Anali za istrske in mediteranske študije Annali di Studi istriani e mediterranei Annals for Istrian and Mediterranean Studies Series Historia Naturalis, 34, 2024, 2 UDK 5 Annales, Ser. hist. nat., 34, 2024, 2, pp. 173-358, Koper 2024 ISSN 1408-533X KOPER 2024 Anali za istrske in mediteranske študije Annali di Studi istriani e mediterranei Annals for Istrian and Mediterranean Studies Series Historia Naturalis, 34, 2024, 2 UDK 5 ISSN 1408-533X e-ISSN 2591-1783 ANNALES · Ser. hist. nat. · 34 · 2024 · 2 Anali za istrske in mediteranske študije - Annali di Studi istriani e mediterranei - Annals for Istrian and Mediterranean Studies ISSN 1408-533X UDK 5 Letnik 34, leto 2024, številka 2 e-ISSN 2591-1783 UREDNIŠKI ODBOR/ COMITATO DI REDAZIONE/ BOARD OF EDITORS: Alessandro Acquavita (IT), Nicola Bettoso (IT), Christian Capapé (FR), Darko Darovec, Dušan Devetak, Jakov Dulčić (HR), Serena Fonda Umani (IT), Andrej Gogala, Daniel Golani (IL), Danijel Ivajnšič, Mitja Kaligarič, Marcelo Kovačič (HR), Andrej Kranjc, Lovrenc Lipej, Vesna Mačić (ME), Alenka Malej, Patricija Mozetič, Martina Orlando- Bonaca, Michael Stachowitsch (AT), Tom Turk, Al Vrezec Glavni urednik/Redattore capo/ Editor in chief: Darko Darovec Odgovorni urednik naravoslovja/ Redattore responsabile per le scienze naturali/Natural Science Editor: Lovrenc Lipej Urednica/Redattrice/Editor: Martina Orlando-Bonaca Prevajalci/Traduttori/Translators: Martina Orlando-Bonaca (sl./it.) Oblikovalec/Progetto grafico/ Graphic design: Dušan Podgornik, Lovrenc Lipej Tisk/Stampa/Print: Založništvo PADRE d.o.o. Izdajatelja/Editori/Published by: Zgodovinsko društvo za južno Primorsko - Koper / Società storica del Litorale - Capodistria© Inštitut IRRIS za raziskave, razvoj in strategije družbe, kulture in okolja / Institute IRRIS for Research, Development and Strategies of Society, Culture and Environment / Istituto IRRIS di ricerca, sviluppo e strategie della società, cultura e ambiente© Sedež uredništva/Sede della redazione/ Address of Editorial Board: Nacionalni inštitut za biologijo, Morska biološka postaja Piran / Istituto nazionale di biologia, Stazione di biologia marina di Pirano / National Institute of Biology, Marine Biology Station Piran SI-6330 Piran /Pirano, Fornače/Fornace 41, tel.: +386 5 671 2900, fax +386 5 671 2901; e-mail: annales@mbss.org, internet: www.zdjp.si Redakcija te številke je bila zaključena 16. 12. 2024. Sofinancirajo/Supporto finanziario/ Financially supported by: Javna agencija za znanstveno-raziskovalno in inovacijsko dejavnost Republike Slovenije (ARIS) Annales - Series Historia Naturalis izhaja dvakrat letno. Naklada/Tiratura/Circulation: 300 izvodov/copie/copies Revija Annales, Series Historia Naturalis je vključena v naslednje podatkovne baze / La rivista Annales, series Historia Naturalis è inserita nei seguenti data base / Articles appearing in this journal are abstracted and indexed in: BIOSIS-Zoological Record (UK); Aquatic Sciences and Fisheries Abstracts (ASFA); Elsevier B.V.: SCOPUS (NL); Directory of Open Access Journals (DOAJ). To delo je objavljeno pod licenco / Quest’opera è distribuita con Licenza / This work is licensed under a Creative Commons BY-NC 4.0. Navodila avtorjem in vse znanstvene revije in članki so brezplačno dostopni na spletni strani https://zdjp.si/en/p/annalesshn/ The submission guidelines and all scientific journals and articles are available free of charge on the website https://zdjp.si/en/p/annalesshn/ Le norme redazionali e tutti le riviste scientifiche e gli articoli sono disponibili gratuitamente sul sito https://zdjp.si/en/p/annalesshn/ ANNALES · Ser. hist. nat. · 34 · 2024 · 2 Anali za istrske in mediteranske študije - Annali di Studi istriani e mediterranei - Annals for Istrian and Mediterranean Studies UDK 5 Letnik 34, Koper 2024, številka 2 ISSN 1408-53 3X e-ISSN 2591-1783 VSEBINA / INDICE GENERALE / CONTENTS BIOTSKA GLOBALIZACIJA GLOBALIZZAZIONE BIOTICA BIOTIC GLOBALIZATION Malek ALI, Aola FANDI & Christian CAPAPÉ The First Mediterranean Record of Red-Toothed Triggerfish Odonus niger (Balistidae) from the Syrian Coast (Eastern Mediterranean Sea) ............... Prvi zapis o pojavljanju rdečezobe balestre Odonus niger (Balistidae) iz sirske obale (vzhodno Sredozemsko morje) Zafer TOSUNOĞLU & Okan AKYOL Occurrence of Pterois miles (Scorpaenidae) in the Mediterranean Sea ....................................... Pojavljanje navadne plamenke Pterois miles (Scorpaenidae) v Sredozemskem morju Izdihar Ali AMMAR New Non-Native and Rare Marine Invertebrates in Syrian Waters .................... Novi primeri o pojavljanju tujerodnih in redkih morskih nevretenčarjev v sirskih vodah Luca CASTRIOTA, Manuela FALAUTANO & Laura SINAPI A New Locality Record for the Range Expanding Fish Seriola fasciata in the Mediterranean ................. Nova lokaliteta pojavljanja vrste Seriola fasciata, ki širi areal v Sredozemskem morju F. Saadet KARAKULAK, Mehmet GÖKOĞLU, Uğur UZER & Hakan KABASAKAL First Record of the Abudefduf cf. saxatilis/vaigiensis/ troschelii Species Complex (Pisces: Pomacentridae) in the Black Sea ........................ Prvi zapis o pojavljanju primerka vrste iz kompleksa Abudefduf cf. saxatilis/vaigiensis/troschelii (Pisces: Pomacentridae) iz Črnega morja SREDOZEMSKE HRUSTANČNICE SQUALI E RAZZE MEDITERRANEE MEDITERRANEAN SHARKS AND RAYS Farid HEMIDA, Christian REYNAUD & Christian CAPAPÉ Occurrence of the Rare Blonde Ray, Raja brachyura (Rajidae), Off the Algerian Coast (Southwestern Mediterranean Sea) ........................ Pojavljanje redke okraste raže, Raja brachyura (Rajidae), ob alžirski obali (jugozahodno Sredozemsko morje) Hakan KABASAKAL, Uğur UZER & F. Saadet KARAKULAK Occurrence of Longnosed Skate, Dipturus oxyrinchus, in the Sea of Marmara ...................................................... Pojavljanje koničaste raže, Dipturus oxyrinchus, v Marmarskem morju Cem ÇEVİK, Gökhan GÖKÇE & Deniz ERGUDEN Capture of a Juvenile Sharpnose Sevengill Shark, Heptranchias perlo (Bonnaterre, 1788), from the Turkish Coast (Eastern Mediterranean Sea) with Updated Records from Mediterranean Waters ............................................ Ulov mladostnega primerka morskega psa sedmeroškrgarja, Heptranchias perlo (Bonnaterre, 1788), iz turških voda (vzhodno Sredozemsko morje) z posodobljenim seznamom zapisov o pojavljanju v Sredozemskem morju 173 179 199 205 221 213 229 187 ANNALES · Ser. hist. nat. · 34 · 2024 · 2 Eloïse DEYSSON, Sarah FOXONET, Etienne RÉGNIER, Chloé MOSNIER, Florane TONDU, Janis BROUTIN-RENAUD Bruno COGNIE, Ales- sandro DE MADDALENA, Hakan KABASAKAL & Nicolas ZIANI Additional Historical Records of Great White Sharks, Carcharodon carcharias, Caught in the Gulf of Lion, Northwestern Mediterranean Sea, Between the 1920s and 1950s ............................... Dodatni zgodovinski zapisi o belih morskih volkih, Carcharodon carcharias, ujetih v zalivu Lyon (severozahodno Sredozemsko morje) v dvajsetih in petdesetih letih Malek ALI, Aola FANDI, Dima GHANEM & Christian CAPAPÉ Capture of a Juvenile Basking Shark, Cetorhinus maximus (Cetorhinidae), Off the Syrian Coast, With Comments on the Occurrence of the Species in the Levant Basin (Eastern Mediterranean Sea) ................................................ Ulov mladostnega primerka morskega psa orjaka, Cetorhinus maximus (Cetorhinidae), ob sirski obali s komentarji o pojavljanju vrste v levantskem bazenu (vzhodno Sredozemsko morje) Hakan KABASAKAL, Uğur UZER & F. Saadet KARAKULAK Impact of Fishing Capacity and Environmental Parameters on Landings of Hexanchus griseus in the Sea of Marmara ............................................ Vpliv ribolovne zmogljivosti in okoljskih parametrov na ulov vrste Hexanchus griseus v Marmarskem morju MORSKA FAVNA FAUNA FAUNA MARINE FAUNA Tea KNAPIČ, Irena FRKOVIČ, Borut MAVRIČ & Lovrenc LIPEJ An Insight into the Heterobranch Fauna of Fiesa (Slovenia, Northern Adriatic Sea) ................... Vpogled v favno polžev zaškrgarjev Fiese (Slovenija, severni Jadran) Francesco TIRALONGO, Alessandro NOTA, Emanuele MANCINI & Luigi MUSCO Wounds Inflicted on Humans by the White Seabream (Diplodus sargus): First Scientific Report of Aggressive Behavior ................................ Rane, ki jih ljudem zadajajo šargi (Diplodus sargus): prvo znanstveno poročilo o agresivnem vedenju ORNITOFAVNA ORNITOFAUNA ORNITHOFAUNA ANDREA DE ANGELIS & MARIO PELLEGRINI Nuovo Sito di Nidificazione di Aquila Reale Aquila chrysaetos nel Subappennino Abruzzese ...... Novo gnezdišče planinskega orla v subapeninskih Abrucih FLORA FLORA FLORA Amelio PEZZETTA & MARCO PAOLUCCI La flora di Taranta Peligna (Abruzzo, Italia) ............. Flora Taranta Peligna (Abruci, Italija) Kazalo k slikam na ovitku .................................... Index to images on the cover ............................... 251 257 239 301 291 275 317 357 357 6 BIOTSKA GLOBALIZACIJA GLOBALIZZAZIONE BIOTICA BIOTIC GLOBALIZATION 7 ANNALES · Ser. hist. nat. · 34 · 2024 · 2 173 received: 2024-10-06 DOI 10.19233/ASHN.2024.21 THE FIRST MEDITERRANEAN RECORD OF RED-TOOTHED TRIGGERFISH ODONUS NIGER (BALISTIDAE) FROM THE SYRIAN COAST (EASTERN MEDITERRANEAN SEA) Malek ALI Marine Sciences Laboratory, Production Animals Department, Faculty of Agriculture, Tishreen University, Lattakia, Syria e-mail: malekfaresali@gmail.com Aola FANDI Biology Department, Faculty of Sciences, Tartous University, Syria Christian CAPAPÉ Laboratoire d’Ichtyologie, Université de Montpellier, 34095 Montpellier cedex 5, France e-mail: capape@orange.fr ABSTRACT The present paper reports the first record of the red-toothed triggerfish, Odonus niger (Rüppell, 1836), in the Mediterranean Sea. Two specimens were captured in Syrian marine waters (Eastern Mediterranean), measuring 250 mm and 225 mm in total length (TL) and weighing 209 g and 126 g, respectively. The species’ original distri- bution is in the Indo-West Pacific, including the Red Sea, suggesting O. niger is a Lessepsian migrant introduced through the Suez Canal. However, other explanations for its presence in the Mediterranean Sea, such as introduc- tion via ship ballast waters or release from aquariums cannot be totally excluded. This new record confirms that the number of alien species entering the Mediterranean is still increasing and highlights the need for further monitoring to determine the true status of this species in the study area. Key words: Odonus niger, Lessepsian migrant, aquarium, Eastern Levant, Mediterranean Sea PRIMA SEGNALAZIONE MEDITERRANEA DI PESCE BALESTRA NERO ODONUS NIGER (BALISTIDAE) LUNGO LA COSTA SIRIANA (MEDITERRANEO ORIENTALE) SINTESI Il presente lavoro riporta la prima segnalazione del pesce balestra nero, Odonus niger (Rüppell, 1836), nel Mediterraneo. Due esemplari sono stati catturati nelle acque marine siriane (Mediterraneo orientale), di 250 mm e 225 mm di lunghezza totale (TL) e 209 g e 126 g di peso, rispettivamente. La distribuzione originaria della specie è nel Pacifico indo-occidentale, compreso il Mar Rosso, il che suggerisce che O. niger sia un migratore lessepsiano introdotto attraverso il Canale di Suez. Tuttavia, non si possono escludere altre ipotesi per la sua presenza nel Mediterraneo, come l’introduzione attraverso le acque di zavorra delle navi o il rilascio dagli acquari. Questo nuovo dato conferma che il numero di specie aliene che entrano nel Mediterraneo è ancora in aumento e sottolinea la necessità di ulteriori monitoraggi per determinare il vero status di questa specie nell’area di studio. Parole chiave: Odonus niger, migratore lessepsiano, acquario, Levante orientale, Mediterraneo ANNALES · Ser. hist. nat. · 34 · 2024 · 2 174 Malek ALI et al.: THE FIRST MEDITERRANEAN RECORD OF RED-TOOTHED TRIGGERFISH ODONUS NIGER (BALISTIDAE) FROM THE SYRIAN COAST ..., 173–178 INTRODUCTION So far, according to Kovačić et al. (2021), the fam- ily Balistidae has been represented in the Mediterra- nean Sea by two species: the grey triggerfish, Balistes capriscus Gmelin, 1789, and the clown triggerfish, Balistoides conspicillum (Bloch & Schneider, 1801). B. capriscus was reported as B. carolinensis Gmelin, 1789, by Tortonese (1986), who noted that the species was common throughout the Mediterranean Sea and rare in the Black Sea. In Syrian marine waters, B. ca- priscus was first recorded by Gruvel (1931), and more recently by Ali (2018). The species feeds on molluscs and crustaceans, and deposits eggs in the summer in a cavity made by the female and guarded by the male (Tortonese, 1986). Balistoides conspicillium was sighted in an un- derwater photograph by Weitzmann et al. (2015) off Sitges, a city in Costa Daurada, northern Spain. The species is solitary and its diet is similar to that of B. capriscus. It is widely distributed in the Indo-Pacific, from South Africa to Samoa, but is unknown in the Red Sea (Golani et al., 2021). Investigations conducted over the past two decades along the Syrian coast have provided the opportunity to collect two specimens of the red-toothed triggerfish Odonus niger (Rüppell, 1836). This species is widely distributed in the Indo-West Pacific, from East Africa to southern Japan, including the Red Sea, the Ogas- awara Islands, the Great Barrier Reef and the Coral Sea (Randall et al., 1990). It is also present in the Mar- quesas and Society islands (Golani & Fricke, 2018), around Madagascar and Sri Lanka (Fischer & Bianchi, 1984), as well as in Indonesia and the Marianas Is- lands (Heemstra et al., 2022). It has been recorded at depths of up to 130 m off the southwest coast of India (Ramachandran & Philip, 2010). Previously, O. niger had not been confirmed in the Mediterranean Sea; therefore, both collected specimens, and the potential causes of these new findings are discussed here. MATERIAL AND METHODS The study of both specimens follows the protocol of Bello et al. (2014), recommended for first records. The two specimens were caught on 13 September 2024, using a metal bottom cage, at a depth of 15 m on a rocky bottom. The captures occurred 1 km off the fishing port of Banias city at 35°11’ N and 35°55’ E (Fig. 1). The identification of the specimens was based on ichthyological notes and field guides. Morphometric measurements, recorded to the near- est millimetre are summarized in Table 1, along with meristic counts and total body weight to the nearest gram. The specimens were photographed, preserved in 10% buffered formaldehyde, and deposited in the Ichthyological Collection of the Marine Sciences Laboratory (MSL) at the Faculty of Agriculture, Tishreen University (Syria), under reference numbers 2332 MSL (Fig. 2) and 2333 MSL. RESULTS AND DISCUSSION The two specimens measured 250 mm and 225 mm in total length (including long caudal-fin lobes), and weighed 209 g and 126 g, respective- ly. They were classified as O. niger based on the combination of the following main morphological characters: body deep and laterally compressed, with large rectilinear scale plates forming regular rows on thick skin; a prominent groove in the skin extending anteriorly from front of eye equal to, or slightly longer than eye diameter; three prominent dorsal fin spines, with first capable of being locked erect by second; caudal fin rays greatly prolonged above and below; anterior rays of both soft dorsal and anal fins elevated, with margins prominently concave in profile; mouth slightly supraterminal, with lower jaw jutting forward, featuring distinctive red teeth, including two canine-like lateral teeth in upper jaw; enlarged bony scales present behind gill opening; deep groove before the eyes and below the nostrils; dorsal fins with 3 spines, 34 rays; anal fin with 28 rays; pectoral fins with 14 rays; pelvic fins reduced to a single rudiment; caudal fin extremely Fig. 1: Map of the Syrian coast with the black star indicating the capture site of the two specimens of Odonus niger (ref. 2332 and 2333 MSL). Sl. 1: Zemljevid sirske obale z označeno lokaliteto ulova (črna zvezdica) dveh primerkov vrste Odonus niger (ref. 2332 in 2333 MSL). ANNALES · Ser. hist. nat. · 34 · 2024 · 2 175 Malek ALI et al.: THE FIRST MEDITERRANEAN RECORD OF RED-TOOTHED TRIGGERFISH ODONUS NIGER (BALISTIDAE) FROM THE SYRIAN COAST ..., 173–178 lunate, with upper and lower lobes extended into filaments; head and body bluish black. Colour: ground colour of body and fins blackish-brown, with a darker stripe running from mouth to pectoral fin base; posterior margin of caudal fin featuring a lunar-shaped white bar. All these characters are completely consistent with Fischer & Bianchi (1984), Randall et al. (1990), Heemstra & Randall (1993), and Heemstra et al. (2022). The findings constitute the first record of the species from the Syrian coast (Saad, 2005; Ali, 2018), as well as in the Mediterranean Sea, where this spe- cies had not been recorded previously (Golani et al., 2021). However, these observations are not sufficient to suggest that a viable population of the species is successfully established in Syrian marine waters. Ad- ditional records are necessary to determine the true status of the species in the study area and the broader Mediterranean Sea. O. niger is relatively abundant in the Red Sea (Golani & Bogorodsky, 2010; Golani & Fricke, 2018). It has also been recorded along the Egyptian coast of the Red Sea (El Sayed et al., 2017), in the Jordanian Gulf of Aqaba (Khalaf, 2004), and in Somalia (Sommer et al., 1996). O. niger is known to be a strong swimmer (Randall et al., 1990), therefore, given its proximity to the Syrian coast, a migration from the Red Sea through the Suez Canal could be considered a plausible hypothesis. O. niger is a new Lessepsian migrant (sensu Por, 1971), contributing to the increasing number of alien fishes in Tab. 1: Morphometric measurements with percentages of total length (%TL), meristic counts, and total body weight of the Odonus niger captured 1 km off Banias city, Syrian coast (ref. 2332 MSL and 2333 MSL). Tab. 1: Morfometrične meritve z deleži celotne dolžine (%TL), meristična štetja in celokupna teža primerkov vrste Odonus niger, ujetih v vodah, oddaljenih 1 km od mesta Banias, sirska obala (ref. 2332 MSL in 2333 MSL). References MSL 2332 MSL 2333 Morphometric measurements mm %TL mm %TL Total length 250 100 225 100 Standard length 161 64.4 144 64.0 Fork length 197 78.8 175 77.8 Body depth 84 33.6 76 33.8 Head length 55 22 45 20.0 Eye diameter 8 3.2 7 3.1 Snout length 38 15.2 35 15.6 Upper jaw length 8 3.2 6 2.7 Lower jaw length 7 2.8 5 2.2 Base of first dorsal fin length 23 9.2 21 9.3 Base of second dorsal fin length 102 40.8 92 40.9 Base of pectoral fin length 10 4.0 9 4.0 Base of anal fin length 59 23.6 53 23.6 Base pelvic fin length 25 10.0 23 10.2 Pre- first dorsal length 53 21.2 48 21.3 Pre- second dorsal length 93 37.2 84 37.3 Pre-pectoral length 50 20.0 46 20.4 Pre-pelvic length 65 26.0 58 25.8 Pre-anal length 104 41.6 88 39.1 Meristic counts First Dorsal fin rays III III Second Dorsal fin rays 34 34 Pectoral fin rays 14 14 Pelvic fin rays XV XVI Anal fin rays 28 28 Total body weight (gram) 209 126 ANNALES · Ser. hist. nat. · 34 · 2024 · 2 176 Malek ALI et al.: THE FIRST MEDITERRANEAN RECORD OF RED-TOOTHED TRIGGERFISH ODONUS NIGER (BALISTIDAE) FROM THE SYRIAN COAST ..., 173–178 the Mediterranean. According to Golani et al. (2021), 75% of the exotic species recorded in the Mediterranean Sea to date originate from the Indo-Pacific, primarily from the Red Sea. However, as suggested by Golani et al. (2021), other vectors may also be responsible for the introduction of many exotic species, including ship ballast waters and aquarium releases. The latter cause should be particularly considered in relation to O. niger, as it was found to apply to B. conspicillum (Weitzmann et al., 2015). Randall et al. (1990) noted that these balistid species are highly valued and very popular in aquariums, with many available for sale on various online platforms. There- fore, a management plan should be implemented in local fisheries, in cooperation with fishermen, to identify the causes of new arrivals, monitor their presence, and potentially contribute to the establish- ment of a viable population of O. niger in the study area and throughout the Mediterranean Sea. ACKNOWLEDGEMENTS The authors wish to thank Mr. Ali Mousa for collect- ing and providing the specimens of the Red-toothed triggerfish O. niger. They are also grateful to two anon- ymous referees for their useful and helpful comments which considerably improved the scientific quality of the original manuscript. Fig. 2: Odonus niger (ref. 2332) captured 1 km off Banias city, Syrian coast. Scale bar = 30 mm. Sl. 2: Primerek vrste Odonus niger (ref. 2332), ujet v vodah, oddaljenih 1 km od mesta Banias, sirska obala. Merilo = 30 mm. ANNALES · Ser. hist. nat. · 34 · 2024 · 2 177 Malek ALI et al.: THE FIRST MEDITERRANEAN RECORD OF RED-TOOTHED TRIGGERFISH ODONUS NIGER (BALISTIDAE) FROM THE SYRIAN COAST ..., 173–178 PRVI ZAPIS O POJAVLJANJU RDEČEZOBE BALESTRE ODONUS NIGER (BALISTIDAE) IZ SIRSKE OBALE (VZHODNO SREDOZEMSKO MORJE) Malek ALI Marine Sciences Laboratory, Production Animals Department, Faculty of Agriculture, Tishreen University, Lattakia, Syria e-mail: malekfaresali@gmail.com Aola FANDI Biology Department, Faculty of Sciences, Tartous University, Syria Christian CAPAPÉ Laboratoire d’Ichtyologie, Université de Montpellier, 34095 Montpellier cedex 5, France e-mail: capape@orange.fr POVZETEK Avtorji poročajo o prvi najdbi rdečezobe balestre Odonus niger (Rüppell, 1836) v Sredozemskem morju. Gre za dva primerka, ujeta v sirskih vodah (vzhodno Sredozemsko morje), ki sta merila 250 mm in 225 mm v dolžino in tehtala 209 g in 126 g. Vrsta domuje v Indo-zahodnem Pacifiku, vključno z Rdečim morjem, na podlagi česar avtorji sklepajo, da je O. niger lesepska selivka, ki je prišla v Sredozemsko morje skozi Sueški prekop. Vendar drugih razlag za njegovo pojavljanje v Sredozemskem morju, kot je prihod z balastnimi vodami ladij ali izpust iz akvarijev, ni mogoče popolnoma izključiti. Ta novi zapis o pojavljanju potrjuje, da število tujih vrst, ki vstopajo v Sredozemsko morje, še vedno narašča, in narekuje potrebo po nadaljnjem spremljanju te vrste na proučevanem območju, na podlagi katerega bo možno opredeliti pravi status. Ključne besede: Odonus niger, lesepska selivka, akvaristika, vzhodni Levant, Sredozemsko morje ANNALES · Ser. hist. nat. · 34 · 2024 · 2 178 Malek ALI et al.: THE FIRST MEDITERRANEAN RECORD OF RED-TOOTHED TRIGGERFISH ODONUS NIGER (BALISTIDAE) FROM THE SYRIAN COAST ..., 173–178 REFERENCES Ali, M. (2018): An updated Checklist of the Marine fishes from Syria with emphasis on alien species. Medit. Mar. Sci., 19, 388-393. Bello, G., R. Causse, L. Lipej & J. Dulčić (2014): A proposal best practice approach to overcome unverified and unverifiable «first records» in ichthyology. Cybium, 38(1), 9-14. Bilecenoğlu, M., M. Kaya, B. Cihangir & E. Çiçek (2014): An updated check list of the marine fishes of Turkey. Turk. J. Zool., 38, 901-929. El Sayed, H., K. Akel. & P.K. Karachle (2017): The marine ichthyofauna of Egypt. Egyptian J. Aquat. Biol. Fish., 21(3), 81-116. Fischer, W. & G. Bianchi (1984): FAO Species Iden- tification Sheets for Fishery Purposes Western Indian Ocean (Fishing Area 51. Volume 1. FAO, Rome, 606 pp. Golani, D. (2005): Check-list of the Mediterranean Fishes of Israel. Zootaxa, 947, 1-200. Golani, D. & S. Bogorodsky (2010): The Fishes of the Red Sea—Reappraisal and Updated Checklist. Zootaxa, 2463, 1-135. Golani, D. & R. Fricke (2018): Checklist of the Red Sea Fishes with delineation of the Gulf of Suez, Gulf of Aqaba, endemism and Lessepsian migrants. Zootaxa. 4509, 1-215. Golani, D., E. Azzurro, J. Dulčić, E. Massuti & L. Orsi-Relini (2021): Atlas of Exotic Fishes in the Medi- terranean Sea. Second edition. [F. Briand, Ed.]. CIESM Publishers, Paris, Monaco, 365 pp. Gruvel, A. (1931). Les états de Syrie, richesses marines et fluviales. Exploitation actuelle. Avenir. Société d’Éditions géographiques, maritimes et colo- niales, Source gallica.bnf.fr / Bibliothèque nationale de France, 542 pp. Heemstra, P.C. & J.E Randall (1993): FAO Species Catalogue. Vol. 16. Groupers of the world (family Serranidae, subfamily Epinephelinae). An annotated and illustrated catalogue of the grouper, rockcod, hind, coral grouper and lyretail species known to date. FAO Fisheries-Synopsis, Rome, FAO, 16(125), 382 pp. Heemstra, P.C., E. Heemstra, D.A. Ebert, W. Holleman & J.E. Randall (2022): Coastal fishes of the western Indian ocean. Volume 5. South African Institute for Aquatic Biodiversity, a National Re- search Facility of the National Research Foundation (NRF-SAIAB), 491 pp. Khalaf, M. (2004): Fish Fauna of the Jordanian Coast, Gulf of Aqaba, Red Sea. JKAU: Mar. Sci., 15, 23-50. Kovačić, M., L. Lipej, J. Dulčić, S.P. Iglesias & M. Goren (2021): Evidence-based checklist of the Mediterranean Sea fishes. Zootaxa, 4998, 1-115. Por, F.D. (1971): One hundred years of Suez Canal- A century of lessepsian migration: retrospect and viewpoints. Systems Biol., 20(2), 138-159. Ramachandran, S. & K.P. Philip (2010): Popu- lation dynamics of red-toothed triggerfish Odonus niger (Ruppell, 1836) along southwest coast of India. J. Mar. Biol. Ass. India, 52, 105-108. Randall, J.E., G.R. Allen & R.C. Steene (1990): Fishes of the Great Barrier Reef and Coral Sea. Uni- versity of Hawaii Press, Honolulu, Hawaii. 506 pp. Saad, A. (2005): Check-list of bony fish collect- ed from the coast of Syria. Turk. J. Fish. Aquat. Sci., 5, 99-106. Sommer, C., W. Schneider & J.-M. Poutiers (1996): The living marine resources of Somalia. FAO species identification field guide for fishery purposes. FAO, Rome, 422 pp. Tortonese, E. (1986): Balistidae. In: Whitehead, P.J.P., M.L. Bauchot, J.-C. Hureau, J. Nielsen & E. Tortonese (eds): Fishes of the North-eastern Atlantic and the Mediterranean, Vol. 1. Unesco, Paris, pp. 1335-1337. Weitzmann, P., E. Azzurro & L. Mercader (2015): First sighting of Zebrasoma flavescens (Te- leostei:Acanthuridae) and Balistoides conspicillium (Teleostei: Balistidae) in the Mediterranean Sea: two likely aquarium releases. Medit. Mar. Sci., 161, 147-150. ANNALES · Ser. hist. nat. · 34 · 2024 · 2 179 received: 2024-06-14 DOI 10.19233/ASHN.2024.22 OCCURRENCE OF PTEROIS MILES (SCORPAENIDAE) IN THE MEDITERRANEAN SEA Zafer TOSUNOĞLU Ege University Faculty of Fisheries, 35440 Urla, Izmir, Türkiye Mediterranean Conservation Society, 35100 Bornova, İzmir, Türkiye Okan AKYOL Ege University Faculty of Fisheries, Urla, Izmir, Türkiye e-mail: okan.akyol@ege.edu.tr ABSTRACT This paper presents an update of the Mediterranean distribution of Pterois miles, based on a comprehensive list of geo-referenced occurrences up to July 2024, including a maximum size report. On 11 July 2024, a huge speci- men of P. miles was captured by commercial trammel net at a depth of 40 m off Kadırga cove, Marmaris, Muğla. The specimen has a total length of 437 mm and a wet weight of 1268 g. Following the initial Mediterranean record of P. miles in Israel in 1991, the species has exhibited a relatively rapid dispersal rate, subsequently expanding to the northern Aegean Sea (Edremit Bay) and southern Aegean Sea (southern Crete) as well as the Libyan Sea between 2016 and 2018. Since then, the species expanded its distribution range to the northernmost limit of the Adriatic Sea, reaching as far as Southern Sicily and the Gulf of Tunis. Key words: Devil firefish, lionfish, maximum length, distribution, Aegean Sea PRESENZA DI PTEROIS MILES (SCORPAENIDAE) NEL MAR MEDITERRANEO SINTESI Il presente lavoro presenta un aggiornamento della distribuzione mediterranea di Pterois miles, basato su un elenco completo di presenze georeferenziate fino al luglio 2024, compreso un rapporto sulle dimensioni massime. L’11 luglio 2024, un enorme esemplare di P. miles è stato catturato con un tramaglio commerciale a 40 m di profondità al largo di Kadırga cove, Marmaris, Muğla. L’esemplare ha una lunghezza totale di 437 mm e un peso umido di 1268 g. Dopo il primo ritrovamento mediterraneo di P. miles in Israele nel 1991, la specie ha mostrato un tasso di dispersione relativamente rapido, espandendosi successivamente al Mar Egeo settentrionale (Baia di Edremit) e al Mar Egeo meridionale (Creta meridionale), nonché al Mar Libico tra il 2016 e il 2018. Da allora, la specie ha ampliato il suo areale di distribuzione fino al limite più settentrionale dell’Adriatico, raggiungendo anche la Sicilia meridionale e il Golfo di Tunisi. Parole chiave: pesce scorpione, lunghezza massima, distribuzione, Egeo ANNALES · Ser. hist. nat. · 34 · 2024 · 2 180 Zafer TOSUNOĞLU & Okan AKYOL: OCCURRENCE OF PTEROIS MILES (SCORPAENIDAE) IN THE MEDITERRANEAN SEA, 179–186 INTRODUCTION The devil firefish, Pterois miles (Bennet, 1828) is a marine and reef-associated fish that inhabits shallow waters with rocky or sandy bottoms at a depth of 0 - 85 m (Froese & Pauly, 2024). P. miles, which reaches a length of 43 cm (Froese & Pauly, 2024), is an op- portunistic predator that affects ecosystem dynamics through the consumption of large quantities of small- sized fish and crustaceans (Eddy et al., 2016). It is distributed in a wide range, including the tropical waters of the Indian Ocean: the Persian Gulf (Wright, 1988); the Red Sea south to Port Alfred, South Africa and east to Sumatra, Indonesia (Fricke, 1999); and the Atlantic Ocean up to a depth of 60 meters (Som- mer et al., 1996). It has also been detected in the Mediterranean Sea (Golani & Sonin, 1992). P. miles is considered amongst the most successful invaders in the history of aquatic invasions (Bariche et al., 2013). Their fin spines are highly venomous and can be fatal humans (Sommer et al., 1996). A recent genetic study revealed the origin of the lionfish invasion in the Mediterranean Sea (Bariche et al., 2017). The authors determined that the most likely explanation for the Mediterranean invasion was the Lessepsian migration of lionfish from the Red Sea into the Mediterranean through the Suez Canal. P. miles first appeared in the eastern Medi- terranean Sea in 1991 in Haifa Bay, Israel (Golani & Sonin, 1992). After a gap of two decades, it was reported on the Lebanon coast (Bariche et al., 2013), in İskenderun Bay, Türkiye (Turan et al., 2014) and at Rhodes, Greece (Crocetta et al., 2015). Appar- ently, it has spread relatively quickly and has further expanded to the northern Aegean Sea (Edremit Bay) and southern Aegean Sea (southern Crete) as well as the Libyan Sea between 2016 and 2018 (Dailianis et al., 2016; Al Mabruk & Rizgalla, 2019; Aydın et al., 2022). Then, it expanded its distribution range to the northernmost limit of the Ionian Sea, close to the border with the Adriatic Sea (Di Martino & Stancanelli, 2021) to southern Sicily (Azzurro et al., 2017) and to the Gulf of Tunis (Dailianis et al., 2016). This might be considered as the westernmost limit of its current distribution for the time being. In Turkish seas, since the first recording (Turan et al., 2014), the species has been recorded in various studies (Bilge et al., 2016; Yağlıoğlu & Ayaş, 2016; Özgür Özbek et al., 2017; Dağhan & Demirhan, 2020; Tanrıverdi et al., 2022). Sporadically, the fish has moved to the western part of Anatolia. There- fore, the first occurrence reports for the Aegean Sea Fig. 1: A huge Pterois miles, 437 mm TL (1268 g), caught at Marmaris, southeastern Aegean Sea. Sl. 1: Ogromen primerek vrste Pterois miles, 437 mm TL (1268 g), ujet v Marmarisu, jugovzhodno Egejsko morje. ANNALES · Ser. hist. nat. · 34 · 2024 · 2 181 Zafer TOSUNOĞLU & Okan AKYOL: OCCURRENCE OF PTEROIS MILES (SCORPAENIDAE) IN THE MEDITERRANEAN SEA, 179–186 were from the Dalyan coast (Muğla) in 2015 (Turan & Öztürk, 2015). The distribution of the species along the Aegean Sea has expanded towards the northern latitudes of the Aegean Sea. The species has been observed in Kokar Bay, Izmir (Özgül, 2020), Karaburun, Izmir Bay (Oruç et al., 2022) and Edremit Bay (Aydın et al., 2022; Alkan et al., 2023). In this study, we present updated records of P. miles in the Mediterranean, including a recent sighting of a large individual in the southern Aegean Sea. MATERIAL AND METHODS On 11 July 2024, a huge specimen of Pterois miles (Fig. 1) was captured by a commercial tram- mel net (mesh size 100 mm) targeting grouper and common dentex off Kadırga cove, Marmaris, Muğla (coordinates: 36°43’49’’N and 28°18’19’’E), at a depth of 40 m (Fig. 2). Morphometric measurements were recorded to the nearest millimetre and weigh- ing in grams. The specimen was preserved in 6% formaldehyde solution and subsequently deposited in the Ichthyological Collection of the Fisheries Faculty, Ege University, under catalogue number ESFM-PIS/2024-03. To ascertain the distribution of P. miles throughout the Mediterranean Sea, we undertook a review of the literature, applying the criteria between 1 and 5 (i.e. verified presence in collection, publications on evidences from photo, morphological or genetic data, expert providing individual collecting data and exper performing broad study) for the confirmed presence of the fish species (see Kovačić et al., 2020). RESULTS AND DISCUSSION The specimen was measured to the nearest mil- limetre. For species identification, we followed Bariche et al., (2013), Turan et al., (2014), Dağhan & Demirhan (2020) and Froese & Pauly (2024). Morphometric measurements and percentages of total length (TL%) of Pterois miles are provided in Tab. 1. This specimen is of considerable size (437 mm TL, 1268 g wet weight), exceeding the previ- ously reported greatest length in unpublished data by Ulman et al., (2022) (see FishBase). Moreover, Fig. 2: Sampling site (black star) of Pterois miles captured at Marmaris, southeastern Aegean Sea. Sl. 2: Mesto vzorčenja (črna zvezda) primerka vrste Pterois miles, ujetega v Marmarisu, jugovzhodno Egejsko morje. Tab. 1: Morphometric measurements and percentages of total length (TL%) of the Pterois miles, captured at Marmaris, southeastern Aegean Sea. Tab. 1: Morfometrične meritve in deleži celotne dolžine (TL%) primerka vrste Pterois miles, ujetega v Marmarisu, jugovzhodno Egejsko morje. Morphometrics mm %TL Total length 437 - Standard length 340 77.8 Fork length 110 25.2 Body depth 21 4.8 Head length 35 8.0 Eye diameter 119 27.2 Snout length 88 20.1 Upper jaw length 234 53.5 Lower jaw length 102 23.3 Base of first dorsal fin length 27 6.2 Meristic counts Dorsal fin XIII + 10 Anal fin III + 6 Pectoral fin 14 Ventral fin I + 5 Weight (g) 1268 ANNALES · Ser. hist. nat. · 34 · 2024 · 2 182 Zafer TOSUNOĞLU & Okan AKYOL: OCCURRENCE OF PTEROIS MILES (SCORPAENIDAE) IN THE MEDITERRANEAN SEA, 179–186 Tab. 2: Records of Pterois miles throughout the Mediterranean Sea (*BS: beach seine; CCS: communication with citizen scientists; GN: gillnet; LL: longline; OD: observation by diver; SG: speargun; T: trawl; TN: trammel net; WT: wire-trap). Tab. 2: Zapisi o pojavljanju vrste Pterois miles v Sredozemskem morju (*BS: obalna potegalka; CCS: komunikacija na podlagi občanske znanosti; GN: zabodna mreža; LL: parangal; OD: opazovanje potapljača; SG: podvodna puška; T: vlečna mreža; TN: trislojna mreža; WT: žična past). Sampling locations Depth (m) Method of detection* Date N Size range (TL, mm) References Herzliya, Israel 35 T 28 July 1991 1 328 SL Golani & Sonin (1992) Al Minie, Lebanon ? WT 02 Oct. 2012 1 ? Bariche et al. (2013) Al Minie, Lebanon 30 TN 12 Dec. 2012 1 209 Bariche et al. (2013) Limassol, Cyprus ? ? ? Feb. 2013 1 ? Kletou et al. (2016) Cypriot waters 2-35 CCS 2012-2015 79 50-300 Jimenez et al. (2016) Lebanese coasts 12-37 CCS Jun. 2013-Oct. 2015 47 ? Dailianis et al. (2016) Iskenderun Bay, NE Medit. 25 ? 13 Apr.2014 1 276 Turan et al. (2014) Ormidia, Cyprus NE Medit. 10 GN 22 May 2014 1 170 Iglésias & Frotté (2015). Limassol, Cyprus, NE Medit. 15 ? ? Jan.2015 1 ? Kletou et al. (2016) Karpas, N Cyprus, NE Medit. 40 GN 26 Feb.2015 1 373 Oray et al. (2015) Larnaca, Cyprus, NE Medit. 40 ? ? May 2015 1 ? Kletou et al. (2016) Zembra Island, Tunisia 5 ? ? Jun.2015 1 202 Ounifi Ben Amor & Ghanem (2016) Ayios Theodoros, Cyprus, NE Med. 15 ? ? July 2015 1 ? Kletou et al. (2016) Kallithea, Rhodes, SE Aegean 7 OD 15 July 2015 1 ? Crocetta et al. (2015) Plimmiri, Rhodes, SE Aegean ? OD 02 Aug. 2015 1 ? Crocetta et al. (2015) Dalyan, SE Aegean 11 OD ? Aug. 2015 1 ? Turan & Öztürk (2015) Psaropoula, Rhodes, SE Aegean 2 OD 23 Sep. 2015 1 ? Crocetta et al. (2015) Lattakia, Syrian coasts 1 T 28 Sep. 2015 1 211 Ali et al. (2016) Cape Bon, Tunisia ? OD ? Sep. 2015 1 ? Dailianis et al. (2016) Off Kavo, Kriti, Greece ? GN ? Nov. 2015 2 ? Dailianis et al. (2016) Kouremenos Bay, Kriti, Greece 33 GN ? Nov. 2015 1 250 Dailianis et al. (2016) Jableh, Syrian coasts 1 T 10 Dec. 2015 1 269 Ali et al. (2016) Yeşilovacık Bay, NE Medit. 100 T 20 Dec. 2015 1 250 Yağlıoğlu & Ayas (2016) Datça, SE Aegean 10 GN 19 Apr. 2016 1 200 Bilge et al. (2016) SE Kriti, Greece 18-30 GN 24 Jul. 2016 1 100 Dailianis et al. (2016) E Rhodes, SE Aegean 1-50 SG-BS-LL May 2016-Nov. 2017 42 149-315 Zannaki et al. (2019) Karpathos Island, Greece 9-17 OD ? Aug. 2016 3 100-200 Mytilineou et al. (2016) S Sicily, Italy 3.5 OD 23 Sep. 2016 1 120 Azzurro et al. (2017) Kemer, Antalya, NE Medit. 10-15 SG 20 Jan.-10 Feb. 2017 8 85-293 Özgür-Özbek et al. (2017) Didim, SE Aegean 18 OD 05 Apr. 2017 1 ? Yapıcı (2018) Lattakia, Syrian coasts 25 WT 29 May 2017 1 226 Ali et al. (2017) S Cyprus, NE Medit. 5-40 SG Sep. 2017-Aug. 2018 82 158-390 Mouchlianitis et al. (2022) Iskenderun Bay, NE Medit. ? SG-TN Mar. 2018-Apr. 2019 179 145-355 Dağhan & Demirhan (2020) Marsa Metruh, Egypt, SE Medit. 7-27 SG 17 Aug. 2018 2 200-400 Al Mabruk et al. (2020) Gulf of Antalya, NE Medit. 8-22 SG Oct. 2018-May 2019 35 131-352 Tanrıverdi et al. (2022) ANNALES · Ser. hist. nat. · 34 · 2024 · 2 183 Zafer TOSUNOĞLU & Okan AKYOL: OCCURRENCE OF PTEROIS MILES (SCORPAENIDAE) IN THE MEDITERRANEAN SEA, 179–186 according to the records included in this study (see the size range column in Tab. 2), such a large speci- men has never previously been caught. However, a local fisher claimed to have seen one larger than this (Coşkun Kılıç, pers.comm.). Forty-eight distinct sightings of a total of 879 specimens of P. miles were made at about 43 differ- ent locations throughout the Mediterranean from 1991 to 11 July 2024 (see, Tab. 2). A considerable number of photographs of P. miles from a multitude of geographical locations are being uploaded to social media every day; thus, it is evident that the population of P. miles is more substantial than Tab. 2 suggests. To gain a more accurate understand- ing of the situation, we have considered reports published in scientific journals and have omitted reports of lionfish sightings on electronic social media, such as Facebook, along with photographs taken by local divers. As a rapid invader, P. miles reached Tunisia, Italy, Albania and Libya and colonised the majority of the eastern Mediterranean over a three-decade period (Tab. 2). Indeed, the species has become well es- tablished over the past 12 years (as documented by Bariche et al., 2013). A number of studies on inva- sive alien species have attributed this phenomenon to changes in seawater temperatures resulting from global warming (Bianchi & Morri, 2003; Azzurro et al., 2019; Dimitriadis et al., 2020; Turan, 2020; Ul- man et al., 2022). Dimitriadis et al. (2020) posited that the mean winter sea surface temperature (i.e. 15.3oC winter isotherm) represents the primary limiting factor governing the range expansion of the species. Consequently, P. miles could potentially expand further in the Mediterranean Sea, with the exception of the coolest northernmost regions. Turan (2020) supports this point based on a ‘max- like’ distribution mapping analysis that identifies appropriate habitats under the current climate con- dition, P. miles predominantly occurs in the eastern coastal areas of the Mediterranean, with no pattern of distribution in the Marmara and Black Seas. In conclusion, P. miles is now a well-established species, especially in the eastern part of the Mediter- ranean and its population is increasing day by day. Although the continuing distribution of this species cannot be prevented, some efforts can be made to re- duce its population. Kletou et al. (2016) believe that there is a strong motivation to aid removal efforts. The authors argue that the lionfish is safe to consume after the venomous dorsal, pelvic fin and anal fin spines are removed, and its edibility can be pro- moted; removal programs should also be combined with efforts to restore populations of potential preda- tors of lionfish, such as the dusky grouper (Kletou et al., 2016). The fact that lionfish are edible focuses the fight against this invasive species on a catch and consume approach. For example, the Mediterranean Conservation Society (MCS) purchased over four tonnes of lionfish for distribution from small-scale fishermen in the southern Aegean Sea during the last fishing season. As a result of promotional activities carried out by MCS, lionfish are now on the menus of some luxury restaurants and consumed by the public. This removal activity may be a factor limiting the increase of the species in the area. ACKNOWLEDGEMENTS The study was supported by the FAO Project (symbol: GCP/INT/500/GFF) on “non-indigenous species uplifting the Blue Economy” carried out by the Mediterranean Conservation Society. The au- thors would like to thank fishers Coşkun and Adalet Kılıç, who captured the specimen and Dr. Ali Ulaş for their help. Wadi Al-Klag, Libya 25-27 SG 01 Dec. 2018 1 ? Al Mabruk & Rizgalla (2019) Karsa, Libya 8 LL 04 Dec. 2018 1 ? Al Mabruk & Rizgalla (2019) Lecce, Italy, Adriatic ? OD 20 July 2019 1 ? Di Martino & Stancanelli (2021) Dhermi, Albania, Adriatic ? OD 28 July 2019 1 ? Di Martino & Stancanelli (2021) Kokar Bay, SE Aegean Sea 15 SG 26 Aug. 2019 1 144 Özgül (2020) Brindisi, Italy, Adriatic ? OD 09 Aug. 2020 1 ? Di Martino & Stancanelli (2021) Edremit Bay, NE Aegean 70 T 07 Oct. 2020 1 224 Aydın et al. (2022) Karaburun, Izmir, N Aegean 36 OD 18 Mar. 2021 1 309 Oruç et al. (2022) Çökertme, Bodrum, SE Aegean 10 ? 15 July 2021 1 340 Soykan & Ulaş (2022) Vis Island, Croatia, Adriatic 15 OD 13 Aug. 2021 1 150 Dragičević et al. (2021) E Rhodes, Greece, SE Aegean 8-35 GN-TN Apr. 2021-Mar. 2022 363 160-380 Kondylatos et al. (2024) Edremit Bay, NE Aegean 12 SG 11 June 2023 1 297 Alkan et al. (2023) Marmaris, SE Aegean Sea 40 TN 11 July 2024 1 437 Present study ANNALES · Ser. hist. nat. · 34 · 2024 · 2 184 Zafer TOSUNOĞLU & Okan AKYOL: OCCURRENCE OF PTEROIS MILES (SCORPAENIDAE) IN THE MEDITERRANEAN SEA, 179–186 POJAVLJANJE NAVADNE PLAMENKE PTEROIS MILES (SCORPAENIDAE) V SREDOZEMSKEM MORJU Zafer TOSUNOĞLU Ege University Faculty of Fisheries, 35440 Urla, Izmir, Türkiye Mediterranean Conservation Society, 35100 Bornova, İzmir, Türkiye Okan AKYOL Ege University Faculty of Fisheries, Urla, Izmir, Türkiye e-mail: okan.akyol@ege.edu.tr POVZETEK Avtorja poročata posodobljen seznam o razširjenosti navadne plamenke Pterois miles v Sredozemskem morju, ki temelji na izčrpnem seznamu georeferenciranih dogodkov do julija 2024, vključno s poročilom o največji velikosti. Enajstega julija 2024 so s komercialno trislojno mrežo na globini 40 m pri zalivu Kadırga, Marmaris, Muğla ujeli ogromen primerek plamenke. Meril je 437 mm v dolžino in tehtal 1268 g. Po začetnem sredozemskem zapisu o pojavljanju vrste P. miles v Izraelu leta 1991 se je vrsta pričela hitro širiti in se postopno razširila v severno Egejsko morje (zaliv Edremit) in južno Egejsko morje (južna Kreta) ter Libijsko morje med 2016 in 2018. Odtlej je vrsta razširila svoje območje razširjenosti do severne meje razširjenosti v Jadranskem morju, vse do južne Sicilije in Tuniškega zaliva. Ključne besede: navadna plamenka, plamenke, največja dolžina, razširjenost, Egejsko morje ANNALES · Ser. hist. nat. · 34 · 2024 · 2 185 Zafer TOSUNOĞLU & Okan AKYOL: OCCURRENCE OF PTEROIS MILES (SCORPAENIDAE) IN THE MEDITERRANEAN SEA, 179–186 REFERENCES Alkan, Ö., A. Ayaz, U. Altınağaç, U. Özekinci, F. Çakır, İ.B. Daban, Y. Şen, G.E. Uğur & O. Ayaz (2023): An Additional Record of Lionfish Pterois miles (Ben- nett, 1828) in Edremit Bay. Doğa ve Sürdürülebilirlik Derneği, Doğanın Sesi, 6(12), 19-28. (in Turkish). Al Mabruk, S.A.A. & J. Rizgalla (2019): First record of lionfish (Scorpaenidae: Pterois) from Libyan waters. J. Black Sea/Mediterranean Environment, 25(1), 108-114. Al Mabruk, SAA, J. Rizgalla, I. Giovos, & M. Bariche (2020): Social media reveals the first records of the inva- sive lionfish Pterois miles (Bennett, 1828) and parrotfish Scarus ghobban Forsskål, 1775 from Egypt (Mediterra- nean Sea). BioInvasions Records, 9(3), 574–579. Ali, M., H. Alkusairy, A. Saad, C. Reynoud & C. Capapé (2016): First record of Pterois miles (Osteich- thyes: Scorpaenidae) in Syrian waters: Confirmation of its accordance in the eastern Mediterranean. Thishreen University Journal for Research and Scientific Studies- Biological Sciences Series, 38(4), 307-313. Ali, M., C. Reynaud & C. Capapé (2017): Has a viable population of common lionfish, Pterois miles (Scorpaenidae), established off the Syrian coast (Eastern Mediterranean). Annales, Ser. Hist. Nat., 27, 157-162. Aydın, I., S. Ağdamar, & S. Yapıcı (2022): Unwanted guest continues its nortern journey in the Aegean Sea: Pterois miles (Bennett, 1828). Transylv. Rev. Syst. Ecol. Res. 24(3), 55-64. Azzurro, E., B. Stancanelli, V. Di Martino, & M. Bariche (2017): Range expansion of the common lionfish Pterois miles (Bennett, 1828) in the Mediter- ranean Sea: an unwanted new guest for Italian waters. BioInvasions Records, 6(2), 95-98. Azzurro, E., V. Sbragaglia, J. Cerri, M. Bariche, L. Bolognini, J. Ben Souissi, G. Busoni, S. Coco, A. Chryssanthi, E. Fanelli, R. Ghanem, J. Garrobou, F. Gianni, F. Grati, J. Kolitari, G. Latterio, L. Lipej, C. Mazzoldi, N. Milone, F. Pannacciulli, A. Pesic, Y. Samuel-Rhoads, L. Saponari, J. Tomanic, N.E. Topçu, G. Vargiu, & P. Moschella (2019): Climate change, biological invasions, and the shifting distribution of Mediterranean fishes: A large-scale survey based on local ecological knowledge. Global Change Biology, 25, 2779-2792. Bianchi, C.N. & C. Morri (2003): Global sea warm- ing and “tropicalization” of the Mediterranean Sea: Biogeographic and ecological aspects. Biogeographia- The Journal of Integrative Biogeography, 24(1), 319- 329. Bariche, M., M. Torres, & E. Azzurro (2013): The presence of the invasive Lionfish Pterois miles in the Mediterranean Sea. Med. Mar. Sci., 14(2), 292-294. Bariche, M., P. Kleitou, S. Kalogirou, & G. Bernardi (2017): Genetics reveal the identity and origin of the lionfish invasion in the Mediterranean Sea. Scientific Reports, 7(1). Bilge, G., H. Filiz, S. Yapıcı, & A. Gülşahin (2016): On the occurrence of the devil firefısh Pterois miles (Scorpaenidae), from the southern Aegean Sea with an elaborate occurrences in the Mediterranean coast of Turkey. HydroMediT 2016. 2nd International Congress on Applied Ichthyology and Aquatic Environment, Messolonghi, Greece. pp. 324-327. Crocetta, F., D. Agius, P. Balistreri, M. Bariche, Y.K. Bayhan, M. Çakır, S. Ciriaco, M. Corsini-Foka, A. Deidun, R. Elzrelli, D. Ergüden, J. Evans, M. Ghelia, M. Giavasi, P. Kleitou, G. Kondylatos, L. Lipej, C. Mifsud, Y. Özvarol, A. Pagano, P. Portelli, D. Poursanidis, L. Rabaoui, P. Schembri, E. Taşkın, F. Tiralongo, & A. Zenetos (2015): New Mediterranean biodiversity records (October 2015). Med. Mar. Sci., 16(3), 682-702. Dağhan, H. & S.A. Demirhan (2020): Some bio- ecological characteristics of lionfish Pterois miles (Bennett, 1828) in Iskenderun Bay. Marine and Life Sciences, 2(1), 28-40. (In Turkish). Dailianis, T., O. Akyol, N. Babalı, M. Bariche, F. Crocetta, V. Gerovasiliou, R. Ghanem, M. Gökoğlu, T. Hasiotis, A. Izquierdo-Munoz, D. Julian, S. Katsanevakis, L. Lipej, E. Mancini, CH. Mytilineou, K. Ounifi Ben Amor, A. Özgül, M. Ragkousis, E. Rubio-Portillo, G. Servello, M. Sini, C. Stamouli, A. Sterioti, S. Teker, F. Tiralongo, & D. Trkov (2016): New Mediterranean Biodiversity Records (July 2016). Med. Mar. Sci., 17(2), 608-626. Di Martino, V. & B. Stancanelli (2021): The alien lionfish Pterois miles (Bennett, 1828), enters the Adriatic Sea, central Mediterranean Sea. J. Black Sea /Mediterranean Environment, 27(1), 104-108. Dimitriadis, C., M. Galanidi, A. Zenetos, M. Corsini-Foka, I. Giovos, P.K. Karachle, I. Fournari- Konstantinidoy, E. Kytinou, Y. Issaris, E. Azzurro, L. Castriota, M. Falautano, A. Kalimeri, & S. Katsane- vakis (2020): Updating the occurrences of Pterois miles in the Mediterranean Sea, with considerations on thermal boundaries and future range expansion. Med. Mar. Sci., 21(1), 62-69. Dragičević, B., P. Ugarković, M. Krželj, D. Zu- rub, & J. Dulčić (2021): New record of Pterois cf. miles (Actinopterygii: Scorpaeniformes: Scorpaeni- dae) from the eastern middle Adriatic Sea (Croatian waters): Northward expansion. Acta Ichthyol. Pis- cat., 51(4), 379-383. Eddy, C., J. Pitt, J.A. Morris Jr., S. Smith, G. Goodbody-Gringley, & D. Bernal (2016): Diet of inva- sive lionfish (Pterois volitans and P. miles) in Bermuda. Mar. Ecol. Prog. Ser., 558, 193-206. Froese, R. & D. Pauly (2024): FishBase. World Wide Web electronic publication. www.fishbase.org, version (02/2024). ANNALES · Ser. hist. nat. · 34 · 2024 · 2 186 Zafer TOSUNOĞLU & Okan AKYOL: OCCURRENCE OF PTEROIS MILES (SCORPAENIDAE) IN THE MEDITERRANEAN SEA, 179–186 Fricke, R. (1999): Fishes of the Mascarene Islands (Réunion, Mauritius, Rodriguez): an annotated check- list, with descriptions of new species. Koeltz Scientific Books, Koenigstein, Theses Zoologicae, 31, 759 pp. Golani D. & O. Sonin (1992): New records of the Red Sea fishes, Pterois miles (Scorpaenidae) and Pteragogus pelycus (Labridae) from the eastern Medi- terranean Sea. Japanese Journal of Ichthyology, 39(2), 167-169. Iglésias, S. & L. Frotté (2015): Alien marine fishes in Cyprus: update and new records. Aquatic Invasions, 10(4), 425-438. Jimenez, C., A. Petrou, V. Andreou, L. Hadjioan- nou, W. Wolf, N. Koutsoloukas, & R. Abu Alhaija (2016): Veni, vidi, vici: the successful establishment of the lionfish Pterois miles in Cyprus (Levantine Sea). Commission Internationale pour l’Exploration Scien- tifique de la Méditerranée, CIESM Congress, 41, 417. Kletou, D., J.M. Hall-Spencer, & P. Kleitou (2016): A lionfish (Pterois miles) invasion has begun in the Mediterranean Sea. Mar. Biodiver. Rec., 9, 46. Kondylatos, G., A. Theocharis, M. Mandalakis, M. Avgoustinaki, T. Karagyaurova, Z. Koulocheri, S. Vardali, & D. Klaoudatos (2024): The Devil Firefish Pterois miles (Bennett, 1828): Life History Traits of a Potential Fishing Resource in Rhodes (Eastern Mediter- ranean). Hydrobiology, 3, 31-50. Kovačić, M., L. Lipej & J. Dulčić (2020): Evidence approach to checklists: critical revision of the checklist of the Adriatic Sea fishes. Zootaxa, 4767(1), 1-55. Mouchlianitis, F.A., G. Kalaitzi, P. Kleitou, I. Savva, D. Kletou, & K. Ganias (2022): Reproductive dynamics of the invasive lionfish (Pterois miles) in the Eastern Mediterranean Sea. J. Fish Biol., 100, 574-581. Mytilineou, Ch., E.H. Kh. Akel, N. Babalı, P. Balistre- ri, M. Bariche, Y.Ö. Boyacı, L. Client, C. Constantinou, F. Crocetta, M. Çelik, H. Dereli, C. Dounas, F. Durucan, A. Garrido, V. Gerovasiliou, K. Kapiris, T. Kebapçıoğlu, P. Kletiou, A. Krystalas, L. Lipej, I. Maina, P. Marakis, B. Mavric, R. Moussa, L. Pena-Rivas, D. Poursanidis, W. Renda, S.I. Rizkalla, A. Rosso, T. Scirocco, F. Sciuto, G. Servello, F. Tiralongo, S. Yapıcı, & A. Zenetos (2016): New Mediterranean Biodiversity Records (November, 2016). Med. Mar. Sci., 17(3), 794-821. Oray, I.K., E. Sınay, F.S. Karakulak, & T. Yıldız (2015): An expected marine alien fish caught at the coast of Northern Cyprus: Pterois miles (Bennett, 1828). J. Appl. Ichthyol., 31(4), 733-735. Oruç, A. Ç., T. Şensurat Genç, A. Özgül, & A. Lök (2022): The northernmost dispersal record of the lion- fish, Pterois miles (Bennett, 1828) for the Aegean Sea. Ege J. Fish. & Aquat. Sci., 39(1), 84-87. Ounifi Ben Amor, K. & R. Ghanem (2016): New record of the lionfish Pterois miles in Tunisian waters. In: Dailianis et al., Medit. Mar. Sci., 17, 612-613. Özgül, A. (2020): Occurrence of lionfish, Pterois miles (Bennett, 1828) in the coast of Aegean Sea (Tur- key): The northernmost dispersal record. Ege J. Fish. & Aquat. Sci., 37(3), 313-317. Özgür Özbek, E., S. Mavruk, I. Saygu, & B. Öztürk (2017): Lionfish distribution in the eastern Mediter- ranean coast of Turkey. J. Black Sea / Mediterranean Environment, 23(1), 1-16. Sommer C., W. Schneider, & J.M. Poutiers (1996): FAO species identification field guide for fishery pur- poses. The living marine resources of Somalia. FAO, Rome, 376 pp. Soykan, O. & A. Ulaş (2022): Maximum length record and some biological characters of devil firefish Pterois miles Bennett, 1828 for Aegean Sea, Turkey. Ege J. Fish. & Aquat. Sci., 39(2), 160-164. Tanrıverdi, R., M. Gökoğlu, & J. Korun (2022): First Observations on the Stomach Contents of Devil Firefish, Pterois miles (Bennett, 1828) in the Gulf of Antalya, Turkey. Acta Natura et Scientia, 3(1), 24-31. Turan, C., D. Ergüden, M. Gürlek, D. Yağlıoğlu, A. Uyan, & N. Uygur (2014): First record of the Indo-Pacific lionfish Pterois miles (Bennett, 1828) (Osteichthyes: Scorpaenidae) for the Turkish marine waters. J. Black Sea/Mediterranean Environment, 20, 158-163. Turan, C. & B. Öztürk (2015): First record of the lionfish Pterois miles from the Aegean Sea. J. Black Sea/Mediterranean Environment, 21, 334-338. Turan, C. (2020): Species distribution modelling of invasive alien species; Pterois miles for current dis- tribution and future suitable habitats. Global Journal of Environmental Science and Management (GJESM), 6(4), 429-440. Ulman, A., S. Kalogirou, & D. Pauly (2022): The Dynamics of Maximum Lengths for the Invasive Sil- vercheeked Toadfish (Lagocephalus sceleratus) in the Eastern Mediterranean Sea. J. Mar. Sci. Eng. 10, 387. https://doi.org/ 10.3390/jmse10030387. Wright J.M. (1988): Seasonal and spatial differ- ences in the fish assemblage of the non-estuarine Sulaibikhat Bay, Kuwait. Mar. Biol., 100, 13-20. Yağlıoğlu, D., & D. Ayas (2016): New occurrence data of four alien fishes (Pisodonophis semicinctus, Pterois miles, Scarus ghobban and Parupeneus forsskali) from the North Eastern Mediterranean (Yeşilovacık Bay, Turkey). Biharean Biologist, 10(2), 150-152. Yapıcı, S. (2018): Piscis non grata in the Mediter- ranean Sea: Pterois miles (Bennett, 1828). Ege J. Fish. & Aquat. Sci., 35(4), 467-474. Zannaki, K., M. Corsini-Foka, T.E. Kampouris, & I.E. Batjakas (2019): First results on the diet of the in- vasive Pterois miles (Actinopterygii: Scorpaeniformes: Scorpaenidae) in the Hellenic waters. Acta Ichthyol. Piscat., 49(3), 311-317. ANNALES · Ser. hist. nat. · 34 · 2024 · 2 187 received: 2024-08-14 DOI 10.19233/ASHN.2024.23 NEW NON-NATIVE AND RARE MARINE INVERTEBRATES IN SYRIAN WATERS Izdihar Ali AMMAR Department of Marine Biology, High Institute of Marine Research, Tishreen University, Lattakia, Syria e-mail:izdihar.ali.ammar@tishreen.edu.sy; izdiammar@gmail.com ABSTRACT Recent biological surveys of the Syrian coast have documented the first occurrences of non-native species from various origins, as well as rare native species. This paper describes the first findings of Isognomon bicolor (C. B. Adams, 1845), Escharoides coccinea (Abildgaard, 1806), Tylodina perversa (Gmelin, 1791), Planocera graffi Lang, 1879, and Planocera pellucida (Mertens, 1833) in Syrian waters, and provides further information on Branchiomma luctuosum (Grube, 1870). The impact of non-native species on native biodiversity is briefly discussed. Key words: non-native species, rare species, Eastern Mediterranean, Syria NUOVE SPECIE DI INVERTEBRATI MARINI ALLOCTONI E RARI IN ACQUE SIRIANE SINTESI Recenti indagini biologiche lungo la costa siriana hanno documentato le prime presenze di specie alloctone di varia origine e di rare specie autoctone. Il presente lavoro descrive i primi ritrovamenti di Isognomon bicolor (C. B. Adams, 1845), Escharoides coccinea (Abildgaard, 1806), Tylodina perversa (Gmelin, 1791), Planocera graffi Lang, 1879 e Planocera pellucida (Mertens, 1833) nelle acque siriane e fornisce ulteriori informazioni su Branchiomma luctuosum (Grube, 1870). L’impatto delle specie alloctone sulla biodiversità autoctona viene brevemente discusso. Parole chiave: specie alloctone, specie rare, Mediterraneo orientale, Siria ANNALES · Ser. hist. nat. · 34 · 2024 · 2 188 Izdihar Ali AMMAR: NEW NON-NATIVE AND RARE MARINE INVERTEBRATES IN SYRIAN WATERS, 187–198 INTRODUCTION The dispersal of non-native species far from their original distribution areas, along with the expan- sion of their geographical range and impact, is a significant concern in biology and ecology (Albano et al., 2021a; MMC, 2024). The migration of these species occurs through various pathways, including biofouling (Ulman et al., 2019), ballast water, wa- terways, and mariculture (Vidas & Kostelac, 2011). The presence of invasive species in shipyards and marine docks reinforces the belief that ports are the main transit gateway for these species via shipping (Tempesti et al., 2020; Massé et al., 2023; Serrano et al., 2023). Inventories of non-native species have been compiled for various regions of the Mediter- ranean Sea, with 1006 non-native marine species documented as of 2020 (Galanidi et al., 2023). An increase in the number of species of tropical Atlantic and Indo-Pacific origin has been reported through- out the Mediterranean Sea, with the largest number of them found in the Eastern Mediterranean and Italy (Tiralongo et al., 2022; Zenetos et al., 2022; Christidis et al., 2024), This significant change in the species composition of Mediterranean bio-commu- nities is attributed to the environment’s readiness to be invaded by alien species due to the diversity of climatic conditions and circumstances across its regions, from temperate to subtropical (Vermeij, 2011; Pisano et al., 2020). The climate warming in the eastern Mediterranean is accelerating the loss of native biodiversity and creating conditions suitable for the settlement and stability of tropical species (Albano et al., 2021b; Digenis et al., 2024). However, continuing research and increased field efforts help track the presence of new and rare invertebrate species in the Mediterranean Sea and determine their biological and environmental characteristics. Reporting the occurrence of rare and endangered species and studying their geographical distribution is important for enhancing knowledge of biodiversity and managing these species. Many rare species in the Mediterranean have been discussed in collective articles (Santin et al., 2021; Tsagarakis et al., 2021), and many have been documented in specific habitats such as marine protected areas and caves (UNEP/MAP - SPA/RAC, 2022). The marine en- vironment in Syria, part of the eastern Mediterranean, has seen a significant rise in the number of non-na- tive species discovered in recent years, especially at port sites, which are hotspots for biological invasion. Their percentage exceeded 36% in the fishing port of Ras al-Basit (Alo, 2024) and 50% in the Al-Massab basin (Ammar, 2023a). Among them, several Atlantic tropical species have been documented, including the anemone Teimatactis panamensis (Verrill, 1869) (Arabia et al., 2023), the yellow sponge Aplysina insularis (Duchassaing & Michelotti, 1864) (Ammar et al., 2023a), and the red alga Hypnea cornuta (Kützing) J. Agardh, as well as some cephalopods and marine crabs (Ammar et al., 2023b). Their presence can be attributed to maritime transport activities, which have greatly aided long-distance migration of warm-water species to environments experiencing increasing temperatures due to global warming, especially to the eastern Mediterranean (Costa et al., 2019; Zittis et al., 2022). In this research, we highlight records of marine Fig. 1: Study areas in the Syrian coast. Sl. 1: Obravnavana območja sirske obale. ANNALES · Ser. hist. nat. · 34 · 2024 · 2 189 Izdihar Ali AMMAR: NEW NON-NATIVE AND RARE MARINE INVERTEBRATES IN SYRIAN WATERS, 187–198 invertebrates new to Syrian waters, in particular non-native benthic species, but also rare native species. The continuous influx of non-native benthic species into the Syrian marine environment, and the increasing number of newly established species pose a significant threat to local marine biodiversity. This trend aligns with a potential scenario in which the entire Mediterranean Sea transforms into a tropical sea due to the invasion of species from the tropical Atlantic, as well as Indian and Pacific Oceans (Alba- no et al., 2024). MATERIAL AND METHODS The species were observed and collected through diving between 2020 and 2024 from rocky substrates at several locations in the tidal and subtidal zones of the southern and northern sectors of the Syrian coast (Fig. 1). Some species were observed and photographed on site, while specimens of others were collected, transported to the laboratory at the High Institute of Marine Research, and preserved in 5% formaldehyde. The samples were classified following the keys of Riedl (2011), Bariche (2012), and Zenetos et al. (2003), along with specialized references and databases (Mol- luscaBase, 2023), adopting the nomenclature from the World Register of Marine Species (WoRMS, 2024). RESULTS AND DISCUSSION Planocera graffi Lang, 1879 Planocera pellucida (Mertens, 1833) (Platyhelminthes: Polycladida: Planoceridae) These two species belong to the phylum Platyhel- minthes, or flatworms. This is a very diverse phylum with more than 100,000 species known to date (Rawlinson, 2014). The genus Planocera Blainville, 1828 is widely distributed throughout the world’s seas and is represented in the Mediterranean Sea by three species (Rawlinson, 2014): Planocera folia Grube, 1840, Planocera graffi Lang, 1879, and Pla- nocera ceratommata (Palombi, 1936). Five individuals belonging to the genus Planoc- era Blainville, 1828, were collected in 2021, 2022, and 2023 from four different sites. The samples were photographed, collected, and preserved in 5% formalin. Two individuals were collected in 2022, respectively, from the underside of beach stones near the High Institute of Marine Research (35.5922090°N, 35.742187°E) (Fig. 2a) and from the Al-Massab site north of Tartus (34.9684°N, 35.8750°E) (Fig. 2b). Both were classified as Pla- nocera graffi Lang, 1879, identified according to relevant references (Lang, 1879, 1884; Faubel, 1983; Digenis et al., 2024). The length of the individuals did not exceed 12 mm and the width was approximately 9 mm. The body shape was broadly oval, almost round, with the edges slightly ruffled; the ground color was yellow-orange, with an accumulation of reddish network-like pigment granules along the midline of the body following the branches of the intestine. The terminal branches on the dorsal side and the edges of the body of this species can sometimes reflect the white color. The body appeared fleshy but very transparent and delicate. There were two conical tentacles near the brain, away from the edges, with numerous eyes at the base of each tentacle. There were many small cerebral eyes in front of and behind the tentacles, the latter more abundant than the former. The broad, frilled pharynx occupied the central region of the body. A third specimen of P. graffi was collected on 1 September 2021 from the fishing port of Ras al-Basit (35.854361°N, 35.817528°E). It was characterized by its thickness, the white coloration of its ventral face, and different patterns on its upper surface (Fig. 2c). A similar individual (a fourth specimen) of the same species was collected from the Marine Research Area in the same year (Fig. 2d). Planocera graffi was first described in the Gulf of Naples, Italy (Lang, 1879, 1884; Tyler et al., 2012). Its presence has since been recorded in Cape Verde, along the Catalan coast (Faubel & Noreña, 2001), and the Spanish coast (Marquina et al., 2014). While it has recently also appeared in marine caves in Greece (Digenis et al., 2024), this is the first time it has been reported from Syria and the eastern Mediterranean. It is unclear whether this delay in its discovery is due to the species’ rarity in the region or its late, only recent arrival in the area. A fifth Planocera specimen was collected on 22 September 2023 from the beach of Chalet Al-Basit (35.850389°N, 35.842139°E) at a depth of 3 m, and was identified as P. pellucida (Mertens, 1833) (Fig. 2e), a cosmopolitan species occurring in the Atlan- tic, North Sea, Pacific Ocean, and Red Sea (Faubel, 1984; Marquina et al., 2014; Digenis et al., 2024). Lang (1879, 1884) noted strong similarity between P. pellucida and P. pelagica (Moseley, 1877), which led Faubel to adopt the former name as a synonym of the latter (1983). Bock (1913) and Faubel (1983) also explained some morphological differences between P. pellucida and P. graffi. The former is typically