Simulation of multilayer coating growth in an industrial magnetron sputtering system

Simulacija rasti večplastnih prevlek v industrijski napravi za magnetronsko naprševanje

Matjaž Panjan^{1,*}, Miha Čekada¹, Peter Panjan¹

¹Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia

*Corresponding author. E-mail: matjaz.panjan@ijs.si

Received: July 23, 2010

Accepted: September 8, 2010

- Abstract: Layered coatings are mainly prepared by physical vapor deposition such as magnetron sputtering. In industrial deposition systems layered coatings (e.g. multilayer or nanolayered coatings) are produced by the rotation of the substrates along the spatially separated targets. In order to assure uniform deposition on all parts of the substrate with complex geometry (e.g. tools), two- or three-fold rotation is typically applied. Such rotation is similar to the planetary rotation. A consequence of the planetary rotation are layered coatings whose structure depends on the type of the rotation. In this paper we describe a model of the sputter deposition in the deposition systems with the planetary rotation. Such model helps us understand the influence of the rotation on the layer structure of the coatings. Results of the model for different types of the substrate rotation are presented. In addition, we prepared TiAlN/CrN nanolayered coatings in an industrial magnetron sputtering system and compared their layered structures with the calculated ones. The comparison confirms the accuracy of the developed model.
- Izvleček: Večplastne prevleke pripravljamo s fizikalnimi postopki nanašanja iz parne faze (PVD), kot je magnetronsko naprševanje. V industrijskih napravah večplastne prevleke pripravimo z vrtenjem podlag okoli prostorsko ločenih tarč. Podlage imajo v splošnem kompleksno geometrijo (npr. orodja), zato se morajo vrteti okrog dveh ali treh osi, pri čemer je vrtenje podobno planetarnemu vrtenju. Tako zagotovimo enakomeren nanos prevleke na vse dele

orodja. Rezultat planetarnega vrtenja so različne večplastne prevleke, katerih struktura je odvisna od načina vrtenja. V članku opisujemo model nanašanja večplastnih prevlek, ki smo ga razvili za magnetronsko naprševanje v industrijskih napravah s planetarnim vrtenjem. Model nam pomaga razumeti vpliv različnih parametrov na večplastno strukturo prevlek. V članku predstavljamo rezultate modela za različne vrste vrtenja. Za preverjanje natančnosti modela smo v industrijski napravi CC800/9 (CemeCon) pripravili nanoplastne prevleke TiAlN/CrN in njihove večplastne strukture primerjali z izračunanimi strukturami. Rezultati potrjujejo točnost modela.

- Key words: modeling, layered structures, PVD, magnetron sputtering, TEM
- Ključne besede: modeliranje, večplastne strukture, PVD, magnetronsko naprševanje, TEM

INTRODUCTION

Hard coatings are thin films, which are periodic or aperiodic. When the thickin order to improve hardness, friction, wear and corrosion reistance of the surface. In this way the lifetime of the tools is prolonged, therefore the produ- Unique property of the nanolayered ctivity is enhanced. Moreover, the use of hard coatings reduces the consumption of lubricants and often enables machining of new materials. Hard coatings are commonly prepared by physical vapor deposition (PVD), which of- hancement of hardness in TiN/VN nafers an easy way of depositing coatings nolayered coatings. They showed that in a form of a single layer or multilay- the hardness of the coating exceeded ers. Layered structures are prepared by 50 GPa for the thickness of layers $\approx 2-4$ alternately depositing two or more dif- nm, which is much more than the hardferent materials. They are composed of ness of a single layer TiN (\approx 22 GPa) a few or up to several hundred layers. and VN (≈ 16 GPa) coatings. High hard-The thickness of the individual layers ness was interpreted as a consequence

can vary from a few atomic layers up to micrometers, the structures can be deposited on the tools and components ness of the individual layers is in the nanometer range, the term nanolayered coatings is used.

> coatings is an extremely high hardness, which is much higher than the hardness of individual layers^[1, 2]. In 1987, HELMERSSON et al.^[3] published a paper in which they reported on drastic en

of numerous interfaces between the The objective of our work was to deindividual layers and the small thick- velop a model of a sputtering process ness of the layers^[4]. Interfaces obstruct in an industrial deposition system the movement of dislocations, while a with planetary rotation and to calcufew nanometers thick layers reduce the late the layer structure of the coatings formation of new dislocations. Conse- for different parameters of the depoquently, hardness of nanolayered coating can be higher than the hardness of parameters, such as planetary rotathe second hardest material, the cubic tion, cause considerable variations BN

