +3r 2 +3r*-2775=0 (mod p).
Multiplying by 7°, we have
0=27%—-37° -3 +3r2 +3r—2=(72 - 1)(2r* = 37° =72 =37+ 2) (mod p).
Since 72 # 1 (mod p), then the above equation implies that
0=27"-37" —72 - 37 +2 (mod p).
Therefore, by subtracting the above equation from 3A, we have
0=(*+27°+7)=7(1+1)* (mod p).
This is a contradiction.
Case 4. Assume none of the previous cases apply. Since (@, by = G, we may assume |a|
is divisible by ¢, which means |a| is either ¢ or 2¢. Since Case 2 applies when |a| = ¢, we

must have [@| = 2¢. Then |b| = ¢, since Cases 1 and 3 do not apply. So Case 2 applies
after interchanging a and b. O
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3.3 Assume |S| = 3,G' = Cp x Cq and C¢/(C3) # {e}

In this subsection, we prove the part of Theorem 1.3 where, |S| = 3, G’ = C,, x C, and
Car(Cs3) # {e}. Recall G = G/G', G = G/Cy and G = G/C,,.

Proposition 3.4. Assume
* G=(CyxCs) x (Cp xCy),
* |S] =3
* Cor(Cs) # {e}.
Then Cay(G; S) contains a Hamiltonian cycle.

Proof. Let S = {a,b,c}. If Cc/(C3) = Cp x Cg, then since G’ n Z(G) = {e} (see
Proposition 2.15(2)), we conclude that C (C2) = {e}. So we have

G= C3 X (CQ X Cpq) = Cg X szq.

Therefore, Lemma 2.26 applies.

Since C¢(Cs) # {e}, then we may assume Ce(C3) = C, by interchanging ¢ and p
if necessary. Since G’ n Z(G) = {e}, then C, inverts C,. Since C3 centralizes C, and
Z(G) n G' = {e} (by Proposition 2.15(2)), then C, inverts C,. Thus,

~

G=(C2><C3)><qu(C2qu)ngzDquCg,.

Now if S is minimal, then Lemma 2.24 applies. Therefore, we may assume S is not
minimal. Choose a 2-element subset {a, b} of S that generates G. From the minimality of
S, we see that {a, by = Dy, x Cs after replacing a and b by conjugates. The projection of
(@, b) to Da, must be of the form (az, aq) or (as, asa,), where as is reflection and a,, is a
rotation. Also note that b # a4 because S N G’ = & by Assumption 3.1(6). Therefore,
(a, b) must have one of the following forms:

1.
2.

(

(
3. (asas, asa,),

4. (

(

5. (agas, azasag).

Let c be the third element of S. We may write ¢ = agaga’g% with0 <i<1,0<j5<2
and 0 < k < g — 1. Note since S n G’ = (&, we know that ¢ and j cannot both be equal to
0. Additionally, we have azvy,a;' = 7, where 7% = 1 (mod C,). Also, 7 # 1 (mod p)
since C(C3) = C,. Therefore, we conclude that 72 + 7+ 1 = 0 (mod p). Note that this
implies 7 # —1 (mod p).

Case 1. Assume a = a and b = asay,.
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Subcase 1.1. Assume 7 # 0. Then, ¢ = agaéa’;%. Thus, by Lemma 2.27(1) (b,c) = G
which contradicts the minimality of S.

Subcase 1.2. Assume ¢ = 0. Then j # 0. We may assume j = 1, by replacing ¢ with
¢! if necessary. Thus ¢ = agal~y,. Consider G = Cy x C3. We have @ = as, b = as
and ¢ = az. Therefore, b = ¢ = az. We have (a, 52,6, 572) as a Hamiltonian cycle in
Cay(G; S). Since we can replace each b by ¢, then we consider C; = (@, 52,6, 571,671)
and Cy = (@,b ,a,¢ ?) as Hamiltonian cycles in Cay(G;S). Now since there is one
occurrence of ¢ in C, then by Lemma 2.8 the subgroup generated by V(C1) contains Cp.
Also,

V(Cy) = ab*ab~ et

=ay- a%ag cag - a;lagl : a;kagl (mod Cp)

=2, —1—k_—1
=a, aza, ""ag

—3—k

We can assume this does not generate C,, for otherwise Factor Group Lemma 2.6 applies.
Therefore,

—-3—k=0 (mod q).

Thus, k = —3 (mod gq).
Now we calculate the voltage of Cs.

V(Cq) = ab*ac™?

_ 2 —1 -1 -1 -1
=az-az-az-7, az v, a3 (mod C,)

2, -1 —1, -1 —1
=az%p az Vp a3

s

:'Yp

~ 72

Since 72 + 7 + 1 = 0 (mod p), then =72 — 7 = 1 (mod p). Thus, 7,7 = = 7,
generates Cp,.

V(Cq) = ab*ac™?

=ay-aza; - as - a;kagla;kagl (mod Cp)
= aq_zagaq_kaglaq_kagl

_ a(;2(k+1)'

We know k = —3 (mod gq), therefore, —2(k+1) = 4 (mod ¢), so Factor Group Lemma 2.6
applies.

Case 2. Assume a = ap and b = asasa,.
Subcase 2.1. Assume ¢ = 0, then j # 0. If k& # 0, then ¢ = aéa’;vp. Thus, by

Lemma 2.27(3) (b,¢) = G which contradicts the minimality of S. Therefore, we may
assume k = 0. We may also assume j = 1, by replacing ¢ with ¢! if necessary. Then

c = azYp.
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Consider G = Cy x C3, thus @ = as, b = asas and ¢ = as. Therefore, [a| = 2, |b| = 6
and |¢| = 3. Consider C' = (52,6, b,c~!, @) as a Hamiltonian cycle in Cay(G; S). Now we
calculate its voltage.

V(C) = bPcbe'a

= (20304020304 - O3 - A2030g - agl ~az (mod Cp)

_ ,—1
_aq

which generates C,. By considering the fact that C, might centralize C, or not, we have

V(C) = b*cbe™a
1

_ 1 -
= (2030203 - A37p - G203 -7, a3 -az (mod Cq)

_ F1,-1
= Tpa37p Az

- 71171? .
which generates C,,. Therefore, the subgroup generated by V(C) is G’. So, Factor Group
Lemma 2.6 applies.

Subcase 2.2. Assume j = 0. Then i # 0. If £ # 1, then ¢ = aga’q“vp. Thus, by
Lemma 2.27(4) <(b,c) = G which contradicts the minimality of S. We may therefore
assume k = 1. Then ¢ = azaqvp.

Consider G = C3 x C3, then@ =¢ = ay and b = asas. Thus, [a| = |¢| = 2 and
|b| = 6. We have C' = (52,6, 572,6) as a Hamiltonian cycle in Cay(G; S). Since there
is one occurrence of ¢ in C, and it is the only generator of G that contains +,, then by
Lemma 2.8 we conclude that the subgroup generated by V(C') contains C,. Also,

V(C) = b?cb2a

= A20304¢02G0304 * G204 * G

-1 -1

q Qs 0204
_ -1 -1 -1 -1 -1
—aq agaqagaq a3 " QqQg aq

-1

q -

; aglag ~az (mod Cp)

=aqa

which generates C,. Therefore, the subgroup generated by V(C) is G’'. So, Factor Group
Lemma 2.6 applies.

Subcase 2.3. Assume ¢ # 0 and j # 0. We may assume j = 1, by replacing ¢ with
¢! if necessary. So ¢ = azaga’;wp. If & # 1, then by Lemma 2.27(4) (b, c) = G which
contradicts the minimality of S. We may now assume k = 1. Then ¢ = asazaq7p.

Consider G = Cy x C3. Then@ = ap and b = ¢ = ayasz. Therefore, |b| = |¢| = 6
and @] = 2. We have C = (¢, @, (b,a@)?) as a Hamiltonian cycle in Cay(G;S). Since
there is one occurrence of c in C, and it is the only generator of G that contains ,, then by
Lemma 2.8 we conclude that the subgroup generated by V(C) is C,. Also,

V(C) = ca(ba)?
= (2a30q - A2 - G2A30G4 - A2 - G2030q - G2 (mod Cp)
= aga;2a3a;1a3
-3
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which generates C,. Therefore, the subgroup generated by V(C) is G’. So, Factor Group
Lemma 2.6 applies.

Case 3. Assume a = azas and b = asa,. Since b = asa, is conjugate to as via an element
of C; (which centralizes C3), then {a, b} is conjugate to {azazay’, az} for some nonzero m.
So Case 2 applies (after replacing a, with ag’).

Case 4. Assume a = azaz and b = aza,.

Subcase 4.1. Assume ¢ # 0. Then ¢ = agaéa’;'yp. Thus, by Lemma 2.27(1) (b,c) = G
which contradicts the minimality of S.

Subcase 4.2. Assume ¢ = 0. Then j # 0 and ¢ = aga’q“'yp. If £ # 0, then by
Lemma 2.27(2) {a,cy = G which contradicts the minimality of S. So we may assume
k = 0. We may also assume j = 1, by replacing ¢ with ¢~ if necessary. Then ¢ = az"p-
Consider G = Cy x C3. Therefore, @ = aszasz and b = ¢ = a3. In addition, |a| = 6
and |b| = || = 3. We have C' = (¢, b, a, 572,671) as a Hamiltonian cycle in Cay(G; S).
Since there is one occurrence of ¢ in C, and it is the only generator of G that contains -,
then by Lemma 2.8 we conclude that the subgroup generated by V(C') contains C,. Also,

V(C) = cbab™2a™"
— —2 —2 1
=a3-azaq-axaz-a, a3 -az az (mod Cp)
agaqa§a3
3

which generates C,. Therefore, the subgroup generated by V(C') is G'. Thus, Factor Group
Lemma 2.6 applies.

Case 5. Assume a = agaz, b = azaza,.