oval and tapers towards the back, while the latter is round and sometimes wider than it is long. However, P. pellucida may exhibit both slight- ly elongated and rounded forms (Prudhoe, 1985), and this variation is the only difference between the two species. An anatomical study conducted on samples of the two species from the Atlantic Ocean and Mediterranean Sea showed no differences be- tween them, leading to suggestion to synonymize ANNALES · Ser. hist. nat. · 34 · 2024 · 2 190 Izdihar Ali AMMAR: NEW NON-NATIVE AND RARE MARINE INVERTEBRATES IN SYRIAN WATERS, 187–198 P. graffi with P. pellucida (Marquina et al., 2014). Consequently, the distribution of P. pellucida now also includes the Mediterranean (Cuadrado et al., 2021). It is worth noting that the finding described in the present study is the first record of this species in Syrian coastal waters. Tylodina perversa (Gmelin, 1791)  (Heterobranchia: Umbraculidae: Tylodinidae) This species of mollusk is typically found in the North Atlantic Ocean and in the western and eastern Mediterranean (WoRMS, 2024), but it has also been recorded in the Aegean and Mediterranean Turkish waters (Öztürk et al., 2014) and reported from the Levantine Basin, specifically Cyprus (Öztürk et al., 2004). Recently, it has also appeared in the western and eastern Adriatic according to Zenetos et al. (2016) and, spotted at a depth of 12.3–31.4 m, on the Sicilian island of Pantelleria (Lombardo & Marletta, 2023). A single specimen, not exceeding 3 cm in length, was observed and photographed on 18 June 2024, on the Latakia coast opposite Sports City (35.572912°N, 35.732057°E), at a depth of 9–10 meters (Fig. 3). It was identified from photos following Riedl (2011). Tylodina perversa is commonly found on yellow sponges of the genus Aplysina. In fact, the presence of two species from this genus, A. insularis (Duchas- saing & Michelotti, 1864) and A. aerophoba Nardo, 1843, has been previously documented at this site and several others along the Syrian coast (Ammar et al., 2008; Ammar et al., 2023a). This is the first observation of T. perversa on the Syrian coast. The species was not included in the list by Ammar (2024) as it was discovered after the publication of that work. Isognomon bicolor (C. B. Adams, 1845) (Mollusca: Bivalvia: Ostreida: Isognomonidae) The purse oyster I. bicolor is distributed in the South Atlantic Ocean, including the Caribbean Sea, Colombia, Cuba, the Gulf of Mexico, and Venezuela. The presence of the genus Isognomon was first re- corded in the Mediterranean Sea in 2004 (Öztürk & Salman, 2004) and confirmed in Turkey and Greece in 2017 (Ovalis & Zenetos, 2017; Angelidis, 2017). It was also recorded in Libya, Cyprus, and the Aegean Sea but under different names, until molecular evi- dence confirmed that the species found in the Med- iterranean was the Atlantic oyster Isognomon bicolor. Fig. 2: Different specimens of Platyhelminthes Planocera graffi (a, b, c, d) and Planocera pellucida (e) from the Syrian coast. Sl. 2: Različni primerki vrtinčarjev Planocera graffi (a, b, c, d) in Planocera pellucida (e) iz sirske obale. ANNALES · Ser. hist. nat. · 34 · 2024 · 2 191 Izdihar Ali AMMAR: NEW NON-NATIVE AND RARE MARINE INVERTEBRATES IN SYRIAN WATERS, 187–198 Fig. 3: Tylodina perversa from Latakia coast (Syria). Photograph by Nouh Abbas. Sl. 3: Tylodina perversa iz obale Latakie (Sirija). Fotografija: Nouh Abbas. Fig. 4: Isognomon bicolor from the Al-Ahlam beach near Tartus (a) and from the Tartus seaport (b). Sl. 4: Isognomon bicolor s plaže Al-Ahlam beach blizu Tartusa (a) in iz pristanišča Tartus (b). ANNALES · Ser. hist. nat. · 34 · 2024 · 2 192 Izdihar Ali AMMAR: NEW NON-NATIVE AND RARE MARINE INVERTEBRATES IN SYRIAN WATERS, 187–198 This finding suggests that global climate change may have facilitated the species’ introduction and rapid spread in the Mediterranean Sea (Garzia et al., 2022). In Syria, the species was observed, photographed, and collected for the first time on the intertidal rocky shore at Ahlam Beach (34.863154°N, 35.886355°E) near Tartus (Ammar, 2023b) on 31 May 2023 (Fig. 4a). The specimens were identified following Zenetos et al. (2003) and Garzia et al. (2022). Subsequently, many additional individuals were collected from Tar- tus seaport (34.87395°N, 35.880702°E) in June 2024 (Fig. 4b). Current field work reports an abundance of I. bicolor in the ports of Tartus and Arwad Island. Escharoides coccinea (Abildgaard, 1806) (Bryozoa: Gymnolaemata: Cheilostomatida: Exochellidae) The bryozoan Escharoides coccinea forms or- ange-red, crust-like colonies composed of numerous square zooids with a convex surface. The upper sur- face of each zooid exhibits a wide orifice covered by a gill structure featuring a broad shelf along the outer edge and tooth-like projections along its inner edge. The individuals (zoophages) are separated from each other by deep furrows. The side of the opening that faces the colony edge bears an arch of 6 long tubular spines and is lined by large pores (source: Bryozoa of the British Isles https://britishbryozoans.myspecies. info/). The species was observed in March 2020, on the rocky bottom of the shallow coastal area of the Ibn Hani Marine Protected Area (MPA) at a depth of 5 m (Fig. 5) and identified from photos following Richards (2008) and the Checklist dataset of Bryozoa of the British Isles. The species is found in the North Atlantic (Davoult et al., 1993) and the Mediterranean Sea (Gerovasileiou & Rosso, 2016; Achilleos et al., 2020). This bryozoan has not been recorded in Syria before. Branchiomma luctuosum (Dalyell, 1853) (Annelida: Polychaeta: Sabellida: Sabellidae) The polychaete B. luctuosum is an invasive non-na- tive species from the Red Sea (Fernández-Romero et al., 2021; Galanidi et al., 2023). It is one of the most frequently recorded non-native species in the Mediterranean, from the western to the eastern basin (Çinar, 2009; Tempesti et al., 2020), and is currently spreading along the Mediterranean coasts of Moroc- co (Mabrouki & Taybi, 2024). Several individuals of this invasive species were observed in October 2021 in the subtidal zone of the Al-Massab basin north of Tartus (Ammar, 2023a), where the bottom is rocky and covered by a thin layer of sand (Fig. 6a, b, c). Identification was carried out following El Haddad et al. (2008) and Licciano et al. (2012). A clear decline in the native species Sabella spallanzanii (Gmelin, 1791) on the Syrian coast may have been brought on by the presence of B. luctuosum (personal obser- vations), as competition between these two species is also believed to exist in Mediterranean ports and coastal ponds (Flagella & Abdulla, 2005). Large Fig. 5: Underwater photographs of the bryozoan Escharoides coccineaat from the Ibn Hani MPA, north of Latakia (Syria). Photograph by Nouh Abbas. Sl. 5: Podvodne fotografije mahovnjaka vrste Escharoides coccineaat iz morskega zavarovanega območja Ibn Hani,MPA, severno od Latakie (Sirija). Fotografija: Nouh Abbas. ANNALES · Ser. hist. nat. · 34 · 2024 · 2 193 Izdihar Ali AMMAR: NEW NON-NATIVE AND RARE MARINE INVERTEBRATES IN SYRIAN WATERS, 187–198 numbers of B. luctuosum were collected recently, in June 2024, as part of biofouling removal in Tartus seaport (Fig. 6d). Unpublished data from an ongoing study limited to the fishing ports of Tartus and Arwad Island indicate a high proportion of non-native bivalves, echinoderms, ascidians, and polychaetes, with some species even becoming dominant (Ammar, 2023a; Alo, 2024). Studies examining the spread of non-native species in Syrian ports, particularly the two largest commercial terminals in Tartus and Latakia, and the oil port of Ba- nias, but also the main fishing ports in Banias, Jableh, and Latakia, will no doubt contribute to the early detection of these species, help explain the mecha- nisms of their migration and arrival in the region, and fill related knowledge gaps. Furthermore, these data could be integrated into monitoring and assessment programs for the Mediterranean Sea. The occurrence of Atlantic species reported in the present study (O. patagonica and I. bicolor) and others previously documented in Syria and the Levantine Sea, along with their increasing numbers over time, confirms the rapid trend of these species passing through the Strait of Gibraltar and the west- ern Mediterranean to settle in the region (Bianchi et al., 2012). The Syrian coast evidently provides a favorable environment for these newcomers, which could significantly impact native biodiversity in the eastern Mediterranean if they succeed in establishing themselves. Fig. 6: The polychaete Branchiomma luctuosum from Tartus (Syria). Photograph by Mahmoud Halhal. Sl. 6: Mnogoščetinec vrste Branchiomma luctuosum iz Tartusa (Sirija). Fotografija: Mahmoud Halhal. ANNALES · Ser. hist. nat. · 34 · 2024 · 2 194 Izdihar Ali AMMAR: NEW NON-NATIVE AND RARE MARINE INVERTEBRATES IN SYRIAN WATERS, 187–198 NOVI PRIMERI O POJAVLJANJU TUJERODNIH IN REDKIH MORSKIH NEVRETENČARJEV V SIRSKIH VODAH Izdihar Ali AMMAR Department of Marine Biology, High Institute of Marine Research, Tishreen University, Lattakia, Syria e-mail:izdihar.ali.ammar@tishreen.edu.sy; izdiammar@gmail.com POVZETEK Nedavne biološke raziskave sirske obale so obelodanile prve pojave nekaterih tujerodnih vrst iz različnih okolij, pa tudi nekatere redke domorodne vrste. Avtor opisuje prvi primer najdbe vrst Isognomon bicolor (C. B. Adams, 1845), Escharoides coccinea (Abildgaard, 1806), Tylodina perversa (Gmelin, 1791), Planocera graffi Lang, 1879, in Planocera pellucida (Mertens, 1833) v sirskih vodah ter podaja dodatne podatke o vrsti Branchiomma luctuosum (Grube, 1870). Nadalje avtor razpravlja o vplivu tujerodnih vrst na domorodno biodiverziteto. Ključne besede: tujerodne vrste, redke vrste, vzhodno Sredozemsko morje, Sirija ANNALES · Ser. hist. nat. · 34 · 2024 · 2 195 Izdihar Ali AMMAR: NEW NON-NATIVE AND RARE MARINE INVERTEBRATES IN SYRIAN WATERS, 187–198 REFERENCES Achilleos, K., C. Jimenez, B. Berning & A. Petrou (2020): Bryozoan diversity of Cyprus (east- ern Mediterranean Sea): first results from census surveys (2011-2018). Mediterranean Marine Sci- ence, 21(1): 228-237. http://dx.doi.org/10.12681/ mms.2120. Albano, P., J. Steger, J., P.A.J. Bakker, C. Bogi, M. Bošnjak, T. Guy-Haim, F. Huseyinoglu, P.L. LaFollette, H. Lubinevsky, M. Mulas, M. Stockinger, M. Azzarone & B. Sabelli (2021a): Numerous new records of tropical non-indigenous species in the Eastern Mediterranean highlight the challenges of their recognition and identification. ZooKeys, 1010, 1-95. https://doi.org/10.3897/ zookeys.1010.58759. Albano, P., J. Steger, M. Bošnjak, B. Dunne, Z. Guifarro, E. Turapova, Q. Hua, D. Kaufman, G. Rilov & M. Zuschin (2021b): Native biodiversity collapse in the eastern Mediterranean. Proceed- ings of the Royal Society B: Biological Sciences. 288. 20202469. 10.1098/rspb.2020.2469. Albano, P., L. Schultz, J. Wessely, M. Taviani, S. Dullinger & S. Danise (2024): The dawn of the trop- ical Atlantic invasion into the Mediterranean Sea. Proceedings of the National Academy of Sciences of the United States of America. 121. e2320687121. 10.1073/pnas.2320687121. Alo, A. (2024): Study of zoobenthic communities in Ras al-Basit and Al-Ahlam beach, determination of genetic structure of tow invasive species Bra- chidontespharaonis and Portonus pelagicus. MSc, thesis, High Institute of marine research, Tishreen univ. 160 pp. Ammar, I., I. Ibrahim & G. Abbas (2008): Primary Study on the Distribution of Sponges and Associated Biota of the Syrian Coast. Tishreen University Journal for Research and Scientific Studies - Biological Sciences Series, 30(3), 45-64. (In Arabic). Ammar, I.A. (2023a): A recent study of biodiver- sity of marine zoobenthos in Al-Masab basin near Tartous, with marine zoobenthos in Al-Masab basin near Tartous, with record of non-indigenous species for the first time in Syria. Damascus University Journal for the basic science, 39(3), 67-87. (Arabic, English Abstract). Ammar, I.A. (2023b): Climate changes in the Eastern Mediterranean Sea and their potential impacts on the benthic fauna in Syria. Journal of King Abdulaziz University: Marine Sciences, 33(1), 75-91. Ammar, I.A. (2024): A preliminary checklist of marine heterobranchs (mollusca: gastropoda: heterobranchia) of Syria, Annales, Ser. Hist. Nat., 34(1), 145-156. Ammar, I.A., A. Kara Ali & K. Ibrahim (2023a): Diversity of Marine Sponges and their associated organisms in Fanar Ibn Hani Marine Protected Area (Lattakia, Syria). Species 2023; 24: e82s1591. https://doi.org/10.54905/disssi.v24i74.e82s1591. Ammar, I.A., H. Kashiri & A. Alo (2023b): Record of five alien species of Decapod Crusta- ceans for the first time in the Syrian marine water. Tishreen University Journal for Research and Sci- entific Studies - Biological Sciences Series, 44(5), 275-288. Angelidis, A. (2017): New records of two alien molluscan species from Astypalaia Island in the southern Aegean Sea. P. 195. In: Lipej L., Acevedo I., Akel E. H. K., Anastasopoulou A., Angelidis A. et al., 2017. New Mediterranean Biodiversity Records (March 2017). Mediterranean Marine Science, 18(1), 179-201. Arabia, I., I, Ammar, A & A. Ali (2023): First record of Atlantic Sea anemone (Telmatactis pan- amensis (Verrill, 1869) on the artificial reefs of the Syrian coast (Eastern Mediterranean). Species, 24, e85s1597. Bariche, M. (2012): Field identification guide to the living marine resources of the Easternand Southern Mediterranean. FAO Species Identifica- tion Guide for Fishery Purposes. Rome, FAO. 610 pp. Bianchi, C., C. Morri, M. Chiantore, M. Mon- tefalcone, V. Parravicini, & A. Rovere (2011): Mediterranean Sea biodiversity between the legacy from the past and a future of change. . In: Stambler, N. (Ed). Life in the Mediterranean Sea: A look at habitat changes. P. 1-60. Nova Science Publishers, New York. Bock, S. (1913): Studien ueber Polycladen. Zo- ologiska bidrag fran Uppsala, 2, 31-344. Christidis, G., I.A. Ammar, M. Antit, Y. M. Barhoum, G. Brundu, A. CollettI, F. Crocetta, A. Desiderato, M. Digenis, M. Gökoğlu, D. Grech,, P. Kleitou, G. Kondylatos, I. Kosoglou, M. Kvesić, Ivanković, G. Lazarakis, M. lezzi, C. Mazziotti, Manolis Metaxakis1, C. Michail, S. Mucciolo, J. Nejašmić, E.S. Okudan, F. Öndes, A.Ç. Oruç, P. Peristeraki, J.P. Renoul, V. Tanduo, I. Tuney, M. Yilmaz, A. Žuljević & V. Gerovasileiou (2024): New records of introduced species in the Medi- terranean (August 2024). Mediterranean Marine Science, 25(2), 453-479. https://doi.org/10.12681/ mms.34474. Çinar, ME. (2009): Alien polychaete species (An- nelida: Polychaeta) on the southern coast of Turkey (Levantine Sea, eastern Mediterranean), with 13 new records for the Mediterranean Sea, Journal of Natural History, 43(37-38), 2283-2328. ANNALES · Ser. hist. nat. · 34 · 2024 · 2 196 Izdihar Ali AMMAR: NEW NON-NATIVE AND RARE MARINE INVERTEBRATES IN SYRIAN WATERS, 187–198 Costa, G., G. Bavestrello, V. Micaroni, M. Pansini, F. Strano & M. Bertolino (2019): Sponge community variation along the Apulian coasts (Otranto Strait) over a pluri-decennial time span. Does water warming drive a sponge diversity increasing in the Mediterranean Sea? Journal of the Marine Biological Association of the United Kingdom. 99. 1-16. https:// doi.org/10.1017/ S0025315419000651. Cuadrado, D., J. Rodríguez, L. Moro, C. Grande & C. Noreña (2021): Polycladida (Platyhelminthes, Rhabditophora) from Cape Verde and related regions of Macaronesia. European Journal of Taxonomy. Museum National D’Histoire Naturelle. http://doi. org/10.5852/ejt.2021.736.1249. Davoult, D., J.M. Deivarumez & R. Glaçon (1993): Nouvelles signalisations d’espèces macro- benthiques sur les côtes françaises de la Manche orientale et de la Mer du Nord. IV. Groupes divers. Cah. Biol. mar., 34, 55-64. Digenis, M., O. Akyol, L. Benoit, M. Biel-ca- banelas, Y. Çamlik Öznur, A. Chatzispyrou, F. Crocetta, M.C. Deval, L. Di Capua, F. Domen- ichetti, N. Đorđević, S. Ferruzzi, M.Y. Galiya, M. Gammoudi, J.A. García-Charton, D. Grech, R. Hoffman, J. Langeneck, M. Martinelli, F. Mas- trototaro, B. Mavrič, C. Navarro-Barranco, E. S. Okudan, V. Orenessalazar, M. Orlando-Bonaca, R.M. Othman, S. Petović, M. Putignano, P.J. Renoult, J.M. Ruíz, A. Santín Muriel, E. Taşkin, F. Tiralongo, Z. Tosunoğlu, I. Tuney, A. Tursi, J. Vannini, L. Zacchetti, L.L. Zamuda & V. Gerova- sileiou (2024): New records of rarely reported species in the Mediterranean Sea (March 2024). Mediter- ranean Marine Science, 25(1), 84-115. https://doi. org/10.12681/mms.37214. El Haddad, M., R. Capaccioni Azzati & AM. García-Carrascosa (2008): Branchiomma luctu- osum (Polychaeta: Sabellidae): a non-indigenous species at Valencia Port (western Mediterranean Sea, Spain). Marine Biodiversity Records. 1:e61. doi:10.1017/S1755267207006604. Faubel, A & C. Noreña (2001): Turbellaria. In: Costello, M.J. et al. (Eds.): European register of marine species: a check-list of the marine species in Europe and a bibliography of guides to their identification. Collection Patrimoines Naturels, 50, 123-136. Faubel, A. (1983): The Polycladida, Turbellaria; Proposal and establishment of a new system. Part I. The Acotylea. Mitteilungen aus dem Hamburgischen Zoologischen Museum und Institut, 80, 17-121. Faubel, A. (1984): The Polycladida, Turbellaria; Proposal and establishment of a new system. Part 2. The Cotylea. Mitteilungen aus dem Hambur- gischen Zoologischen Museum und Institut., 81, 189-259. Fernández-Romero, A., C. Navarro-Barranco, A. Macarena, Ros, Arias, J. Moreira & M. Jose Guerra-García (2021): To the Mediterranean and beyond: An integrative approach to evaluate the spreading of Branchiomma luctuosum (Annelida: Sabellidae). Estuarine, Coastal and Shelf Science, 254. https://doi.org/10.1016/j.ecss.2021.107357. Flagella M & A. Abdulla (2005): Ship Ballast Water as a Main Vector of Marine Introductions in the Mediterranean Sea. WMU Journal of Maritime Affairs, 4(1), No.1, 95-104. Galanidi, M., M. Aissi, M. Ali, B. Ali, M. Bariche, A. Bartolo, H. Bazairi, S. Beqiraj, M. Bilecenoglu, G. Bitar, M. Bugeja, A. Carbonell Quetglas, L. Castriota, A. Chalabi, M. Çinar, B. Dragičević, D. Jakov, A. Elhaweet, A. El-Haweet & A. Zenetos (2023): Validated Inventories of Non-Indigenous Species (NIS) for the Mediterranean Sea as Tools for Regional Policy and Patterns of NIS Spread. Diversi- ty. 2023. 962. 10.3390/d15090962. Garzia, M., G. Furfaro, W. Renda, A.-M. Rosati, P. Mariottini & S. Giacobbe (2022): Mediterranean spreading of the bicolor purse oyster, Isognomon bicolor, and the chicken trigger, Malleus sp., vs. the Lessepsian prejudice. Mediterranean Marine Science, 23(4), 777-788. https://doi.org/10.12681/ mms.29218. Gerovasileiou, V & A. Rosso (2016): Marine Bryozoa of Greece: an annotated checklist. Biodi- versity Data Journal, 4, e10672. Lang, A. (1879): Untersuchungen vergleichenden Anatomie und Histologie des Nervensystems der Plathelminthen. I. Das Nervensystem der marinen Dendrocoelen. Mitteilungen aus der Zoologischen Station zu Neapel, 1, 459-488. Lang, A. (1884): Die Polycladen (Seeplanarien) des Golfes von Neapel und der angrenzenden Mee- resabschnitte. Eine Monographie. Fauna und Flora des Golfes von Neapel und der angrenzenden Mee- resabschnitte, herausgegeben von der Zoologische Station in Neapel. W. Engelmann, Leipzig 1884, 688 pp. Licciano, M., J.M. Murray, G.J. Watson & A. Giangrande (2012): Morphological comparison of the regeneration process in Sabella spallanzanii and Branchiomma luctuosum (Annelida, Sabellida). Invertebr Biol, 131, 40-51. https://doi.org/10.1111/ j.1744-7410.2012.00257.x. Mabrouki, Y & A. Taybi (2024): Range expansion of the alien polychaete Branchiomma luctuosum (Grube, 1870) (Sabellidae) in Morocco (the south- western Mediterranean Sea). Natura Croatica. 33, 197-202. 10.20302/NC.2024.1.17. Lombardo, A. & G. Marletta (2023): Diversity of the Marine Heterobranchia Fauna at the Island of Pantelleria, Sicily Channel, Mediterranean Sea: First Contribution. Acta Zoologica Bulgarica, 75(1), 37-48. ANNALES · Ser. hist. nat. · 34 · 2024 · 2 197 Izdihar Ali AMMAR: NEW NON-NATIVE AND RARE MARINE INVERTEBRATES IN SYRIAN WATERS, 187–198 Marquina, D., D. Osca, J. Rodríguez, E. Fernández-Despiau & C. Noreña (2014): State of knowledge of the Acotylea (Polycladida, Platyhel- minthes) from the Mediterranean coasts of Spain: new records and new species. Zootaxa, 3780(1), 108–134. Massé, C., F. Viard, S. Humbert, E. Antajan, L. Auby, G. Bachelet, B. Bernard, V. Bouchet, T. Burel, J-C. Dauvin, A. Delegrange, S. Derrien-Courtel, G. Droual, B. Gouillieux, G. Philippe, L. Guerin, A-L. Janson J. Jourde, C. Labrune & A. Curd (2023): An overview of marine non-indigenous species found in three contrasting biogeographic metropolitan French regions: Insights on distribution, origins and pathways of introduction. Diversity, 15(2), 161. 10.3390/d15020161. MMC (2024): Climate Change Impacts on Mobility in the Middle East: What do we know? Available at: mixedmigration.org/resource/cli- mate-change-impactsmobility-middle-east/. Ovalis, P & A. Zenetos (2017): The ascent of Lessepsian Mollusca continues the establishment of two newcomers in the eastern Mediterranean. pp. 547-548. In: Stamouli, C., Akel, E. H. K., Az- zurro, E., Bakiu, R., Bas, A. A., et al., 2017. New Mediterranean Biodiversity Records (December 2017). Mediterranean Marine Science, 18(3), 534-556. Öztürk B., G. Buzzurro & H.A. Benli (2004): Marine molluscs from Cyprus: new data and check- list. Bollettino Malacologico, 39(5-8), 49-78. Öztürk, B., A. Doğan, B. Bitlis-Bakir & A. Sal- man (2014): Marine molluscs of the Turkish coasts: an updated checklist. Turkish Journal of Zoology, 38, 832-879. Pisano, A., S. Marullo, V. Artale, F. Falcini, C. Yang, F.E. Leonelli, R. Santoleri & B. Nardelli (2020): New evidence of Mediterranean climate change and variability from sea surface temperature observations. Remote Sensing, 12, 132. https:// doi. org/10.3390/rs12010132. Prudhoe, S. (1985): A monograph on polyclad Turbellaria. Oxford University Press, Oxford, New York, 259 pp. Rawlinson, KA. (2014): The diversity, develop- ment and evolution of polyclad flatworm larvae. Evodevo, 5(1):9. doi: 10.1186/2041-9139-5-9. Richards, S. (2008): Escharoides coccinea A bryozoan. In Tyler-Walters H. and Hiscock K. Marine Life Information Network: Biology and Sen- sitivity Key Information Reviews, [on-line]. Plym- outh: Marine Biological Association of the United Kingdom. [cited 09-10-2024]. https://www.marlin. ac.uk/species/detail/26. Riedl, R. (2011): Fauna and Flora des Mittel- meeres ‘Fauna and Flora of the Mediterranean’. Wien: Seifer Verlag GmbaH. Santin, A., R. Aguilar, O. Akyol, C.R. Begburs, L. Benoit, G. Chimienti, F. Crocetta, C. Dalyan, A. de la Linde Rubio, B. Dragičević, J. Dulčić, G. Giglio, O. Gönülal, T. Kebapcioglu, N.B. Kesici, S. Kiparissis, V. Kousteni, E. Mancini, F. Mastrototaro, T. Menut, F. Montesanto, P. Peristeraki, D. Poursanidis, J.P. Renoult, L. Sánchez-Tocino, E. Sperone & F. Tiralongo (2021): New records of rare species in the Mediter- ranean sea (March 2021). Mediterranean Marine Science, 22(1), 199-217. https://doi.org/10.12681/ mms.25295. Serrano, E., M. Ribes, M. Bolivari & R. Coma (2023): Fouling of a boat hull by the invasive zooxanthellate coral Oculina patagonica - could shipping be enhancing its unique largescale spread? Mediterranean Marine Science, 24(1), 76-86. Tempesti, J, MC. Mangano, J. LAngeneck, C. Lardicci, F. Maltagliati & A. Castelli (2020): Non-in- digenous species in Mediterranean ports: A knowl- edge baseline. Marine Environmental Research, 161, 105056. ISSN 0141-1136, https://doi.org/10.1016/j. marenvres.105056. Tiralongo, F., J.M. Hall-Spencer, I. Giovos & P. Kleitou (2022): Editorial: Biological invasions in the Mediterranean Sea. Frontiers in Marine Science, 9, 1016168. doi: 10.3389/fmars.2022.1016168. Tsagarakis, K., S. Agius Darmanin, S.A. AL Mabruk, R. Auriemma, E. Azzurro, N. Badouvas, N., R. Bakiu, M. Bariche, P. Battaglia, F. BettI, D. Borme, R. Cacciamani, F. Calì, M. Corsini-foka, F. Crocetta, C. Dalyan, A. Deidun, M. Digenis, F. Do- menichetti, B. Dragičević, J. Dulčić, F. Durucan, T. Guy-Haim, NB. Kesici, P-L. Lardi, Y. Manitaras, N. Michailidis, S. Piraino, J. Rizgalla, A. Siapatis, A. Soldo, MG. Stipa, T. Kurt, F. Tiralongo, K. Tsiamis, A. Vella, N. Vella, B. Zava & V.M. Gerovasileiou (2021): New records of rare species in the Mediter- ranean sea. (October 2021). Mediterranean Marine Science, 22(3), 627-652. https://doi.org/10.12681/ mms.26669. Tyler, S., S. Schilling, M. Hooge & L.F. Bush (Comp.) (2012): Turbellarian taxonomic database. Version 1.7. http://turbellaria.umaine.edu. Ulman, A., J. Ferrario, A. Forcada, H. Seebens, C. Arvanitidis, A. Occhipinti & A. Marchini (2019): Alien species spreading via biofouling on recreation- al vessels in the Mediterranean Sea. Journal of Ap- plied Ecology, 56, 1-10. 10.1111/1365-2664.13502. UNEP/MAP – SPA/RAC, (2022): Proceedings of the 3rd Mediterranean Symposium on the Conserva- tion of Dark Habitats (Genova, Italy, 21-22 Septem- ber 2022). Bouafif C., Ouerghi A., edits, SPA/RAC publications, Tunis. Vermeij, G.J. (2011): The tropical history and future of the Mediterranean biota and the West Af- rican enigma. Journal of Biogeography, 39, 31-41. 10.1111/j.1365-2699.2011.02601.x. ANNALES · Ser. hist. nat. · 34 · 2024 · 2 198 Izdihar Ali AMMAR: NEW NON-NATIVE AND RARE MARINE INVERTEBRATES IN SYRIAN WATERS, 187–198 Vidas, D. & M.M. Kostelac (2011): Ballast Water and Alien Species: Regulating Global Transfers and Regional Consequences, 371-392. 10.1163/9789004204225_022. WoRMS Editorial Board (2024): World Register of Marine Species. Available from https://www. marinespecies.org at VLIZ. Accessed 2024-04-12. doi:10.14284/170. Zenetos, A., P. G. Albano, E. López Garcia, N. Stern, K. Tsiamis & M. Galanidi (2022): Established non-indigenous species increased by 40% in 11 years in the Mediterranean Sea. Mediterranean Marine Science, 23(1). https://doi.org/10.12681/ mms.29106. Zenetos, A., S. Gofas, G. Russo & J. Templado (2003): CIESM Atlas of Exotic Species in the Medi- terranean. Molluscs. (F. Briand ed.), Monaco: CIESM publishers, 3, 367 pp. Zenetos, A., V. Mačić, A. Jaklin, L. Lipej, D. Poursanidis, R. Cattaneo-Vietti, S. Beqiraj, F. Betti, D. Poloniato, L. Kashta, L S. Katsanevakis & F. Crocetta (2016): Adriatic ‘opisthobranchs’ (Gastropoda, Heterobranchia): shedding light on biodiversity issues. Marine Ecology, 37, 10.1111/ maec.12306. Zittis, G., M. Almazroui, P. Alpert, P. Ciais, W. Cramer, Y. Dahdal, M. Fnais, D. Francis, P. Had- jinicolaou, F. Howari, A.J rrar, DG. Kaskaoutis, M. Kulmala, G. Lazoglou, N. Mihalopoulos, X. Lin, Y. Rudich, J. Sciare, G. Stenchikov, E. Xoplaki & J. Lelieveld (2022): Climate change and weather extremes in the Eastern Mediterranean and Middle East. Rev Geophys, 60(3), e20 21RG000762. doi: 10.1029/2021RG000762. ANNALES · Ser. hist. nat. · 34 · 2024 · 2 199 received: 2024-11-05 DOI 10.19233/ASHN.2024.24 A NEW LOCALITY RECORD FOR THE RANGE EXPANDING FISH SERIOLA FASCIATA IN THE MEDITERRANEAN Luca CASTRIOTA & Manuela FALAUTANO ISPRA, Italian Institute for Environmental Protection and Research, Lungomare Cristoforo Colombo n. 4521 (ex complesso Roosevelt), Località Addaura, 90149 Palermo, Italy e-mail: luca.castriota@isprambiente.it Laura SINAPI ISPRA, Italian Institute for Environmental Protection and Research, Via V. Brancati 48, 00144 Roma, Italy ABSTRACT We present the first record of the lesser amberjack, Seriola fasciata (Bloch, 1793), for Pantelleria Island (Strait of Sicily) based on a specimen fished and photographed by a tourist. It is a range expanding Atlantic fish species in the Mediterranean about which very little information is available. The importance of involving citizens in reporting sightings of rare or previously unseen species in an area is also discussed. Key words: lesser amberjack, Pantelleria, range expanding species, new record, Strait of Sicily NUOVA LOCALITÀ PER LA RICCIOLA FASCIATA, SERIOLA FASCIATA (BLOCH, 1793), IN MEDITERRANEO SINTESI Gli autori presentano il primo ritrovamento di Seriola fasciata (Bloch, 1793) nell’isola di Pantelleria (Stretto di Sicilia) sulla base di un esemplare pescato e fotografato da un turista. È un pesce atlantico in espansione di areale di cui si hanno scarsissime informazioni. Viene anche discussa l’importanza di coinvolgere i cittadini nel riportare le segnalazioni di specie rare o mai segnalate in un’area. Parole chiave: ricciola fasciata, Pantelleria, specie in espansione, nuovo record, Canale di Sicilia ANNALES · Ser. hist. nat. · 34 · 2024 · 2 200 Luca CASTRIOTA et al.: A NEW LOCALITY RECORD FOR THE RANGE EXPANDING FISH SERIOLA FASCIATA IN THE MEDITERRANEAN, 199–204 INTRODUCTION The lesser amberjack Seriola fasciata (Bloch, 1793) is one the several range expanding species that entered the Mediterranean Sea through the Strait of Gibraltar (Ben Rais Lasram et al., 2008). This ca- rangid species is typically found in the western At- lantic Ocean, including the Gulf of Mexico and the Caribbean Sea (Smith-Vaniz, 2002), less commonly encountered in the eastern Atlantic, extending from Galician waters (Spain) in the north to the Island of St. Helena in the south (Bañón & Mucientes, 2009). Its first appearance in the Mediterranean Sea took place in the Balearic Islands in 1989 (Massutí & Stefanescu, 1993), the species then expanded east- wards until reaching the coasts of Lebanon (Levant Basin) where it was first recorded in 2005 (Crocetta & Bariche, 2015). The biology and ecology of lesser amberjack are poorly known: juveniles are pelagic and are usually observed under floating objects as well as under fish aggregating devices (FADs) for the catch of dolphinfish, Coryphaena hippurus Linnaeus, 1758, while adults are very rarely caught or misidentified with congeneric species (Andaloro et al., 2005; Galbraith et al., 2022; Cillari et al., 2024). We here present the first record of S. fasciata for Pantelleria Island (Strait of Sicily), a volcanic island of huge ecological relevance for the high biodiversity of its marine life (Alongi et al., 2004). MATERIAL AND METHODS In mid-September 2024, one individual of Seriola fasciata was caught with a trolling line by a tourist on the south-west coast of the island of Pantelleria (approximate coordinates 36.7628 °N, 11.9684 °E, Fig. 1). The specimen was photographed and then released into the sea, so unfortunately there are no measurements available. The photo (Fig. 2) was shown to a local fisherman who contacted ISPRA researchers for identification, claiming he had nev- er seen this fish before. Fig. 1: Location (square) off the south-western coast of Pantelleria Island, where the specimen of Seriola fasciata was fished. Sl. 1: Lokaliteta (kvadrat) ob jugozahodni obali otoka Pantellerie, kjer so ulovili primerek vrste Seriola fasciata. ANNALES · Ser. hist. nat. · 34 · 2024 · 2 201 Luca CASTRIOTA et al.: A NEW LOCALITY RECORD FOR THE RANGE EXPANDING FISH SERIOLA FASCIATA IN THE MEDITERRANEAN, 199–204 RESULTS AND DISCUSSION The island of Pantelleria is located in the Pantelleria Rift, between Africa and Sicily, on the European con- tinental shelf, with a minimum distance of about 38 nautical miles from the Tunisian coast, 54 from Sicily and 111 from Malta. The seabeds, especially in the first few metres, are steep and rocky, then they degrade more slowly to a depth of around 35-50 m, on sandy or gravelly bottoms interspersed with large boulders. The island mainly bases its economy on agriculture and is a destination for thousands of tourists every year, especially sea lovers, swimmers, divers and anglers. Regarding professional fishing, a very small number of vessels carry out artisanal activities. Although Seriola fasciata has already been reported in the Strait of Sicily (Bradai et al., 2004; Andaloro et al., 2005), it had never been reported on this island. The species belonging to the Seriola genus are not easy to identify, particularly at their adult stage when they lose some phenotypic characters typical of juveniles. According to Smith-Vaniz (2016) as well as to the more recent revision of Galbraith et al. (2022), the specimen caught in Pantelleria Island is attributed to S. fasciata for bearing a narrow su- pramaxilla and seven vertical dark body bands plus a well visible nuchal stripe and a further band on the caudal peduncle. Such a pattern is an indication that the caught specimen is a juvenile. The lesser amberjack is a little-known subtropical species with a very dispersed distribution in the Mediter- ranean where it is mainly reported in the juvenile stage (Cillari et al., 2024). Its presence is mainly correlated with the presence of FADs (Cillari et al., 2024), which might represent the key factor for the success of this species. Indeed, as already observed for other FADs associated species (Andaloro et al., 2003), juvenile S. fasciata caught as bycatch of dol- phinfish fishery, are discarded and thrown back into seawater alive since they are non-marketable. The increasing use of FADs in certain areas might there- fore have contributed to the population increase of Fig. 2: Seriola fasciata caught at Pantelleria Island. Sl. 2: Primerek vrste Seriola fasciata, ujetega v vodah otoka Pantellerie. ANNALES · Ser. hist. nat. · 34 · 2024 · 2 202 Luca CASTRIOTA et al.: A NEW LOCALITY RECORD FOR THE RANGE EXPANDING FISH SERIOLA FASCIATA IN THE MEDITERRANEAN, 199–204 this species as well as to its spread elsewhere. Its current distribution in the Mediterranean is mainly concentrated in the southern sectors (Cillari et al., 2024), which suggests that the presence of this spe- cies could also be linked to the higher temperatures recorded in those areas compared to the northern sec- tors. This agrees with the results of the MaxEnt model applied to this species where sea floor temperature was among primary factors driving species distribution (Cillari et al., 2024). Pantelleria island, besides, is located in an area between Tunisia, Sicily and Malta, where the use of FADs is widespread. In agreement, spatial-temporal analyses made on S. fasciata distri- bution in the Mediterranean had already identified this area as a presumed expansion area (Cillari et al., 2024), so its appearance in the island of Pantelleria was predictable. The capture of a single individual, however, does not allow us to advance hypotheses on the stage of settlement of this species on this island, but adds a missing piece to the distribution of the species in the Strait of Sicily. What is not yet known mainly concerns the adult stage of lesser amberjack whose ecology is still poorly understood, and which instead could help to define the potential of this spe- cies as a fishing resource. In this regard, the arrival and establishment of S. fasciata in the Levant Sea led some authors to consider it as a promising fishery resource, so much so as to suggest the implementation of a management plan to protect it and prevent its de- cline (Jawad et al., 2015; Ali et al., 2024). However, it needs to be considered that the arrival of new species in an area where they were not yet present involves the establishment of interactions with marine local communities, in some cases with consequent impacts. It is therefore essential to collect information and data on new species to understand their ecology in order to preserve native biodiversity. From this perspective, it is important not only to collect the first records of the new species, but above all the subsequent ones as they identify their establishment and help to trace their spread. Most records of lesser amberjack in the Strait of Sicily documented in literature come from Lampedusa Island and Malta (Andaloro et al., 2005; Deidun et al., 2021; Ragkousis et al., 2023), over 75 nautical miles southeast to Pantelleria Island, and date back no later than 2020. The closest record is a single juvenile specimen caught about 45 nautical miles in the southern coast of Sicily, and dates back to 2016 (Geraci et al., 2020). The present record adds a new locality for the lesser amberjack in a marine area of the Straits of Sicily considered of great naturalistic in- terest and suggests further investigations, also with the support of citizens, in order to acquire more informa- tion on its population in this area. Only recently has the use of social media made information on rare or poorly known species more widely available, allowing for more consistent population estimates. In order to fill the knowledge gaps on the historically overlooked lesser amberjack, it would be fruitful to promote citi- zen science activities, involving the main stakeholders such as fishers and divers, aimed at collecting any type of information in the event of specimens being caught and to preserve them for subsequent biological analyses by researchers. ACKNOWLEDGEMENTS The authors are grateful to Mr. Giancarlo Scialanga who caught the specimen and took the photo, and to the intermediary Mr. Mariano Amato. ANNALES · Ser. hist. nat. · 34 · 2024 · 2 203 Luca CASTRIOTA et al.: A NEW LOCALITY RECORD FOR THE RANGE EXPANDING FISH SERIOLA FASCIATA IN THE MEDITERRANEAN, 199–204 NOVA LOKALITETA POJAVLJANJA VRSTE SERIOLA FASCIATA, KI ŠIRI AREAL V SREDOZEMSKEM MORJU Luca CASTRIOTA & Manuela FALAUTANO ISPRA, Italian Institute for Environmental Protection and Research, Lungomare Cristoforo Colombo n. 4521 (ex complesso Roosevelt), Località Addaura, 90149 Palermo, Italy e-mail: luca.castriota@isprambiente.it Laura SINAPI ISPRA, Italian Institute for Environmental Protection and Research, Via V. Brancati 48, 00144 Roma, Italy POVZETEK Avtorji predstavljajo prvi zapis o pojavljanju malega gofa Seriola fasciata (Bloch, 1793) za otok Pantelleria (Sicilijanska ožina) na podlagi primerka, ki ga je ulovil in fotografiral turist. Gre za atlantsko ribjo vrsto, ki se širi v Sredozemlje in o kateri je na voljo zelo malo podatkov. Avtorji razpravljajo tudi o pomenu vključevanja državljanov v poročanje o opažanjih redkih ali prej neopaženih vrst na območju. Ključne besede: mali gof, Pantelleria, vrsta, ki razširja areal, novi zapis o pojavljanju, Sicilijanska ožina ANNALES · Ser. hist. nat. · 34 · 2024 · 2 204 Luca CASTRIOTA et al.: A NEW LOCALITY RECORD FOR THE RANGE EXPANDING FISH SERIOLA FASCIATA IN THE MEDITERRANEAN, 199–204 REFERENCES Ali, M., A. Fandi, A. Alnesser & C. Capapé (2024): Confirmed Occurrence of Jaydia smithi (Apogonidae) and Seriola fasciata (Carangidae) on the Syrian Coast (Eastern Mediterranean Sea). Annales, Ser. Hist. Nat., 34(1), 113-118. Alongi, G., M. Catra, M. Cormaci, G. Furnari & D. Serio (2004): Spring marine vegetation on rocky sub- strata of Pantelleria Island (the Straits of Sicily, Italy). Nova Hedwigia, 79(3-4), 447-478. Andaloro, F., D. Campo, M. Sinopoli, L. Castriota & S. Campagnuolo (2003): Pelagic fish community associated with FADs off the Sicilian coast (Southern Tyrrhenian Sea). In: Island Ecosystems Conservation and Molecular Approach I Symposium, Madeira Island, Portugal 05-09 March 2001. Pinheiro de Carvalho M.Â.A., Pereira Costa G., Abreu Jesus J., Rodrigues D.M.M. Eds., CCBG, Madeira, 131-138. Andaloro, F., M. Falautano, M. Sinopoli, F.M. Passarelli, C. Pipitone, P. Addis, A. Cau & L. Castriota (2005): The lesser amberjack Seriola fasciata (Bloch, 1793) (Perciformes: Carangidae) in the Mediterranean: a recent colonist? Cybium, 29(2), 141-145. Bañón, R. & G. Mucientes (2009): First record of Seriola fasciata (Carangidae) from Galician waters (NW Spain). A new northernmost occurrence in the NE Atlantic. Cybium, 33(3), 247-248. Ben Rais Lasram, F., J.A. Tomasini, M.S. Romdhane, T. Do Chi & D. Mouillot (2008): Historical coloniza- tion of the Mediterranean Sea by Atlantic fishes: do biological traits matter? Hydrobiologia, 607, 51-62. https://doi.org/10.1007/s10750-008-9366-4. Bradai, M.N., J.-P. Quignard, A. Bouain, O. Jarboui, A. Ouannes-Ghorbel, L. Ben Abdallah, J. Zaouali & S. Ben Salem (2004): Ichtyofaune autochtone et exotique des côtes tunisiennes: recensement et biogéographie. Cybium, 28(4), 315-328. Cillari, T., M. Falautano, T. Maggio, P. Perzia, M. Sinopoli & L. Castriota (2024): Spatial distribution of the range-expanding species Seriola fasciata (Bloch, 1793) in Mediterranean Sea: From past to future. Mar. Environ. Res., 199, 106599. https://doi.org/10.1016/j. marenvres.2024.106599. Crocetta, F. & M. Bariche (2015): Six new records from Lebanon, with general implications for Mediterra- nean alien fauna. In Crocetta et al 2015. Medit. Mar. Sci., 16(3), 682-702. Deidun, A., G. Insacco, J. Galdies, P. Balistreri & B. Zava (2021): Tapping into hard-to-get information: the contribution of citizen science campaigns for updating knowledge on range-expanding, introduced and rare native marine species in the Malta-Sicily Channel. Bio- Invasion Rec., 10(2), 257-269. https://doi.org/10.3391/ bir.2021.10.2.03. Galbraith, J.K., K.E. Bemis, W.E. Bemis, H.S. Cook & M.J. Wuenschel (2022): Identifications, distributions, and life history of four species of Seriola (Carangiformes: Carangidae) in the western North Atlantic based on contemporary and historical data. NOAA Professional Paper NMFS 22, 42 pp. https://doi.org/10.7755/PP.22. Geraci, M.L., F. Falsone, D. Scannella & S. Vitale (2020): An additional record of the non-indigenous species (NIS) Seriola fasciata from the southern coast of Sicily (Central Mediterranean Sea). Acta Adriat., 61(2), 223-230. Jawad, L., A. Mtawej, A. Ibrahim & M. Hassan (2015): First record of the lesser amberjack Seriola fasciata (Teleostei: Carangidae) in Syrian coasts. Cah. Biol. Mar., 56, 81-84. Massutí, E. & C. Stefanescu (1993): First record of Seriola fasciata (Bloch, 1793) (Osteichthyes: Ca- rangidae) in the Mediterranean. J. Fish. Biol., 42 (1), 143-144. https://doi.org/10.1111/j.1095-8649.1993. tb00312.x. Ragkousis, M., A. Zenetos, J. Ben Souissi, R. Hoff- man, R. Ghanem, E. Taşkin, M. Muresan, E. Karpova, E. Slynko, et al. & S. Katsanevakis (2023): Unpublished Mediterranean and Black Sea records of marine alien, cryptogenic, and neonative species. BioInvasions Rec., 12(2), 339-369. https://doi.org/10.3391/ bir.2023.12.2.01. Smith-Vaniz, W.F. (2002): Carangidae. In: Car- penter, K.E. (ed.): The living marine resources of the Western Central Atlantic, Vol. 3: Bony fishes part 2 (Opistognathidae to Molidae), sea turtles and marine mammals. FAO Species Identification Guide for Fishery Purposes and American Society of Ichthyologists and Herpetologists Special Publication No. 5. FAO, Rome, pp. 1426-1468. Smith-Vaniz, W.F. (2016): Carangidae. In: Car- penter, K.E. & N. De Angelis (eds.): The living marine resources of the Eastern Central Atlantic, Vol. 4: Bony fishes part 2 (Perciformes to Tetradontiformes) and Sea turtles. FAO Species Identification Guide for Fishery Purposes. FAO, Rome, pp. 2454-2514. ANNALES · Ser. hist. nat. · 34 · 2024 · 2 205 received: 2024-10-14 DOI 10.19233/ASHN.2024.25 FIRST RECORD OF THE ABUDEFDUF CF. SAXATILIS/VAIGIENSIS/TROSCHELII SPECIES COMPLEX (PISCES: POMACENTRIDAE) IN THE BLACK SEA F. Saadet KARAKULAK Istanbul University, Faculty of Aquatic Sciences, Department of Fisheries Technologies and Management, Istanbul, Türkiye Mehmet GÖKOĞLU Akdeniz University, Faculty of Fisheries, Department of Aquaculture, Antalya, Türkiye Uğur UZER Istanbul University, Faculty of Aquatic Sciences, Department of Fisheries Technologies and Management, Istanbul, Türkiye Hakan KABASAKAL İstanbul University, Institute of Science, Fisheries Technologies and Management Program, İstanbul, Türkiye e-mail: kabasakal.hakan@gmail.com ABSTRACT On 28 September 2024, an individual of the pomacentrid genus Abudefduf Forsskål, 1775, was recorded on video in the southwestern Black Sea, off the coast of Turkey. This is the first record of the A. cf. saxatilis/ vaigiensis/troschelii species complex in the Black Sea. The paper provides information on the colouration and some morphological characteristics of the individual. However, to accurately determine which species from this complex is present in the Black Sea, the specimen should have been collected for detailed morphometric and genetic analyses. Key words: Abudefduf, Pomacentridae, Black Sea, invasion PRIMA TESTIMONIANZA DI ABUDEFDUF CF. SAXATILIS/VAIGIENSIS/TROSCHELII COMPLESSO DI SPECIE (PISCES: POMACENTRIDAE) NEL MAR NERO SINTESI Il 28 settembre 2024, un individuo del genere Abudefduf Forsskål, 1775 (Pomacentridae), è stato avvistato in un video girato nel Mar Nero sudoccidentale, al largo delle coste della Turchia. Si tratta della prima registrazione del complesso di specie A. cf. saxatilis/vaigiensis/troschelii nel Mar Nero. Il documento fornisce informazioni sulla colorazione e su alcune caratteristiche morfologiche dell’individuo. Tuttavia, per determinare con precisione quale specie di questo complesso sia presente nel Mar Nero, sarebbe stato necessario catturare l’esemplare per condurre analisi morfometriche e genetiche dettagliate. Parole chiave: Abudefduf, Pomacentridae, Mar Nero, invasione ANNALES · Ser. hist. nat. · 34 · 2024 · 2 206 F. Saadet KARAKULAK et al.,: FIRST RECORD OF THE ABUDEFDUF CF. SAXATILIS/VAIGIENSIS/TROSCHELII SPECIES COMPLEX (PISCES: POMACENTRIDAE) ..., 205–210 INTRODUCTION The pomacentrid damselfishes (Perciformes: Labroi- dei: Pomacentridae) are represented by 30 genera and 424 species distributed worldwide, with one of the best-known genera in the family being Abudefduf (Froese & Pauly, 2024). Pomacentrids are small fishes, typically reaching less than 15 cm in total length (TL), with a maximum TL of 35 cm. The mouth is small in most species with moderately to highly protrusible jaws, and a single pair of nostrils is found in Atlantic species (Edwards, 2016). According to Kovačić et al. (2021) four species of Abudefduf have been reported from Mediterranean waters over the last few decades. The chronological order of the publications that report- ed the first records of Abudefduf spp. from the Mediter- ranean Sea, lists these species as follows: A. vaigensis (Quoy & Gaimard, 1825) (Tardent, 1959), A. saxatilis (Linnaeus, 1758) (Azzurro et al., 2013; Deidun & Cas- triota, 2014), A. hoefleri (Steindachner, 1881) (Vella et al., 2016) and A. sexfasciatus (Lacepède, 1801) (Giovos et al., 2018). Of these, only A. saxatilis has been report- ed from Turkish waters (Bilecenoğlu, 2016); however, the most recent ichthyological checklist of Turkish seas by Bilecenoğlu (2024) includes the A. cf. saxatilis/ vaigiensis/troschelii species complex rather than solely mentioning the occurrence of A. saxatilis in the region. Fishes of the genus Abudefduf are increasingly being recorded in Mediterranean waters and, as emphasised by Dragičević et al. (2021), most of these occurrences are based merely on underwater photographs or video footage. This article reports the first record of an indi- vidual of the A. cf. saxatilis/vaigiensis/troschelii species complex from the Black Sea based on underwater footages recorded by a recreational spearfisherman. MATERIAL AND METHODS The present specimen of the A. cf. saxatilis/vai- giensis/troschelii species complex was recorded in the southwestern part of the Black Sea, which is defined as geographical subarea (GSA) 29 of the Mediterranean (GFCM, 2018; Fig. 1). As it is visible from the photo (Fig. 2), the rocky substratum is covered by dense veg- etation of brown and green algae, Cystoseira spp. and Ulva spp., both well-known components of the Black Sea marine flora. Given the nature of the sampling (opportunistic photographic record), this study is a typ- ical example of opportunistic examination of marine fauna, rather than a direct result of a scientific field survey (Hiddink et al., 2023). Species identification follows Edwards (2016) and Dragičević et al. (2021), taxonomic nomenclature is based on Froese and Pauly (2024). The examined video footage and the captured frame of the specimen of the A. cf. saxatilis/vaigiensis/ troschelii species complex are available from the first author upon request for further inspection. RESULTS AND DISCUSSION On 28 September 2024, a specimen of what seems to be a sergeant major damsel fish (Fig. 2) was captured on video by a recreational spearfisherman off the coast of Eşek Island, Riva (41°13’56.10'' N; 29°13’4.36'' E; southwestern Black Sea) over a rocky bottom, at a depth ranging between 5 and 7 m. Upon inspection of the footage the following characters were observed: body deep and laterally compressed; five prominent black Fig. 1: Red rectangle on the map (upper panel) depicts the Black Sea in the Mediterranean Basin. The solid red circle (lower panel) indicates the locality where the present specimen of A. cf. saxatilis/vaigiensis/trochelii was filmed as estimated by the recreational spearfisherman. Sl. 1: Rdeči pravokotnik na zemljevidu (zgornja plošča) prikazuje Črno morje v Sredozemskem bazenu. Rdeč krogec (spodnja plošča) označuje lokacijo, kjer je bil pos- net primerek vrste iz kompleksa A. cf. saxatilis/vaigiensis/ trochelii po oceni rekreativnega podvodnega ribiča. ANNALES · Ser. hist. nat. · 34 · 2024 · 2 207 F. Saadet KARAKULAK et al.,: FIRST RECORD OF THE ABUDEFDUF CF. SAXATILIS/VAIGIENSIS/TROSCHELII SPECIES COMPLEX (PISCES: POMACENTRIDAE) ..., 205–210 bars on the sides, narrowing towards belly, a faint sixth bar on upper caudal peduncle; colour of abdomen silvery white, with a black spot at the base of pectoral fins, the fifth black bar continuing on the dorsal fin, two black dots at the base of caudal fin (characteristic of this species), back yellowish green. The descriptive characters were consistent with those described for A. cf. saxatilis/vaigiensis/troschelii by Azzurro et al. (2013), Deidun and Castriota (2014), Tsadok et al. (2014), Vella et al. (2016) and Edwards (2016). In recent years, many fish species of tropical origin have been reported from different regions of the Medi- terranean Sea. The majority were Lessepsian immigrants (Golani et al., 2021), entering the Mediterranean Sea through the Suez Canal. However, species migrations to the Mediterranean are not limited to the Suez Canal; several Atlantic species also enter through the Strait of Gibraltar (Azzurro et al., 2022). One of these is A. sax- atilis (Dragičević et al., 2021). According to Froese and Pauly (2024), A. saxatilis is a strictly Atlantic species, with its distribution range extending in the tropical and subtropical Atlantic from 43°N to 35°S latitudes (Edwards, 2016). Although the introduction vectors for a given occurrence are difficult to establish and may vary depending on the species, as emphasised by Bitar (2021) and Kampouris and Sujariya (2023), the most likely are canal connections (in Lessepsian migration), ballast water from ships, and aquarium releases. In re- cent years, several Mediterranean (thermophilic) and/ or Red Sea (tropical) fish species have been reported in the Sea of Marmara (Karakulak et al., 2020) and the Black Sea (Yağlıoğlu & Turan, 2021; Uzer et al., 2024). Although the range extension of tropical fish species into the Mediterranean Sea and further north may occur naturally (Occhipinti et al., 2011) as a result of global warming (Bianchi, 2007), the available evidence is unable to confirm this for the A. cf. saxatilis/vaigiensis/ troschelii species complex in the Black Sea. The current specimen may instead have escaped or been released from an aquarium. Fig. 2: (A) Captured frame from the video footage of the studied individual of the A. cf. saxatilis/vaigiensis/ troschelii species complex recorded on 28 September 2024 at a depth between 5 and 7 m off the coast of Riva in the southwestern Black Sea, showing the surrounding substratum and vegetation; and (B) close-up of the specimen seen in panel A. (Photo: İsa Şentürk). Sl. 2: (A) Zajet okvir iz videoposnetka primerka iz kompleksa vrst A. cf. saxatilis/vaigiensis/troschelii, posnetega 28. septembra 2024 na globini med 5 in 7 m ob obali Rive v jugozahodnem Črnem morju, ki prikazuje okoliški substrat in vegetacijo; in (B) primerek od blizu na plošči A. (Foto: İsa Şentürk). ANNALES · Ser. hist. nat. · 34 · 2024 · 2 208 F. Saadet KARAKULAK et al.,: FIRST RECORD OF THE ABUDEFDUF CF. SAXATILIS/VAIGIENSIS/TROSCHELII SPECIES COMPLEX (PISCES: POMACENTRIDAE) ..., 205–210 The first record of A. saxatilis in the Mediterranean, reported by Azzurro et al. (2013), was soon followed by other records from several different regions of the Mediterranean (Deidun & Castriota, 2014, Tsadok et al., 2014; Bilecenoğlu, 2016; Vella et al., 2016). Froese and Pauly (2024) emphasised that A. saxatilis was being replaced in the Indo-Pacific region by the closely related A. vaigiensis. However, as noted in several recent studies, species identification of Abudefduf spp. based solely on external coloura- tion has certain limitations. In a recent study, Bitar (2021) focused on the dark vertical bars seen on the bodies of Abudefduf spp. and provided a detailed morphological description of the appearance of the fifth vertical bar (continuous or discontinuous), which was accepted as an identifying morphological character for A. saxatilis according to Mediterranean literature until the end of 2020. Comparing numer- ous underwater photographs of Abudefduf spp. from Lebanese waters, Bitar (2021) concluded that relying solely on the appearance of the fifth vertical bar for species identification is flawed, as the feature can be observed in both A. saxatilis, A. vaigiensis and even A. troschelii. This means that observation and anal- yses of photographs are insufficient for an accurate identification of Abudefduf (Bitar 2021; in Kampouris & Sujariya, 2023) and may cause confusion and misidentification, as does relying on videographic material alone. Recent studies by Vella et al. (2016) and Dragičević et al. (2021) addressed this issue, emphasising that while documenting Abudefduf spp. occurrences through underwater photos and videos is valuable, only molecular analysis combined with detailed morphological descriptions can confirm a specimen as a determinate Abudefduf species. In the absence of morphological and genetic evidence it is recommended that presumed specimens of one of the Abudefduf species be referred to in the Medi- terranean as A. cf. saxatilis/vaigiensis/troschelii, as already practiced by Kampouris and Sujariya (2023) and Bilecenoğlu (2024). It is therefore more accurate to report the current specimen from the Black Sea as A. cf. saxatilis/vaigiensis/trochelii until another is collected in the region and confirmed as either of the four species through morphological and molecular analysis. ACKNOWLEDGEMENTS We thank to spearfisherman Mr. İsa Şentürk for sending us the video footage of A. cf. saxatilis/vai- giensis/trochelii. Special thanks go to two anonymous referees for their valuable comments and contributions which improve the content and quality of the article. ANNALES · Ser. hist. nat. · 34 · 2024 · 2 209 F. Saadet KARAKULAK et al.,: FIRST RECORD OF THE ABUDEFDUF CF. SAXATILIS/VAIGIENSIS/TROSCHELII SPECIES COMPLEX (PISCES: POMACENTRIDAE) ..., 205–210 PRVI ZAPIS O POJAVLJANJU PRIMERKA VRSTE IZ KOMPLEKSA ABUDEFDUF CF. SAXATILIS/VAIGIENSIS/TROSCHELII (PISCES: POMACENTRIDAE) IZ ČRNEGA MORJA F. Saadet KARAKULAK Istanbul University, Faculty of Aquatic Sciences, Department of Fisheries Technologies and Management, Istanbul, Türkiye Mehmet GÖKOĞLU Akdeniz University, Faculty of Fisheries, Department of Aquaculture, Antalya, Türkiye Uğur UZER Istanbul University, Faculty of Aquatic Sciences, Department of Fisheries Technologies and Management, Istanbul, Türkiye Hakan KABASAKAL İstanbul University, Institute of Science, Fisheries Technologies and Management Program, İstanbul, Türkiye e-mail: kabasakal.hakan@gmail.com POVZETEK Osemindvajsetega septembra 2024 so s kamero posneli primerek vrste iz rodu Abudefduf Forsskål, 1775 v jugo- zahodnem Črnem morju, ob obali Turčije. Gre za prvi zapis o pojavljanju primerka iz kompleksa vrst A. cf. saxatilis/ vaigiensis/troschelii v Črnem morju. Avtorji v prispevku navajajo podatke o obarvanosti in nekaterih morfoloških značilnostih primerka. Da bi natančno določili, katera vrsta iz tega kompleksa je prisotna v Črnem morju, bi morali odvzeti vzorec za podrobne morfometrične in genetske analize. Ključne besedes: Abudefduf, Pomacentridae, Črno morje, invazija ANNALES · Ser. hist. nat. · 34 · 2024 · 2 210 F. Saadet KARAKULAK et al.,: FIRST RECORD OF THE ABUDEFDUF CF. SAXATILIS/VAIGIENSIS/TROSCHELII SPECIES COMPLEX (PISCES: POMACENTRIDAE) ..., 205–210 REFERENCES Azzurro, E., E. Broglio, F. Maynou & M. Bariche (2013): Citizen science detects the undetected: the case of Abudefduf saxatilis from the Mediterranean Sea. Manag. Biol. Invasion, 4, 167-170. http://dx.doi. org/10.3391/mbi.2013.4.2.10. Azzurro, E., S. Smeraldo & M. D’Amen (2022): Spatio-temporal dynamics of exotic fish species in the Mediterranean Sea: Over a century of invasion recon- structed. Glob. Change. Biol., 28, 6268-6279. https:// doi.org/10.1111/gcb.16362. Bianchi, C.N. (2007): Biodiversity issues for the forthcoming tropical Mediterranean Sea. Hydrobiolo- gia, 580, 7-21. Bilecenoğlu, M. (2016): Two marine fish records of Liechtenstein’s goby (Corcyrogobius liechtensteini) and the Atlantic originated sergeant major (Abudefduf saxatilis), new for the Turkish fauna. J. Black Sea/Medit. Environ., 22, 259-265. Bilecenoğlu, M. (2024): Diversity of fishes along the coast of Türkiye. Turk. J. Zool., 48, 589-616. https:// doi.org/10.55730/1300-0179.3197. Bitar, G. (2021): Occurrence of Abudefduf spp. (Pisces: Pomacentridae) in the Lebanese coastal waters (eastern Mediterranean) – morphological traits and vi- sual evidence. Mediterr. Mar. Sci., 22, 715-723. https:// doi.org/10.12681/mms.25173. Deidun, A. & L. Castriota (2014): First record of Abudefduf cf. saxatilis Linnaeus, 1758 (Perciformes: Pomacentridae) from the Maltese Islands (Central Med- iterranean). Bioinvasions Rec., 3, 53-56. http://dx.doi. org/10.3391/bir.2014.3.1.10. Dragičević, B., R. Fricke, J. Ben Soussi, P. Ugarkov- ič, J. Dulčić & E. Azzurro (2021): On the occurrence of Abudefduf spp. (Pisces: Pomacentridae) in the Med- iterranean Sea: a critical review with new records. Bio- invasions Rec., 10, 188-199. https://doi.org/10.3391/ bir.2021.10.1.20. Edwards, A.J. (2016): Pomacentridae. In: K. E. Carpenter, & N. De Angelis (eds.): The Living Marine Resources of the Eastern Central Atlantic. Vol. 4: Bony fishes part 2 (Perciformes to Tetradontiformes) and Sea turtles. FAO Species Identification Guide for Fishery Purposes, FAO, Rome, pp. 2711-2732. Froese, R. & D. Pauly (eds.) (2024): FishBase. World Wide Web electronic publication. www.fishbase.org (Last accession, 14 October 2024). GFCM (2018): GFCM Data Collection Reference Framework (DCRF) v 21.2. In: General Fisheries Com- mission for the Mediterranean [online]. Rome, FAO. [Cited 05 April 2022]. www.fao.org/gfcm/data/dcrf. Giovos, I., B. Giacomo, G. Romanidis-Kyriakidis, P. Marmara & P. Kleitou (2018): First records of the fish Abudefduf sexfasciatus (Lacepède, 1801) and Acanthurus sohal (Forsskål, 1775) in the Mediterra- nean Sea. Bioinvasions Rec., 7, 205-210. https://doi. org/10.3391/bir.2018.7.2.14. Golani, D., E. Azzurro, J. Dulčić, E. Massutí & L. Or- si-Relini (2021): Atlas of exotic fishes in the Mediterranean Sea - 2nd edition. CIESM PUBLISHERS, Paris, Monaco. Hiddink, J.G., R. Charles & A.B.M. Moore (2023): Using opportunistic data to study the distribution and abundance of a warm water elasmobranch at the northern edge of its range. ICES J. Mar. Sci., 1, 108-118. https://doi.org/10.1093/icesjms/fsad183. Kampouris, T. & A. Sujariya (2023): Filling the gap-on the occurrence of an Abudefduf Forsskål, 1775 individual from Nisyros Island, Dodecanese, Greece. Spixiana, 46, 87-90. Karakulak, S.F., T. Yıldız, U. Uzer & I.K. Oray (2020): First record of the Lessepsian fish Siganus rivulatus (Forsskål & Niebuhr, 1775) in the Sea of Marmara (Izmit Bay, Turkey). J. Appl. Ichthyol., 36, 952-954. https://doi. org/10.1111/jai.14133. Kovačić, M., L. Lipej, J. Dulčić, S.P. Iglesias & M. Goren (2021): Evidence-based checklist of the Medi- terranean Sea fishes, Zootaxa, 4998, 1-115. https://doi. org/10.11646/zootaxa.4998.1.1. Occhipinti, A., A. Marchini, G. Cantone, A. Castelli, C. Chimenz, M. Cormaci, C. Froglia, G. Furnari, M.C. Gambi, G. Giaccone, A. Giangrande, C. Gravili, F. Mastrototaro, C. Mazziotti, L. Orsi-Relini & S. Piraino (2011): Alien species along the Italian coasts: an over-view. Biol. Invasions, 13, 215-237. http://dx.doi. org/10.1007/s10530-010-9803-y. Tardent, P. (1959): Capture d’un Abudefduf saxatilis vaigiensis Q. Und G. (Pisces, Pomacentridae) dans le Golfe de Naples. Rev. Suisse Zool., 66, 347-351. https:// doi.org/10.5962/bhl.part.75225. Tsadok, R., M. Rubin-Blum, E. Shemesh & D. Tch- ernov (2015): On the occurrence and identification of Abudefduf saxatilis (Linnaeus, 1758) in the easternmost Mediterranean Sea. Aquat Invasions., 10, 101-105. Uzer, U., F.S. Karakulak & H. Kabasakal (2024): Range extension of Trachinotus ovatus (Carangidae) through the Western Black Sea off Turkish Coast. J. Ichthyol., 64, 716-720. Vella, A., N. Vella & S. Agius Darmanin (2016): The first record of the African Sergeant, Abudefduf hoefleri (Perciformes: Pomacentridae), in the Mediterranean Sea. Mar. Biodivers. Rec., 9, 1-5. https://doi.org/10.1186/ s41200-016-0008-7. Yağlıoğlu, D. & C. Turan (2021): Occurrence of Dusky Grouper Epinephelus marginatus (Lowe, 1834) from the Black Sea: Is it the Mediterranization Process of the Black Sea? NESciences, 2021, 6(3), 133-137. doi: 10.28978/nesciences.1036841. 