Nanolayered coatings are mainly prepared by magnetron sputtering this paper we are presenting the model or cathodic arc evaporation^[5]. In and the results of the model for diffelaboratory deposition systems, nanolayered coatings are usually formed we prepared samples for transmission by sequential switching between two target sources^[3], whereas in industrial culated layer structures with deposited deposition systems, nanolayered coatings are formed when the substrates rotate along spatially separated targets^[6]. In the industrial deposition INDUSTRIAL PHYSICAL VAPOUR DEPOSIsystems, the substrates have to rotate TION SYSTEM around two, three or even four axes in order to insure uniform coating on all Nanolayered coatings are parts of the substrates with complicated geometry such as tools. Rotation around different axes causes periodic and aperiodic layer structures. The layer structure depends on the number of rotational axes, revolution time around the individual axes, initial position of the substrates and es are arranged in the corners of the on the target arrangement. The nanolayered coatings prepared in the same tioned at different heights. The turntabatch therefore have different layer ble has the possibility of a 3-fold planstructures.

sition. This is important because the in the thickness of individual layers and thus can influence the mechanical properties of nanolayered coatings. In rent types of the rotation. In addition, electron microscope and compared cal-TiAlN/CrN nanolayered coatings.

usually prepared by magnetron sputtering. A schematic top view of the industrial magnetron sputtering system CC800/9 from company CemeCon is shown in Figure 1. The deposition system has four planar magnetron sources with dimensions 500 mm × 88 mm. The sourcrectangle. The substrates can be posietary rotation; the first axis of rotation

the substrate towers rotate around the layered coatings were prepared by three second axis, which is positioned 137 types of the rotation; 1-, 2- and 3-fold. mm away from the first axis. The sub- Coatings were deposited on D2 tool steel, strate towers rotate around the first and hard metal and silicon substrates. Prior the second axis. The rotation around to deposition the samples were ground the third axis is not continuous but is and polished, ultrasonically cleaned and achieved by a switch fixed on the rod. For every rotation of the substrate tower around the second axis, the switch was ≈ 450 °C, power on the Cr targets turns the sample for a specific angle. was 4.5 kW and on the TiAl targets 9.5 The distance from the second axis to kW. A mixture of nitrogen, argon and the third axis is 58 mm. The revolution krypton gases was used with flow rates time of the turntable can be adjusted of (70, 150, 100) mL/min, respectively. from 38 s to 97 s, while the revolution Total gas pressure during deposition was time of the substrate towers is deter- 0.6 Pa and a DC bias of -100 V was apmined by the gear ratio between the plied to the substrates. One rotational turntable and the substrate tower; this ratio is 100/37.

is in the centre of the turntable while For the experiments TiAlN/CrN nanoion-etched in deposition system. Substrate temperature during the deposition cycle of the turntable was 97 s while the deposition time was 125 min.

Figure 1. Schematic top view of the CC800/9 (CemeCon)

RMZ-M&G 2010. 57

Nanolayered coatings were prepared in cross-section for the transmission electron microscopy. The samples were first cut into small pieces, glued faceto-face, fixed into brass disk holders, mechanically polished to $\approx 100 \ \mu\text{m}$, thinned to 20 μm by dimpling and ion 2. milled to electron transparency. Investigations were carried out on fieldemission electron-source high-resolution transmission electron microscope JEOL 2010F operated at 200 keV.

MODELING OF MULTILAYER GROWTH

The layer structure of the coating is obtained by calculating the deposition rate from a magnetron source on the surface of a rotating substrate. The deposition rate from a particular target depends on the distance from the target, the orientation between the target and the substrate and on the angular distribution of a particle flux from the target. The particle flux was modeled by two point sources where each source has a cosine angular distribution while the intensity falls with square of the distance. Similar model was introduced by ROTHER et al. ^[7–9]. In order to give a realistic description of the deposition process a shading of the particle flux by the batching material was also considered. The model assumes the following:

1. The deposition rate on the surface

of the sample depends on the particular position and orientation of the substrate. The position and the orientation of the substrate (e.g. the trajectory) are defined by the planetary rotation.