Subcase 5.1. Assume ¢ = 0. Then 5 # 0 and ¢ = aéa’;yp. If & # 0, then by

Lemma 2.27(3) (b,c) = G which contradicts the minimality of S. So we may assume

k = 0. We may also assume j = 1, by replacing ¢ with ¢! if necessary. Then ¢ = az,.
Consider G = Co x C3. Therefore, @ = b = asaz and ¢ = az. Thus, [a| = [b| = 6

and [¢| = 3. We have C' = (@,2%,b ', 2) as a Hamiltonian cycle in Cay(G; S). Now we
calculate its voltage.
V(O) = ac*b™ 2

= aga3 - a§ cagt

; az‘tas-az? (mod Cp)
= a3 'agaz”
which generates C,. Also

V(C) = ac’*b™ 12
ac’a”'c™?  (mod C,) (because a =b (mod C,))
=ac 'a"'c (because || = 3)

= [a,c7!].
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This generates Cp,, because {a, c} generates G/C,. Therefore, the subgroup generated by
V(C) is G'. So, Factor Group Lemma 2.6 applies.

Subcase 5.2. Assume ¢ # 0. Then ¢ = agaga’(jvp. If £ # 1, then by Lemma 2.27(4)
(b,cy = G which contradicts the minimality of S. So we may assume k£ = 1. Then
¢ = azala,7,. We show that {a, ¢y = G. Now, we have

{a,c)y = {ag, a3, cy (because {a) = {azaz) = {az, as))
= {ag, a3, aza}a,yp)
= {az, as, aqYp)
= (ag, a3, aq,p)
-G,

which contradicts the minimality of S. O

34 Assume |S| = 3,G’ = C, x C, and S is minimal

In this subsection, we prove the part of Theorem 1.3 where, |S| = 3, G’ = C, x C, and
Cq(C3) = {e}. Recall G = G/G’' and G = G/C,,

Proposition 3.5. Assume
e G =(CaxCs)x (CpxCq),
* |S] =3
o S is minimal.
Then Cay(G; S) contains a Hamiltonian cycle.

Proof. Let S = {a,b,c}. If Cq/(C3) # {e}, then Proposition 3.4 applies. Hence we may
assume C¢v(C3) = {e}. Then we have four different cases.

Case 1. Assume Cq/ (Ca) = Cp X Cq» thus G = Cy x (C3 % Cpq). Since S is minimal,
then all three elements belonging to S must have prime order. There is an element a € S,
such that |a| = 2, otherwise all elements of S belong to a subgroup of index 2 of G, so
{a,b,c) # G which is a contradiction. If |a| = 2p, then Corollary 2.7 applies with s = a
and ¢ = a~!, because there is a Hamiltonian cycle in Cay(G S ) (see Theorem 1.2(3))
which uses at least one labeled edge a because S is minimal.

Now we may assume |a| = 2. Replacing a by a conjugate we may assume {a) = Cs.
Thus, (b, c) = C3 x Cpq. By Theorem 1.2(3), there is a Hamiltonian path L in Cay(Cs x
Cpq» {b, c}). Therefore, LaL~*a~! is a Hamiltonian cycle in Cay(G; S).

Case 2. Assume C¢/(Cs) = C,. Therefore,
G =GJCp=CsxCy=Cyx (C3xCp).

There is some a € S such that |a| = 2. Thus, we can assume |a| = 2, for otherwise
Corollary 2.7 applies with s = a and t = a~!. (Note since S is minimal, then @ must
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be used in any Hamiltonian cycle in Cay(CAv’; §)) We may assume a = as. ASince S is
minimal, S 5} G’ = & (see Assumption 3.1(6)) and eagh element belonging to .S has prime
order, then |b| = |¢| = 3. We may assume a = ag, b = az and ¢ = azaq. We have the
following two Hamiltonian paths in Cay(Cs x Cq; {b, ¢}):
Ly = ((&%)171,8b)
and
= ((b.20)"",5,0).
These lead to the following two Hamiltonian cycles in Cay(@ ; §)
Cy = (Ly,a,L7",4d)
and
Cy = (L2,a, L3, Q).
Then if we let
[]L1 = (®) b = (b®) " e az'C,
and
[ TL2 = (beb)™"be = (beb)?b™" = b(cb?)b~> = b(] [ L1 )b~

then it is clear that V(C;) = [[] Li,a] for ¢ = 1,2. Therefore, we may assume a cen-
tralizes [ [ Ly and [ ] Lo, for otherwise Factor Group Lemma 2.6 applies. Now, since a
centralizes [ [ L1, and [ [ L1 € a3_1Cp, we must have [ [ L; = a;l. So[]Ly = bag_lbfl.
If b does not centralize ag, then V(C1) # V(Cy), so the voltage of Cy or Cy cannot both
be equal to identity. Therefore, Factor Group Lemma 2.6 applies. Now if b centralizes ag,
then we can assume b = ag. Therefore, ¢ = aza,7,. We calculate the voltage of C';. We
have
V(Cy) = (cb®)b  a((ch?) 1)~

= (azaqyp - a3)?-az' - az - ((asagyp - a3)-a3') ™" - az

= (a3aq7pa§1)qa§1a2((a3aq7pa§1)a§1)71&2

= agagfygaglaglag(agag’ygag_lagl)flag

= agyjaz as(azygaz®) ta

= agvgafagag*y;qaglaz

= agfyiqagl
which generates C,,. Thus, Factor Group Lemma 2.6 applies.

Case 3. Assume C¢/(Cs) = C,. Therefore,

G =G/Cy=CsxCp=Cyx (Cs xCp).
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Now since S N G’ = (F (see Assumption 3.1(6)) and C3 does not centralize C,, then for all
a € S, we have |a| € {2,3,6,2p}. If |G| = 6, then |a| is divisible by 6 which contradicts
the minimality of S. Note that every element belong to S has prime order. If |G| = 2p, then
la| = 2 (because Sis minimal). Therefore, Corollary 2.7 applies with s = a and t = ™.
Note that since S is minimal, then there is a Hamiltonian cycle in Cay(G S) uses at least
one labeled edge @. Thus, || € {2, 3} forall a € S. This implies that S is minimal, because
we need an as and an a3 to generate Co x Cs and two elements whose order divisible by 2
or 3 to generate C,,. So by interchanging p and ¢ the proof in Case 2 applies.

Case 4. Assume C¢(Cz) = {e}. Consider
G =G/Cp = (Cy x C3) X Cy.

Now since S is minimal, every element of S has prime order. Since S N G’ = & (see
Assumption 3.1(6)), then for every § € S, we have |3] € {2,3}. Since Ce(Co) = {e}
and Cg/(Cs) = {e}, this implies that for every s € S, we have |s| € {2,3}. From our
assumption we know that S = {a,b, ¢}. Now we may assume |a| = 2 and |b| = 3. Also,
we know that |c| € {2, 3}.

If |c| = 2, then ¢ = a~, where v € G’. Suppose, for the moment, (v) # G’. Since
{v) <1 G, then we have

G = <a7 b, C> = <aa b, '7> = <a7 b><7>'

Now since S is minimal, {a, by does not contain C,. So this implies that () contains C,.
Since (7) does not contain G’, then {y) = C,. Thus, we may assume that a = as (by
conjugation if necessary), b = az7y, and ¢ = aza,. So (b, c) = {agyy,az2a4) = G (since
ag7yp and asa, clearly generate G and do not commute modulo p or modulo ¢, they must
generate (&). This contradicts the minimality of S. Therefore, (v) = G'.

Consider G = Co x C3. Then @ = ¢. We have |a| = |¢| = 2 and |b| = 3. We also have

Cy= (@b ",a, 52) as a Hamiltonian cycle in Cay(G; S). Now we calculate its voltage.
V(Cy) = ¢ b 2%ab?® = v ta b 2ab?.

Now, a~'b=2ab? € G'. Since {a,b) # G, we have a~'b~2ab® € {e,7,}. If a~ b7 2ab? =
e, then a and b?> commute, so @ and b commute. Hence b = as, so {b,c¢y = @, a contra-
diction. So a=*b~2ab? = ~,, and V(C}) = v~ 17, which generates G’. Therefore, Factor
Group Lemma 2.6 applies.

Now we can assume |c| = 3. Then ¢ = by, where v € G’ (after replacing ¢ with its
inverse if necessary). Suppose, for the moment, {y) # G’. Since {(y) < G, then we have

G = <a7 b, C> = <aa b, 7> = <a7 b><’7>

Now since S is minimal, then (a, b does not contain Cy. So this implies that (-y) contains
Cq. Since () does not contain G’, then (y) = C,. Therefore, we may assume that a =
as7y, (by conjugation if necessary), b = ag and ¢ = aszaq. So {a,c) = {asvp,asaq) =
G (since a2y, and asa, clearly generate G and do not commute modulo p or modulo g,
they must generate ). This contradicts the minimality of S. So (y) = G’.
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Consider G = C3 x C3. Then b = & We have |[a] = 2 and [b| = [¢] = 3. We also
have Cy = (¢}, bt Jat, 52, @) as a Hamiltonian cycle in Cay(G; S). Now we calculate

its voltage.
V(Cs) = c o la % = vfllflb*la*lea.

Now, b=2a~'b%a € G'. Since {(a,b) # G, we have b2a"'b%a € {e,7,}. If b2a"'b%a =
e, then @ and b? commute, so ¢ and b commute. Hence a = as, so {a,cy = G, a contra-
diction. So b=2a"1b?a = ~,, and V(Cy) = v~ 17, which generates G’. Therefore, Factor
Group Lemma 2.6 applies. O

3.5 Assume S| =3,G' =Cp, x Cgand C (C2) = Cp x Cq
In this subsection, we prove the part of Theorem 1.3 where, |S| = 3, G’ = C, x C4,

Ce(C2) = Cp x Cy, and neither Car (C3) # {e} nor S is minimal holds. Recall G = G/G’,
G =G/Cqand G = G/Cp.