211 Claudio BATTELLI & Neža GREGORIČ: FIRST REPORT OF AN AEGAGROPILOUS FORM OF RYTIPHLAEA TINCTORIA FROM THE LAGOON OF STRUNJAN ..., 61–68 SREDOZEMSKE HRUSTANČNICE SQUALI E RAZZE MEDITERRANEE MEDITERRANEAN SHARKS AND RAYS 212 ANNALES · Ser. hist. nat. · 34 · 2024 · 2 213 received: 2024-01-10 DOI 10.19233/ASHN.2024.26 OCCURRENCE OF THE RARE BLONDE RAY, RAJA BRACHYURA (RAJIDAE), OFF THE ALGERIAN COAST (SOUTHWESTERN MEDITERRANEAN SEA) Farid HEMIDA École Nationale Supérieure des Sciences de la Mer et de l’Aménagement du Littoral (ENSSMAL), BP 19, Bois des Cars, 16320 Dely Ibrahim, Algiers, Algeria Christian REYNAUD Laboratoire Interdisciplinaire en Didactique, Education et Formation, Université de Montpellier, 2, place Marcel Godechot, B.P. 4152, 34092 Montpellier cedex 5, France Christian CAPAPÉ Laboratoire d’Ichtyologie, Université de Montpellier, 34095 Montpellier cedex 5, France e-mail: capape@orange.fr ABSTRACT The paper describes captures of large specimens of blonde ray, Raja brachyura Lafont 1873, off the Algerian coast. The presence of large egg-producing females in the catch and cases of already laid eggs suggest that a population of R. brachyura is successfully established in the area. The Algerian coast is likely a starting point for migrations of the species towards northern regions, such as the coast of Sardinia, where several specimens have recently been found. Key words: Raja brachyura, egg case, migration, distribution, western Mediterranean basin PRESENZA DELLA RARA RAZZA A CODA CORTA, RAJA BRACHYURA (RAJIDAE), AL LARGO DELLA COSTA ALGERINA (MEDITERRANEO SUD-OCCIDENTALE) SINTESI L’articolo riporta la cattura di grandi esemplari della razza a coda corta, Raja brachyura Lafont 1873, al largo della costa algerina. La presenza nelle catture di grandi femmine produttrici di uova e di casi di uova già deposte sugge- riscono che una popolazione di R. brachyura si è stabilita con successo nell’area. La costa algerina è probabilmente un punto di partenza per le migrazioni della specie verso le regioni settentrionali, come le coste della Sardegna, dove sono stati recentemente rinvenuti diversi esemplari. Parole chiave: Raja brachyura, uova, migrazione, distribuzione, Mediterraneo occidentale ANNALES · Ser. hist. nat. · 34 · 2024 · 2 214 Farid HEMIDA et al.: OCCURRENCE OF THE RARE BLONDE RAY, RAJA BRACHYURA (RAJIDAE), OFF THE ALGERIAN COAST ..., 213–220 INTRODUCTION The blonde ray, Raja brachyura Lafont, 1873, occurs in the eastern Atlantic from the Shetlands and the English Channel to the western part of the North Sea (Stehmann & Bürkel, 1986). Further south, the species is found in the Bay of Biscay, off the north- ern coast of Spain, and along the coast of Portugal (Quéro et al., 2003). South of the Strait of Gibraltar, R. brachyura has been recorded off the Moroccan coast (Aloncle, 1966), around the Madeira Islands (Wirtz et al., 2008). In addition, the species is present around the Azores Archipelago (Santos et al., 2020). Stehmann & Bürkel (1986) noted that R. brachyura is only known in the western Mediterranean basin, while in the eastern basin, the species is rare with a single and doubtful record from the Aegean Sea. R. brachyura used to be rare off the Spanish coast (Lozano Rey, 1928) and around the Balearic Islands (Massutí & Moranta, 2003). With regard to the Mediterranean coast of France, the first record of a single specimen was made by Euzet (1960), while Quignard (1965) noted that the species was very rare in the area. The last recorded specimen in France was captured by trawl on 14 April 1992, between Sète and Palavas (Capapé et al., 2006). Another specimen was photographed in a fish shop in Montpellier on 8 September 2021, but no information was available on its origin (see Association Ailerons, 2021). Tortonese (1956) studied a single specimen caught in the Ligurian Sea, and more recently, Bottaro et al. (2009) reported the capture of two specimens, not- ing that the species was very rare in Italian waters. Conversely, Catalano et al. (2007) and Porcu et al. (2015) documented the capture of several specimens around Asinara Island, located off northwestern Sar- dinia, providing studies on the diet and feeding hab- its of the species, along with descriptions of certain aspects of its reproductive biology. It appears that R. brachyura is regularly caught in the area and holds economic significance for local fisheries. Soldo & Lipej (2022) noted that while R. brachyura is present in the Adriatic Sea, it is very rare; in fact, it is absent from the Croatian coast (Balaka et al., 2023) and the coast of Montenegro (Ćetković et al., 2024). In the central Mediterranean, R. brachyura is a rarely occurring species found in the waters around the Maltese Islands (Borg et al., 2026). A single spec- imen was captured on 16 March 1972, off Tabarka on the northern Tunisian coast. It was a female, measuring 920 mm in total length (TL), 620 mm in disc width (DW), and weighing 6.5 kg (Quignard & Capapé, 1972). No new specimens have been recorded in the area since (Rafrafi-Nouira, 2016; Enajjar et al., 2022). R. brachyura has been reported from the Aegean Sea (Papaconstantinou, 2014), more specifically from Turkish marine waters (Turan et al., 2024) and off Cyprus (Giovos et al., 2021; O’Keefe et al., 2023). This appears to be the easternmost range of the species in the Mediterranean Sea, as R. brachyura is unknown in the southern Levant Basin (Golani, 2005; Ali, 2018; Bariche & Fricke, 2020). In the south, the species is recorded neither on the Libyan coast (Shakman et al., 2023) nor the Mediterranean coast of Egypt (El Sayed et al., 2017). Dieuzeide et al. (1953) reported the capture of a large female specimen off the Algerian coast, measur- ing 1150 mm TL, 620 mm DW, and weighing 6.5 kg TBW. The capture occurred on 2 February 1950, off Bou-Ismail (formerly Castiglione) in central Algeria, at a depth of 30 m. Dieuzeide et al. (1953) provided no further details apart from noting that the species is locally caught by trawl and longline. Observations consistently conducted over two decades (2000–2020) along the Algerian coast, at fish landings and markets, Fig. 1: Map of the Algerian coast with the black star indicating the capture site of Raja brachyura specimens, off Annaba. Sl. 1: Zemljevid alžirske obale s črno zvezdico, ki označuje mesto ulova primerkov vrste Raja brachyura v vodah blizu Annabe. ANNALES · Ser. hist. nat. · 34 · 2024 · 2 215 Farid HEMIDA et al.: OCCURRENCE OF THE RARE BLONDE RAY, RAJA BRACHYURA (RAJIDAE), OFF THE ALGERIAN COAST ..., 213–220 show that R. brachyura is caught in relative abun- dance. This paper describes some specimens captured in Algerian marine waters and offers a few comments on the species’ distribution in the local area and the broader Mediterranean Sea. MATERIAL AND METHODS The specimens of R. brachyura presented herein were observed at the main fish market of Algiers, where catches made along the entire Algerian coast, from the Moroccan to the Tunisian border, are landed. On 29 October 2018, several spec- imens were captured off Annaba, in the eastern region, at 35°42’’35” N and 1°22’17” W (Fig. 1). They were caught by trawler at a depth of 50 m, on sandy-muddy bottoms, together with a rough ray, R. radula Delaroche, 1809 (Fig. 2). The specimens were carefully examined and identified using field guides and ichthyological fauna references (see infra). They were photographed and, when possible, measured. Obtaining morphometric measurements was generally difficult, as the specimens were rapidly sold, mainly in large quantities, for local consumption. RESULTS AND DISCUSSION Based on our observations of the landings of R. brachyura in the area, the species has been caught in relatively abundance in Algerian marine waters. All specimens were identified based on the combination of the following main morphological characters: body medium-sized, about 1200 mm in total length, rhomboid disc slightly wider than long, with sinuous anterior margins, rostrum short and slightly rounded at its distal end, pectoral fins with clear rounded angles on the lateral side, upper surface entirely prickly (except in juveniles), ventral surface only prickly along front margins of disc, separate orbital thorns, tail short and thick, dorsal surface ochre, covered entirely with small dark spots and several light blotches surrounded by dark spots, belly white. These features are in complete agreement with previous descriptions of the species (Clark, 1926; Dieuzeide et al., 1953; Tortonese, 1956; Stehmann & Bürkel, 1984; Serena, 2005; Ebert & Stehmann, 2013 and Last et al., 2016). The specimens herein present- ed were large; the six that were measured had DW ranging between 530 and 630 mm, and TL between 605 and 942 mm. No information on their total body Fig. 2: Numerous Raja brachyura captured off Annaba, with arrow 1 indicating a rough ray, R. radula (Photo by F. Hemida). Sl. 2: Številni primerki vrste Raja brachyura, ujeti v vodah pri Annabi, s puščico 1, ki označuje hrapavo ražo, R. radula (Foto by F. Hemida). ANNALES · Ser. hist. nat. · 34 · 2024 · 2 216 Farid HEMIDA et al.: OCCURRENCE OF THE RARE BLONDE RAY, RAJA BRACHYURA (RAJIDAE), OFF THE ALGERIAN COAST ..., 213–220 weight was provided, but their large size, along with previous data on the species (see Capapé et al., 2006), suggests that they likely weighed around 6 kg. Among the captured blonde rays, a large female was observed expelling an egg case (Fig. 3), and a fully expelled egg case was found next to a large male (Fig. 4). This egg case measured 112 mm in length (excluding the horns) and 83 mm in width, which are values similar to those typically observed for this species (Stehmann & Bürkel, 1984). Its general morphology also confirmed the description by Porcu et al. (2017). Common captures of R. brachyura along the Al- gerian coast, along with with females producing egg cases suggest that a viable population is successfully established in the area. The species is quite abun- dant and regularly landed in the eastern Atlantic according to Stehmann & Bürkel (1984) and Ebert & Stehmann (2013). It can therefore be assumed that by migrating to the Mediterranean Sea through the Strait of Gibraltar, the species reached the Algerian coast, where it found sufficient resources to develop and reproduce. The same assumption has also been suggested for other skate species found in Algerian marine waters, such as the cuckoo ray Leucoraja naevus (Müller and Henle, 1841) (see Capapé et al., 2023) and the undulate ray Raja undulata Lacépède, 1802 (see Hemida et al., 2024), which could thus be considered Herculean migrants (cf. Quignard & Tomasini, 2000). In addition, the Algerian coast likely constitutes a hotspot for R. brachyura in the western Mediterranean basin. Migrations toward northern areas could explain its abundance off southern Sardinia (Catalano et al., 2007; Porcu et al., 2015), the sporadic captures re- ported in the Ligurian Sea (Bottaro et al., 2006), off southern Corsica (MSRG-Corsica, 2013), possibly off the coast of Languedoc (Association Ailerons, 2021), and its range extension in the eastern Mediterranean basin (Giovos et al., 2021; Turan et al., 2024). Fig. 3: Adult female of Raja brachyura expelling an egg case (arrow 1) (Photo by F. Hemida). Sl. 3: Odrasla samica vrste Raja brachyura, ki je izvrgla jajčno kapsulo (puščica 1) (Foto: F. Hemida). ANNALES · Ser. hist. nat. · 34 · 2024 · 2 217 Farid HEMIDA et al.: OCCURRENCE OF THE RARE BLONDE RAY, RAJA BRACHYURA (RAJIDAE), OFF THE ALGERIAN COAST ..., 213–220 R. brachyura is known to be caught in the temper- ate waters off the eastern Atlantic coast (Stehmann & Bürkel, 1984; Ebert & Stehmann, 2013). According to Golani et al. (2021), the waters of the eastern Mediterranean basin are warmer than those of the western basin, which could explain the successful establishment of alien species from the Red Sea and the Indian Ocean in the eastern basin, as well as the scarcity of species such as R. brachyura farther from the Strait of Gibraltar. Ebert & Stehmann (2013) consider the conser- vation status of R. brachyura to be least concern globally, but near threatened in the Mediterranean Sea, despite the fact that some viable populations still exist in its western basin. The warming of the Mediterranean Sea (Francour et al., 1994) due to global climate change, along with its particular morphology (flattened shape), K-selected reproduc- tive characteristics, and over-exploitation, makes this skate species vulnerable (Silva et al., 2012). Therefore, a management plan should be imple- mented across Mediterranean fisheries to protect R. brachyura and prevent its decline, as is the case for all elasmobranch species. Fig. 4: Egg case of Raja brachyura found near an adult male (arrow 1) (Photo by F. Hemida). Sl. 4: Jajčna kapsula vrste Raja brachyura, najdena blizu odraslega samca (puščica 1) (Foto: F. Hemida). ANNALES · Ser. hist. nat. · 34 · 2024 · 2 218 Farid HEMIDA et al.: OCCURRENCE OF THE RARE BLONDE RAY, RAJA BRACHYURA (RAJIDAE), OFF THE ALGERIAN COAST ..., 213–220 POJAVLJANJE REDKE OKRASTE RAŽE, RAJA BRACHYURA (RAJIDAE), OB ALŽIRSKI OBALI (JUGOZAHODNO SREDOZEMSKO MORJE) Farid HEMIDA École Nationale Supérieure des Sciences de la Mer et de l’Aménagement du Littoral (ENSSMAL), BP 19, Bois des Cars, 16320 Dely Ibrahim, Algiers, Algeria Christian REYNAUD Laboratoire Interdisciplinaire en Didactique, Education et Formation, Université de Montpellier, 2, place Marcel Godechot, B.P. 4152, 34092 Montpellier cedex 5, France Christian CAPAPÉ Laboratoire d’Ichtyologie, Université de Montpellier, 34095 Montpellier cedex 5, France e-mail: capape@orange.fr POVZETEK Avtorji poročajo o ulovu velikih primerkov okraste raže, Raja brachyura Lafont 1873, ob alžirski obali. Na podlagi ulovljenih velikih samic, ki nosijo jajca, in primerov že odloženih jajc, kaže, da je populacija vrste R. brachyura na tem območju uspešno vzpostavljena. Domnevajo, da je alžirska obala najverjetneje izhodišče za selitev vrste proti severnim regijam, kot je na primer obala Sardinije, kjer so pred kratkim našli nekaj primerkov. Ključne besede: Raja brachyura, jajčna kapsula, selitev, razširjenost, zahodni sredozemski bazen ANNALES · Ser. hist. nat. · 34 · 2024 · 2 219 Farid HEMIDA et al.: OCCURRENCE OF THE RARE BLONDE RAY, RAJA BRACHYURA (RAJIDAE), OFF THE ALGERIAN COAST ..., 213–220 REFERENCES Ali, M. (2018): An updated checklist of marine fishes from Syria with an emphasis on alien species. Medit. Mar. Sci., 19(2), 388-393. Aloncle, H. (1966): Note sur Raja brachyura A.M. Lafont 1873. Espèce nouvelle pour la côte atlantique du Maroc. Bull. Inst. Pêch. Marit. Maroc, 14, 51-55. Association Ailerons (2021): Raie lisse (Raja brachyura). https: // www. ailerons. Fr [downloaded on 2 September 2024]. Balàka, P.F., P. Ugarković, J. Türtscher, J. Kriwet, S. Niedermüller, P. Krstinić & P.L. Jambura (2023): Updated checklist of Chondrichthyan species in Croa- tia (Central Mediterranean Sea). Biol., 12, 952. http:// doi.org/10.3390/biology12070952. [downloaded on 2 September 2024]. Bariche, M. & R. Fricke (2020): The marine ichthy- ofauna of Lebanon: an annotated checklist, history, biogeograpphy, and conservation status. Zootaxa, 4775 (1), 1-157. Borg, J.A., D. Dandria, J. Evans, L. Knittweis & P.J.A. Schembri (2023): Critical checklist of the ma- rine fishes of Malta and surrounding waters. Diversity, 2023, 15, 225, https:// doi.org/ 10.3390/d15020225. Bottaro, M., I. Consalvo, S. Ferrando, L. Gallus, L. Girosi, P.N. Psomadakis, C.J.L. Atkinson & M. Vacchi (2009): New records of blonde ray (Raja brachyura) from the Ligurian Sea. Mar. Biodiv. Rec., 1, e 72. DOI: https://doi.org/10.1017/S1755267207007555 [down- loaded on 2 September 2024]. Capapé, C., O. Guélorget., Y. Vergne, A. Marquès & J.-P. Quignard (2006): Skates and rays (Chon- drichthyes) from waters off the Languedocian coast (southern France, northern Mediterranean). Annales, Ser. Hist. Nat., 16, 166-178. Capapé, C., C. Reynaud & F. Hemida (2023): Records of the critically endangered cuckoo ray Leucoraja naevus (Rajidae) From the Algerian coast (Southern Mediterranean Sea). Thalassia sal, 45, 3-10. Catalano, B., M. Dalù, U. Scacco & M. Vacchi (2007): New biological data on Raja brachyura (Chondrichthyes, Rajidae) from around Asinara Island (NW Sardinia, Western Mediterranean). Ital. J. Zool., 74, 55-61. Ćetković, I., F. Serena, A. Barash, D. Mrdak, I. Giovos, Z. Ikica, N. Đorđević, A. Pešić, M. Divanović & D. Mi- lošević (2024): Combining official fisheries monitoring and citizen science data to create the first chondrichthyan checklist of Montenegro. Acta Adriat., 65, 21-31. Clark, R. S. (1926): Rays and skates. A revision of the European species. Fish., Scotland, Scient. Invest., 1, 1-66. Dieuzeide, R., M. Novella & J. Roland (1953): Catalogue des poissons des côtes algériennes, Volume I. Squales – Raies – Chimères. Bull. Sta. Aquic. Pêche, Castiglione, n. s. 6, I, 1-274. Ebert, D. A. & M.F.W. Stehmann (2013): Sharks batoids and Chimaeras of the North Atlantic. FAO species Catalogue for Fisheries Purposes, n° 7, Rome, FAO, 523 pp. El Sayed, H., K. Akel. & P.K. Karachle (2017): The marine ichthyofauna of Egypt. Egyptian J. Aquat. Biol. Fish., 21 (3), 81-116. Francour, P., C.F. Boudouresque, J.G. Harmelin, M.L. Harmelin-Vivien & J.-P. Quignard 1994. Are the Mediterranean waters becoming warmer? Mar. Poll. Bull., 28, 523-526. Enajjar, S., B. Saïdi & M.N. Bradaï (2022): Elasmobranchs in Tunisia: Status, Ecology, and Biology. In book: Sharks - Past, Present and Future [Working Title]. DOI: http://dx.doi.org/10.5772/ intechopen.108629 [downloaded on 2 September 2024]. Euzet, L. (1960): Recherches sur les Cestodes Tétraphyllides des Sélaciens des côtes de France. Nat. Monspel. 1, 7-262. Giovos, I., F. Serena, D. Katsada, A. Anastasi- adis, A. Barash, C. Charilaou, J. M. Hall-Spencer, F. Crocetta, A. Kaminas, D. Kletou, M. Maximiadi, V. Minasidis , D. K. Moutopoulos, R.N.Aga-Spyrido- poulous, I.Thasitis & P. Kleitou (2021): Integrating Literature, Biodiversity Databases, and Citizen-Sci- ence to Reconstruct the Checklist of Chondrich- thyans in Cyprus (Eastern Mediterranean Sea). Fish- es, 6, 24. https://doi.org/ 10.3390/fishes6030024 [downloaded on 2 September 2024]. Golani, D. (2005): Check-list of the Mediterranean Fishes of Israel. Zootaxa, 2005(947), 1-200. Golani, D., E. Azzurro, J. Dulčić, E. Massuti & L. Orsi-Relini (2021): Atlas of Exotic Fishes in the Mediterranean Sea. 2nd edition. [F. Briand, Ed.]. CIESM Publishers, Paris, Monaco, 365 pp. Hemida, F., C. Reynaud & C. Capapé (2024): On the occurrence of undulate ray, Raja undulata (Rajidae) from the Algerian coast (Southwestern Mediterranean Sea). Annales, Ser. Hist. nat., 33, 37 -43. Last, P., G. Naylor, B. Séret, W. White, M. Steh- mann & M. de Carvalho (2016): Rays of the world. CSIRO Publishing, 800 pp. Lozano Rey, I. (1928). Fauna Ibérica. Pesces (Gen- eralidades, Ciclóstomos y Elasmobranquios). Mus. Nac. Ciencias. Nat., Madrid, 1, 1-692. Massutí, E. & J. Moranta (2003): Demersal assem- blages and depth distribution of elasmobranchs from the continental shelf and slope off the Balearic Islands (western Mediterranean). ICES J. Mar. Sci., 60, 753- 766. MSRG-Corsica (2013): Raie à queue courtes/ Tapafessa https: //corsica-requins de mediterranee.og [downloaded on 2 September 2024]. ANNALES · Ser. hist. nat. · 34 · 2024 · 2 220 Farid HEMIDA et al.: OCCURRENCE OF THE RARE BLONDE RAY, RAJA BRACHYURA (RAJIDAE), OFF THE ALGERIAN COAST ..., 213–220 O’Keefe, M., E.G.T. Bengil, J.L. Palmer, D. Beton, Ç. Çaglar, B.J. Godley, M. Özkan, R.T.E. Snape & A.C. Broderick (2023): Diversity and distribution of elasmobranchs in the coastal waters of Cyprus: using bycatch data to inform management and conserva- tion. Front. Mar. Sci. 10,1181437. Doi: 10.3389/ fmars.2023.1181437 [downloaded on 2 September 2024]. Papaconstantinou, C. (2014): Fauna Graeciae. An updated checklist of the fishes in the Hellenic Seas, Monographs on Marine Sciences, 7, Athens 2014, HCMR, 340 pp. Porcu, C., A. Bellodi, R. Cannas, M.F. Marongiu, A. Mulas & M.C. Follesa (2015): Life-history traits of the commercial blonde ray, Raja brachyura, from the central-western Mediterranean Sea. Medit. Mar. Sci., 16, 90-102. Porcu, C., M.F. Marongiu, A. Bellodi, R. Cannas, A. Cau, R. Melis, A. Mulas, G. Soldovilla, L. Vacca & M.G. Follesa (2017): Morphological descrip- tions of the eggcases of skates (Rajidae) from the central-western Mediterranean, with notes on their distribution. Helgol. Mar. Res., 71(10). https://doi. org/10.1186/s10152-017-0490-2 [downloaded on 2 September 2024]. Quéro, J.C., P. Porche & J.J. Vayne (2003): Guide des poissons de l’Atlantique européen. Les Guides du naturaliste. Delachaux & Niestlé: Lonay (Switzer- land)-Paris, 465 pp. Quignard, J.-P. (1965): Les raies du golfe du Lion. Nouvelle méthode de diagnose et d’étude biogéo- graphique. Rapp. Com. Inter. Explor. Scient. Mer Médit., 18, 211-212. Quignard, J.-P. & C. Capapé (1972): Complément à la liste commentée des Sélaciens de Tunisie. Bull. Inst. natn sci. tech. Océanogr. Pêche, Salammbô, 2, 445-447. Quignard, J.-P & J.A. Tomasini (2000): Mediter- ranean fish biodiversity. Biol. Mar. Medit., 7, 1-66. Rafrafi-Nouira, S. (2016): Catalogue raisonné des espèces de poissons capturées devant Ras Jebel et au- tres régions marines de Tunisie septentrionale: aspects morphologiques, biométriques et bio-écologiques. Thesis, Faculty of Sciences of Bizerte, University of Carthage (Tunisia), 509 pp. Santos, R., A. Novoa-Pabon, H. Silva & M. Pinho (2020): Elasmobranch species richness, fisheries, abundance and size composition in the Azores Ar- chipelago (NE Atlantic). Mar. Biol. Res., 1-14. DOI: 10.1080/17451000.2020.1718713 [downloaded on 2 September 2024]. Serena, F. (2005): Field Identification Guide to the sharks and rays of the Mediterranean and Black Sea. FAO species Identification Guide for Fisheries Purpos- es. FAO: Rome, 97 pp. Shakman, E., A. Siafenasar, K. Etayeb, A. Shefern, A. Elmgwashi, M. A. Hajaji, N. Benghazi, A. Ben Abdalha, M. Aissi & F. Serena (2023): National Inventory and status of Chondrichthyes in the South Mediterranean Sea (Libyan Coast). Biodiv. J., 14, 459-480. Silva, J.F., J.R Ellis & T.L. Catchpole (2012): Species composition of skates (Rajidae) in commercial fisheries around the British Isles and their discarding patterns. J. Fish Biol., 80, 1678-1705. Soldo, A. & L. Lipej (2022): An annotated checklist and the conservation status of Chondrichthyans in the Adriatic. Fishes, 2022, 7, 245, http://doi.org/10.3390/ fishes7050245 [downloaded on 2 September 2024]. Stehmann, M. & D.L. Bürkel (1984): Rajidae. In: Whitehead, P.J.P., M.L. Bauchot, J.-C. Hureau, J. Niel- sen & E. Tortonese (eds): Fishes of the North-eastern Atlantic and the Mediterranean, pp. 163-196. Tortonese, E. (1956): Fauna d’Italia vol.II. Leptocar- dia, Ciclostomata, Selachii., Calderini, Bologna, Italy. [In Italian.], 332 pp. Turan, C., A. Uyan, S.A., Dog˘du& D. Ergüden (2024): First Record of the Blonde Ray Raja brachyura (Rajidae) on Turkish Coasts. Tethys Env. Sci., 1(3), 127-134. Wirtz, P., R. Fricke & M. J. Biscoito (2008): The coastal fishes of Madeira Island - new records and an annotated check-list. Zootaxa, 1715, 1-26. ANNALES · Ser. hist. nat. · 34 · 2024 · 2 221 received: 2024-06-27 DOI 10.19233/ASHN.2024.27 OCCURRENCE OF LONGNOSED SKATE, DIPTURUS OXYRINCHUS, IN THE SEA OF MARMARA Hakan KABASAKAL Istanbul University, Institute of Science, Fisheries Technologies and Management Program, Istanbul, Türkiye WWF Türkiye, Istanbul, Türkiye e-mail:kabasakal.hakan@gmail.com Uğur UZER & F. Saadet KARAKULAK Istanbul University, Faculty of Aquatic Sciences, Department of Fisheries Technologies and Management, Istanbul, Türkiye ABSTRACT On 3 September 2024, a longnosed skate, Dipturus oxyrinchus (Linnaeus, 1758), was incidentally caught in a trammel-net fishery in the northern Sea of Marmara at a depth of 100 m. It was a male with a TL of ca. 100 cm and a TW of ca. 3000 g. Surveys conducted in the late 1990s to assess the status of demersal fishery resources in the Sea of Marmara indicated that D. oxyrinchus once had a considerable stock in the region, in stark contrast to its current rarity. Despite the confirmation of the current presence of D. oxyrinchus in the Sea of Marmara, it would be ecologically challenging for it to persist in a sea faced with overfishing and environmental degradation. Key words: Dipturus, batoids, reoccurrence, shelf, rarity, Sea of Marmara PRESENZA DI RAZZA MONACA, DIPTURUS OXYRINCHUS, NEL MARE DI MARMARA SINTESI Il 3 settembre 2024, una razza monaca, Dipturus oxyrinchus (Linnaeus, 1758), è stata accidentalmente catturata in un tramaglio nel nord del Mar di Marmara ad una profondità di 100 m. Si trattava di un maschio, con lunghezza totale di circa 100 cm e peso totale di circa 3000 g. Le indagini condotte alla fine degli anni ‘90 per valutare lo stato delle risorse della pesca demersale nel Mar di Marmara, hanno indicato che D. oxyrinchus aveva al tempo uno stock considerevole nella regione, in netto contrasto con la sua attuale rarità. Nonostante la conferma dell’attuale presenza di D. oxyrinchus nel Mar di Marmara, la sua persistenza in un mare sottoposto alla pesca eccessiva e al degrado ambientale sarebbe ecologicamente impegnativa. Parole chiave: Dipturus, batoidi, ricorrenza, piattaforma, rarità, Mar di Marmara ANNALES · Ser. hist. nat. · 34 · 2024 · 2 222 Hakan KABASAKAL et al.: OCCURRENCE OF LONGNOSED SKATE, DIPTURUS OXYRINCHUS, IN THE SEA OF MARMARA, 221–228 INTRODUCTION In the Mediterranean Sea, the family Rajidae in- cludes 4 genera (Dipturus, Leucoraja, Raja, and Rost- roraja) and 16 species, one of which is the longnosed skate, Dipturus oxyrinchus (Linnaeus, 1758) (Rajif- ormes: Rajidae) (Barone et al., 2022). The distribution range of D. oxyrinchus extends across a wide area in the eastern Atlantic Ocean, from central Norway to Senegal, and into the Mediterranean Sea (Froese & Pauly, 2024). Inhabiting sandy and sandy-rocky bot- toms of deeper slope waters, D. oxyrinchus is mainly found in the deeper parts of the continental shelf and upper slope waters at depths between 200 and 500 m (Froese & Pauly, 2024; Deval & Mutlu, 2024). The presence of D. oxyrinchus in Turkish seas has been observed since the first quarter of the 20th cen- tury (Ninni, 1923) and its current occurrence in the region has been confirmed in several ichthyological (e.g., Mater & Meriç, 1996; Bilecenoğlu et al., 2014) and chondrichthyan-specific (e.g., Kabasakal, 2002; Deval & Mutlu, 2024) studies. This skate species has long been considered rare in the Sea of Marmara (GSA 28), with only a few scientific reports from the late 20th century documenting its presence (Japan International Cooperation Agency – JICA, 1993; Uysal et al., 1996). In fact, its inclusion in recent chondrichthyan inventories of the Sea of Marmara (Artüz & Friecke, 2024) relies not on original studies of D. oxyrinchus but rather on secondary references to its occurrence in the region. Furthermore, the ab- sence of D. oxyrinchus in the species lists of recent surveys of demersal fishes (Torcu Koç et al., 2012; Karakulak et al., 2017; ÇŞİDB-TUBİTAK-MAM, 2021; Daban et al., 2021) or chondrichthyans (Karadurmuş & Sari, 2024) in the Sea of Marmara suggests that the longnosed skate has likely been extirpated from the region. In this article, we report a recent incidental capture of D. oxyrinchus in the Sea of Marmara and discuss the factors that may influence the future presence of the species in the area. MATERIAL AND METHODS The specimen of the D. oxyrinchus presented was accidentally captured in a commercial fishery, using a trammel net with a knot-to-knot mesh opening of 120 mm when stretched. The fisherman photo- graphed the individual, releasing it alive and email- ing its images for taxon identification. While the species was identified based on the descriptions by Ebert and Stehmann (2013) and Barone et al. (2022), the taxonomic nomenclature follows Froese and Pauly (2024). Information on the total length (TL), weight (TW), depth of capture, and specifications regarding the fishing gear used was obtained from the fisherman. The angle of the snout preceding the line that connects the anterior edges of the spiracles in the individual shown in Fig. 1, a key descriptive characteristic used to differentiate rajids (Ebert & Stehmann, 2013), was measured using a freeware digital protractor tool, “Angle Meter 360,” available for download from the Google Play Store. The ratio of preorbital length to interorbital distance is another key descriptive trait in D. oxyrinchus (Ebert & Steh- mann, 2013). The interorbital distance and preorbital length were measured using the ruler function in Photoshop 7.0. Preorbital length is the distance from the tip of the snout to the front margin of an eyeball, while interorbital distance is the narrowest width between the inner margins of the eyes (Hubbs & Ishiyama, 1968). Photographs of the individual are kept in the personal archives of the first author. RESULTS AND DISCUSSION On 3 September 2024, a longnosed skate (Fig. 1) was accidentally caught in a trammel-net fishery off the coast of Silivri (40º57.494’ N, 28º19.190’ E) in the northern Sea of Marmara (Fig. 2) at a depth of 100 m. It was a male with a TL of ca. 100 cm and a TW of ca. 3000 g. Its claspers extended well beyond the posterior edge of the pelvic fin, thus, based on the MEDITS maturity scale for oviparous elasmobranchs, it was identified as a mature (adult) male (Follesa & Carbonara, 2019). The following is a description of the characters shown in Fig. 1: disc broadly rhombic, with outer corners acutely pointed and anterior margins deeply concave, falling well short of the imaginary line between the tip of the snout and the outer wing tip; snout extremely long and acutely pointed, forming a 52º angle; preorbital length 5.14 times the interorbital distance. No buck- ler thorns on dorsal surface, but alar patches present near the tips of pectoral fins. Due to the framing of the specimen’s dorsal view, only the anterior part of the tail is visible in the photograph, showing 5 thorns along the central line. Upper surface of skate dusky brown, featuring widely spaced creamy whitish spots on disc; two eye spots – light-coloured central spots surrounded by dark brown halos – observed on wings closer to midline of body, and a few dark patches on posterior parts of pectoral fins. Ground colour of ventral surface bluish grey, with a prominent dark brownish area on head and wing tips; mucous and sensory pores visible on the central surface as black dots. Ventral side of disc without the thick coating of dark mucus (Fig. 1). This description is consistent with those provided by Ebert and Stehmann (2013) and Barone et al. (2022), identifying the individual as Dipturus oxyrinchus (Linnaeus, 1758). The pre- orbital length to interorbital distance ratio in the examined individual differed slightly from the 5.5 to 7.0 ratio reported by Ebert and Stehmann (2013), but ANNALES · Ser. hist. nat. · 34 · 2024 · 2 223 Hakan KABASAKAL et al.: OCCURRENCE OF LONGNOSED SKATE, DIPTURUS OXYRINCHUS, IN THE SEA OF MARMARA, 221–228 this variation is admissible and may be attributed to either the angle of the image, which hindered precise measurements, or to allopatry. According to Barone et al. (2022), the genus Dipturus is represented by three species: D. cf. batis (Linnaeus, 1758), D. nidarosiensis (Storm, 1881), and D. oxyrinchus (Linnaeus, 1758). In D. cf. batis, preorbital length is 2.5 to 4 (so less than 5.5) times the interorbital distance, in D. oxyrinchus, it is 5.5 to 7 (Ebert & Steh- mann, 2013; Barone et al., 2022). In D. nidarosiensis, the dorsal and ventral sides of the disc are uniformly dark and the abdomen covered with dark mucus (Barone et al., 2022), the preorbital length is less than 5 times the interorbital length, and only a median row of 40 to 50 small thorns is featured along the tail up to first dorsal fin (Ebert & Stehmann, 2013). In the present specimen, the preorbital length was 5.14 times the interorbital dis- tance (the possible reasons for this explained above), the dorsal and ventral sides of the body were not uniformly dark, the abdomen was not covered by a dark mucus layer, and only 5 thorns were observed along the central line. The descriptive characteristics of D. cf. batis and D. nidarosiensis differ from those of the present speci- men, confirming the latter was a D. oxyrinchus. A critical reading of the literature on the presence of longnosed skate in the Sea of Marmara revealed uncer- tainty regarding the date of the first D. oxyrinchus re- cord from this region. According to the evidence-based criteria for confirmed ichthyological records proposed by Kovačić et al. (2020), the records of D. oxyrinchus in JICA (1993) and Uysal et al. (1996) are classified as “criteria 1”, indicating collected and preserved speci- mens with verified records. On the other hand, data on the occurrence of D. oxyrinchus in the Sea of Marmara, provided in several ichthyological reviews published in this century (e.g., Kabasakal, 2002; Eryılmaz & Meriç, 2005; Bilecenoğlu et al., 2014; Artüz & Friecke, 2024), are based solely on earlier reports from the 1990s. Even the source cited by Artüz and Friecke (2024) for the date of the first record of D. oxyrinchus in the Sea of Marmara, Fig. 1: A male longnosed skate, D. oxyrinchus, accidentally captured in the Sea of Marmara by a commercial trammel-netter and released alive. The arrows indicate the patches of alar thorns. Scale bar = 25 cm. Photo credit: Mr. Barış Köksalan. Sl. 1: Samec koničaste raže, D. oxyrinchus, ki se je v Marmarskem morju slučajno ujel v komercialno trislojno mrežo in so ga ribiči živega izpustili. Puščice označujejo lise trnov na disku. Merilo = 25 cm. Avtor fotografije: g. Barış Köksalan. ANNALES · Ser. hist. nat. · 34 · 2024 · 2 224 Hakan KABASAKAL et al.: OCCURRENCE OF LONGNOSED SKATE, DIPTURUS OXYRINCHUS, IN THE SEA OF MARMARA, 221–228 Ninni (1923), is debatable. In his ichthyological invento- ry study, Ninni (1923) stated, “I saw this species once in the market of Istanbul,” adding that “several specimens were also caught by the Royal Thalassographic Ship Tremiti in the Dardanelles, specifically in the vicinity of Cianac.” (Ninni, 1923; p. 20) Therefore, although Emilio Ninni did see a specimen of D. oxyrinchus (referring to it as Raja oxyrhynchus; in Ninni, 1923; p. 20) in the market of Istanbul, as inferred from his annotation, he examined the species based on specimens brought into the city from other areas, such as the nearby Strait of the Dardanelles, not from the Sea of Marmara. Also, the species is not included in one of the earliest and detailed ichthyological inventories of the Sea of Marmara (Rhasis Erazi, 1942). Therefore, it would be more appropriate to consider JICA (1993) and Uysal et al. (1996) as the first references for records of D. oxyrinchus in the Sea of Marmara, rather than Ninni (1923). In MEDITS surveys evaluating the spatial distribu- tion of demersal cartilaginous fishes in the northern Mediterranean, the frequency of occurrence of D. oxyrinchus in the eastern Mediterranean at depths of 200–800 m was reported to be 50% (Follesa et al., 2019). Conversely, the frequency of occurrence of D. oxyrinchus as bycatch in recent bottom trawl surveys conducted in Turkish seas is below 25% (Keskin & Karakulak, 2006; Yağlıoğlu et al., 2015), classifying the species as rare. In a recent study conducted in the Aegean Sea, Filiz et al. (2018) reported that D. oxyrinchus was rarely encountered in waters deeper than 100 m in the central Aege- an. Also, according to Damalas and Vassilopoulo (2011), there has been a significant decrease in the catch rate of D. oxyrinchus in bottom trawl fishery in the central Aegean Sea in recent years (from 1.11 kg/h in 1995 to 0.41 kg/h in 2006). Contrary to these findings, a previous study showed that D. oxyrinchus had a considerable stock in the Sea of Marmara in the past (JICA, 1993). Its abundance ranged from 47.9 kg/km2 (in autumn) to 67.4 kg/km2 (in winter) at depths of 101–200 m, and from 9.1 kg/ km2 (in spring) to 37.6 kg/km2 (in winter) at depths of 201–500 m (JICA, 1993). This is consistent with Deval and Mutlu (2024), who stated that D. oxyrin- chus is a chondrichthyan species mainly found in upper slope waters at depths ≤ 500 m. In the Sea of Marmara, batoids have faced significant mortality in recent years as a result of environmental degradation, especially severe hypoxia (Karadurmuş & Sarı, 2022; Mantıkçı et al., 2022). As a result, cartilag- inous fishes inhabiting the bathyal zone and the deep continental shelf have become more common in the upper areas of the continental shelf (Kabasakal et al., 2023, 2024). The main threat to D. oxyrinchus in Turkish seas is fishing, particularly as bycatch in bottom trawls (Yağlıoğlu et al., 2015; Filiz et al., 2018). However, like other cartilaginous fish that are forced into shallow continental shelf waters due to deoxygenation in deeper Fig. 2: Map showing the approximate locality (red triangle) of the capture of the longnosed skate. The red rectangle in the small map indicates the geographical position of the Sea of Marmara in the Mediterranean ecosystem. Sl. 2: Zemljevid s približno lokacijo (rdeči trikotnik) ulova koničaste raže. Rdeči pravokotnik na manjšem zem- ljevidu označuje geografsko lego Marmarskega morja v sredozemskem ekosistemu. ANNALES · Ser. hist. nat. · 34 · 2024 · 2 225 Hakan KABASAKAL et al.: OCCURRENCE OF LONGNOSED SKATE, DIPTURUS OXYRINCHUS, IN THE SEA OF MARMARA, 221–228 areas, D. oxyrinchus may also become a target of year- round small-scale fishing in this region. In conclusion, the absence of D. oxyrinchus in recent trawl surveys of deeper areas in the Sea of Marmara (Torcu Koç et al., 2012; Karakulak et al., 2017; ÇŞİDB-TUBİTAK-MAM, 2021; Daban et al., 2021; Karadurmuş & Sarı, 2024), along with the capture of this individual by small-scale fishermen at a depth where the species has not previously been encountered (JICA, 1993), supports this assumption. According to Ellis et al. (2016), the population of D. oxyrinchus in the Mediterranean Sea has declined by around 30% over three generations (30 years). While the current record confirms the species’ presence in the Sea of Marmara, it would be ecologically chal- lenging for it to persist in a sea faced with overfishing and environmental degradation. ACKNOWLEDGEMENTS We thank the fisherman Mr. Barış Köksalan for in- forming us about the capture of the present longnosed skate and for sending the photographs of the individual seen in Fig. 1. ANNALES · Ser. hist. nat. · 34 · 2024 · 2 226 Hakan KABASAKAL et al.: OCCURRENCE OF LONGNOSED SKATE, DIPTURUS OXYRINCHUS, IN THE SEA OF MARMARA, 221–228 POJAVLJANJE KONIČASTE RAŽE, DIPTURUS OXYRINCHUS, V MARMARSKEM MORJU Hakan KABASAKAL Istanbul University, Institute of Science, Fisheries Technologies and Management Program, Istanbul, Türkiye WWF Türkiye, Istanbul, Türkiye e-mail:kabasakal.hakan@gmail.com Uğur UZER & F. Saadet KARAKULAK Istanbul University, Faculty of Aquatic Sciences, Department of Fisheries Technologies and Management, Istanbul, Türkiye POVZETEK Tretjega septembra 2024 so v trislojno mrežo naključno ujeli primerek koničaste raže, Dipturus oxyrinchus (Linnaeus, 1758) v severnem delu Marmarskega morja na globini 100 m. Bil je samec, ki je meril približno 100 cm v dolžino in tehtal približno 3000 g. Raziskave, opravljene v poznih devetdesetih letih prejšnjega stoletja za oceno statusa pridnenih ribolovnih virov v Marmarskem morju, so pokazale, da je imela koničasta raža (D. oxyrinchus) nekoč velik stalež v regiji, kar je v popolnem nasprotju s trenutno redkostjo. Kljub potrditvi trenutne prisotnosti D. oxyrinchus v Marmarskem morju bi bilo ekološko zahtevno, da bi koničasta raža še naprej vztrajala v morju, ki se sooča s prekomernim ribolovom in degradacijo okolja. Ključne besede: Dipturus, skati, ponovni pojav, šelf, redkost, Marmarsko morje ANNALES · Ser. hist. nat. · 34 · 2024 · 2 227 Hakan KABASAKAL et al.: OCCURRENCE OF LONGNOSED SKATE, DIPTURUS OXYRINCHUS, IN THE SEA OF MARMARA, 221–228 REFERENCES Artüz, M.L. & R. Friecke (2024): The marine cartilaginous fishes and sturgeons of the Sea of Marmara: an updated and annotated checklist. Zootaxa, 5501, 531-541. https://doi.org/10.11646/ zootaxa.5501.4.3. Barone, M., C. Mazzoldi & F. Serena (2022): Sharks, Rays and Chimaeras in Mediterranean and Black Sea–Key to Identification. FAO, Rome, http:// dx.doi.org/10.4060/cc0830en. Bilecenoğlu, M., M. Kaya, B. Cihangir & E. Çiçek (2014): An updated checklist of the marine fishes of Turkey. Turk. J. Zool., 38, 901-929. https://doi. org/10.3906/zoo-1405-60. ÇŞİDB-TUBİTAK-MAM (2021): Denizlerde Bütünleşik Kirlilik İzleme Programı 2014-2019 Mar- mara Denizi Özet Raporu” Kocaeli, TÜBİTAK-MAM Matbaası. [in Turkish]. Daban, B., A. İşmen, M. Şirin, C.C. Yığın & M. Arslan İhsanoğlu (2021): Analysis of demersal fish fauna off the sea of Marmara, Turkey. COMU J. Mar. Sci. Fish., 4, 20-31. https://doi.org/10.46384/ jmsf.912403. Damalas, D. & V. Vassi lopoulou (2011): Chondrichthyan by-catch and discards in the demersal t rawl f ishery of the central Aege- an Sea (Eastern Mediterranean). Fish. Res. , 108, 142-152. ht tps: / /doi .org/10.1016/j . f ish- res.2010.12.012. Deval, M.C. & E. Mutlu (2024): Spatio-temporal density of the demersal Chondrichthyes assemblage in an upper bathyal of the eastern Mediterranean Sea. Mar. Biodivers., 54, 31. https://doi.org/10.1007/ s12526-024-01423-x. Ebert, D.A. & M.F.W. Stehmann (2013): Sharks, batoids, and chimaeras of the North Atlantic FAO Species Catalogue for Fishery Purposes. No. 7. FAO, Rome. Ell is , J .R. , A. Abella, F. Serena & M.F.W. Stehmann (2016): Dipturus oxyr inchus (Mediterranean assessment) . The IUCN Red Lis t of Threatened Species 2016: e. T63100A16527733. ht tps: / /www.iucnredlis t . org/species/63100/16527733 (Last Accession, 12 September 2024). Eryılmaz, L. & N. Meriç (2005): Review of fish fauna of the Sea of Marmara. J. Black Sea/Medit. Environ., 11, 153-178. Filiz, H., S. Yapıcı & G. Bilge (2018): Chondrich- thyan fishes in catch composition of the bottom trawl fishery on the coast of Didim, Turkey. J. Black Sea/Medit. Environ., 24, 28-37. Follesa, M.C. & P. Carbonara, eds. (2019): Atlas of the maturity stages of Mediterranean fishery resources. Studies and Reviews n. 99. FAO, Rome. Follesa, M.C., M.F. Marongiu, W. Zupa, A. Bel- lodi, A. Cau, R. Cannas, F. Colloca, M. Djurović, I. Isajlović, A. Jadaud, C. Manfredi, A. Mulas, P. Peristeraki, C. Porcu, S. Ramirez-Amaro, F. S. Jiménez, F. Serena, L. Sion, I. Thasitis, A. Cau & P. Carbonara (2019): Spatial variability of Chondrichthyes in the northern Mediterranean. In: Mediterranean demersal resources and eco- systems: 25 years of MEDITS trawl surveys (M.T. Spedicato, G. Tserpes, B. Mérigot & E. Massutí, eds.) Sci. Mar., 83S1, December 2019, 81-100. ISSN-L 0214-8358. https://doi.org/10.3989/sci- mar.04998.23A. Froese, R. & D. Pauly (eds.) (2024): FishBase. World Wide Web electronic publication. www. fishbase.org (Last accession, 12 September 2024). Hubbs, C.L. & R. Ishiyama (1968): Methods for the taxonomic study and description of skates (Rajidae). Copeia, 1968, 483-491. http://www. jstor.org/stable/1442016 (Last accession, 12 Sep- tember 2024). JICA (1993): Marmara, Ege ve Akdeniz'de demersal balıkçılık kaynakları sörvey raporu. Japonya Uluslararası İşbirliği Ajansı (JICA), T.C. Tarım ve Köyişleri Bakanlığı Tarımsal Üretim ve Geliştirme Genel Müdürlüğü, Ankara, 579 pp. [in Turkish]. Kabasakal, H. (2002): Elasmobranch species of the seas of Turkey. Annales, Ser, Hist. Nat., 12, 15-22. Kabasakal, H., U. Uzer & F.S. Karakulak (2023): Occurrence of deep-sea squaliform sharks, Echinorhinus brucus (Echinorhinidae) and Centrophorus uyato (Centrophoridae), in Marmara shelf waters. Annales, Ser, Hist. Nat., 33, 27-36. https://doi.org/10.19233/ASHN.2023.05. Kabasakal, H., U. Uzer, O. Gönülal & F.S. Karakulak (2024): Bioecological lessons learned from the neonate longnose spurdogs Squalus blainvi l le (Squaliformes: Squalidae) suggest a potential nursery ground in the Marmara Sea. Acta Adriat. , 65. https:/ /doi.org/10.32582/ aa.65.2.2. Karadurmuş, U. & M. Sarı (2024): Distribution and diversity of elasmobranchs in the Sea of Marmara: A 2023 status report. Aquat. Conserv.: Mar. Freshw. Ecosyst., 34, e4121. https://doi. org/10.1002/aqc.4121. Karakulak, F.S., M. İşinibilir Okyar, T. Yıldız, U. Uzer, E.E. Türkeri, O. Doğan, M. Peksu, D. Biçer, E. Yemişken, B. Gül & Ö. Çanak (2017): Doğu Marmara Denizi’nde demersal balıkların stok tesbiti. Proje No: 51922, Sonuç Raporu. T. C. İstanbul Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi. [in Turkish]. ANNALES · Ser. hist. nat. · 34 · 2024 · 2 228 Hakan KABASAKAL et al.: OCCURRENCE OF LONGNOSED SKATE, DIPTURUS OXYRINCHUS, IN THE SEA OF MARMARA, 221–228 Keskin, Ç. & F.S. Karakulak (2006): Preliminary results on depth distribution of cartilaginous fish in the north Aegean Sea and their fishing potential in summer 2001. In: Proceedings of the International Workshop on Mediterranean Cartilaginous Fish with Emphasis on Southern and Eastern Mediterranean (N. Başusta, Ç. Keskin, F. Serena & B. Seret, eds.). Turkish Marine Research Foundation, Istanbul, Tur- key, Publication Number: 23, 14-16 October 2006, 69-78. Kovačić, M., L. Lipej & J. Dulčić (2020): Evi- dence approach to checklists: critical revision of the checklist of the Adriatic Sea fishes. Zootaxa, 4767, 1-55. https://doi.org/10.11646/zootaxa.4767.1.1. Last P. R., B. Séret, M.F.W. Stehmann & S. Weig- mann (2016): Skates - Family Rajidae. In: Rays of the world (W.T. White, M.R. de Carvalho, B. Séret, M.F.W. Stehmann, G.J.P. Naylor & L. Marshall, eds.). Clayton South: CSIRO, 204-363. Mantıkçı, M., H. Örek, M. Yücel, Z. Uysal, S. Arkın & B. Salihoğlu (2022): Current oxygen status of the Sea of Marmara and the effect of mucilage. In: Proceedings of the Symposium “The Sea of Mar- mara 2022 (B. Öztürk, H. A. Ergül, A. C. Yalçıner & B. Salihoğlu,eds.). Turkish Marine Research Founda- tion, Publication no 63, 8-9 January 2022, İstanbul, 18-24. Mater, S. & N. Meriç (1996): Deniz balıkları - Pisces. In: Türkiye Omurgalılar Tür Listesi (A. Kence & C.C. Bilgin, eds.). TÜBİTAK, Ankara, 133-172. [in Turkish]. Ninni, E. (1923): Primo contributo allo studio dei pesci e della pesca nelle acque dell’Impero Ot- tomano. Venezia: Premiate Officine Grafiche Carlo Ferrari. Rhasis Erazi, R.A. (1942): Marine fishes found in the Sea of Marmara and in the Bosphorus. İstanbul Üniversitesi Fen Fakültesi Mecmuası, Seri B, 7, 103- 115. Uysal, A., A. Yüksek & E. Okuş (1996): Marmara Denizi’nde ender rastlanan üç elasmobranchii türü ve dağılımları: (Raja naevus Müller & Henle, 1841; Raja oxyrinchus Linnaeus, 1758; Galeus melasto- mus Rafinesque, 1809). Abstracts of 13th National Congress of Biology, 17-20 September 1996, 28. Torcu Koç, H., F. Üstün, Z. Erdoğan & L. Artüz (2012): Species composition of benthic fish fauna in the Sea of Marmara, Turkey. J. Appl. Ichthyol., 37, 303-307. https://doi.org/10.1111/j.1439- 0426.2012.02037.x. Yağlıoğlu, D., T. Deniz, M. Gürlek, D. Ergüden & C. Turan (2015): Elasmobranch bycatch in a bottom trawl fishery in the Iskenderun Bay, northeastern Mediterranean. Cah. Biol. Mar., 56, 237-243. ANNALES · Ser. hist. nat. · 34 · 2024 · 2 229 received: 2024-07-17 DOI 10.19233/ASHN.2024.28 CAPTURE OF A JUVENILE SHARPNOSE SEVENGILL SHARK, HEPTRANCHIAS PERLO (BONNATERRE, 1788), FROM THE TURKISH COAST (EASTERN MEDITERRANEAN SEA) WITH UPDATED RECORDS FROM MEDITERRANEAN WATERS Cem ÇEVİK Department of Basic Science, Faculty of Fisheries, Çukurova University, Adana, Türkiye Gökhan GÖKÇE Department of Fisheries and Seafood Processing Technology, Faculty of Fisheries, Çukurova University, Adana, Türkiye Deniz ERGUDEN Department of Marine Science, Faculty of Marine Science and Technology, Iskenderun Technical University, 31200 Iskenderun, Hatay, Türkiye e-mail: deniz.erguden@iste.edu.tr; derguden@gmail.com ABSTRACT In June 2024, an immature male specimen of Heptranchias perlo (Bonnaterre, 1788) was caught by a com- mercial trawl boat off Tasucu (Silifke, Turkey) at a depth of 520 m. This represents a new juvenile record of the species in Turkish waters (eastern Mediterranean). This record is important for monitoring the sharpnose sevengill shark in Turkey and may contribute to improving regional sustainable fisheries policies, such as establishing a Shark Conservation Management Plan for the area. Furthermore, it enhances our understanding of shark species distribu- tion and may help identify potential nursery areas in the region. The study also provides detailed historical and current records of newborn and juvenile sharpnose sevengill sharks in the region and the broader Mediterranean. Key words: juvenile shark, Hexanchidae, Tasucu coast, Turkey, Levantine Sea CATTURA DI UN GIOVANE SQUALO MANZO, HEPTRANCHIAS PERLO (BONNATERRE, 1788), LUNGO LA COSTA TURCA (MEDITERRANEO ORIENTALE) CON SEGNALAZIONI AGGIORNATE PER IL MEDITERRANEO SINTESI Nel giugno 2024, un esemplare maschio immaturo di Heptranchias perlo (Bonnaterre, 1788) è stato catturato da una barca commerciale a strascico al largo di Tasucu (Silifke, Turchia) a una profondità di 520 m. Questo rappresenta un nuovo dato per un giovanile della specie nelle acque turche (Mediterraneo orientale). Questa cattura è importante per il monitoraggio dello squalo manzo in Turchia e può contribuire a migliorare le politiche regionali di pesca sostenibile, come l’istituzione di un piano di gestione della conservazione degli squali nell’area. Inoltre, migliora la nostra comprensione della distribuzione delle specie di squali e può aiutare a identificare potenziali aree di riproduzione nella regione. Lo studio fornisce anche una dettagliata documentazione storica e attuale dei neonati e degli stadi giovanili di squalo manzo nella regione e nel Mediterraneo in generale. Parole chiave: giovane squalo, Hexanchidae, Costa di Tasucu, Turchia, Mar Levantino ANNALES · Ser. hist. nat. · 34 · 2024 · 2 230 Cem ÇEVİK et al.,: CAPTURE OF A JUVENILE SHARPNOSE SEVENGILL SHARK, HEPTRANCHIAS PERLO (BONNATERRE, 1788), FROM THE TURKISH COAST ..., 229–238 INTRODUCTION In the Mediterranean, the genus Heptranchias is represented by a single species, the sharpnose sev- engill shark Heptranchias perlo (Bonnaterre, 1788), a small deep-water shark belonging to the family Hexanchidae (IUCN, 2024). Sharpnose sevengill sharks are a circumglobal species found in tropical and temperate oceans, ex- cluding the northeastern Pacific (Compagno & Niem, 1998). Their distribution extends from the western and eastern Atlantic, including the Mediterranean, to the Indian Ocean and western Pacific (Ebert et al., 2013). In the Mediterranean waters of Turkey, they are considered to be rare (Ergüden & Bayhan, 2015). The sharpnose sevengill shark, H. perlo, is a bathydemersal species typically found on the outer continental and insular shelves and upper slopes at depths of 100 to 400 m, though it occasionally ventures into shallower inshore waters or descends to depths of up to 1000 m (Compagno & Niem, 1998; Last & Stevens, 1994; Froese & Pauly, 2024), but most- ly found at 27-720 m (Ebert et al., 2013; Weigmann, 2016). It feeds on small sharks and rays, small bony fish, shrimps, crabs, lobsters, squid, and cuttlefish (Ca- papé, 1980; Compagno et al., 1989; Henderson & Williams, 2001; Barnett et al., 2012). In the Mediterranean, H. perlo has been recorded at various depths and in different regions (Capapé, 1980; Boeseman, 1984; Serena; 2005), including the Adriatic Sea (Lipej & Dulčić, 2010; Dragičević & Isajlović, 2020 Lipej & Mavrič, 2022a, 2022b), Sicil- ian waters (central Mediterranean) (De Maddalena et al., 2002), the Balearic Sea (western Mediterranean) (Guallart et al., 2019a,b), Algerian waters (Ordines et al., 2011), Tunisian waters (El Kamel-Moutalibi et al., 2014; Rafrafi-Nouira et al., 2015; Capapé et al., 2018), waters off Sardinia (Marongiu et al., 2017; Mulas et al., 2021), Strait of Sicily (De Maddalena et al., 2002; Scacco et al., 2010), Gulf of Gabès (Bradai et al., 2002), Maltese waters (Schembri et al., 2003), eastern Mediterranean (Golani 2005), off Cyprus (Guallart et al., 2019a), the Ionian Sea (Mytilineou et al., 2005), Greek waters (Damalas & Megalofo- nou, 2012; Papaconstantinou, 2014; Karachle et al., 2020), Turkish waters (Akşıray, 1987; Filiz & Mater, 2002; Öziç & Yilmaz, 2006; İşmen et al., 2007, 2009; Kabasakal & Ince, 2008; Güven et al., 2012; Eronat & Özaydın 2014; Ergüden & Bayhan, 2015; Başusta, 2016), and Syrian waters (Alkusairy & Saad, 2018). In Turkey, H. perlo was first recorded in Medi- terranean waters (Akyüz, 1957). While its range has evidently expanded since, as the species has been documented in the Turkish waters of both the Aegean Fig. 1: Map showing the capture site (•) of the sharpnose sevengill shark, Heptranchias perlo (Bonnaterre, 1788), in the eastern Mediterranean. Sl. 1: Zemljevid obravnavanega območja z označeno lokaliteto ulova (•) morskega psa sedmeroškrgarja, Heptranchias perlo (Bonnaterre, 1788), v vzhodnem Sredozemskem morju. ANNALES · Ser. hist. nat. · 34 · 2024 · 2 231 Cem ÇEVİK et al.,: CAPTURE OF A JUVENILE SHARPNOSE SEVENGILL SHARK, HEPTRANCHIAS PERLO (BONNATERRE, 1788), FROM THE TURKISH COAST ..., 229–238 Fig. 2: General view of the male Heptranchias perlo from the Tasucu coast. Sl. 2: Splošni pogled na samca vrste Heptranchias perlo z obale Tasucu. Tab 1: Morphometric measurements of the juvenile specimen of H. perlo collected from the Tasucu coast, Turkey, compared with previous records of neonate and juvenile specimens from the Mediterranean Sea. Tab 1: Morfometrične meritve juvenilnega osebka vrste H. perlo, ujetega na obali Tasucu v Turčiji, v primerjavi s prejšnjimi zapisi o pojavljanju novoskotenih ih in nedoraslih osebkov iz Sredozemskega morja. Reference This study Başusta (2006) El Kamel-Moutalibi et al. (2014) Capape et al. (2018) Gullard et al. (2019a) Gullard et al. (2019b) Locality Tasucu coast, Türkiye International waters of the North-eastern Mediterranean Tunisian waters Tunisian waters (off Bizerte) Balearic Sea, western Mediterranean Sea, Spain Ibiza Channel, western Mediterranean Sea, Spain Morphometric measurements Value (cm) Sex Male - Female-Male Male-Female Female Female Specimen (N) 1 2 2 2 1 1 Total length 50.2 32.5-32.3 79.0-70.0 72.0-70.0 79.6 64.3 Fork length 37.5 25.5-25.3 61.0-55.4 55.0-55.0 - - Head length 10.1 6.8-6.7 16.8-14.7 14.5-14.2 15.2 12.9 Eye weight 1.9 1.5-1.5 2.6-2.5 3.1-3.0 2.8 2.3 Eye height 0.9 0.7-0.7 1.5-1.3 1.8-1.8 - - Pre-nasal length 1.5 - 2.2-1.6 2.0-2.0 - 1.3 Interorbital space 2.7 - - - - - Internarial space 1.9 - - 2.0-2.0 - 1.9 Clasper length 1.0 - - - 2.5 - Pre-narial length 2.2 - - - 1.5 1.3 Pre-orbital length 2.8 1.7-1.6 - - 4.3 3.5 Pre-branchial length 6.4 5.6-5.5 13.0-11.5 3.6-3.5 10.5 9.9 Pre-dorsal length 23.4 15.4-.15.3 38.0-35.4 35.6-35.0 39.0 31.3 Pre-pelvic length 10.0 - 32.0-28.5 29.4-29.4 32.5 25.9 Pre-pectoral length 19.3 - 17.0-14.7 14.9-14.5 14.6 12.8 Pre-anal length 26.4 13.3-13.0 42.5-38.8 38.4-38.0 43.1 35.0 Pre-caudal length 33.8 22.0-21.0 55.0-49.2 49.5-49.0 54.7 44.1 Weight (g) 328.3 106.9-101.7 1280-1000 1130-1092 1590 - ANNALES · Ser. hist. nat. · 34 · 2024 · 2 232 Cem ÇEVİK et al.,: CAPTURE OF A JUVENILE SHARPNOSE SEVENGILL SHARK, HEPTRANCHIAS PERLO (BONNATERRE, 1788), FROM THE TURKISH COAST ..., 229–238 Tab. 2: Confirmed records of neonate and juvenile specimens of H. perlo from the Mediterranean Sea covering the period 1980–2024. N: Number of samples. Tab. 2: Potrjeni podatki o novoskotenih in mladostnih primerkih vrste H. perlo iz Sredozemskega morja za obdobje 1980–2024. N: Število vzorcev. References Record Date N Sex Location Sampling Gear Depth (m) Length, TL (cm) Weight (g) Capapé (1980) 1980 68 Male Tunisian waters Trawl 36-32 118.0-30.0 - 52 Female 40-12 139.0 - Bradai et al. (2002) 4 February 1991 19 February 2001 1 2 Male Female Gulf of Gabes, Tunisia - Surface 80 39.0 98.0-69.5 138 4000-688 1-2/2001 1-2/2001 1 March 2002 2 3 2 Male Female Female Gulf of Gabes, Tunisia - - 75.0-75.0 98.0-69.5 100.0-94.0 1259-1252 4000-828 2300 De Maddalena et al. (2002) 26 July 2000 June 2000 21 December 1989 1 5 1 Male - - Ganzirri, Mesina Strait, Italy Linosa and Porto Empedocle Catania, Italy - - - 70 200 - 85.0 80.0-70.0 95.0 1610 - 4000 Megalofonou et al. (2005) 1998-2001 1 - Greek Seas Longline 104.0 - İşmen et al. (2007) February 2005-April 2006 14 - Saroz Bay (NE Aegean Sea, Türkiye) Trawl 28-370 105.0-68.6 3388-920 İşmen et al. (2009) March 2005-June 2008 5 13 Female Male Saroz Bay (NE Aegean Sea, Türkiye) Trawl 5-500 84-68.6 105.0-69.2 1960-920 3388-1170 Kabasakal & Ince (2008) 15 September 2008 1 Female Kömür Cape, Saroz Bay (NE Aegean Sea, Türkiye) Stranded individual - 85.0 1700 Damalas & Megalofonou (2012) 1998-2001 1 - Antikithyra strait, Greece - 382 104.0 - Güven et al. (2012) October 2009-December 2010 11 - Antalya Bay, Türkiye Trawl 200-800 105.3-31.1 3560-80.2 Eronat & Özaydın (2014) 2008-2009 1 Female Izmir Bay and Sığacık Bay (Central Mediterranean), Türkiye Trawl - 99.6 4382 El Kamel-Moutalibi et al. (2014) 21 May 2014 11 Male Female Eskerkis Bank, off the northern Tunisian coast, Tunisia Trawl 150-300 70.0 79.0 1000 1280 01 April 2007-15 July 2007 1 1 Male Female Tunisian waters, Tunisia - - 81.0 110.0 3000 5000 Lteif (2015) 01-08/2013 1 - South Lebanese coasts, Lebanon Trawl 0-300 115.0 6000 Rafrafi-Nouira et al. (2015) 25 September 2009 1 Female Cani Rocks, Tunisia Trawl 56 99.0 - Başusta (2016) 4 May 2015 11 Male Female NE Mediterranean, Türkiye Trawl 360-400 32.5 32.3 101.8 106.9 Capapé et al. (2018) 24 November 2015 2 Female Island of Zembra, (NE Gulf of Tunis) Trawl 150 112.0-72.0 2255-1150 2 Male 150 84.0-74.0 1735-1300 Capapé et al. (2018) 02 August 2018 11 Male Female Tunisian waters, off Bizerte, (NW Gulf of Tunis) Longline 130-140 72.0 70.0 1130 1092 Ergüden & Bayhan (2018) 27 June 2014 1 Male off Erdemli (Mersin Bay), Türkiye Trawl 601 105.0 3600 Alkusairy & Saad (2018) November 2014-October 2016 2 2 Male Female Syrian coasts (Eastern Mediterranean), Syria Trawl - 117-27 124-20 - - Gullard et al. (2019a) 24 February 2018 1 Female Balearic Sea, western Mediterranean Sea, Spain Trawl 650 79.6 1590 Gullard et al. (2019b) 26 June 2019 1 Female Ibiza Channel, western Mediterranean Sea, Spain Trawl - 64.3 - Lipej & Mavrič (2022b) 21 December 2021 1 Female Gulf of Trieste Trammel net 20 72.8 1010 This study 28 June 2024 1 Male Tasucu coastEastern Mediterranean, Türkiye Trawl 520 50.2 328.3 ANNALES · Ser. hist. nat. · 34 · 2024 · 2 233 Cem ÇEVİK et al.,: CAPTURE OF A JUVENILE SHARPNOSE SEVENGILL SHARK, HEPTRANCHIAS PERLO (BONNATERRE, 1788), FROM THE TURKISH COAST ..., 229–238 and Mediterranean Seas (Akşıray, 1987; Bilecenoglu et al., 2014), it should be noted that the species is only rarely observed by local fishermen along the Tasucu coast (Silifke, Turkey) when incidentally caught in fishing nets during trawl or bottom long- line operations. This paper presents a record of this species on the Levantine coast reporting the capture of a male juvenile. MATERIAL AND METHODS On 26 June 2024, a male specimen of sharpnose sevengill shark, H. perlo, was incidentally caught in a bottom trawl net at a depth of 520 m, off Tasucu, Silifke (36°12’435’’ N, 34°18’246’’ E) (Fig. 1). The specimen was photographed and taken to the labo- ratory for identification. All measurements, counts, morphological descriptions, and colors conform to species descriptions provided by Compagno (1984) and Golani et al. (2006). The morphometric mea- surements of the specimen recorded to the nearest 0.1 mm were taken using a caliper (Fig. 2 and Fig. 3). The specimen is deposited in the Museum of the Faculty of Fisheries, Çukurova University, under catalog number CSFM-PIS/24-37. RESULTS AND DISCUSSION The juvenile sharpnose sevengill shark, a male, measured 50.2 cm total length (TL) and weighed 328.3 g. Its morphometric measurements are presented in Table 1 and compared with previous Mediterranean records of the species (Başusta, 2006). H. perlo has a slender body with a long caudal peduncle. The head is pointed and nar- rowed, with large eyes (Fig. 3). It has seven pairs of long gill slits and a single dorsal fin, which is small and originates above the inner margins of the pelvic fins. The anal fin is also small, its height about half that of the dorsal fin. The pectoral fins are moderately small and broad, with narrowly rounded tips and a slightly concave hind margin. The caudal fin is heterocercal, featuring a long Fig. 3: Head, eyes, jaw teeth, and seven gill slits of Heptranchias perlo. Sl. 3: Glava, oči, zobje v čeljusti in sedem škržnih rež primerka vrste Heptranchias perlo. ANNALES · Ser. hist. nat. · 34 · 2024 · 2 234 Cem ÇEVİK et al.,: CAPTURE OF A JUVENILE SHARPNOSE SEVENGILL SHARK, HEPTRANCHIAS PERLO (BONNATERRE, 1788), FROM THE TURKISH COAST ..., 229–238 upper lobe with a distinct sub-terminal notch and a short lower lobe (Compagno, 1984). The upper jaw teeth feature narrow oblique cusp and small lateral cusplets. Lower jaw teeth are comb-like (Last & Stevens, 1994). The body is brownish to grey above and paler below, the tips of the dorsal and anal fins dark in juvenile specimens. The large eyes are fluorescent green in live specimens (Bass et al., 1998; Last & Stevens, 1994). The maximum total length of H. perlo recorded to date is 137 cm in males and 140 cm in females (Compagno, 1984), but the species commonly reach- es 100 cm in total length (Sanches, 1991). Males ma- ture at 75 to 85 cm TL, females at 90 to 105 cm TL. Reproduction is aplacental ovoviviparous (Breder & Rosen, 1966), with females producing litters of 6–20 individuals (Compagno, 1994). According to Ebert et al. (2013), the size at birth is estimated to be 26–30 cm TL. Capapé (1980) reported that in Tunisian wa- ters the size at birth is 30 cm TL and the approximate weight 60 g. Başusta (2016) suggested that some shark species may utilize the northeastern Mediterranean region as mating, breeding, and nursery grounds. Castro (1993) noted that the designation of an area as a breeding and nursery ground for a particular elasmobranch species is based on the presence of neonates, small juveniles, and gravid females in the respective area. Thus, the capture of this juvenile individual appears to support Başusta’s findings. Additionally, fishermen interviewed for this study reported occasionally encountering adult individuals of this shark species, as well as egg casings, in the region (personal observation). As mentioned above, the immature male spec- imen in this study measured 50.2 cm total length and weighed 328.3 g. Başusta (2016) reported two neonate H. perlo specimens, measuring 32.5 and 32.3 cm TL, respectively, from northeastern Mediter- ranean waters of Turkey. Our specimen was captured well outside the location reported by Başusta (2016) and was larger and heavier. This is the third case of a small juvenile sharpnose sevengill shark recorded in Turkish eastern Mediterranean waters, occurring approximately eight years after the second. How- ever, our specimen is still smaller than the individ- uals previously documented by other authors (De Maddalena et al., 2002; İşmen et al. (2007; 2009; Kabasakal & Ince, 2008; Damalas & Megalofonou, 2012; Eronat & Özaydın, 2014; El Kamel-Moutalibi et al., 2014; Lteif, 2015; Rafrafi-Nouira et al., 2015; Capapé et al., 2018; Gullard et al., 2019a; Gullard et al., 2019b) as shown in Table 2, where the other Mediterranean Sea records of newborn and small juveniles H. perlo are compared with the results of the present study. The juvenile male sharpnose sevengill shark reported in this study was observed in deep water (>500 m) during a trawl survey and accidentally caught at 520 m, which is consistent with the depth ranges stated in previous literature (Ebert et al., 2013; Weigmann, 2016) and previous reports (Tab. 2). Although H. perlo has no commercial importance and is not specifically targeted, it can be caught as bycatch in deep-water fisheries throughout its range. It is, albeit infrequently, reported as incidental catch in commercial demersal trawl, longline, and gillnet fisheries (IUCN, 2024). In 2019, the sharpnose sevengill shark was globally assigned a status of near threatened (NT) under criteria A2bd of the IUCN Red List (Finucci et al., 2020), in the Mediterranean, however, it is considered a data deficient (DD) species (Dulvy et al., 2016, Otero et al., 2019). Currently, there are no species-specific conser- vation measures in place for the sharpnose sevengill shark in the Mediterranean, as more information is needed regarding its population size and habitat sta- tus. Therefore, further research on rare shark species and their distribution in the eastern Mediterranean should be encouraged and supported. CONCLUSIONS This record of a juvenile H. perlo can serve as an important tool for monitoring shark species. Further- more, our findings could contribute to improving regional fisheries policies, such as establishing a Shark Conservation Management Plan for the area. They will also enhance our understanding of shark diversity and the identification of potential nursery grounds. ANNALES · Ser. hist. nat. · 34 · 2024 · 2 235 Cem ÇEVİK et al.,: CAPTURE OF A JUVENILE SHARPNOSE SEVENGILL SHARK, HEPTRANCHIAS PERLO (BONNATERRE, 1788), FROM THE TURKISH COAST ..., 229–238 ULOV MLADOSTNEGA PRIMERKA MORSKEGA PSA SEDMEROŠKRGARJA, HEPTRANCHIAS PERLO (BONNATERRE, 1788), IZ TURŠKIH VODA (VZHODNO SREDOZEMSKO MORJE) Z POSODOBLJENIM SEZNAMOM ZAPISOV O POJAVLJANJU V SREDOZEMSKEM MORJU Cem ÇEVİK Department of Basic Science, Faculty of Fisheries, Çukurova University, Adana, Türkiye Gökhan GÖKÇE Department of Fisheries and Seafood Processing Technology, Faculty of Fisheries, Çukurova University, Adana, Türkiye Deniz ERGUDEN Department of Marine Science, Faculty of Marine Science and Technology, Iskenderun Technical University, 31200 Iskenderun, Hatay, Türkiye e-mail: deniz.erguden@iste.edu.tr; derguden@gmail.com POVZETEK Junija 2024 so s komercialno vlečno mrežo pri Tasucuju (Silifke, Turčija) na globini 520 m ujeli nezre- lega samca morskega psa sedmeroškrgarja Heptranchias perlo (Bonnaterre, 1788). Gre za nov primer o pojavljanju mladostnega primerka vrste v turških vodah (vzhodno Sredozemsko morje). Ta zapis o poja- vljanju je pomemben za spremljanje morskega psa sedmeroškrgarja v Turčiji in lahko prispeva k izboljšanju regionalnih trajnostnih ribiških politik, kot je vzpostavitev načrta upravljanja za ohranitev morskih psov za to območje. Poleg tega izboljšuje naše razumevanje o razširjenosti vrst morskih psov in lahko pomaga prepoznati potencialne jaslice v regiji. Študija ponuja tudi podrobne zgodovinske in trenutne zapise o po- javljanju novoskotenih in mladih primerkov morskih psov sedmeroškrgarjev v regiji in širšem Sredozemlju. Ključne besede: mladostni primerek morskega psa, Hexanchidae, obala Tasucu, Turčija, Levantsko morje ANNALES · Ser. hist. nat. · 34 · 2024 · 2 236 Cem ÇEVİK et al.,: CAPTURE OF A JUVENILE SHARPNOSE SEVENGILL SHARK, HEPTRANCHIAS PERLO (BONNATERRE, 1788), FROM THE TURKISH COAST ..., 229–238 REFERENCES Aksiray, F. (1987): Türkiye deniz baliklari ve tayin anahtari [Marine fishes of Turkey and a key to species]. Istanbul Üniversitesi Rektörlügü Yayinlari, Istanbul, 811 pp. (in Turkish). Akyüz, E. (1957): Observations on the Iskenderun red mullet (Mullus barbatus) and its environment. GFCM Proceed. and Tech. Pap., 4(38), 305-326. Alkusairy, H. & A. Saad (2018): Species compo- sition, diversity and length frequency of by-catch sharks from the Syrian coast. Int. J. Zool. Res., 4(1), 11-21. Barnett, A., J.M. Braccini, C.A. Awruch & D.A. Ebert (2012): An overview on the role of Hex- anchiformes in marine ecosystems: biology, ecology and conservation status of a primitive order of mod- ern sharks. J. Fish Biol., 80, 966-990. Bass, A.J., P.C. Hemstra & L.J.V. Compagno (1986): Hexanchidae. In: M.M. Smith & P.C. Heems- tra (eds.): Smiths’ sea fishes. Springer-Verlag, Berlin, pp. 45-47. Basusta, N. (2006): New records of neonate and juvenile sharks (Heptranchias perlo, Squatina aculeata, Etmopterus spinax) from the North-eastern Mediterranean Sea. Mar Biodiv., 46, 525-527. Bilecenoglu, M., M. Kaya, B. Cihangir & E. Cicek (2014): An updated checklist of the marine fishes of Turkey. Turk. J. Zool., 38, 901-929. Boeseman, M. (1984): Hexanchidae. In: P. J. P. Whitehead. M. L. Bauchot, J. C. Hureau, J. Nielsen & E. Tortonese, (eds.): Fishes of the north-eastern Atlantic and the Mediterranean. UNESCO, Paris, pp. 205-209. Bradaï M.N., B. Saïdi, M. Ghorbel, A. Bouaïn, O. Guélorget, C. Capapé (2002): Observations sur les requins du golfe de Gabès (Tunisie méridionale, Méditerranée centrale). Mésogée, 60, 61-77. Breder, C.M. & D.E. Rosen (1966): Modes of reproduction in fishes. T.F.H. Publications, Neptune City, New Jersey, 941 pp. Capapé, C. (1980): Nouvelle description de Hep- tranchias perlo (Bonnaterre, 1788) (Pisces, Pleurotra- mata, Hexanchidae). Données sur la biologie de la reproduction et le régime alimentaire des spécimens des côtes tunisiennes. Bull. Off. Natl. Pech. Tunisie., 4, 231-264. Capape, C., S. Rafrafi-Nouira, K. Qunifi-Ben Amor, M.M. Ben Amor (2018): Unusual and substantiated records of Heptranchias perlo (Chondrichthyes: Hexanchidae) in the NE Tunisian Waters (Central Mediterranean Sea). Thalassia Sal., 40, 17-24. Castro, J.I. (1993): The shark nursery of Bulls Bay, South Carolina, with a review of the shark nurs- eries of the southeastern coast of the United States. Environ. Biol. Fish., 38, 37-48. Compagno, L.J.V. (1984): FAO Species Cata- logue. Vol. 4. Sharks of the world. An annotated and illustrated catalogue of shark species known to date. Part 1 - Hexanchiformes to Lamniformes. FAO Fish. Synop. 