321

2. The planetary rotation is described by the equations

$$\mathbf{r}_{s}(t) = \sum_{i=1}^{N} \left(R_{i} \cos\left(\sum_{j=1}^{i} \left(\frac{2\pi}{t_{j0}}t + \varphi_{j}\right)\right),$$

$$R_{i} \sin\left(\sum_{j=1}^{i} \left(\frac{2\pi}{t_{j0}}t + \varphi_{j}\right)\right), h_{s}\right)$$
(1)

$$\boldsymbol{n}_{s}(t) = \left(\sum_{j=1}^{N} \cos\left(\frac{2\pi}{t_{j0}}t + \varphi_{j}\right),\right)$$

$$\sum_{j=1}^{N} \sin\left(\frac{2\pi}{t_{j0}}t + \varphi_{j}\right), 0$$
(2)

where \mathbf{r}_{s} is a vector from the center of the turntable to the substrate, \mathbf{n}_{s} is orientation of the substrate, N is the number of the rotational axes, R_{i} are the radii around the individual axes, t_{j0} are time periods of one rotational cycle around the axis j, φ_{j} are initial angles around the individual axes and h_{s} is the height of the substrate (cf. Figure 1). The rotation around the third axis is not continuous. It is achieved by the switch, which turns the substrate for a certain angle when the substrate makes one cycle around the second axis. This is also taken into account in equations (1) and (2).

3. The magnetron targets are considered as two point sources representing a racetrack. A particle flux j_p is modeled by the cosine angular distribution (Figure 2)

$$j_p = \frac{A}{r^2} (\cos \theta)^n \tag{3}$$

where r is the distance from the source to the substrate, \mathcal{G} is the angle between the sources' normal and the direction of the sputtered particles, A is the flux intensity, and n is the lateral particle distribution coefficient.

4. The surface of the substrate is coated only if it is in a direct view of the target otherwise the deposition rate is zero. Shaded areas are defined by the dot products of the following vectors (cf. Figure 3):

$$\frac{\boldsymbol{r}_{s}(t) - \boldsymbol{R}_{h}(t)}{\left|\boldsymbol{r}_{s}(t) - \boldsymbol{R}_{h}(t)\right|} \cdot \frac{\boldsymbol{R}_{K_{i}}(t) - \boldsymbol{R}_{h}(t)}{\left|\boldsymbol{R}_{K_{i}}(t) - \boldsymbol{R}_{h}(t)\right|} < \cos(90^{\circ})$$
(4)

$$\frac{\boldsymbol{r}_{s}(t)}{\left|\boldsymbol{r}_{s}(t)\right|} \cdot \frac{\boldsymbol{R}_{\mathrm{K}_{i}}(t)}{\left|\boldsymbol{R}_{\mathrm{K}_{i}}(t)\right|} < \cos(75^{\circ}) \tag{5}$$

where \mathbf{R}_{h} is the vector from the center of the turntable to the center of the substrate tower and $R_{\rm K}$ is the vector from the center of the turntable to the sputtering source *i*. The shading originates from two contributions. The substrates, which are in the shade of its own substrate tower, are described by the relation (4). The substrates, which are in the shade of other substrate towers, are described by the relation (5). The vector \boldsymbol{R}_{K_i} is fixed and the vectors $\mathbf{r}_{s}(t)$ and $\mathbf{R}_{h}(t)$ change with the time.

Figure 2. Particle flux from the magnetron target

Figure 3. Shaded area (grey) of the particle flux coming from target 2

strate is close to the target and is fa-cing the shape of the angular distribution. its direction, the deposition rate is high. If the substrate is far away from the tar- The deposition rate (v) on the surface get, the deposition rate is low, or zero of the substrate is proportional to the if it is facing away from the target. The particle flux from all targets (j_{n}) and it rotation is defined by equations (1) to depends on the particle flux angle of in-(3). The distance between the target *i* and cidence α_i (see Figure 2) the substrate $|\mathbf{R}_{K_i} - \mathbf{r}_s(t)|$ changes with the rotation. The particle flux from all the targets at the position of the sub-

$$j_{\rm p} = \sum_{i=1}^{N} \frac{A_{\rm i}}{\left(\boldsymbol{R}_{\rm K_{\rm i}} - \boldsymbol{r}_{\rm s}\right)^2} \left(\cos\vartheta_{\rm i}\right)^n \tag{6}$$

where ϑ_i is the angle between the target *i* normal and the direction of the particle

The deposition rate on the substrate flux to the substrate, A_{i} is the flux intenchanges due to rotation. When the sub- sity from the target *i*, and *n* determines

323

$$v = \sum_{i=1}^{N} j_{pi} \cos \alpha_i \tag{7}$$

In the simulation, it is considered that) the growth of the coating is only possible if $-90^{\circ} < \alpha_i < 90^{\circ}$. In these positions, the surface of the substrate faces the target, for all other angels the surface is shaded and v = 0.

