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A Spectral Approach to Graphical Representation of Data
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Graphical representation of relationship data is useful in several applications. Relationships among objects
are modeled as a graph and the strength of relationship as weights on graph’s edges. In the paper we
demonstrate how the spectral method can be applied to visualize such data. Application of gradient method
is suggested to fine tune the solution obtained by the spectral method.

Povzetek: članek opisuje spektralno metodo za vizualizacijo podatkov.

1 Introduction
Many applications require graphical representation of (non
numerical) data. A general approach for such a task is pre-
sented. Given a data base, pairs of objects from the given
data set are classified as being “close” or “far apart” by
specifying a numerical value S(x, y) for each such pair
x, y. This value measures similarity of objects. This means
that the value S(x, y) is large for closely related objects x
and y and small for very different objects. For the purpose
of this paper we shall assume that S is symmetric, i.e.

S(x, y) = S(y, x).

Similarity measures can be produced in a number of ways,
for example by applying the factor analysis. The goal is
to represent the objects graphically (e.g. on a computer
screen) in such a way that objects which are similar with
respect to the similarity measure S are represented close to
each other, i.e., the distance between their graphical rep-
resentations is in agreement with the “similarity distance”
S(x, y).

Two main points of our approach rely on the spectral
method where calculations are based on the eigenvalues
and eigenvectors of related Laplacian matrices. General
setting for this approach is surveyed by Mohar and Pol-
jak [27]. Usually, the spectral approach can be expressed,
via the Rayleigh quotient expressions for eigenvalues, as a
quadratic optimization and, more generally, via semidefi-
nite programming [1, 18, 30, 32].

Applications of eigenvalue methods in combinatorics,
graph theory and in combinatorial optimization have a long
history. For example, eigenvalue bounds on the chromatic
number were formulated by Wilf [31] and Hoffman [23] in
the 1960’s. Another early application, in the area of graph
partition, is due to Fiedler [15] and Donath and Hoffman
[13].

An important result was the use of eigenvalues in the
construction of superconcentrators and expanders by Alon
and Milman [2, 3]. Isoperimetric properties of graphs and
their eigenvalues play a crucial role in the design of various
randomized algorithms. These applications are based on
the so-called rapidly mixing Markov chains.

There is an increasing interest in the application of
eigenvalues to combinatorial optimization problems. For
example, Burkard, Finke, Rendl and Wolkowicz [14, 29]
used an eigenvalue approach in the study of the quadratic
assignment problem and general graph partition problems,
Delorme and Poljak [10, 11] and Goemans and Williamson
[19] in the max-cut problem, and Juvan and Mohar [24, 25]
in labelling problems. Spectral partitioning, which is based
on eigenvectors of Laplace eigenvalues of graphs, has
proved to be a successful heuristic approach in the design
of partition algorithms [7, 22, 21], in solving sparse linear
systems [28], clustering [20, 6], ranking [25, 21], in graph
drawing [16], automated finding of large components [12],
image and video segmentation [17], etc. We refer to [27]
for additional applications.

For further results, the reader may consult existing books
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and survey papers, such as [8, 9, 27].

2 Problem description

Formally, the above problem can be stated as follows.
Given a data set containing n objects and the similarity
measure S(x, y) between pairs of objects, find an embed-
ding of the n points in the plane such that the distances
between the points representing similar objects are small,
while the points corresponding to objects with small sim-
ilarity are far from each other. In order to formally de-
scribe the “agreement” of the similarity measure with the
distances in the plane, one has to introduce a function
f : R → R which transforms every value s of similarity
into the desired distance between points representing two
objects whose similarity is S(x, y) = s. The transforma-
tion f must satisfy the following requirements:

(F1) Monotonicity: if s ≤ s′, then f(s) ≥ f(s′).

(F2) Validity: lims→∞ f(s) = 0.

It can be proved easily that (F1) and (F2) together imply:

(F3) Non-negativity: f(s) ≥ 0 for every s ∈ R.

Exact choice of f depends on the data to be represented and
on the properties of their similarity measure S. If similar-
ities of distinct objects are always positive, then one may
take, for example, f(s) = 1/s.

We consider the objects as vertices of the (complete)
weighted graph G whose edge-weights are determined by
S and f : the weight of the edge xy is equal to f(S(x, y)).
This setting has an advantage that in case when similarity
measure of certain pairs of objects is not defined, then the
edges corresponding to such pairs can be removed from the
graph.