Proposition 3.6. Assume
* G=(CyxC3) x (CpxCy),
*|S|=3
* Ca(Ca) =Cp x Cy.
Then Cay(G; S) contains a Hamiltonian cycle.

Proof. Let S = {a,b,c}. If Ce/(Cs) # {e}, then Proposition 3.4 applies. So we may

A

assume C¢(C3) = {e}. Now if S is minimal, then Proposition 3.5 applies. So we may
assume S is not minimal. Consider

G =GJCp = (Cy x C3) x Cqg = (C5 x Cy) X Ca.

Choose a 2-element {a, b} subset of S that generates @. From the minimality of .S, we see
that

{a,b) = (C3 x Cy) x Cq,

after replacing a and b by conjugates. The projection of (a, b) to C3 x C, must be of the
form (a3, aq) or (as,asza,) (perhaps after replacing a and/or b with its inverse; also note

that b # a4 because S N G’ = ). Therefore, (a, b) must have one of the following forms:
1. (a3,azaq),

2. (as,az2azag),

[98]

-

. (agas, asay),
4. (aza3,asa4),
5. (

(203, G2030,).
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Let c be the third element of S. We may write ¢ = aéaéa’;'yp with0<i<1,0<7<2
and 0 < k < ¢ — 1. Note since S n G’ = ¢, we know that ¢ and j cannot both be equal
to 0. Additionally, we have azy,a; ' = 77 where 73 = 1 (mod p) and 7 # 1 (mod p).
Thus 72 + 7 + 1 = 0 (mod p). Note that this implies 7 # —1 (mod p). Also we have
azagaz’ = ag. By using the same argument we can conclude that 7 # 1 (mod ¢) and
72 +%+1=0 (mod q). Note that this implies ¥ # —1 (mod ¢). Combining these facts
with 72 = 1 (mod p) and 7 = 1 (mod ¢), we conclude that 72 % +1 (mod p), and
72 # +1 (mod q).

Case 1. Assume a = a3 and b = asa,.

Subcase 1.1. Assume ¢ = 0. Then j # O and ¢ = aga’;vp. For future reference in
Subcase 4.1 of Proposition 3.7, we note that the argument here does not require our current
assumption that Cy centralizes C,. We may assume j = 1, by replacing ¢ with ¢~ 1 if
necessary. Then ¢ = aga’;'yp. Consider G = Co x C3. Then we have @ = € = as,
b = ay. We have C; = (¢,a@,b,a 2,b) and Cy = (¢%,b,a 2, b) as Hamiltonian cycles in
Cay(G; S). Since there is one occurrence of ¢ in C1, then by Lemma 2.8 we conclude that
the subgroup generated by V(C1) contains C,. Also,

V(C1) = caba™?b
= agay - as - azaq - a3” - azaq  (mod Cp)

~ v2

_ akTJr‘r +1
q
_ aq¥2+k¥+1.

We may assume this does not generate C,, for otherwise Factor Group Lemma 2.6 applies.
Therefore,

0=74+kF+1 (modq). (1.1A)
We also have
0=74+7%4+1 (modq). (1.1B)

By subtracting the above equation from 1.1A, we have 0 = (k—1)7 (mod ¢). This implies
that £ = 1.
Now we calculate the voltage of Cs.

V(Cy) = c¢*ba™2b

= a3VpasYp - a2 - agz ~az  (mod Cy)

_ R
=1,

which generates C,. Also

V(Cy) = c¢*ba™2b
= a3a, - 304 - G20, - a3° - aza, (mod Cp)
X x2  >2
— a-r+7' +7°4+1
q
~2 |~
_ aiT +T+1.
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We may assume this does not generate C,, for otherwise Factor Group Lemma 2.6 applies.
Then

0=27+%+1 (modgq).

By subtracting 1.1B from the above equation we have

0=7> (mod q)

which is a contradiction.

Subcase 1.2. Assume j = 0. Then¢ # 0 and ¢ = a9 a’;'yp. For future reference in
Subcase 4.2 of Proposition 3.7, we note that the argument here does not require our current
assumption that Co centralizes Cp,. If k& # 0, then by Lemma 2.28(3) {a,¢) = G which
contradicts the minimality of S.

So we can assume k = 0. Then ¢ = asy,. Consider G = Cy x C3. Then we have
@ = azand b = ¢ = ay. This implies that [@| = 3 and [b] = |[¢| = 2. We have
C = (¢7',a%,b,a ?) as a Hamiltonian cycle in Cay(G; S). Since there is one occurrence
of cin C, and it is the only generator of G that contains +y,, then by Lemma 2.8 we conclude
that the subgroup generated by V(C) contains C,,. Similarly, since there is one occurrence
of bin C, and it is the only generator of (7 that contains a4, then by Lemma 2.8 we conclude
that the subgroup generated by V(C') contains C,. Therefore, the subgroup generated by
V(C) is G'. So, Factor Group Lemma 2.6 applies.

Subcase 1.3. Assume i # 0 and j # 0. Then ¢ = agaga’;wp. If & # 0, then by
Lemma 2.28(3) {a, ¢y = G which contradicts the minimality of S.

So we can assume k£ = 0. We may also assume j = 1, by replacing ¢ with cif
necessary. Then ¢ = azazy,. Considej G = Cy x C3. Then we have @ = as, b = ay and
€ = agag. This implies that [a| = 3, [b| = 2 and [¢| = 6. We have C' = (¢,b,a,¢,a ', c)
as a Hamiltonian cycle in Cay(G; S). Now we calculate its voltage.

V(C) = cbaca™ e
= a2a3 - G2aq - Q3 - A2A3 - a;l ~agaz (mod Cp)
= aza,a;

which generates C,. Also

V(C) = cbaca™ e
= agaz7p - A2 - 43 - A2A37p - a3_1 -agazy, (mod Cy)
= a37pa§712)

T+2
(A

We may assume this does not generate C,,, for otherwise Factor Group Lemma 2.6 applies.
Then 7 = —2 (mod p). By substituting this in

0=7+7+1 (mod p),
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we have

0=4-2+1 (modp)
= 3.

This contradicts the fact that p > 3.
Case 2. Assume a = a3 and b = azasa,.

Subcase 2.1. Assume ¢ # 0 and j # 0. Then ¢ = agaga’;%. If £ # 0, then by
Lemma 2.28(3) {a,c) = G which contradicts the minimality of S. So we can assume
k = 0. Then ¢ = asa}y,. Thus, by Lemma 2.28(4) (b,c) = G which contradicts the
minimality of .S.

Subcase 2.2. Assume i = 0. Then j # 0. We may assume j = 1, by replacing ¢ with ¢!
if necessary. Then ¢ = asa’,.

Suppose, for the moment, that & # 1. Then ¢ = azal~y,. We have (b, ¢) = (@as, as) =
G. Consider {b, ¢} = {azasay, azal}. Since Cy centralizes Cg, then

1 —k, -1 _  FHkF2—F2—k¥

k7 _ K _ E -1 -1
[agagaq7a3aq] = [agaq,agaq] = azaqazaza, az a;"a;

979
_ aZ(k—l)(F—l)

which generates C,. Now consider {5, ¢} = {azas, az7p}. Since Cy centralizes C,, then

1_ 27 _ (1)

[a2a3a a3’YP] = [a37 0’371)] = a3a37pa§1’7p_1a§ ’Yp - ’Yp

which generates Cp,. Therefore, (b, c) = G which contradicts the minimality of S.

Now we can assume £ = 1. Then ¢ = agag7p. Consider G = Cy x C5. We have
@ = ¢ = azand b = agaz. This implies that [@| = |¢| = 3 and || = 6. We have
C = (¢,b,@?,b,a) as a Hamiltonian cycle in Cay(G; S). Since there is one occurrence of
cin C, and it is the only generator of G that contains -, then by Lemma 2.8 we conclude
that the subgroup generated by V(C') is C,.. Also,

V(C) = cba’ba
= (304 - A2a30, - a; - asazag - az  (mod Cp)
= agaqagaiag

X ox2
_ aT+2T

Q

We may assume this does not generate C,, for otherwise Factor Group Lemma 2.6 applies.
Therefore, 1 + 27 = 0 (mod ¢). This implies that 7 = —1/2 (mod ¢). By substituting
7=-1/2 (mod ¢) in

F4+¥+1=0 (mod q),

then we have 3/4 = 0 (mod ¢), which contradicts Assumption 3.1(1).
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Subcase 2.3. Assume j = 0. Then i # 0 and ¢ = aga’(ﬁp. If £ # 0, then by
Lemma 2.28(3) {a, ¢y = G which contradicts the minimality of .

So we can assume k = 0. Then ¢ = ay7y,. Consider G = Cy x C3. Then we have
@ = a3, b = azaz and ¢ = ay. This implies that [a| = 3, |b] = 6 and |[¢| = 2. We have
C = (¢,a,b, 6‘1,52) as a Hamiltonian cycle in Cay(G; S). Since there is one occurrence
of cin C, and it is the only generator of G that contains y,, then by Lemma 2.8 we conclude
that the subgroup generated by V(C') contains C,. Also,

V(C) = caba™'b?
= ay - a3 - axaza, - a3 - azazagazaza, (mod Cp,)
= a3azasag
~2
ag'r +1.

We may assume this does not generate C,, for otherwise Factor Group Lemma 2.6 applies.
Thus, 72 = —1/2 (mod q). By substituting this in

F+¥+1=0 (mod q),

we have ¥ = —1/2 (mod ¢) which contradicts 72 = —1/2 (mod q).

Case 3. Assume a = aga3 and b = azaq. Since b = agay is conjugate to ag via an
element of C,, then {a, b} is conjugate to {azaza;’, az} for some nonzero m. So Case 2
applies (after replacing a, with ag").

Case 4. Assume a = agaz and b = aza,.