125(4/1), 1-249. Rome, FAO. Compagno, L.J.V. & V.H. Niem (1998): Hexanchi- dae. Cowsharks, sixgill, and sevengill sharks. In: K. E. Carpenter & V. H. Niem (eds.): FAO identification guide for fishery purposes. The Living Marine Re- sources of the Western Central Pacific. FAO, Rome, pp. 1208-1210. Compagno, L.J.V., D.A. Ebert & M.J. Smale (1989): Guide to the sharks and rays of southern Africa. New Holland (Publ.) Ltd., London. 158 pp. Damalas, D. & P. Megalofonou (2012): Occur- rences of large sharks in the open waters of the southeastern Mediterranean Sea. J. Nat. Hist., 46(43- 44), 2701-2723. De Maddalena, A., A. Celona, M. Zuffa & A. Va- nadia (2002): Su alcune catture di notidano cinereo, Heptranchias perlo (Bonnaterre, 1788), nelle acque della Sicilia. Thalassia Sal., 26, 39-44. Dragičević, B. & I. Isajlović (2022): New records of the rare sharpnose sevengill shark Heptranchias perlo (Bonnaterre, 1788) in Croatian waters (Adriatic Sea). p. 982. In: Montesanto, F. et al. 2015. New records of rare species in the Mediterranean Sea (December 2022). Medit. Mar. Sci., 23(4), 968-994. Dulvy, N.K., D.J. Allen, G.M. Ralph & R.H.L. Walls (2016): The conservation status of Sharks, Rays, and Chimaeras in the Mediterranean Sea [Brochure]. IUCN, Malaga, Spain, 14 pp. El Kamel-Moutalibi O., N. Mnasri-Sioudi, S. Raf- rafi-Nouira, M. Boumaïza, C. Reynaud & C. Capapé (2014): Additional records of a rare elasmobranch species, sharpnose seven-gill shark Heptranchias perlo (Hexanchidae) off the northern Tunisian coast (central Mediterranean). Annales, Ser. Hist. Nat., 24(2), 99-106. Ebert, D. A., S. Fowler & L. Compagno (2013):  Sharks of the World. Wild Nature Press, Plymouth, 528 pp. Ergüden, D. & Y. K. Bayhan (2015): On the oc- currence of Heptranchias perlo in the northeastern Mediterranean. p. 694. In: Crocetta, F. et al. (eds.): New Mediterranean biodiversity records (October 2015). Medit. Mar. Sci., 16(3), 682-702. Eronat, E.G.T. & O. Özaydın (2014): Length- weight relationship of cartilaginous fish species from Central Aegean Sea (Izmir Bay and Sığacık Bay). Ege J. Fish. Aqua. Sci., 31(3), 119-125. Filiz, H. & S. Mater (2002): A preliminary study on length-weight relationships for seven elasmo- branch species from north Aegean Sea, Turkey. E.U. J. Fish. Aquat. Sci., 19, 401-409. ANNALES · Ser. hist. nat. · 34 · 2024 · 2 237 Cem ÇEVİK et al.,: CAPTURE OF A JUVENILE SHARPNOSE SEVENGILL SHARK, HEPTRANCHIAS PERLO (BONNATERRE, 1788), FROM THE TURKISH COAST ..., 229–238 Finucci, B., A. Barnett, K.K. Bineesh, J. Cheok, C.F. Cotton, D.W. Kulka, F.C. Neat, C.L. Rigby, S. Tanaka & T. I. Walker (2020): Heptranchias perlo. The IUCN Red List of Threatened Species 2020: e.T41823A2956343. https://dx.doi.org/10.2305/ IUCN.UK.2020.3.RLTS.T41823A2956343.en. (ac- cessed: 06 July 2024). Froese, R. & D. Pauly (Eds.) (2024): Fishbase. World Wide Web Electronic Publication. www.fish- base.org. version (02/2024) (accessed: 05 July 2024). Golani, D. (2005): Check-list of the Mediterra- nean Fishes of Israel. Zootaxa, 947, 1-200. Golani, D., B. Öztürk & N. Başusta (2006): Fishes of the Eastern Mediterranean. Turkish Marine Research Foundation, Publication No 24, Istanbul, Turkey, 260 pp. Guallart, J., G. Morey & À. Bartolí (2019a): New record of a sharpnose sevengill shark Heptranchias perlo (Elasmobranchii, Hexanchidae) from the Bale- aric Sea, western Mediterranean Sea. J. Fish Biol., 94, 526- 531. Guallart, J., G. Morey & À. Bartolí (2019b): An- other recent record of the uncommon sharpnose se- vengill shark Heptranchias perlo in the Balearic Sea (Western Mediterranean). Proceedings of the 23rd Annual Conference of the European Elasmobranch Association, 16-18 October 2019, Rende, Italy, 123 pp. Güven, O., T. Kebapçıoğlu & M. C. Deval (2012): Length-weight relationships of sharks in Antalya Bay, eastern Mediterranean. J. Appl. Ichthyol., 28, 278- 279. Henderson, A. C. & R. S. Williams (2001): A new record of the sharpnose seven-gill shark Heptranchi- as perlo, from the north-east Atlantic. J. Mar. Biol. Assoc. U.K., 81(4), 707-708. IUCN (2024): The IUCN Red List of Threatened Species. www.iucnredlist.org. version (2024-1) (ac- cessed: 05 July 2024). İşmen, A., O. Ozen, U. Altınağaç, U. Ozekinci & A. Ayaz (2007): Weight-length relationships of 63 fish species in Saros Bay, Turkey. J. Appl. Ichthyol., 23, 707-708. İşmen, A., C.C. Yığın, U. Altınağaç & A. Ayaz (2009): Length-weight relationships for ten shark species from Saros Bay (North Aegean Sea). J. Appl. Ichthyol., 25, 109-112. Kabasakal, H. & P. Ince (2008): Note on a sharp- nose sevengill shark, Heptranchias perlo (Bonnaterre, 1788) (Chondrichthyes: Hexanchidae), stranded in Saroz Bay (NE Aegean Sea, Turkey). Annales, Ser. Hist. Nat., 18(2), 173-176. Karachle, P.K., C. Stamouli & A. Dogrammatzi (2020): Review of the sharpnose sevengill shark Heptranchias perlo (Chondrichthyes: Hexanchidae) in the Mediterranean: historical and recent data. Annales, Ser. Hist. Nat., 30(2), 131-146. Last, P.R. & J.D. Stevens (1994): Sharks and Rays of Australia. CSIRO, 513 pp. Lipej, L. & J. Dulčić (2010): Checklist of the Adri- atic Sea fishes. Zootaxa, 2859, 1-92. Lipej, L. & B. Mavrič (2022a): First confirmed record of Heptranchias perlo in Slovenia. p. 429. In: Kousteni, V. et al. (eds.): New records of rare species in the Mediterranean Sea (April 2022). Medit. Mar. Sci., 23(3), 416-445. Lipej, L. & B. Mavrič (2022b): An unusual record of the sharpnose sevengill shark, Heptranchias perlo (Bonnaterre, 1788), in waters of Slovenia (northern Adriatic Sea) (Elasmobranchii, Hexanchiformes, Hexanchidae). Spixiana, 45(1), 103-108. Lteif, M. (2015): Biology, distribution and diver- sity of cartilaginous fish species along the Lebanese coast, eastern Mediterranean. Ecology, environment. PhD Thesis, Université de Perpignan, 262 pp. Marongiu, M.F., C. Porcu, A. Bellodi, R. Cannas, A. Cau, D. Cuccu, A. Mulas & M.C. Follesa (2017): Temporal dynamics of demersal chondrichthyan species in the central western Mediterranean Sea: The case study in Sardinia Island. Fish. Res., 193, 81-94. Megalofonou, P., D. Damalas & C. Yannopoulos (2005): Composition and abundance of pelagic shark by-catch in the eastern Mediterranean Sea. Cybium, 29(2), 135-140. Mulas, A., A. Bellodi, P. Carbonara, A. Cau, M.F. Marongiu, P. Pesci, C. Porcu & M.C. Follesa (2021): Bio-Ecological features update on eleven rare carti- laginous fish in the Central-Western Mediterranean Sea as a contribution for their conservation. Life, 11(9), 871. Mytilineou, C., C.Y. Politou, C. Papaconstan- tinou, S. Kavadas, G. D’Onghia & L. Sion (2005): Deep-water fish fauna in the eastern Ionian Sea. Belgian J. Zool., 135(2), 229-233. Ordines, F., E. Massutí, J. Moranta, A. Quetglas, B. Guijarro & K. Fliti (2011): Balearic Islands vs Algeria: two nearby western Mediterranean elasmo- branch assemblages with different oceanographic scenarios and fishing histories. Sci. Mar., 75(4), 707-717. Otero, M., F. Serena, V. Gerovasileiou, M. Barone, M. Bo, J. M. Arcos, A. Vulcano & J. Xavier (2019): Identification guide of vulnerable species incidental- ly caught in Mediterranean fisheries. Malaga, Spain (IUCN), 204 pp. Öziç, F. & F. Yılmaz (2006): An investigation of demersal fishes of Gökova Bay in Aegean Sea. Eko- loji, 15, 16-20. Papaconstantinou, C. (2014): Fauna Graeciae. An updated checklist of the fishes in the Hellenic Seas, Monographs on Marine Sciences 7, Institute of Ma- rine Biological Resources Publisher, HCMR, Athens, Greece, 340 pp. ANNALES · Ser. hist. nat. · 34 · 2024 · 2 238 Cem ÇEVİK et al.,: CAPTURE OF A JUVENILE SHARPNOSE SEVENGILL SHARK, HEPTRANCHIAS PERLO (BONNATERRE, 1788), FROM THE TURKISH COAST ..., 229–238 Rafrafi-Nouira S., O., El Kamel-Moutalibi, C. Rey- naud, M. Boumaïza & C. Capapé (2015): Additional and unusual captures of elasmobranch species from the northern coast of Tunisia (central Mediterranean). J. Ichthyol., 55(6), 836-848. Scacco, U., G. La Mesa & M. Vacchi (2010): Body morphometrics, swimming diversity and niche in demersal sharks: a comparative case study from the Mediterranean Sea. Sci. Mar., 74(1), 37-53. Schembri, T., I.K. Fergusson, P.J. Schembri (2003): Revision of the records of shark and ray species from the Maltese Islands (Chordata: Chondrichthyes). Central Meditter. Natur., 4(1), 71-104. Sanches, J.G. (1991): Catálogo dos principais peixes marinhos da República de Guiné-Bissau. Publ. Avuls. Inst. Nac. Invest. Pescas, 16, 1-429. Serena, F. (2005): Field Identification Guide to the sharks and rays of the Mediterranean and Black Sea. FAO species Identification Guide for Fisheries Purposes. FAO, Rome, 97 pp. Weigmann, S. (2016): Annotated checklist of the living sharks, batoids and chimaeras (Chondrichthy- es) of the world, with a focus on biogeographical diversity. J. Fish Biol., 88(3), 837-1037. Whitehead, P.J.P., M.L. Bauchot, J.C. Hureau, J. Nielsen & E. Tortonese (eds.) (1984-1986): Fishes of the North-eastern Atlantic and the Mediterranean. UNESCO, Paris, 1473 pp. ANNALES · Ser. hist. nat. · 34 · 2024 · 2 239 received: 2024-05-23 DOI 10.19233/ASHN.2024.29 ADDITIONAL HISTORICAL RECORDS OF GREAT WHITE SHARKS, CARCHARODON CARCHARIAS, CAUGHT IN THE GULF OF LION, NORTHWESTERN MEDITERRANEAN SEA, BETWEEN THE 1920s AND 1950s Eloïse DEYSSON & Sarah FOXONET Groupe Phoceen d’Etude des Requins (GPER), 118 rue de Rouet 13008, Marseille, France Etienne RÉGNIER Groupe Phoceen d’Etude des Requins (GPER), 118 rue de Rouet 13008, Marseille, France Nantes University, ISOMer, UR 2160, 2 rue de la Houssinière, B.P. 92208, 44322 Nantes Cedex 3, France Chloé MOSNIER, Florane TONDU & Janis BROUTIN-RENAUD Groupe Phoceen d’Etude des Requins (GPER), 118 rue de Rouet 13008, Marseille, France Bruno COGNIE Nantes University, ISOMer, UR 2160, 2 rue de la Houssinière, B.P. 92208, 44322 Nantes Cedex 3, France Alessandro DE MADDALENA Shark Museum, 26 Forest Hill Road, Simon’s Town, 7975 Cape Town, South Africa Hakan KABASAKAL WWF Türkiye, Asmalı Mescit, İstiklal Cd. No :136, 34430 Beyoğlu, İstanbul, Turkey Nicolas ZIANI Groupe Phoceen d’Etude des Requins (GPER), 118 rue de Rouet 13008, Marseille, France e-mail: phoceashark@gmail.com ABSTRACT Extensive archival investigations have led to the discovery of unpublished records of three specimens of the great white shark, Carcharodon carcharias (Linnaeus, 1758), captured in the Gulf of Lion (NW Mediterranean Sea, GSA07). The materials examined consisted of archival photographs and a newspaper report (specimens Nos. 1 and 3), as well as a complete set of upper and lower jaws (specimen No. 2). These unpublished records pertain to specimens caught in an artisanal trammel-net fishery by fishermen from Brusc Port, Toulon (France), on 31 July 1926, in 1930, and in 1954, respectively. The total lengths (TL) of these adult specimens were estimated to be between 400 and 480 cm. Key words: Lamnidae, Carcharodon, GSA07, historical, jaws, conservation ULTERIORI DATI STORICI DI GRANDI SQUALI BIANCHI, CARCHARODON CARCHARIAS, CATTURATI NEL GOLFO DEL LEONE, MAR MEDITERRANEO NORD- OCCIDENTALE, TRA GLI ANNI ‘20 E ‘50 SINTESI Un’ampia ricerca d’archivio ha portato alla scoperta di documenti inediti relativi a tre esemplari di squalo bianco, Carcharodon carcharias (Linnaeus, 1758), catturati nel Golfo del Leone (Mediterraneo occidentale, GSA07). I materiali esaminati consistevano in fotografie d’archivio e in un resoconto giornalistico (esemplari n. 1 e 3), oltre a un set completo di mascelle superiori e inferiori (esemplare n. 2). Questi documenti inediti si riferiscono a esemplari catturati da pesca artigianale con tramaglio da pescatori del porto di Brusc, Tolone (Francia), rispettivamente il 31 luglio 1926, nel 1930 e nel 1954. Le lunghezze totali (TL) di questi esemplari adulti sono state stimate tra i 400 e i 480 cm. Parole chiave: Lamnidae, Carcharodon, GSA07, dati storici, mascelle, conservazione ANNALES · Ser. hist. nat. · 34 · 2024 · 2 240 Eloïse DEYSSON et al.: ADDITIONAL HISTORICAL RECORDS OF GREAT WHITE SHARKS, CARCHARODON CARCHARIAS, CAUGHT IN THE GULF OF LION ..., 239–250 INTRODUCTION The great white shark, Carcharodon carcharias (Linnaeus, 1758) (Lamniformes: Lamnidae), is one of the largest species of coastal and oceanic mac- ro-predatory sharks (Compagno, 2001; De Madd- alena & Heim, 2012; Ebert & Dando, 2020; Ebert et al., 2021; Rigby et al., 2022). Six genetically distinct and geographically isolated philopatric populations have been identified worldwide: Australian, South African, Northwest Atlantic, Northeast Pacific, Jap- anese, and Mediterranean (Villafaña et al., 2020; Ebert et al., 2021). The Mediterranean population is identified as genetically distinct (Gubili et al., 2012; Ebert & Dando, 2020). C. carcharias preys on large pelagic bony fishes such as bluefin tuna (Thunnus thynnus) and swordfish (Xiphias gladius), along with other elasmobranchs, pinnipeds, and cetaceans (Fergusson, 1996; De Maddalena & Heim, 2012; Boldrocchi et al., 2017; Kabasakal et al., 2022). It is also one of the most necrophagous species among large macrophagous sharks, with numerous cases of scavenging on large cetacean carcasses recorded to date (De Maddalena & Heim, 2012). C. carcharias is mainly solitary, exhibiting migration patterns tied to environmental conditions, reproduction, and prey movements (Mi- lankovic et al., 2021). Data on the global population size of the great white shark are insufficient, and only approximate estimates are available (Rigby et al., 2022). The historical census of the species in- dicates that 789 records of its presence have been documented across the Mediterranean to date (Kaba- sakal et al., 2022; Soldo & Bakiu, 2024). The Mediterranean basin, stretching from the Strait of Gibraltar to the Sea of Marmara, has been the site of small but regular annual sightings of the great white shark, particularly its central and western parts (Barrull, 1993; Barrull & Mate, 2001; De Maddalena & Heim, 2012; Kabasakal, 2014; Moro et al., 2020). Moreover, as regards the sea’s primary production, it is described as oligotrophic in the western region and ultra-oligotrophic in the central part (Stambler, 2013). However, the coastal and upwelling zones of the western Mediterranean, specifically the Gulf of Lion, are localised areas of high productivity and abundance of diverse marine species, including large predatory fish and apex predators (Parc Naturel Régional de Camargue, 2012; Roos, 2012; Bănaru et al., 2013; Fromentin & Lopuszanski, 2014; Di-Mé- glio et al., 2015; Poisson et al., 2015; Strady et al., 2015; Rouyer et al., 2021). The highest productivity occurs from spring to early autumn (Monaco et al., 2009; Carpaye & Maurel, 2023). C. carcharias has been categorised as vulnerable in the Mediterranean since 1996 and is currently classified as critically endangered (CR, IUCN) (Fer- retti et al., 2008; Otero et al., 2019; Rigby et al., 2018, 2022). Historically, it has been affected by overfishing for its prized teeth and fins. Although less frequent, accidental catches still occur, and increasing urbanisation continues to deteriorate its coastal habitat. Research and enhanced manage- ment are crucial for its conservation in the Medi- terranean (Ferretti et al., 2010; Boldrocchi et al., 2017; Jenrette et al., 2023; Micarelli et al., 2023). Moreover, De Maddalena & Heim (2012) and Moro et al. (2020) reported a marked decline in the C. carcharias population in this region since the mid- 20th century. Consequently, conservation measures have been implemented, including the listing of this species in Appendices I and II of the Commission on Migratory Species (CMS) in 2002 and in Appendix II of the Convention on International Trade in Endan- gered Species of Wild Fauna and Flora (CITES) in 2004. More recently, in 2012, the General Fisheries Commission for the Mediterranean (GFCM) banned the retention of great white sharks and mandated their release in the event of capture (Rigby et al., 2022). Since 2018, the GFCM has intensified efforts to protect the species throughout the Mediterranean Basin (Bradai et al., 2018). Historically, the species has been recorded only sporadically in the Gulf of Lion since the 16th cen- tury, with a total of 40 specimens documented (De Maddalena & Zuffa, 2009; De Maddalena & Heim, 2012) and the records based solely on an inventory of dried jaws and teeth, a small sample of acciden- tally caught dead animals, and a limited number of reports from sea users, who often lack precision in their descriptions and data. C. carcharias remains largely unknown in terms of its ecology in this part of the Mediterranean. The very rare current sightings in the area involve an extremely small number of individuals, likely remnants of the original Mediter- ranean population, now nearing extinction. While it is well-documented that C. carcharias uses the central Mediterranean as a parturition and nursery area (De Maddalena & Heim, 2012; Boldrocchi et al., 2017; Bradai et al., 2018; Kabasakal et al., 2022), and despite its historical abundance in the region, the life history of the great white shark in the western Mediterranean remains unknown, with most sightings concentrated in the northwest (Morey et al., 2003; De Maddalena & Heim, 2012; Maliet et al., 2013; Boldrocchi et al., 2017). MATERIAL AND METHODS The Groupe Phocéen d’Étude des Requins (GPER) is a French research NGO founded in 2015 in Mar- seille. Since its inception, GPER has rigorously up- dated and expanded the records of C. carcharias in French waters, drawing on both historical archives ANNALES · Ser. hist. nat. · 34 · 2024 · 2 241 Eloïse DEYSSON et al.: ADDITIONAL HISTORICAL RECORDS OF GREAT WHITE SHARKS, CARCHARODON CARCHARIAS, CAUGHT IN THE GULF OF LION ..., 239–250 and contemporary data. This article, which is part of this ongoing systematic research, exemplifies the strategic use of historical data to enhance current studies and increase knowledge and protection of the species in the Mediterranean. The localities where the three great white shark specimens examined in this study were captured were plotted on a map, all geographically located in the Gulf of Lion (France, NW Mediterranean Sea, Fig. 1). Relevant information about the captures was obtained from a news report published on 4 September 1926, in the daily newspaper L’Illustra- tion (for specimen No. 1), and from interviews with relatives of the fishers who captured the other two individuals (specimen No. 2 and No. 3). Species identification follows Barone et al. (2022). The total length (TL) for specimen No. 1 is that reported in the newspaper (L’Illustration, 1926), the estimated TL of specimen No. 3 was provided by the local fisher who took the archival photo during the landing in 1954, while the estimate for specimen No. 2 is based on morphometric measurements of the examined jaws conducted by the GPER, follow- ing the methods of Shimada (2002, 2019). Fig. 1: The map in the upper panel shows the general location of the investigated area within the Gulf of Lion (northwestern Mediterranean). In the lower panel, the red frame indicates the approximate location where the three examined white shark specimens were caught in the Brusc Port area (Six-Fours-les-Plages, France). Since exact coordinates are unavailable, the capture locations of the three great white sharks cannot be indicated individually on the lower map. (OpenStreetMap, 2024; QGIS - Free and Open Source Geographic Information System, 2024). Sl. 1: Zemljevid na zgornji plošči prikazuje lokacijo raziskanega območja znotraj Lionskega zaliva (severoza- hodno Sredozemsko morje). Na spodnji plošči rdeči okvir označuje približno lokacijo, kjer so bili ujeti trije pregledani primerki belega morskega volka na območju pristanišča Brusc (Six-Fours-les-Plages, Francija). Ker točne koordinate niso na voljo, lokacij ulova treh belih morskih volkov ni mogoče prikazati posamezno na spodnjem zemljevidu. (OpenStreetMap, 2024; QGIS – brezplačen in odprtokodni geografski informacijski sistem, 2024). ANNALES · Ser. hist. nat. · 34 · 2024 · 2 242 Eloïse DEYSSON et al.: ADDITIONAL HISTORICAL RECORDS OF GREAT WHITE SHARKS, CARCHARODON CARCHARIAS, CAUGHT IN THE GULF OF LION ..., 239–250 RESULTS Specimen No. 1 According to the news article published in L’Illus- tration on 4 September 1926, a great white shark with a reported TL ≥ 450 cm was caught by a trammel-net fisherman from the small port of Le Brusc, near Toulon, on 31 July 1926 (Fig. 1). The main identifying feature of C. carcharias is its large, triangular tooth morphology (Barone et al., 2022), and the dental characteristics of specimen No. 1 are consistent with this description of the species (Fig. 2). The article reports that “the fisher- man ‘drowned’ the great white shark, but not before the animal had damaged the equipment” of the fishing fleet targeting it. When it was exhausted and trapped in the net, the fishermen were able to approach it by boat, and “one of them harpooned it.” The great white shark was then brought to the beach, where it was eviscerated in front of a crowd of onlookers fascinated by this unex- pected catch. The shark measured over 450 cm, with the liver alone measuring 200 cm. The second photo- graph shows the specimen’s head with its mouth open, revealing the large triangular teeth of the jaws. The next day, the shark’s flesh was sold at the Toulon market at three francs per pound under the name “white tuna,” a common name used for Thunnus alalunga (Bonnaterre, 1788). Based on its reported TL, specimen No. 1 is identified as an adult, but its sex remains undetermined (Ebert et al., 2021). Specimen No. 2 In 1930, a specimen of C. carcharias was caught by an artisanal trammel-net fisherman, also from the fishing port of Le Brusc in the Gulf of Lion (Fig. 1). The jaws of specimen No. 2 were dissected by the fisherman, and today they are preserved and displayed in his grandson’s café in Le Brusc (Fig. 3). Morphometric measurements of the teeth arranged in the functional rows of the upper and lower jaws are presented in Tables 1, 2, and 3. The dried upper jaw perimeter (DUJP) and dried lower jaw perimeter (DLJP) of the examined jaws are 98.6 cm and 87.2 cm, respectively (Tab. 2). The TL of specimen No. 2 was estimated using Shimada’s (2002, 2019) method, applying linear regression equations to the upper anterior teeth: TL = 11.788·CH + 2.143; r² = 0.983, and lower anterior teeth TL = 14.060·CH - 3.914; r² = 0.930. These equa- tions are based on crown height (CH) measurements, labelled E2. The E2 values were taken from the left side of the jaw, as it was considered the most com- plete after excluding missing and damaged teeth. The crown height measurements (E2) used for the estimation were taken from the largest and most robust teeth, identified as E2Ua1 and E2Ua2 for the upper anterior jaw, and E2La1 and E2La2 for the lower anterior jaw. The estimates based on the upper an- terior teeth exhibited high consistency (R² = 0.983), with a TL estimated between 464.2 cm and 480.7 Fig. 2: (a) Lateral view and (b) head and buccal view of specimen No. 1. The arrows indicate the triangular teeth, the main identifying feature of C. carcharias. (Photo credit: L’Illustration, 1926). Sl. 2: (a) Pogled s strani in (b) pogled na glavo in ustno votlino primerka št. 1. Puščice označujejo trikotne zobe, ki je glavna prepoznavna značilnost vrste C. carcharias. (Avtor fotografije: L’Illustration, 1926). ANNALES · Ser. hist. nat. · 34 · 2024 · 2 243 Eloïse DEYSSON et al.: ADDITIONAL HISTORICAL RECORDS OF GREAT WHITE SHARKS, CARCHARODON CARCHARIAS, CAUGHT IN THE GULF OF LION ..., 239–250 cm. In contrast, estimates using the lower anterior teeth showed greater variability (R² = 0.930), with a TL estimated between 434.7 cm and 588.0 cm. Fol- lowing Shimada’s (2002, 2019) recommendations, it was advisable to use the upper anterior teeth for more precise estimates. The TL of specimen No. 2 is therefore more reliably estimated between 4.64 m and 4.80 m. Like specimen No. 1, specimen No. 2 is an adult individual of undetermined sex. Specimen No. 3 In 1954, a great white shark with an estimated TL of 400 cm was caught in the same area, again using artisanal trammel nets. Several distinctive morphological features, including a massive body, large conical snout, relatively small eyes, long gill slits, a large first dorsal fin, and a wide caudal keel identified the shark as a C. carcharias individual Fig. 3: (a) Upper and lower jaws of specimen No. 2 with teeth ID codes. Scale bar = 300 mm. (b) DUJP: Dried Upper Jaw Perimeter, DLJP: Dried Lower Jaw Perimeter, ULJ: Upper Left Jaw, LLJ: Lower Left Jaw, URJ: Upper Right Jaw, LRJ: Lower Right Jaw. Scale bars = 300 mm. (c) Detailed view of upper anterior tooth 1 (UA1). W: Tooth length including root, E1: Length from root tip to tooth tip, E2: Length from the line creating the root tip to the tip of the tooth, E3: Length of the visible part, EM: Length of the left side from the root tip, ED: Length of the right side from the root tip, RD: Tooth width. Scale bar = 10 mm. Measurements of upper and lower jaws: DUJP = 98.6 cm, MW = 26.8 cm, DLJP = 87.2 cm, MO = 69 cm, ULJ = 49.4 cm, URJ = 47.8 cm, LLJ = 42.4 cm, and LRJ = 44.0 cm. (Photo credit: GPER). Sl. 3: (a) Zgornja in spodnja čeljust primerka št. 2 z ID kodami zob. Merilo = 300 mm. (b) DUJP: posušen obod zgornje čeljusti, DLJP: posušen obod spodnje čeljusti, ULJ: zgornja leva čeljust, LLJ: spodnja leva čeljust, URJ: zgornja desna čeljust, LRJ: spodnja desna čeljust. Merilo = 300 mm. (c) Podroben pogled na zgornji sprednji zob 1 (UA1). W: dolžina zoba vključno s korenino, E1: dolžina od konice korena do konice zoba, E2: dolžina od črte, ki tvori konico korena, do konice zoba, E3: dolžina vidnega dela, EM: dolžina leve strani od koreninske konice, ED: dolžina desne strani od koreninske konice, RD: širina zoba. Merilo = 10 mm. Mere zgornje in spodnje čeljusti: DUJP = 98,6 cm, MW = 26,8 cm, DLJP = 87,2 cm, MO = 69 cm, ULJ = 49,4 cm, URJ = 47,8 cm, LLJ = 42,4 cm in LRJ = 44,0 cm. (Avtorstvo fotografije: GPER). ANNALES · Ser. hist. nat. · 34 · 2024 · 2 244 Eloïse DEYSSON et al.: ADDITIONAL HISTORICAL RECORDS OF GREAT WHITE SHARKS, CARCHARODON CARCHARIAS, CAUGHT IN THE GULF OF LION ..., 239–250 Tab. 1: Measurements (in cm) of teeth on the functional rows of jaws in specimen No. 2. The dental codes in the “Teeth ID” column are the same as those seen in Figure 4. *: missing tooth, **: broken tooth, ***: in small teeth, E1 = E2, EM and ED measurements not available, ****: malformed teeth, ': broken tooth tip, NA: Not available, W: Tooth length including root, E1: Length from root tip to tooth tip, E2: Length from the line creating the root tip to the tip of the tooth, E3: Length of the visible part, EM: Length of left side from the root tip, ED: Length of the right side from the root tip, RD: Tooth width. Each measurement refers to Fig. 3. Tab. 1: Mere (v cm) zob na funkcionalnih vrstah čeljusti primerka št. 2. Kode zob v stolpcu »ID zob« so enake kot na sliki 4. *: manjka zob, **: zlomljen zob, ***: pri majhnih zobeh, E1 = E2, meritve EM in ED niso na voljo, ****: nepravilno oblikovani zobje, ': zlomljena konica zoba, NA: ni na voljo, W: dolžina zoba vključno s korenino, E1: dolžina od konice korena do konice zoba, E2: dolžina od črte, ki tvori konico korenine, do konice zoba, E3: dolžina vidnega dela, EM: dolžina leve strani od koreninske konice, ED: dolžina desne strani od koreninske konice, RD: širina zoba. Vsaka meritev se nanaša na sliko 3. Teeth ID W E1 E2 E3 EM ED RD Teeth ID W E1 E2 E3 EM ED RD Ua1 4.00 3.61 4.06 3.35 4.58 4.11 1.05 U’a1 4.00 3.56 3.56 3.28 4.01 4.56 1.16 Ua2 3.67 3.34 3,92 3.41 4.37 4.05 1.14 U’a2 NA* NA* NA* NA* NA* NA* NA* Ua3’ 3.14 2.65 3.12 3.02 2.90 3.40 0.87 U’a3 3.22 2.65 2.81 3.13 3.52 3.28 0.94 Ul1 NA* NA* NA* NA* NA* NA* NA* U’l1 NA* NA* NA* NA* NA* NA* NA* Ul2 NA* NA* NA* NA* NA* NA* NA* U’l2 4.01 3.22 3.52 3.71 3.53 4.00 0.97 Ul3 3.88 2.91 3.26 3.59 3.91 3.40 0.86 U’l3 3.71 3.07 3.39 3.51 3.27 3.99 0.84 Ul4 3.16 2.22 2.33 3.00 2.95 2.45 0.91 U’l4 3.12 2.47 2.68 3.08 2.57 3.31 0.82 Ul5 2.39 1.52 1.69 2.21 2.18 1.64 0.72 U’l5 2.38 1.61 1.78 2.30 1.73 2.38 0.77 Ul6 1.87 0.98 1.18 1.73 1.48 1.20 0.53 U’l6 1.84 1.06 1.21 1.74 1.26 1.62 0.62 Ul7 1.39 0.60 0.81 1.31 1.06 0.79 0.58 U’l7 1.34 0.70 0.90 1.40 1.12 0.88 0.56 Ul8 1.09 0.50 NA*** 1.00 0.73 0.67 0.54 U’l8 0.98 0.36 NA*** 0.96 0.66 0.67 0.34 Ul9 0.80 0.30 NA*** 0.77 0.46 0.50 0.40 U’l9 0.82 0.29 NA*** 0.68 0.45 0.46 0.27 U’l10 0.39 0.10 NA*** 0.38 NA*** NA*** 0.28 La1’ 3.39 1.49 3.12 2.43 2.12 2.05 1.30 L’a1’ 3.42 2.56 3.14 2.56 3.28 3.38 1.33 La2’ 3.83 2.69 4.21 2.85 3.26 3.42 1.13 L’a2’ 3.61 2.79 3.01 2.86 3.55 3.41 1.17 La3 3.29 2.42 4.11 2.53 3.01 3.00 0.77 L’a3 2.92 2.45 2.80 2.36 2.89 2.83 1.03 Ll1’ 3.02 2.01 3.50 2.48 2.65 2.56 0.72 L’l1 3.14 2.43 2.54 2.46 3.05 2.87 0.96 Ll2’ 2.80 2.11 2.40 2.21 2.57 2.54 0.88 L’l2 2.62 2.22 2.47 2.19 2.61 2.51 0.97 Ll3****’ 1.13 1.05 NA 1.15 0.61 1.15 0.79 L’l3’ 2.30 1.83 2.17 2.40 2.26 2.28 0.98 Ll4**** 1.06 1.09 NA 0.92 0.89 0.55 0.84 L’l4 2.00 1.42 1.48 1.79 1.85 1.95 0.77 Ll5 1.90 NA** NA** 1.72 NA** NA** 0.69 L’l5 1.54 0.85 0.95 1.42 1.29 1.21 0.64 Ll6 1.53 0.93 1.04 1.41 1.1 1.13 0.49 L’l6 1.15 0.57 NA*** 0.99 0.77 0.74 0.43 Ll7 1.09 0.51 NA*** 1.02 0.55 0.64 0.43 L’l7 0.74 0.34 NA*** 0.73 0.51 0.51 0.33 Ll8 0.72 0.45 NA*** 0.78 0.48 0.52 0.32 L’l8 0.62 0.21 NA*** 0.56 0.33 0.32 0.27 Ll9 0.52 0.24 NA*** 0.47 0.37 0.32 0.23 L’l9 0.16 0.13 NA*** 0.29 NA NA 0.29 Ll10 NA 0.11 NA*** 0.33 NA*** NA*** 0.22 ANNALES · Ser. hist. nat. · 34 · 2024 · 2 245 Eloïse DEYSSON et al.: ADDITIONAL HISTORICAL RECORDS OF GREAT WHITE SHARKS, CARCHARODON CARCHARIAS, CAUGHT IN THE GULF OF LION ..., 239–250 (Fig. 4). Additionally, the image of the captured animal clearly shows the irregular white marks on the anterior portion of the caudal fin’s lower lobe, a typical trait of C. carcharias and one commonly used for photo-identification purposes (De Madd- alena & Heim, 2012). The picture also reveals the presence of claspers, indicating that the shark was male. According to Ebert et al. (2021), males of C. carcharias attain sexual maturity between 310 and 410 cm. The size of the claspers, along with the reported total length of the shark, suggests that specimen No. 3 was sexually mature. DISCUSSION AND CONCLUSIONS Despite uncertainty about how accurately the current distribution of the species correlates with historical observations – given significant anthropo- genic influences (Carpaye & Maurel, 2023) –, stud- ies on the abundance and distribution of the great white shark in the Mediterranean indicate a decline of 60 to 90 percent in the population compared to the Middle Ages (Moro et al., 2020; Soldo & Bakiu, 2024). From this perspective, the Gulf of Lion is one of the sub-regions in the Mediterranean where the decline of the species is most pronounced (Moro et al., 2020). While each discovery of historical material adds a new record to the great white shark’s past, ongoing threats jeopardise the addition of young individuals to the population of this apex predator in the Mediterranean. Combining the results of all studies carried out to date (De Maddalena & Heim, 2012; Boldrocchi et al., 2017; Moro et al., 2020; Zaouali et al., 2020; Jambura et al., 2021; Kabasakal et al., 2022; Soldo & Bakiu, 2024) with those of the present article, it is estimated that the total number of great white sharks recorded in the Mediterranean since the 1600s is 793. The Red List assessment of C. carcharias in the Mediterranean Sea, which is based on anecdotal records and limited fisheries data, suggests that the great white shark population has declined by at least 80 percent over 69 years, from 1947–2016 (Soldo et al., 2016). As a result, the species is classified as critically endangered in the region, with the number of mature individuals estimated to be fewer than 250 (Soldo et al., 2016). Today, hotspots (e.g., nursery grounds) for the spe- cies in the Mediterranean are attracting attention as potential research opportunities that could yield valuable insights (Jenrette et al., 2023).  However, the main priority in the Mediterranean remains reducing threats to species conservation (Jenrette et al., 2023; Soldo & Bakiu, 2024). Although C. carcharias is still considered to have a continuous worldwide distribution, interchange between some regions appears to be quite limited (Gubili et al., 2012; Rigby et al., 2018). Protecting the genetically isolated Mediterranean population is crucial (Gubili et al., 2012; Ebert et al., 2021), as it has been de- creasing since the Middle Ages (circa 1600) (Moro et al., 2020; Soldo & Bakiu, 2024), with little to no contemporary immigration from the Atlantic sug- gesting that it is extraordinarily vulnerable (Gubili et al., 2012; Ebert & Dando, 2020). If current trends continue, future Mediterranean societies may only recognise C. carcharias from materials displayed in museums or hidden in archives. Undocumented records from the Gulf of Lion are believed to be Tab. 2: Measurements (in cm) of jaws of specimen No. 2. Each measurement refers to Fig. 3. Tab. 2: Meritve (v cm) čeljusti primerka št. 2. Vsaka meritev se nanaša na sliko 3. DUJP 98.6 MW 26.8 DLJP 87.2 MO 69.0 ULJ 49.4 URJ 47.8 LLJ 42.4 LRJ 44.0 Tab. 3: Glossary of measurements. Each measurement refers to Fig. 3. Tab. 3: Slovar meritev. Vsaka meritev se nanaša na sliko 3. W Tooth length of tooth with root E1 Tooth length from root tip to tooth tip E2 Tooth length from the line creating the root tip to the tip of the tooth E3 Tooth length according to the visible part EM Enamoile M.: length of left side of tooth from root tip ED Enamoile D.: length of right side of tooth from root tip RD Tooth width DUJP Diameter Upper Jaw Perimeter DLJP Diameter Lower Jaw Perimeter ULJ Upper Left Jaw LLJ Lower Left Jaw URJ Upper Right Jaw LRJ Lower Right Jaw ANNALES · Ser. hist. nat. · 34 · 2024 · 2 246 Eloïse DEYSSON et al.: ADDITIONAL HISTORICAL RECORDS OF GREAT WHITE SHARKS, CARCHARODON CARCHARIAS, CAUGHT IN THE GULF OF LION ..., 239–250 frequent, but this general observation may be bi- ased by the common confusion of the species with another large lamnid shark, Isurus oxyrinchus, as seen in other parts of the Mediterranean (Soldo & Bakiu, 2024). The most significant sighting in the Gulf of Lion in decades was of a live adult individ- ual on 12 September 2022 in the waters of the Parc Naturel Régional de Camargue (N. Ziani, personal communication). ACKNOWLEDGEMENTS The authors are extremely thankful to Mr. Robert Nan and his family (Six-Fours-les-Plages, France) for generously sharing their archival photographs and allowing us to examine the jaws of specimen No. 2. The authors also wish to thank Gabriel Morey (TRAGSATEC, Palma de Mallorca) and Dr. Patrick Leopold Jambura (University of Vienna) for provid- ing valuable advice on jaw measurements. Fig. 4: Lateral view of specimen No. 3. The white arrows, left to right: (↓) large conical snout, (←) relatively small eye, (↓) long gill slits, (→) large first dorsal fin, (←) wide caudal keel, (↓) irregular white marks on the anterior portion of the caudal fin’s lower lobe, typical of C. carcharias (photo credit: GPER Archive). Sl. 4: Pogled s strani na primerek št. 3. Bele puščice, od leve proti desni: (↓) velik stožčast gobec, (←) razmeroma majhno oko, (↓) dolge škržne reže, (→) velika prva hrbtna plavut, (←) široka greben na repu, (↓) nepravilne bele lise na sprednjem delu spodnjega režnja repne plavuti, značilne za C. carcharias (fotografija: arhiv GPER). ANNALES · Ser. hist. nat. · 34 · 2024 · 2 247 Eloïse DEYSSON et al.: ADDITIONAL HISTORICAL RECORDS OF GREAT WHITE SHARKS, CARCHARODON CARCHARIAS, CAUGHT IN THE GULF OF LION ..., 239–250 DODATNI ZGODOVINSKI ZAPISI O BELIH MORSKIH VOLKIH, CARCHARODON CARCHARIAS, UJETIH V ZALIVU LYON (SEVEROZAHODNO SREDOZEMSKO MORJE) V DVAJSETIH IN PETDESETIH LETIH Eloïse DEYSSON & Sarah FOXONET Groupe Phoceen d’Etude des Requins (GPER), 118 rue de Rouet 13008, Marseille, France Etienne RÉGNIER Groupe Phoceen d’Etude des Requins (GPER), 118 rue de Rouet 13008, Marseille, France Nantes University, ISOMer, UR 2160, 2 rue de la Houssinière, B.P. 92208, 44322 Nantes Cedex 3, France Chloé MOSNIER, Florane TONDU & Janis BROUTIN-RENAUD Groupe Phoceen d’Etude des Requins (GPER), 118 rue de Rouet 13008, Marseille, France Bruno COGNIE Nantes University, ISOMer, UR 2160, 2 rue de la Houssinière, B.P. 92208, 44322 Nantes Cedex 3, France Alessandro DE MADDALENA Shark Museum, 26 Forest Hill Road, Simon’s Town, 7975 Cape Town, South Africa Hakan KABASAKAL WWF Türkiye, Asmalı Mescit, İstiklal Cd. No :136, 34430 Beyoğlu, İstanbul, Turkey Nicolas ZIANI Groupe Phoceen d’Etude des Requins (GPER), 118 rue de Rouet 13008, Marseille, France e-mail: phoceashark@gmail.com POVZETEK Obsežne arhivske preiskave so privedle do odkritja neobjavljenih zapisov o treh primerkih belega morskega volka, Carcharodon carcharias (Linnaeus, 1758), ujetih v zalivu Lyon (SZ Sredozemsko morje, GSA07). Avtorji so preiskali gradivo kot so arhivske fotografije in časopisno poročilo (primerka št. 1 in 3) ter celoten komplet zgornje in spodnje čeljusti (primerek št. 2). Ti neobjavljeni zapisi se nanašajo na primerke, ki so jih ribiči iz pristanišča Brusc v Toulonu (Francija) ulovili pri ribolovu s trislojno mrežo 31. julija 1926, leta 1930 in 1954. Primerki so bili odrasli morski volkovi, ki so merili med 400 in 480 cm. Ključne besede: Lamnidae, Carcharodon, GSA07, čeljusti, ohranjanje ANNALES · Ser. hist. nat. · 34 · 2024 · 2 248 Eloïse DEYSSON et al.: ADDITIONAL HISTORICAL RECORDS OF GREAT WHITE SHARKS, CARCHARODON CARCHARIAS, CAUGHT IN THE GULF OF LION ..., 239–250 REFERENCES Bănaru, D., C. Mellon-Duval, D. Roos, J.L. Bigot, A. Souplet, A. Jadaud, P. Beaubrun & J.-M. Fromentin (2013): Trophic structure in the Gulf of Lions marine ecosystem (north-western Mediterranean Sea) and fishing impacts. J. Mar. Syst., 111112, 4568. https://doi. org/10.1016/j.jmarsys.2012.09.010 Barone, M., C. Mazzoldi & F. Serena (2022): Sharks, rays and chimaeras in Mediterranean and Black Seas. FAO ; https://openknowledge.fao.org/han- dle/20.500.14283/cc0830en. Barrull, J. (1993-1994): Cita histórica de tiburón blanco Carcharodon carcharias (Linnaeus, 1758), en el mar Catalán (mar Mediterráneo), documentada con dientes de la mandíbula. Misc. Zool., 17, 283-285. Barrull, J. & I. Mate (2001): Presence of the great white shark, Carcharodon carcharias (Linnaeus, 1758) in the Catalonian Sea (NW Mediterranean): review and discussion of records and notes about its ecology. Annales, Ser. Hist. Nat., 11, 312. Boldrocchi, G., J. Kiszka, S. Purkis, T. Storai, L. Zinzula, & D. Burkholder (2017): Distribution, ecology, and status of the white shark, Carcharodon carcharias, in the Mediterranean Sea. Rev. Fish Biol. Fish., 27, 515534. https://doi.org/10.1007/s11160- 017-9470-5. Bradai, M.N., B. Saidi, S. Enajjar, M.N. Bradai, B. Saidi & S. Enajjar (2018): Overview on Mediterranean Shark’s Fisheries : Impact on the Biodiversity. In Marine Ecology—Biotic and Abiotic Interactions. IntechOpen. https://doi.org/10.5772/intechopen.74923. Carpaye, T. & M. Maurel (2023): Perspective on great white sharks (Carcharodon carcharias) in the northwest- ern mediterranean and recommendations for further field research. Annales, Ser. Hist. Nat., 33, 151164. https://doi.org/10.19233/ASHN.2023.19. Compagno, L.J.V. (2001): Sharks of the World. An annotated and illustrated catalogue of Shark species know to date. (Vol. 2, p. 269 p). FAO. https://www.fao. org/4/x9293e/x9293e00.htm De Maddalena, A. & W. Heim (2012): Mediterranean Great White Sharks. A Comprehensive Study Including All Recorded Sightings. McFarland, Jefferson, 256 pp. De Maddalena, A. & M. Zuffa (2009): Historical and contemporary presence of the great white shark, Carcharodon carcharias (Linnaeus, 1758), along the Mediterranean coast of France. Boll. Mus. Civ. Stor. nat. Venezia, 59, 8194. Di-Méglio, R.M., L. David, O. Gimenez, C. Azzinari, J. Jourdan, M. Barbier & H. Labach (2015): Abondance et répartition spatio-temporelle et fonctionnelle du Grand dauphin dans le Golfe du Lion. Projet GDEGeM Grand Dauphin Etude et Gestion en Méditerranée 2013- 2015 (Rapport GIS3M). https://www.gdegem.org/sites/ gdegem.org/files/documentation/gdegem_rapport_re- gional_golfe_du_lion.pdf. Ebert, D. & M. Dando (2020): Field Guide to Sharks, Rays, and Chimaeras of Europe and the Mediterranean. https://doi.org/10.1515/9780691211824. Ebert, D., M. Dando & S. Fowler (2021): Sharks of the World : A Complete Guide. Princeton, Wild Nature Press. https://doi.org/10.1515/9780691210872. Fergusson, I.K. (1996) : Distribution and Autecology of the White Shark in the Eastern North Atlantic Ocean and the Mediterranean Sea. In A. P. Klimley & D. G. Ainley (Éds.), Great White Sharks (p. 321345). Aca- demic Press. https://doi.org/10.1016/B978-012415031- 7/50031-8. Ferretti, F., R.A. Myers, F. Serena & H.K. Lotze (2008): Loss of Large Predatory Sharks from the Med- iterranean Sea. Conserv. Biol., 22, 952964. https:// doi.org/10.1111/j.1523-1739.2008.00938.x. Ferretti, F., B. Worm, G. L. Britten, M.R. Heithaus & H.K. Lotze (2010): Patterns and ecosystem conse- quences of shark declines in the ocean. Ecol. Lett., 13, 1055-1071. https://doi.org/10.1111/j.1461- 0248.2010.01489.x. Fromentin, J.M. & D. Lopuszanski (2014): Migra- tion, residency, and homing of bluefin tuna in the western Mediterranean Sea. ICES J. Mar. Sci., 71, 510518. https://doi.org/10.1093/icesjms/fst157. Gubili, C., C. Duffy, G. Cliff, S. Wintner, M. Shivji, D. Chapman, B. Bruce, A. Martin, D. Sims, C. Jones & L. Noble (2012): Application of Molecular Genetics for Conservation of the White Shark, Carcharodon carch- arias, L. 1758. In: Global Perspectives on the Biology and Life History of the White Shark (M. L. Domeier, ed.). pp. 357-380. CRC Press. https://doi.org/10.1201/ b11532-28. Jambura, P., J. Türtscher, A. De Maddalena, I. Giovos, J. Kriwet, J. Rizgalla & S. Al Mabruk (2021): Using Citizen Science to Detect Rare and Endangered Species : New Records of the Great White Shark Carcharodon carcharias off the Libyan Coast. Annales, Ser. Hist. Nat., 31, 5160. https://doi.org/10.19233/ ASHN.2021.08. Jenrette, J.F., J.L. Jenrette, N.K. Truelove, S. Moro & N.I. Dunn (2023): Detecting Mediterranean White Sharks with Environmental DNA. Oceanogr., 36, 8789. https://doi.org/10.5670/oceanog.2023.s1.28. Kabasakal, H. (2014) : The status of the great white shark (Carcharodon carcharias) in Turkey’s waters. Mar. Biodivers. Rec., 7; eo: 1-8. doi:10.1017/ S1755267214000980. Kabasakal, H., E. Bayri & G. Alkan (2022): Distribution and status of the great white shark, Carcharodon carcharias, in Turkish waters: a review and new records. Annales, Ser. Hist. Nat, 32, 325- 342. https://doi.org/10.19233/ASHN.2022.34. L’Illustration (1926): Un requin de 4 mètres 50 capturé près de Toulon. (1926, septembre 4). 234. ANNALES · Ser. hist. nat. · 34 · 2024 · 2 249 Eloïse DEYSSON et al.: ADDITIONAL HISTORICAL RECORDS OF GREAT WHITE SHARKS, CARCHARODON CARCHARIAS, CAUGHT IN THE GULF OF LION ..., 239–250 Maliet, V., C. Reynaud & C. Capapé (2013) : Oc- currence of great white shark, Carcharodon carch- arias (Elasmobranchii : Lamniformes: Lamnidae), off Corsica (northern Mediterranean): historical and contemporary records. AIeP., 43, 323326. https:// doi.org/10.3750/AIP2013.43.4.11. Micarelli, P., F.R. Reinero, A. Marsella, E. Vernel- li, E. Vittorini, L. Monteleone, M. Vailati, L. Marsili, F. Tinti & E. Sperone (2023): Attempts to locate and sample the white shark, Carcharodon carcharias (Lamniformes : Lamnidae), along the Italian coasts in the Mediterranean Sea. Acta Adriat., 64, 181- 186. https://doi.org/10.32582/aa.64.2.6. Milankovic, H., N. Ray, L. Gentle, C. Kruger, E. Jacobs & C. Ferreira (2021): Seasonal occur- rence and sexual segregation of great white sharks Carcharodon carcharias in Mossel Bay, South Africa. Environ. Biol. Fishes, 104. https://doi.org/10.1007/ s10641-021-01094-8. Monaco, L.W., M. Provansal & B. Picon (2009): Le golfe du Lion—Un observatoire de l’environne- ment en Méditerranée (Quæ). https://www.quae- open.com/produit/6/9782759212798/le-golfe-du- lion. Morey, G., M. Martínez, E. Massutí, & J. Mo- ranta (2003): The Occurrence of White Sharks, Carcharodon carcharias, Around the Balearic Islands (Western Mediterranean Sea). Environ. Biol. Fishes, 68, 425432. https://doi.org/10.1023/B:EB- FI.0000005789.83761.d8. Moro, S., G. Jona-Lasinio, B. Block, F. Miche- li, G. De Leo, F. Serena, M. Bottaro, U. Scacco & F. Ferretti (2020): Abundance and distribution of the white shark in the Mediterranean Sea. Fish Fish., 21, 338349. https://doi.org/10.1111/ faf.12432. Otero, M., F. Serena, V. Gerovasileiou, M. Barone, M. Bo, J. M. Arcos, A. Vulcano & J. Xavier (2019): Identification guide of vulnerable species incidentally caught in Mediterranean fisheries. IUCN, Malaga, Spain, 204 p. https://portals.iucn. org/library/node/49019. Parc Naturel Régional de Camargue (2012): https://pnr-camargue.n2000.fr/sites/pnr-camargue. n2000.fr/files/2023-11/resume_docob_camargue. pdf. Poisson, F., Y. Mitsunaga, T. Kojima, S. Torisawa, B. Séret, H. Demarcq, A. Banègue, & J.M. Groul (2015): Satellite Tagging of Blue Sharks (Prionace glauca) in the Gulf of Lions : Depth Behaviour, Tem- perature Experience and Movements – Preliminary Results. In H. J. Ceccaldi, Y. Hénocque, Y. Koike, T. Komatsu, G. Stora, & M. H. Tusseau-Vuillemin (Éds.), Marine Productivity : Perturbations and Resilience of Socio-ecosystems (pp. 367368). Springer Inter- national Publishing. https://doi.org/10.1007/978-3- 319-13878-7_41. Rigby, C., R. Barreto, J. Carlson, D. Fernando, S. Fordham, M. Francis, K. Herman, R. Jabado, K.-M. Liu, C. Lowe, A. Marshall, N. Pacoureau, E. Romanov, R. Sherley & H. Winker (2018): Carcharodon carchari- as-White Shark. The IUCN Red List of Threatened Species 2019. https://doi.org/10.2305/IUCN.UK.2019-3.RLTS. T3855A2878674.en. Rigby, C., R. Barreto, J. Carlsson, D. Fernando, S. Fordham, M. P. Francis, K. Herman, R. W. Jabado, G.C.A. Jones, K.-M. Liu, C.G. Lowe, A. Marshall, N. Pacoureau, E. Romanov, R.B. Sherley & H. Winker (2022): Carcharodon carcharias (amended version of 2019 assessment). The IUCN Red List of Threatened Species 2022. https://doi.org/10.2305/IUCN.UK.2022-1. RLTS.T3855A212629880.en. Roos, D. (2012): Populations ichtyologiques de petits pélagiques. Sous-région marine Méditerranée occiden- tale. Evaluation initiale DCSMM. https://archimer.ifremer. fr/doc/00331/44212/. Rouyer, T., S. Bonhommeau, G. Bal, O. Derridj & J.-M. Fromentin (2021): The environment drives Atlantic bluefin tuna availability in the Gulf of Lions. Fish. Ocean- ogr., 30, 490498. https://doi.org/10.1111/fog.12532. Shimada, K. (2002): The relationship between the tooth size and total body length in the white shark, Carcharodon carcharias (Lamniformes : Lamnidae). Jour- nal of Fossil Research, 35, 2833. Shimada, K. (2019): The size of the megatooth shark, Otodus megalodon (Lamniformes : Otodontidae), revisit- ed. Historical Biology, 33, 904911. https://doi.org/10.10 80/08912963.2019.1666840 Soldo, A. & R. Bakiu (2024): Additional historical records of the great white shark, Carcharodon carch- arias (Lamniformes : Lamnidae) in the eastern Adriatic: updating regional occurrence of a critically endangered shark. Annales, Ser. Hist. Nat., 34, 1120. https://doi. org/10.19233/ASHN.2024.02. Soldo, A., M.N. Bradai & R.H.L. Walls (2016): Carcharodon carcharias. Mediterranean. The IUCN RedList of Threatened Species 2016 : e.T3855A16527829. (Accessed: 18 September 2024). Stambler, N. (2013): The Mediterranean Sea – Primary Productivity. The Mediterranean Sea: Its History and Pres- ent Challenges, 113121. https://doi.org/10.1007/978-94- 007-6704-1_7. Strady, E., M. Harmelin-Vivien, J.F. Chiffoleau, A. Veron, J. Tronczynski & O. Radakovitch (2015): 210Po and 210Pb trophic transfer within the phytoplankton– zooplankton–anchovy/sardine food web : A case study from the Gulf of Lion (NW Mediterranean Sea). J. Envi- ron. Radioact., 143, 141151. https://doi.org/10.1016/j. jenvrad.2015.02.019. Villafaña, J.A., S. Hernandez, A. Alvarado, K. Shima- da, C. Pimiento, M.M. Rivadeneira & J. Kriwet (2020): First evidence of a palaeo-nursery area of the great white shark. Sci. Rep., 10, 8502. https://doi.org/10.1038/ s41598-020-65101-1. ANNALES · Ser. hist. nat. · 34 · 2024 · 2 250 Eloïse DEYSSON et al.: ADDITIONAL HISTORICAL RECORDS OF GREAT WHITE SHARKS, CARCHARODON CARCHARIAS, CAUGHT IN THE GULF OF LION ..., 239–250 Zaouali, J., S. Rafrafi-Nouira, K.O. Ben Amor, M.M. Ben Amor & C. Capapé (2020): Capture of a large great white shark, Carcharodon carcharias (Lamnidae) from the Tunisian coast (Central Mediterranean Sea) : A historical and ichthyological event. Annales, Ser. Hist. Nat, 30, 9-14. https://doi.org/10.19233/ASHN.2020.02. CARTOGRAPHY SOURCES OpenStreetMap. (2024, mai 15). OpenStreetMap. https://www.openstreetmap.org/ QGIS - Free and Open Source Geographic Informa- tion System. (2024, mai 15). https://www.qgis.org/ ANNALES · Ser. hist. nat. · 34 · 2024 · 2 251 received: 2024-06-27 DOI 10.19233/ASHN.2024.30 CAPTURE OF A JUVENILE BASKING SHARK, CETORHINUS MAXIMUS (CETORHINIDAE), OFF THE SYRIAN COAST, WITH COMMENTS ON THE OCCURRENCE OF THE SPECIES IN THE LEVANT BASIN (EASTERN MEDITERRANEAN SEA) Malek ALI Marine Sciences Laboratory, Production Animals Department, Faculty of Agriculture, Tishreen University, Lattakia, Syria e-mail: malekfaresali@gmail.com Aola FANDI Biology Department, Faculty of Sciences, Tartous University, Syria Dima GHANEM Marine Sciences Laboratory, Production Animals Department, Faculty of Agriculture, Tishreen University of Lattakia, Syria Christian CAPAPÉ Laboratoire d’Ichtyologie, Université de Montpellier, 34095 Montpellier cedex 5, France e-mail: capape@orange.fr ABSTRACT The authors report the capture of a young basking shark, Cetorhinus maximus, in the Levant Basin, measuring 259 cm in total length and weighing 63 kg. According to the fisherman who captured it, the shark was part of a shoal of 40 other young specimens. Additionally, a brief report is presented listing several juvenile basking sharks among C. maximus captures in the Levant Basin, along with the capture of a large pregnant female years ago. This suggests that a viable population of the species may be established in the region. However, a management plan should be implemented to protect C. maximus and prevent the total disappearance of the species in the area. Key words: Cetorhinus maximus, shoal, population, distribution, Syrian coast, Levant Basin CATTURA DI UN GIOVANE SQUALO ELEFANTE, CETORHINUS MAXIMUS (CETORHINIDAE), AL LARGO DELLA COSTA SIRIANA, CON OSSERVAZIONI SULLA PRESENZA DELLA SPECIE NEL BACINO DEL LEVANTE (MARE MEDITERRANEO ORIENTALE) SINTESI Gli autori riportano la cattura nel bacino del Levante di un giovane squalo elefante, Cetorhinus maximus, con una lunghezza totale di 259 cm e un peso di 63 kg. Secondo il pescatore che lo ha catturato, lo squalo faceva parte di un banco di altri 40 esemplari giovani. Nell’articolo viene inoltre presentato un breve rapporto che elenca diversi giovani squali elefante tra le catture di C. maximus nel bacino del Levante, insieme alla cattura di una grande femmina gravida anni fa. Ciò suggerisce che una popolazione vitale della specie potrebbe essersi stabilita nella regione. Tuttavia, è necessario attuare un piano di gestione per proteggere C. maximus e prevenire la totale scomparsa della specie nell’area. Parole chiave: Cetorhinus maximus, banco, popolazione, distribuzione, costa siriana, bacino del Levante ANNALES · Ser. hist. nat. · 34 · 2024 · 2 252 Malek ALI et al.: CAPTURE OF A JUVENILE BASKING SHARK, CETORHINUS MAXIMUS (CETORHINIDAE), OFF THE SYRIAN COAST ..., 251–256 INTRODUCTION The basking shark, Cetorhinus maximus (Gunnerus, 1765), is a large, highly migratory species with world- wide distribution (Quéro, 1984). It is a massive coastal pelagic shark, generally found in boreal to warm-temper- ate waters and frequently sighted in the open sea. There have been instances of specimens entering enclosed bays and usually being captured, as well as others being found stranded on beaches (Compagno, 1984). Seasonal segregation appears to be characteristic of this species, which used to be the target of intensive fishery across the British Isles, Ireland, and in the southern coast of Britain (Chenard et al., 1951). The flesh was not highly valued for human consumption, but the large quantities of oil in the liver were used in cosmetics and pharmaceuticals, and the skin was made into leather (Chenard et al., 1951). Fishing pressure, together with the species’ K-selected characteristics, contributed to a drastic decline of C. max- imus in areas where it was previously abundant, leading to the cessation of some local fisheries (Compagno, 1984; Sims et al., 2003). C. maximus is found in the Mediterranean Sea, where it has been more commonly recorded in the western ba- sin (Mancusi et al., 2005) and in the Adriatic Sea (Soldo & Lipej, 2022). Lipej & Mavrič (2015) reported the capture of a juvenile basking shark measuring 217  cm in total length (TL) and weighing 40 kg in the northern Adriatic Sea, off Piran, and noted that the species, previously rare in this area, has been recorded with relative abundance since 1990, including 100 sightings or captures, with several specimens measuring less than 400 cm, or even less than 300 cm TL. The species occurs southward along the Maghreb shore, from the Moroccan coast (Lloris & Rucabado, 1998), through Algeria (Mokrane, 2023) and Tunisia (Capapé et al., 2003) to the Libyan coast (Shakman et al., 2023). C. maximus is also reported from the marine waters around the Maltese Islands (Borg et al., 2023). The basking shark was previously considered a rare species in the eastern Mediterranean. According to Ergüden et al. (2020), the first well-documented record of the species in this region came from the Gulf of Antalya, reported by Kideys (1997), while Kabasakal (2002) noted that the first sighting of the species in Turkish marine waters occurred during the 1950s. Kabasakal (2013) and Ergüden et al. (2020) both list the specimens recorded and sighted in the broader region, including the Levant Basin. In this latter area, C. maximus appears to be caught only sporadically (Ben-Tuvia, 1971; Bariche & Fricke, 2020; Bitar & Badreddine, 2021). However, the capture of the young specimen described herein, along with that of a large pregnant female some years previously, offer an opportunity to comment on the true status of the species in the studied area, the Levant Basin and the eastern Mediterranean Sea. MATERIAL AND METHODS On 27 February 2024, a specimen of C. maximus was captured in Syrian marine waters (Fig. 1), using demersal fixed net, at a depth of 2 m, over a soft bottom, off the Al-Shkaifat site between Lattakia and Jableh city (35°24’50” N; 35°53’45” E). The fisherman reported that the specimen was part of a shoal of up to 40 young C. maximus of similar size. Some morphometric measurements were taken and recorded to the nearest centimetre, with total body weight recorded to the nearest kilogram. These measurements are summarised in Table 1 and compared with similar features noted in a large female previously captured in the same area (Ali et al., 2012). RESULTS AND DISCUSSION C. maximus is considered the second largest fish in the world, following the whale shark, Rhincodon typus (Smith, 1828). Its maximum total length (TL) is noted to be between 12.2 and 15.2 m, although most specimens do not exceed 9.8 m (Compagno, 1984). Large specimens display the following anatomic char- acteristics: trunk fusiform and stout; head long, but shorter than trunk; snout moderately long, pointed, and conical; eyes small; 5 extremely long gill slits extending onto dorsal and ventral surfaces of head, gill rakers present on internal Fig. 1: Map of the Syrian coast with numbers indicating the capture sites of specimens of Cetorhinus maximus: 1. Ali et al. (2012); 2. this study. Sl. 1: Zemljevid sirske morske obale s številkami, ki označujejo lokalitete ulova primerkov vrste Cetorhi- nus maximus: 1. Ali in sod. (2012); 2. ta raziskava. ANNALES · Ser. hist. nat. · 34 · 2024 · 2 253 Malek ALI et al.: CAPTURE OF A JUVENILE BASKING SHARK, CETORHINUS MAXIMUS (CETORHINIDAE), OFF THE SYRIAN COAST ..., 251–256 gill slits; teeth minute and numerous; dermal denticles with extremely elongated crowns; caudal peduncle depressed, with strong lateral keels, caudal fin nearly asymmetrical, with a well-developed lower lobe. The current specimen measured 259 cm TL and weighed 63 kg. It was a juvenile, displaying a rather elon- gated body (Fig. 2) and a large, pointed snout, compressed at the sides and slightly curved at the distal end (Fig. 3). Kabasakal (2013) and Ergüden et al. (2020) provide two lists of C. maximus captures and/or sightings, one for the eastern Mediterranean in general and another focusing on the Levant Basin. They include male and female specimens of large sizes, as well as some juvenile individuals. Prior to the current specimen measuring 259 cm TL, young C. maximus were reported by Ben-Tuvia (1971) at 259 cm and 261 cm TL, Kabasakal (2013) at 236 cm and 300 cm TL, and Ergüden et al. (2020) at 275 cm TL. C. maximus appears to be rare, yet still present in the area (Kabasakal, 2013). However, Kabasakal (2013) also noted that the occurrence of young specimens does not indicate the presence of a nursery ground in the region but is likely a result of zooplankton abundance, as suggested by Sims et al. (1997) and Soldo et al. (2018). Carpaye-Taïlamée (2019) noted that sightings of C. maximus were generally not abundant in the Gulf of Lion on the southern coast of France. However, observations Tab. 1: The morphometric measurements in centimetres (cm) and as percentages of total length (%TL), along with the total body weight recorded for the current specimen of C. maximus captured off the Syrian coast, compared with those of a specimen captured in 2012 (Ali et al., 2012). Tab. 1: Morfometrične meritve v centimetrih (cm) in kot delež celotne dolžine (%TL) ter celokupna telesna teža za primerek morskega psa orjaka C. maximus, ujetega ob sirski obali, v primerjavi s primerkom, ujetim leta 2012 (Ali in sod., 2012). References This study Ali et al. (2012) Morphometric measurements cm %TL cm %TL Total length 259 100% 690 100% Head length 78 30.1 128 18.6 Pre-branchial length 61 23.6 90 13.0 Pre-orbital length 27 10.4 32 4.6 Pre-first dorsal-fin length 120 46.3 244 35.4 Pre-second dorsal fin length 173 66.8 475 68.8 Pre-pectoral-fin length 58 22.4 - - Pre-pelvic-fin length 132 51.0 375 54.3 Pre-anal-fin length 191 73.7 485 70.3 Total weight (Kg) 63 2500 Fig. 2: A juvenile C. maximus captured off the Syrian coast, near the Al-Shkaifat site between Lattakia and Jableh city. Scale bar = 15 cm. Sl. 2: Mladostni primerek vrste C. maximus ujet ob sirski obali blizu lokalitete Al-Shkaifat med Lattakio in Jableh city. Merilo = 15 cm. ANNALES · Ser. hist. nat. · 34 · 2024 · 2 254 Malek ALI et al.: CAPTURE OF A JUVENILE BASKING SHARK, CETORHINUS MAXIMUS (CETORHINIDAE), OFF THE SYRIAN COAST ..., 251–256 carried out over a brief period indicated that the species’ occurrence in the area may be correlated with higher phytoplanktonic development. As phytoplankton (sensu lato) is consumed by zooplankton species, contributing to their reproduction and development – the relationship between phytoplankton and zooplankton has been well-documented in some regions of the eastern tropical Atlantic (Le Borgne, 1979) –, the increased phytoplank- tonic development in the Gulf of Lion could explain the presence of C. maximus in the area. The capture of the current specimen, the concomitant sighting of 40 young individuals, and the earlier capture of a pregnant female (Ali et al., 2012) clearly suggest that a viable population exists in the area, which may also serve as a nursery ground for the species. This phenomenon is likely due to the abundance of several zooplanktonic species in the marine waters of the Levant Basin, but also in other areas of the eastern Mediterranean Sea according to Insibilir et al. (2022). The abundance of zooplankton contributes to main- taining the occurrence of C. maximus in the Levant Basin, the broader eastern Mediterranean, and the Mediter- ranean Sea as a whole. Due to the species’ K-selected biological characteristics (cf. Mellinger, 1989), and in total agreement with Ergüden et al. (2020), a management plan should be implemented in Syrian and other Mediter- ranean fisheries to protect C. maximus and prevent the decline and disappearance of the species. ACKNOWLEDGEMENTS The authors wish to thank two anonymous referees for their helpful and useful comments allowing to improve the scientific quality of the paper. Fig. 3: Head of the young specimen of C. maximus showing: 1. Curve at the distal end of the snout; 2. Snout; 3. Internal branchial arches. Scale bar = 10 cm. Sl. 3: Glava mladega primerka vrste C. maximus, ki kaže: 1. ukrivljen distalni del gobca; 2. gobec; 3. notranji škržni loki. Merilo = 10 cm. ANNALES · Ser. hist. nat. · 34 · 2024 · 2 255 Malek ALI et al.: CAPTURE OF A JUVENILE BASKING SHARK, CETORHINUS MAXIMUS (CETORHINIDAE), OFF THE SYRIAN COAST ..., 251–256 ULOV MLADOSTNEGA PRIMERKA MORSKEGA PSA ORJAKA, CETORHINUS MAXIMUS (CETORHINIDAE), OB SIRSKI OBALI S KOMENTARJI O POJAVLJANJU VRSTE V LEVANTSKEM BAZENU (VZHDONO SREDOZEMSKO MORJE) Malek ALI Marine Sciences Laboratory, Production Animals Department, Faculty of Agriculture, Tishreen University, Lattakia, Syria e-mail: malekfaresali@gmail.com Aola FANDI Biology Department, Faculty of Sciences, Tartous University, Syria Dima GHANEM Marine Sciences Laboratory, Production Animals Department, Faculty of Agriculture, Tishreen University of Lattakia, Syria Christian CAPAPÉ Laboratoire d’Ichtyologie, Université de Montpellier, 34095 Montpellier cedex 5, France e-mail: capape@orange.fr POVZETEK Avtorji poročajo o ulovu mladostnega morskega psa orjaka, Cetorhinus maximus, v levantskem bazenu, ki je meril 259 cm v dolžino in tehtal 63 kg. Po navedbah ribiča, ki ga je ujel, naj bi bil primerek del jate 40 mladih morskih psov orjakov. Nadalje avtorji navajajo primere številnih ulovov mladostnih primerkov vrste C. maximus v seznamu ulovov v Levantskem bazenu skupaj z ulovom velike breje samice izpred nekaj let. To kaže na dejstvo, da se lahko na raziskovanem območju vzpostavi viabilna populacija te vrste. S tem v zvezi je potrebno pripraviti načrt upravljanja z namenom varovanja vrste C. maximus in preprečiti njeno izginotje na obravnavanem območju. Ključe besede: Cetorhinus maximus, jata, populacija, razširjenost, sirska obala, levantski bazen ANNALES · Ser. hist. nat. · 34 · 2024 · 2 256 Malek ALI et al.: CAPTURE OF A JUVENILE BASKING SHARK, CETORHINUS MAXIMUS (CETORHINIDAE), OFF THE SYRIAN COAST ..., 251–256 REFERENCES Ali, M., A. Saad, C. Reynaud & C. Capapé (2012): Occurrence of basking shark, Cetorhinus maximus(Ce- torhinidae) off the Syrian coast (eastern Mediterranean) with first description of egg case. Acta Ichthyol. Piscat., 42(4), 335-339. Bariche, M. & R. Fricke (2020): The marine ich- thyofauna of Lebanon: an annotated checklist, history, biogeography, and con- servation status. Zootaxa, 4775 (1), 1-157. Ben-Tuvia (1971): A revised list of the Mediterranean fishes of Israel. Isr. J. Zool., 20, 1-39. Bitar, G. & A. Badreddine (2021): An updated checklist of the marine fishes in Lebanon. An answer to Bariche and Fricke (2020): “The marine ichthyofauna of Lebanon: an annotated checklist, history, biogeography, and conservation status”. Zootaxa, 5010(1), 1-128. Borg, J.A., D. Dandria, J. Evans, L. Knittweis & P.J. A. Schembri (2023): Critical checklist of the marine fishes of Malta and surrounding waters. Diversity, 2023, 15, 225, https:// doi.org/ 10.3390/d15020225. Capapé, C., F. Hemida, J. Bensaci, B. Saïdi & M.N. Bradaï (2003): Records of basking sharks, Cetorhinus maximus (Gunnerus, 1765) (Chondrichthyes: Cetorhini- dae) off the Maghrebin shore (Southern Mediterranean): a survey. Annales, Ser. Hist. Nat., 13(1), 13-18. Carpaye-Taïlamée, T. (2019): Sur la présence du requin pèlerin Cetorhinus maximus (Chondrichthyes, Cetorhinidae) devant la côte méditerranéenne française. Marine Life, 1-15. Chenard, M., P. Desbrosses & J. Le Gall (1951): The basking shark (Cetorhinus maximus Gunner) and its fish- eries. Rev. Trav. Inst. Pêch. marit., 16 (61-64), 90-109. Compagno, L.J.V. (1984): FAO Species Catalogue, vol. 4, Sharks of the World. An Annotated and Illustrated Catalogue of Shark Species known to Date. FAO Fish- eries Synopsis, 125, vol. 4, part 1 (non carcharhinoids): viii+1–250 pp. Ergüden, D., D.Ayas, S.Algos Ergüden & H.D. Akbora (2020): Rare occurrence of the young basking shark Cetorhinus maximus (Gunnerus, 1765) in the northeastern Mediterranean. Emerg. Trends Res. Biol. Sci., 1, 99-105. Isinibilir, M., V. Aker & E.E. Türkeri (2022): Summer distribution and community structure of surface water mesozooplankton from the eastern Mediterranean Sea. Oceanol. Hydrobiol. Stud., 51, 308-324. Kabasakal, H. (2002): Capture of a female bask- ing shark, Cetorhinus maximus (Gunnerus, 1765), from southern Turkey. Annales, Ser. Hist. Nat., 14, 171-180. Kabasakal, H. (2013): Rare but present: status of basking shark, Cetorhinus maximus (Gunnerus, 1765) in eastern Mediterranean. Annales, Ser. Hist. Nat., 23, 127-132. Kideys, A.E. (1997): Occurrence of the basking shark, Cetorhinus maximus, in the northern Levantine, the eastern Mediterranean. Book of Abstracts. The inter- national Mediterranean Fisheries Congress, University of Ege, Izmir, 120. Le Borgne, R. (1979): Les relations entre le zoo- plancton et le phytoplancton dans trois situations caractéristiques de l’Atlantique intertropical. Production primaire et secondaire, Colloque Franco-Soviétique, Station Marine d’Endoume, 9-12 juin1979, Publications du CNEXO (Actes du Colloque), 10, 107-124. Lipej, L. & B. Mavrič (2015): Juvenile basking shark Cetorhinus maximus caught in the waters off Piran(north- ern Adriatic). Medit. Mar. Sci., 16, 475-476. Lloris, D. & J. Rucabado (1998): Guide FAO d’identi- fication des espèces pour les besoins de la pêche. Guide d’identification des ressources marines vivantes pour le Maroc. FAO, Rome, 263 pp. Mellinger, J. (1989): Reproduction et développement des Chondrichthyens. Océanis, 15, 283-303. Mokrane, Z. (2023): Additional basking shark sightings: Cetorhinus maximus (Chondrichthyes: Cetorh- inidae) off Algerian coast. Zootaxa, 5346(3), 348-350. Quéro, J.C. (1984): Cetorhinidae. In: P.J.P. White- head, M.L. Bauchot, J.C. Hureau., J. Nielsen J.