We consider the following problem. Given is a graph
G = (V, E) and a weight function w : E → R+ (the edge-
weights). The goal is to find a mapping φ : V → R2, which
assigns to every vertex of G a point in the Euclidean plane,
such that the distance between the points φ(x) and φ(y) is
as close as possible to the prescribed weight w(xy). We
refer to this problem as the vertex placement problem.

The vertex placement problem is an optimization prob-
lem and there are several possible choices for the energy
function which is to be minimized. Our choice is described
in Subsection 3.2.

3 Solving the problem

We propose the following general algorithm to find (an ap-
proximate) solution to the vertex placement problem.

Algorithm 1: Basic algorithm for solving the vertex
placement problem

Input: Graph G = (V, E), similarity mea-
sure S : V × V → R.

Output: Placement of the vertices of G

into R2.

Description:
Compute the edge-weights of G,

w(xy) = f(S(x, y)), xy ∈ E.

Obtain the initial placement by the
spectral method.

Run the gradient method to obtain an
improved placement.

Correct the final solution.

3.1 Initial placement
To find the initial placement in Algorithm 1, the spectral
method is proposed. Its formal description is given as Al-
gorithm 2. Let us observe that this algorithm is only heuris-
tic, and there are no theoretical guarantees that it will return
a solution close to an optimum. However, as mentioned in
the introduction, it behaves quite well in practice. We refer
to [27] for more information.

Algorithm 2: Obtaining the initial placement of vertices

Input: Weighted graph G = (V,E) with
edge-weights w.

Output: Initial placement of the ver-
tices of G in R2.

Description:
Compute the auxiliary matrix A from
the edge-weights w by setting

(A)ij = 0, if i = j or ij /∈ E

(A)ij = 1/w(ij), if ij ∈ E.

Determine the Laplace matrix LA

from A:

(LA)ii =
∑n

k=1(A)ik,

(LA)ij = −(A)ij , i 6= j.

Compute the eigenvectors e, f of LA

corresponding to the two smallest
nontrivial eigenvalues of LA.

Set xi := ei, yi := fi as the coordinates
of the vertex i.

To obtain the auxiliary matrix A from the edge-weights
w, one can also use the following formula:

(A)ij = 0, if i = j or ij /∈ E

(A)ij = 1/(w(ij))2, if ij ∈ E.

Both alternatives seem to yield good results.
If the number of objects to be represented is too large, we

first apply the same spectral method to cluster the data set
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into smaller cluster sets whose size fits the requirements.
Particular clusters that are small enough can then be graph-
ically represented as described above. On the other hand,
the relations among clusters themselves can also be rep-
resented by the same method by defining the distance w
between two clusters X,Y as

w(X, Y ) =
1

|X||Y |
∑

x∈X

∑

y∈Y

f(S(x, y)).

Similar spectral approach has already been applied to clus-
tering problem, see [4, 5].

3.2 The gradient method

The energy function we choose to minimize in solving the
vertex placement problem is the sum of the squares of the
relative differences between the distances implied by the
current placement of the vertices, and the desired distances:

E(x,y) =
∑

ij∈E

(
w(ij)− ‖(xi, yi)− (xj , yj)‖

w(ij)

)2

,

where x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn), (xi, yi)
is the point inR2 corresponding to the vertex i, w(ij) is the
desired distance between vertices i and j, and E is the set
of edges of the graph G on vertices {1, . . . , n}.

The gradient method is a well-known iterative algorithm
for solving optimization problems whose objective func-
tion is differentiable (see, e.g., [26]).

At each step, first the direction in which the placement
will change is determined: usually, the negative gradient
is taken as the direction, but in every third step the aver-
age of the last two gradients is used instead (this signifi-
cantly reduces the “zig-zag" behavior which otherwise of-
ten occurs). Then the length of the step in the chosen di-
rection is calculated. As the first approximation a step of
the Newton’s root finding method for the direction deriva-
tive of the energy function in the chosen direction is used
(the goal is a local minimum and the derivative evaluates
to zero in the minimum; the Newton’s method is used to
find this root). Then step of the calculated length is made
in the direction of decreasing energy function. If the value
of the energy function in the obtained point is higher than
the current value, the length of the step is corrected: it is
repeatedly multiplied by an appropriately chosen constant
factor from the unit interval until the value of the energy
function is lower than the current value. Additionally, if
two subsequent directions differ too much (the measure is
the angle between the two), the next step is to be shorter.
This method is a variant of an inexact line search using the
Armijo Rule as its stopping condition (cf. [26, sec. 3.2])
and combined with some heuristics.