Subcase 4.1. Assume i = 0. Then j # 0 and ¢ = ajafv,. If k # 0, then by
Lemma 2.28(1) {a, ¢y = G which contradicts the minimality of S.

So we can assume k = 0. We may also assume j = 1, by replacing ¢ with ¢~1 if
necessary. Then ¢ = as"y,. Consider G = Cy x Cs. Thus, @ = asas, b = as and € = as.
This implies that [@| = 6, || = 2 and |[¢| = 3. We have C = (a%,b,¢,a,¢ ') as a
Hamiltonian cycle in Cay(G; S). Since there is one occurrence of b in C, and it is the
only generator of G' that contains a4, then by Lemma 2.8 we conclude that the subgroup
generated by V(C) contains C,. Also,

V(C) = a*beac™?
= a3 ay - azy, - azas - ’y;la;l (mod C,)

= Ypazy, laz

= fy;_T
which generates C,,. Therefore, the subgroup generated by V(C) is G’. So, Factor Group
Lemma 2.6 applies.

Subcase 4.2. Assume j = 0. Then i # 0 and ¢ = aga’q“fyp. If £ # 0, then by
Lemma 2.28(1) {a, ¢) = G which contradicts the minimality of S.

So we can assume k£ = 0. Then ¢ = ayy,. Consider G = Cy x Cs, then @ = asas and
b = ¢ = ay. This implies that [a| = 6 and [b| = |¢| = 2. We have C' = ((a,b)?,@,¢) as
a Hamiltonian cycle in Cay(G; S). Since there is one occurrence of ¢ in C, and it is the
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only generator of G that contains y,, then by Lemma 2.8 we conclude that the subgroup
generated by V(C) contains C,,. Also,

V(C) = (ab)?ac
= (agag - agaq)2 ~agas - az  (mod Cp)
= 4304030403

F¥?

which generates C,. Therefore, the subgroup generated by V(C') is G'. Thus, Factor Group
Lemma 2.6 applies.

Subcase 4.3. Assume ¢ # 0 and j # 0. Then ¢ = aQag,;a’;fyp. If & # 0, then by
Lemma 2.28(1) {a, c) = G which contradicts the minimality of 5.

So we can assume k = 0. We may also assume j = 1, by replacing ¢ with ¢~1 if
necessary. Then ¢ = asaz~y,. Consider G = Cy x Cs. Thus, @ = ¢ = asas and b = as.
This implies that [@| = |[¢| = 6 and |b| = 2. We have C = (@, ¢, b, @ 2,b) as a Hamiltonian
cycle in Cay (G} S). Since there is one occurrence of ¢ in C, and it is the only generator of
G that contains y,, then by Lemma 2.8 we conclude that the subgroup generated by V(C')
contains C,. Also,

V(C) = acba™%b
= aga3 - G203 - G204 - agz ~agay (mod Cp)
= agaqagzaq
7241

which generates C,, because 7> # —1 (mod gq). Therefore, the subgroup generated by
V(C) is G'. So, Factor Group Lemma 2.6 applies.

Case 5. Assume a = agagz and b = asagagy. If k # 0, then by Lemma 2.28(1) {a,c¢) = G
which contradicts the minimality of S. So we can assume k = 0. Also, if j # 0, then by
Lemma 2.28(4) {b, ¢) = G which contradicts the minimality of S. So we may also assume
j = 0. Then i # 0. Therefore, c = a>7,. So Case 4 applies, after interchanging b and c,
and interchanging p and gq. O

3.6 Assume |S|=3,G' =C, x Cqand C (C2) # {e}

In this subsection, we prove the part of Theorem 1.3 where, |S| = 3, G’ = C, x C,,
Cqr(Cq) # {e}, and neither Cr (C2) = Cp, x Cy nor Cv(C3) # {e} nor S is minimal holds.
Recall G = G/G', G = G/C, and G = G/C,,.

Proposition 3.7. Assume
* G =(CyxCs) x (Cp xCy),
* 5] =3,
* Cg/(C2) # {e}.
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Then Cay(G; S) contains a Hamiltonian cycle.

Proof. Let S = {a,b,c}. If Cc/(C3) # {e}, then Proposition 3.4 applies. Therefore, we
may assume Cq (C3) = {e}. Now if Cq/ (C2) = C, x Cq, then Proposition 3.6 applies.
Since Cr(C2) # {e}, then we may assume C¢r(Cay) = Cg4, by interchanging ¢ and p if
necessary. This implies that Cy inverts C,. Now if S is minimal, then Proposition 3.5
applies. So we may assume S is not minimal. Consider

G =GJCy = (Ca x C3) X Cy.

Choose a 2-element subset {a, b} in S that generates G. From the minimality of .S, we see
that

<a,b> = (CQ X Cg) X Cq

after replacing a and b by conjugates. We may assume |@| > |b| and (by conjugating if
necessary) a is an element of C5 x C3. Then the projection of (a, b) to Ca x C3 has one of
the following forms after replacing a and b with their inverses if necessary.

* (azas, azas),

(
* (azaz,az),
* (aza3,a3),
* (as,a9).

So there are four possibilities for (a, b):

1. (azas,azasay),

3

-

2. (azas, azay),
. (agas, asay),
-

4. (a3, a2aq).

Let ¢ be the third element of .S. We may write ¢ = aéaga’;% with)<:<1,0<5<2
and 0 < k < ¢ — 1. Note since S n G’ = &, we know that ¢ and j cannot both be equal
to 0. Additionally, we have azvy,a;" = 7; where 73 = 1 (mod p) and 7 # 1 (mod p).
Thus 72 + 7 + 1 = 0 (mod p). Note that this implies 7 % —1 (mod p). Also we have
agaqagl = ag. By using the same argument we can conclude that 7 # 1 (mod ¢) and
72+%4+1=0 (mod q). Note that this implies ¥  —1 (mod q). Therefore, we conclude

that 72 # +1 (mod p), and 72 # +1 (mod q).

Case 1. Assume a = agag and b = asagagy. If k # 0, then by Lemma 2.28(1), (a,c) = G
which contradicts the minimality of S. So we can assume k£ = 0. Now if j # 0, then
by Lemma 2.28(4), (b, ¢y = G which contradicts the minimality of S. Therefore, we may
assume j = 0. Then 7 # 0 and ¢ = az7,. Consider G = Cy x C3. Thus @ = b = asas
and ¢ = ay. Therefore, [@| = |b| = 6 and || = 2. We have C = (a,b,¢,a 2,¢) as
a Hamiltonian cycle in Cay(G; S). Since there is one occurrence of b in C, and it is the
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only generator of G that contains a4, then by Lemma 2.8 we conclude that the subgroup
generated by V(C) contains C,. Also,

V(C) = abca™%c
= ag2a3 - aza3 - a27p * a3_2 ca2%p (mod Cq)
= a3y, gy

~2
—T7°4+1
Ip

which generates Cp,. Therefore, the subgroup generated by V(C) is G’. So, Factor Group
Lemma 2.6 applies.

Case 2. Assume a = agaz and b = asay.

Subcase 2.1. Assume ¢ = 0. Then j # 0 and ¢ = aéa(’;"yp. If & # 0, then by
Lemma 2.28(1), {a, c) = G which contradicts the minimality of S.

So we can assume k = 0. We may also assume j = 1, by replacing ¢ with ¢~ 1 if
necessary. Then ¢ = as"y,. Consider G = Cy x C5. Thus, @ = asas, b = as and ¢ = as.
Therefore, |@| = 6, |b| = 2 and |¢| = 3. We have C = (a%,b,¢,@,¢ ') as a Hamiltonian
cycle in Cay(G; S). Since there is one occurrence of b in C, and it is the only generator of
G that contains a4, then by Lemma 2.8 we conclude that the subgroup generated by V(C')
contains C,. Also,

V(C) = a*beac
=a3-ay- asyp - a2as - vljlag_l (mod Cy)

-1 -1 -1
:71) agf}/p a3

17

which generates C,,. Therefore, the subgroup generated by V(C) is G’. So, Factor Group
Lemma 2.6 applies.

Subcase 2.2. Assume j = 0. Then i # 0 and ¢ = aza’;'yp. If & # 0, then by
Lemma 2.28(1), (a, ¢y = G which contradicts the minimality of S.

So we can assume £ = 0. Then ¢ = ayy,. Consider G = Cy x C3, then @ = agas
and b = ¢ = ay. We have C' = ((@,b)?,a,¢) as a Hamiltonian cycle in Cay(G; S). Since
there is one occurrence of c in C, and it is the only generator of G that contains -y, then
by Lemma 2.8 we conclude that the subgroup generated by V(C') contains C,. Now we
calculate its voltage. Also,

V(C) = (ab)*ac
= (agas - agaq)2 agas - az (mod Cp)
= a3aqa3a040a3
F4¥2

which generates C,. Therefore, the subgroup generated by V(C') generates G’. So, Factor
Group Lemma 2.6 applies.
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Subcase 2.3. Assume ¢ # O and j # 0. If & # 0, then ¢ = agaéa’q“'yp. Thus, by
Lemma 2.28(1), {a, ¢y = G which contradicts the minimality of S.

So we can assume k = 0. We may also assume j = 1, by replacing ¢ with ¢~1 if
necessary. Then ¢ = asaszy,. Consider G = Cy x C3. Thus, @ = ¢ = asas and b = ao.
Therefore, [a| = |¢| = 6 and |b| = 2. We have C = (@, ¢,b,a 2,b) as a Hamiltonian cycle
in Cay(G; S). Since there is one occurrence of ¢ in C, and it is the only generator of G
that contains -, then by Lemma 2.8 we conclude that the subgroup generated by V(C)
contains C,. Also,

V(C) = acba™%b
= (2a3 - A2a3 - A20g a§2 ~agaq (mod Cp)
= agaqa?jZaq

7241

Since 72 # —1 (mod q), Factor Group Lemma 2.6 applies.
Case 3. Assume a = azas and b = aza,.