& Torton- ese. E. (Editors), pp. 87-88. Fishes of the North-western Atlantic and the Mediterranean, Vol I, UNESCO, Paris. Shakman, E., A. Siafenasar, K. Etayeb, A. Shefern, A. Elmgwashi, M. A. Hajaji, N. Benghazi, A. Ben Abdalha, M. Aissi & F. Serena (2023): National Inventory and status of Chondrichthyes in the South Mediterranean Sea (Libyan Coast). Biodiv. J., 14, 459-480. Sims, D.W., S.L. Fowler & D.A. Merrett (1997): Bask- ing shark occurrence off souht-west Englandin relation to zooplancton abundance. J. Fish Biol., 51, 436-440. Sims, D.W., E.J. Southall., A.I. Richardson, P.C. Reid & J.D. Metcalfe (2003): Seasonal movements and behaviour of basking sharks from archival tagging: no evidence of winter hibernation. Mar. Ecol. Prog. Ser., 248, 187-196. Soldo, A., D. Lučić & I. Jardas (2018): Basking shark (Cetorhinus maximus) occurrence in relation to zooplancton abundance in the eastern Adriatic Sea. Cybium, 32, 103-109. Soldo, A. & L. Lipej (2022): An annotated checklist and the conservation status of Chondrichthyans in the Adriatic. Fishes, 2022, 7, 245, http://doi.org/10.3390/ fishes7050245. ANNALES · Ser. hist. nat. · 34 · 2024 · 2 257 received: 2024-10-18 DOI 10.19233/ASHN.2024.31 IMPACT OF FISHING CAPACITY AND ENVIRONMENTAL PARAMETERS ON LANDINGS OF HEXANCHUS GRISEUS IN THE SEA OF MARMARA Hakan KABASAKAL Istanbul University, Institute of Science, Fisheries Technologies and Management Program, Istanbul, Türkiye e-mail: kabasakal.hakan@gmail.com Uğur UZER Istanbul University, Faculty of Aquatic Sciences, Department of Fisheries Technologies and Management, Istanbul, Türkiye F. Saadet KARAKULAK Istanbul University, Faculty of Aquatic Sciences, Department of Fisheries Technologies and Management, Istanbul, Türkiye ABSTRACT Between July 1967 and December 2023, 136 bluntnose sixgill sharks, Hexanchus griseus, were caught in the Sea of Marmara (SoM). Although both a generalised linear model (GLM) and the Mann-Kendall trend test indicated an increasing trend in annual landings of H. griseus, the estimated smoothing splines of the GLM regression trend line revealed a sharp decline in landings after 2017. While the capture depths ranged from 10 to 1,000 m since the early 2000s, the majority of specimens were caught in the shallow waters of the continental shelf. Deteriorating environmental conditions and increasing deoxygenation in the deep waters of the SoM coincide with a reduction in the capture depth of bluntnose sixgill sharks over the continental shelf. The evidence suggests an ongoing process of vertical habitat compression, which appears to be increasing the vulnerability of H. griseus to commercial fisheries in the SoM. Key words: Sixgill shark, overfishing, vulnerability, pollution, oxygen, decline IMPATTO DELLA CAPACITÀ DI PESCA E DEI PARAMETRI AMBIENTALI SUGLI SBARCHI DI HEXANCHUS GRISEUS NEL MAR DI MARMARA SINTESI Tra il luglio 1967 e il dicembre 2023, nel Mar di Marmara sono stati catturati 136 squali capopiatto, Hexanchus griseus. Sebbene sia il modello lineare generalizzato (GLM) che il test di tendenza di Mann-Kendall abbiano indicato una tendenza all’aumento degli sbarchi annuali di H. griseus, le spline di attenuazione stimate della linea di tendenza della regressione GLM hanno rivelato un forte calo degli sbarchi dopo il 2017. Mentre la profondità di cattura variava da 10 a 1.000 m dai primi anni 2000, la maggior parte degli esemplari è stata catturata nelle acque poco profonde della piattaforma continentale. Il peggioramento delle condizioni ambientali e l’aumento della deossigenazione nelle acque profonde nel Mar di Marmara coincidono con la riduzione della profondità di cattura degli squali capopiatto sulla piattaforma continentale. I dati suggeriscono un processo di compressione verticale dell’habitat in corso, che sembra aumentare la vulnerabilità di H. griseus alla pesca commerciale nel Mar di Marmara. Parole chiave: squalo capopiatto, pesca eccessiva, vulnerabilità, inquinamento, ossigeno, declino ANNALES · Ser. hist. nat. · 34 · 2024 · 2 258 Hakan KABASAKAL et al.,: IMPACT OF FISHING CAPACITY AND ENVIRONMENTAL PARAMETERS ON LANDINGS OF HEXANCHUS GRISEUS ..., 257–272 INTRODUCTION From a conservation perspective, well-managed shark fisheries require robust scientific research into various aspects of shark life history and popu- lation status to protect them from overexploitation (Shiffman & Hammerschlag, 2016). However, due to the scarcity of long-term systematic data on the distribution and abundance of many shark species (McPherson & Myers, 2009), fishery-dependent data collection or opportunistically collected data, such as anecdotal reports of incidental landings or catches, often constitute the only source of informa- tion on large predatory sharks (Morgan & Burgess, 2005). The value of “opportunistic records”, i.e., observations not directly derived from scientific field surveys aimed at quantifying fish abundance (Hiddink et al., 2023), has been confirmed in sev- eral studies (Bengil, 2020; Bargnesi et al., 2020, 2022; Kabasakal & Bilecenoğlu, 2020; Kabasakal, 2023a) highlighting the effectiveness of opportunis- tic methods, such as citizen science, social media, etc., in providing additional or complementary data on elasmobranchs. The bluntnose sixgill shark, Hexanchus griseus (Bonnaterre, 1788) (Hexanchiformes: Hexanchi- dae), is a large predatory shark species with a confirmed maximum total length (TL) of 570 cm (Lipej et al., 2022) and an estimated trophic level of 4.3 (Ferretti et al., 2008). With a patchy circum- global distribution, H. griseus is one of the most well-known large demersal predators inhabiting continental shelves and slopes down to depths of 2,500 m, though it typically prefers depths between 200 and 1,100 m (Ebert et al., 2021). The bluntnose sixgill shark is found throughout the Mediterranean (Serena et al., 2020; Barone et al., 2022), with its range extending to the Sea of Marmara (SoM) and the Black Sea, where records are extremely scarce (Kabasakal, 2023b). Unlike several large Mediterranean shark species whose populations are estimated to have declined by over 90% from their former abundance (Ferretti et al., 2008), H. griseus is estimated to have ‘only’ declined by 20–29% across its global range (Finucci et al., 2020). A recent assessment of the status of H. griseus in the Mediterranean has emphasised the importance of collecting region-specific data on its abundance to obtain reliable estimates of population trends throughout the region (Nuez et al., 2023). Although the distribution and status of H. griseus in Turkish waters have been evaluated in previous studies (Kabasakal et al., 2017; Kabasakal & Bilecenoğlu, 2020; Kabasakal, 2023b), the impact of fishing ca- pacity and environmental degradation on bluntnose sixgill shark landings remains unexplored. Aiming to correct that shortfall, in this study we analyse the temporal trends of H. griseus landings in the SoM. Additionally, we examine the effects of fishing capacity and environmental parameters on landings of incidentally caught bluntnose sixgill sharks. MATERIAL AND METHODS Study area In the General Fisheries Council of the Med- iterranean (GFCM) Geographical Subarea (GSA) classification, the SoM is designated as GSA 28 (Fig. 1) (Carpentieri et al., 2021). Identified as the easternmost extension of the Mediterranean ecosys- tem (Stanley & Blanpied, 1980), the SoM is a small basin located between Europe and Asia, covering a surface area of 11,500 km2 and reaching a maximum depth of 1,390 m (Beşiktepe et al., 1994). Due to anthropogenic impacts, primarily from the disposal of urban and industrial waste and nutrient runoff from surrounding agricultural fields, dissolved oxy- gen levels have fallen below the hypoxic threshold (80 µmol/L) in shelf waters deeper than 25 m, while anoxic conditions with low levels of hydrogen sulphide formation prevail at depths below 500 m (Yücel et al., 2023). Despite being one of the most disturbed marine ecosystems in the Mediterranean today (Saygu et al., 2023), the SoM has historically been considered one of Turkey’s most productive fishing grounds (Yıldız & Karakulak, 2016). Bluntnose sixgill shark landing data sources Opportunistic records of H. griseus landings include newspaper articles and social media posts reporting the capture and/or display of bluntnose sixgill shark in the SoM. Prior to 2006, reports of H. griseus comprised articles published in printed newspapers and/or angling magazines, peer-re- viewed articles, and fishermen’s logs. Records for the period from 2006 to 2023 are limited to internet media articles and social media posts. Opportunistic records can be problematic due to inconsistent time series and unclear observation effort (Swetnam et al., 1999); however, they can still serve as valuable data sources for indicating local population status (Grant et al., 2022). A ‘record’ refers to an individual bluntnose six- gill shark encountered on a specific date, whereas a ‘report’ denotes a single bluntnose sixgill shark encounter event; therefore, a report may include several bluntnose sixgill shark records (Hiddink et al., 2023). Following the recommended procedure (Hiddink et al., 2023), our search for opportunis- tic records involved examining all pages of daily newspapers from Turkish mainstream media, cur- rently archived at the Atatürk Library in Istanbul, ANNALES · Ser. hist. nat. · 34 · 2024 · 2 259 Hakan KABASAKAL et al.,: IMPACT OF FISHING CAPACITY AND ENVIRONMENTAL PARAMETERS ON LANDINGS OF HEXANCHUS GRISEUS ..., 257–272 for reports of bluntnose sixgill shark encounters from July 1967 to June 2005. We also conducted data mining on the Internet to extract web articles and social media posts related to the bluntnose sixgill shark. To streamline the search and filter relevant information (Kim et al., 2016), we used the following hashtags in Turkish: “köpekbalıkları (sharks), yakalandı (captured), bozcamgöz (blunt- nose sixgill shark), canavar (sea monster), Marmara Denizi (SoM)”. To avoid repetition or duplication of records and to confirm their provenance, we contacted the original post or article owner for each occurrence and obtained a photograph of each landed bluntnose sixgill shark (Kabasakal, 2023a). As online communities and website ad- ministrators may respond negatively to the use of their content by researchers, all Internet content scraping activities were conducted responsibly fol- lowing the proposed code of ethics (Monkman et al., 2017) to avoid compromising personal data or images. Where possible, the following information was collected either by contacting the owner of the post or article, or extracted from the media report: number of individuals, total length (TL, cm), total weight (TW, kg), depth of capture (echo-sounder screen image), and location of capture. Fishing capacity and environmental parameter data sources According to Saygu et al. (2023), the fisheries of the SoM are mainly coastal for demersal species, using beam trawling, while the rest of the fishery is pelagic, employing gill- and trammel-netting, as well as purse-seining. Bottom (or otter) trawling is strictly prohibited. The total fishing capacity (TFC) of the commercial fishing fleets operating in the SoM is recorded annually either by vessel length or by gross registered tonnes (GRT) of the fishing vessels, without distinguishing the type of fishing gear used (TURKSTAT, 2023). The types of fishing vessels include gill- and trammel-netters, Fig. 1: Map showing the geographical position of the SoM in the Mediterranean ecosystem. Bathyal depres- sions, where seafloor depth exceeds 1,000 m and anoxic conditions are imminent, are shown as the darkest grey areas in the north of the SoM basin. Sl. 1: Zemljevid prikazuje geografski položaj Marmarskega morja v sredozemskem ekosistemu. Batialne depresije, kjer globina morskega dna presega 1000 m in v katerih so anoksične razmere neizbežne, so prika- zane kot najtemnejša siva območja na severu Marmarskega morja. ANNALES · Ser. hist. nat. · 34 · 2024 · 2 260 Hakan KABASAKAL et al.,: IMPACT OF FISHING CAPACITY AND ENVIRONMENTAL PARAMETERS ON LANDINGS OF HEXANCHUS GRISEUS ..., 257–272 purse-seiners, and beam-trawlers, and range from 4 to over 500+ gross tonnes (TURKSTAT, 2023). In the absence of long-term records of H. griseus-specific fishing efforts in the SoM, the TFC of the fishing fleet registered to operate in the SoM (TURKSTAT, 2023), expressed in GRT, was used as a proxy for fishing pressure in the analyses. The use of TFC as a proxy for fishing pressure in the absence of long- term records of fishing effort by gear type has been reported in the literature (Barausse et al., 2014). Landings were analysed in relation to several envi- ronmental parameters. Annual loads of phosphates (P, micromoles per litre), and nitrates and nitrites (N, micromoles per litre) were included to represent the effects of past anthropogenic nutrient enrichment and current oligotrophication of the basin (Yücel et al., 2023). Relevant data were extracted from the Marmara Sea Integrated Strategic Plan (Marmara Denizi Bütünleşik Stratejik Planı 2021-2024). Data analyses All data are presented as log-transformed val- ues. Parametric or non-parametric tests were used depending on data distribution as determined by the Shapiro-Wilk normality test (Legendre & Leg- endre, 1998). Since the p-values resulting from the normality tests were less than 0.05, the non-para- metric Mann-Whitney test was used to identify any statistically significant differences between landings and fishing capacities for the periods up to 2006 and from 2006 to 2023 (Parab & Bhalerao, 2010). The Mann-Kendall time series trend test was used to detect annual trends in the landings data (Gilbert, 1987). A generalised linear model (GLM) with a Pois- son distribution and associated bootstrapped 95% confidence intervals was used to detect trends between fishing capacity per year and bluntnose Fig. 2: Annual trends of H. griseus landings in the SoM between 1967 and 2023, based on GLM Poisson regression. Blue lines indicate the 95% confidence interval. Sl. 2: Letni trendi ulova vrste H. griseus v Marmarskem morju med letoma 1967 in 2023 na podlagi Poissonove regresije GLM. Modre črte označujejo 95-odstotni interval zaupanja. ANNALES · Ser. hist. nat. · 34 · 2024 · 2 261 Hakan KABASAKAL et al.,: IMPACT OF FISHING CAPACITY AND ENVIRONMENTAL PARAMETERS ON LANDINGS OF HEXANCHUS GRISEUS ..., 257–272 sixgill shark landings, TL of specimens landed per year, and the number of specimens landed per year (Coelho et al., 2013). Each GLM analysis was con- ducted separately. As the data sets produced noisy curves, smooth curves were created for modelling using the algorithm proposed in the literature (de Boor, 2001). Differences in bluntnose sixgill shark landings by data source and depth of capture were tested using the Mann-Whitney test to determine whether the temporal differences were statistically significant. Correlations between annual bluntnose sixgill shark landings in the periods before 2006 and from 2006 to 2023, fishing capacity, and environ- mental parameters were assessed using Spearman’s rank correlation coefficient (Barausse et al., 2014). Models were fitted using Akaike’s Information Crite- rion (AIC). For the examined individuals where the type of the fishing gear and depth of capture were recorded, the Mann-Whitney test was used to detect any statistically significant differences between gear type and depth of capture (≤200 m vs. >200 m). All analyses were performed using the statistical software PAST, version 4.03 (Hammer et al., 2001), and a p-value of 0.05 was defined as statistical significance (Parab & Bhalerao, 2010). RESULTS Bluntnose sixgill shark landings vs. year Between July 1967 and December 2023, a total of 136 specimens of H. griseus were landed in several fishing ports around the SoM, after being caught incidentally in commercial fisheries operat- ing in the region. GLM regression and Mann-Ken- dall trend analyses showed an increasing trend in the number of bluntnose sixgill sharks landed with respect to the year of capture (Poisson regression AIC=7.88; Mann-Kendall trend analyses, Z=2.68, S=186, p<0.05, p=0.007; Fig. 2). The highest num- ber of H. griseus landings in the SoM occurred in 2009 (n=15), followed by a decrease between 2010 and 2014 (nmax=6, in 2011). An increase was noted in 2015 and 2016 (n=10, for both years), but from 2017 onwards, the annual landings of bluntnose sixgill sharks declined dramatically. Fig. 3: Estimated smoothing spline of the GLM plot of H. griseus landings from 1967 to 2023. Sl. 3: Ocenjeni izravnalni zlepek grafa GLM, ki prikazuje ulov vrste H. griseus od leta 1967 do 2023. ANNALES · Ser. hist. nat. · 34 · 2024 · 2 262 Hakan KABASAKAL et al.,: IMPACT OF FISHING CAPACITY AND ENVIRONMENTAL PARAMETERS ON LANDINGS OF HEXANCHUS GRISEUS ..., 257–272 A clear increase in landings of H. griseus can be seen between the 1980s and mid-2010s; however, applying a smoothing spline to the noisy data of annual bluntnose sixgill shark landings revealed an instance of steep decline (Fig. 3). While the GLM and Mann-Kendall trend analysis failed to detect the dramatic decrease in annual landings of H. griseus from 2017 onwards, this became apparent after the application of the smoothing spline (Fig. 3). Bluntnose sixgill shark landings vs. fishing capacity Despite fluctuations, the registered annual fishing capacity (GRT) in the SoM has increased from 1,099 GRT (1975) to 1,877 GRT (2023) (Fig. 4 and 5). In contrast to the increase in an- nual fishing capacity since 1975, GLM regression showed a remarkable decreasing trend in landings of bluntnose sixgill sharks (AIC=8.27) (Fig. 4 and 5). Landings of bluntnose sixgill sharks in the SoM did not correlate with fishing capacity (Spearman’s r=-0.221, p>0.05; Fig. 7). Bluntnose sixgill shark landings vs. data sources Considering the nature of the data sources used in this study, all sources prior to 2006 consist of non-digital records of H. griseus landings (n=41) reported in peer-reviewed articles, printed news- papers and/or fishing magazines, or fishermen’s logs. In contrast, records of bluntnose sixgill shark landings from 2006 onwards (n=95) are derived exclusively from digital sources such as Internet media articles and social media posts. A statis- tically significant difference was found between the number of landing records in the two periods (Mann-Whitney test, p<0.05, p=0.0006). Thus, the likelihood of finding information about bluntnose sixgill shark landings through Internet and social Fig. 4: Landings of H. griseus in relation to registered fishing capacity in the SoM. The blue lines indicate the 95% confidence interval. Sl. 4: Ulov vrste H. griseus glede na registrirano ribolovno zmogljivost v Marmarskem morju. Modre črte označujejo 95-odstotni interval zaupanja. ANNALES · Ser. hist. nat. · 34 · 2024 · 2 263 Hakan KABASAKAL et al.,: IMPACT OF FISHING CAPACITY AND ENVIRONMENTAL PARAMETERS ON LANDINGS OF HEXANCHUS GRISEUS ..., 257–272 media posts has significantly increased since 2006 compared to the period from 1967 to 2005. Bluntnose sixgill shark landings vs. environmental parameters Incidental catches of H. griseus in the conti- nental shelf zones of the SoM indicated a positive correlation with increases in annual loads of dissolved phosphate (PO4, micromoles per litre) and dissolved nitrogen (NO3+NO2, micromoles per litre), but a negative correlation with dissolved oxygen (DO, mg per litre) at bathyal depths (Spear- man’s r=-0. 11 for DO; p>0.05; r=0.271 for PO4, p>0.05; and r=0.345 for NO3+NO2, p<0.05; Fig. 6). Based on the correlations between captures of H. griseus and environmental parameters, it is sug- gested that the recent increase in catches in con- tinental shelf waters is primarily associated with the annual rise in dissolved organic compounds in bathyal waters, rather than the decline in dis- solved oxygen. However, only the annual increase in nitrogen loads showed a statistically significant correlation with catches and landings (Spearman’s r=0.345, p<0.05; Fig. 6). Bluntnose sixgill shark landings vs. depth of capture Depths of capture were recorded for 69 spec- imens (50.73%) of H. griseus, ranging from 10 to 1,000 m. Fourteen (20.28%) of the 69 specimens were caught at depths spanning the upper conti- nental slope to the deep bathyal zone, while the remaining 55 (79.71%) were caught in continental shelf waters. While most captures from 1967 to 1991 occurred in the deep parts of the continental shelf and upper slope waters (n=9; 13.04%), 46 Fig. 5: Estimated smoothing spline of the GLM plot of H. griseus landings versus registered fishing capacity in the SoM. Sl. 5: Ocenjeni izravnalni zlepek grafa GLM, ki prikazuje ulov vrste H. griseus v primerjavi z registrirano ribolovno zmogljivostjo v Marmarskem morju. ANNALES · Ser. hist. nat. · 34 · 2024 · 2 264 Hakan KABASAKAL et al.,: IMPACT OF FISHING CAPACITY AND ENVIRONMENTAL PARAMETERS ON LANDINGS OF HEXANCHUS GRISEUS ..., 257–272 specimens (82.14%) were captured in moderate to shallow shelf depths in 1995 and later (Fig. 7). Only 17.85% (n=10) of the post-1995 captures of H. griseus were recorded in the upper slope and deep bathyal zones. In the early 1990s, in the deep waters (900–1,250 m) of the SoM, dissolved oxygen began to decrease below the hypoxia threshold (2 mg per litre), while dissolved nitrogen (NO3+NO2) and phosphate started to increase (Yücel et al., 2023). Using this timeframe as a reference point, the difference in the capture depths of bluntnose sixgill sharks between the 1967–1991 and 1995–2023 periods was not statistically significant (Mann-Whitney test, p=0.05). However, after excluding the depths of the few specimens caught in the upper slope or deep bathyal zones (n=10; 300–1,000 m) during the 1995–2023 period, the difference in the depths of capture between these periods became statis- tically significant (Mann-Whitney test, p<0.05, p=0.0013). Type of fishing gear vs. depth of capture Information on the type of fishing gear was re- corded for 58 (42.64%) of the 136 specimens of H. griseus. Purse-seine was the main fishing gear used (n=33; 56.9%), followed by a gill- and trammel-net composite (n=21; 36.21%), illegal bottom-trawling (n=3; 5.17%), and recreational hand-lining with a heavy-tackle shark rig (n=1; 1.72%). In addition to the type of fishing gear, information on the depth of capture was available for 46 (79.31%) of these 58 specimens. Although purse-seining was the Fig. 6: Spearman’s correlation plot between H. griseus catches, fishing capacity, and environmental parameters in the SoM. Statistically significant differences are shown in boxes (p<0.05). Abbreviations as follows: DO - dis- solved oxygen; P, PO4 - phosphate; N, NO3+NO2 - nitrogen, and GT - fishing capacity as gross tonnage. Sl. 6: Spearmanov korelacijski prikaz med ulovi H. griseus, ribolovno zmogljivostjo in okoljskimi parametri v Marmarskem morju. Statistično pomembne razlike so prikazane v okvirčkih (p<0,05). Okrajšave: DO - razto- pljeni kisik; P, PO4 - fosfat; N, NO3+NO2, dušik in GT - ribolovna zmogljivost kot bruto tonaža. ANNALES · Ser. hist. nat. · 34 · 2024 · 2 265 Hakan KABASAKAL et al.,: IMPACT OF FISHING CAPACITY AND ENVIRONMENTAL PARAMETERS ON LANDINGS OF HEXANCHUS GRISEUS ..., 257–272 primary fishing method in this subgroup as well (n=24; 52.17% vs. n=19; 41.3% for the gill- and trammel-net composite), the majority of captures in slope waters (>200 m depth) were associated with the gill- and trammel-net composite (n=7 vs. n=1 for purse-seining). However, the difference between fishing gear type and depth of capture was not statistically significant (Mann-Whitney test, p=0.38). DISCUSSION AND CONCLUSIONS In all geographical sub-regions of the Mediter- ranean Sea, H. griseus is considered a common bycatch species, primarily caught using demersal fishing gear, especially bottom trawls (Carpentieri et al., 2021). A recent study based on local eco- logical knowledge (Nuez et al., 2023) reported the capture of 2,111 specimens of H. griseus between 2007 and 2017, with the majority of captures concentrated in the western basin (n=1,152) and a significantly lower number of records in the eastern basin (n=284). During extensive MEDITS surveys investigating the spatial variation of de- mersal chondrichthyans in the northern Mediter- ranean, the frequency of occurrence of H. griseus varied from 0.9% (GSA9) to 9.5% (GSA25) from the western to the eastern basin (Follesa et al., 2019). Between 1967 and 2022, a total of 234 specimens of H. griseus were recorded in Turkish marine waters, of which 131 were incidentally caught and landed in the SoM (Kabasakal, 2023b). With the recent addition of five bluntnose sixgill sharks, the current number of landed specimens in the SoM has increased to 136. Compared to the Mediterranean Sea, the SoM is a relatively small and semi-enclosed sea; however, the number of landed specimens, representing 6.44% of all Mediterranean records, suggests that a significant subpopulation of H. griseus inhabits this region. Fig. 7: Depths of capture of landed bluntnose sixgill sharks in the SoM between 1967 and 2023. Sl. 7: Globine ulova morskih psov šesteroškrgarjev v Marmarskem morju med letoma 1967 in 2023. ANNALES · Ser. hist. nat. · 34 · 2024 · 2 266 Hakan KABASAKAL et al.,: IMPACT OF FISHING CAPACITY AND ENVIRONMENTAL PARAMETERS ON LANDINGS OF HEXANCHUS GRISEUS ..., 257–272 Unfortunately, the findings of this study indicate that the bluntnose sixgill shark population in the SoM faces multiple threats. Although H. griseus was not considered a commonly encountered shark species in the initial assessment of the MEDLEM database (Mancusi et al., 2020), in the second phase of the MEDLEM project, covering the period from 2017 to 2022, it accounted for 20.5% of all reported large shark re- cords from the Mediterranean (Gallo et al., 2022). Therefore, as indicated in Lipej et al. (2022), it can be assumed that the population declines observed in many large shark species in the Mediterranean are not affecting H. griseus. Although both GLM regression and the Mann-Kendall trend analysis indicated an increasing trend in landings of H. griseus in the SoM, the smoothing spline model of the GLM regression revealed a dramatic decrease after 2017. Notably, the rise in H. griseus landings observed in the SoM between 2009 and 2016 started to decline in the following years, even as fishing capacity increased. Similar dramatic reduc- tions in the biomass of elasmobranchs landed as a result of increased fishing capacity have been observed in other regions of the Mediterranean, such as the Adriatic, where an extraordinary de- cline in the abundance of demersal elasmobranchs has occurred (Barausse et al., 2014). Therefore, although the registered fishing capacity in the SoM was lower from 2009 to 2016 than after 2017, the higher number of bluntnose sixgill shark landings can be explained by a greater recognition of the landed specimens. In parallel with the growing use of social me- dia, citizen science, and local ecological knowl- edge, there has been a notable rise in records of elasmobranch bycatch in commercial fisheries and sightings (Kabasakal & Bilecenoğlu, 2020; Bargne- si et al., 2020, 2022; Mancusi et al., 2020; Gallo et al., 2022). Compared to the period from 1967 to 2005, the likelihood of finding information on the capture and/or landing of a bluntnose sixgill shark has increased with statistical significance since 2006, due to the rise of Internet media and social media posts. However, this increase did not reach the extent predicted by the accumulation curve model in this study, which was based on registered fishing capacity in the SoM and H. griseus landings per year. As one of the deepest dwelling sharks, H. gri- seus can reach depths of at least 2,500 m, but is commonly found between 200 and 1,100 m (Ebert et al., 2021). In terms of bathymetric distribution, H. griseus generally inhabits continental slope habitats; however, in certain parts of the world, such as the Flora Islets (Strait of Georgia, Canadian Pacific) or Puget Sound, bluntnose sixgill sharks are known to regularly visit very shallow reefs for unknown reasons (Dunbrack & Zielinski, 2003; Griffing et al., 2014). In the present study, blunt- nose sixgill sharks for which capture depth data were recorded (n=69) were caught incidentally at depths ranging from 10 to 1,000 m (Fig. 7). It has been observed in the SoM that bluntnose sixgill sharks can leave their usual depths on the conti- nental slope and ascend to the very shallow waters of the continental shelf, and while the reasons for their migration may not be well understood in the Canadian Pacific, in the SoM, it is most likely due to progressive deoxygenation caused by the deteri- oration of environmental conditions in the bathyal region, or even the anoxia that is beginning to be observed in some regions of the SoM bathyal. Over the last 40 years, the influx of excessive organic matter from terrestrial sources has caused nitrogen-phosphorus levels in the SoM to reach alarming heights, leading to conditions of hypoxia and even anoxia (Yücel et al., 2023). Although dis- solved oxygen levels remained above the hypoxia threshold (>80 µmol/L), which was tolerable for the survival of oxygen-dependent marine life up to the early 2000s, oxygen is now depleted in the deep zones (>500 m depth) of the SoM, and low levels of hydrogen sulphide (3–10 µM) have been observed (Yücel et al., 2023). If the early 1990s is taken as a reference point, when dissolved oxygen in the deep waters (900–1,250 m) of the SoM began to fall below the hypoxia threshold (80 µmol/L) and a sudden, continuous increase in nitrogen and phosphorus levels was recorded, the observed increase in incidental catches of H. griseus in the shallow continental shelf, where dis- solved oxygen levels remain higher than in deep waters, may be attributed to the deterioration of the bathyal ecosystem. Furthermore, the exclusion of records of bluntnose sixgill sharks caught above the continental slope at depths between 300 and 1,000 m (n=10) resulted in a statistically significant difference in the depth of capture of H. griseus between the 1967–1991 and 1995–2023 periods (Mann-Whitney test, p<0.05, p=0.0013), suggest- ing a bathymetric shift response to environmental degradation in the bathyal ecosystem. However, H. griseus is known to occur in deep-water oxygen minimum zones and has even spent daylight hours in hypoxic deep habitats (Comfort & Weng, 2015). The deepest capture of H. griseus in the SoM (1,000 m) was recorded in June 2005, coinciding with beginning of the drastic deterioration of en- vironmental conditions in the bathyal ecosystem, and a few bluntnose sixgill sharks were caught in hypoxic regions during the 2000s. This suggests that H. griseus may still inhabit the bathyal zone of the SoM despite oxygen depletion. However, the ANNALES · Ser. hist. nat. · 34 · 2024 · 2 267 Hakan KABASAKAL et al.,: IMPACT OF FISHING CAPACITY AND ENVIRONMENTAL PARAMETERS ON LANDINGS OF HEXANCHUS GRISEUS ..., 257–272 increasing number of captures in the upper conti- nental slope indicates that this region of the SoM is becoming a more frequently used habitat for H. griseus (Kabasakal, 2017). As an active demersal predator, H. griseus can ascend to shallower wa- ters where dissolved oxygen concentrations are higher and exhibit more active foraging behaviour (Comfort & Weng, 2015). Ram-ventilating sharks often respond to environmental degradation, par- ticularly deoxygenation, with vertical habitat com- pression (Sims, 2019). The results of the present study suggest that the bluntnose sixgill shark may be experiencing vertical habitat compression for the first time, throughout its Mediterranean range in the SoM. However, the fact that it is still record- ed on the upper continental slope suggests that habitat compression has not yet reached a critical level and may have only recently begun. Overfishing combined with environmental deg- radation in the northern Adriatic Sea have caused dramatic declines (≥ 80%) in elasmobranch stocks since the 1940s (Barausse et al., 2014). Another example of a shark whose vulnerability to fishing is increased by deoxygenation is Prionace glauca, which has been linked to increased blue shark by- catch in the Atlantic Ocean due to oceanic habitat compression from deoxygenation (Vedor et al., 2021). Captures of the deep-sea shark Echinorhinus brucus in shallow waters (<120 m) in the SoM have increased in recent years (Kabasakal et al., 2023), suggesting that the deterioration of environmental conditions in the SoM bathyal zone is forcing sharks to migrate to shallower areas. Furthermore, a study investigating the demersal fish fauna in the SoM, reported the maximum CPUE value of H. griseus (29.89 kg/km2) at depths between 100 and 200 m (Daban et al., 2021). So how might the vertical habitat compression that H. griseus appears to be experiencing in the SoM affect the bycatch of this species in commercial fisheries? A recent study has linked increased catches of H. griseus in the Mediterranean between May and October to a higher likelihood of bycatch as the species migrates into shallower waters during the warmer months (Nuez et al., 2023). According to previous studies in the SoM, H. griseus is a bycatch shark, typically caught in multimodal demersal and purse seine fisheries (Kabasakal, 2023b). In two studies assessing large shark captures in Turkish commercial fisheries, H. griseus was reported as the primary bycatch species, with frequencies ranging from 38.6% to 51.8% (Kabasakal et al., 2017; Kaba- sakal & Bilecenoğlu, 2020). Until the early 2000s, H. griseus was primarily caught as bycatch in the SoM where fishing gears were deployed in the deep waters of the continental shelf and the continental slope (Meriç, 1995; Kabasakal, 2023b); however, since 2002, the depth of capture has decreased significantly and, with few exceptions, the species has become bycatch in the shallow waters of the continental shelf. Although H. griseus is thought to have a high tolerance to hypoxia (Comfort & Weng, 2015), environmental shifts in the bathyal zone of the SoM are pushing the area towards anoxic con- ditions, gradually making it uninhabitable for the bluntnose sixgill shark. H. griseus is a viviparous shark with large litters ranging from 47 to 108 pups (Ebert et al., 2021). Despite larger litter size in comparison to most other shark species, H. griseus is a typical example of a K-selected species with a notable generation length (53 years), which makes it vul- nerable to overfishing and subsequent population declines (Finucci et al., 2020). Incidental captures of pregnant females (e.g., Ounifi-Ben Amor et al., 2017) or schools of individuals (e.g., Ben Amor et al., 2019) may exacerbate the already existent vulnerability of bluntnose sixgill sharks throughout their distribution range. Therefore, in accordance with Annex 1 of Highly Migratory Species listed in UNCLOS, a bycatch limitation warning has been added for H. griseus in the Mediterranean Sea (Barone et al., 2022), as most captured individuals tend to be immature (e.g., in Tunisian waters) or the average total length gradually falls below the length required for attaining sexual maturity (e.g., in Turkish waters). It has been emphasised that fishery managers should prioritise a better con- servation plan and sustainable exploitation of this species, which is considered to have a very fragile stock, like in Tunisian waters (Mili et al., 2021), Otherwise, a complete ban on the catch of the species may be necessary (Kabasakal, 2023b). Ac- cording to Mili et al. (2021), landings of H. griseus are not abundant in the Mediterranean, which is an alarming situation, and the drastic reduction in landings in the SoM further jeopardises the future presence of the species in the region. In conclusion, the triple threat of overfishing, habitat degradation or loss, and pollution now pos- es a significant threat to all elasmobranchs (Dulvy et al., 2021; Pacoureau et al., 2023) and represents a serious challenge for the H. griseus population in the SoM. Considering that the current organic mat- ter load in the sea must be reduced by at least 50%, particularly in the deep regions, restoring suitable conditions for marine life will take at least six years (Yücel et al., 2023). It is evident that the return of H. griseus to its safe habitat in the SoM bathyal will not be a quick or easy process. It is therefore vital to educate and encourage fishermen to release in- dividuals of H. griseus (and other sharks, such as E. brucus) caught as bycatch in continental shelf fish- eries, back to the environment alive and unharmed. ANNALES · Ser. hist. nat. · 34 · 2024 · 2 268 Hakan KABASAKAL et al.,: IMPACT OF FISHING CAPACITY AND ENVIRONMENTAL PARAMETERS ON LANDINGS OF HEXANCHUS GRISEUS ..., 257–272 Unfortunately, in line with the old axiom that ‘bad news sells’, incidentally captured sixgill sharks, which have never had any economic importance in Turkish marine fisheries, have been landed for many years solely to create striking headlines in the news- papers (Kabasakal, 2010). Moreover, many individ- uals, often still alive when landed, are displayed for a few days to attract customers and then carelessly discarded, exploited by fishmongers just to increase their sales (Kabasakal, 2010). Recently, H. griseus has been declared a protected shark species in Turkish waters, and the statements regarding the dramatic declines in regional landings support this decision. However, educating fishermen remains a key issue to ensure the shark’s proper handling and survival after release into the sea. As emphasised in the literature (Pacoureau et al., 2023), the risk of shark extinction increases in seas with high fishing pressure, and it is only possible to overcome this situation with strong fisheries management. Fisher- ies management plans, also known as ‘shark plans’ could halt the decline of elasmobranch stocks, sub- sequently increasing them or slowing down the on- going decline (Pacoureau et al., 2023). Therefore, a holistic management plan should be prepared and implemented without delay to successfully protect H. griseus and other elasmobranchs occurring in the SoM. ACKNOWLEDGEMENTS Authors thank to fishers, printed and internet media reporters, and social media content owners for sharing their valuable records of Hexanchus griseus from the SoM. Special thanks go to two anonymous reviewers for their valuable and sup- portive comments which improved the content and quality of the article. ANNALES · Ser. hist. nat. · 34 · 2024 · 2 269 Hakan KABASAKAL et al.,: IMPACT OF FISHING CAPACITY AND ENVIRONMENTAL PARAMETERS ON LANDINGS OF HEXANCHUS GRISEUS ..., 257–272 VPLIV RIBOLOVNE ZMOGLJIVOSTI IN OKOLJSKIH PARAMETROV NA ULOV VRSTE HEXANCHUS GRISEUS V MARMARSKEM MORJU Hakan KABASAKAL Istanbul University, Institute of Science, Fisheries Technologies and Management Program, Istanbul, Türkiye e-mail: kabasakal.hakan@gmail.com Uğur UZER Istanbul University, Faculty of Aquatic Sciences, Department of Fisheries Technologies and Management, Istanbul, Türkiye F. Saadet KARAKULAK Istanbul University, Faculty of Aquatic Sciences, Department of Fisheries Technologies and Management, Istanbul, Türkiye POVZETEK Med julijem 1967 in decembrom 2023 je bilo v Marmarskem morju (SoM) ujetih 136 morskih psov še- steroškrgarjev, Hexanchus griseus. Čeprav sta tako generalizirani linearni model (GLM) kot Mann-Kendallov test trenda pokazala porast ulova vrste H. griseus, so ocenjeni izravnalni zlepki regresijske trendne črte GLM razkrili močan upad ulova po letu 2017. Medtem ko so se globine ulova od začetka leta 2000 gibale med 10 in 1000 m, je bila večina osebkov ujetih v plitvih vodah epikontinentalnega pasu. Slabše okoljske razmere in vse večja deoksigenacija v globokih vodah SoM sovpadajo z zmanjšanjem globine ulova morskih psov šesteroškrgarjev v epikontinentalnem pasu. Ugotovitve kažejo na stalen proces navpičnega krčenja habitatov, za katerega se zdi, da povečuje ranljivost H. griseus za komercialni ribolov v Marmarskem morju. Ključne besede: morski pes šesteroškrgar, prelov, ranljivost, onesnaževanje okolja, kisikove razmere, upad ANNALES · Ser. hist. nat. · 34 · 2024 · 2 270 Hakan KABASAKAL et al.,: IMPACT OF FISHING CAPACITY AND ENVIRONMENTAL PARAMETERS ON LANDINGS OF HEXANCHUS GRISEUS ..., 257–272 REFERENCES Barausse, A., V. Correale, A. Curkovic, L. Finotto, E. Riginella, E. Visentrin & C. Mazzoldi (2014): The role of fisheries and the environment in driving the decline of elasmobranchs in the northern Adriatic Sea. ICES J. Mar. Sci., 71, 1593-1603. https://doi.org/10.1093/icesjms/ fst222. Bargnesi, F., S. Lucrezi & F. Ferretti (2020): Opportu- nities from citizen science for shark conservation, with a focus on the Mediterranean Sea, Eur. zool. j., 87, 20-34. https://doi.org/10.1080/24750263.2019.1709574. Bargnesi, F., S. Moro, A. Leone, I. Giovos & F. Ferretti (2022): New technologies can support data collection on endangered shark species in the Mediter- ranean Sea. Mar. Ecol. Prog. Ser., 689, 57-76. https:// doi.org/10.3354/meps14030. Barone, M., C. Mazzoldi & F. Serena (2022): Sharks, Rays and Chimaeras in Mediterranean and Black Sea - Key to Identification. FAO, Rome. http://dx.doi. org/10.4060/cc0830en. Ben Amor, M.M., K.O. Ben Amor & C. Capapé (2019): A shoal of bluntnose sixgill shark Hexanchus griseus (Chondrichthyes: Hexanchidae) from the Tuni- sian coast (central Mediterranean). Thalass. salentina, 41, 85-90. https://doi.org/10.1285/i15910725v41p85. Bengil, E.G.T. (2020): Can opportunistic methodol- ogies provide information on elasmobranchs? A case study from seas around Turkey. JWB, 4, 68-77. https:// doi.org/10.22120/jwb.2020 .136094.1185. Beşiktepe, Ş.T., H.İ. Sur, E. Özsoy, M.A. Latif, T. Oğuz & Ü. Ünlüata (1994): The circulation and hydrography of the Marmara Sea. Prog. Oceanogr., 34, 285-334. https://doi.org/10.1016/0079-6611(94)90018-3. Carpentieri, P., A. Nastasi, M. Sessa & A. Srour (eds.) (2021): Incidental catch of vulnerable species in Med- iterranean and Black Sea fisheries - A review. Studies and Reviews No. 101 (General Fisheries Commission for the Mediterranean). FAO, Rome, 317 pp. https://doi. org/10.4060/cb5405en. Coelho, R., P. Infante & M.N. Santos (2013): Ap- plication of generalized linear models and generalized estimation equations to model at-haulback mortality of blue sharks captured in a pelagic longline fishery in the Atlantic Ocean. Fish. Res., 145, 66-75. http://dx.doi. org/10.1016/j.fishres.2013.02.010. Comfort, C.M. & K.C. Weng (2015): Vertical habitat and behaviour of the bluntnose sixgill shark in Hawaii. Deep-Sea Res. II, 115, 116-126. http://dx.doi. org/10.1016/j.dsr2.2014.04.005. Daban, B., A. İşmen, M. Şirin, C.Ç. Yığın & M. Arslan İhsanoğlu (2021): Analysis of demersal fish fauna off the sea of Marmara, Turkey. COMU J. Mar. Sci. Fish., 4, 20- 31. https://doi.org/10.46384/jmsf.912403. De Boor, C. (2001): A Practical Guide to Splines. Revised Edition. Springer, New York. https://doi. org/10.1007/978-1-4612-6333-3. Dulvy N.K., N. Pacoureau, C.L. Rigby, R.A. Pollom, R.W. Jabado, D.A. Ebert, B. Finucci, C.M. Pollock, J. Cheok, D.H. Derrick, K.B. Herman, C.S. Sherman, W.J. Vander Wight, J.M. Lawson, R.H.L. Walls, J.K. Carlson, P. Charvet, K.K. Bineesh, D. Fernando, G.M. Ralph, J.H. Matsushiba, C. Hilton-Taylor, S.V. Fordham & C.A. Simpfendorfer (2021): Overfishing drives over onethird of all sharks and rays toward a global extinction crisis. Curr. Biol., 31, 1-15. https://doi.org/10.1016/j. cub.2021.08.062. Dunbrack, R. & R. Zielinski (2003): Seasonal and diurnal activity of sixgill sharks (Hexanchus griseus) on a shallow water reef in the Strait of Georgia, British Columbia. Can. J. Zool., 81, 1107-1111. https://doi. org/10.1139/Z03-087. Ebert, D.A. & M.F.W. Stehmann (2013): Sharks, ba- toids, and chimaeras of the North Atlantic FAO Species Catalogue for Fishery Purposes. No. 7. FAO, Rome. Ebert, D.A., M. Dando & S. Fowler (2021): Sharks of the world. A complete guide. Wilde Nature Press, Princeton. Ferretti, F, R.A. Myers, F. Serena & H.K. Lotze (2008): Loss of large predatory sharks from the Mediterranean Sea. Conserv. Biol., 22, 952-964. Finucci, B., A. Barnett, K.K. Bineesh, J. Cheok, C.F. Cotton, K.J. Graham, D.W. Kulka, F.C. Neat, N. Pacoureau, C.L. Rigby, S. Tanaka & T.I. (2020): Hexan- chus griseus. The IUCN Red List of Threatened Species 2020: e.T10030A495630. https://dx.doi.org/10.2305/ IUCN.UK.2020-3.RLTS.T10030A495630.en. Accessed on 18 October 2024. Follesa, M.C., M.F. Marongiu, W. Zupa, A. Bellodi, A. Cau, R. Cannas, F. Colloca, M. Djurović, I. Isajlović, A. Jadaud, C. Manfredi, A. Mulas, P. Peristeraki, C. Porcu, S. Ramirez-Amaro, F. S. Jiménez, F. Serena, L. Sion, I. Thasitis, A. Cau & P. Carbonara (2019): Spatial variabil- ity of Chondrichthyes in the northern Mediterranean. In: Mediterranean demersal resources and ecosystems: 25 years of MEDITS trawl surveys (M.T. Spedicato, G. Tserpes, B. Mérigot & E. Massutí, eds.) Sci. Mar., 83S1, December 2019, 81-100. ISSN-L 0214-8358 https://doi. org/10.3989/ scimar.04998.23A. Gallo, S., C. Mancusi, A. Mohammed, B. Rigers, A. Barash, M. Barone, M. Bottaro, P. Carbonara, C. Rober- to, I. Ćetković, S. Clo, E. de Sabata, S. Enajjar, E. Shak- man, F. Garibaldi, G. Giglio, I. Giovos, H. Kabasakal, L. Lanteri, S. Lelli, L. Lipej, C. Mazzoldi, P. Micarelli, G. Morey, S. Moro, M.N. Bradai, G. N. di Sciara, C. Roma- no, B. Saidi, A. Soldo, E. Sperone, F. Tiralongo, B. Zava & F. Serena (2022): Sigthings of large elasmobranchs from the Mediterranean: new data from MEDLEM database in the last five years (2017–2022), 2022 IEEE Interna- tional Workshop on Metrology for the Sea; Learning to Measure Sea Health Parameters (MetroSea), 2022, pp. 293-297. doi: 10.1109/MetroSea55331.2022.9950984. ANNALES · Ser. hist. nat. · 34 · 2024 · 2 271 Hakan KABASAKAL et al.,: IMPACT OF FISHING CAPACITY AND ENVIRONMENTAL PARAMETERS ON LANDINGS OF HEXANCHUS GRISEUS ..., 257–272 Gilbert, R.O. (1987): Statistical Methods for Environ- mental Pollution Monitoring. Van Nostrand Reinhold, New York. Grant, M.I., A.W.J. Bicknell, T. Htut, A. Maung, T. Maung, K. Myo Myo, T. Rein, M.K. San, W.T. White, K.Z. Ya & M. Mizrahi (2022): Market surveys and social media provide confirmation of the endangered giant freshwater whipray Urogymnus polylepis in Myanmar. J. Fish. Biol., 101, 302-307. https://doi.org/10.1111/ jfb.15073. Griffing, D., S. Larson, J. Hollander, T. Carpenter, J. Christiansen & C. Doss (2014): Observations on Abun- dance of Bluntnose Sixgill Sharks, Hexanchus griseus, in an Urban Waterway in Puget Sound, 2003-2005. PLoS ONE, 9, e87081. https://doi.org/10.1371/journal. pone.0087081. Hammer, Ø., D.A.T. Harper & D.R. Paul (2001): Past: Paleontological Statistics Software Package for Education and Data Analysis. Palaeont. Electr., 4. http:// palaeo-electronica.org/2001_1/past/issue1_01.htm. Hiddink, J.G., R. Charles & A.B.M. Moore (2023): Using opportunistic data to study the distribution and abundance of a warm water elasmobranch at the northern edge of its range. ICES J. Mar. Sci., 1, 108-118. https://doi.org/10.1093/icesjms/fsad183. Kabasakal, H. (2010): A review of newspaper and in- ternet portrayals of the sixgill shark, Hexanchus griseus (Bonnaterre, 1788) (Chondrichthyes: Hexanchidae), caught in Turkish waters between 1974-2009. Annales, Ser. Hist. Nat., 20, 175-180. Kabasakal, H. (2017): Remarks on incidental capture of deep-sea sharks in Marmara shelf waters. Annales, Ser. Hist. Nat., 27, 137-144. https://doi.org/10.19233/ ASHN.2017.16. Kabasakal, H. (2023a): A preliminary social me- dia-based survey of sharks and batoids captured in com- mercial fisheries of the northern Aegean Sea. Annales, Ser. Hist. Nat., 33, 165-186. https://doi.org/10.19233/ ASHN.2023.20. Kabasakal, H. (2023b): Yet another giant for pro- tection: Distribution and status of the bluntnose sixgill shark, Hexanchus griseus (Hexanchiformes: Hexanchi- dae), in Turkish seas. J. Black Sea/Medit., 29, 25-48. Kabasakal, H. & M. Bilecenoğlu (2020): Shark infested internet: an analysis of internet-based media reports on rare and large sharks of Turkey. FishTaxa., 16, 8-18. Kabasakal, H., S.Ü. Karhan & S. Sakınan (2017): Review of the distribution of large sharks in the seas of Turkey (Eastern Mediterranean). Cah. Biol. Mar., 58, 219-228. https://doi.org/10.21411/CBM.A.96D9F948. Kabasakal, H., U. Uzer & F.S. Karakulak (2023): Occurrence of deep-sea squaliform sharks, Echinorhi- nus brucus (Echinorhinidae) and Centrophorus uyato (Centrophoridae), in Marmara shelf waters. Annales, Ser. Hist. Nat., 33, 27-36. https://doi.org/10.19233/ ASHN.2023.05. Kim, Y., J. Huang & S. Emery (2016): Garbage in, garbage Out: data collection, quality assessment and reporting standards for social media data use in health research, infodemiology and digital disease detection. JMIR., 18. https://doi.org/10.2196/jmir.4738. Legendre, P. & L. Legendre (1998): Numerical Ecol- ogy. Elsevier, Amsterdam. Lipej, L., D. Trkov, B. Mavrič, T. Fortibuoni & N. Bettoso (2022): Occurrence of bluntnose sixgill shark, Hexanchus griseus (Bonnaterre, 1788) in the Gulf of Trieste (northern Adriatic) with particular reference to historical and contemporary records in the Adriatic Sea. Acta Adriat., 63, 93-108. Mancusi C., R. Baino, C. Fortuna, L. de Sola, G. Morey, M. Bradai, A. Kallianotis, A. Soldo, F. Hemi- da, A. Saad, M. Dimech, P. Peristeraki, M. Bariche, S. Clo, E. de Sabata, L. Castellano, F. Garibaldi, L. Lanteri, F. Tinti, A. Pais, E. Sperone, P. Micarelli, F. Poisson, L. Sion, R. Carlucci, D. Cebrian-Menchero, B. Séret, F. Ferretti, A. El-Far, I. Saygu, E. Shakman, A. Bartoli, J. Guallart, D. Damalas, P. Megalofonou, M. Vacchi, M. Bottaro, G.N. di Sciara, M. Follesa, R. Cannas, H. Kabasakal, B. Zava, G. Cavlan, A. Jung, M. Abudaya, J. Kolitari, A. Barash, A. Joksimović, B. Marčeta, L. Gonzales Vilas, F. Tiralongo, I. Giovos, F. Bargnesi, S. Lelli, M. Barone, S. Moro, C. Mazzoldi, C. Charis, A. Abella & F. Serena (2020): MEDLEM database, a data collection on large elasmobranchs in the Mediterranean and Black seas. Mediterr. Mar. Sci., 21, 276-288. Marmara Denizi Bütünleşik Stratejik Planı (2021- 2024): Integrated Strategical Plan for the Sea of Marma- ra. Ministry of Environment, Urbanisation and Climate Change. 978-625-7076-24-1. McPherson, J.M. & R.A. Myers (2009): How to infer population trends in sparse data: examples with oppor- tunistic sighting records for great white sharks. Diversity. Distrib., 15, 880-890. https://doi.org/10.1111/j.1472- 4642.2009.00596.x. Meriç, N. (1995): A study on existence of some fishes on the continental slope of the Sea of Marmara. Turk. J. Zool., 19, 191-198. Mili, S., R. Ghanem, R. Ennouri, D. Troudi, H. Zarrouk & S. Jabbari (2021): Biological aspects of the bluntnose sixgill shark, Hexanchus griseus (Bonnaterre, 1788) in Tunisian waters: implications for fishery man- agement. J. New Sci., Sustainable Livestock Manage- ment, 15, 333-345. Monkman, G.G., M. Kaiser & K. Hyder (2017): The Ethics of Using Social Media in Fisheries Research. Rev. Fish. Sci. Aquac., 26, 235-242. http://dx.doi.org/10.108 0/23308249.2017.1389854. Morgan, A.C. & G.H. Burgess (2005): Fishery-depen- dent sampling: total catch, effort and catch composition. In: Musick JA and Bonfil R (eds) Management techniques for elasmobranch fisheries. FAO Fisheries Technical Paper No. 474. FAO, Rome, pp 182-200. ANNALES · Ser. hist. nat. · 34 · 2024 · 2 272 Hakan KABASAKAL et al.,: IMPACT OF FISHING CAPACITY AND ENVIRONMENTAL PARAMETERS ON LANDINGS OF HEXANCHUS GRISEUS ..., 257–272 Nuez, I., I. Giovos, F. Tiralongo, J. Penadés-Suay, I. Cetkovic, M. Di Lorenzo, P. Kleitou, R. Bakiu, M.N. Bradai, S.A.A. Almabruk, R.N. Aga Spyridopoulou, A. Sabbio & M. Gazo (2023): Assessing the current status of Hexanchus griseus in the Mediterranean Sea using local ecological knowledge. Mar. Policy, 147. https:// doi.org/10.1016/j.marpol.2022.105378. Ounifi-Ben Amor K., M.M. Ben Amor, J. Zaouali, & C. Capapé (2017): On the capture of a pregnant bluntnose sixgill shark Hexanchus griseus (Chondrich- thyes: Hexanchidae) from the Gulf of Tunis (Central Mediterranean Sea). J. Black Sea/Medit. Environ., 23, 177-182. Pacoureau, N., J.K. Carlson, H.K. Kindsvater, C.L. Rigby, H. Winker, C.A. Simpfendorfer, R.A. Pollom, R. Barreto, C.S. Sherman, B.S. Talwar, D.J. Skerritt, U.R. Sumaila, J.H. Matsushiba, W.J. VanderWright, H.F. Yan & N.K. Dulvy (2023): Conservation success- es and challenges for wide-ranging sharks and rays. PNAS., 120, e2216891120. https://doi.org/10.1073/ pnas.2216891120. Parab, S. & S. Bhalerao (2010): Choosing statistical test. IJAR., 1, 187-191. https://doi.org/10.4103/0974- 7788.72494. Saygu, İ., E. Akoğlu, G. Gül, D. Bedikoğlu & N. Demirel (2023): Fisheries impact on the Sea of Marmara ecosystem structure and functioning during the last three decades. Front. mar. sci., 9, 1076399. https://doi. org/10.3389/fmars.2022.1076399. Serena, F., A.J. Abella, F. Bargnesi, M. Barone, F. Colloca, F. Ferretti, F. Fiorentino, J. Jenrette & S. Moro (2020): Species diversity, taxonomy and distribution of chondrichthyes in the Mediterranean and Black Sea. Eur. zool. j., 87, 497-536. https://doi.org/10.1080/24750263 .2020.1805518. Shiffman, D.S. & N. Hammerschlag (2016): Shark conservation and management policy: a review and primer for non-specialists. Anim. Conserv., 19, 401-412. https://doi.org/10.1111/acv.12265. Sims, D.W. (2019): The significance of ocean deoxy- genation for elasmobranchs. In: Laffoley, D. & J.M. Bax- ter (eds.): Ocean deoxygenation: everyone’s problem. Causes, impacts, consequences and solutions. IUCN Global Marine and Polar Programme, pp. 431-448. Stanley, D.J. & C. Blanpied (1980): Late quaternary water exchange between the eastern Mediterranean and the Black Sea. Nature, 285, 537-541. Swetnam, T.W., C.D. Allen & J.L. Betancourt (1999): Applied historical ecology: Using the past to manage for the future. Ecol. Appl., 9, 1189-1206. TURKSTAT (2023): Turkish Statistical Institute, Avail- able at: www.tuik.gov.tr (last accession: 1 August 2024). Vedor, M., N. Queiroz, G. Mucientes, A. Couto, I. da Costa, A. dos Santos, F. Vandeperre, J. Fontes, P. Afonso, R. Rosa, N.E. Humphries & D.W. Sims (2021): Climate-driven deoxygenation elevates fishing vulnera- bility for the ocean’s widest ranging shark. eLife. https:// doi.org/10.7554/eLife.62508. Yıldız, T. & F.S. Karakulak (2016): Traditional fishing in the Sea of Marmara: from the past to the present. In: Özsoy, E., M.N. Çağatay, N. Balkıs & B. Öztürk (eds.): The Sea of Marmara; Marine Biodiversity, Fisheries, Conserva- tion and Governance. Turkish Marine Research Foundation (TUDAV), Publication No: 42, Istanbul pp. 697-709. Yücel, M., E. Kalkan Tezcan, H. Örek, B. Fach, D. Tezcan, S. Arkın, E. Sadihgrad, A.O. Acar, M. Mantıkçı, K. Özkan, K. Özhan, S. Hüsrevoğlu, Y. Ak Örek, S. Tuğrul & B. Salihoğlu (2023): The study of deoxygenation and mu- cilage formation in the Marmara Sea using novel ocean- ographic approaches in the frame of MARMOD Project. Çevre, Şehir ve İklim Dergisi, 2, 82-96. (in turkish). 