RMZ-M&G 2010, 57

strate is

The equation (7) describes the varia- **R**ESULTS AND DISCUSSION tions of the deposition rate in dependlayers

$$h = \int_{0}^{t} v(t)dt \tag{8}$$

In the final step of the simulation, the calculated thicknesses of individual layers are graphically represented in a form of a layered structure. An example of the calculated deposition rate and layer structure is shown on Figure 4a and Figure 4b, respectively. Calculations were made for 3-fold rotation with two targets of equal material on one side of the other material on the other side.

ence of the time. Integration of the The model described above was used deposition rate with respect to the time to analyze the influence of different pagives the thickness (h) of the individual rameters on the layered structures. The layer structure depends on the initial position of the sample, type of rotation, configuration of targets and on geometrical parameters of the deposition system. Here we will discuss only the influence of 1-, 2- and 3-fold rotation on the layer structures. In order to prove the accuracy of the model we have also compared the TiAlN/CrN nanolayered coatings prepared by all types of rotation to the calculated layer structures.

Figure 5 shows the calculated deposition rate and layer structures for 1-, deposition chamber and two targets of 2- and 3-fold rotation. Calculations were made for the CC800/9 deposi-

Figure 4. (a) The deposition rate as function of time and (b) the layered structure. Calculation was made for 3-fold rotation

RMZ-M&G 2010, 57

TiAl targets on the opposite side. The deposition rates and the layered structures differ between three types of rotation quite considerably. In the case of a **1-fold rotation** (Figure 5a), the deposition rate and layered structure is periodic. The substrates travel on identical trajectory for each rotation of the turntable, thus, the deposition rate and the layer structure are periodic. In each rotation of the turntable, the substrate is equally exposed to the TiAl and the Cr targets, thus, the individual layers have the same thickness ($\approx 100 \text{ nm}$).

The deposition rate and layered structure for 2-fold rotation is shown on Figure 5b. Additional rotation around the second axis influences the periodicity of the layer structure. The periodicity of the layer structures prepared by 2-fold rotation depends on the gear ratio between the turntable and the substrate tower. In the CC800/9 deposition system, the gear ratio is 100 : 37, which means that the substrate returns into an identical position only after 37 rotations of the turntable. Therefore, the layer structure for the 2-fold rotation repeats after $2 \cdot 37 = 74$ deposited layers (in each rotational cycle, 2 layers are deposited). Although the periodicity is quite large the thickness of the the deposition time, the layer structure individual layers is approximately the of the coating is aperiodic. In practice, same because in each rotational cycle layered structures prepared by 3-fold of the turntable the sample is almost rotation are usually aperiodic.

tion system with two Cr targets on one equally exposed to the targets; hence, side of the vacuum chamber and two the thickness of the individual layers varies only slightly.

> In the case of a **3-fold rotation**, the periodicity of the layer structure is the most complex (cf. Figure 5c) due to the noncontinuous rotation of the switch which turns the sample for a certain angle for each rotation around the second axis. Rotation around the third axis affects only the orientation of the substrate and less its position. The reason is the small radius of rotation around the third axis (e.g. 5 mm for drills) compared to the radii of rotation around the first (137 mm) and the second axis (58 mm). Thus, 3-fold rotation is essentially 2-fold rotation superimposed on a non-continuous third rotation, which only changes the orientation of the substrate. The periodicity of the layer structure produced by 3-fold rotation depends both on the gear ratio and the switch angle. In principle, the planetary rotation always produces periodic layer structures if the periodicity is observed on a large scale. However, on the scale of the deposition time (≈ 1 h), the layer structures can be periodic or aperiodic. The layer structure is periodic if the substrate returns into an identical position after a particular number of the turntable rotations. If this does not happen during

From the Figure 5 it can be seen that the case of 1-fold rotation, the total thicktotal thickness of the coating strongly ness for 5 rotations of the turntable is depends on the type of rotation. In the ≈ 900 nm, for 2-fold rotation ≈ 400 nm

Figure 5. The deposition rate and the layer structure for (a) 1-, (b) 2-, and (c) 3-fold rotation. Calculated layered structures are compared to the TEM micrographs of the deposited TiAlN/CrN nanolayered coatings^[10]

RMZ-M&G 2010, 57

corresponding average deposition rates ent distributions were also tested (e.g. are 1.8 nm/s, 0.8 nm/s, and 0.45 nm/s a cosine square distribution); however, for the 1-, 2- and 3-fold rotation, re- this did not influence the layer structure spectively. Hence, the rotation around considerably. A more important source an additional axis considerably lowers of error in the model is a contribution the average deposition rate. Thus, if the of ionized particles to the deposition coating in the same batch is deposited of the coating (ionization of the target on the substrates with different types of material is ≈ 10 %). In the simulation, the rotation, then the total thickness of only particles (atoms) which travel in the coatings will be considerably dif- a straight line were considered. Ions ferent.