Subcase 3.1. Assume ¢ # O and j # 0. If £ = 0, then ¢ = agagfyp. Thus, by
Lemma 2.28(2), ¢b,c) = G which contradicts the minimality of S. So we can assume
k # 0. Then c = agaga’;fyp. Thus, by Lemma 2.28(1), {a, ¢y = G which contradicts the
minimality of S.

Subcase 3.2. Assume ¢ = 0. Then 5 # 0 and ¢ = aéa’;yp. If £ # 0, then by
Lemma 2.28(1), {a, ¢y = G which contradicts the minimality of S.

So we can assume k = 0. We may also assume j = 1, by replacing ¢ with ¢~1 if
necessary. Then ¢ = agy,. Consider G =Cy x Cs,thena a = asas, b = € = as. Therefore,

|a| = 6 and |b| = |¢| = 3. We have C = (G, b,a, b2 ~1) as a Hamiltonian cycle in
Cay(G; S). Since there is one occurrence of ¢ in C, and it is the only generator of G
that contains -, then by Lemma 2.8 we conclude that the subgroup generated by V(C)
contains C,. Also,

V(C) = chab™>

-1 -1 -1 -1 -1
= a3 - azaq - a2a3 - a, Yag a, Yaz' - aztaz  (mod Cp)
= agaqagaq_lagla(;lagz

F2o1—5"1

which generates C,. Therefore, the subgroup generated by V(C) is G’. So, Factor Group
Lemma 2.6 applies.

Subcase 3.3. Assume j = 0. Then i # 0 and ¢ = aga’;’yp. If £ # 0, then by
Lemma 2.28(1), {a, ¢y = G which contradicts the minimality of S.
So we can assume k£ = 0. Then ¢ = as7,. Consider G = Cy x C3, then @ = asas, b=
—1

az and ¢ = ay. Therefore, |a| = 6, |b| = 3 and |¢| = 2. We have C' = (a,¢,b,a,b ,a)
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as a Hamiltonian cycle in Cay(G; S). Since there is one occurrence of ¢ in C, and it is the
only generator of G that contains ,, then by Lemma 2.8 we conclude that the subgroup
generated by V(C) contains C,,. Also,

V(C) = acbab™'a
= agag - Az - A30q - 4203 - aq_lagl ~agaz (mod Cp)
= a%aqagagl

721
q

Since 72 # 1 (mod ¢), Factor Group Lemma 2.6 applies.
Case 4. Assume a = a3 and b = aqay,.

Subcase 4.1. Assume ¢ = 0. Then j # O and ¢ = aéalgwp. Thus, the argument in
Subcase 1.1 of Proposition 3.6 applies.

Subcase 4.2. Assume j = 0. Then ¢ # 0 and ¢
Subcase 1.2 of Proposition 3.6 applies.

azal~y,. Thus, the argument in

Subcase 4.3. Assume ¢ # 0 and j # 0. Then ¢ = CLQG%G’;’YP. If £ # 0, then by
Lemma 2.28(3) {a, ¢y = G which contradicts the minimality of S.

So we can assume k = 0. We may also assume j = 1, by replacing ¢ with ¢! if
necessary. Then ¢ = asazy,. Consider G = Cz x C3. Then we have @ = a3, b = as and
¢ = agas. This implies that |[@| = 3, |b| = 2 and |¢| = 6. We have C' = (¢, b,a,¢,a ',¢)
as a Hamiltonian cycle in Cay(G; S). Since there is one occurrence of b in C, and it is the
only generator of GG that contains a4, then by Lemma 2.8 we conclude that the subgroup
generated by V(C) contains C,. Also, since a inverts C,

V(C) = cbaca™'c

— -1
= Q20a37%p - A2 - a3 * A2G37p * A3 * A2A37p (Il’lOd Cq)

which generates C,,. Therefore, the subgroup generated by V(C) is G’. So, Factor Group
Lemma 2.6 applies. O

3.7 Assume |S|=3,G' =C, x Cqgand Ce (C2) = {e}
In this subsection, we prove the part of Theorem 1.3 where, |S| = 3, G’ = C, x C4,

Ce (C3) = {e}, and neither C¢(C3) # {e} nor S is minimal holds. Recall G = G/G,
G =G/Cyand G = G/C,,.

Proposition 3.8. Assume
* G=(CaxC3) x (Cp xCy),
o 1S =3,
* Cg/(C2) = {e}.
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Then Cay(G; S) contains a Hamiltonian cycle.

Proof. Let S = {a,b,c}. If Ce/(Cs) # {e}, then Proposition 3.4 applies. So we may

A

assume C¢(C3) = {e}. Now if S is minimal, then Proposition 3.5 applies. So we may
assume S is not minimal. Consider

G =G/JC, = (Ca x C3) X Cy.
Choose a 2-element subset {a, b} in .S that generates G. From the minimality of .S, we see
(a,b) = (C2 x C3) x Cq.

after replacing a and b by conjugates. We may assume |a| > |b| and (by conjugating if
necessary) a is in Ca x Cs. Then the projection of (a, b) to C2 x Cs is one of the following
forms after replacing a and b with their inverses if necessary.

* (aza3,azaz),
* (aza3,a2),

* (aza3,as3),

* (as,a9).

There are four possibilities for (a, b):

—

. (agas, azasay),
2. (azas, azay),
3. (agas,asaq),
4. (a3, azaq).

Let ¢ be the third element of S. We may write ¢ = a%aéa’;fyp with0 <:<1,0<5<2
and 0 < k < g — 1. Note since S n G' = ¢, we know that 7 and j cannot both be
equal to 0. Additionally, we have azy,a;' = 'y; where 73 = 1 (mod p) and 7 # 1
(mod p). Thus 72 + 7 + 1 = 0 (mod p). Note that this implies 7 # —1 (mod p). We
have asaqas - a; By using the same argument we can conclude that 7 # 1 (mod q)
and 72+ 7 +1 = 0 (mod ¢). Note that this implies ¥ # —1 (mod q). Therefore, we
conclude that 72 # +1 (mod p), and 72 # +1 (mod q).

Case 1. Assume a = asas and b = asagaq. If k # 0, then by Lemma 2.28(1) {a,¢) = G
which contradicts the minimality of S. So we can assume k£ = 0. Now if j # 0, then
by Lemma 2.28(4), {b, ¢y = G which contradicts the minimality of S. Therefore, we may
assume j = 0. Theni # 0 and ¢ = as7y,. We have (b,¢) = (@aa3,a2) = G. Consider
(6,8} = {azas, as7yp}. Therefore,

[azas, aﬂp] = a2a3027pa3_1¢12’7,71a2 = aB’Vpais_l’Vp = W’;Ho

which generates C,,. Now consider {g, ¢} = {asaszay, as}, then

-1 -1 —2 1 —27
l[azazay, az] = asazaqaza, a3 azas = aza, “az” = a,

which generates C,,. Therefore, (b, ¢) = G which contradicts the minimality of .S.
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Case 2. Assume a = agag and b = asa,. If k # 0, then by Lemma 2.28(1), {a,c) = G
which contradicts the minimality of S. So we can assume k = 0.

Subcase 2.1. Assume j # 0. We may also assume j = 1, by replacing ¢ with ¢! if
necessary. Then ¢ = abas?y,. We have (b,¢) = (as,a4asy = G. Consider {b,¢} =
{asaq, abas}. We have
% i -1 -1 -1 _i+1 -1 _i+1
[acaq, abas] = azaqabasa; tazas ' ab = a; 'ay aza;  az ' al
1

— F1, -1 _
=a, aza; a3 =a

—1F7
q

which generates C,. Now consider {6, = {as, abasy,}. We have

i+1 —1 _i+1 +27
[ag,aQagfyp] —agaQagfypagvp a3 a2 = a; ag'ypa3 ay =,

which generates C,,. Therefore, (b, ¢) = G which contradicts the minimality of S.

Subcase 2.2. Assume j = 0. Theni # 0 and ¢ = ag7y,. Consider G = Cy x Cs, then
@ = azazand b = ¢ = as. = 6 and |b| = |¢| = 2. We have C = ((@,b)?,a,?)
as a Hamiltonian cycle in Cay(G S). Since there is one occurrence of ¢ in C, and it is the
only generator of GG that contains ,, then by Lemma 2.8 we conclude that the subgroup
generated by V(C) contains C,,. Also,

(ab)? (ac)

= a0a3 - A2Aq - G243 - G2aq - G2a3 - a2 (mod Cp)

v(C)

= a30q030403
~ x2

_ S, TFT

g

which generates C,. Therefore, the subgroup generated by V(C) is G’. So, Factor Group
Lemma 2.6 applies.

Case 3. Assume a = agag and b = aza,. If k # 0, then by Lemma 2.28(1), {a,c) = G
which contradicts the minimality of S. So we can assume k& = 0.

Subcase 3.1. Assume ¢ # 0 and 5 # 0. Then ¢ = aza?)ﬁp. Thus, by Lemma 2.28(2),
(b, ¢y = G which contradicts the minimality of .S.

Subcase 3.2. Assume j = 0. Theni # 0 and ¢ = asy,. We have (b,¢) = (a3, a2) = G
Consider {b, ¢} = {as3, as7,}. Then we have

—1_-1 -1 -1 —7+1
[as,aﬂp] = a302%pa3 Y, A2 = a3, A3 Vp = Vp

which generates C,,. Now consider {b,¢} = {asag, az}. Thus,

—1,—1 2 —1 2%
lazay, az] = azagaza, a3 ax = azajazy” = ag

which generates C,,. Therefore, (b, c) = G which contradicts the minimality of .S.
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Subcase 3.3. Assume ¢ = 0. Then ;7 # 0. We may also assume j = 1, by replacing ¢
with ¢! if necessary. Then ¢ = a37,. Consider G = Cy x Cs, then we have @ = asas,
b =7¢ = as. Thus, |al = 6 and |b| = |[¢| = 3. We have C = @bab ,a ) asa
Hamiltonian cycle in Cay(G; S). Since there is one occurrence of ¢ in C, and it is the
only generator of G that contains y,, then by Lemma 2.8 we conclude that the subgroup
generated by V(C') contains C,. Also,

V(C) = cbab™2a?