273 MORSKA FAVNA FAUNA MARINA MARINE FAUNA 274 ANNALES · Ser. hist. nat. · 34 · 2024 · 2 275 received: 2024-16-21 DOI 10.19233/ASHN.2024.32 AN INSIGHT INTO THE HETEROBRANCH FAUNA OF FIESA (SLOVENIA, NORTHERN ADRIATIC SEA) Tea KNAPIČ Slovenian Natural History Museum, Prešernova cesta 20, 1000 Ljubljana, Slovenia Irena FRKOVIČ Jenkova ulica 1, 6000 Koper, Slovenia Borut MAVRIČ Marine Biology Station Piran, National Institute of Biology, Piran, Fornače 41, 6330 Piran, Slovenia Lovrenc LIPEJ Marine Biology Station Piran, National Institute of Biology, Piran, Fornače 41, 6330 Piran, Slovenia FAMNIT, University of Primorska, 6000 Koper, Slovenia ABSTRACT The authors investigated the marine heterobranch fauna (Heterobranchia, Gastropoda) in Fiesa, a tourist destination and one of the most popular diving sites in the Gulf of Trieste (northern Adriatic Sea). Specimens of heterobranchs were collected during sporadic sampling between November 2021 and January 2022. A total of 30 species from 6 higher taxa (Cephalaspidea 1, Aplysiida 1, Umbraculida 1, Sacoglossa 3, Pleuro- branchida 2, Nudibranchia 22) were recorded and identified. Including previously published and recorded data, the total number of species currently known in the study area has increased to 51. Future surveys, involving additional sampling methods and carried out during other seasons of the year, are expected to further increase the number of recorded marine heterobranch species inhabiting the area. Key words: marine heterobranchs, checklist, SCUBA diving, Fiesa, recreational divers UNO SGUARDO ALLA FAUNA DEGLI ETEROBRANCHI DI FIESSO (SLOVENIA, ADRIATICO SETTENTRIONALE) SINTESI Gli autori hanno studiato la fauna marina di eterobranchi (Heterobranchia, Gastropoda) a Fiesso, una de- stinazione turistica e uno dei siti di immersione più popolari del Golfo di Trieste (Adriatico settentrionale). Gli esemplari di eterobranchi sono stati raccolti durante campionamenti sporadici tra novembre 2021 e gennaio 2022. In totale sono state registrate e identificate 30 specie appartenenti a 6 taxa superiori (Cephalaspidea 1, Aplysiida 1, Umbraculida 1, Sacoglossa 3, Pleurobranchida 2, Nudibranchia 22). Includendo i dati pubblicati e registrati in precedenza, il numero totale di specie attualmente conosciute nell’area di studio è salito a 51. Le indagini future, che prevedono ulteriori metodi di campionamento e che saranno condotte in altre stagioni dell’anno, dovrebbero aumentare ulteriormente il numero di specie di eterobranchi marini registrate nell’area. Parole chiave: eterobranchi marini, lista, immersioni, Fiesso, subacquei ricreativi ANNALES · Ser. hist. nat. · 34 · 2024 · 2 276 Tea KNAPIČ et al.,: AN INSIGHT INTO THE HETEROBRANCH FAUNA OF FIESA (SLOVENIA, NORTHERN ADRIATIC SEA), 275–290 INTRODUCTION The first checklist of marine gastropod fauna in the Gulf of Trieste (northern Adriatic Sea) including informa- tion on heterobranchs was published over 120 years ago (Graeffe, 1903). The earliest reports for the Slovenian part of the gulf date to the late 20th century and are based on the works of De Min & Vio (1997). The number of heterobranch species reported at the time was limited, as samples were mainly collected using sedimentary bot- tom sampling gear such as Van Veen and Petersen grabs. Later, a first checklist specifically focused on marine sea slugs was published (Turk, 2000), followed by several other studies aimed at assessing the heterobranch fauna in the area, which resulted in a rapidly increasing num- ber of recorded species (Turk, 2005; Lipej et al., 2008, 2012; Mavrič & Lipej, 2012; Lipej et al., 2014; Zenetos et al., 2016). According to Ciriaco & Poloniato (2016), at least 73 species have been recorded in the Italian part of the Gulf of Trieste, while the Slovenian part has recorded 141 species to date (Lipej et al., 2018). The aim of the present work is to provide the first list of marine heterobranchs for Fiesa, one of the sites in the Gulf of Trieste most frequented by recreational divers. MATERIAL AND METHODS Study area The Slovenian coastline is relatively short, covering only 46 km. Fiesa (45°31’31.0’’ N 13°34’53.9’’ E) is a quiet bay located between Piran and Strunjan (Fig. 1), lined on both sides by the steep walls of a flysch cliff. The sea bed begins with a shallow stony-sandy plain, transitioning at a depth of 4–5 m into a distinct flysch sill, and changing at 8–9 m to a silty sandy bottom interspersed with patches of biogenically hardened sub- strate (Fig. 2). The silty sandy bottom slowly descends to a maximum depth of 18 m, with the precoralligenous type of biogenic formation in this area supporting a wide range of habitat types that play an important role biodiversity. Fig. 1: The studied locality of Fiesa (right above) and its position in the Adriatic Sea (left above) as well as in the Slovenian part of the Adriatic Sea (below), along with the areas to which it was compared: A – waters off the old town of Piran, B – Stjuža lagoon (Strunjan), C – Koper harbour, and D – Nature Monument Debeli rtič (Ankaran). Sl. 1: Raziskovana lokaliteta Fiesa (desno zgoraj) in njena lega v Jadranskem morju (levo zgoraj) in v slovenskem delu Jadranskega morja (spodaj), skupaj z območji, s katerimi je bila primerjana: A – akvatorij ob starem mestnem jedru Pirana, B – laguna Stjuža (Strunjan), C – koprsko pristanišče in D – Naravni spomenik Debeli rtič (Ankaran). ANNALES · Ser. hist. nat. · 34 · 2024 · 2 277 Tea KNAPIČ et al.,: AN INSIGHT INTO THE HETEROBRANCH FAUNA OF FIESA (SLOVENIA, NORTHERN ADRIATIC SEA), 275–290 The present work is based on data collected during 12 recreational scuba diving trips in Fiesa between November 2021 and January 2022. All dives were con- ducted at night, with a maximum depth of 12 m (the boundary between rocky and sandy bottoms), and water temperatures varying from 17°C in November to 8°C in January. Data was collected by documenting the sight- ings of each species and photographing them using an Olympus TG6 underwater camera. Photographs of each sighting were re-examined to confirm identification and make other observations. No attempt was made to preserve collected or sighted specimens. Specimens were identified based on their external morphology as observed in detailed photographs and through comparison with relevant literature (Schmekel & Portmann, 1982; Trainito & Doneddu, 2014; Lipej et al., 2018; Prkič et al., 2018). To determine whether a species could be considered a new record for the study area, the data on heterobranch species reported by Lipej et al. (2018) were consulted. The taxonomy and nomen- clature conform to the World Register of Marine Species - WoRMS (2024). For a detailed survey of heterobranch fauna in the studied area, other available data published in previous studies (Lipej et al., 2008, 2012, 2014, 2018) or obtained through social media were analysed. The number of species recorded in Fiesa was compared with those reported from other areas (Fig. 1), such as the Natural Monument of Debeli rtič (Lipej et al., 2016), the Stjuža lagoon in Strunjan (Lipej et al., 2019), the area of the Port of Koper (Lipej et al., 2020), and the waters off the old town of Piran (Lipej et al., 2022). RESULTS AND DISCUSSION Heterobranch fauna A total of 30 heterobranch species from six higher taxonomic groups (Cephalaspidea 1, Aplysiida 1, Umbraculida 1, Sacoglossa 3, Pleurobranchida 2, Nudi- branchia 22) were recorded and identified in this study, six of which are new records for Fiesa: Eubranchus viriola (Korshunova, Malmberg, Prkić, Petani, Fletcher, Lundin & Martynov, 2020), Idaliadoris depressa (Alder & Hancock, 1842), Berthella plumula (Montagu, 1803), Fig 2: Cross-section of the main habitats present in the studied area across the depth range. Sl. 2: Prečni prerez glavnih habitatov, prisotnih na proučevanem območju v globinskem razponu. ANNALES · Ser. hist. nat. · 34 · 2024 · 2 278 Tea KNAPIČ et al.,: AN INSIGHT INTO THE HETEROBRANCH FAUNA OF FIESA (SLOVENIA, NORTHERN ADRIATIC SEA), 275–290 Discodoris rosi Ortea, 1979, and Philinopsis depicta (Renier, 1807) (Tab. 1). The 31 heterobranch species recorded are presented in Figures 3 and 4. The most notable new addition to the Fiesa het- erobranch checklist may be Eubranchus viriola, which was described only recently, in 2020 (Korshunova et al., 2020). Specimens were mainly translucent white; however, some brown specimens were also observed, distinguished from the similar species Amphorina farrani (Alder & Hancock, 1842) by the absence of a yellow-or- ange spot on the tail. During sampling, some specimens matching the description of the recently discovered species Amphorina viriola were found (Korshunova et al., 2020). However, due to recent doubts regarding the distinction between similar species of the genus Amphorina and the validity of this genus, along with the Tab. 1: Heterobranch species recorded in the study area in the period November 2021–January 2022. The plus signs denote an estimate of heterobranch abundance. Tab. 1: Zabeležene vrste polžev zaškrgarjev na obravnavanem območju v obdobju november 2021–januar 2022. Znaki plus označujejo oceno številčnosti polžev zaškrgarjev. date/ species 2021 2022 21 nov 27 nov 29 nov 4 dec 5 dec 12 dec 15 dec 26 dec 29 dec 9 jan 15 jan 22 jan 30 jan 1 Antiopella cristata           1               2 Amphorina linensis             1             3 Aplysia punctata     1         2       3 5 4 Berthella ocellata                   1       5 Berthella plumula         1                 6 Cratena peregrina     5   3 2 2   1         7 Dendrodoris grandiflora             1     1   4 1 8 Dendrodoris limbata   1       1 1 1     2 2 3 9 Discodoris rosi                 1 1       10 Doris pseudoargus 1     2   2 4             11 Doris sp.         1         1       12 Elysia gordanae                     1 1 1 13 Elysia timida         1     1           14 Elysia viridis             5+ 5+   5+ 10+ 10+ 10+ 15 Facelina fusca     5+ 5+ 5+ 5+ 5+ 10+ 5+     10+ 10+ 16 Eubranchus viriola             5   2         17 Felimare picta 3 2 1   5+ 1 2 1     1 1 1 18 Felimare villafranca 1   2 1   4 1 1         1 19 Felimida krohni                         1 20 Felimida luteorosea 1                         21 Geitodoris planata                       1   22 Idaliadoris depressa                         2 23 Paraflabellina ischitana         1                 24 Philinopsis depicta   1                       25 Polycera quadrilineata       1     1       1     26 Spurilla neapolitana           1     1         27 Thuridilla hopei         1                 28 Trapania maculata                   1       29 Trapania lineata                   1       ANNALES · Ser. hist. nat. · 34 · 2024 · 2 279 Tea KNAPIČ et al.,: AN INSIGHT INTO THE HETEROBRANCH FAUNA OF FIESA (SLOVENIA, NORTHERN ADRIATIC SEA), 275–290 Fig. 3: Heterobranch species recorded in the study area. A – Philinopsis depicta, B – Boselia mimetica, C – Elysia timida, D – Elysia viridis, E – Elysia gordanae, F – Thuridilla hopei, G – Ercolania viridis, H – Placida cremoniana, I – Aplysia punctata, J – a small specimen of Aplysia punctata (formerly Aplysia parvula), K – Tylodina perversa, L – Berthella ocellata, M – Berthella plumula, N – Berthellina edwardsi, O – Trapania lineata, and P – Trapania maculata (Photos: Tea Knapič: A, C, D, F, K, L, M, O, P; Irena Frkovič: J; Borut Mavrič: B, E, G, H, I, N). SL. 3: Favna polžev zaškrgarjev na obravnavanem območju. A – Philinopsis depicta, B – Boselia mimetica, C – Elysia timida, D – Elysia viridis, E – Elysia gordanae, F – Thuridilla hopei, G – Ercolania viridis, H – Placida cremoniana, I – Aplysia punctata, J – majhen primerek vrste Aplysia punctata (prej Aplysia parvula), K – Tylodina perversa, L – Berthella ocellata, M – Berthella plumula, N – Berthellina edwardsi, O – Trapania lineata, in P – Trapania maculata (Fotografije: Tea Knapič: A, C, D, F, K, L, M, O, P; Irena Frkovič: J; Borut Mavrič: B, E, G, H, I, N). ANNALES · Ser. hist. nat. · 34 · 2024 · 2 280 Tea KNAPIČ et al.,: AN INSIGHT INTO THE HETEROBRANCH FAUNA OF FIESA (SLOVENIA, NORTHERN ADRIATIC SEA), 275–290 Fig. 4: Heterobranch species recorded in the study area. A – Dendrodoris limbata, B – Doris cf. pseudoargus, C – Rostanga rubra, D – Discodoris rosi, E – Antiopella cristata, F – Diaphorodoris alba, G – Felimida luteorosa, H – Felimida krohni, I – Felimare picta, J – Felimare villafranca, K – Felimare orsinii, L – Polycera quadriline- ata, M – Facelina fusca, N – Paraflabellina ischitana, O – Spurilla neapolitana, and P – Eubranchus viriola (Photos: Tea Knapič: A, B, D, E, G, H, I, J, K, L, M, N, O, P; Tihomir Makovec: C; Domen Trkov: F). Sl. 4: Favna polžev zaškrgarjev na obravnavanem območju. A – Dendrodoris limbata, B – Doris cf. pseudoargus, C – Rostanga rubra, D – Discodoris rosi, E – Antiopella cristata, F – Diaphorodoris alba, G – Felimida luteorosa, H – Felimida krohni, I – Felimare picta, J – Felimare villafranca, K – Felimare orsinii, L – Polycera quadriline- ata, M – Facelina fusca, N – Paraflabellina ischitana, O – Spurilla neapolitana, in P – Eubranchus viriola (Fotografije: Tea Knapič: A, B, D, E, G, H, I, J, K, L, M, N, O, P; Tihomir Makovec: C; Domen Trkov: F). ANNALES · Ser. hist. nat. · 34 · 2024 · 2 281 Tea KNAPIČ et al.,: AN INSIGHT INTO THE HETEROBRANCH FAUNA OF FIESA (SLOVENIA, NORTHERN ADRIATIC SEA), 275–290 lack of a comprehensive review of the genus  Eubran- chus, we prefer to use the Latin name Eubranchus viriola (see Toso et al., 2024). Checklist of species Counting the species observed in the studied area, alongside those reported in previous publications (Li- pej et al., 2008, 2012, 2014, 2018) (Tab. 2), the total number of heterobranch species registered in the Fiesa area to date is 51. The discovery of 30 species over three months and a comprehensive checklist of 51 document- ed species indicate Fiesa to be a species-rich area. If we compare the number of heterobranch species recorded for Fiesa with the previously reported survey of species in Slovenian waters (141 species) compiled by Lipej et al. (2018), it accounts for over 1/3 of all species ever reported in these waters. However, since many common sea slug species present in neighbouring areas were not confirmed in this study, it may be speculated that the 51 species recorded so far are an underestimation of the true number of heterobranch species in the study area. Such heterobranch diversity can be attributed to the high spatial heterogeneity and the variety of habitat types present in the studied area. It is well known that the abundance and distribution patterns of benthic biodiversity are influenced by spatial het- erogeneity (Zuschin et al., 2001; Bouchet et al., 2002; Romoth et al., 2023). Many heterobranch species are characterized by vivid coloration, but as typically small animals that only occur in low densities and in specific habitats (Zenetos et al., 2016), they may not be easily spotted. Some cryptic species, such as those from the family Onchidorididae. were often overlooked in the past due to their excellent camouflage. An onchidorid species, Atalodoris pictoni (Furfaro & Trainito, 2017) (Fig. 5), which feeds on the encrusting bryozoan Reptadeonella violacea (Johnston, 1847), was previously reported in the area by Fortič et al. (2021). A new species, Atal- odoris camassae (Furfaro & Trainito, 2022) (Fig. 6), was recently described from the studied area by Furfaro et al. (2023). It was observed feeding on the cheilostoma- tid bryozoan Calpensia nobilis (Esper, 1796). Tab. 2: Heterobranch species previously recorded in the studied area (with date of first record) according to published papers (pp) and social media (sm). Tab. 2: Vrste polžev zaškrgarjev, predhodno zabeležene na obravnavanem proučevanem območju (z datumom prvega zapisa o pojavljanju) glede na objavljene članke (pp) in družbena omrežja (sm).   date/ species source date of first record type 1 Armina rubida Knapič et al. (2024) 10.10.2023 pp 2 Atalodoris camassae Furfaro et al. (2023) March 2021 pp 3 Atalodoris pictoni Fortič et al. (2021) 20.07.2021 pp 4 Baptodoris cinnabarina Frković (2022) 13.02.2021 sm 5 Berghia coerulescens Knapič (2023) 20.08.2023 sm 6 Berthellina edwardsi Novak Srke (2023) 1.01.2023 sm 7 Bosellia mimetica Lipej et al. (2018) 24.09.2014 pp 8 Bursatella leachi Lipej et al. (2018) 19.10.2014 pp 9 Diaphorodoris alba Trkov & Lipej (2022) 12.07.2021 pp 10 Doris ocelligera Lipej et al. (2018) 12.01.2017 pp 11 Ercolanea coerulea Lipej et al. (2018) 24.09.2014 pp 12 Ercolanea viridis Lipej et al. (2018) 24.09.2014 pp 13 Favorinus branchialis Lipej et al. (2018) 24.09.2014 pp 14 Felimare orsinii Lipej et al. (2018) 10.06.2011 pp 15 Jorunna tomentosa Lipej et al. (2018) 27.03.2011 pp 16 Placida cremoniana Lipej et al. (2018) 11.09.2016 pp 17 Placida dendritica Lipej et al. (2018) 24.09.2014 pp 18 Rostanga rubra Lipej et al. (2018) 27.03.2011 pp 19 Tayuva iliacina Lipej et al. (2018) 12.01.2017 pp 20 Tethys fimbria Godnič (2023) 3.06.2023 sm 21 Trinchesia genovae Lipej et al. (2018) 24.09.2014 pp ANNALES · Ser. hist. nat. · 34 · 2024 · 2 282 Tea KNAPIČ et al.,: AN INSIGHT INTO THE HETEROBRANCH FAUNA OF FIESA (SLOVENIA, NORTHERN ADRIATIC SEA), 275–290 Fig. 5: Atalodoris pictoni, a recently discovered, lesser-known nudibranch from the area of Fiesa (Photo: M. Fantin). Sl. 5: Atalodoris pictoni, nedavno odkrita, manj znana vrsta gološkrgarja iz okolice Fiese (Foto: M. Fantin). Fig. 6: Atalodoris camassae, a recently discovered heterobranch species, described as new species with the locus typicus in Fiesa (Photo: I. Frkovič). Sl. 6: Atalodoris camassae, nedavno odkrita vrsta polža zaškrgarja, opisana kot nova vrsta z locus typicus v Fiesi. (Foto: I. Frkovič). ANNALES · Ser. hist. nat. · 34 · 2024 · 2 283 Tea KNAPIČ et al.,: AN INSIGHT INTO THE HETEROBRANCH FAUNA OF FIESA (SLOVENIA, NORTHERN ADRIATIC SEA), 275–290 Among the 51 species of heterobranchs recorded in the Fiesa area, two are non-indigenous: Bursatella leachi Blainville, 1817 and Armina rubida (A. Gould, 1852). The former has regularly occurred in Slovenian waters since 2007 (see Lipej et al., 2018), while A. rubida (Fig. 7) was only recently discovered on the sedimentary bottom in Fiesa (Knapič et al., 2024). It was found on a bare muddy bottom during a night dive. However, after being spotted and illuminated by a torch, it immediately began burrowing into the mud. This finding was the sec- ond record of the species in the Adriatic Sea (Knapič et al., 2024) and the first sighting in the northern Adriatic. We also found a specimen that matched the character- istics of the former Aplysia parvula Mörch, 1863 (Fig. 3J); however, based on new discoveries, Mediterranean specimens previously identified as this species are now considered to be small specimens of Aplysia punctata (Cuvier, 1803) (sensu Golestani et al., 2019). The list of species inhabiting the Fiesa area is far from complete. As heterobranchs are known to be stenopha- gous, specialising in specific diets of algae, cnidarians, sponges, and bryozoans (McDonald & Nybakken, 1997; Furfaro et al., 2017), surveys targeting specific prey species may help record some previously overlooked heterobranch in the future. While most data on hetero- branchs originate from summer sampling (Zenetos et al., 2016), our study, in contrast, highlights heterobranch fauna during the coldest period of the year. Comparison with adjacent areas When comparing the data on heterobranch species in Fiesa with those from other areas in the Slovenian part of the Adriatic Sea where lists of marine fauna and flora have been compiled (Tab. 3), Fiesa emerges as a heterobranch hotspot, with the highest number of Fig. 7: Armina rubida, an alien heterobranch species, recently discovered in the studied area (Photo: T. Knapič). Sl. 7: Na proučevanem območju nedavno odkrita tujerodna vrsta polža zaškrgarja Armina rubida (Foto: T. Knapič). ANNALES · Ser. hist. nat. · 34 · 2024 · 2 284 Tea KNAPIČ et al.,: AN INSIGHT INTO THE HETEROBRANCH FAUNA OF FIESA (SLOVENIA, NORTHERN ADRIATIC SEA), 275–290 Tab. 3: Updated list of Heterobranchia species identified in Fiesa compared to heterobranch fauna from other areas of the Slovenian part of the Adriatic Sea. Tab. 3: Posodobljen seznam vrst polžev zaškrgarjev, ugotovljenih v Fiesi, v primerjavi s favno zaškrgarjev iz drugih območij slovenskega dela Jadranskega morja.     FIESA Nature Monument DEBELI RTIČ Stjuža lagoon STRUNJAN Port of Koper, KOPER waters off the old city, PIRAN "n" heterobranch species THIS WORK Lipej et al. (2016) Lipej et al. (2019) Lipej et al. (2020) Lipej et al. (2022) 1 Acteon tornatilis   X   X   2 Aegires pallensis         X 3 Akera bullata   X X X   4 Amphorina linensis X         5 Antiopella cristata X X     X 6 Aplysia punctata X   X     7 Atalodoris camassae X         8 Atalodoris pictoni X         9 Baptodoris cinnabarina X       X 10 Berghia coerulescens X X     X 11 Berghia verrucicornis     X     12 Berthella ocellata X       X 13 Berthella plumula X         14 Berthellina edwardsi X         15 Bosellia mimetica X       X 16 Bursatella leachi X   X X X 17 Calliopaea bellula         X 18 Calmella cavolini     X     19 Capellinia doriae     X     20 Catriona gymnota     X     21 Cratena peregrina X X X X X 22 Cylichna cylindracea     X X   23 Dendrodoris grandiflora X X       24 Dendrodoris limbata X   X   X 25 Armina rubida X         26 Diaphorodoris alba X         ANNALES · Ser. hist. nat. · 34 · 2024 · 2 285 Tea KNAPIČ et al.,: AN INSIGHT INTO THE HETEROBRANCH FAUNA OF FIESA (SLOVENIA, NORTHERN ADRIATIC SEA), 275–290 27 Discodoris rosi X         28 Doris bertholotti         X 29 Doris ocelligera X       X 30 Doris pseudoargus X       X 31 Doris sp. X         32 Doto acuta     X     33 Doto coronata     X X   34 Doto cervicenigra     X X X 35 Doto rosea     X X   36 Edmundsella pedata         X 37 Elysia gordanae X       X 38 Elysia timida X X     X 39 Elysia viridis X X X   X 40 Ercolanea coerulea X         41 Ercolanea viridis X   X     42 Eubranchus viriola X   X     434 Eubranchus exiguus     X   X 44 Facelina dubia     X     45 Facelina fusca X X     X 46 Favorinus branchialis X   X   X 47 Felimare orsinii X         48 Felimare picta X         49 Felimare villafranca X X     X 50 Felimida krohni X X     X 51 Felimida purpurea   X       52 Felimida luteorosea X X       53 Geitodoris planata X         54 Haminea fusari         X 55 Haminea hydatis   X       56 Haminea navicula   X       57 Haloa japonica     X     58 Hancockia uncinata     X     ANNALES · Ser. hist. nat. · 34 · 2024 · 2 286 Tea KNAPIČ et al.,: AN INSIGHT INTO THE HETEROBRANCH FAUNA OF FIESA (SLOVENIA, NORTHERN ADRIATIC SEA), 275–290 59 Idaliadoris depressa X         60 Idaliadoris neapolitana       X   61 Jorunna tomentosa X   X     62 Paraflabellina ischitana X X     X 63 Petalifera petalifera   X       64 Philine quadripartita   X       65 Philinopsis depicta X X       66 Piseinotecus sphaerifera       X   67 Placida cremoniana X         68 Placida dendritica X         69 Pleurehdera stellata X X X X 70 Polycera quadrilineata X   X   X 71 Polycera hedgpethi     X   X 72 Polycerella emmertoni     X   X 73 Retusa mammillata   X       74 Retusa truncatula           75 Rostanga rubra X         76 Runcina adriatica         X 77 Runcina ferruginea         X 78 Spurilla neapolitana X X X     79 Stiliger fuscovittatus     X     80 Tayuva iliacina X       X 81 Tergipes tergipes     X     82 Tethys fimbria X         83 Thuridilla hopei X X     X 84 Trapania lineata X         85 Trapania maculata X X       86 Trinchesia genovae X   X   X 87 Tylodina perversa X         88 Weinkauffia turgidula         X   Number of species 51 24 31 11 34 ANNALES · Ser. hist. nat. · 34 · 2024 · 2 287 Tea KNAPIČ et al.,: AN INSIGHT INTO THE HETEROBRANCH FAUNA OF FIESA (SLOVENIA, NORTHERN ADRIATIC SEA), 275–290 observed species and 19 heterobranch species record- ed exclusively in this area. The current checklist of heterobranchs from Fiesa could serve as a baseline for future monitoring of this area, which is currently subject to intense recreational diving tourism. Future surveys, especially during other seasons, are necessary to gather more information about the presence and seasonality of marine heterobranch fauna. ACKNOWLEDGEMENTS We would like to acknowledge all recreational divers who share with us their experiences in finding heterobranchs in the area of Fiesa and to provide us with some important data, which improve the quality of the obtained results. Special thanks to Marco Fantin for the photo of Atalodoris pictoni. ANNALES · Ser. hist. nat. · 34 · 2024 · 2 288 Tea KNAPIČ et al.,: AN INSIGHT INTO THE HETEROBRANCH FAUNA OF FIESA (SLOVENIA, NORTHERN ADRIATIC SEA), 275–290 VPOGLED V FAVNO POLŽEV ZAŠKRGARJEV FIESE (SLOVENIJA, SEVERNI JADRAN) Tea KNAPIČ Slovenian Natural History Museum, Prešernova cesta 20, 1000 Ljubljana, Slovenia Irena FRKOVIČ Jenkova ulica 1, 6000 Koper, Slovenia Borut MAVRIČ Marine Biology Station Piran, National Institute of Biology, Piran, Fornače 41, 6330 Piran, Slovenia Lovrenc LIPEJ Marine Biology Station Piran, National Institute of Biology, Piran, Fornače 41, 6330 Piran, Slovenia FAMNIT, University of Primorska, 6000 Koper, Slovenia POVZETEK Avtorji so raziskovali favno morskih polžev zaškrgarjev (Heterobranchia, Gastropoda) v Fiesi, turistični desti- naciji in enem najbolj priljubljenih potapljaških krajev v Tržaškem zalivu (severni Jadran). Primerke zaškrgarjev so popisovali med novembrom 2021 in januarjem 2022. Popisali in določili so skupno 30 vrst iz 6 višjih taksonov (Cephalaspidea 1, Aplysiida 1, Umbraculida 1, Sacoglossa 3, Pleurobranchida 2, Nudibranchia 22). Vključno s predhodno objavljenimi in zabeleženimi podatki se je skupno število trenutno znanih vrst na območju raziskave povečalo na 51. Smiselno je pričakovati, da bodo prihodnje raziskave, ki bodo vključevale dodatne metode vzor- čenja in bodo izvedene v drugih letnih časih, še povečale število zabeleženih morskih vrst polžev zaškrgarjev, ki naseljujejo to območje. Ključne besede: morski polži zaškrgarji, seznam vrst, potapljanje z avtonomno potapljaško opremo, Fiesa, rekreativni potapljači ANNALES · Ser. hist. nat. · 34 · 2024 · 2 289 Tea KNAPIČ et al.,: AN INSIGHT INTO THE HETEROBRANCH FAUNA OF FIESA (SLOVENIA, NORTHERN ADRIATIC SEA), 275–290 REFERENCES Bouchet, P., P. Lozouet, P. Maestrati & V. Heros (2002): Assessing the magnitude of species richness in tropical marine environments: exceptionally high numbers of molluscs at a New Caledonia site. Biological Journal of the Linnean Society, 75, 421-436. Ciriaco, S. & D. Poloniato (2016): Guida illustrata ai nudibranchi del Golfo di Trieste. Pandion Edizioni, Roma, 85 pp. Ciriaco, S., M. Fantin, C. Scrigner, L. Faresi, G. Furfaro, E. Trainito, M. Segarich & M. Spoto (2023): Aggiornamento della presenza di “Nudibranchi” nel Golfo di Trieste - Il valore della Citizen Science. Biologia Marina Mediterranea, 27(1), 125-128. De Min, R. & E. Vio (1997): Molluschi conchiferi del litorale sloveno. Annales, Series Historia Naturalis, 7(1), 241-258. Graeffe, E. (1903): Uebersicht der Fauna des Golfes von Triest nebst Notizen über Vorkommen, Lebensweise, Erscheinungs- und Laichzeit der einzelnen Arten. VI. Mollusca. Arbeiten aus den Zoologischen Instituten der Universität Wien und der Zoologischen Station in Triest, 14 Bd., pp. 89-136. Fortič, A., D. Trkov, L. Lipej, M. Fantin & S. Ciriaco (2021): New Evidence of the Occurrence of Knoutsod- onta pictoni (Nudibranchia, Onchidorididae) in the Northern Adriatic. Annales, Series Historia Naturalis, 31(2), 261-266. Furfaro, G., E. Trainito, F. De Lorenzi, M. Fantin & M. Doneddu (2017): Tritonia nilsodhneri Marcus Ev., 1983 (Gastropoda, Heterobranchia, Tritoniidae): first records for the Adriatic Sea and new data on ecology and distribution of Mediterranean populations. Acta Adriatica, 58(2), 261-270. Furfaro, G., E. Trainito, M. Fantin, M. d‘Elia, E. Madrenas & P. Mariottini (2023): Mediterranean Mat- ters: Revision of the Family Onchidorididae (Mollusca, Nudibranchia) with the Description of a New Genus and a New Species. Diversity 15, 38. https://doi.org/10.3390/ d15010038. Golestani, H., F. Crocetta, V. Padula, Y. Cama- cho-Garcia, J. Langeneck, D. Poursanidis, M. Pola, M. Baki Yokeş, J.L. Cervera, D.-W. Jung, T.M. Gosliner, J.F. Araya, Y. Hooker, M. Schrödl & A. Valdés (2019): The little Aplysia coming of age: from one species to a com- plex of species complexes in Aplysia parvula (Mollusca: Gastropoda: Heterobranchia). Zoological Journal of the Linnean Society, XX, 1-52. Knapič, T., R. Stanić, B. Mavrič & L. Lipej (2024): On the presence of the less known Arminid nudibranch Dermatobranchus rubidus (Gould, 1852) in the Adriatic Sea. Acta Adriatica, 65, 123-127. Korshunova, T., K. Malmberg, J. Prkić , A. Petani, K. Fletcher, K. Lundin & A. Martynov (2020): Fine-scale species delimitation: speciation in process and periodic patterns in nudibranch diversity. ZooKeys, 917, 15-50. Lipej, L., Ž. Dobrajc, B. Mavrič, S. Šamu & S. Ala- jbegović (2008): Opisthobranch molluscs (Mollusca: Gastropoda) from Slovenian coastal waters (Northern Adriatic). Annales, Series Historia Naturalis, 18(2), 213- 226. Lipej, L., S. Moškon & B. Mavrič (2012): New recordings of opisthobranch mollusks (Mollusca: Opist- hobranchia) in the Slovenian portion of the Adriatic Sea. Annales, Series Historia Naturalis, 22(2), 133-136. Lipej, L., B. Mavrič, J. Simić & D. Trkov (2014): New records of opisthobranch mollusks (Mollusca: Opist- hobranchia) in the waters off Slovenia (Gulf of Trieste, northern Adriatic Sea). Annales, Series Historia Naturalis 24(2), 123-128 Lipej, L., B. Mavrič & D. Trkov (2015): First records of two Cuthona species (Gastropoda: Nudibranchia) in the Adriatic Sea. Natura Sloveniae, 17(1), 17-24. Lipej, L., B. Mavrič, M. Šiško & M. Orlando-Bonaca (2016): Pregled morske biodiverzitete v občini Ankaran/ Survey of marine biodiversity in the municipality of Ankaran. Poročila/Reports MBP 163. 143 pp. [In Slo- venian]. Lipej, L., D. Trkov & B. Mavrič (2018): Polži zaškrgarji slovenskega morja/Marine opisthobranchs in the Slovenian sea. Nacionalni inštitut za biologijo, Morska biološka postaja, Piran, pp. 256. [In Slovenian]. Lipej, L., B. Mavrič, M. Orlando-Bonaca, V. Pitacco, D. Trkov & L.L. Zamuda (2019): Inventarizacija favne in flore Pretočne lagune, Stjuže in solin./ Faunistic and floristic invetarisation of the Stjuža and Pretočna laguna lagoons. Poročila/Reports MBP 186, 44 pp. [In Slovenian]. Lipej, L., A. Fortič, B. Mavrič, M. Orlando-Bonaca, D. Trkov (2020): Pregled stanja morske biodiverzitete v akvatoriju Luke Koper./ Survey of marine biodiversity in the aquatory of port of Koper. Poročila/Reports MBP 189, 61 pp. [In Slovenian] Lipej, L., A. Fortič, B. Mavrič, M. Orlando-Bonaca, T. Makovec, M. Šiško, L.L. Zamuda & D. Trkov (2022): Kartiranje morskega dna in habitatnih tipov ter popis flore in favne na območju predvidenem za gradnjo pro- tipoplavne zaščite mesta Piran/Mapping of sea bottom and habitat types and the survey of flora and fauna in an area fort he construction of flood protection in the city of Piran, 73 pp. [In Slovenian] Mavrič, B. & L. Lipej (2012): On the rare and less known nudibranch Piseinotecus sphaeriferus (Schmekel, 1965) (Gastropoda, Nudibranchia, Piseinotecidae) in the Adriatic Sea. Acta Adriatica, 53(2), 473-476. McDonald, G.R. & Nybakken, J.W. (1997): A list of the worldwide food habits of nudibranchs. Veliger, 40, 1-426. Prkić, J., A. Petani, D. Iglič & L. Lanča (2018): Opisthobranchs of the Adriatic Sea: photographic atlas and list of Croatian species. Bibinje: Ronilački klub Sveti Roko, 463. pp. ANNALES · Ser. hist. nat. · 34 · 2024 · 2 290 Tea KNAPIČ et al.,: AN INSIGHT INTO THE HETEROBRANCH FAUNA OF FIESA (SLOVENIA, NORTHERN ADRIATIC SEA), 275–290 Romoth, K., A. Darr, S. Papenmeier, M.L. Zettler & M. Gogina (2023): Substrate Heterogeneity as a Trigger for Species Diversity in Marine Benthic Assemblages. Biology (Basel)., 825. doi: 10.3390/ biology12060825. Schmekel, L. & A. Portmann (1982): Opisthobran- chia des Mittelmeeres. Nudibranchia und Saccoglossa. Monografia della Stazione Zoologica di Napoli 40, Berlin: Springer-Verlag, 410 pp. Toso, Y., F. Martini, A. Riccardi & G. Furfaro (2024): Unraveling the Sea Slug Fauna from an Extremely Variable Environment, The ‘Passetto’ Rocky Tide Pools (North Adriatic Sea). Water, 16(12), 1687. https://doi. org/10.3390/w16121687. Trainito, E. & M. Doneddu (2014): Nudibranchi del Mediterraneo. Cornaredo: Il Castello, 192 pp. Trkov, D. & L. Lipej (2022): First record of the sea slug Diaphorodoris alba Portmann & Sandmeier, 1960 in Slovenia. In: Kousteni et al.: New records of rare species in theMediterranean Sea (May 2022). Medi- terranean Marine Science, 23(3), 417-446. https://doi. org/10.12681/mms.28372. Turk, T. (2000): The Opistobranch mollusks (Ceph- alaspidea, Saccoglossa, Notaspidea, Anaspidea and Nudibranchia) of the Adriatic Sea with special reference to Slovenian coast. Annales, Series Historia Naturalis, 10(2), 161-172. Turk, T. (2005): Unusual Sea Slug from Cape Madona (Piran, Slovenia) – the first record of Cumanotus beau- monti (Eliot, 1906) in the Mediterranean Sea. Annales, Series Historia Naturalis, 15, 1-4. WoRMS Editorial Board (2024): World Register of Marine Species. Available from http://www.marinespe- cies.org at VLIZ. (WoRMS; www.marinespecies.org/). Zenetos, A., V. Mačić, A. Jaklin, L. Lipej, D. Poursani- dis, R. Cattaneo-Vietti, S. Beqiraj, F. Betti, D. Poloniato, L. Kashta, S. Katsanevakis & F. Crocetta (2016): Adriatic ‘opisthobranchs’ (Gastropoda, Heterobranchia): shed- ding light on biodiversity issues. Marine Ecology, 37(6), 1239-1255. Zuschin, M., H. Hohenegger & F.F. Steininger (2001): Molluscan assemblages on coral reefs and associated hard substrata in the northern Red Sea. Coral Reefs, 20, 107-116. ANNALES · Ser. hist. nat. · 34 · 2024 · 2 291 received: 2024-10-06 DOI 10.19233/ASHN.2024.33 WOUNDS INFLICTED ON HUMANS BY THE WHITE SEABREAM (DIPLODUS SARGUS): FIRST SCIENTIFIC REPORT OF AGGRESSIVE BEHAVIOR Francesco TIRALONGO Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy francesco.tiralongo@unict.it Ente Fauna Marina Mediterranea – Scientific Organization for Research and Conservation of Marine Biodiversity, Avola, Italy CNR-IRBIM - National Research Council, Institute of Biological Resources and Marine Biotechnologies, Ancona, Italy Alessandro NOTA Department of Biology and Biotechnology, University of Pavia, Pavia, Italy Ente Fauna Marina Mediterranea – Scientific Organization for Research and Conservation of Marine Biodiversity, Avola, Italy Emanuele MANCINI Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce. NBFC, National Biodiversity Future Center, 90133 Palermo, Italy Ente Fauna Marina Mediterranea – Scientific Organization for Research and Conservation of Marine Biodiversity, Avola, Italy Luigi MUSCO Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce NBFC, National Biodiversity Future Center, 90133 Palermo, Italy ABSTRACT Fish bites at sea are typically attributed to aggressive and large-sized species, such as sharks, while reports of attacks by smaller, non-aggressive species are usually rare. This study presents the first documented cases of Diplodus sargus (the White Seabream) bites on humans. Two episodes involving minor injuries to swimmers, while in one of the cases medical treatments were needed. The bites affected the limbs and resulted in medium/small though relatively deep wounds. Over the last 15 years, similar cases have been reported elsewhere in the Mediter- ranean Sea, raising some alarm among beach users and stakeholders. Anecdotal speculation, unsupported by experimental evidence, has been made on the role of factors such as heatwaves and increased water temperatures in the shift toward aggressive behavior in typically non-threatening species. This study provides the first account of three such incidents of this kind and prompt scientific research aimed at unveiling their causes. Key words: fish attacks, behavioral change, coastal water, Sparidae, wounds FERITE INFERTE ALL’UOMO DAL SARAGO MAGGIORE (DIPLODUS SARGUS): PRIMA SEGNALAZIONE SCIENTIFICA DI COMPORTAMENTO AGGRESSIVO SINTESI I morsi di pesci in mare sono tipicamente associati a specie aggressive e di grandi dimensioni come gli squali, mentre le segnalazioni di attacchi da parte di specie più piccole e non aggressive sono solitamente rare. Questo studio presenta i primi casi documentati di morsi di Diplodus sargus (il sarago maggiore) su esseri umani. Due episodi hanno coinvolto lievi ferite ai nuotatori, mentre in uno dei casi sono stati necessari trattamenti medici. I morsi hanno interessato gli arti e hanno provocato ferite di media/piccola entità, ma relativamente profonde. Negli ultimi 15 anni, casi simili sono stati segnalati altrove nel Mar Mediterraneo, suscitando una certa preoccupazione tra i bagnanti e gli operatori del settore. Speculazioni aneddotiche, non supportate da prove sperimentali, hanno suggerito il potenziale ruolo di fattori come le ondate di calore e l’aumento delle temperature dell’acqua nello sviluppo di comportamenti aggressivi in specie tipicamente non pericolose. Que- sto studio mira a fornire un primo resoconto dettagliato di questi incidenti e a stimolare la ricerca scientifica per svelare le cause dei comportamenti osservati. Parole chiave: attacchi di pesci, variazioni comportamentali, acque costiere, Sparidae, ferite ANNALES · Ser. hist. nat. · 34 · 2024 · 2 292 Francesco TIRALONGO et al.: WOUNDS INFLICTED ON HUMANS BY THE WHITE SEABREAM (DIPLODUS SARGUS): FIRST SCIENTIFIC REPORT OF AGGRESSIVE ..., 291–298 INTRODUCTION Encounters with dangerous marine organisms can be harmful to or even deadly for humans, potentially involving stings, bites, blunt trauma, and other types of injuries, envenomation or accidental ingestion (James & Mark, 2019; Geng et al., 2023). Fish bites are generally rare, especially in the Mediterranean Sea, and are often attributed to species with well-doc- umented aggressive behavior, such as sharks (Lowry et al., 2009); some species of fish and other marine fauna are known to be potentially aggressive if ma- nipulated (e.g., during fishing activities) (Nascimiento Da Costa et al., 2020). Reports of bites by common, typically non-aggressive fish species have been scarce or undocumented in scientific literature, although the study of such unexpected behavior could represent an intriguing aspect of marine biology. Lesions in fishermen and bathers caused by fish bites primarily affect the hands and limbs, resulting in pain and bleeding (Berkowitz & Goldsmith, 2016; Nascimiento Da Costa et al., 2020). In addition to physical damage – which, depending on the species involved and its size, can also affect tendons and nerves, requiring thus sutures – the wounds can become infected due to bacteria (both Gram-positive and Gram-negative) and mycobacteria (von Graeve- nitz et al., 2020; Strutt & Avendano, 2022), as is the case with any wound exposed to seawater. It is worth mentioning that, in most cases, individuals bitten by fish are unable to identify the species responsible, as they are often not experts and, especially in the case of recreational swimmers, may find it difficult to even locate the individual(s) responsible for the bite underwater (Vanni et al., 2022). The White Seabream (Diplodus sargus) is a sparid species widely distributed in the Mediterranean Sea and the adjacent northeastern Atlantic waters. It is a coastal fish that primarily feeds on crustaceans, bivalves, and sea urchins, with larger specimens also preying on bigger species, such as other fish (Guidetti, 2006; Osman & Mahmoud, 2009; Miccoli et al., 2021). It is primarily known for its importance in commercial and recreational fisheries (e.g., Tiralongo et al., 2023), while its aggressive behavior toward humans and the related safety risks have not been treated in scientific literature yet. In this study, we present the first documented sci- entific records of D. sargus attacks resulting in injury to humans. The incidents, which occurred along the Italian coasts during recreational activities, highlighted unexpected behavioral interactions between this spe- cies and bathers. A total of three cases were recorded and documented photographically in summer 2024, providing concrete evidence of this uncommon behav- ior. To the best of our knowledge, there are no scientific reports of similar events involving the White Seabream. However, newspapers from Spain, Israel, and Croatia have reported several cases of humans being attacked by fish often referred to as D. sargus. The objective of this work is to describe these incidents in detail, ana- lyze factors potentially contributing to such unusual in- teractions, discuss their possible causes, and consider the implications they may have for human activities in the Mediterranean region. This report aims to fill a gap in the current understanding of D. sargus behavior and contribute to a better understanding of human–wildlife interactions in marine environments. MATERIAL AND METHODS The data for this study were collected through detailed, unstructured telephone interviews with individuals involved in fish biting attacks or, in the case of one minor, their relatives. These interviews were complemented by photographic evidence of the injuries, providing comprehensive and accurate documentation of each case. The photos were initially shared by the interviewees within the Fauna Marina Mediterranea Facebook group, which currently has over 28,000, mostly Italian, members. Administered by one of the authors (FT), the group is frequented by specialists and researchers in marine biology, as well as a diverse community of marine enthusiasts, includ- ing divers, recreational and professional fishermen, and beachgoers. The photographic posts prompted further inquiry and facilitated accurate documenta- tion and validation of each case. The fish bite injuries of the first case were doc- umented on 21 August 2024, at Lido Arenella, Syr- acuse (Mediterranean Sea, Ionian Sea, southeastern Sicily - 36.99641 N, 15.26467 E), in shallow waters approximately 1 m deep. The area features a small beach, about 200 m long, located south of the city of Syracuse and the Plemmirio Marine Protected Area. The seabed here is very shallow, with small rocky formations and patches of Posidonia oceanica (L.) Delile located a bit further offshore and along the sides. The beach is very popular during the summer months. The incident involved a 70-year-old female swimmer entering deeper waters. A single fish, approximately 15-20 cm in size (total length), repeatedly attacked her legs at multiple spots and followed her to the shore. At the time of the incident, the water conditions were calm and clear. A second case was recorded on 5 September 2024 at Morghella Beach, Portopalo di Capo Passero (Mediterranean Sea, Ionian Sea, southeastern Sicily - 36.70297 N, 15.12330 E), involving an 11-year- old boy who suffered multiple bites from White Seabreams (Diplodus sargus) over several days, always at the same location, in waters approximately 1 meter deep. The father of the boy observed a single fish biting the boy during snorkeling, each time in ANNALES · Ser. hist. nat. · 34 · 2024 · 2 293 Francesco TIRALONGO et al.: WOUNDS INFLICTED ON HUMANS BY THE WHITE SEABREAM (DIPLODUS SARGUS): FIRST SCIENTIFIC REPORT OF AGGRESSIVE ..., 291–298 the same spot, and was able to identify the species responsible for the injuries. Morghella Beach is very similar to Lido Arenella in Syracuse in size and envi- ronmental features: it is shallow, with a mix of sandy stretches and small rocky areas that provide a habitat for P. oceanica. Morghella is a popular summer des- tination, attracting many visitors due to its beautiful setting and accessible location. A third case was documented on 4 August 2024 near Sanremo, in the Ligurian Sea (Mediterranean Sea, Italy, 43.81023 N, 7.76619 E). The incident involved a 60-year-old man who was bitten once by an unidentified fish near the shoreline (in waters approximately 0.5 m deep). The beach where the incident occurred is about 400 m long and protected by a breakwater made of artificial blocks. This, too, is a very crowded location during the summer months and characterized by calm waters. The locations of the three recorded cases are shown in Figure 1 and discussed below in order of relevance based on the severity of the reported injury. RESULTS AND DISCUSSION First case – 21 August 2024 The attacking fish was almost certainly a White Seabream (D. sargus), with an estimated total length of 15–20 cm. It was described as having an oval- shaped body, white coloration, distinctive vertical grey stripes, and a black spot on the caudal pedun- cle – all diagnostic features of the White Seabream. Its identity was confirmed by the individual who was bitten, upon examining photos of sparid spe- cies which typically inhabit shallow beach waters, including the White Seabream (D. sargus), the Sand Steenbras (Lithognathus mormyrus), and the Sad- dled Seabream (Oblada melanura). After the initial bite, the fish continued to follow the woman to the shore, repeatedly and violently biting her. The most severe wound the woman suffered was to her left calf, measuring approximately 4–5 cm in diameter and likely resulting from multiple bites (Fig. 2a). Fig. 1: Documented records (yellow circles) reported in this study of wounds inflicted on humans by Diplodus sargus in the Mediterranean Sea (1: Syracuse; 2: Portopalo di Capo Passero; 3: Sanremo). Sl. 1: Dokumentirani zapisi (rumeni krogi), ki jih v tej študiji avtorji poročajo o ranah, ki jih je Diplodus sargus prizadejal ljudem v Sredozemskem morju (1: Sirakuze; 2: Portopalo di Capo Passero; 3: Sanremo). ANNALES · Ser. hist. nat. · 34 · 2024 · 2 294 Francesco TIRALONGO et al.: WOUNDS INFLICTED ON HUMANS BY THE WHITE SEABREAM (DIPLODUS SARGUS): FIRST SCIENTIFIC REPORT OF AGGRESSIVE ..., 291–298 She also sustained smaller injuries on her right leg, around 1 cm in diameter. She was bleeding pro- fusely from all her wounds as she exited the water, screaming for help. Medical treatment included the application of antibiotic and healing ointments (e.g., connectivine) following a medical consultation. There was no need for hospitalization. The 70-year- old woman reported coagulopathy, advanced age, fragile skin, and a propensity for easy bruising and micro-injuries. These factors, combined with the repeated aggressive behavior of the fish, underscore the severity of the incident. Second case - 5 September 2024 The injury in this case was located on the right shin, consisting of a single wound approximately 5 mm in diameter and caused by the repeated biting actions of the fish (Fig. 2b). The phenomenon of White Seabream (D. sargus) attacks in this area has been known for over 10 years, with increases in the frequency during warmer water periods. But the trend concerning the individuals involved has shifted from smaller to larger seabreams reaching sizes of up to a hand (15–20 cm) and inflicting more severe wounds. The studied biting attacks were not isolated incidents, but occurred repeatedly over several days, with the fish targeting the boy’s pre-existing minor wounds, such as mosquito bites, scabs, and other skin abrasions. Despite the presence of various fish species in the area, the boy’s father confirmed that only White Seabreams were seen engaging in this aggressive behavior toward swimmers. Immediate care for the wounds involved cleaning and monitoring for signs of infection, but no major medical intervention was needed. Third case - 4 August 2024 The man sustained a single, relatively deep wound below the right knee, measuring approximately 3 mm (Fig. 2c). Despite its small size, the wound was notably deep, but no medical treatment was necessary. The fish’s attack near the shore highlights the potential for such incidents to occur even in shallow, sheltered waters. After conducting research online, the man who was bitten concluded that it might have been a Saddled Seabream (O. melanura) rather than a White Seabream (D. sargus); however, the lack of direct observation makes the identification uncertain. Considerations Fish bites, although relatively rare compared to other injuries caused by marine animals – especially in the Mediterranean Sea – raise medical concerns due to their potential for severe tissue damage and subsequent infections (Berkowitz & Goldsmith, 2016; Lowry et al., 2009; Nascimiento Da Costa et al., 2020; Geng et al., 2023). These injuries are pri- marily associated with predatory or aggressive fish species, such as sharks and bluefish (Pomatomus saltatrix). Although the Bluefish – a species widely distributed in the Mediterranean Sea – despite it is smaller than potentially dangerous sharks, it has very sharp teeth. Its bite can result in deep lacer- ations and even amputations (Vanni et al., 2022). A rather emblematic event in the Mediterranean Sea was the recent attack of a Lagocephalus scelera- tus (pufferfish), a non-indigenous Lessepsian species, on an 8-year-old girl. The fish bite resulted in the partial amputation of the girl’s finger. This incident Fig. 2: Wounds inflicted on humans by D. sargus (A= 1 in map; B= 2 in map; C= 3 in map). Sl. 2: Rane, ki jih je D. sargus prizadejal ljudem (A= 1 na zemljevidu; B= 2 na zemljevidu; C= 3 na zemljevidu). ANNALES · Ser. hist. nat. · 34 · 2024 · 2 295 Francesco TIRALONGO et al.: WOUNDS INFLICTED ON HUMANS BY THE WHITE SEABREAM (DIPLODUS SARGUS): FIRST SCIENTIFIC REPORT OF AGGRESSIVE ..., 291–298 highlights how anthropogenic changes in biodiversity can directly and indirectly increase the occurrence of such accidents (Sümen & Bilecenoğlu, 2019). Anecdotal evidence from media interviews in newspapers and websites indicates that D. sargus spec- imens of various sizes have occasionally been involved in biting incidents with swimmers in summer vacation areas of the Mediterranean Sea. It is speculated that such events occur particularly during warm periods or heatwaves, when the fish may be more active or agitat- ed. However, it is not possible to determine whether increased aggressiveness of D. sargus is in direct cor- relation with rising seawater temperatures, also consid- ering that holiday vacation sites in the Mediterranean Sea are typically overcrowded with tourists during the warmer season, increasing the likelihood of encoun- ters between fish and humans. Focused experiments are needed to ascertain the effect of rising seawater temperatures on the behavior of the White Seabream. Young D. sargus are not as elusive as other juve- nile fish and typically do not flee from humans. It is common for curious young fish of both D. sargus and O. melanura species to approach bathers along the sandy shores of the Italian coast, often nibbling on human limbs without causing injury – only mild pain. This was confirmed by an informal survey conducted among knowledgeable Italian marine biologists, who reported that young specimens typ- ically target individuals standing still on the sandy bottom in shallow waters (LM, pers. obs.). Other Mediterranean experts, interviewed by newspapers and websites, suggest that avoiding proximity to other swimmers and minimizing stationary posi- tions in shallow waters could help prevent this behavior (UltimaHora, 2003; LaOpiniónDeMurcia, 2016; Austin, 2017; Menorca, 2023; CroatiaWeek, 2024; CrónicaBalear, 2024). A topic worth further investigation is why adult specimens of D. sargus Fig. 3: Jaws and dentition of the White Seabream (D. sargus) in lateral (A) and frontal (B) view. Note that this specimen is much larger than those which attacked the swimmers. It was caught in September 2024 in southeastern Sicily (Avola) and weighed 924 grams (photo by F. Tiralongo). Sl. 3: Čeljusti in zobovje šarga (D. sargus) s strani (A) in od spredaj (B). Upoštevajte, da je ta primerek veliko večji od tistih, ki so napadli plavalce. Ujet je bil septembra 2024 na jugovzhodni Siciliji (Avola) in je tehtal 924 gramov (foto: F. Tiralongo). ANNALES · Ser. hist. nat. · 34 · 2024 · 2 296 Francesco TIRALONGO et al.: WOUNDS INFLICTED ON HUMANS BY THE WHITE SEABREAM (DIPLODUS SARGUS): FIRST SCIENTIFIC REPORT OF AGGRESSIVE ..., 291–298 exhibit the juvenile-like behavior of biting humans, as this can result in more serious consequences. One of the most critical complications following a fish bite is the risk of bacterial infection (Strutt & Avendano, 2022), which may occur when wounds are inflicted by wild animals or come in contact with seawater. Additionally, the anatomical features of certain fish, such as bluefish or pufferfish, in- fluence the extent and nature of the wounds they inflict. For example, the bluefish has powerful jaws and razor-sharp teeth, therefore its bite can cause significant tissue damage, often requiring surgical repair for tendon and nerve lesions. The need for forensic analysis to accurately identify the species responsible for a biting attack is critical in both medical and ecological studies, as it informs proper management and prevention strategies. With its well-developed forward-pointing incisor-like teeth at the front of the jaws, this sparid can cause rel- atively small (depending on the fish size) but deep wounds that may require medical care and could even result in permanent scars (Fig. 3). Given the ever-increasing human interaction with marine environments, including the expansion of coastal activities, there has been a rising inci- dence of fish bite injuries (Newsom et al., 2023). Despite this new and aggressive behavior, clearly attributable to at least one species (D. sargus), no targeted scientific studies have been conducted to date. Moreover, all three beaches where interactions with humans occurred shared similar characteris- tics: they were small, nestled in rocky surroundings, and featuring a combination of rocky substrates and patches of P. oceanica in their immediate vicinity. Identifying the types of environments where these incidents are more likely to occur can help prevent them. White Seabreams are known to inhabit both rocky bottoms and mixed environments (sand and rock) but are seldom found in purely sandy areas far from other substrates. The merit of this study lies in documenting attacks on humans by species commonly considered unharm- ful and providing detailed information on the dynamics and effects of the related injuries. The recurrence of these attacks along the Italian coasts in 2024, along with similar incidents observed elsewhere in the Medi- terranean over the past 15 years, highlights a potential shift in adult White Seabream behavior toward ag- gressive interaction with humans. This calls for further investigation into the causes, potential environmental triggers, and the role of humans in behavioral changes. ACKNOWLEDGEMENTS We sincerely thank Fabio Biondi, Rosa Manferlotti, and Riccardo Rossetti for their invaluable cooperation and willingness to share their experience, which al- lowed us to understand and document such rare and apparently news incidents. Financial support was partially provided by the Na- tional Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.4 - Call for tender No. 3138 of 16 December 2021, rectified by Decree n.3175 of 18 December 2021 of Italian Ministry of University and Research funded by the European Union – Next Generation EU. Project code CN_00000033, Conces- sion Decree No. 1034 of 17 June 2022 adopted by the Italian Ministry of University and Research, CUP D33C22000960007, Project title “National Biodiversi- ty Future Center - NBFC”. ANNALES · Ser. hist. nat. · 34 · 2024 · 2 297 Francesco TIRALONGO et al.: WOUNDS INFLICTED ON HUMANS BY THE WHITE SEABREAM (DIPLODUS SARGUS): FIRST SCIENTIFIC REPORT OF AGGRESSIVE ..., 291–298 RANE, KI JIH LJUDEM ZADAJAJO ŠARGI (DIPLODUS SARGUS): PRVO ZNANSTVENO POROČILO O AGRESIVNEM VEDENJU Francesco TIRALONGO Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy francesco.tiralongo@unict.it Ente Fauna Marina Mediterranea – Scientific Organization for Research and Conservation of Marine Biodiversity, Avola, Italy CNR-IRBIM - National Research Council, Institute of Biological Resources and Marine Biotechnologies, Ancona, Italy Alessandro NOTA Department of Biology and Biotechnology, University of Pavia, Pavia, Italy Ente Fauna Marina Mediterranea – Scientific Organization for Research and Conservation of Marine Biodiversity, Avola, Italy Emanuele MANCINI Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce. NBFC, National Biodiversity Future Center, 90133 Palermo, Italy Ente Fauna Marina Mediterranea – Scientific Organization for Research and Conservation of Marine Biodiversity, Avola, Italy Luigi MUSCO Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce NBFC, National Biodiversity Future Center, 90133 Palermo, Italy POVZETEK Ugrize rib v morju običajno pripisujejo agresivnim in velikim vrstam, kot so morski psi, medtem ko so poročila o napadih manjših, neagresivnih vrst običajno redka. Avtorji poročajo o prvih dokumentiranih primerih ugrizov vrste Diplodus sargus pri ljudeh v italijanskih vodah. V dveh primerih je šlo za lažje poškodbe plavalcev, v enem od primerov pa je bila potrebna zdravniška oskrba. Ugrizi so prizadeli okončine in povzročili srednje/majhne, a relativno globoke rane. V zadnjih 15 letih so o podobnih primerih poročali tudi drugod v Sredozemskem morju, kar je sprožilo nekaj preplaha med uporabniki plaž in zainteresiranimi stranmi. Obstajajo nezanesljive špekulacije, ki niso podprte z eksperimentalnimi dokazi, o vlogi dejavnikov, kot so vročinski valovi in višje temperature vode, ki vplivajo na agresivno vedenje pri tipično nenevarnih vrstah. Ta študija predstavlja prvo poročilo o treh incidentih te vrste in hitro znanstveno raziskavo, katere cilj je razkriti njihove vzroke. Ključne besede: napadi rib, vedenjske spremembe, priobalne vode, Sparidae, rane ANNALES · Ser. hist. nat. · 34 · 2024 · 2 298 Francesco TIRALONGO et al.: WOUNDS INFLICTED ON HUMANS BY THE WHITE SEABREAM (DIPLODUS SARGUS): FIRST SCIENTIFIC REPORT OF AGGRESSIVE ..., 291–298 REFERENCES Austin, G. (2017): Why is this fish biting swimmers at Mediterranean beaches? The Times of Israel. Online Journal: https://www.timesofisrael.com/why-is-this- fish-biting-swimmers-at-mediterranean-beaches/. Berkowitz, T. & M.P. Goldsmith (2016): An unex- pected fish bite. Pediatric Emergency Care, 33, 258-259. https://doi.org/ 10.1097/PEC.0000000000000692. CroatiaWeek (2024): Why fish are biting swimmers more this summer in Croatian Sea? Online Journal: https://www.croatiaweek.com/why-fish-are-biting- swimmers-more-this-summer-in-croatian-sea/. CrónicaBalear (2024): Qué peces son los que están mordiendo a los bañistas en Baleares. Online Journal: https://www.cronicabalear.es/baleares/que-peces-son- los-que-estan-mordiendo-a-los-banistas-en-baleares/. Geng, X-Y., M-K. Wang, J-H. Chen & J-S. Yang (2023): Marine biological injuries and their medical management: A narrative review. World Journal of Bio- logical Chemistry, 14, 1-12. http://dx.doi.org/10.4331/ wjbc.v14.i1.1. Guidetti, P. (2006): Estimating body size of sea urchins, Paracentrotus lividus and Arbacia lixula, from stomach contents of Diplodus sargus, a Mediterranean predatory fish. Journal of Applied Ichthyology, 22, 91-93. James, A. & B. Mark (2019): The world as it is: A diver’s guide to subaquatic envenomation in the Med- iterranean. Diving and Hyperbaric Medicine, 49(3), 225-228. https://doi.org/10.28920/dhm49.3.225-228. LaOpiniónDeMurcia (2016): Decenas de afectados por un tipo de pez que muerde a los bañistas en la playa de Benidorm. Online Journal: https://www.laop- iniondemurcia.es/sucesos/2016/10/14/decenas-afect- ados-tipo-pez-muerde-31986683.html. Lowry, D., A.L.F. de Castro, K. Mara, L.B. Whit- enack, B. Delius, G.H. Burgess & P. Motta (2009): Determining shark size from forensic analysis of bite damage. Marine Biology, 156, 2483–2492. http:// dx.doi.org/10.1007/s00227-009-1273-3. Menorca (2023): Un bañista, herido por la mordedura de un pez en la playa de Cala Blan- ca. Online Journal: https://www.menorca.info/ menorca/sucesos/2023/07/14/1976379/banista-heri- do-por-mordedura-pez-cala-blanca.html. Miccoli, A., E. Mancini, M. Boschi, F. Provenza, V. Lelli, F. Tiralongo, M. Renzi, A. Terlizzi, S. Bonamano & M. Marcelli (2021): Trophic, chemo-ecological and sex-specific insights on the relation between Diplodus sargus (Linnaeus, 1758) and the Invasive Caulerpa cy- lindracea (Sonder, 1845). Frontiers in Marine Science, 8, 680787. http://doi.org/10.3389/fmars.2021.680787. Nascimiento Da Costa, T.N., T.R.F. Jacó, A.L.S. Casas & P.S. Bernarde (2020): Injuries caused by fish to fishermen in the Vale do Alto Juruá, Western Brazilian Amazon. Revista da Sociedade Brasileira de Medicina Tropical, 53, e20180495. https://doi. org/10.1590/0037-8682-0495-2018. Newsom, A., Z. Sebesvari & I. Dorresteijn (2023): Climate change influences the risk of physically harmful human-wildlife interactions. Biological Conservation, 286, 110255. Osman, A.M. & H.H. Mahmoud (2009): Feeding biology of Diplodus sargus and Diplodus vulgaris (Teleostei, Sparidae) in Egyptian Mediterranean waters. World Journal of Fish and Marine Sciences, 1, 290-296. Sümen, S.G. & M. Bilecenoğlu (2019): Traumatic finger amputation caused by Lagocephalus sceleratus (Gmelin, 1789) bite. J. Black Sea/Mediterranean Envi- ronment, 25, 333-338. Strutt, J. & P. Avendano (2022): Carnivorous fish bite. Visual Journal of Emergency Medicine, 27, 101297. Tiralongo, F., S. Marino, S. Ignoto, R. Martellucci, B.M. Lombardo, E. Mancini & U. Scacco (2023): Impact of Hermodice carunculata (Pallas, 1766) (Polychaeta: Amphinomidae) on artisanal fishery: A case study from the Mediterranean Sea. Marine Environmental Research, 192, 106227. https://doi.org/10.1590/0037- 8682-0495-2018. UltimaHora (2003): Alarma entre los bañistas por las mordeduras de peces en playas de Llevant. Onlin Journal: https://www.ultimahora.es/noticias/part-fora- na/2003/09/01/706631/alarma-entre-los-banistas-por- las-mordeduras-de-peces-en-playas-de-llevant.html. Vanni, S., A.L. Acciaro, M. Menozzi, M.C. Gagliano & R. Adani (2022): Unexpected Bluefish attack on hu- man: surgical implications and forensic bite analysis. Rivista Italiana di Chirurgia della Mano, 59, 50-54. https://doi.org/10.53239/2784-9651-2022-7. von Graevenitz A., J. Bowman, C. Del Notaro & M. Ritzler (2000): Human infection with Halomonas venusta following fish bite. Journal of Clinical Microbi- ology, 38, 3123-3124. 