The method stops when any of the following cases oc-
curs:

– the norm of the direction vector is small enough,
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Figure 1: Performance test for random graphs with param-
eters p = 0.1, q on the x-axis and r on the y-axis ranging
from 0.1 to 0.9.
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Figure 2: Performance test for random graphs (p = 0.8).

– the number of steps exceeds maximum number al-
lowed, or

– a certain number of the quotients of subsequent energy
values are small enough.

These criteria can be tuned to achieve either higher accu-
racy or faster performance.

Note that the problem is invariant under translations and
rotations of the plane. Thus we may fix the position of one
vertex and additionally one coordinate of another vertex.

4 Practical considerations
The behavior of proposed algorithms was tested on several
distance matrices of various sizes. For these tests we used
random graphs constructed as follows: let G = G(n, p)
be a random graph on n vertices, where each edge is
added to G with probability p. Choose randomly n points
x1, . . . , xn in the plane, and for each edge ij ∈ EG let
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Figure 3: Performance test for random graphs (p = 1).
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Figure 4: Decrease of the energy during iteration of the
gradient method.

(D)ij be the distance between the points xi, xj . With prob-
ability q the distances (D)ij are perturbed for a factor r
(half of the distances are increased, half are decreased).
Additional tests were performed using random bipartite
graphs, obtained in a similar way. Such graphs appear of-
ten in the real world applications, where objects considered
naturally fall into two disjoint classes.

Figures 1–3 demonstrate the results of the tests for pa-
rameters n = 10, q and r ranging from 0 to 0.9 by steps 0.1.
The thicker the point, the more steps the gradient method
required. The points were obtained averaging the results
of ten independently chosen random graphs with the same
parameters.

The performance analysis showed that the gradient
method requires the largest number of steps when p is large
with q and r being small (compare the aforementioned fig-
ures). The interpretation could be that then the optimum
solution is nearly exact and hard to find, as the graph is
dense. With large perturbations, the search space tends to
have more local optima that are close to the initial state and
the algorithm is more easily stopped in one of them. When
the graph is sparse, the problem usually splits into several
smaller subproblems and in general requires fewer steps of
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Figure 5: Changes in gradient norm during iteration of the
gradient method.
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Figure 6: Traces of positions of vertices in the plane dur-
ing the execution of the gradient method, initial placement
using eigenvectors of smallest eigenvalues

the gradient method.
Figure 4 presents the energy of the solution as a function

of the number of iterations performed. It is decreasing in
steps, which demonstrates that the solution may be jumping
from one local optimum to another at certain points in time.

Norm of the gradient calculated using the gradient
method is displayed in Figure 5. It is demonstrated that
the norm of the gradient is not decreasing monotonously,
however towards the local optimum its value settles and
approaches 0. The large jumps in the gradient norm cor-
respond to the bigger decreases in the value of the energy
function.

The progress of the algorithm was monitored using the
traces of the points in the plane. After every step of the
gradient method the graph was output and its position in
the plane was displayed. The positions of the same vertex
in two consecutive drawings were connected by a line seg-
ment. Thus for each point we reconstructed its trace dur-
ing the optimization process. Figures 6–8 display one such
picture for a graph on ten vertices. These traces were dis-
played for various initial placements of vertices of consid-
ered graphs. Results demonstrate that the traces are short-
est if we choose as the initial placement the one proposed
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Figure 7: Traces of positions of vertices, initial placement
using eigenvectors of larger eigenvalues
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Figure 8: Traces of positions of vertices, random initial
placement

by Algorithm 2 (Figure 6). This was tested both against
choosing higher eigenvalues (Figure 7) and against choos-
ing a random initial placement (Figure 8). Note that the
position of the first vertex and one coordinate of the second
vertex are fixed, reducing the unnecessary computational
costs due to isometric transformations of the plane.

In Figure 7 certain “zig-zag" behavior of two points can
be observed. It hindered the gradient method from finding

the optimal solution fast. To reduce the effect of such a
behavior, we slightly modified the gradient method such
that in every third step, the position of vertices is updated
according to the average direction of the last two gradients
(see the description of the gradient method).

5 Conclusion
As demonstrated, the spectral method turns out to be well
applicable to the problem of graphical representation of
relations among objects. In the paper we suggested us-
ing gradient method to fine tune the solution obtained by
the spectral method, however, other local optimization al-
gorithms could be applied as well, cf. [26]. A compari-
son of their suitability to the described problem, as well as
some rigorous analysis of convergence could be the subject
of further research. One could also investigate theoretical
bounds of optimality of the solutions proposed by the spec-
tral method.
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[9] D. M. Cvetković, M. Doob, H. Sachs, Spectra of
graphs, Academic Press, New York, 1979; 3rd edi-
tion, Johann Ambrosius Barth Verlag, Heidelberg,
1995.