calculated layer structures are com- cles and resputtering effects are also pared to the deposited TiAlN/CrN not considered in the model. However, nanolayered coatings. The coatings these effects probably have only a miwere prepared by the three types of nor influence on the accuracy of the the rotation; 1-, 2- and 3-fold. The model. bright layers correspond to TiAlN and the dark layers to CrN. Com- The most important source of error parison between the calculated and is probably the switch. The switch the deposited layer structures shows does not always turn the sample for good overlap between the structures the same angle. However, the simulain the case of 1- and 2-fold rotations. tions have shown that already a small In the case of the 3-fold rotation the change in the switch angle (e.g. 5°) agreement is less accurate although produces considerable variations in still satisfactory. Nevertheless, the the layer structure. Such stochastic rodiscrepancy is mainly caused by the tational causes an increase of the error experimental difficulties during the with every rotational cycle. This is deposition.

culating the layer structure is influenced deposited layer structure is lost. by different factors. The simulation is only an approximation of the deposi- Despite the approximations used in the tion process. In the model, the angular model and the experimental difficulparticle flux from the target was ap- ties it can be concluded that the model

and for 3-fold rotation \approx 220 nm. The proximated by the cosine law. Differwhose path is determined by the electrical field (bias on the substrates) are On the right side of the Figure 5, the neglected. The scattering of the parti-

seen, for example, in Figure 5c, where after a few deposited layers the agree-The accuracy of the model used for cal- ment between the calculated and the

quite accurately describes the depo- Acknowledgments sition process of layered structures. Therefore, we believe that this model This work was supported by the Slocan be used to explain various layer venian Research Agency (project L2structures which are obtained by differ- 9189). ent parameters of the deposition. Thus, such simulations would be a benefit to the engineers who design industrial **R**EFERENCES deposition systems.

CONCLUSIONS

A model of a sputtering process in an industrial magnetron sputtering sys-[2] tem with the planetary rotation was developed in order to understand the influence of the rotation on the layered [3] structures. Layered structures prepared by 1-, 2- or 3-fold rotation were analyzed by the model. The results of the model show that the periodicity of the deposition rate and consequently of the layer structure significantly depends on the type of rotation as well as on the [4] other parameters. To verify the accuracy of the model we prepared TiAlN/ CrN nanolayered coatings by the three types of rotation in the industrial mag-[5] netron sputtering system CC800/9 from CemeCon. The results show good agreement between the prepared and calculated layer structures. Thus, 6 we can conclude that the model correctly describes the deposition process and therefore it could be used to predict the layer structures for different parameters of the process.

- [1] M. STUEBER, H. HOLLECK, H. LEISTE, K. SEEMANN, S. ULRICH, C. ZIEBERT (2009): Concepts for the design of advanced nanoscale PVD multilayer protective thin films. J. Alloys Compd., 483, pp. 321–333.
 - A. CAVALEIRO, J. T. M. DE HOSSON (2006): Nanostructured Coatings. (Springer Science, New York).
 - U. HELMERSSON, S. TODOROVA, S. A. BARNETT, J. E. SUNDGREN, L. C. MARKERT, J. E. GREENE (1987): Growth of single-crystal TiN/VN strained-layer superlattices with extremely high mechanical hardness. Journal of Applied Physics, 62, pp. 481–484.
 - P. C. YASHAR, W. D. SPROUL (1999): Nanometer scale multilayered hard coatings. Vacuum, 55, pp. 179-190.
 - D. MATTOX (1998): Handbook of Physical Vapor Deposition Processing. (Noyes Publications, Westwood).
 - W.-D. MUNZ (2003): Large-Scale Manufacturing of Nanoscale Multilayered Hard Coatings Deposited by Cathodic Arc/Unbalanced Magnetron Sputtering. MRS Bul*letin*, 28, pp. 173.

[10]

- ^[7] B. ROTHER (1994): Surf. Coat. Technol., 64, pp. 155.
- [8] B. ROTHER, H. A. JEHN, H. M. GABRIEL (1996): Surf. Coat. Technol., 86– 87, pp. 207.
- ^[9] B. ROTHER, G. EBERSBACH, H. M. GA-BRIEL (1999): Surf. Coat. Technol.,

116–119, pp. 694.

M. PANJAN, T. PETERMAN, M. CEKADA, P. PANJAN (2009): Simulation of a multilayer structure in coatings prepared by magnetron sputtering. *Surf. Coat. Technol.*, 204, pp. 850–853.