299 ORNITOFAVNA ORNITOFAUNA ORNITHOFAUNA 300 ANNALES · Ser. hist. nat. · 34 · 2024 · 2 301 received: 2024-10-19 DOI 10.19233/ASHN.2024.34 NUOVO SITO DI NIDIFICAZIONE DI AQUILA REALE AQUILA CHRYSAETOS NEL SUBAPPENNINO ABRUZZESE Andrea DE ANGELIS Via Ventilatore 13 - 66040 Fallo (CH) Italy e-mail: wolfhikesangro@gmail.com Mario PELLEGRINI Via Colle Sant’Angelo 3 - 66041 Atessa (CH) Italy e-mail: pellegrinimario62@gmail.com SINTESI Le ragioni prevalenti di un confinamento dei grandi predatori alle aree montuose dell’Appennino sono da ricercare nella persecuzione diretta e nell’antropizzazione degli ambienti della fascia basale. La situazione dell’Aquila reale (Aquila chrysaetos) in Abruzzo non fa eccezione alla regola se, fino al 2017, il monitoraggio su scala regionale ha confermato per la specie una distribuzione ancora strettamente associata ai rilievi maggiori, con nessuna coppia nelle contigue aree subappenniniche. La scoperta (presente lavoro) nel 2017, di una coppia con giovane a seguito, all’interno di un settore collinare della media Valle del Sangro (Provincia di Chieti) rappresenta in tal senso un’eccezione, ed ha condotto ad ulteriori indagini, culminate nel monitoraggio (2017-2024) di quella che, al momento, rappresenta la realtà riproduttiva più orientale per la specie in ambito centro-appenninico. Il destino di questo avamposto dell’Aquila reale in direzione del Mar Adriatico appare ancora incerto. Parole chiave: Aquila reale, Aquila chrysaetos, nuova coppia, Important Bird Area 115, rewilding area A NEW GOLDEN EAGLE BREEDING SITE IN THE ABRUZZO’S SUBAPENNINES (ITALY) ABSTRACT Most likely, human persecution associated with the occupation of all suitable land at lower altitudes was the reason for the confinement of top predators to the mountain belt of the Apennines. The golden eagle (Aquila chrysaetos) is no exception to this rule, and until 2017 a population survey in the Abruzzo region confirmed that the distribution was strictly associated with the main mountain ranges, with no pairs documented in the associated outlying sub-Apennines. The discovery in late 2017 (this paper) of a pair with the fledged juvenile in the central Sangro valley (province of Chieti) triggered further investigations (2017-2024), which led to the assessment of a previously unknown breeding site (the easternmost in the Central Apennines to date) on a rugged slope less than 700 m a.s.l. on the right bank of the Sangro. Despite its location in a regional nature reserve, this outpost of the golden eagle towards the Adriatic Sea is characterised by a changing landscape whose uncertain fate oscillates between attempts at conservation and anthropogenic degradation. Key words: Golden eagle, Aquila chrysaetos, new pair, Important Bird Area 115, rewilding area ANNALES · Ser. hist. nat. · 34 · 2024 · 2 302 Andrea DE ANGELIS & Mario PELLEGRINI: NUOVO SITO DI NIDIFICAZIONE DI AQUILA REALE AQUILA CHRYSAETOS NEL SUBAPPENNINO ABRUZZESE, 301–314 INTRODUZIONE Il trend positivo della popolazione di Aquila reale (Aquila chrysaetos) in vari settori dell’Italia peninsulare e in particolare nell’Appennino cen- trale, a partire dai primi anni 2000 (Borlenghi et al., 2014), rende conto di una popolazione attuale probabilmente ancora al di sotto della capacità por- tante e di contesti ecologici eterogenei all’interno dei quali sia possibile per la specie colonizzare nuovi territori (Campedelli et al., 2020). Per quanto riguarda l’Abruzzo, la recente dinamica positiva è stata messa in relazione (Artese et al., 2017) al raggiungimento di un rinnovato equilibrio naturale fondato sulla disponibilità trofica e sul sostanziale regime di tutela e protezione dell’ambiente mon- tano all’interno del sistema di Parchi, Riserve e siti della Rete Natura 2000. La distribuzione dell’Aquila reale sui rilievi abruzzesi (Artese et al., 2017) risulta associata alle montagne e, in particolare, ai massicci principali, aree ad elevata altitudine di massa ove, al di sopra d’un ampia fascia di pertinenza delle formazioni forestali, in prevalenza faggete (Fagus sylvatica), si- ano disponibili vaste aree aperte (praterie primarie e secondarie, crinali), habitat di alcune tra le specie preda generalmente ritenute di primaria importanza per le esigenze trofiche della specie (Borlenghi, 2011). A dispetto dell’esistenza di alcuni ambiti considerati idonei alla nidificazione (Pellegrini & Pinchera, 2004 e 2005) l’Aquila reale risultava tuttavia assente nei settori montuosi e collinari pre-appenninici del versante adriatico. Area di studio L’area di studio considerata nel presente lavoro è estesa 254 km² (Fig. 1), centrata sul confine tra i ter- ritori di Borrello (804 m s.l.m.), Civitaluparella (903 m) e Fallo (575 m), comuni siti nella media vallata del Fiume Sangro in provincia di Chieti, a cavallo del bacino idrografico del fiume stesso nel settore chietino compreso tra le province di L’Aquila e Iser- nia; è in diretta continuità ecologica con la Maiella (M. Amaro: 2.795 m) attraverso l’allineamento del Monte Secine (1.866 m) con i Monti Pizzi (Monte Lucino, 1.626 m) ed i rilievi collinari della Valle dell’Aventino in sinistra orografica, e con l’Alto - Molise (Monte Campo, 1.746 m s.l.m.) nella parte destra. Nel contesto delle aree pre-appenniniche del settore adriatico abruzzese il Medio Sangro spicca per una generale eterogeneità ambientale la cui natura è da ricercare, prima di tutto, in una complessa caratterizzazione geologica. Si tratta infatti dei paesaggi montuosi e collinari impostati su serie sedimentarie (argille varicolori, argille marnose e arenarie) del Bacino Molisano con rilievi che raramente superano i 1.500 metri s.l.m. origi- nati per sovrascorrimento di cospicui affioramenti carbonatici (brecce calcaree, calcareniti). I limiti, nella maggior parte dei casi tettonici, tra le diverse formazioni, sono segnati da veri e propri piani di faglia e scarpate morfologiche (Ranieri, 2005). Le quote, affatto modeste, danno luogo ad una fascia occupata dal faggio ristretta in senso altitu- dinale che, soprattutto nei versanti freschi, risale sino ad avvolgere le cime principali. Nel piano sub-montano le morfologie collinari sono dominate da querceti a Cerro (Quercus cerris) e Roverella (Quercus pubescens) e da boschi misti di neo-for- mazione; in una ristretta zona di tensione tra i due piani sono presenti fitocenosi mesofile ad Abies alba, specie presente in nuclei a carattere relittua- le, come quello della Riserva Naturale Regionale Abetina di Rosello (CH) al cui interno vegetano numerosi esemplari che superano i 40-50 metri di altezza. In altri contesti, condizioni edafo-xerofile marcate e critiche conducono a fisionomie, rispet- tivamente, del tipo orno-ostrieto e a formazioni rupestri di Leccio (Quercus ilex). Nel complesso (Fig.1) i boschi occupano il 40% dell’area di studio, per una superficie complessiva di 10.400 ettari. Le soluzioni di continuità alla copertura forestale sono rappresentate da pascoli (35%), incolti e pascoli cespugliati (15%), seminativi (5%), aree antropiz- zate (3%) e ambienti rocciosi (2%); i seminativi sono sovente accorpati sui terreni meno acclivi, in superfici aziendali relativamente ampie (anche > 100 ha) destinate prevalentemente a colture cerea- licole. I pascoli sono estesi su un’area complessiva di 9.000 ettari, escluse le porzioni in abbandono (3.750 ha) e in lenta evoluzione verso varie forme di vegetazione legnosa. Nella valle, attraversata da imponenti infrastrut- ture viarie impostate sull’asta fluviale del Sangro, le densità abitative umane risultano molto basse, concentrate in piccoli insediamenti di altura che raramente superano i 200-300 abitanti. A dispet- to dell’inserimento di tutto il settore all’interno dell’I.B.A. 115 (Maiella, Monti Pizzi e Monti Fren- tani), nell’area sono presenti impianti con aero- generatori (pale eoliche di media e grande taglia) per la produzione di energia elettrica. Gran parte del crinale dei Monti Frentani da Monteferrante a Castiglione Messer Marino è ormai occupato dalle pale eoliche, mentre nel settore di crinale in sini- stra orografica (Monti Lupari) i progetti, avversati da rappresentanze della comunità locale e da al- cune associazioni ambientaliste, ad oggi risultano scongiurati. Oltre al settore sud-orientale del Parco Naziona- le della Maiella con il comprensorio Pizzi-Secine, il Medio Sangro include le due Riserve Naturali Regionali dell’Abetina di Rosello e quella delle ANNALES · Ser. hist. nat. · 34 · 2024 · 2 303 Andrea DE ANGELIS & Mario PELLEGRINI: NUOVO SITO DI NIDIFICAZIONE DI AQUILA REALE AQUILA CHRYSAETOS NEL SUBAPPENNINO ABRUZZESE, 301–314 Fig. 1: Rappresentazione schematica dell'area di studio (254 km²) elaborata sulla base di un raggio pari a 9 km dalla collocazione del nido utilizzato nel 2020. In scala di grigio la caratterizzazione per categorie di uso del suolo: boschi (40%), pascoli (35%), incolti e pascoli cespugliati (15%), seminativi (5%), aree antropizzate (3%) e ambienti rocciosi (2%). Sl. 1: Shematski prikaz obravnavanega območja (254 km²), izdelan na podlagi polmera, ki je enak 9 km od lokacije gnezdišča, uporabljenega v letu 2020. Siva lestvica prikazuje karakterizacijo po kategorijah rabe tal: gozd (40 %), pašniki ( 35 %), neobdelani in grmičasti pašniki (15 %), njive (5 %), antropizirane površine (3 %) in kamnita okolja (2 %). ANNALES · Ser. hist. nat. · 34 · 2024 · 2 304 Andrea DE ANGELIS & Mario PELLEGRINI: NUOVO SITO DI NIDIFICAZIONE DI AQUILA REALE AQUILA CHRYSAETOS NEL SUBAPPENNINO ABRUZZESE, 301–314 Cascate del Verde di Borrello (entrambe afferenti alla ZSC/ZPS IT7140212), la ZSC/ZPS Bosco Paga- nello (IT7140115), la ZSC/ZPS Gole di Pennadomo e Torricella Peligna (IT7140210), la ZSC/ZPS Mon- te Pallano e Lecceta d’Isca d’Archi (IT7140211), le ZSC molisane Bosco di Vallazzuna (IT7218217) e Abeti Soprani – Monte Campo – Monte Ca- stelbarone – Sorgenti del Verde (IT7218215). Da precisare, che tutte le ZSC del territorio abruzzese sopra citate, sono incluse nell’IBA 115 “Maiella e Monti Frentani” e sono state riconosciute anche come ZPS con D.G.R. 476/2018, proprio per la presenza di importanti specie ornitiche tra cui la più consistente popolazione in ambito regionale di Nibbio reale (Milvus milvus), concentrata proprio in quest’area. Presenza storica recente Tre uccisioni avvenute nel secolo appena trascor- so rappresentano la parte più cospicua delle notizie sulla presenza storica dell’Aquila reale nel Medio Sangro. Il primo caso documentato (Associazione Pro-loco Rosello, 1999), dell’ottobre 1934, vide l’ab- battimento nel territorio di Rosello (Monte La Rocca, 1.239 m) di un giovane individuo (Fig. 2). L’aquila uccisa a bastonate da un pastore a Borrello negli anni ‘80 (A. De Angelis, informazioni personali), in una località molto vicina alla precedente, era invece un esemplare con piumaggio da immaturo che fu poi imbalsamato e tuttora si conserva nei locali del municipio dello stesso comune. Stessa sorte per un altro esemplare, catturato negli anni ‘70 a Gesso- Fig. 2: Un giovane individuo di Aquila reale catturato dal sig. Sorrento il 12 ottobre 1934, in località Monte La Rocca nel territorio di Rosello (CH). Sl. 2: Mladosten primerek planinskega orla, ki ga je ujel g. Sorrento 12. oktobra 1934, na lokaliteti Monte La Rocca v območju Rosello (CH). ANNALES · Ser. hist. nat. · 34 · 2024 · 2 305 Andrea DE ANGELIS & Mario PELLEGRINI: NUOVO SITO DI NIDIFICAZIONE DI AQUILA REALE AQUILA CHRYSAETOS NEL SUBAPPENNINO ABRUZZESE, 301–314 palena (CH) - territorio posto tra Maiella orientale e Medio Sangro - imbalsamato e tuttora conservato in una sala del municipio (A. Manzi, informazione personale). Un cenno, affatto vago e generico, alla percepita presenza di “qualche aquila” nel territorio di Borrello lo si ritrova solo in un contributo di topo- grafia storica locale (Ferrari, 2009). L’areale di distribuzione attualmente noto indica nelle coppie della Maiella sud-orientale (nidi di Ta- ranta Peligna, Porrara e Fara San Martino) la porzio- ne di popolazione attualmente più vicina all’area di studio; un terzo sito di nidificazione storico, posto al limite nord-occidentale della stessa, quello di Monte dell’Ellera (1.473 m) nel territorio di Ateleta (AQ), non risulta più utilizzato da almeno tre decenni. Nel Piano di Gestione della Riserva Naturale Regionale “Abetina di Rosello” (Pellegrini & Pinchera, 2004), per l’Aquila reale veniva “profeticamente” riportata la seguente nota: “(...) nel comprensorio del Medio Sangro si stima la presenza di altri siti potenzial- mente idonei alla specie (anche le balze rocciose all’interno della Riserva delle Cascate del Verde e le vicine pareti occidentali di Monte Campo, nel terri- torio molisano, hanno le potenzialità per ospitare il sito di nidificazione di una eventuale coppia), ipotesi da non escludere come area occupata in passato, seppure in assenza di riferimenti certi in letteratura (Di Carlo, 1980). Sul territorio della Riserva sono stati infatti osservati più volte individui in volo, sia giovani probabilmente erratici, sia individui adulti probabilmente appartenenti alle coppie più limitro- fe, come quelle del versante orientale e meridionale della Maiella”. Una serie di dati relativi al principio del nuovo millennio evidenziò proprio per il territorio compreso tra Medio Sangro e Maiella orientale un quadro di presenza occasionale e/o uno status della specie non determinato: al novembre 2004 risaliva l’avvista- mento di un’Aquila reale compiuto da rocciatori in arrampicata nel territorio di Pizzoferrato (R. Iubatti, informazione personale). Altre segnalazioni (M. Pel- legrini, informazione personale), tutte in Provincia di Chieti, riguardavano: un individuo sub-adulto osservato il 22 novembre 2013 posato sul Monte Serra (1.268 m) nel comune di Montenerodomo e poi scacciato da alcuni nibbi reali; due immaturi avvistati il 14 dicembre dello stesso anno nell’area collinare di Grotta Rimposta (quote medie inferiori ai 500 m) a Casoli; un immaturo sul Monte Tutoglio (355 m) a Pennadomo il 15 gennaio 2015. Il 12 ottobre dello stesso anno veniva fotografato (Cuomo & De Angelis, 2016) un esemplare dal piumaggio immaturo oggetto di mobbing da parte di due poiane sopra l’abitato di Fallo (575 m); si tratta quindi di un’area a ridosso del Fiume Sangro già più discosta dalla Maiella. Il 14 gennaio 2017 due individui furono osservati (A. Manzi, informazione personale) nei pressi della loc. La Morgia (827 m) nel territorio di Gessopalena (CH). Al mese di Febbraio 2017 risalgono invece due diversi avvistamenti (A. De Angelis, informazione personale), ancora riferibili all’area tra Fallo, Borrello (804 m) e Montelapiano (740 m). MATERIALI E METODI Al fine di individuare e localizzare il centro di gravitazione di questa nuova coppia di aquile che, da osservazioni dell’ottobre 2017, si ipotizzava ricadesse a cavallo di un’area tra le rive del Sangro nei comuni di Fallo, Borrello e Civitaluparella - si è affrontata una prima fase di studio incentrata sulla valutazione delle direttrici di volo d’ogni avvistamento diretto o raccol- to da terzi ritenuti affidabili. A queste azioni abbiamo affiancato l’esecuzione di transetti di fondo-valle, in modo da avere la possibilità di effettuare osservazioni contestuali all’arrivo delle aquile su eventuali posatoi abituali. Una volta scoperta l’area dormitorio, la stessa è stata posta sotto controllo ed ha costituito il fulcro del monitoraggio, basato sull’osservazione da due postazioni favorevoli situate nella valle principale, a più di 1 km dalla zona dei posatoi. In nessun caso si è arrischiato un avvicinamento ulteriore e/o messi in atto comportamenti potenzialmente disruptivi per l’attività delle aquile (Walker, 2017). Ai dati raccolti - presenza, status, variabili ambientali - nelle sessioni da punto fisso nella core area di nidificazione (n. 230, pari a 318,24 ore complessive; tabella 1), sono stati integrati quelli ottenuti su base opportunistica compiuti dagli autori e da due persone locali ritenute, in base a comprovata esperienza, affidabili. Al fine di raccogliere dati sull’utilizzo del territorio al di fuori della zona dei posatoi si è adottato l’approccio di eseguire, con cadenza mensile, transetti su un’area circolare di circa 3 km di raggio, di cui il quartiere dormitorio rappresentasse il centro. RISULTATI 2017 (sforzo di campo: 36 appostamenti pari a 56,83 ore): Dal 2017 le osservazioni compiute opportunistica- mente nell’area si intensificarono: nelle giornate tra il 23 e il 24 agosto a Rosello (927 m) vennero osservati un giovane dell’anno in volo tra il centro abitato e l’Abetina, e un individuo adulto presumibilmente in caccia, proveniente dal confinante territorio di Borrello e diretto verso Roio del Sangro (840 m). A partire dalla seconda settimana di ottobre dello stesso anno e all’in- terno d’un settore circoscritto (Borrello, Civitaluparella, Fallo, Montelapiano), la presenza di tre individui asso- ciati, una coppia riproduttiva e il giovane dell’anno, ha quindi determinato lo stimolo a cominciare un vero e proprio monitoraggio della specie sul territorio, su cui dati e risultati è basato il presente contributo. ANNALES · Ser. hist. nat. · 34 · 2024 · 2 306 Andrea DE ANGELIS & Mario PELLEGRINI: NUOVO SITO DI NIDIFICAZIONE DI AQUILA REALE AQUILA CHRYSAETOS NEL SUBAPPENNINO ABRUZZESE, 301–314 Nel corso del mese di novembre 2017, finalmente individuammo la zona dei posatoi in una impervia val- le secondaria dell’asta fluviale del Sangro (Fig. 3) ca- ratterizzata dall’abbondanza di pareti rocciose, elevata copertura boschiva e scarsa presenza umana. I posatoi, molto ravvicinati, erano costituiti dalle branche secche esterne di lecci rupestri in formazione chiusa posta su gradoni rocciosi a mezza costa (650 m s.l.m.). Le prime sessioni, nel corso dello stesso autunno 2017, confermarono l’utilizzo regolare da parte di alme- no due aquile degli stessi posatoi notturni e portarono all’individuazione, a poche decine di metri dalla zona dei posatoi stessi, di un grosso nido (nido 1) collocato su una piccola cengia rocciosa alla quota di 670 m circa s.l.m. presso una parete con esposizione prevalente a nord-est; la nicchia è posta sull’orlo del salto orografico verticale tra la Valle del Sangro e il settore - per larghi tratti assimilabile ad un altopiano - di confine tra le province di Chieti ed Isernia coronato dal crinale di Monte Campo - Monte San Nicola. In considerazione della costante associazione del giovane dell’anno con gli adulti è indubbio che un evento riproduttivo avesse avuto luogo nella valle, anche se non si poteva avere nessuna certezza riguardo al nido utilizzato. La copertura visiva di un’area più vasta, ha con- sentito l’osservazione dell’uso da parte delle aquile, e soprattutto del giovane dell’anno, di molteplici posatoi temporanei anche nella sinistra orografica (soprattutto nel territorio di Fallo), alcuni dei quali posti a distanze inferiori ad 1 km dai centri abitati più vicini all’area dei posatoi abituali. 2018 (sforzo di campo: 82 appostamenti pari a 108,33 ore): L’ultimo avvistamento certo del giovane assieme ai genitori fu quello del 17 febbraio del 2018 a cui fece seguito una frequentazione costante, da parte degli adulti, dei posatoi abituali e del territorio circostante Fig. 3: Il territorio della Riserva Naturale Regionale “Cascate del Rio Verde” nel Medio Sangro dove è localizzato il sito riproduttivo della nuova coppia di Aquila reale descritto in questo lavoro. Sl. 3: Ozemlje regionalnega naravnega rezervata »Cascate del Rio Verde« v Medio Sangro, kjer se nahaja gnezdišče novega para planinskega orka, opisanega v tem delu. ANNALES · Ser. hist. nat. · 34 · 2024 · 2 307 Andrea DE ANGELIS & Mario PELLEGRINI: NUOVO SITO DI NIDIFICAZIONE DI AQUILA REALE AQUILA CHRYSAETOS NEL SUBAPPENNINO ABRUZZESE, 301–314 sino al principio dell’estate (giugno), poi le osserva- zioni diminuirono drasticamente per cessare del tutto al principio di agosto. Nessun giovane dell’anno fu avvistato nell’area nel periodo tra tarda estate e prin- cipio dell’autunno, facendo quindi supporre che la stagione riproduttiva del 2018 fosse fallita, per motivi sconosciuti o che non vi fosse stata deposizione. La frequentazione dei posatoi abituali da parte della coppia è documentata fino al 18 ottobre mentre l’ul- timo avvistamento dell’anno di un’aquila adulta nella stessa zona avvenne il 14 novembre. 2019 (sforzo di campo: 10 appostamenti pari a 20 ore): Il 2019 è stato un anno contraddistinto da scarsissime attestazioni della presenza delle aquile nell’area consueta; gli unici dati riguardano due os- servazioni opportunistiche (18 agosto e 26 settembre) di un individuo immaturo in volo sopra l’Abetina di Rosello. La mancanza di avvistamenti nei pressi del quartiere dormitorio si rispecchiò anche nell’assenza di segnalazioni da parte degli abitanti del settore interessato, a cavallo della Valle del Sangro, gli stes- si che avevano fornito diversi dati di presenza nel corso dell’annata precedente (2017-2018). Possibile che anche nel 2019 la coppia di aquile non si sia riprodotta. 2020 (sforzo di campo: 31 appostamenti pari a 39 ore complessive): Nelle prime giornate di gennaio del 2020 os- servammo almeno un individuo adulto all’interno della presunta core area mostrando di far riferi- mento alla stessa per le ore di inattività notturne. A conferma della fedeltà al territorio, il 2 marzo una coppia di aquile adulte fu da noi osservata in volteggio sul limitrofo crinale di Roitello (608 m), nei pressi di Villa Santa Maria, a ridosso del torrente Turcano. Disturbati da alcune cornacchie, i due rapaci si allontanarono in direzione dell’area dormitorio esibendosi anche in una sequenza di volo a festoni. Risale al successivo 30 aprile l’avvistamento di quattro aquile reali viste incrociare le traiettorie in volteggio, alte tra Fallo e Civitaluparella; due di queste si dirigeranno prontamente verso l’area dor- mitorio nota; lo stesso giorno, all’interno del nido 1, sul cui perimetro esterno si notava l’aggiunta di materiale vegetale fresco, veniva osservata un’aquila adulta in atteggiamenti di delicata dedizione e cura Fig. 4: Il sito riproduttivo fotografato il 13 luglio 2020 con l’adulto sul posatoio abituale e il giovane ancora nel nido, involatosi pochi giorni dopo. Sl. 4: Gnezdišče, fotografirano 13. julija 2020 z odraslim na običajnem počivališču, mladiči pa so še vedno v gnezdu, saj so odleteli nekaj dni kasneje. ANNALES · Ser. hist. nat. · 34 · 2024 · 2 308 Andrea DE ANGELIS & Mario PELLEGRINI: NUOVO SITO DI NIDIFICAZIONE DI AQUILA REALE AQUILA CHRYSAETOS NEL SUBAPPENNINO ABRUZZESE, 301–314 verso la concavità interna. Al principio di maggio risale la prima osservazione e documentazione di uno degli adulti nell’atto di strappare pezzetti di carne da una carcassa di lepre (Lepus sp.) e avvici- narli col becco all’interno del nido. Le osservazioni dirette del pulcino, uno solo, partono dal primo di giugno e si protraggono per gran parte del periodo di allevamento al nido (Fig. 4). Negli ultimi due giorni precedenti l’involo, l’aquilotto sembrava indugiare sull’orlo del precipizio sottostante per poi ritirarsi in lunghe fasi di riposo. Il mattino del 23 luglio, dopo le ore 9:00 il nido è risultato vuoto; l’ultima osserva- zione del giovane nel nido è stata quella delle 19:30 della sera precedente. A supporto dell’osservazione che il primo involo è spesso assimilabile ad un rocambolesco atterrag- gio nelle immediate vicinanze del nido (Walker, 2017), il 3 di agosto il giovane si trovava confinato, e parzialmente occultato dalla vegetazione, su una minuscola protuberanza rocciosa sulla stessa parete del nido, poche decine di metri discosto da questo ed a quota leggermente più bassa (660 m); le pri- me localizzazioni del giovane in volo, a meno di 1 km dal sito di nidificazione, riguardano la prima settimana di settembre. Diversamente dal giovane presente nella stessa area nel 2017-2018, per questo del 2020 non è stato documentato nessun episodio di vocalizzazione, né in fase di allevamento né nel corso dei voli insieme ai genitori. Le tre aquile sono state più volte individuate mentre sorvolavano le dorsali collinari ricche di pinnacoli rocciosi in sinistra orografica della valle del Sangro (territori di Fallo e Civitaluparella), immediatamente a nord del sito riproduttivo; tuttavia, dalla seconda decade di novembre gli avvistamenti sono cessati del tutto e quando, a metà dicembre, due individui hanno fatto la loro ricomparsa nella core area, si trattava di esemplari adulti. 2021 (sforzo di campo: 35 appostamenti pari a 52,17 ore) Nel corso di gennaio e febbraio 2021 le due aquile venivano osservate strettamente associate sia in volo che nella scelta dei posatoi, le cui localiz- zazioni riguardano un settore posto a 1,3 km dalla zona dei posatoi notturni noti e a circa 1 km dal nido del 2020, in un’area più interna ed appartata rispetto alle infrastrutture viarie principali e al Fiu- me Sangro. Una delle aquile ha utilizzato anche un posatoio noto dal 2018 mentre particolare interesse veniva mostrato, da entrambe, per una postazione collocata su lecci rupestri le cui chiome orlano il salto verticale della parete principale a circa 700 m s.l.m. Su questa, appena sotto il suddetto posatoio tra i lecci, individuammo il secondo nido attivo (nido 2), sicuramente occupato in data 23 marzo. Si trattava di un esiguo accumulo di materiale vegetale su stretto ripiano roccioso associato ad una piccola cavità ove la luce diretta non penetra mai, a quota 670 m circa ed esposto a NE. La visuale sul sito è pessima, sia per la distanza maggiore dalle nostre postazioni consuete che per la scarsa illuminazione. Tuttavia, allo scopo di non rischiare, avvicinandosi, di arrecare qualsivoglia sorta di disturbo, si decise di continuare ad utilizzare le stesse postazioni di osservazione. A metà maggio risultava evidente che anche per quell’anno sarebbe stato solo un pulcino ad essere allevato; il pullus trascorreva il tempo intercorrente tra i pasti all’interno della ca- vità, pertanto era osservabile quasi esclusivamente all’arrivo degli adulti, quando si spingeva all’ester- no del riparo per nutrirsi. Nel corso della sessione di controllo rispetto alla fase finale di allevamento al nido effettuata in data 19 luglio il nido risultava vuoto e le aquile adulte assenti; di pochi giorni dopo (9 agosto) è stata la segnalazione (A. Manzi, informazione personale) di una coppia di aquile adulte in volo sopra Coste Petrilli (1.036m) nel ter- ritorio di Rosello (CH), località che dista circa 3 km dal nido dell’anno. Altre cinque sessioni a cavallo della fine di settembre e il principio di ottobre non restituirono alcuna evidenza della presenza della specie all’interno della core area e/o nei settori li- mitrofi. Il 26 ottobre due aquile adulte effettuarono però quello che sembrò a tutti gli effetti un volo di display territoriale, proprio sopra l’area dei due siti di nidificazione noti; le successive nove sessioni, tra novembre e dicembre, avrebbero però dato tutte esito negativo, con nessun avvistamento. La man- canza di osservazioni di giovani dell’anno nell’area ci ha lasciato ipotizzare che l’aquilotto osservato nel nido a primavera inoltrata non fosse arrivato a completare lo sviluppo e quindi all’involo. 2022 (sforzo di campo: 26 appostamenti pari a 31,91 ore) Al principio del 2022 la coppia fu osservata regolarmente all’interno della core area. Le due aquile mostrarono una stretta associazione nella fase di riposo e fu in seguito possibile osservare anche alcune episodi di accoppiamento. Dal 17 marzo osservammo l’inizio della fase di cova nel nido del 2020 (n.1); al principio di maggio risultò evidente l’allevamento di almeno un pulcino ma, esattamente un mese dopo il nido risultava abbandonato (F in tabella 1) con nessuna evidenza della presenza delle aquile all’interno dell’area. 2023 (sforzo di campo: 5 appostamenti pari a 5 ore) Nel 2023, in due sessioni, fine aprile e inizio giugno, viene documentata l’avvenuta nidificazione nel nido utilizzato negli anni 2020 e 2022, con l’allevamento di un solo pulcino. Non abbiamo però dati sull’esito della stagione riproduttiva. ANNALES · Ser. hist. nat. · 34 · 2024 · 2 309 Andrea DE ANGELIS & Mario PELLEGRINI: NUOVO SITO DI NIDIFICAZIONE DI AQUILA REALE AQUILA CHRYSAETOS NEL SUBAPPENNINO ABRUZZESE, 301–314 2024 (sforzo di campo: 5 appostamenti pari a 5 ore) Lo stesso vale per il 2024 ove pure è stata osser- vata la fase di cova (aprile) all’interno dello stesso nido ma non si è avuto possibilità di monitoare il resto della stagione riproduttiva. DISCUSSIONE E CONCLUSIONI Un’escalation di avvistamenti occasionali (2004- 2017) di individui di Aquila reale su aree ricadenti in un settore esterno all’areale di distribuzione noto per la specie ha stimolato una ricerca che a partire dall’autunno del 2017 ha raccolto le prime evidenze della presenza di una nuova coppia per l’Abruzzo nel Medio Sangro. Distaccata geografica- mente dal baricentro della popolazione appenninica coincidente con l’asse della dorsale dai massici e le montagne più elevate, la coppia rappresenta at- tualmente l’avamposto orientale della popolazione regionale (Fig. 5). Il sito di nidificazione più vicino, tra quelli storicamente noti, risulta essere quello di Monte dell’Ellera (Ateleta), localizzato a soli 11 km di distanza, ma non viene più occupato da almeno tre decenni. Le coppie più prossime all’area di studio sono invece quelle della Maiella SE - nidi di Taranta Peligna e Porrara, distanti entrambi circa 19 km e Fara San Martino a 22 km. Altri siti, sulla Maiella e nell’Alto Sangro (Parco Nazionale d’Abruzzo, Lazio e Molise) distano circa 30 km; molto più distanti i siti del Molise. La quota dei nidi della coppia studiata (670 e 700m s.l.m.) è significativamente bassa se confrontata con altri areali dell’Appenino centrale e dell’Italia in generale (Borlenghi, 2014). Il territorio della nuova coppia, caratterizzato da una elevata varietà di specie preda potenziali (Pelle- grini & Pinchera, 2014; Masciovecchio et al., 2015), sembrerebbe un contesto adeguato alle esigenze tro- fiche dell’Aquila reale. Tra gli ungulati selvatici, oltre al Capriolo (Capreolus capreolus) e al Cinghiale (Sus scrofa) presumibilmente presenti con popolazioni abbondanti - il Cervo (Cervus elaphus) è protagonista di un lento fenomeno di ricolonizzazione a partire dalle popolazioni “serbatoio” dei vicini parchi na- zionali, probabilmente rallentato dal perdurare di un fenomeno strisciante di prelievo illegale (A. De An- gelis, informazione personale). Nel quadro faunistico generale dell’area di studio, tra gli altri mammiferi che rientrano nello spettro trofico dell’Aquila reale, oltre alla Lepre comune e alla Volpe (Vulpes vulpes), sono rappresentati tutti i mustelidi della fauna ap- penninica, lo Scoiattolo nero (Sciurus meridionalis) ed il Ghiro (Glis glis), quest’ultimo particolarmente abbondante nei querceti con piante mature (A. De Anno Sforzo di campo (giornate ed ore complessive) Presenza (nella core area) Deposizione Cova Allevamento (n. pulli rilevati) Involo (data) Post-involo (ultima osservazione) Identificativo nido 2017 36 (56,83) 1 (17/02/2018) ? 2018 82 (108,33) 2019 10 (20) 2020 31 (39) 1 23/07 20/11/2020 1 2021 35 (52,17) 1 2 2022 26 (31,91) 1 (F) 1 2023 5 (5) 1 ? ? 1 2024 5 (5) (6/04) ? ? ? 1 totale 230 (318,24) Tab. 1: Quadro riepilogativo delle annate riproduttive dell’Aquila reale nell’area oggetto di studio e dello sforzo di campo profuso (monitoraggio da punti fissi nella core area di nidificazione, esclusi transetti). Le campiture evidenziate (in grigio) indicano il riscontro positivo delle singole fasi del ciclo riproduttivo. Il punto interrogativo è utilizzato in assenza di dati. Id. nido: numero identificativo del nido utilizzato; F= fallimento di allevamento accertato; la data (6/04) si riferisce all’ultima osservazione utile compiuta durante la stesura di questo lavoro. Tab. 1: Povzetek gnezditvenih let planinskega orla na proučevanem območju in opravljenega terenskega dela (monitoring s stalnih postaj v osrednjem gnezditvenem območju, razen transektov). Poudarjene celice (v sivi barvi) označujejo pozitivne povratne informacije posameznih faz razmnoževalnega cikla. Vprašaj je uporabljen v prim- eru pomanjkanja podatkov. ID gnezda: identifikacijska številka uporabljenega gnezda; F= potrjen neuspeh vzreje; datum (6/04) se nanaša na zadnjo uporabno ugotovitev med pisanjem tega dela. ANNALES · Ser. hist. nat. · 34 · 2024 · 2 310 Andrea DE ANGELIS & Mario PELLEGRINI: NUOVO SITO DI NIDIFICAZIONE DI AQUILA REALE AQUILA CHRYSAETOS NEL SUBAPPENNINO ABRUZZESE, 301–314 Angelis, informazione personale) e nei boschi misti, soprattutto nelle formazioni forestali con presenza di Abete bianco (Pellegrini & Pinchera, 2014). A parziale completamento del quadro generale di prede potenziali delle aquile, in un settore di pascoli abbandonati tra i comuni di Fallo, Civitalu- parella e Montelapiano (740 m) è stata segnalata (A. De Angelis, osservazione personale) anche la Star- na (Perdix perdix), specie oggetto di un contestuale tentativo di reintroduzione a scopo venatorio. Sono inoltre presenti abbondanti popolazioni di turdidi, corvidi e columbidi (Columba palumbus in parti- colare) e si presume che il sorvolo occasionale da parte delle aquile del Lago del Sangro, bacino di origine artificiale per sbarramento del fiume stesso, possa anche essere messo in relazione alla presen- za di numerose specie ornitiche (Pellegrini, 2018) potenzialmente predabili. Non essendo state compiute osservazioni di alimentazione su carcasse o di predazione diretta, si ignora il peso relativo del bestiame domestico - presente limitatamente a piccole realtà sparse di allevamento di ovi-caprini e a pochi capi bovini al pascolo semi-brado, concentrati nell’area tra la provincia di Chieti e l’Alto Molise - nella dieta delle aquile. Il monitoraggio del nuovo sito riproduttivo e dell’area circostante ha raccolto elementi utili a ri- tenere molto plausibile la nidificazione per il 2017 (adulti e giovane dell’anno associati e presenti continuativamente fino alla primavera successiva) e, soprattutto, ha documentato l’allevamento di quattro pulli (dal 2020 al 2023), dopo due annate (2018 e 2019) apparentemente fallimentari in cui l’effettiva riproduzione non è stata confermata. Sulla base delle numerose osservazioni primaverili ed estive della coppia svincolata da qualsiasi atti- vità di cura parentale, e sulla scorta dell’assenza di avvistamenti/segnalazione di giovani aquile nell’area, escluderemmo infatti che nel 2018 la coppia abbia allevato con successo. Va forse osservato che i mesi di maggio e giugno 2018 sono stati straordinariamente piovosi e la pioggia incessante avrebbe potuto influire (Walker, 2017) sia sul potere di termoregolazione dei pulcini che sulla capacità da parte degli adulti di cacciare e rifornire adeguatamente la prole. Per il 2019 il fallimento è più incerto perché gli stessi avvistamenti della specie sono stati scarsissi- mi e coincidenti con due osservazioni consecutive di un giovane immaturo; rimane il dubbio che potrebbe essersi trattato di un giovane allevato in un nido non individuato perché posto in un altro settore della valle. Nella stagione riproduttiva del 2020 abbiamo documentato lo sviluppo di un solo aquilotto che si è involato tra il 22 e il 23 luglio, ed ha frequentato l’area circostante almeno fino al mese di Novembre; nel 2021, l’unico pulcino presente, allevato in un nido diverso da quello della prece- dente annata riproduttiva, è stato monitorato con continuità fino al mese di maggio, mese in cui, nonostante le difficoltà dovute alla distanza di osservazione e alla collocazione del nido (cavità mai illuminata) l’aquilotto è sembrato essere in salute e molto reattivo al momento dell’arrivo dei genitori. Tuttavia, il nido 2 è risultato deserto alla sessione di controllo calibrata sul periodo di involo avuto nel 2018 e non si hanno quindi dati sull’ef- fettiva conclusione, e coronamento, del periodo di allevamento. Nei tre anni successivi (2022, 2023 e 2024) è stato riutilizzato il nido 1 e, nei primi due casi, è stato osservato un solo pulcino; nel 2022, per cause ignote, l’allevamento non è stato portato a termine e già a giugno il nido risultava abbandonato. Sull’esito delle stagioni riproduttive del 2023 (un pulcino) e del 2024 (deposizione avvenuta) - per cui è confermato l’uso del nido 1 - non abbiamo, per difetto di monitoraggio, dati disponibili. La localizzazione dei nidi utilizzati dalla nuova coppia su pareti rocciose praticamente inaccessibili all’uomo nel contesto di ambiti vallivi e versanti appa- rentemente poco disturbati, conferma il pattern noto per la specie sull’Appennino. Va tuttavia osservato come, ad una posizione “sicura e protetta” dell’area riproduttiva e posatoi abituali corrisponda, in questo caso di studio, un immediato intorno antropizzato che comprende centri abitati, una ferrovia dismessa, un sito d’interesse turistico normalmente molto frequen- tato, importanti strade ed altre infrastrutture viarie, li- nee dell’alta tensione e, al margine dell’area di studio considerata, un cospicuo allineamento di crinale di pale eoliche. L’area prescelta dalla nuova coppia del Medio Sangro quale centro dell’attività circannuale si caratterizza per aver conosciuto un ritorno al selvatico dopo una fase storicamente non troppo lontana di af- francamento, dissodamento e messa a coltura di terre marginali in possesso feudale (Ferrari, 2009). All’in- terno di quello che oggi appare un ambiente forestale compatto e a tratti impenetrabile, i resti di imponenti infrastrutture in pietra a secco (muri, sostruzioni, canali, ecc.) realizzate tra ‘800 e ‘900, testimoniano l’enorme sforzo profuso dalla comunità locale per conquistarsi nuove superfici coltivabili (Manzi, 2013). All’abbandono sostanziale delle attività agro- silvo-pa- storali (nel cui contesto sociale ed economico si erano verificate le uccisioni di giovani aquile), coincidente con la metà del secolo scorso, i generosi serbatoi di naturalità residua costituiti da parchi e riserve del sistema di aree protette abruzzesi, hanno vero- similmente e lentamente nutrito il processo lento di auto-organizzazione tramite il quale l’area ha riconquistato l’attuale assetto naturalistico, con ANNALES · Ser. hist. nat. · 34 · 2024 · 2 311 Andrea DE ANGELIS & Mario PELLEGRINI: NUOVO SITO DI NIDIFICAZIONE DI AQUILA REALE AQUILA CHRYSAETOS NEL SUBAPPENNINO ABRUZZESE, 301–314 l’Aquila reale e il Lupo (Canis lupus) al vertice della piramide alimentare. Pur non disponendo di dati certi circa la consistenza numerica delle popola- zioni di ungulati selvatici e di altre potenziali prede del rapace nell’area di studio, la costanza della nostra presenza sul campo può ragionevolmente testimoniare per una abbondante e diversificata disponibilità trofica, soprattutto di prede vive. La distanza di osservazione dai nidi, adottata per ovvie ragioni di minimizzazione del disturbo, non ha fino- ra consentito un’adeguata introspezione nella dieta del periodo riproduttivo; se la predazione sulla le- pre (resti nel nido) e sul colombaccio (osservazione diretta) erano in qualche modo prevedibili, quella sul ghiro (un caso documentato di trasporto al nido) ci è sembrata degna di interesse. Il ghiro è risultato essere infatti una risorsa determinante nella dieta dell’Aquila reale sulle Alpi - Dolomiti Friulane (Bor- go, 2009) e in un settore del Preappennino centrale (Monti Lucretili; Confaloni et al., 2013) ove risulta la specie numericamente più frequente (21,3 %) tra quelle riportate al nido. Il roditore è presente in gran parte degli ambienti forestali dell’area di studio e le osservazioni di volteggi persistenti sopra le cime degli alberi, in particolare sull’Abetina di Rosello che ne ospita una popolazione numerosa, potrebbero, in accordo con quanto rilevato in altri contesti di faggeta (Borlenghi, informazione perso- nale), confermare questo tipo di caccia. Che la cop- pia utilizzi ambienti, e quindi risorse, diversificate, potrebbe essere dedotto dalla contestualizzazione ambientale e fisionomica-vegetazionale dei voli al di fuori della valle riproduttiva: aste fluviali, pendi- ci erbose, orli boschivi, crinali scoperti, seminativi e quindi boschi ripariali, querceti termofili, boschi mesofili (cerrete, boschi misti, faggete, abieti-fag- gete), ecc. In particolare, l’importanza strategica di alcuni settori esterni alla valle riproduttiva ci è Fig. 5: Distribuzione dei siti di nidificazione certa delle 20 coppie di Aquila reale presenti in Abruzzo nel 2016 (Artese et al., 2017), con la stella viene indicato il sito della nuova coppia oggetto del presente contributo. Sl. 5: Razširjenost gnezdišč 20 parov planinskih orlov, prisotnih v Abrucih leta 2016 (Artese in sod., 2017), z zvezdico, ki označuje gnezdo novega para, obravnavanega v tem prispevku. ANNALES · Ser. hist. nat. · 34 · 2024 · 2 312 Andrea DE ANGELIS & Mario PELLEGRINI: NUOVO SITO DI NIDIFICAZIONE DI AQUILA REALE AQUILA CHRYSAETOS NEL SUBAPPENNINO ABRUZZESE, 301–314 apparsa più evidente nel corso del periodo succes- sivo all’”involo” del giovane, nella fase cioè di cure parentali slegate dal nido: i giovani hanno sorvolato spesso i centri abitati, apparentemente soli e/o insieme agli adulti, utilizzando posatoi occasionali collocati sulle numerose formazioni rocciose libere da vegetazione presenti tra gli abitati di Civitalupa- rella e Fallo. Viceversa, con la sola coppia di adulti presente nella valle, la maggiore elusività e la selezione delle direttrici di volo ci ha restituito un quadro di maggior fedeltà ad alcuni capisaldi nella valle riproduttiva, comprese le vie di avvicinamento ad essa, decisamente defilate e percorse con voli spesso al di sotto della linea di crinale segnata dai boschi. La presenza dell’Aquila Reale nel Medio Sangro, in un settore periferico all’areale di distribuzione finora conosciuto, oltre ad offrire interessanti prospettive di studio dell’ecologia della specie in ambito sub-montano, richiederà ulteriori sforzi di ricerca per approfondire l’incidenza di alcuni fattori di rischio e mortalità generalmente ritenuti di minaccia alla conservazione dei grossi rapaci, tra cui sicuramente la presenza di impianti eolici (Borgianni et al., 2023) ed altri (bracconaggio e cat- tura di rapaci a scopo commerciale, arrampicata in falesia in aree vietate) che ci sono stati segnalati nel corso degli anni di monitoraggio sul territorio (A. De Angelis, informazione personale). La scoperta di questo nuovo sito di nidificazione, oltre a far au- mentare il numero delle coppie di Aquila reale per l’intera regione Abruzzo, peraltro, come già sottoli- neato, in un luogo insolito e ben distante dai grandi massicci montuosi appenninici, impreziosisce il già ricco elenco nel formulario del Sito Natura 2000 ZSC/ZPS IT7140212 “Abetina di Rosello e Cascate del Verde”. RINGRAZIAMENTI Gli autori ringraziano Fabio Borlenghi, per i pre- ziosi consigli e suggerimenti alla stesura dell’artico- lo, Aurelio Manzi, Rino Iubatti e Vincenzo Di Sciullo per alcune importanti segnalazioni. ANNALES · Ser. hist. nat. · 34 · 2024 · 2 313 Andrea DE ANGELIS & Mario PELLEGRINI: NUOVO SITO DI NIDIFICAZIONE DI AQUILA REALE AQUILA CHRYSAETOS NEL SUBAPPENNINO ABRUZZESE, 301–314 NOVO GNEZDIŠČE PLANINSKEGA ORLA V SUBAPENINSKIH ABRUCIH Andrea DE ANGELIS Via Ventilatore 13 - 66040 Fallo (CH) Italy e-mail: wolfhikesangro@gmail.com Mario PELLEGRINI Via Colle Sant’Angelo 3 - 66041 Atessa (CH) Italy e-mail: pellegrinimario62@gmail.com POVZETEK Najverjetneje je bilo človeško preganjanje, povezano z zasedbo vseh primernih zemljišč na nižjih nadmorskih višinah, razlog za omejitev vrhunskih plenilcev v gorskem pasu Apeninov. To velja tudi za planinskega orla (Aquila chrysaetos), saj je do leta 2017 populacijska raziskava v Abrucih potrdila, da je bila razširjenost tesno povezana z glavnimi gorskimi verigami, brez dokumentiranih parov v pripadajočih obrobnih Podapeninih. Odkritje para z izvaljenim mladičem konec leta 2017 (ta prispevek) v osrednji dolini Sangro (provinca Chieti) je sprožilo nadaljnje preiskave (2017–2024), ki so vodile do odkritja prej neznanega gnezdišča (najvzhodnejšega v Srednjih Apeninih do danes) na razgibanem pobočju manj kot 700 m nadmorske višine. na desnem bregu reke Sangro. Kljub svoji legi v regionalnem naravnem rezervatu je za to gnezdišče planinskega orla proti Jadranskemu morju značilna spreminjajoča se pokrajina, katere negotova usoda niha med poskusi ohranjanja in antropogeno degradacijo. Ključne besede: planinski orel, Aquila chrysaetos, novi par, Important Bird Area 115, območje ponovne naselitve ANNALES · Ser. hist. nat. · 34 · 2024 · 2 314 Andrea DE ANGELIS & Mario PELLEGRINI: NUOVO SITO DI NIDIFICAZIONE DI AQUILA REALE AQUILA CHRYSAETOS NEL SUBAPPENNINO ABRUZZESE, 301–314 BIBLIOGRAFIA Artese, C., S. Allavena, S. Baliva, M. Bernoni, F. Borlenghi, M. Carfagnini, M. Cirillo, G. Damia- ni, S. Di Benedetto, G. Lalli, P. Morini, M. Pelle- grini, F. Pinchera & F. Ricci (2017): Status of the Golden Eagle (Aquila chrysaetos) in Abruzzo. Avocetta, 41, 77-80. Associazione Pro-loco di Rosello (1999): Il tempo e la memoria. Cogecstre Edizioni, Penne (PE). Borgianni, N., F. Cordischi, N. Trei & G. Opramolla (2023): Monitoring Eurasian griffon vulture (Gyps fulvus) collision with wind turbines in the central Apennines (Italy). Presentation at 2nd European Vulture Conference, Càceres, Spain, 14-17 Novem- ber 2023. Borgo, A. (2009): L’Aquila reale – ecologia, biologia e curiosità sulla regina del Parco Naturale Dolomiti Friulane. Borlenghi, F. (2011): L’Aquila reale, biologia, status e conservazione. Edizioni Belvedere, Latina. Borlenghi, F., M. Cianconi & L. Ranazzi (2014): Evo- luzione trentennale, status e parametri riproduttivi delle coppie di Aquila reale (Aquila chrysaetos) nell’Appennino laziale (Italia centrale). Alula XXI (1-2), 3-16. Campedelli, T., M. Manganelli, G. Londi, D. Ridente, S. Cutini, L. Petrizzelli & G. Tellini Florenzano (2020): Nidificazione di Aquila reale (Aquila chrysaetos) sul massiccio del Pratomagno (Toscana orientale). Rivista Italiana di Ornitologia, 90(1), 65-66. Confaloni, L., E. Pucci & L. Ranazzi (2013): Metodolo- gia e dati preliminari sullo studio dell’alimentazione dell’Aquila reale dei Monti Lucretili. In: Workshop di Studi. L’Aquila reale nell’Appennino centrale: strumenti di conoscenza e iniziative per la conser- vazione della specie e dei suoi ambienti naturali. Parco Naturale Regionale dei Monti Lucretili, 16 Marzo 2013 (documento tecnico non pubblicato). Cuomo, L. & A. De Angelis (2016): Fallo, documenti per una storia. Bibliografica Castel Frentano (CH). Di Carlo, E.A. (1980): Indagine preliminare sulla pre- senza passata ed attuale dell’Aquila reale (Aquila chrysaëtos) sugli Appennini. Gli Uccelli d’Italia, 5, 263-283. Ferrari, A. (2009): La terra dei poveri; la piccola pro- prietà terriera a Borrello in Abruzzo 1798-1868. Autorinediti. Manzi, A. (2013): Storia dell’ambiente nell’Appennino Centrale. Meta Edizioni. Masciovecchio, M., Mr. Pellegrini, F. Pinchera (2015): Monitoraggio sulla vegetazione, la flora e la fauna nell’area vasta occupata in parte da una centrale eolica nel territorio di Civitaluparella, Montelapia- no e Montebello sul Sangro (CH). Pellegrini, Mr. & F. Pinchera (2004): Ornitofauna in: AA.VV. Piano di Assetto Naturalistico della Riserva Naturale Regionale “Abetina di Rosello“. Comune di Rosello e Regione Abruzzo, Vol. I (parte II), 245-311. Pellegrini, Mr. & F. Pinchera (2005): Ornitofauna in: AA.VV. Piano di Assetto Naturalistico della Riserva Naturale Regionale delle “Cascate del Verde” di Borrello. Comune di Borrello e Regione Abruzzo, Vol. II (parte I), 159-208. Pellegrini, Mr. & F. Pinchera (2014): Piano di Gestione del SIC “Abetina di Rosello e Cascate del Verde“ (cod. IT7140212). Cisdam e Soc. Silva - Rosello (CH), pp. 522. Pellegrini, Mr. (2018): Relazione tecnico-scientifica relativa alle caratteristiche del Lago di Bomba ed aree strettamente limitrofe per l’istituzione di una Riserva Naturale Regionale. Cisdam, Rosello (CH), (documento tecnico non pubblicato). Ranieri, M. (2005): Geologia e geomorfologia in: AA.VV. Piano di Assetto Naturalistico della Riserva Naturale Regionale delle “Cascate del Verde” di Borrello. Comune di Borrello e Regione Abruzzo, Vol. II (parte I), 19-45. Spinetti, M. (1997): L’Aquila reale: biologia, etologia e conservazione. Cogecstre Edizioni, Penne (PE). Walker, D. (2017): A fieldworker’s guide to the Golden Eagle. Whittles Publishing. 315 FLORA FLORA FLORA 316 ANNALES · Ser. hist. nat. · 34 · 2024 · 2 317 received: 2024-07-23 DOI 10.19233/ASHN.2024.35 LA FLORA DI TARANTA PELIGNA (ABRUZZO, ITALIA) Amelio PEZZETTA Via Monteperalba 34, 34149 Trieste e-mail: fonterossi@libero.it Marco PAOLUCCI Contrada Sant’Antonio 24 – 66041 Atessa (Ch) e-mail: majella@virgilio.it SINTESI Il Comune di Taranta Peligna, situato in Provincia di Chieti (Regione Abruzzo), è parzialmente compreso nel Parco Nazionale della Majella e occupa una superficie di 21,65 km². Il presente lavoro riporta un elenco floristico dei taxa presenti nell’ambito di studio che comprende 1186 entità, tra cui 83 specie endemiche che accrescono la sua importanza fitogeografica. Lo spettro corologico mostra che le entità censite appartengono a 52 diversi corotipi ripartiti in 9 contingenti geografici. Parole chiave: Taranta Peligna, Majella, Abruzzo, flora, fiume Aventino THE FLORA OF TARANTA PELIGNA (ABRUZZO, ITALY) ABSTRACT The Municipality of Taranta Peligna, located in the Province of Chieti (Abruzzo Region), is partially included in the Majella National Park and occupies an area of 21.65 km². This paper reports a check-list of the taxa present in the study area that includes 1186 entity, including 83 endemic species that increase its phytogeographic im- portance. The chorological spectrum shows that the surveyed entities belong to 52 different chorotypes divided into 9 geographical contingents. Key words: Taranta Peligna, Majella, Abruzzo, flora, Aventino River ANNALES · Ser. hist. nat. · 34 · 2024 · 2 318 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI TARANTA PELIGNA (ABRUZZO, ITALIA), 317–356 INTRODUZIONE Il presente articolo, attraverso le osservazioni personali degli autori e l’esame degli studi floristici noti in letteratura, è finalizzato a compilare una check-list delle specie di piante vascolari presenti nel territorio comunale di Taranta Peligna e a met- tere in evidenza le sue principali caratteristiche fitogeografiche. Quest’ultimo aspetto si realizza evidenziando: 1) i corotipi a cui appartengono i taxa osservati; 2) quali di essi sono endemici, rari, invasivi, rappresentanti di particolari migrazioni flo- ristiche avvenute in epoche passate e/o al limite del loro areale di distribuzione geografica. L’insieme di queste conoscenze è dimostrativo dell’importanza naturalistica dell’ambito di studio, è utilizzabile per una corretta gestione territoriale, tutelare le specie vulnerabili e favorire il turismo poiché la presenza di boschi e pascoli con alberi e fiori accrescono l’estetica paesaggistica, l’attrattività, il valore sci- entifico e ricreativo di un territorio. Inquadramento dell’area d’indagine Taranta Peligna (Fig. 1) è uno dei Comuni del Parco Nazionale della Majella, è situato in Provincia di Chieti, ha la popolazione di circa 300 individui che vive riunita in un unico centro compatto e la densità media è di circa 13,8 ab./km². Il territorio tarantolese si trova nell’alta valle del fiume Aventino e alle pendici sud-orientali del mas- siccio della Majella (Fig. 2), copre la superficie di circa 21,65 km², si estende tra l’altitudine minima di 378 metri e quella massima di 2646 ed è caratteriz- zato da: 1) un settore montano con pascoli primari e secondari, rocce nude, colate detritiche e vari anfratti naturali; 2) un settore collinare con boschi in espan- sione, il centro urbano e terreni incolti e/o coltivati. I principali litotipi che lo costituiscono sono i seguenti: rocce calcaree paleoceniche e oligoceniche; arenarie e marne mioceniche; argille plioceniche; sabbie, de- triti calcarei, depositi alluvionali ghiaioso-sabbiosi e conglomeratici olocenici (Accordi & Carboni, 1988). Fig.1: Il centro abitato di Taranta Peligna. Sl. 1: Mesto Taranta Peligna. ANNALES · Ser. hist. nat. · 34 · 2024 · 2 319 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI TARANTA PELIGNA (ABRUZZO, ITALIA), 317–356 Tutta l’area dal punto di vista geologico è molto instabile e nel passato è stata interessata da numerose frane, terremoti e piene del fiume Aventino che hanno apportato notevoli distruzioni al centro abitato. Il versante comunale situato sulla destra orografica del fiume presenta una morfolo- gia dolce, raggiunge l’altitudine massima di circa 750 metri e si sviluppa quasi completamente su terreni argillosi e marnoso-arenacei. Il versante comunale situato alla sinistra del fiume, invece si estende principalmente sui terreni e rocce calca- ree del massiccio della Majella sino alla quota di 2646 metri del Monte Macellaro. Questo settore è caratterizzato da un importante squarcio vallivo simile a un canyon che è detto Valle di Taranta e dal crinale che lo orla a occidente (Fig. 3). In partico- lare, la Valle di Taranta occupa oltre due terzi del territorio comunale, si sviluppa completamente per circa 7 km lungo il versante orientale della Majella, copre la superficie di 16,25 km², non è percorsa da corsi d’acqua, la sua larghezza va da 0,25 a 1 km, mentre le pareti che la orlano hanno un’altezza com- presa tra 150 e 300 metri. Nella sua quota più bassa (m 400 d’altitudine) inizia poco sopra il centro abitato e culmina in un vasto anfiteatro glaciale posto tra il monte Macellaro e Grotta Canosa (m 2604). La valle tarantolese secondo Di Marco (1963) si originò durante il Quaternario da una frana di sfasciamento o scoscendimento e cioè un movi- mento franoso con crollo di blocchi e intere pareti rocciose causato da movimenti tettonici, fenomeni sismici, erosione meteorica, crioclastismo, ecc. Ad avviso di Carulli et al. (2020), invece all’evoluzione della valle hanno contribuito i movimenti delle Fig.2: Il territorio di Taranta Peligna racchiuso entro la linea nera. Sl. 2: Teritorij Tarnata Peligna označuje črna črta. ANNALES · Ser. hist. nat. · 34 · 2024 · 2 320 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI TARANTA PELIGNA (ABRUZZO, ITALIA), 317–356 Fig. 3: Taranta Peligna e la sua valle. Sl. 3: Taranta Peligna z dolino. Fig. 4: L’alta valle di Taranta con in fondo l’Altare dello Stincone. Sl. 4: Zgornja dolina Tarante z vršacem l’Altare dello Stincone v ozadju. ANNALES · Ser. hist. nat. · 34 · 2024 · 2 321 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI TARANTA PELIGNA (ABRUZZO, ITALIA), 317–356 faglie, le frane e i terremoti. La sua parte più alta, in epoca prewurmiana si suppone fosse costituita da una conca più o meno pianeggiante, molto simile ad un’altra ad essa attigua e tuttora esistente: il val- lone di Femmina Morta. Essa è caratterizzata da un ambiente naturale che annovera diversi fenomeni carsici, specie botaniche molto rare e una fauna tipica. In particolare, nel suo ambito si osservano i seguenti caratteri geo-morfologici: l’Altare dello Stincone (Fig. 4), un tipico bastione roccioso che si erge alla quota di 2426 metri; rocce calcaree com- patte; ampie distese di colate detritiche poste alla base delle pareti rocciose; vari anfratti naturali tra cui la grotta del Cavallone (Fig. 5) che è visitabile, costituisce la principale risorsa turistica del Comune e si trova all’altitudine di 1475 metri. Nel territorio tarantolese si trovano anche i seguenti siti di un certo interesse paesaggistico e turistico: 1) “La loggetta” che sovrasta il centro ab- itato ed è costituita dai resti di un condotto idrico d’origine medioevale scavato nella roccia; 2) l’oasi fluviale delle Acquevive (Fig. 6) che occupa un’area posta tra le pendici della Majella e le due sponde del fiume Aventino. Al suo interno sono presenti le sorgenti omonime da cui affiorano acque sorgive che in parte s’immettono nel fiume e il resto è captato per alimentare un acquedotto. La zona del Parco Fluviale oltre a presentare diverse attrattive turistiche, dal punto di vista botanico è caratteriz- zata dalla vegetazione igrofila e ripariale con vari tipi di salici ed essenze erbacee. Per quanto riguarda il clima locale, una sua prima descrizione approssimativa la fornì Del Re (1835) che scrisse: ”Le nude rocce che s’innalzano al di sopra delle contrade di Lama e di Taranta, formano forti baluardi contro il rigido vento di tramontana e riconcentrano a guisa di specchi ustorii il calor della terra e del sole: cagioni che ne rendono il clima talmente temperato nella cruda stagion d’inverno, che la vegetazione ne risente influssi benefici”. Tutto il territorio gode di una favorevole esposizione a sud il che comporta un notevole Fig. 5: L’Ingresso della Grotta del Cavallone. Sl. 5: Vhod v jamo Cavallone. ANNALES · Ser. hist. nat. · 34 · 2024 · 2 322 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI TARANTA PELIGNA (ABRUZZO, ITALIA), 317–356 soleggiamento e riscaldamento diurno. Inoltre, il massiccio della Majella, a causa del suo particolare orientamento territoriale, ripara la parte bassa del territorio comunale dai venti freddi settentrionali e favorisce l’esposizione ai venti d’origine me- ridionale e nord-orientale, tra cui la bora, detta localmente “la vuoiere”, apportatrice di freddo e neve. A causa dell’elevata escursione altitudinale, nell’ambito in esame sono individuabili diverse tipologie climatiche. La porzione territoriale che va da 378 a 800 metri d’altitudine e comprende il centro abitato, in base alla classificazione climatica di Rivas Martinez (1996) rientra nel termotipo Mesotemperato superiore e nell’Ombrotipo Umido/ Subumido. Nel caso in esame la Fig. 7 riporta l’an- damento delle temperature e delle precipitazioni registrate nel centro abitato (altitudine m 460). I principali parametri cimatici che lo caratterizzano hanno i seguenti valori: temperatura media annua 20,1°C; temperatura media del mese più caldo (lu- glio) 30°C; temperatura media del mese più freddo (gennaio) 11°C; escursione termica media annua 19°C; precipitazioni medie annue 544 mm; stagione più piovosa l’autunno con 181 mm; stagione meno piovosa, l’estate con 127 mm; precipitazioni mas- sime a novembre con 95 mm; minimo di precipi- tazioni in agosto con 20 mm (https://meteomondo. it/italia/taranta-peligna). Man mano che l’altitudine cresce, diminuisce la temperatura e aumentano le precipitazioni, Infatti, nella parte più alta compresa tra l’altitudine di 2450 e 2650 m, la media delle temperature minime del mese più freddo è inferiore a –5°C e si ha l’inneva- mento per 7–8 mesi l’anno (Di Pietro et al., 2008). Dal punto di vista bioclimatico tale zona appartiene alla sottoregione axerica fredda della regione temperata (Rivas-Martinez, 1996). L’elevato gradiente altitudinale del territorio taran- tolese, le varietà climatiche che lo accompagnano, le caratteristiche geo-morfologiche, la diversa esposizione solare e alle correnti d’aria e la pressione antropica attuale e del passato esercitata con l’agricoltura, il pas- colo e il taglio degli alberi, sono le cause della presenza di numerose formazioni vegetali. In particolare, il taglio degli alberi e le pratiche agro-pastorali esercitate dalla popolazione locale da diversi millenni sino agli inizi degli anni 60 del secolo scorso, hanno portato alla riduzione delle superfici forestali e alla formazione Fig. 6: Le Acquevive di Taranta. Sl. 6: Acquevive iz Tarante. ANNALES · Ser. hist. nat. · 34 · 2024 · 2 323 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI TARANTA PELIGNA (ABRUZZO, ITALIA), 317–356 di terreni aperti. Ora la popolazione residente si è notevolmente ridotta, la pastorizia è pressoché assente e l’attività agricola è limitata alla cura di pochi terreni e colture specializzate (orti, uliveti e vigneti). Di con- seguenza è in atto un processo di trasformazione del paesaggio vegetale che nel luogo ha portato alla riduz- ione dei terreni aperti e all’aumento della superficie forestale. Nel complesso del territorio comunale ora si osserva un mosaico vegetazionale costituito da: boschi ripariali disposti lungo il fiume Aventino; formazioni igrofile situate presso i corsi e i ristagni d’acqua; formazioni sinantropiche situate presso le abitazioni, le aree incolte e i campi coltivati o abbandonati; prati-pascoli collinari di diverse tipologie; formazioni arboreo-arbustive sparse; boschi termo-mesofili e termofili misti di caducifoglie con infiltrazioni di essenze arboree mediterranee sclerofille; una faggeta mista posta nella valle di Taranta; formazioni glareicole e rupestri poste a varie altitudini; pascoli montani secondari posti tra 1200-2200 metri di altitudine; for- mazioni arbustive alto-montane in fase di espansione sui pascoli abbandonati; zolle pioniere e praterie pri- marie d’altitudine poste oltre 2200 metri d’altitudine. Alla loro composizione concorrono le entità comprese nell’elenco floristico che segue. Le ricerche botaniche nel territorio di Taranta Peligna Il territorio di Taranta Peligna, a causa della sua particolare collocazione nel massiccio della Majella, è stato oggetto di diverse esplorazioni floristiche che sono iniziate nel XIX secolo. Il pioniere di tali ricerche è stato il botanico napoletano Michele Tenore che nel 1831 fece un viaggio in Abruzzo, visitò anche l’am- bito di studio e nel 1832 pubblicò i dati riassuntivi. Nella seconda metà del XIX secolo Cesati (1872) in un suo saggio citò alcune specie presenti nel territorio tarantolese, tra cui Daphne mezereum L. e Laburnum anagyroides Medik ssp. anagyroides. All’inizio del nuovo secolo Abbate (1903) segnalò altri ritrovamenti e alcuni decenni dopo fu seguito da Villani (1921) e Grande (1925). Alla fine degli anni 70 del secolo scorso, Tammaro, Veri & Chichiriccò (1978) segnalarono due nuovi ritro- vamenti: Aurinia sinuata (L.) Griseb. e Coronilla valenti- na L. Nello stesso anno (10 luglio) la Società Botanica Italiana effettuò un’escursione nella parte bassa della val- le e segnalò altri ritrovamenti. Tuttavia, le segnalazioni floristiche più consistenti si ebbero nella seconda metà degli anni 80 con Tammaro (1986) che in un suo saggio elencò 61 taxa presenti nell’ambito di studio e ad essi nel 1998 vi aggiunse nuove segnalazioni. Altre notizie recenti sulla flora tarantolese sono riportate nei saggi dei seguenti autori: Bortolotti & Pierantoni (1984), Conti (1988, 1998), Conti & Pellegrini (1990), Galetti (1995, 2008), Manzi (1999), Cutini et al. (2002), Blasi et al. (2005), Simeone et al. (2006), Stanisci et al. (2006), Conti et al. (2007), Di Pietro et al. (2008), Gottschlich (2009), Lancioni et al. (2011); Ciaschetti et al. (2015), Pirone (2015), Conti et al. (2019), Pezzetta (2019), Conti et al. (2020), Pezzetta et al. (2022) e negli Index seminum dei Giardini Botanici Michele Tenore di Lama dei Peligni e Daniela Brescia di Sant’Eufemia a Majella (Pe) che sono stati pubblicati in diversi anni. MATERIALI E METODI L’elenco floristico è stato realizzato considerando: le ricerche sul campo degli autori, i dati ricavati dal materiale bibliografico consultato e le segnalazi- oni inedite fornite da Nicola Centurione, Rodolfo Giancristofaro, Mario Pellegrini e Roberto Quarisa. Esso comprende le specie, le sottospecie e alcuni ibridi che sono stati riconosciuti. Non sono state considerate le varietà cromatiche e morfologiche. La nomenclatura adottata e l’ordine di elencazione delle varie famiglie e specie seguono Conti et al. (2020) con l’eccezione di alcuni taxa per i quali essa è stata rivista più recentemente. Accanto a ogni taxon sono riportati: il tipo corologico, gli autori che l’hanno segnalato ed eventuali note o osservazioni. Al fine di non ripetere troppe volte gli autori delle segnalazioni, si è deciso di utilizzare al loro posto delle sigle costituite da lettere maiuscole. Esse hanno il seguente significato: AK: Tenore, 1832; AX: Cesati, 1872; AY: Abbate, 1903; BH: Villani, 1921; BK: Grande, 1925; BW: Atti e resoconti sociali, 1978; Fig. 7: Il climogramma di Taranta Peligna. Sl. 7: Klimatogram območja Taranta Peligna. ANNALES · Ser. hist. nat. · 34 · 2024 · 2 324 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI TARANTA PELIGNA (ABRUZZO, ITALIA), 317–356 BX: Tammaro et al., 1978; BY: Bortolotti & Pierantoni, 1984; CH: Tammaro, 1986; CK: Conti & Pellegrini, 1988; CX: Conti & Pellegrini, 1990; CY: Galetti, 1995; DK: Conti, 1998; DX: Tammaro, 1998; DY: Manzi, 1999; EK: Cutini et al., 2002, EX: Blasi et al., 2005; EY: Di Fabrizio, 2006; FH: Simeone et al., 2006; FK: Stanisci et al., 2006; FX: Conti et al., 2007; FY: Di Pietro et al., 2008; GH: Galetti, 2008; GK: Gottschlich, 2009; GM: Lancioni et al., 2011; GX: Index seminum Giardino Botanico Michele Tenore di Lama dei Peligni, 2011; GY: Index semi- num Giardino Botanico Michele Tenore di Lama dei Peligni, 2012; HK: Index seminum Giardino Botanico Michele Tenore di Lama dei Peligni, 2013; HX: Index seminum Giardino Botanico Michele Tenore di Lama dei Peligni, 2014; HY: Ciaschetti et al., 2015; IK: Index seminum Giardino Botanico Michele Tenore di Lama dei Peligni, 2015; IX: Pi- rone, 2015; IY: Index seminum Giardino Botanico Michele Tenore di Lama dei Peligni, 2016; IW: In- dex seminum Giardino Botanico Michele Tenore di Lama dei Peligni, 2018; LH: Pellegrini & Pinchera, 2018; LK: Conti et al., 2019; LX: Index seminum Giardino Botanico Michele Tenore di Lama dei Peligni, 2019; LY: Pezzetta, 2019; MH: Conti et al., 2020; MK Index seminum Giardino Botanico Mi- chele Tenore di Lama dei Peligni, 2020; MS: Index seminum Giardino Botanico Daniela Brescia di Sant’Eufemia a Majella, 2022; MX: Index seminum Giardino Botanico Michele Tenore di Lama dei Peligni, 2022; MY: Paolucci, 2022; NH: Pezzetta et al., 2022; NK: Ciaschetti & Di Cecco, 2023; NL: Index seminum Giardino Botanico Michele Tenore di Lama dei Peligni, 2023; NS: Index seminum Giardino Botanico Daniela Brescia di Sant’Eufemia a Majella, 2023; NH: Centurione, oss. pers.; NX: Giancristofaro, oss. pers.; NY: Paolucci, oss. pers.; OK: Pellegrini, oss. pers.; OX: Pezzetta, oss. pers.; OY: Quarisa, oss. pers.; PK: www.naturgucker.de. Per l’assegnazione dei tipi corologici si è tenuto conto di quanto riportato nel sito internet di Acta Plan- tarum e in Pignatti et al. (2017-2019) tranne i seguenti tre casi: - al corotipo avventizio sono stati assegnati i taxa d’origine ignota che si sono naturalizzati nell’ambito di studio; - al corotipo Subendemico sono stati assegnati i taxa con un areale che comprende qualche regione italiana e altre di stati europei (Austria, Croazia, Fran- cia, Slovenia e Svizzera); - al corotipo Appennino-Balcanico sono stati as- segnati i taxa presenti solo nel territorio delimitato dai seguenti confini fisici (Pezzetta, 2010): a) per la Penisola Italiana, le isole e l’arco appenninico dalla Liguria all’Aspromonte; b) per la Penisola Balcanica, Creta, le isole dell’Egeo e il territorio continentale posto a sud dell’asse fluviale che va dalle sorgenti della Sava alle foci del Danubio e dal Mar Nero all’Adriatico-Ionio. Nella compilazione della Tabella 1 è stato utilizzato il concetto di “Contingente Geografico” che comprende più corotipi e in tale voce stati fatti dei raggruppamenti in base al seguente schema: - nel contingente “Endemico e Subendemico” sono inclusi i corotipi con la stessa dicitura; - nel contingente “Mediterraneo” sono inclusi i corotipi Eurimediterraneo, Mediterraneo-Macaron- esico, Mediterraneo-Occidentale, Mediterraneo- Orientale, Mediterraneo-Montano, Nord-Mediterraneo, Nord-Est-Mediterraneo, Nord-Ovest-Mediterraneo, Steno- mediterraneo, Sud-Mediterraneo e Sud-Ovest-Mediterra- neo; - nel contingente “Eurasiatico” sono inclusi i coroti- pi Europeo-Caucasico, Eurasiatico s.s., Eurosiberiano, Mediterraneo-Turaniano, Orofita Eurasiatico, Paleo- temperato, Pontico e Sud-Europeo-Sud-Siberiano; - nel contingente Nordico sono inclusi i corotipi Artico-Alpino e Circumboreale; - nel contingente “Europeo” sono inclusi i corotipi Centro-Europeo, Europeo s.s., Orof. Centro-Europeo, Orof. Europeo, Orof. Sud- Europeo, Orof. Sud-Est- Europeo, Orof. Sud-Ovest-Europeo, Centro-Europeo, Sud-Est-Europeo, Sud-Europeo, Sud-Ovest-Europeo e Appennino-Balcanico; - nel contingente “Atlantico” sono inclusi i corotipi Atlantico, Mediterraneo-Atlantico e Subatlantico; - nel contingente Avventizio ed Extraeuropeo sono inclusi i corotipi Africano, Americano, Nord-Americano, Sud-Americano, Avventizio, Asiatico, Asiatico-Occi- dentale, Asiatico-Orientale, Neotropicale, Paleotropi- cale, Pantropicale e Subtropicale; - nel contingente Cosmopolita sono inseriti i coroti- pi Cosmopolita e Subcosmopolita. Al fine di ricavare altre importanti informazioni ecologiche e fitogeografiche, in accordo con Poldini (1991), sono stati fatti tre raggruppamenti di corotipi definiti: 1) macrotermico che è costituito da piante tipiche di ambienti caldo-temperati con temperature medie annue di oltre 20 °C; 2) mesotermico che comprende piante che per vivere hanno bisogno di una temperatura media annuale di 15-20 °C; 3) mi- crotermico che a sua volta è costituito da piante che attecchiscono in territori con temperature medie annue comprese tra 0° e 15°. La bibliografia comprende tutti i saggi consultati che riportano segnalazioni floristiche riguardanti il territorio in esame. RISULTATI E DISCUSSIONE L’elenco floristico è costituito da 1186 taxa ripartiti in 102 famiglie (Appendice 1). La prima considerazione da fare è che un’area che rappresenta solo lo 0,0067 % del territorio italiano ospita l’11,8% della flora ANNALES · Ser. hist. nat. · 34 · 2024 · 2 325 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI TARANTA PELIGNA (ABRUZZO, ITALIA), 317–356 Tab. 1: Corotipi della flora di Taranta Peligna. Tab. 1: Korotipi flore območja Taranta Peligna. Contingenti geografici Numero taxa % Contingenti geografici Numero taxa % Endemico e Subendemico 98 8,3 Orof. Sud-Europeo 43 Endemico 83 Orof. Sud-Est-Europeo 11 Subendemico 15 Orof. Sud-Ovest-Europeo 5 Mediterraneo 404 34,1 Ovest-Europeo 4 Eurimediterraneo 215 Sud-Est-Europeo 21 Stenomediterraneo 104 Sud-Europeo 9 Mediterraneo-Macaronesico 1 Sud-Ovest-Europeo 5 Mediterraneo-Montano 52 Atlantico 19 1,6 Mediterraneo-Orientale 8 Atlantico 2 Mediterraneo-Occidentale 11 Mediterraneo-Atlantico 8 Nord-Mediterraneo 4 Subatlantico 9 Nord-Est-Mediterraneo 1 Nordico 65 5,5 Nord-Ovest-Mediterraneo 3 Artico-Alpino 19 Sud-Mediterraneo 4 Circumboreale 46 Sud-Ovest-Mediterraneo 1 Cosmopolita 60 5,1 Eurasiatico 284 23,9 Cosmopolita 27 Eurasiatico s. s. 99 Subcosmopolita 23 Europeo-Caucasico 24 Avventizio ed Extraeuropeo 41 3,4 Eurosiberiano 27 Avventizio 13 Mediterraneo-Turaniano 19 Asiatico 7 Orof. Eurasiatico 4 Asiatico-Occidentale 1 Paleotemperato 73 Asiatico-Orientale 2 Pontico 33 Americano 4 Sud-Europeo-Sud-Siberiano 5 Nord-Americano 5 Europeo 215 18,1 Sud-Americano 3 Appennino-Balcanico 55 Neotropicale 1 Centro-Europeo 14 Paleotropicale 3 Europeo s. s. 42 Pantropicale 1 Orof. Centro-Europeo 4 Orof. Europeo 2 Subtropicale 1 ANNALES · Ser. hist. nat. · 34 · 2024 · 2 326 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI TARANTA PELIGNA (ABRUZZO, ITALIA), 317–356 nazionale che in base alle ricerche più recenti (Bar- tolucci et al. 2024, Galasso et al. 2024) raggiunge il valore di 10023 taxa. La flora tarantolese costituisce anche il 50,9 % della flora del Comprensorio del Parco Nazionale della Majella che ammonta a 2331 taxa (Ciaschetti & Di Cecco, 2023) e il 32,6% della flora abruzzese, a sua volta costituita da 3634 entità (Bartolucci et al., 2022; Galasso et al., 2024). La densità floristica calcolata dividendo il totale dei taxa censiti per la superfice comunale è di circa 55 taxa per km², un valore molto alto, superiore a quello di vari Comuni vicini, come si può osservare dai seguenti dati: a Palena in cui sono censiti 1202 taxa (Pezzetta et al., 2012) è uguale a 13, a Lama dei Peligni è di 44 (Pezzetta & Paolucci, 2023) e a Fara San Martino che annovera 1042 taxa è di 24 (Pezzetta et al., 2013). 