= a3 - azlq - a203 - a;lagla(;lagl -az'az (mod Cp)

2 -1 —2
= a3a4A30405 QA5
Frp147t

~2 ~2
T+ 1—-7
= aq

which generates C,. Therefore, the subgroup generated by V(C) is G’. So, Factor Group
Lemma 2.6 applies.

Case 4. Assume a = a3 and b = aqay,.

Subcase 4.1. Assume ¢ = 0. Then j # 0. We may also assume j = 1, by replacing ¢ with
¢! if necessary. Then ¢ = agali~y,. Consider G = Cy x C3. Then we have @ = ¢ = as
and b = ay. This implies that [@| = |¢| = 3 and |b| = 2. We have C' = (¢ 2,b,a%,b) as a
Hamiltonian cycle in Cay(G;.S). Now we calculate its voltage.

V(C) = ¢ %ba®b

—a-1o—1 -1 1 2
=1, a3z v, a3 -az-az-az (mod C,)
-1 -1 -1
_’Yp as 7;0 as
—1-7"1
P

which generates C,,. Also

V(C) = ¢ %ba®b
_ o~k —1 —k —1 2
=a,"az a; a3 -asaq-az-aza, (mod Cp)
—k, —1 —k —1_ —1 2

=a,"az a;"az a; aza,
v—1_x—2
_ afkrfk:T -7 +1.
q
If k = 2, then
g gx—1_x—2 o _ox—1_x-2 _x—1 2
aqk kT T +1:aq2 27 T +1:aq(7- +1)

which generates C4. So we may assume k # 2 and the subgroup generated by V(C') does
not contain Cy, for otherwise Factor Group Lemma 2.6 applies. Therefore,

=—k—ki'=F?+1 (modq)
=(1—k) —kF =772
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Multiplying by 72, we have
0=(1—k)7 —ki¥—1 (mod q). (4.1A)

We can replace 7 with ¥~! in the above equation, by replacing as,a and c with their
inverses.

0=(1—-k)7F 2k '—1 (modgq).
Multiplying by 72, then
0=(1—k)—ki—7 (mod q).
By subtracting 4.1A from the above equation, we have
0=(k—27+(2—k) (mod q).

This implies that 72 = 1 (mod g¢), a contradiction.

Subcase 4.2. Assume j = 0. Then¢ # 0. If £ # 0, then ¢ = aza’;'yp. Thus, by
Lemma 2.28(3), {a,c) = G which contradicts the minimality of S. So we can assume
k = 0. Then c = ag,. Consider G = Cy x Cs,then@ = a3 and b = ¢ = ay. We have
C = (@?,b,a 2,¢) as a Hamiltonian cycle in Cay(G;.S). Since there is one occurrence of
cin C, and it is the only generator of G that contains -, then by Lemma 2.8 we conclude
that the subgroup generated by V(C) contains C,,. Similarly, since there is one occurrence
of bin C, and it is the only generator of GG that contains a4, then by Lemma 2.8 we conclude
that the subgroup generated by V(C') contains C,. Therefore, the subgroup generated by
V(C) is G'. So, Factor Group Lemma 2.6 applies.

Subcase 4.3. Assume ¢ # O and j # 0. If £ # 0, then ¢ = agaga’;%. Thus, by
Lemma 2.28(3), {a,c¢) = G which contradicts the minimality of S. So we can assume
k = 0. We may also assume j = 1, by replacing ¢ with ¢! if necessary. Then ¢ = asaz”,.
We have (b, ¢) = (@y,azazy = G. Consider {g, ¢} = {azay, azas}. Then we have

-1 -1 -1 -1 -1 —1-%
[asaq, azas] = aza4a2a3a, a2a3 az = a, asa; az = a,

which generates C,. Now consider {6, = {as, asasyp}. Then
[az, azasy,] = a2a2a37pa2’}’p_1a§1a2 = awﬁagl = ’Yz?
which generates C,,. Therefore, (b, ¢c) = G which contradicts the minimality of S. O
3.8 Assume|S|=3and G' = C3 x Cp,
In this subsection, we prove the part of Theorem 1.3 where, |S| = 3and G' = C3 x C,,.
Recall G = G/G', G = G/Cpand G = G/Cs.
Proposition 3.9. Assume

* G=(CaxCy) x (Cg xCp),
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* |S] =3
Then Cay(G; S) contains a Hamiltonian cycle.

Proof. Let S = {a,b,c}. Since C, centralizes C3 and Z(G) n G’ = {e} (by Proposi-
tion 2.15(2)), then Cy inverts C3. Now if .S is minimal, then Lemma 2.24 applies. So we
may assume S is not minimal. Consider

G =GJCy = (Cy x Cy) % Cs.
Choose a 2-element subset {a, b} in .S that generates G. From the minimality of S we see
<a,b> = (Cz X Cq) X Cg.

after replacing a and b with conjugates. Then the projection of (a, b) to Ca x C, has one of
the following forms:

* (azaq,azay’), where 1 <m < q—1,
* (azaq, a2),

* (azaq,ay’), where 1 <m < q—1,
* (a2, aq).

Thus, there are four different possibilities for (a, b) after assuming, without loss of gener-
ality, that a € Cy x Cy:

L. (azaq, azayas),
2. (azaq, azas),
3. (azaq,ag'as),
4. (a2, aqas).
Let ¢ be the third element of .S. We may write ¢ = azaj aky, with0 <i<1,0<j <g—1

and 0 < k£ < 2. Since C, centralizes C3, we may assume C, does not centrallze Cp, for
otherwise Lemma 2.26 applies. Now we have a(ﬂpaq_1 =, where 779 =1 (mod p). We
also have 7 # 1 (mod p). Since 77 = 1 (mod p), this implies

74272 1.4 1=0 (mod p).

Note that this implies 7 2 —1 (mod p).

Case 1. Assume a = aga, and b = aga’az. If k # 0, then by Lemma 2.29(1) {a,c) = G
which contradicts the minimality of S. So we can assume & = 0. Now if i # 0, then
by Lemma 2.29(3) (b, ¢) = G which contradicts the minimality of .S. Therefore, we may
assume i = 0. Then j # 0 and ¢ = a}y,.

Consider G = Cy x Cq. Then we have @ = asag, b= agaq and ¢ = aJ We may
assume m is odd by replacmg b with b=! (and m with ¢ — m) if necessary. Note that this

implies b = @™. Also, we have |a| = |b| = 2¢ and |¢| = q.
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Subcase 1.1. Assume m = 1. Then @ = b. We have
C =@ b e g

as a Hamiltonian cycle in Cay(G; S). Since there is one occurrence of b in C, and it is the
only generator of G that contains ag, then by Lemma 2.8 we conclude that the subgroup
generated by V(C') contains C3. Now by considering the fact that C; might centralize C,, or
not we have

V(C) = I pe= (07D g1
= (atjﬂp)q_l " G20q - (azﬂp)_(q_l) : aq_lag (mod C3)

234225 ... 2(a—1)j _ _1Yi (542274, 4 2(@=1)j _
,YT +7 4T a((]q 1)j q l)j,y (FT+79 47 )CL 1

= j —(

p agaqaq p q as
_ 7A_j(1+;j+‘,,+7c(<172)j) 1;j(1+§_‘j+,‘,+;(q72)j) -1
= AqVp Qg -

Now if 77 % 1 (mod p), then

_ AT (272 FAA+7T 4o 7@mDdy
V(C) =, ( )aqyp ( )aq

)T ()T (#) T/ (F -)
p

L PR DFF () )/ 1)
p

- %()147')(1;?)/(941)

— ,Ypf(li?).

We may assume this does not generate C,,, for otherwise Factor Group Lemma 2.6 applies.
Therefore, 77 = 1 (mod p) or 7 = 41 (mod p). The second case is impossible. So we
must have 77 = 1 (mod p). We also know that 7¢ = 1 (mod p). So 7¢ = 1 (mod p),
where d = ged(j,q). Since 1 < j < ¢ — 1, then d = 1, which contradicts the fact that
71 (mod p).

Subcase 1.2. Assume m # 1 and j = 2. Then ¢ = aﬁ'yp. We have

C = (57 Ef(mfl)/27a’ E(mfl)/2762q7m71)

as a Hamiltonian cycle in Cay(G; S). Since there is one occurrence of b in C, and it is the
only generator of GG that contains a3, then by Lemma 2.8 we conclude that the subgroup
generated by V(C) contains C3. Considering the fact that C, might centralize C,, or not we
have

V(C) _ bc—(m—l)/2ac(m—1)/2a2q—m—1

m —(m—-1)/2 aay - (agvp)(m—l)/Q . agq—m—l (mod Cs)

= azay" - (agfyp)
= aza;n(’Yf+(?2)2+"'+(?2)(m71)/2aflmfl))flazaq

_ (ﬁu(ﬁ)z+~-+(?2)<"'H>/2agm—l))a;m—l
= aw?a;m17;*2<1+?2+"'+<?2>(”_3”2)azaqyf<1+?2+-"+<*2>(’"—3”2>a;2

. i7A_2(1_,'_;_2_i_“._,'_;_2)(1"73)/2 ?2(1+?2+.'.+?2)(7n73)/2 _9
= aq*yp aqvp aq
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PN/ T D/

23 (~m—1 ~\ (a2
’Yp( —D(F14+7)/(77-1)

We may assume this does not generate C,, for otherwise Factor Group Lemma 2.6 applies.
Therefore, 7"~ = 1 (mod p). We also know that 7¢ = 1 (mod p). So7¢ =1 (mod p),
where d = ged(m — 1,q). Since 2 < m < g — 1, then d = 1, which contradicts the fact
that 7 £ 1 (mod p).