[10] C. Delorme, S. Poljak, Laplacian eigenvalues and
the maximum cut problem, Math. Programming 62
(1993) 557–574.

[11] C. Delorme, S. Poljak, Combinatorial properties and
the complexity of a max-cut approximation, Europ. J.
Combin. 14 (1993) 313–333.

[12] C. Ding, X. He, and H. Zha, A spectral method to
separate disconnected and nearly disconnected web
graph components, Proc. 7th ACM Int’l Conf Knowl-
edge Discovery and Data Mining (KDD 2001), 2001,
pp. 275–280.

[13] W. E. Donath, A. J. Hoffman, Lower bounds for
the partitioning of graphs, IBM J. Res. Develop. 17
(1973) 420–425.

[14] G. Finke, R. E. Burkard and F. Rendl, Quadratic as-
signment problem, Ann. Discrete Math. 31 (1987) 61-
82.

[15] M. Fiedler, Algebraic connectivity of graphs, Czech.
Math. J. 23 (98) (1973) 298–305.

[16] P. W. Fowler, T. Pisanski, J. Shawe-Taylor, Molec-
ular graph eigenvectors for molecular coordinates,
in “Graph drawing: GD’94,” (R. Tamassia, ed.),
Springer-Verlag, Berlin, 1995, pp. 282–285.

[17] C. Fowlkes, S. Belongie, F. Chung, and J. Ma-
lik, Spectral grouping using the Nyström method,
preprint, 2002.

[18] M. Goemans, Semidefinite programming in combi-
natorial optimization, Math. Program. 79 (1997) 143-
161.

[19] M. X. Goemans, D. P. Williamson, Improved approxi-
mation algorithms for maximum cut and satisfiability
problems using semidefinite programming, J. ACM
42 (1995) 1115–1145.

[20] L. Hagen, A. B. Kahng, New spectral methods for
ratio cut partitioning and clustering, IEEE Trans.
Computer-Aided Design 11 (1992) 1074–1085.

[21] C. Helmberg, B. Mohar, S. Poljak, F. Rendl, A spec-
tral approach to bandwidth and separator problems in
graphs, Linear and Multilinear Algebra 39 (1995) 73–
90.

[22] B. Hendrickson, R. Leland, An improved spectral
graph partitioning algorithm for mapping parallel
computations, SIAM J. Sci. Comput. 16 (1995) 452–
469.

[23] A. J. Hoffman, On eigenvalues and colorings of
graphs, in “Graph Theory and Its Applications”
(B. Harris, ed.), Acad. Press, 1970, pp. 79–91.

[24] M. Juvan, B. Mohar, Optimal linear labelings and
eigenvalues of graphs, Discrete Appl. Math. 36
(1992) 153–168.

[25] M. Juvan, B. Mohar, Laplace eigenvalues and
bandwidth-type invariants of graphs, J. Graph Theory
17 (1993) 393-407.

[26] C. T. Kelley, Iterative Methods for Optimization,
SIAM, Philadelphia, 1999.

[27] B. Mohar, S. Poljak, Eigenvalues in combinatorial op-
timization, in “Combinatorial and Graph-Theoretical
Problems in Linear Algebra,” R. A. Brualdi, S. Fried-
land, V. Klee, Eds., IMA Volumes in Mathematics
and Its Applications, Vol. 50, Springer-Verlag, 1993,
pp. 107–151.

[28] A. Pothen, H. D. Simon, K.P. Liu, Partitioning sparse
matrices with eigenvectors of graph, SIAM J. Matrix
Anal. Appl. 11 (1990) 430–452.

[29] F. Rendl, H. Wolkowicz, Applications of paramet-
ric programming and eigenvalue maximization to
the quadratic assignment problem, Math. Progr. 53
(1992) 63-78.

[30] L. Vandenberghe and S. Boyd, Semidefinite program-
ming, SIAM Review 38 (1996) 49-95.

[31] H. S. Wilf, The eigenvalues of a graph and its chro-
matic number, J. London Math. Soc. 42 (1967) 330–
332.

[32] H. Wolkowicz, R. Saigal and L. Vandenberghe (edi-
tors), Handbook of semidefinite programming, The-
ory, algorithms, and applications, International Series
in Operations Research & Management Science 27,
Kluwer Academic Publishers, Boston, MA, 2000.