Subcase 1.3. Assume m # 1 and j # 2. We may also assume j is an even number, by
replacing ¢ with its inverse and j with ¢ — j if necessary. This implies that ¢ = @’. We have
C=@0eac b Lamtea U9 ¢ g2 mi—?)

as a Hamiltonian cycle in Cay(G; S). Now we calculate its voltage.

V(C) = beac b~ tam 2ca= U3 g0 m—i72
_ -1 m—2  —(=3) _2q—-m—j—2
=asa3-az-az az-ay’ C - a, -ay (mod C4 x Cp)

= agagagag_l

-2
= ag

which generates C3. Also considering the fact that C; might centralize C,, or not we have

V(C) = beac b~ ta™ 2eca= U3 g0~ m—i72
_ m _j . ~—1l =3 . —m
= GoGg - GyYp - A20q - Yy Qg7 -Gy G2

m—2 j —J+3 J 2g—m—j—2

q . 7p~a ag - alyp - aza; (mod C3)

_ m+] 3 +1 —m—j—2

- 7p a‘ﬂp a ’YP Tp @

+7_m+] ’\77L+J+1+7_77L+J 1+’\71L+J+2

P

FrHIT (L322 15 41)
Yp .

a0

So we may assume this does not generate Cp,, for otherwise Factor Group Lemma 2.6
applies. Then we have

0=47—-724+74+1 (mod p).
Let t = 7 if Cy centralizes C, and t = —7 if Cy inverts C,,. Then
0=t3—t*+t+1 (mod p). (1.3A)

We can replace ¢ with ¢! in the above equation after replacing {a, b, ¢} with their inverses,
then

0=t —t2+t 1 +1 (mod p).
Multiplying by 3, we have

0=1—t+t*+¢ (mod p)
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=P+ —t+1.
By subtracting 1.3A from the above equation, we have

0=2t>—-2t (mod p)
—2(t—1)

This implies that t = 1 (mod p) which contradicts the fact that 7 # +1 (mod p).

Case 2. Assume a = agzaq and b = agag. If k # 0, then by Lemma 2.29(1) {a,¢c) = G
which contradicts the minimality of S. So we can assume k£ = 0.

Subcase 2.1. Assume ¢ = 0. Then 5 # 0 and ¢ = aéyp. We may assume j is an odd
number, by replacing ¢ with its inverse and j with ¢ — j if necessary. Consider G' = Ca x C,,.
Then we have @ = azaq, b = az and € = aj. Also, we have [a| = 2¢, [b| = 2 and |¢] = ¢.
Now if j # 1, then we have

C=(cat,ba’be a3 ba e pat™7?)
as a Hamiltonian cycle in Cay(G; S). Now we calculate the voltage of C.

V(C) = ca™"ba®be ' a? ~3ba 4V pa a2

(g—4)

i—3 - —j-2
= ay - asas - a3 - asaz - a > - azaz - a, -agaz - a3’ (mod C, x Cp)

= 4302030203020203

= a3

which generates Cs. By considering the fact that Co might centralize C,, or not, we have

V(CO) = ca " ba2be Yo 3bha—(4=H paa—i—2

=al~ caYas - ao - a?
=a}yp-a, az-az-a

cae -~ Yg=d . g3 . g, . —qt+4 . q4—T2
2 27, a) - a as - asa asz - aj (mod Cs)

q q
= ajypagy, ag’ T

’Y;A_ji.?j-%—l

— ,YZj(li‘?)

which generates C,,. Therefore, the subgroup generated by V(C') is G’. Thus, Factor Group
Lemma 2.6 applies.
So we may assume j = 1, then ¢ = a4, and ¢ = a,. We have

C1 = ((b,e)" ", b,a)
as a Hamiltonian cycle in Cay(G; S). Now we calculate its voltage.

V(C1) = (be)? ba

= (aza3)" ' - asaz -az (mod C, x C,)
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which generates Cs. If Cy centralizes C,, then

V(C1) = (be)? 1 ba
= (as - aqvp)q_l -ag - aza, (mod Cy)
= (aq'yp)q_laq
- 7;+?2+--~+?q—1
=1,
which generates C,. So in this case, the subgroup generated by V(C1) is G’. Thus, Factor
Group Lemma 2.6 applies.
Now if Cy inverts C,,, then
V(Cy) = (be)? tba
= (az - agyp)? " - ag - asa, (mod Cs3)

B e LN
. :

Since 7 #£ —1 (mod p), then

_F4F? 7972 501
V(C1) =p * *

_ ,yz(jq“)/(?ﬂ)q_
We may assume this does not generate C,,, for otherwise Factor Group Lemma 2.6 applies.
Therefore, since 7¢ = 1 (mod p), then

0=(7T1+1)/(T+1)—1 (mod p)
=2/(T+1)—1.

This implies that 7 = 1 (mod p), which is impossible.

Subcase 2.2. Assume j = 0. Then i # 0 and ¢ = ay,. Consider G = Cy x C,. Then we
have @ = asaq and b = € = ao. This implies that |G| = 2¢ and |b| = |¢| = 2. We have

C = (Gar ", ba D)

as a Hamiltonian cycle in Cay (G} S). Since there is one occurrence of b in C, and it is the
only generator of G that contains a3, then by Lemma 2.8 we conclude that the subgroup
generated by V(C') contains C3. Similarly, since there is one occurrence of ¢ in C, and
it is the only generator of G that contains ,, then by Lemma 2.8 we conclude that the
subgroup generated by V(C) contains C,,. Therefore, the subgroup generated by V(C') is
G’. So, Factor Group Lemma 2.6 applies.

Subcase 2.3. Assume i # 0 and j # 0. Then ¢ = azal~,. Consider G = Cy x C,. Then

we have @ = azaq, b = ag and € = aga?. This implies that [a| = [¢] = 2q and [b] = 2. We

may assume j is even by replacing ¢ with its inverse and j with ¢ — j if necessary.
Suppose, for the moment, that j = ¢ — 1, then c = agaq’lyp and ¢ = @ . We have

Cy = (b, (@' b))
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as a Hamiltonian cycle in Cay(G; S). Since there is one occurrence of ¢ in C, and it is the
only generator of G that contains ,, then by Lemma 2.8 we conclude that the subgroup
generated by V(C) contains C,. Also,

V(Cy) = eb(a™ )71

= ay - azaz - (az - azaz)”'  (mod C, x Cp)
— ad
which generates Cs. Therefore, the subgroup generated by V(C ) contains G’. Thus, Factor
Group Lemma 2.6 applies.
So we may assume j # g — 1. Then we have

Cy = (e,a? =1 b,a 1+ (@' b)7)

and

Cy = (c,a®772,b,a "2 (a1, b)Y~ a % b,a)
as Hamiltonian cycles in Cay(G; S). Since there is one occurrence of ¢ in Cy, and it is the

only generator of G that contains 7y, then by Lemma 2.8 we conclude that the subgroup
generated by V(C) contains C,. Also,

V(Cy) = ca? I ba= 1 (a7 D)7
=ay-ay 7" asaz-a; 7T @) (mod C, x Cp)
ot

We may assume this does not generate Cs, for otherwise Factor Group Lemma 2.6 applies.
Then j = —1 (mod 3).

Since there is one occurrence of ¢ in Cs, and it is the only generator of GG that contains
~p» then by Lemma 2.8 we conclude that the subgroup generated by V(C'3) contains C,.
Also,

V(C3) = ca®™ I 2ba= 2 (a7 10) " a2ba
—j—2 —qtj+2 -1
=ay-ad 7% agaz-a; T a7t ca5? - agaz - az  (mod Cqy % Cp)

= agagagag_lagagag
= aé_?’
= ag,
Since j = —1 (mod 3), this generates Cs. So, Factor Group Lemma 2.6 applies.

Case 3. Assume a = aza, and b = aj'as. If k # 0, then by Lemma 2.29(1) {a,c) = G
which contradicts the minimality of S. So we can assume & = 0. Now if ¢ # 0, then
by Lemma 2.29(3) (b, ¢) = G which contradicts the minimality of S. Therefore, we may
assume ¢ = 0. Then j # O and ¢ = aéyp. Consider G = Cy x Cq. Then we have @ = agay,
b=ay and = aj.

Suppose, for the moment, that m = j. Then b = ¢. We have

Cy = (6‘1,5_(‘1_2),6‘1,5‘1_1,&)
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as a Hamiltonian cycle in Cay(G; S). Since there is one occurrence of ¢ in C1, and it is the
only generator of GG that contains +,, then by Lemma 2.8 we conclude that the subgroup
generated by V(C1) contains C,,. Also,

V(Cy) = ¢ b a2 a1

=a;9? 430l ay  (mod C, x Cp)

which generates C3, because gcd(2¢,3) = 1. So, the subgroup generated by V(C}) is G'.
Therefore, Factor Group Lemma 2.6 applies.

So we may assume m # j. We may also assume m and j are even, by replacing {b, ¢}
with their inverses, m with ¢ — m, and j with ¢ — j if necessary. Now suppose, for the
moment, j = 2. Then we have ¢ = a27,. We also have

Cy = (b,e (m=2/2 g1 gm/? g2a—m=1y

as a Hamiltonian cycle in Cay (G} S). Since there is one occurrence of b in Cy, and it is the
only generator of G that contains a3, then by Lemma 2.8 we conclude that the subgroup
generated by V(C') contains C3. Now by considering the fact that C, might centralize C,,
or not, we have

V(Cyp) = be=(m=2/2g=1cm/2420-m—1
=’ (a) "2 0 e )
— (D GO m2)
. (722+($2)2+...+($2)m/2a21
= agla;(mﬂ),ypf#(1+$2+...+(?2)(m_4)/2)

-1 J_r?2(1+?2+~~~+(?2)<"‘*2>/2)ama—m—1
q 7q :

m/2 2qg—m—1 2g—m—1
2.4 ag? (mod Cs)

)—laq—la2

—m—1

)agaq

“Gq Tp
Since 72 — 1 # 0 (mod p), then

_22(pm—2_ 22 _ 22(pm_ 22 _
V(Co) = a2y, ™ D/FD) g 72 G =D/ 1) g 1

B e DV Co s DE= ] G D Vo)
= ,yp

A3 /41—~ 7?711,—17 ?27
= AF7)( F/GE7-1)

We may assume this does not generate C,,, for otherwise Factor Group Lemma 2.6 applies.
Therefore, 7 = +1 (mod p) or 77! = +1 (mod p). The first case is impossible. So
we may assume 7' = +1 (mod p). Thus, 72("~1 = 1 (mod p). We also know that
77 = 1 (mod p). So we have 7¢ = 1 (mod p), where d = ged(2(m — 1),q). Since
ged(2,9) = 1and 2 < m < ¢ — 1, then d = 1, which contradicts the fact that 7 = 1
(mod p).

So we may assume j # 2. We have

T == =—1 771 —m—2 = ——(j—3) = —2¢—m—j—2
C3 = (b,¢,a,¢ ,b ,a" % ¢,a G=3) ¢ q% 7=



50 Art Discrete Appl. Math. 5 (2022) #P1.10

as a Hamiltonian cycle in Cay(G; S). Now we calculate its voltage.

V(C5) = beac b a™ 2cq " U3) gq2a—m—i—2

- —j+3  2q—m—j—2
=az-az-az'-af " ay?tt eyt (mod C, x Cp)

= a3
which generates C3. Also, by considering the fact that C, might centralize C,, or not, we
have

V(C?)) = bCCLC_lb_la,m_Qca_(j—3)ca2q—m_j_2

— M A APV S m—2_m—2
=04 @ ’Yp a204 ’Yp Qq CLq * Qo Qg

+3 2q m—j—2 2 m—j—2
aiy - 0y a 20-m=1=2(mod Cy)
= Wpazaqvp Lay P ypadagypa; ™2

m+] 2 +1 3 —m—j—2
’Vpaqup a ’Vp q,YP

771+7+7_m+]+1+’\m+1 1y pm+j+2
p
RGeS §)
» .

‘We may assume this does not generate C,,, for otherwise Factor Group Lemma 2.6 applies.
Therefore,

If Cy centralizes Cp,, then
0=7-724+7+1 (modp). (3A)

We can replace 7 with 77! in the above equation after replacing {a, b, c} with their inverses
in the Hamiltonian cycle, then

=73 7724771

+1 (mod p).
Multiplying by 72, we have

0=1-7+72+7% (mod p)
=472 74l

Subtracting 3A from the above equation we have

0=272—-27 (mod p)
=27(7 - 1)

which is impossible, because 7 #£ 1 (mod p).
Now if Cs inverts C,, then

0= +724+7—-1 (mod p). (3B)
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We can replace 7 with 71 in the above equation after replacing {a, b, ¢} with their inverses.
Then

+771 =1 (mod p).
Multiplying by 73, then
14747273

=P+ +7+1

o
Il

(mod p)

By adding 3B and the above equation, we have

0 (72 +7) (mod p)

FF+1)

2
2

which is also impossible, because 7 # —1 (mod p).
Case 4. Assume a = ap and b = a4as.

Subcase 4.1. Assume i # 0. Then ¢ = azafab~y,. By Lemma 2.29(2) (b,c¢) = G which
contradicts the minimality of S.

Subcase 4.2. Assume ¢ = 0. Then j # 0 and ¢ = a-ga’gvp. We may assume j is even by

replacing ¢ with its inverse and j with ¢ — j if necessary. Consider G = Cy x C,. Then we
have @ = ay, b = a, and ¢ = aJ. This implies that [a| = 2 and [b| = [¢| = q. We have

Cl = (Ev qujila Ev 57(j72) 9 E, Bq71 9 a)
as a Hamiltonian cycle in Cay(G; S). Now we calculate its voltage.

V(Cy) = cb? 77 teb= 0D ghi71q
= agfyp . ag_j_l . ag’yp . aq_j*'2 “ag - ag_l ~as  (mod C3)
o =1y g—d 1
— ATTNEHD)
= fyp T

which generates C,. Also

V(C) = eb? I eb= U gpi=1g
—j—1 —j+2 -1
=ab-ad? 7 ak a3’ a0l ay (mod C, x Cp)
k+q—j—1+k—j5+2—q+1
as
2(k—j+1
a3( i+l

We may assume this does not generate Cs, for otherwise Factor Group Lemma 2.6 applies.
Then

0=k—j+1 (mod3). (4.2A)
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We also have
G = @a G ah )

as a Hamiltonian cycle in Cay(G; S). We calculate its voltage. Since there is one occur-
rence of ¢ in Cy, and it is the only generator of G that contains +,, then by Lemma 2.8 we
conclude that the subgroup generated by V(C?2) contains C,,. Also,

V(Cy) = ca(ba)t™ I~ ab= 0~V

=af - ay-(a3a2)77 7 - ad - ag a3’ (mod €y x Cp)

_ a§72j+1.
We may assume this does not generate Cs, for otherwise Factor Group Lemma 2.6 applies.
Therefore,

0=k—-2j+1 (mod3).

By subtracting the above equation from 4.2A we have j = 0 (mod 3).
Now we have

C=Ga b ey T e i e VY )
as a Hamiltonian cycle in Cay(G; S). We calculate its voltage.

V(Cs) = cab?~ I 1qp=(a=1=2) o~ 1pi—2,p-G-1) 4

amItIA2 =l
aq

a1 j+1
Tp G

iy I S B
=alyp-az-al”lT - ay Teal"ag-a,7" az  (mod C3)

— 4 -1 —j-1
= AgVpqTp Aq
79 (1-7)

which generates C,,. Also

V(C3) = cab? I Lab= (077D e 1pi=2qp= =g

j—1 —qtj+2 k| _j-2 —j+1
.a3

=ab-ay-ad7 " ay-ag ~ay " az-a3?7" -as (mod Cy x Cp)

GFmatitl—ati+2—k+i—2+j-1
3

—2q+4j
CL3 .

We may assume this does not generate Cs, for otherwise Factor Group Lemma 2.6 applies.
Then

= —2g+4j (mod 3)
=q+J

We already know j = 0 (mod 3). By substituting this in the above equation, we have
¢ =0 (mod 3) which contradicts the fact that ged(g, 3) = 1. O
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3.9 Assume |S| >4

In this subsection, we prove the following general result that includes the part of The-
orem 1.3, where |S| > 4 (see Assumption 3.1). Unlike in the other subsections of this
section, we do not assume |G| = 6pg.

Proposition 3.10. Assume |G| is a product of four distinct primes and S is a minimal
generating set of G, where |S| = 4. Then Cay(G; S) contains a Hamiltonian cycle.

Proof. Suppose S = {s1, S2, ..., 8k} and let G; = (s1, $a,...,8;y fori = 1,2,..., k. Since
S is minimal, we know {e} € G; € G2 < ...G} = G. Therefore, the number of prime
factors of |G;| is at least i. Since |G| = pipapsq is the product of only 4 primes, and
k = |S| = 4, we can conclude that |G;| has exactly ¢ prime factors, for all 4. This implies
that |S| = 4. This also implies every element of S has prime order.

Since |G| is square-free, we know that G’ is cyclic (see Proposition 2.15(1)), so G’ #
G. We may assume |G’| # 1, for otherwise G is abelian, so Lemma 2.2 applies. Also, if
|G| is equal to a prime number, then Theorem 2.3 applies. So we may assume |G’ | has at
least two prime factors. Therefore, the number of prime factors of |G’| is either 2 or 3.

Case 1. Assume |G’| has only two prime factors. This implies |G| = p1p2, where p;
and p are two distinct primes. Suppose s € S, then 5 € S. We know that |5 # 1 (see
Assumption 3.1(6)). Now since every element of S has prime order, then |s| is either p;
or pa. Also, every element of order p; must commute with every element of order po,
because the subgroup H generated by any element of .S that has order p;, together with
any element of S that has order p, has exactly two prime factors, so |H| = p1p2, H' < G,
and |G’| = pspa. Thus, |[H'| = 1. Let S, be the elements of order p; in S, and let S,, be
the elements of order p,. Also let H,,, and H,,, be the subgroups generated by S, and S,,,,
respectively. This implies that Cay(G; S) = Cay(Gy,; Sp,) o Cay(Gp,; Sp,). Therefore,
Cay(G; S) contains a Hamiltonian cycle (see Corollary 2.11).

Case 2. Assume |G| has three prime factors. We may write (see Proposition 2.15(3))
G=Cyx G =Cyx (Cp xCpy xCpy),

where p1, p2, ps and q are distinct primes. Note that G’ n Z(G) = {e} (see Proposi-
tion 2.15(2)). Now we may assume <{s4y = C,. Since [(s;, s4)| has only two prime factors
(for 1 < i < 3), we must have s; = sii ap, (after permuting p1, p2, p3), where a,, is a
generator of Cp,. We may also assume SN G’ = J (see Lemma 2.12), 50 k; # 0 (mod q).

Now consider
k k
Go = (51, 52) =S4 ap,, S4%Cpy -
Since Cp, is a normal subgroup in G, we can consider G2 = G3/Cp,, then {51,352} =

{5k, 5%@,,}. We have

_ky ! - “lpsl kT kT
842 _ (Sil)k’l k5 2811 2
Multiplying by So, then

— ko ko _ T ral
Qp, = 5,° -84°0p, =5, 52 € Ga.
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Since ay, generates C,, this implies |G| is divisible by ps. Similarly, we can show that
|G2| is divisible by py. Also, |s1]| = ¢, so |Gz is divisible by g. Therefore, |G| has three
prime factors, which is a contradiction. O
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