1051 taxa, corrispondenti a circa l’89% della flora tarantolese, sono condivisi con il Comune confinante di Lama dei Peligni che annovera complessivamente 1362 entità (Pezzetta & Paolucci, 2023). Sul totale dei taxa presenti nei due Comuni (1497), quelli non condivisi ammontano a 446 e di conseguenza l’indice di somiglianza tra le flore dei due Comuni è di circa 0,7 un valore anch’esso abbastanza alto. Le famiglie vegetali più rappresentate sono le seguenti: Asteraceae (155 taxa). Fabaceae (117), Poaceae (89), Brassicaceae (62), Apiaceae (51), Lamiaceae (50), Rosaceae (48), Caryophyllaceae (47), Orchidaceae (42), Plantaginaceae (32), Ranunculaceae (30) e le altre con valori minori. Sono nuove per il Parco Nazionale della Majella le seguenti entità: Ervilia loiseleurii (M.Bieb.) H.Schaef. che è stata rinvenuta il 10-5-2024 lungo il sentiero per Macchia di Taranta; Medicago disciformis DC che è stata rinvenuta l’11-5-2024 in Via Duca degli Abruzzi e lungo la strada statale 84; Cymbalaria glutinosa ssp. glutinosa rinvenuta alla Loggetta l’11-5-2024; Datura wrightii rinvenuto il 31-8-2024 nel centro abitato di Taranta, Ophrys ×camusii (Fig. 8) trovato in un prato lungo la strada provinciale n. 125 il 13-4-2024 e Xanthium orientale trovato il 9-7-2024 in via Rione Orientale. L’elenco oltre comprende 50 taxa avventizi, in- vasivi, utilizzati a fini ornamentali, per le alberature stradali, i rimboschimenti e coltivati che si sono spontaneizzati e continuano a vegetare nei terreni abbandonati. Tale modesto valore dimostra la bassa contaminazione floristica del territorio in esame. Nell’elenco sono riportati i seguenti taxa che raggiungono nel Parco della Majella il limite me- ridionale di distribuzione geografica in Italia e ac- crescono l’importanza naturalistica del territorio in esame: Campanula sibirica ssp. divergentiformis, C. spicata, Centranthus angustifolius ssp. angustifolius, Hesperis laciniata ssp. laciniata, Hieracium bifidum ssp. caesiiflorum, H. dentatum ssp. subvillosum, H. murorum ssp. pleiotrichum, H. pictum, H. pilosum ssp. portae, H. pulchellum, H. tomentosum ssp. tomentosum Iberis saxatilis ssp. saxatilis, Isatis apen- nina e Linaria alpina. Dalla Tabella 1 si osserva come i taxa considerati si ripartiscono in 52 diversi corotipi raggruppati in 9 contingenti geografici, un dato confermativo che il massiccio della Majella e l’Abruzzo, essendo sit- uati al centro della penisola italiana, costituiscono un importante crocevia di flussi floristici che ha ricevuto ondate migratorie di diversa origine geogra- fica. A questa particolare configurazione arealica hanno contribuito: 1) le particolari vicende geolog- iche passate che hanno interessato l’ambito di studio poiché hanno concorso a formare i ponti terrestri che sono stati attraversati dalle correnti migratorie floris- tiche pluridirezionali; 2) le diverse condizioni ambi- entali causate dall’ampia escursione altitudinale; 3) la presenza di aree esposte ai venti freddi settentrionali e nord-orientali e di altre riparate e molto soleggiate che nel loro insieme consentono l’attecchimento di piante con esigenze ecologiche molto varie, 4) l’uomo che con la sua attività ha contribuito alla formazione di nuove nicchie e corridoi ecologici. In particolare, l’agricoltura e la pastorizia esercitate per millenni hanno favorito la diffusione delle archeofite, delle specie coltivate che si sono spontaneizzate e di quelle tipiche dei pascoli secondari presenti sul massiccio della Majella. Nell’area di studio sono presenti taxa artico-alpini, eurosiberiani, circumboreali, subatlantici, europei, eurasiatici, etc. che sono tipici di ambiti mesofili e microtermici e altri soprattutto mediterranei e sud-eu- ropei che invece attecchiscono negli ambiti termofili del settore collinare e nelle isole di mediterraneità poste a quote più rilevanti della valle di Taranta. La tabella 1 mostra come nell’ambito di studio sia dominante il contingente floristico Mediterraneo che nel suo complesso è caratterizzato da 404 taxa, corri- spondenti al 34,2% delle entità censite ed è presente in tutti i piani di vegetazione. Gli altri contingenti sono caratterizzati da valori inferiori. Infatti, è seguito dai contingenti Eurasiatico con 284 taxa (23,8%), Europeo con 215 taxa (18,1%), Endemico con 98 taxa (8,3 %), Nordico con 65 taxa (5,5%), Cosmopolita con 60 taxa (5,1%), Avventizio ed Extraeuropeo con 41 (3,4%) e Atlantico con 19 taxa (1,6%). L’alta presenza di taxa mediterranei, sud-europei, sud-est-europei e eurasiatici dimostra che l’area è dominata da una componente floristica a baricentro sud-orientale. Un contingente floristico molto importante è quello endemico con l’8,3 % dei taxa censiti, un valore percentuale molto vicino a quello dell’intero comprensorio del Parco della Majella che conferma l’importanza naturalistica dell’area d’indagine. ANNALES · Ser. hist. nat. · 34 · 2024 · 2 327 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI TARANTA PELIGNA (ABRUZZO, ITALIA), 317–356 La maggior parte degli endemiti è collocata in aree specializzate e con scarsa competizione vegetale del- la valle di Taranta quali le praterie alpine, subalpine e gli ambiti glareicoli e rupestri. Tuttavia, non mancano anche gli endemiti collinari presenti in gran parte nel versante destro della valle dell’Aventino. Hanno una certa importanza anche i taxa dei corotipi Artico-Alpino e Appennino-Balcanico che nel complesso ammontano a 74. Essi appartengono a entità relittuali che documentano le migrazioni flo- ristiche avvenute nel corso di diverse ere geologiche da nord in direzione sud e da est in direzione ovest. Anche tra la flora mediterranea del luogo sono presenti entità relittuali, dette “xerotermiche”, che attecchiscono in ambiti ristretti molto riparati e si diffusero durante le ere geologiche caratterizzate da un clima caldo e secco. Altre particolari entità relit- tuali presenti nel territorio tarantolese sono Daphne laureola e Taxus baccata che durante il Terziario erano presenti nelle antiche foreste tropicali a “laurifille”. I taxa dei corotipi Ovest-Europeo, Mediterra- neo-Occidentale, Mediterraneo-Macaronesico e At- lantici nel loro complesso documentano le migrazioni floristiche avvenute in direzione orientale. Alla flora tarantolese appartengono anche 121 taxa appartenenti ai corotipi strettamente orofili e mediter- raneo-montano che nel complesso rappresentano il 10,3 % del patrimonio floristico locale. È comunque da rilevare che la componente orofila e montana della flora tarantolese è più consistente poiché a tali entità bisogna aggiungere quelle inserite negli altri corotipi. I taxa del contingente Avventizio ed Extraeuropeo sono invece presenti solo nel settore collinare e alle basse quote di quello montuoso e la loro diffusione nel Fig. 8: Ophrys ×camusii. Sl. 8: Ophrys ×camusii. ANNALES · Ser. hist. nat. · 34 · 2024 · 2 328 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI TARANTA PELIGNA (ABRUZZO, ITALIA), 317–356 territorio locale è stata favorita dalle attività umane. I raggruppamenti dei taxa che tengono conto del- le loro esigenze termiche dimostrano quanto segue. Il raggruppamento macrotermico che comprende i contingenti Mediterraneo (escluso il corotipo Mediterraneo-Montano), Avventizio Extra-Europeo e i corotipi Sud-Est-Europeo, Sud-Europeo, Sud-Ovest- Europeo e Pontico nell’area in esame è rappresentato da 462 taxa (38,9%). Questo raggruppamento com- prende il maggior numero di taxa, a dimostrazione che nella flora tarantolese primeggia una componen- te termofila. Il raggruppamento mesotermico con i corotipi Appennino-Balcanico, Atlantico, Centro-Europeo, Cosmopolita, Europeo, Eurasiatico, Eurosiberiano, Mediterraneo-Atlantico, Mediterraneo-Turaniano, Ovest-Europeo, Europeo-Caucasico, Paleotemper- ato, Sud-Europeo-Sud-Siberiano, Subcosmopolita e Subendemico comprende 446 taxa (37,6 %) ed è lievemente inferiore al precedente. Il raggruppamento microtermico in cui sono stati in- clusi i corotipi Subatlantico, Circumboreale, Artico-Al- pino, Mediterraneo-Montano, Orofita Centro-Europeo, Orof. Orof. Europeo, Orof. Eurasiatico, O. Sud-Europeo, O. Sud-Est-Europeo e O. Sud-Ovest-Europeo è rappre- sentato da 195 taxa (16,4%). Questo raggruppamento è caratterizzato dal minor numero di taxa, a dimostra- zione che nel territorio tarantolese ci sono limitate aree in cui attecchiscono entità vegetali che prediligono temperature medie molto basse. Gli altri corotipi non sono stati considerati poiché di difficile collocazione in uno dei tre gruppi. In partico- lare, non sono stati considerati i taxa endemici poiché ci sono alcuni che prediligono gli ambiti microtermici delle alte quote, altri mesofili e/o spiccatamente termo- fili che si rinvengono più in basso. La presenza contemporanea dei tre raggruppa- menti conferma che il territorio in esame appartiene a un ambito di transizione fitogeografico caratterizzato da varie tipologie ambientali, climatiche e di corris- pondenti fasce vegetazionali. RINGRAZIAMENTI Per le informazioni fornite si ringraziano Nicola Centurione, Andrea Di Fabrizio, Rodolfo Giancristo- faro Gianna Masciarelli, Mario Pellegrini e Roberto Quarisa. ANNALES · Ser. hist. nat. · 34 · 2024 · 2 329 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI TARANTA PELIGNA (ABRUZZO, ITALIA), 317–356 Appendice 1: L’elenco floristico di Taranta Peligna. Legenda: °° Il taxon raggiunge nel Parco della Majella il limite meridionale di distribuzione geografica in Italia; ## Specie nuova per il Parco della Majella. Priloga 1: Floristični seznam območja Taranta Peligna. Legenda: °° Takson doseže južno mejo geografske razširjenosti v Italiji v parku Majella; ## Nova vrsta za park Majella. Elenco floristico TIPO COROLOGICO AUTORI E OSSERVAZIONI PTERIDOPHYTA EQUISETACEAE 1 Equisetum arvense L. ssp. arvense Circumboreale NY, OX 2 Equisetum palustre L. Circumboreale NY 3 Equisetum ramosissimum Desf. Circumboreale NY 4 Equisetum telmateia Ehrh Circumboreale NY OPHIOGLOSSACEAE 5 Botrychium lunaria (L.) Sw Subcosmopolita EY, FH PTERIDACEAE 6 Adiantum capillus-veneris L Pantropicale OX CYSTOPTERIDACEAE 7 Cystopteris fragilis (L.) Bernh. Cosmopolita EY, NY ASPLENIACEAE 8 Asplenium ceterach L. Eurasiatico NY, OX 9 Asplenium fIssum Kit. ex Willd. Orof. Sud-Est-Europeo OX 10 Asplenium lepidum C. Presl ssp. lepidum Orof. Sud-Est-Europeo OX 11 Asplenium ruta-muraria L. ssp. ruta-muraria Circumboreale MY, NY 12 Asplenium trichomanes L. ssp. quadrivalens D.E. Mey Cosmopolita NY, OX 13 Asplenium viride Huds. Circumboreale OX DRYOPTERIDACEAE 14 Dryopteris filix-mas (L.) Schott Cosmopolita OX 15 Polystichum lonchitis (L.) Roth Circumboreale EY POLYPODIACEAE 16 Polypodium cambricum L. Eurimediterraneo NY 17 Polypodium vulgare L. Circumboreale NY GYMNOSPERMAE PINACEAE 18 Abies alba Mill. Orof. Sud-Europeo LH, NH. 19 Abies cephalonica Loudon Sud-Est-Europeo LH, NY. Utilizzato per rimboschimenti. 20 Cedrus deodara (Roxb.) G.Don Africano LH. Utilizzato a fini ornamentali 21 Larix decidua Mill. Orof. Centro-Europeo LH. Utilizzato per rimboschimenti. 22 Picea abies (L.) H.Karst. Eurosiberiano LH. Utilizzato per rimboschimenti. 23 Pinus halepensis Mill. Stenomediterraneo NY, OX 24 Pinus mugo Turra ssp. mugo Eurasiatico NY, OX 25 Pinus nigra J. F. Arnold ssp. nigra Sud-Europeo LH, NY, OX CUPRESSACEAE 26 Cupressus sempervirens L. Mediterraneo-Orientale NY, OX 27 Hesperocyparis arizonica (Greene) Bartel Nord-Americano NY, LH. Utilizzato a fini ornamentali 28 Juniperus communis L. Circumboreale EK, EY,LH, MS, NY, OX 29 Juniperus deltoides R. P. Adams Eurimediterraneo NY 30 Juniperus macrocarpa Sm. Eurimediterraneo HY, LK, MH 31 Juniperus oxycedrus L. Eurimediterraneo LH, EK 32 Platycladus orientalis (L.) Franco Asiatico-Orientale NY TAXACEAE 33 Taxus baccata L. Paleotemperato CH, EK ANGIOSPERMAE LAURACEAE ANNALES · Ser. hist. nat. · 34 · 2024 · 2 330 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI TARANTA PELIGNA (ABRUZZO, ITALIA), 317–356 34 Laurus nobilis L. Stenomediterraneo NY, OX ARACEAE 35 Arum italicum Mill. ssp. italicum Stenomediterraneo NY, OX ALISMATACEAE 36 Alisma lanceolatum With. Subcosmopolita OX 37 Alisma plantago-aquatica L. Sucosmopolita OX COLCHICACEAE 38 Colchicum lusitanum Brot. Mediterraneo-Occidentale OX MELANTHIACEAE 39 Paris quadrifolia L. Eurasiatico OX 40 Veratrum album L. Eurasiatico OX SMILACACEAE 41 Smilax aspera L. Stenomediterraneo EX, NY LILIACEAE 42 Lilium bulbiferum L. ssp. croceum (Chaix) Jan Orof. Centro-Europeo OK 43 Lilium candidum L. Mediterraneo-Orientale NY, OX. Coltivato e naturalizzato. 44 Lilium martagon L. Eurasiatico NY ORCHIDACEAE 45 Anacamptis morio (L.) R.M. Bateman, Pridgeon & M.W. Chase Europeo-Caucasico LY, NH, NY 46 Anacamptis pyramidalis (L.) Rich. Eurimediterraneo LY, NH 47 Cephalanthera damasonium (Mill.) Druce Eurimediterraneo NH, NY 48 Cephalanthera longifolia (L.) Fritsch Eurasiatico NH, NY 49 Cephalanthera rubra (L.) Rich. Eurasiatico NH 50 Dactylorhiza maculata ssp. saccifera (Brongn.) Diklić Paleotemperato NH 51 Dactylorhiza sambucina (L.) Soó Europeo LY, NH 52 Dactylorhiza viridis (L.) R.M. Bateman, Pridgeon & M.W. Chase Circumboreale NH 53 Epipactis atrorubens (Hoffm.) Besser Europeo LY, MS, NH, NS 54 Epipactis helleborine ssp. helleborine (L.) Crantz Paleotemperato NH, NY 55 Epipactis microphylla (Ehrh.) Sw. Europeo-Caucasico NY, OK 56 Gymnadenia conopsea (L.) R. Br. in W.T. Aiton Eurasiatico NH 57 Himantoglossum adriaticum H. Baumann Eurimediterraneo LY, NH 58 Limodorum abortivum (L.) Sw. Eurimediterraneo NH 59 Neotinea maculata (Desf.) Stearn Mediterraneo-Atlantico NY 60 Neotinea tridentata (Scop.) R.M. Bateman, Pridgeon & M.W. Chase Eurimediterraneo LY, NH 61 Neottia nidus-avis (L.) Rich. Eurasiatico LY, NH 62 Neottia ovata (L.) Bluff & Fingerh. Eurasiatico NH 63 Ophrys apifera Huds. Eurimediterraneo NH 64 Ophrys bertolonii ssp. bertolonii Moretti Appennino-Balcanico NH, NY 65 Ophrys bombyliflora Link Stenomediterraneo CK, CX, DK, LK, LY, MH, NH 66 Ophrys crabronifera Mauri Endemico NY 67 Ophrys fusca subsp. funerea Link Mediterraneo-Atlantico NY 68 Ophrys fusca ssp. lucana (P. Delforge, Devillers-Tersch. & Devillers) Kreutz Endemico NH 69 Ophrys holosericea (Burm. f.) Greuter ssp. appennina (Romolini & Soca) Kreutz Endemico NY 70 Ophrys holosericea (Burm. f.) Greuter ssp. dinarica (Kranjcev & P. Delforge) Appennino-Balcanico NY 71 Ophrys holosericea (Burm. f.) Greuter ssp. pinguis (Romolini & Soca) Kreutz Endemico NH 72 Ophrys incubacea Bianca ssp. incubacea Stenomediterraneo NH 73 Ophrys lutea Cav. Stenomediterraneo NH, NY 74 Ophrys molisana Delforge Endemico NY 75 Ophrys promontorii O. Danesch & E. Danesch Endemico NY 76 Ophrys sphegodes ssp. sphegodes Mill. Eurimediterraneo LY, NH 77 Ophrys xbilineata Barla (O. bertolonii ´ O. sphegodes). Endemico NY 78 Ophrys xcamusii Cortesi (O. argolica ssp. crabronifera x O. sphegodes). Endemico NY. Seconda segnalazione per l'Abruzzo e nuova segnalazione per il Parco Nazionale della Majella e la Provincia di Chieti. ANNALES · Ser. hist. nat. · 34 · 2024 · 2 331 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI TARANTA PELIGNA (ABRUZZO, ITALIA), 317–356 79 Ophrys xcouloniana P. Delforge (O. bertolonii ´ O. promontorii). Endemico NY 80 Orchis anthropophora (L.) All. Mediterraneo-Atlantico LY, NH, NY 81 Orchis italica Poir. Stenomediterraneo NH 82 Orchis mascula L. ssp. mascula Centro-Europeo NY 83 Orchis pauciflora Ten. Stenomediterraneo NH, NY 84 Orchis purpurea Huds. Eurasiatico LY, NH, NY 85 Serapias parviflora Parl. Stenomediterraneo NY 86 Serapias vomeracea (Burm.f.) Briq. ssp. vomeracea Eurimediterraneo CH, LY, NH IRIDACEAE 87 Crocus neapolitanus (Ker Gawl.) Loisel. Eurimediterraneo OX. 88 Gladiolus italicus Mill. Eurimediterraneo NY, OX 89 Iris florentina L. Avventizio OX. Alloctona naturalizzata 90 Iris germanica L. Avventizio OX. Alloctona naturalizzata ASPHODELACEAE 91 Asphodeline lutea (L.) Rchb. Mediterraneo-Orientale CH, HX, IK, PK AMARYLLIDACEAE 92 Allium ampeloprasum L. Eurimediterraneo CH 93 Allium angulosum L. Eurosiberiano AK 94 Allium lusitanicum Lam. Sud-Europeo MS, NL 95 Allium neapolitanum Cirillo Stenomediterraneo NY 96 Allium pendulinum Ten. Mediterraneo-Occidentale NY 97 Allium polyanthum Schult. & Schult.f. Avventizio NY 98 Allium sphaerocephalon L. Paleotemperato EX, NY 99 Allium tenuiflorum Ten. Stenomediterraneo AK 100 Allium ursinum Eurasiatico NY 101 Galanthus nivalis L. Sud-Est-Europeo NY, OX 102 Stenbergia lutea (L.) Ker Gawl. ex Spreng. Mediterraneo-Montano NY ASPARAGACEAE 103 Anthericum liliago L. Subatlantico NY 104 Asparagus acutifolius L. Stenomediterraneo NY, OX 105 Bellevalia romana (L.) Sweet Eurimediterraneo NY, OX 106 Loncomelos brevistylum (Wolfner) Dostál Sud-Est-Europeo NY 107 Loncomelos pyrenaicum (L.) L. D. Hrouda Eurimediterraneo NY 108 Ornithogalum comosum L. Mediterraneo-Montano OX 109 Muscari comosum (L.) Mill. Eurimediterraneo NY, OX 110 Muscari neglectum Guss. Ex Ten. Eurimediterraneo NY, OX 111 Polygonatum multiflorum (L.) All. Eurasiatico GX, GY, HK 112 Polygonatum odoratum (Mill.) Druce Circumboreale EK, MS, NS, NY 113 Ruscus aculeatus L. Eurimediterraneo NY, OX 114 Scilla bifolia L. Europeo NY, OX TYPHACEAE 115 Typha latifolia L. Cosmopolita NY, OX JUNCACEAE 116 Juncus articulatus L. Circumboreale NY 117 Juncus inflexus L. Paleotemperato NY 118 Luzula campestris (L.) DC. Europeo OX 119 Luzula forsteri (Sm.) DC. Eurimediterraneo NY 120 Luzula spicata (L.) DC. ssp. italica (Parl.) Arcang. Endemico EY 121 Luzula sylvatica (Huds.) Gaudin ssp. sieberi (Tausch) K. Richt. Orof. Sud-Europeo NL, NY 122 Oreojuncus monanthos (Jacq.) Záv.Drábk. & Kirschner Artico-Alpino EY CYPERACEAE 123 Carex caryophyllea Latourr. Eurasiatico OX 124 Carex distans L. Eurimediterraneo NY ANNALES · Ser. hist. nat. · 34 · 2024 · 2 332 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI TARANTA PELIGNA (ABRUZZO, ITALIA), 317–356 125 Carex divulsa Stokes Eurimediterraneo NY 126 Carex flacca Schreb. ssp. erythrostachys (Hoppe) Holub Europeo NY 127 Carex halleriana Asso Eurimediterraneo NY, OX 128 Carex humilis Leyss. Eurasiatico EY 129 Carex kitaibeliana Degen ex Beck. Appennino-Balcanico EX, EY, FH, FY, GM, NY 130 Carex macrolepis DC. Appennino-Balcanico EY 131 Carex myosuroides Vill. Artico-Alpino EY 132 Carex otrubae Podp. Atlantico NY 133 Carex parviflora Host Orof. Sud-Europeo OX 134 Carex pendula Huds. Eurasiatico NY, OX 135 Carex sylvatica Huds. Eurasiatico NY 136 Cyperus longus L. Paleotemperato OX 137 Scirpoides holoschoenus (L.) Soják Eurimediterraneo NY POACEAE 138 Achnatherum bromoides (L.) P.Beauv. Stenomediterraneo NY 139 Agrostis capillaris L. ssp. capillaris Circumboreale EY 140 Alopecurus myosuroides Huds. ssp. myosuroides Paleotemperato NY 141 Anisantha diandra (Roth) Tzvelev Eurimediterraneo NY 142 Anisantha madritensis (L.) Nevski ssp. madritensis Eurimediterraneo NY 143 Anisantha sterilis (L.) Nevski Mediterraneo-Turaniano CH, NY 144 Anisantha tectorum (L.) Nevski Paleotemperato NL, NY, OX 145 Anthoxanthum odoratum L. Eurasiatico NY 146 Arrhenatherum elatius (L.) P. Beauv. Ex J. & C. Presl ssp. elatius Paleotemperato NY, OX 147 Arundo donax L. Subcosmopolita NY, OX 148 Arundo plinii Turra Stenomediterraneo NY, OX 149 Avena barbata Pott ex Link Eurimediterraneo CH, NY 150 Avena fatua L. ssp. fatua Eurasiatico NY 151 Avena sativa L. Avventizio NY, OX. Coltivato e spontaneizzato 152 Avena sterilis L. Mediterraneo-Turaniano NY 153 Bothriochloa ischaemum (L.) Keng Cosmopolita NY 154 Brachypodium distachyon (L.) P. Beauv. Mediterraneo-Turaniano NY 155 Brachypodium genuense (DC.) Roem. & Schult. Orof. Sud-Europeo EK 156 Brachypodium rupestre (Host) Roem. & Schult. Subatlantico FY, NH 157 Brachypodium sylvaticum (Huds.) P.Beauv. ssp. sylvaticum Paleotemperato NY 158 Briza media L. Eurosiberiano NY, OX 159 Bromopsis erecta (Huds.) Fourr. Paleotemperato EK, NY 160 Bromopsis ramosa (Huds.) Holub ssp. ramosa Cosmopolita NY 161 Bromus arvensis L. ssp. arvensis Eurosiberiano NY 162 Bromus commutatus Schrad. Europeo NY 163 Bromus hordeaceus L. ssp. hordeaceus Cosmopolita NY 164 Bromus lanceolatus Roth Paleotemperato NY, OX 165 Bromus squarrosus L. Paleotemperato NY 166 Catapodium rigidum (L.) C.E. Hubb. Eurimediterraneo OX 167 Cleistogenes serotina (L.) Keng Eurimediterraneo NY 168 Cynodon dactylon (L.) Pers. Cosmopolita NY 169 Cynosurus cristatus L. Eurasiatico NY 170 Cynosurus echinatus L. Eurimediterraneo EX, NY 171 Dactylis glomerata L. ssp. glomerata Paleotemperato NY 172 Dasypyrum villosum (L.) P. Candargy Mediterraneo-Turaniano NY 173 Digitaria sanguinalis (L.) Scop. Cosmopolita NY, OX 174 Echinaria capitata (L.) Desf. Stenomediterraneo NY 175 Echinochloa crus-galli (L.) P.Beauv. ssp. crus-galli 176 Elymus caninus (L.) L. Circumboreale CH, NY ANNALES · Ser. hist. nat. · 34 · 2024 · 2 333 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI TARANTA PELIGNA (ABRUZZO, ITALIA), 317–356 177 Elymus repens (L.) Gould ssp. repens Circumboreale CH, NY 178 Eragrostis minor Host ssp. minor Subcosmopolita EK, GM 179 Festuca alfrediana Foggi & Signorini ssp. ferrariniana Foggi, Parolo & Gr. Rossi Endemico NY 180 Festuca circummediterranea Patzke Eurimediterraneo NY 181 Festuca danthonii Asch. & Graebn. spp. danthonii Subcosmopolita OX 182 Festuca inops De Not. Subendemico OX 183 Festuca laevigata Gaudin Orof. Sud-Ovest-Europeo OX 184 Festuca myuros L. ssp. myuros Subcosmopolita EX, EY , FH, FY 185 Festuca rubra L. ssp. commutata (Gaudin) Markgr. -Dann. Orof. Sud-Europeo DX 186 Festuca violacea Ser. ex Gaudin ssp. italica Foggi, Gr. Rossi & Signorini Endemico OX 187 Glyceria notata Chevall. Subcosmopolita EX, EY, FY 188 Helictochloa praetutiana (Parl. ex Arcang.) Bartolucci, F. Conti, Peruzzi & Banfi ssp. praetutiana Endemico OX 189 Holcus lanatus L. Circumboreale NY 190 Hordeum murinum L. ssp. murinum Circumboreale OX 191 Hyparrhenia hirta (L.) Stapf ssp. hirta Paleotropicale NY, OX 192 Koeleria splendens C. Presl Eurasiatico HX, IK 193 Lagurus ovatus L. Eurimediterraneo CK, EK, IK, MS, NS. 194 Leucopoa dimorpha (Guss.) H. Scholz & Foggi Subendemico OX 195 Lolium multiflorum Lam. Eurimediterraneo NY 196 Lolium perenne L. Circumboreale NY 197 Macrobriza maxima (L.) Tzvelev Paleotropicale NY 198 Melica ciliata L. Mediterraneo-Turaniano NY 199 Melica uniflora Retz Paleotemperato NY 200 Oloptum miliaceum (L.) Röser & H.R. Hamasha Mediterraneo-Turaniano NY 201 Oloptum thomasii (Duby) Banfi & Galasso Stenomediterraneo OX 202 Parapholis cylindrica (Willd.) Romero Zarco Eurimediterraneo NY 203 Phalaris brachystachys Link Stenomediterraneo NY 204 Phalaris coerulescens Desf. Stenomediterraneo NY, OX 205 Phalaris paradoxa L. Stenomediterraneo NY, OX 206 Phleum hirsutum Honck. ssp. ambiguum (Ten.) Tzvelev Mediterraneo-Montano EY 207 Phleum pratense L. subsp. pratense Centro-Europeo EX, EY, FH, FY 208 Phleum rhaeticum (Humphries) Rauschert Sud-Europeo EY, FY 209 Phragmites australis (Cav.) Trin. ex Steud. ssp. australis Cosmopolita EY, FY, NY 210 Poa alpina L. ssp. alpina Circumboreale EY 211 Poa angustifolia L. Cosmopolita OX 212 Poa annua L. Cosmopolita EX, EY, FY 213 Poa badensis Haenke ex Willd. Mediterraneo-Montano FY 214 Poa bulbosa L. ssp. bulbosa Paleotemperato NY 215 Poa molinerii Balb. Orof. Sud-Est-Europeo EK, FH, MY 216 Poa pratensis L. ssp. pratensis Circumboreale NY 217 Poa trivialis L. Eurasiatico EY, GM, NY 218 Polypogon viridis (Gouan) Breistr. ssp. viridis Paleotropicale NY 219 Rostraria cristata (L.) Tzvelev Paleotemperato EK, NY 220 Sesleria juncifolia Suffren ssp. juncifolia Appennino-Balcanico CH, EY, NY 221 Sesleria nitida ssp. nitida Ten. Endemico NY 222 Setaria italica (L.) P. Beauv. ssp. viridis (L.) Thell. Subcosmopolita NY 223 Setaria verticillata (L.) P. Beauv. Cosmopolita NY 224 Sorghum halepense (L.) Pers. Cosmopolita NY 225 Stipa dasyvaginata Martinovsky ssp. apenninicola Martinovsky & Moraldo Endemico NY 226 Triticum vagans (Jord. & Fourr.) Greuter Mediterraneo-Turaniano NY BERBERIDACEAE 227 Berberis vulgaris L. ssp. vulgaris Eurasiatico EK, MX, MY, NL ANNALES · Ser. hist. nat. · 34 · 2024 · 2 334 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI TARANTA PELIGNA (ABRUZZO, ITALIA), 317–356 RANUNCULACEAE 228 Adonis annua L. Eurimediterraneo NY, OX 229 Adonis distorta Ten. Endemico FY 230 Anemonastrum narcissiflorum (L.) Holub, ssp. narcissiflorum Artico-Alpino EX 231 Anemone hortensis L. ssp. hortensis Nord-Mediterraneo NY, OX 232 Anemonoides nemorosa (L.) Holub Circumboreale NY 233 Anemonoides ranunculoides (L.) Holub Europeo-Caucasico NY 234 Clematis flammula L. Eurimediterraneo NY 235 Clematis vitalba L. Europeo LH, NY, OX 236 Delphinium consolida L. Eurimediterraneo NY 237 Delphinium fissum Waldst. & Kit. ssp. fissum Eurasiatico NY 238 Delphinium halteratum Sm. ssp. halteratum Stenomediterraneo NY 239 Ficaria verna Huds. s.l Orof. Eurasiatico NY 240 Helleborus foetidus L. ssp. foetidus Subatlantico NY, OX, OY 241 Hepatica nobilis Mill. Circumboreale NY 242 Nigella damascena L. Eurimediterraneo NY 243 Pulsatilla alpina (L.) Delarbre ssp. millefoliata (Bertol.) D.M. Moser Circumboreale FH, EY 244 Ranunculus acris L. ssp. acris Cosmopolita OX 245 Ranunculus apenninus. (Chiov.) Pignatti Endemico EY 246 Ranunculus arvensis L. Paleotemperato OX 247 Ranunculus brevifolius Ten. Appennino-Balcanico CH, EX, EY, FY 248 Ranunculus breyninus Crantz Orof. Sud-Europeo FH, GM 249 Ranunculus bulbosus L. Eurasiatico NY, OX 250 Ranunculus illyricus L. Appennino-Balcanico NY 251 Ranunculus lanuginosus L. Europeo-Caucasico NY 252 Ranunculus millefoliatus Vahl Mediterraneo-Montano NY 253 Ranunculus pollinensis. (N. Terracc.) Chiov. Endemico EX 254 Ranunculus repens L. Eurasiatico NY 255 Ranunculus seguieri Vill. ssp. seguieri Mediterraneo-Montano °° EY, FH, FY 256 Thalictrum lucidum L. Sud-Est-Europeo NY 257 Trollius europaeus L. ssp. europaeus Artico-Alpino EY PAPAVERACEAE 258 Chelidonium majus L. Eurasiatico NY, OX 259 Corydalis pumila (Host) Rchb. Centro-Europeo NY 260 Fumaria capreolata L. ssp. capreolata Eurimediterraneo NY 261 Fumaria officinalis L. ssp. officinalis Paleotemperato NH, OX 262 Fumaria vaillantii Loisel. Eurimediterraneo IW, MK, NY 263 Oreomecon alpina (L.) Banfi, Bartolucci, J. M. Tison & Galasso ssp. alpina Orof. Sud-Ovest-Europeo EX, EY 264 Papaver dubium L. ssp. dubium Eurimediterraneo NY 265 Papaver rhoeas.L. ssp. rhoeas Mediterraneo-Orientale NY, OX 266 Pseudofumaria alba (Mill.) Lidén ssp. alba Appennino-Balcanico CH, NY CRASSULACEAE 267 Hylotelephium maximum (L.) Holub Centro-Europeo NY, OX 268 Petrosedum montanum (Songeon & E.P. Perrier) Grulich Mediterraneo-Montano LK, MH, OX 269 Petrosedum rupestre (L.) P.V. Heath Centro-Europeo CY, EK, NY 270 Sedum acre L. Europeo FY, NY 271 Sedum album L. ssp. micranthum (Bast. ex DC.) Syme Eurimediterraneo NY, OX 272 Sedum annuum L. Artico-Alpino EY 273 Sedum atratum L. Mediterraneo-Montano EX, FH 274 Sedum caespitosum (Cav.) DC. Stenomediterraneo NY 275 Sedum dasyphyllum L. ssp. dasyphyllum Eurimediterraneo NY 276 Sedum hispanicum L. Pontico EX, NY 277 Sedum rubens L. Eurimediterraneo NY, OX ANNALES · Ser. hist. nat. · 34 · 2024 · 2 335 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI TARANTA PELIGNA (ABRUZZO, ITALIA), 317–356 278 Sedum sexangulare L. Europeo EX, NY 279 Sempervivum arachnoideum L. Orof. Sud-Europeo AK, EY, FY, MS, MY 280 Sempervivum riccii Iberite & Anzal. Endemico NX 281 Sempervivum tectorum L. Mediterraneo-Montano AK, CY. MS. NL 282 Umbilicus horizontalis (Guss.) DC. Stenomediterraneo NY BERBERIDACEAE 283 Berberis vulgaris L. ssp. vulgaris Eurasiatico NY SAXIFRAGACEAE 284 Saxifraga adscendens L. ssp. adscendens Mediterraneo-Montano EX 285 Saxifraga caesia L. Orof. Sud-Europeo AK, AY, BH, CH 286 Saxifraga callosa Sm. ssp. callosa Orof. Sud-Ovest-Europeo GX, GY, HK, HX, LX, NY 287 Saxifraga exarata Vill. ssp. ampullacea (Ten.) D. A. Webb Endemico AK, EX, EY, FH 288 Saxifraga granulata L. ssp. granulata Subatlantico EX, NY 289 Saxifraga italica D. A. Webb Endemico EY 290 Saxifraga oppositifolia L. ssp. oppositifolia Artico-Alpino EY, FH, FY 291 Saxifraga paniculata Mill. Artico-Alpino EX 292 Saxifraga porophylla Bertol. ssp. porophylla Endemico MK, MS, NY 293 Saxifraga rotundifolia L. ssp. rotundifolia Mediterraneo-Montano NY 294 Saxifraga speciosa Dörfl. & Hayek Endemico EX 295 Saxifraga tridactylites L. Eurimediterraneo NY, OX VITACEAE 296 Parthenocissus quinquefolia (L.) Planch. Avventizio NY 297 Vitis vinifera L. ssp. vinifera Avventizio NY, OX. Coltivato e spontaneizzato FABACEAE 298 Anthyllis montana L.susbp. jacquinii (A Kern.) Rohlena Orof. Sud-Est-Europeo GY, HK, IK, MY 299 Anthyllis vulneraria L. ssp. poliphylla (DC.) Nyman Sud-Est-Europeo CH 300 Anthyllis vulneraria L. ssp. pulchella (Vis.) Bornm. Sud-Est-Europeo EX, FH, FY 301 Anthyllis vulneraria L. ssp. rubiflora (DC.) Arcang. Eurimediterraneo EY, HK. Sono state ricondotte al taxon le segnalazioni di A. vulneraria L. ssp. maura (Beck) Maire 302 Anthyllis vulneraria L. ssp. weldeniana (Rchb.) Cullen Appennino-Balcanico CH, GM 303 Argyrolobium zanonii (Turra) P.W. Ball ssp. zanonii Mediterraneo-Occidentale CH, EY, NY 304 Astragalus australis (L.) Lam. Eurasiatico EY, MS 305 Astragalus depressus L. ssp. depressus Eurasiatico BK, EX, NY 306 Astragalus glycyphyllos L. Eurasiatico NY 307 Astragalus hamosus L. Mediterraneo-Turaniano NY 308 Astragalus monspessulanus L. ssp. monspessulanus Eurimediterraneo FK, NH, OX 309 Astragalus sempervirens Lam. Mediterraneo-Montano EX, GM 310 Astragalus sesameus L. Stenomediterraneo NY 311 Bituminaria bituminosa (L.) C. H. Stirt Eurimediterraneo NY 312 Cercis siliquastrum L. ssp. iliquastrum Pontico LH, NY, OX 313 Colutea arborescens L. Eurimediterraneo NY 314 Coronilla minima L. ssp. minima Mediterraneo-Occidentale NY 315 Coronilla scorpioides (L.) W. D. J. Koch Eurimediterraneo NY 316 Coronilla valentina L. Sud-Ovest-Mediterraneo BW, BX, CH, DK, DX, GH, IK, IX, IW, LX, MK, MS, NS 317 Cytisophyllum sessilifolius (L.) O. Lang Sud-Ovest-Europeo AK, NY 318 Cytisus hirsutus L. Eurosiberiano OX 319 Cytisus spinescens Sieber ex Spreng. Appennino-Balcanico NY 320 Emerus major Mill. ssp. emeroides (Boiss. & Spruner) Soldano & F. Conti Pontico BW, DX, IY, IW, LH, LX, MK 321 Ervilia hirsuta (L.) Opiz. Paleotemperato NY 322 Ervilia loiseleurii (M.Bieb.) H.Schaef. Eurimediterraneo °° NY. Specie nuova per la flora della Majella. 323 Ervum gracile DC. Stenomediterraneo NY ANNALES · Ser. hist. nat. · 34 · 2024 · 2 336 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI TARANTA PELIGNA (ABRUZZO, ITALIA), 317–356 324 Galega officinalis L. Pontico NH, OX 325 Genista tinctoria L. Eurasiatico NY 326 Hippocrepis biflora Spreng. Eurimediterraneo NY 327 Hippocrepis comosa L. ssp. comosa Europeo NY, OX 328 Laburnum anagyroides Medik. ssp. anagyroides Eurimediterraneo AX, CH, EK, GY, LH, NY, OX 329 Lathyrus annuus L. Eurimediterraneo NY 330 Lathyrus aphaca L. ssp. aphaca Eurimediterraneo NY 331 Lathyrus cicera L. Eurimediterraneo NY 332 Lathyrus hirsutus L. Eurimediterraneo NY 333 Lathyrus nissolia L. Eurimediterraneo NY 334 Lathyrus ochrus (L.) DC. Stenomediterraneo NH, OX 335 Lathyrus odoratus L. Endemico OX 336 Lathyrus pratensis L. Paleotemperato NY, OX. 337 Lathyrus sphaericus Retz. Eurimediterraneo NY 338 Lathyrus setifolius L. Europeo NY 339 Lathyrus sylvestris L. ssp. sylvestris Europeo EX, NY 340 Lathyrus venetus (Mill.) Wohlf. Eurasiatico NY 341 Lotus corniculatus L. ssp. alpinus (DC.) Rothm. Mediterraneo-Montano OX 342 Lotus corniculatus L. ssp. corniculatus Paleotemperato NY 343 Lotus herbaceus (Vill.) Jauzein Pontico NY 344 Lotus hirsutus L. Eurimediterraneo NY 345 Lotus ornithopodioides L. Stenomediterraneo NY 346 Lotus tenuis Waldst. & Kit. ex Willd. Paleotemperato NY 347 Lotus tetragonolobus L. Stenomediterraneo NY 348 Medicago arabica (L.) Huds. Eurimediterraneo NY 349 Medicago disciformis DC. Stenomediterraneo ## NY 350 Medicago falcata L. ssp. falcata Eurasiatico OX 351 Medicago lupulina L. Paleotemperato NY, OX 352 Medicago minima (L.) L. Eurimediterraneo NY, OX 353 Medicago orbicularis (L.) Bartal. Eurimediterraneo NY 354 Medicago polymorpha L. Subcosmopolita NY 355 Medicago prostrata Jacq. ssp. prostrata Pontico EX 356 Medicago sativa L. Eurasiatico NY, OX 357 Medicago scutellata Mill. Eurimediterraneo NY 358 Medicago truncatula Gaertn. Stenomediterraneo NY 359 Onobrychis alba (Waldst. & Kit.) Desv. ssp. alba Appennino-Balcanico MS, MY 360 Onobrychis caput-gallli (L.) Lam. Mediterraneo-Montano OX 361 Onobrychis viciifolia Scop. Mediterraneo-Montano NY 362 Ononis mitissima L. Stenomediterraneo NY 363 Ononis pusilla L. ssp. pusilla Eurimediterraneo NY 364 Ononis reclinata L. Mediterraneo-Occidentale NY 365 Ononis spinosa L. ssp. pinosa Eurimediterraneo NY 366 Ononis viscosa L. ssp. breviflora (DC.) Nyman Sud-Mediterraneo NY 367 Oxytropis campestris (L.) DC. ssp. campestris Circumboreale CH, EY, FY 368 Oxytropis neglecta Ten. Orof. Sud-Europeo CH, EY, FH, FY, GK 369 Pisum sativum L. ssp. biflorum (Raf.) Soldano Eurimediterraneo NY. 370 Pisum sativum L. ssp. ativum Subcosmopolita NY, OX 371 Robinia pseudacacia L. Nord-Americano NY, OX 372 Securigera securidaca (L.) Degen & Dorf. Eurimediterraneo OX 373 Securigera varia (L.) Lassen Circumboreale CH, NY 374 Spartium junceum L. Eurimediterraneo NY, OX 375 Sulla coronaria (L.) Medik. Mediterraneo-Occidentale NY, OX 376 Trifolium alexandrinum L. Eurimediterraneo NY ANNALES · Ser. hist. nat. · 34 · 2024 · 2 337 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI TARANTA PELIGNA (ABRUZZO, ITALIA), 317–356 377 Trifolium alpestre L. Europeo NY, OX 378 Trifolium angustifolium L. Eurimediterraneo NY 379 Trifolium arvense L. ssp. arvense Paleotemperato NY 380 Trifolium campestre Schreb. Paleotemperato CH, NY 381 Trifolium echinatum M. Bieb. Mediterraneo-Turaniano NY 382 Trifolium incarnatum L. ssp. molinerii (Balb. ex Hornem.) Ces. Eurimediterraneo NY 383 Trifolium lappaceum L. Eurimediterraneo NY 384 Trifolium nigrescens Viv. ssp. nigrescens Eurimediterraneo OX 385 Trifolium noricum Wulfen ssp. praetutianum (Savi) Arcang. Appennino-Balcanico °° EX, EY, FY 386 Trifolium ochroleucon Huds. Pontico NY 387 Trifolium pratense L. ssp. pratense Eurasiatico NY, OX 388 Trifolium pratense L. ssp. emipurpureum (Strobl) Pignatti Endemico EX, EY, MS 389 Trifolium repens L. ssp. repens Paleotemperato NH, OX 390 Trifolium resupinatum L. Paleotemperato NY 391 Trifolium scabrum L. ssp. scabrum Eurimediterraneo NY 392 Trifolium squamosum L. Eurimediterraneo NY 393 Trifolium squarrosum L. Eurimediterraneo NY 394 Trifolium stellatum L. Eurimediterraneo NY 395 Trifolium thalii Vill. Mediterraneo-Montano EX, EY 396 Trigonella alba (Medik.) Coulot & Rabaute Eurasiatico NY 397 Trigonella sulcata (Desf.) Coulot & Rabaute Sud-Mediterraneo NY 398 Trigonella woijciechowskii. Coulot & Rabaute Stenomediterraneo CK, NY 399 Vicia angustifolia L. Stenomediterraneo NY 400 Vicia bithynica (L.) L. Eurimediterraneo NY 401 Vicia cracca L. Eurasiatico OX 402 Vicia dasycarpa Ten. Eurimediterraneo OX 403 Vicia ervoides (Brign.) Hampe Pontico CH, NY 404 Vicia hybrida L. Eurimediterraneo NY 405 Vicia incana Gouan Eurimediterraneo NY 406 Vicia johannis Tammasch Sud-Europeo-Sud-Siberiano NY 407 Vicia lathyroides L. Eurimediterraneo NY 408 Vicia lentoides (Ten.) Coss. & Germ. Stenomediterraneo NY 409 Vicia lutea L. Eurimediterraneo NY 410 Vicia peregrina L. Mediterraneo-Turaniano NY 411 Vicia sativa L. ssp. sativa Eurimediterraneo NY, OX 412 Vicia sepium L. Eurosiberiano NY 413 Vicia tenuifolia Roth ssp. tenuifolia Eurasiatico NY 414 Vicia villosa Roth Stenomediterraneo CH POLYGALACEAE 415 Polygala alpestris Rchb. ssp. angelisii (Ten.) Nyman Endemico GM, OX 416 Polygala major Jacq. Pontico NY 417 Polygala nicaensis W. D. J. Koch ssp. mediterranea Chodat Eurimediterraneo NY 418 Polygala monspeliaca L. Stenomediterraneo NY ROSACEAE 419 Agrimonia eupatoria L. ssp. eupatoria Subcosmopolita NY, OX 420 Alchemilla alpina L. Artico-Alpino OX 421 Amelanchier ovalis Medik. ssp. ovalis Mediterraneo-Montano EK, MY, MS, NL, NS, NY 422 Aremonia agrimonoides (L.) DC. ssp. agrimonoides Sud-Europeo NY, OX 423 Cotoneaster integerrimus Medik. Pontico EK, NY. E' stata riportata al taxon la segnalazione di Cotoneaster nebrodensis (Guss.) K.Koch 424 Cotoneaster tomentosus (Aiton) Lindl. Pontico EK 425 Crataegus monogyna Jacq. Paleotemperato IK, NY ANNALES · Ser. hist. nat. · 34 · 2024 · 2 338 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI TARANTA PELIGNA (ABRUZZO, ITALIA), 317–356 426 Cydonia oblonga Mill. Asiatico-Occidentale NY. Coltivato e spontaneizzato 427 Dryas octopetala L. ssp. octopetala Artico-Alpino EY 428 Filipendula vulgaris Moench Centro-Europeo NY, OX 429 Fragaria vesca L. ssp. vesca Eurosiberiano NY 430 Geum urbanum L. Circumboreale NY 431 Malus domestica (Borkh.) Borkh. Eurasiatico NY 432 Malus sylvestris (L.) Mill. Centro-Europeo NY 433 Mespilus germanica L. Pontico OX. Coltivato e spontaneizzato 434 Potentilla apennina Ten. ssp. apennina Appennino-Balcanico CH, GM, NL, NY 435 Potentilla caulescens L. ssp. caulescens Mediterraneo-Montano MY, NL, NH, NY 436 Potentilla crantzii (Crantz) Beck ex Fritsch ssp. crantzii Artico-Alpino EX, EY, FH, FY 437 Potentilla micrantha Ramond ex DC. Eurimediterraneo NY 438 Potentilla pedata Willd. ex Hornem. Eurimediterraneo NY 439 Potentilla reptans L. Paleotemperato NH 440 Potentilla rigoana Th. Wolf Endemico NY 441 Poterium sanguisorba L. ssp. balearica (Bourg. Ex Nyman) Stace Sud-Ovest-Europeo NY 442 Prunus armeniaca L. Europeo-Caucasico OX. Coltivato e spontaneizzato 443 Prunus avium L. ssp. avium Pontico NY 444 Prunus cerasifera Ehrh. Pontico NY, OX. Coltivato e spontaneizzato 445 Prunus cerasus L. Pontico NY, OX. Coltivato e spontaneizzato 446 Prunus domestica L. Europeo-Caucasico NY, OX. Coltivato e spontaneizzato 447 Prunus dulcis (Mill.) D. A. Webb Eurimediterraneo OX. Coltivato e spontaneizzato 448 Prunus mahaleb L. Pontico LH, EK, NY, OX 449 Prunus persica (L.) Batsch Asiatico NY, OX. Coltivato e spontaneizzato 450 Prunus spinosa L. ssp. pinosa Europeo LH, NY, OX 451 Pyracantha coccinea M. Roem. Stenomediterraneo OX, PK 452 Pyrus communis L.L. ssp. communis Avventizio NY 453 Rosa arvensis Huds. Mediterraneo-Atlantico NY 454 Rosa canina L. Paleotemperato NY, OX 455 Rosa montana Chaix Orof. Sud-Europeo NK 456 Rosa nitidula Besser Eurimediterraneo CH, LK, MH 457 Rosa sempervirens L. Stenomediterraneo NY, OX 458 Rubus caesius L. Eurasiatico NY, 0X 459 Rubus canescens DC. Eurimediterraneo NY 460 Rubus idaeus L. ssp. idaeus Circumboreale EK, MY, NY 461 Rubus saxatilis L. Circumboreale OX 462 Rubus ulmifolius Schott Mediterraneo-Atlantico NY, OX 463 Sibbaldia procumbens L. Artico-Alpino EY 464 Sorbus aria (L.) Crantz ssp. aria Paleotemperato EK, LH, MS, MY, NS, NY 465 Sorbus aucuparia L. ssp. aucuparia Europeo EK 466 Sorbus domestica L. Eurimediterraneo NY, OX RHAMNACEAE 467 Atadinus alpinus (L.) Raf. Mediterraneo-Occidentale AK, EK, LH, MS, NS 468 Atadinus fallax (Boiss.) Hauenschild Orof. Sud-Est-Europeo IK 469 Atadinus pumilus (Turra) Hauenschild ssp. pumilus Mediterraneo-Montano MY, NY 470 Paliurus spina-christi Mill. Pontico NY, OX 471 Rhamnus alaternus L. ssp. alaternus Stenomediterraneo CK 472 Rhamnus saxatilis Jacq. ssp. infectorius (L.) P. Fournier Sud-Est-Europeo NY ULMACEAE 473 Ulmus minor MilL. ssp. minor Europeo-Caucasico OX CANNABACEAE 474 Celtis australis L. Eurimediterraneo OX ANNALES · Ser. hist. nat. · 34 · 2024 · 2 339 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI TARANTA PELIGNA (ABRUZZO, ITALIA), 317–356 MORACEAE 475 Ficus carica L. Eurimediterraneo NY, OX. Coltivato e spontaneizzato 476 Morus alba L. Asiatico OX. Coltivato e spontaneizzato 477 Morus nigra L. Asiatico OX. Coltivato e spontaneizzato URTICACEAE 478 Parietaria judaica L. Eurimediterraneo OX 479 Parietaria officinalis L. Europeo NY, OX 480 Urtica dioica L. Cosmopolita NY OX FAGACEAE 481 Fagus sylvatica L. Centro-Europeo LH, NH, NY, OX 482 Quercus ilex L. ssp. ilex Stenomediterraneo BW, DX, FK, LH, NH, NY, OX 483 Quercus cerris L. Eurimediterraneo NY 484 Quercus pubescens Willd. ssp. pubescens Pontico CH, NH, OX JUGLANDACEAE 485 Juglans regia L. Asiatico NY, OX BETULACEAE 486 Alnus cordata (Loisel.) Duby Sud-Est-Europeo LH, MS, NS, NH, NY 487 Alnus glutinosa L. Gaertn. Paleotemperato NY, OX 488 Carpinus orientalis MilL. ssp. orientalis Pontico NY, OX 489 Corylus avellana L. Europeo NY, OX 490 Ostrya carpinifolia Scop. Pontico BW, LH, DX, NY, OX CUCURBITACEAE 491 Bryonia dioica Jacq. Eurimediterraneo GY, HK 492 Ecballium elaterium (L.) A. Rich. Eurimediterraneo HK, HX, NY CELASTRACEAE 493 Euonymus europaeus L. Eurasiatico NY, OX 494 Euonymus latifolius (L.) Mill Mediterraneo-Montano EK OXALIDACEAE 495 Oxalis articulata Savigny Sud-Americano NY 496 Oxalis corniculata L. Cosmopolita NY 497 Oxalis dillenii Jacq. Subcosmopolita NY VIOLACEAE 498 Viola alba Besser ssp. dehnhardtii (Ten.) W. Becker Eurimediterraneo NH, NY, OX 499 Viola eugeniae Parl. ssp. eugeniae Endemico EX, EY, FH, FY, LH, MY, NX 500 Viola magellensis Porta & Rigo ex Strobl Appennino-Balcanico EX, EY,FH, FY 501 Viola odorata L. Eurimediterraneo OX 502 Viola riechenbachiana Jord. ex Boreau Eurosiberiano NH, NY, OX SALICACEAE 503 Populus alba L. Paleotemperato NY, OX 504 Populus nigra L. Paleotemperato NY, OX 505 Populus tremula L. Eurosiberiano OX 506 Salix alba L. Paleotemperato DX, OX 507 Salix apennina A.K.Skvortsov Subendemico NY 508 Salix babylonica L. Subtropicale NY 509 Salix eleagnos Scop. ssp. eleagnos Mediterraneo-Montano NY, OX 510 Salix purpurea L. ssp. purpurea Eurasiatico DX, NY, OX 511 Salix retusa L. Orof. Europeo EX, EY, FH, MY 512 Salix triandra L. ssp. triandra Eurosiberiano OX LINACEAE 513 Linum alpinum Jacq. Mediterraneo-Montano GY, HK, HX, IK, NL , NY 514 Linum bienne Mill. Subatlantico NY, OX 515 Linum capitatum Kit. ex Schult. ssp. serrulatum (Bertol.) Hartvig Appennino-Balcanico GY, MS, MY, NY 516 Linum corymbulosum Rchb. Stenomediterraneo NY ANNALES · Ser. hist. nat. · 34 · 2024 · 2 340 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI TARANTA PELIGNA (ABRUZZO, ITALIA), 317–356 517 Linum strictum L. Stenomediterraneo NY 518 Linum tenuifolium L. Pontico NY, OX 519 Linum viscosum L. Orof. Sud-Europeo NY HYPERICACEAE 520 Hypericum montanum L. Europeo-Caucasico OX 521 Hypericum perforatum L.ssp. perforatum Eurimediterraneo NY, OX 522 Hypericum richeri Vill. ssp. richeri Orof. Sud-Europeo EX 523 Hypericum tetrapterum Fr. Paleotemperato NY EUPHORBIACEAE 524 Euphorbia amygdaloides L. Europeo NY, OX 525 Euphorbia characias L. Stenomediterraneo BW, DX, LH, NY, OX, PK 526 Euphorbia cyparissias L. Europeo NH, OX 527 Euphorbia dulcis L. Centro-Europeo NY 528 Euphorbia exigua L. Eurimediterraneo NY 529 Euphorbia falcata L. Mediterraneo-Turaniano NY 530 Euphorbia helioscopia L. ssp. helioscopia Cosmopolita MY, NY, OX 531 Euphorbia maculata L. Nord-Americano NY 532 Euphorbia nicaensis All. ssp. nicaensis Eurimediterraneo OX 533 Euphorbia peplus L. Cosmopolita NY 534 Euphorbia platyphyllos L. Eurimediterraneo NY 535 Euphorbia prostrata Aiton Nord-Americano NY 536 Mercurialis annua L. Paleotemperato NY 537 Mercurialis ovata Sternb. & Hoppe Pontico EX, MY 538 Mercurialis perennis L. Europeo EK, NY GERANIACEAE 539 Erodium ciconium (L.) L'Hér. Eurimediterraneo NY 540 Erodium cicutarium (L.) L’Hér. Cosmopolita NY 541 Erodium malacoides (L.) L’Her. Eurimediterraneo NY 542 Geranium columbinum L. Subcosmopolita NY 543 Geranium dissectum L. Eurasiatico NY 544 Geranium lucidum L. Eurimediterraneo NY 545 Geranium molle L. Eurasiatico NY 546 Geranium nodosum L. Mediterraneo-Montano NY 547 Geranium purpureum Vill. Eurimediterraneo NY 548 Geranium pusillum L. Europeo NY 549 Geranium pyrenaicum Burm.f. ssp. pyrenaicum Eurimediterraneo NY 550 Geranium robertianum L. Cosmopolita EK, NY 551 Geranium rotundifolium L. Paleotemperato NY 552 Geranium sanguineum L. Europeo-Caucasico NY 553 Geranium versicolor L. Appennino-Balcanico NY ONAGRACEAE 554 Chamaenerion angustifolium (L.) Scop. Circumboreale MS, NH, NY 555 Epilobium hirsutum L. Paleotemperato NY 556 Epilobium montanum L. Eurasiatico OX 557 Epilobium parviflorum Schreb. Paleotemperato NY LYTHRACEAE 558 Lythrum hyssopifolia L. Subcosmopolita NY 559 Punica granatum L. Asiatico OX ANACARDIACEAE 560 Pistacia terebinthus L.ssp. terebinthus Eurimediterraneo HK, HX, IK, LH, LX, MK, NL SAPINDACEAE 561 Acer campestre L. Europeo-Caucasico NY, OX 562 Acer monspessulanum L. ssp. monspessulanum Eurimediterraneo CH, FH, NY ANNALES · Ser. hist. nat. · 34 · 2024 · 2 341 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI TARANTA PELIGNA (ABRUZZO, ITALIA), 317–356 563 Acer opalus Mill. ssp. obtusatum (Waldst. & Kit. ex Willd.) Gams Appennino-Balcanico AK, EK 564 Acer platanoides L. Europeo-Caucasico NY 565 Acer pseudoplatanus L. Europeo-Caucasico NY 566 Aesculus hippocastanum L. Sud-Est-Europeo OX. Utilizzato per le alberature stradali RUTACEAE 567 Ruta chalepensis L. Stenomediterraneo NY THYMELACEAE 568 Daphne alpina L.ssp. alpina Orof. Sud-Europeo LK, MH 569 Daphne laureola L. Eurasiatico NY 570 Daphne mezereum L. Eurosiberiano AK, AX, EK, NY 571 Daphne oleoides Schreb. Orof. Eurasiatico AK, AY, CH, EK, EY, MY, NY 572 Thymelaea passerina (L.) Coss. & Germ Eurimediterraneo NY CISTACEAE 573 Cistus creticus L. ssp. creticus Stenomediterraneo CH, CY, GY, HK, HX, IK, LX, MK, PK 574 Cistus creticus L. ssp. eriocephalus (Viv.) Greuter & Burdet Stenomediterraneo NY 575 Fumana ericifolia Wallr. Stenomediterraneo GY, HK 576 Fumana procumbens (Dunal) Gren. & Godr. Pontico OX 577 Fumana thymifolia (L.) Spach ex Webb Stenomediterraneo NY, OX 578 Helianthemum appeninum (L.) Mill. ssp. apenninum Sud-Ovest-Europeo NH, NY, OX 579 Helianthemum nummularium (L.) Mill. ssp. glabrum (W.D.J.Koch) Wilczek Europeo-Caucasico GY 580 Helianthemum nummularium (L.) Mill. ssp. grandiflorum ( Scop.) Schinz & Thell. Europeo-Caucasico NY 581 Helianthemum oleandicum (L.) Dum. Cours. ssp. alpestre (Jacq.) Ces. Orof. Sud-Europeo EY, FH, FY, MY, NY 582 Helianthemum oleandicum (L.) Dum. Cours. ssp. incanum (Willk.) G. Lopez Europeo-Caucasico IW, LX, MK, NY 583 Helianthemum oelandicum (L.) Dum. Cours. ssp. italicum (L.) Ces. Orof. Sud-Ovest-Europeo EX 584 Helianthemum salicifolium (L.) Mill. Eurimediterraneo NY SIMABOURACEAE 585 Ailanthus altissima (Mill.) Swingle Avventizio NY, OX MALVACEAE 586 Alcea rosea L. Avventizio OX. Coltivato e spontaneizzato. 587 Malope malacoides L. Eurimediterraneo NY 588 Malva neglecta Wallr. Paleotemperato NY 589 Malva setigera K.F. Schimp. & Spenn. Eurimediterraneo NY 590 Malva sylvestris L.ssp. sylvestris Eurosiberiano NY, OX 591 Malva thuringiaca (L.) Vis. Sud-Europeo-Sud-Siberiano NY 592 Malva trimestris (L.) Salisb. Stenomediterraneo NY 593 Tilia xeuropaea L. Europeo-Caucasico OX. Utilizzato a fini ornamentali. RESEDACEAE 594 Reseda lutea L.ssp. lutea Europeo NY 595 Reseda luteola L. Circumboreale OX 596 Reseda phyteuma L. Eurimediterraneo NY BRASSICACEAE 597 Aethionema saxatile (L.) R. Br. ssp. saxatile Mediterraneo-Montano AH, BK, EX, IK, NY 598 Alliaria petiolata (M. Bieb.) Cavara & Grande Eurasiatico NY 599 Alyssum alyssoides (L.) L. Eurimediterraneo NY 600 Alyssum cuneifolium Ten. Endemico CH, EX, EY, FH 601 Alyssum diffusum Ten. ssp. diffusum Mediterraneo-Montano EX, NY 602 Alyssum montanun L. ssp. montanum Pontico OX 603 Alyssum strigosum (Banks & Sol.) Jalas Mediterraneo-Orientale NY 604 Arabidopsis thaliana (L.) Heynh. Paleotemperato NY 605 Arabis alpina L. ssp. alpina Artico-Alpino OX 606 Arabis alpina L. ssp. caucasica (Willd.) Briq. Mediterraneo-Montano EY, NY 607 Arabis auriculata Lam. Orof. Sud-Europeo NY 608 Arabis collina Ten. ssp. collina Mediterraneo-Montano NY ANNALES · Ser. hist. nat. · 34 · 2024 · 2 342 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI TARANTA PELIGNA (ABRUZZO, ITALIA), 317–356 609 Arabis hirsuta (L.) Scop. Orof. Sud-Europeo NY 610 Arabis surculosa N. Terracc. Appennino-Balcanico EX 611 Aubrieta columnae Guss. ssp. columnae Endemico MY, NY 612 Aurinia sinuata (L.) Griseb. Appennino-Balcanico BW, BX, CH, DK, DX, LK, MH 613 Barbarea vulgaris W.T. Aiton Eurosiberiano NY 614 Biscutella laevigata L. ssp. australis Raffaelli & Baldoin Endemico AK, EK,LX, MK, NL, NY. Sono state riferite al taxon tutte le segnalazioni di Biscutella laevigata s.l. 615 Brassica gravinae Ten. Subendemico MY, MS, NS, NY 616 Brassica nigra (L.) W. D. J. Koch Eurimediterraneo NY 617 Brassica oleracea (L.) Ovest-Europeo NY 618 Bunias erucago L. Eurimediterraneo NY 619 Capsella bursa-pastoris (L.) Medik. ssp. bursa-pastoris Cosmopolita NY, OX 620 Capsella rubella Reut. Cosmopolita NY 621 Cardamine amporitana Sennen & Pau Subendemico NY 622 Cardamine bulbifera (L.) Crantz Centro-Europeo NY 623 Cardamine chelidonia L. Appennino-Balcanico NY 624 Cardamine graeca L. Sud-Est-Europeo NY 625 Cardamine hirsuta L. Cosmopolita NY 626 Cardamine kitaibelii Bech. Orof. Sud-Europeo OX 627 Clypeola jonthlaspi L. ssp. jonthlaspi Stenomediterraneo HX, IK, NY 628 Diplotaxis erucoides (L.) DC. ssp. erucoides Stenomediterraneo NY 629 Diplotaxis tenuifolia (L.) DC. Subatlantico NY, OX 630 Draba aizoides L. ssp. aizoides Orof. Centro-Europeo EX, EY, FH, FY 631 Draba aspera Bertol. Orof. Sud-Europeo OX 632 Draba verna L. ssp. praecox (Steven) Rouy & Foucaud Stenomediterraneo NY 633 Draba verna L. ssp. verna Circumboreale NY 634 Drabella muralis (L.) Fourr. Circumboreale NY 635 Erysimum majellense Polatscheck Endemico CH, CY, EY, LH 636 Erysimum pseudorhaeticum Polatscheck Endemico NY 637 Fibigia clypeata (L.) Medik Orof. Sud-Est-Europeo NY 638 Hesperis laciniata All. ssp. laciniata Orof. Sud-Europeo °° NY 639 Hornungia petraea (L.) Rchb. ssp. petraea Eurimediterraneo NY 640 Iberis saxatilis L. ssp. saxatilis Mediterraneo-Montano °° AK, EX, FH, FY, IW, LX, NY 641 Isatis apennina Ten. ex Grande Subendemico °° AK, CH, CY, HX, IK, IW, LX, MK, MY, NY 642 Isatis tinctoria L. ssp. tinctoria Eurasiatico NY, PK 643 Lepidium campestre (L.) W.T. Aiton Europeo-Caucasico NY 644 Lepidium draba L. ssp. draba Mediterraneo-Turaniano NY 645 Lepidium graminifolium L. Eurimediterraneo NY 646 Microthlaspi perfoliatum (L.) F. K. Mey Paleotemperato NY 647 Mummenhoffia alliacea (L.) Esmailbegi & Al-Shehbaz Mediterraneo-Atlantico NY 648 Nasturtium officinale W.T. Aiton Cosmopolita NY 649 Noccaea stylosa (Ten.) Rchb. Endemico EX, EY 650 Phyllolepidum rupestre (Sweet) Trinajstić Stenomediterraneo IK 651 Pseudoturritis turrita (L.) Al-Shehbaz. Stenomediterraneo NY 652 Rapistrum rugosum (L.) Arcang. Eurimediterraneo NY 653 Sinapis alba L. ssp. alba Eurimediterraneo NY 654 Sinapis arvensis L. . ssp. arvensis Stenomediterraneo NY 655 Sisymbrium irio L. Paleotemperato NH 656 Sisymbrium officinale (L.) Scop. Eurasiatico NY 657 Sisymbrium orientale L. Eurimediterraneo NY 658 Turritis glabra L. Artico-Alpino NY LORANTHACEAE 659 Loranthus europaeus Jacq. Europeo NY ANNALES · Ser. hist. nat. · 34 · 2024 · 2 343 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI TARANTA PELIGNA (ABRUZZO, ITALIA), 317–356 SANTALACEAE 660 Osyris alba L. Eurimediterraneo GY, HK, IK, LX, MX 661 Thesium humifusum DC. Eurimediterraneo NY, OX 662 Thesium linophyllon L. Sud-Est-Europeo CH, NY 663 Thesium parnassii A. DC. Appennino-Balcanico EY 664 Viscum album L. ssp. album Eurasiatico NY PLUMBAGINACEAE 665 Armeria gracilis Ten. ssp. gracilis Endemico NH 666 Armeria gracilis Ten. ssp. majellensis (Boiss.) Arrigoni Endemico EY, FY, NY 667 Plumbago europaea L. Stenomediterraneo NY, OX POLYGONACEAE 668 Bistorta officinalis Delarbre Circumboreale OX 669 Bistorta vivipara (L.) Delarbre Artico-Alpino EX, EY,FH, FY 670 Fallopia convolvulus (L.) Á.Löve Circumboreale NY 671 Polygonum aviculare L. ssp. aviculare Cosmopolita NY 672 Rumex acetosa L. ssp. acetosa Circumboreale BK, EX 673 Rumex conglomeratus Murray Eurasiatico NY 674 Rumex crispus L. Cosmopolita NY 675 Rumex nebroides Campd. Appennino-Balcanico 0X 676 Rumex pulcher L. ssp. pulcher Eurimediterraneo NY 677 Rumex scutatus L. ssp. cutatus Mediterraneo-Montano BW, DX, EK, MS, MY, NY TAMARICACEAE 678 Tamarix africana Poir. Mediterraneo-Occidentale NY CARYOPHYLLACEAE 679 Agrostemma githago L. ssp. githago Europeo-Caucasico OX 680 Arenaria bertolonii Fiori Endemico AK, AY, BH, CH, EX, EY, FY, NY 681 Arenaria grandifora L. ssp. grandifora Mediterraneo-Montano EX, FH, FY, LX, NY 682 Arenaria serpyllifolia L. ssp. erpyllifolia Subcosmopolita NY 683 Cerastium arvense L. ssp. arvense Paleotemperato OX 684 Cerastium arvense L. ssp. trictum (W.D.J.Koch) Gremli Orof. Sud-Europeo CH, FY 685 Cerastium glomeratum Thuill. Cosmopolita NY 686 Cerastium thomasii Ten. Endemico EX, EY, FH, FY 687 Cerastium tomentosum L. Ovest-Europeo CY, DX, EK, MS, NS 688 Cherleria capillacea (All.) A.J.Moore & Dillenb. Orof. Sud- Europeo AK, AY, BH, BK, CH, MS, NS 689 Cherleria laricifolia (L.) Iamonico Orof. Europeo AK, BK 690 Dianthus brachycalyx A.Huet & É.Huet ex Bacch., Brullo, Casti & Giusso Endemico NH 691 Dianthus ciliatus Guss. ssp. ciliatus Appennino-Balcanico AK, HX, IK, LX, MS, NS 692 Dianthus hyssopifolius L. Mediterraneo-Montano GY, HK, NY 693 Dianthus virgineus L. Stenomediterraneo GM, GY, HK. HX, NY. Sono state ricondotte al taxon le segnalazioni di Dianthus sylvestris Wulfen 694 Drypis spinosa L. ssp. pinosa Appennino-Balcanico BW, CH, DX, EK, GY, HK, IK,LX, MY, MS, NS 695 Heliosperma pusillum (Waldst. & Kit.) Rchb. Mediterraneo-Montano OX 696 Herniaria glabra L. Paleotemperato NY 697 Herniaria incana Lam. Eurimediterraneo NY 698 Holosteum umbellatum L. ssp. umbellatum Paleotemperato NY 699 Mcneillia rosanoi (Ten.) F.Conti & Del Guacchio Appennino-Balcanico AK, MY, NY 700 Moehringia muscosa L. Orof. Sud-Europeo CH 701 Moehringia trinervia (L.) Clairv. Eurasiatico EK, EX, NY 702 Paronychia capitata (L.) Lam. ssp. capitata Eurimediterraneo AK, IK 703 Paronykia kapela (Hacq.) A. Kern. ssp. kapela Appennino-Balcanico CK, NY 704 Pethroragia prolifera (L.) P. W. Ball & Heywood Eurimediterraneo NY 705 Pethroragia saxifraga (L.) Link ssp. saxifraga Eurimediterraneo NY, OX ANNALES · Ser. hist. nat. · 34 · 2024 · 2 344 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI TARANTA PELIGNA (ABRUZZO, ITALIA), 317–356 706 Polycarpon tetraphyllum L. Eurimediterraneo NY 707 Sabulina tenuifolia (L.) Rchb.ssp. tenuifolia Paleotemperato NY 708 Sabulina verna (L.) Rchb. ssp. verna Eurasiatico AY, EX, FH, EY, FY 709 Sagina apetala Ard. Eurimediterraneo NY 710 Sagina saginoides (L.) H. Karst. ssp. saginoides Artico-Alpino EY 711 Saponaria officinalis L. Eurosiberiano NY 712 Silene acaulis (L.) Jacq. ssp. bryoides (Jord.) Nyman Artico-Alpino EX, EY, FH, FY 713 Silene conica L. Appennino-Balcanico NY 714 Silene italica L.) Pers. ssp. italica Eurimediterraneo NY 715 Silene latifolia Poir. Paleotemperato CY, NY 716 Silene multicaulis Guss. ssp. multicaulis Appennino-Balcanico EY, GY, HK, MS, NY 717 Silene nocturna L. ssp. nocturna Mediterraneo-Macaronesico NY 718 Silene otites (L.) Wibel ssp. otites Eurasiatico EX, NY 719 Silene viridiflora L. Eurasiatico NY 720 Silene vulgaris (Moench) Garcke ssp. glareosa (Jord.) Marsden-Jones & Turrill Orof. Sud-Est-Europeo GY, HK 721 Silene vulgaris (Moench) Garcke ssp. prostrata (Gaudin) Schinz & Thell. Orof. Sud-Ovest-Europeo MK, MS, MY, NS, NY 722 Silene vulgaris (Moench) Garcke ssp. vulgaris Eurasiatico NY 723 Spergularia rubra (L.) J.Presl & C.Presl Cosmopolita NY 724 Stellaria media (L.) Vill. ssp. media Cosmopolita OX 725 Stellaria pallida (Dumort.) Crép. Paleotemperato NY AMARANTHACEAE 726 Amaranthus deflexus L. Sud-Americano NY 727 Amaranthus retroflexus L. Cosmopolita NY 728 Atriplex patula L. Circumboreale NY 729 Atriplex prostrata Boucher ex DC. Circumboreale NY 730 Beta vulgaris L. ssp. vulgaris Eurimediterraneo OX 731 Blitum bonus-henricus (L.) Rchb. Circumboreale DY, MS, NS, NX, NY, OX 732 Chenopodium album L. ssp. album Cosmopolita NY 733 Chenopodium opulifolium Schrad. ex W.D.J.Koch & Ziz Paleotemperato NY 734 Chenopodium vulvaria L. Eurimediterraneo NY PORTULACACEAE 735 Portulaca trituberculata Danin, Domina & Raimondo Subcosmopolita NY CACTACEAE 736 Opuntia stricta (Haw.) Haw. Americano NY CORNACEAE 737 Cornus mas L. Pontico OX 738 Cornus sanguinea ssp. hungarica (Kàrpàti) Soò Eurasiatico NY, OX PRIMULACEAE 739 Androsace villosa L. ssp. villosa Orof. Eurasiatico EX, EY, FH, FY, NX 740 Androsace vitaliana (L.) Lapeyr. ssp. praetutiana (Buser ex Sünd.) Kress Endemico EX, EY, FH 741 Cyclamen hederifolium Aiton ssp. hederifolium Stenomediterraneo NY, OX 742 Cyclamen repandum Sm. ssp. repandum Nord-Mediterraneo NY, OX 743 Lysimachia arvensis (L.) U. Manns & Anderb. ssp. arvensis Eurimediterraneo NY, PK 744 Primula auricula L. ssp. ciliata (Moretti) Ludi Orof. Sud-Europeo AK, NX, NY 745 Primula intricata Gren. & Godr. Eurimediterraneo GY, HK, HX 746 Primula veris L. ssp. columnae (Ten.) Maire & Petitm. Eurimediterraneo NY 747 Primula vulgaris Huds. ssp. vulgaris Europeo NY, OX ERICACEAE 748 Arctostaphylos uva-ursi (L.) Spreng. Artico-Alpino AK, EK, GY, MY, NY 749 Orthilia secunda (L.) House Circumboreale EK, NL, NY RUBIACEAE 750 Asperula aristata L. s.l. Mediterraneo-Montano NY, OX 751 Asperula cynanchica L. s.l. Mediterraneo-Montano NY, OX ANNALES · Ser. hist. nat. · 34 · 2024 · 2 345 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI TARANTA PELIGNA (ABRUZZO, ITALIA), 317–356 752 Asperula purpurea (L.) Ehrend. ssp. purpurea Mediterraneo-Montano EK, NY 753 Cruciata laevipes Opiz Mediterraneo-Montano NY 754 Cruciata pedemontana (Bellardi) Ehrend. Eurimediterraneo NY 755 Galium anisophyllon Vill. Orof. Centro-Europeo OX 756 Galium aparine L. Eurasiatico NY 757 Galium corrudifolium Vill. Stenomediterraneo EK, IY, NY 758 Galium lucidum All. ssp. venustum (Jord.) Arcang. Endemico NY 759 Galium magellense Ten. Endemico EX, EY, FH 760 Galium mollugo L. Eurasiatico OX 761 Galium murale (L.) All. Stenomediterraneo NY 762 Galium odoratum (L.) Scop. Eurasiatico OY 763 Galium parisiense L. Eurimediterraneo NY 764 Galium tricornutum Dandy Eurimediterraneo NY 765 Galium verum L. ssp. verum Eurasiatico EX, NY 766 Rubia peregrina L. ssp. peregrina Stenomediterraneo NH 767 Rubia tinctorium L. Eurasiatico OX 768 Sherardia arvensis L. Eurimediterraneo NY 769 Theligonum cynocrambe L. Stenomediterraneo NY 770 Thliphthisa purpurea (L.) P.Caputo & Del Guacchio ssp. purpurea Orof. Sud-Est-Europeo NL GENTIANACEAE 771 Blackstonia perfoliata (L.) Huds. ssp. perfoliata Eurimediterraneo NY 772 Centaurium erythraea Rafn ssp. erythraea Paleotemperato CH, NY 773 Centaurium pulchellum (Sw.) Druce Paleotemperato 774 Centaurium tenuiflorum (Hoffmanns. & Link) Fritsch ssp. acutiflorum (Schott) Zeltner Paleotemperato NY 775 Gentiana cruciata L. ssp. cruciata Eurasiatico NH 776 Gentiana dinarica Beck Appennino-Balcanico BY, CY, GY, HK, NL, NY 777 Gentiana lutea L. ssp. lutea Orof. Sud-Europeo BY, EK, NX, NY 778 Gentiana nivalis L. Artico-Alpino EY 779 Gentiana verna L. ssp. verna Eurasiatico EK, EX, FH 780 Gentianella columnae (Ten.) Holub Endemico EY, FY 781 Gentianopsis ciliata (L.) Ma ssp. ciliata Mediterraneo-Montano NX APOCYNACEAE 782 Vinca major L. ssp. major Eurimediterraneo NY 783 Vinca minor L. Europeo NY 784 Vincetoxicum hirundinaria Medik. ssp. hirundinaria Eurasiatico EK, MS, NH, NY CONVOLVULACEAE 785 Convolvulus arvensis L. Paleotemperato NY 786 Convolvulus cantabrica L. Eurimediterraneo CK , NY 787 Convolvulus sepium L. Eurasiatico OX 788 Convolvulus silvaticus Kit. Sud-Est-Europeo NY 789 Cuscuta europaea L. Paleotemperato NY 790 Cuscuta planiflora Ten. Eurimediterraneo NY SOLANACEAE 791 Datura wrightii Regel Avventizio NY 792 Solanum dulcamara L. Paleotemperato CK, NY 793 Solanum villosum Mill. Eurimediterraneo NY, OX NYCTAGINACEAE 794 Mirabilis jalapa L. Avventizio NY BORAGINACEAE 795 Aegonychon purpurocaeruleum (L.) Holub. Pontico NY 796 Anchusa azurea Mill. Pontico NY, OX 797 Asperugo procumbens L. Paleotemperato CH 798 Borago officinalis L. Eurimediterraneo CH, NY ANNALES · Ser. hist. nat. · 34 · 2024 · 2 346 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI TARANTA PELIGNA (ABRUZZO, ITALIA), 317–356 799 Buglossoides arvensis (L.) I. M. Johnst. Eurimediterraneo NY, OX 800 Cerinthe major L. ssp. major Stenomediterraneo NY 801 Cynoglossum magellense Ten. Endemico BK 802 Cynoglottiss barrellieri (All.) Vural & Kit Tan. ssp. barrellieri Appennino-Balcanico EK, NY 803 Echium italicum L. ssp. italicum Eurimediterraneo NY 804 Echium plantagineum L. Eurimediterraneo NY 805 Echium vulgare L. ssp. vulgare Europeo NY 806 Lithospermum offcinale L. Eurosiberiano OX 807 Myosotis arvensis (L.) Hill ssp. arvensis Eurasiatico NY, OX 808 Myosotis graui Selvi. Endemico EX, EY, FH, FY. Sono state ricondotte al taxon le segnalazioni di Myosotis alpestris F. W. Schmidt e M. ambigens (Bég.) Grau. 809 Myosotis ramosissima Rochel ssp. ramosissima Paleotemperato NY 810 Onosma echioides (L.) L. Appennino-Balcanico LX, MK, NL, NY, PK 811 Pulmonaria vallarsae A.Kern. ssp. apennina (Cristof. & Puppi) L. Cecchi & Selvi Endemico NY HELIOTROPIACEAE 812 Heliotropium europaeum L. Eurimediterraneo NY, OX OLEACEAE 813 Fraxinus excelsior L. ssp. excelsior Europeo-Caucasico NY 814 Fraxinus ornus L. ssp. ornus Pontico BW, CH, DX, EK, LH, NY, OX 815 Ligustrum lucidum W.T. Aiton Asiatico-Orientale NY 816 Ligustrum vulgare L. Europeo CH, DX, EK, NY 817 Olea europaea L. Stenomediterraneo NY, OX 818 Phillyrea latifolia L. Stenomediterraneo NY PLANTAGINACEAE 819 Antirrhinum majus L. Avventizio DX, HX, LX, NY 820 Chaenorhinum minus (L.) Lange ssp. minus Eurimediterraneo NY, OX 821 Cymbalaria glutinosa Bigazzi & Raffaelli ssp. glutinosa Endemico ## NY 822 Cymbalaria muralis Gaertn., B. Mey & Scherb. subsp muralis Subcosmopolita CH, CY, NY 823 Cymbalaria pallida (Ten.) Wettst. Endemico AK, LH, MS, NY 824 Digitalis ferruginea L. Nord-Est-Mediterraneo AK, GY, MS, NY 825 Digitalis micrantha Roth ex Schweigg. Endemico CY, EK, NY, OX 826 Globularia bisnagarica L. Sud-Europeo CY, EK,NL, NH 827 Globularia cordifolia L. ssp. bellidifolia (Nyman) Wettst. Appennino-Balcanico AK, NY, OX 828 Kickxia spuria (L.) Dumort. ssp. spuria Eurasiatico NY 829 Linaria alpina (L.) Mill. Mediterraneo-Montano FH, MK 830 Linaria purpurea (L.) Mill. Endemico BW, DX, EY, PK 831 Linaria simplex (Willd.) Desf. Eurimediterraneo HX, IK, LX 832 Linaria vulgaris Mill. ssp. vulgaris Eurasiatico CH, NY 833 Misopates orontium Raf. ssp. orontium Eurimediterraneo CH, NY 834 Plantago afra L. ssp. afra Stenomediterraneo NY 835 Plantago atrata Hoppe ssp. atrata Mediterraneo-Montano EX, FY, NY 836 Plantago atrata Hoppe ssp. fuscescens (Jord.) Pilg. Subendemico 837 Plantago coronopus L. Subcosmopolita EX, FY, MY 838 Plantago lanceolata L. Eurasiatico NY, OX 839 Plantago major L. Eurasiatico NY, OX 840 Plantago media L. ssp. media Eurasiatico OX 841 Plantago sempervirens Crantz Eurimediterraneo NY, OX 842 Veronica agrestis L. Europeo NY 843 Veronica anagallis-acquatica L. ssp. anagallis acquatica Cosmopolita. NY 844 Veronica arvensis L. Cosmopolita NY, OX 845 Veronica beccabunga L. ssp. beccabunga Eurasiatico NY ANNALES · Ser. hist. nat. · 34 · 2024 · 2 347 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI TARANTA PELIGNA (ABRUZZO, ITALIA), 317–356 846 Veronica hederifolia L. ssp. hederifolia Eurasiatico NY, OX 847 Veronica orsiniana Ten. ssp. orsiniana Orof. Sud-Europeo NY 848 Veronica persica Poir. Eurasiatico NY 849 Veronica polita Fr. Subcosmopolita MY, NY 850 Veronica praecox All. Eurimediterraneo MY, NY SCROPHULARIACEAE. 851 Scrophularia canina L. Eurimediterraneo AK, NH 852 Scrophularia juratensis Schleicher Orof. Sud-Europeo GY, MY, NY 853 Scrophularia peregrina L. Stenomediterraneo NY 854 Scrophularia scopolii Hoppe ex Pers. Orof. Eurasiatico NY 855 Scrophularia umbrosa Dumort. . ssp. umbrosa Subatlantico NY 856 Verbascum blattaria L. Paleotemperato NY 857 Verbascum longifolium Ten. Appennino-Balcanico NY, OX 858 Verbascum phlomoides L. Eurimediterraneo OX 859 Verbascum pulverulentum Vill. Centro-Europeo OX 860 Verbascum sinuatum L. Eurimediterraneo NY 861 Verbascum thapsus L. ssp. thapsus Europeo OX LAMIACEAE 862 Ajuga chamaepitys (L.) Schreb. ssp. chamaepitys Stenomediterraneo NY 863 Ajuga reptans L. Europeo-Caucasico NY 864 Ballota nigra L. ssp. meridionalis (Bég.) Bég. Eurimediterraneo NY 865 Betonica alopecuros L. ssp. divulsa (Ten.) Bartolucci & Peruzzi Endemico MY, NY 866 Betonica officinalis L. Europeo-Caucasico NY 867 Clinopodium nepeta (L.) Kuntze Mediterraneo-Montano NY 868 Clinopodium vulgare L. ssp. vulgare Circumboreale NY 869 Galeopsis angustifolia Hoffm. ssp. angustifolia Eurimediterraneo NY 870 Galeopsis ladanum L. Eurasiatico CH 871 Lamium amplexicaule L. Eurasiatico AX, EK, EY, NY 872 Lamium bifidum Cirillo ssp. bifidum Stenomediterraneo NY 873 Lamium bifidum Cirillo ssp. balcanicum Velen. Orof. Sud-Est-Europeo * NY 874 Lamium garganicum L. ssp. longiflorum (Ten.) Kerguélen Mediterraneo-Montano AK, NY 875 Lamium maculatum L. Eurasiatico NY 876 Lamium purpureum L. Eurasiatico NY 877 Marrubium incanum Desr. Appennino-Balcanico NY 878 Marrubium peregrinum L. Sud-Est-Europeo GY, HK 879 Melissa officinalis L. ssp. altissima (Sm.) Arcang. Stenomediterraneo NY 880 Melittis melissophyllum L. ssp. melissophyllum Europeo NY 881 Mentha longifolia (L.) Huds. Paleotemperato NY, OX 882 Mentha pulegium L. ssp. pulegium Eurimediterraneo NY 883 Micromeria graeca (L.) Benth. ex Rchb. ssp. graeca Stenomediterraneo NY 884 Origanum vulgare L. ssp. vulgare Eurasiatico NY, 0X, RK 885 Prunella laciniata (L.) L. Eurimediterraneo NY 886 Prunella vulgaris L. Europeo NY 887 Pseudodictamnus mediterraneus Salmaki & Siadati ssp. mediterraneus Mediterraneo-Orientale FX 888 Salvia pratensis L. ssp. pratensis Eurimediterraneo OX 889 Salvia verbenaca L. Eurimediterraneo NY 890 Satureja hortensis L. Eurimediterraneo NY 891 Satureja montana L. ssp. montana Orof. Sud-Europeo NY, OX 892 Scorpiurus muricatus L. Eurimediterraneo NY 893 Scutellaria columnae All. ssp. columnae. Stenomediterraneo NY 894 Stachys annua (L.) L. ssp. annua Eurimediterraneo NY 895 Stachys heraclea All. Nord-Ovest-Mediterraneo NY 896 Stachys italica Mill. Endemico NY ANNALES · Ser. hist. nat. · 34 · 2024 · 2 348 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI TARANTA PELIGNA (ABRUZZO, ITALIA), 317–356 897 Stachys germanica L. ssp. salviifolia (Ten.) Gams. Appennino-Balcanico NY 898 Stachys romana (L.) E. H. L. Krause Stenomediterraneo NY 899 Stachys recta L. ssp. recta Mediterraneo-Montano NY 900 Stachys thirkei C. Koch Appennino-Balcanico NY 901 Stachys thymphaea Hausskn. Appennino-Balcanico NY 902 Teucrium capitatum L. ssp. capitatum Stenomediterraneo NY 903 Teucrium chamaedrys L. ssp. chamaedrys Stenomediterraneo NY 904 Teucrium flavum L. ssp. flavum Stenomediterraneo IK, IY, MS, NY, MS 905 Teucrium montanum L. Orof. Sud-Europeo HK, HX, IK, IY, LX. NY 906 Thymus longicaulis C. Presl. ssp. longicaulis Mediterraneo-Montano OX. 907 Thymus praecox Opiz ssp. polytrichus (Borbàs) Jalas Orof. Sud-Europeo EX, EY, FY 908 Thymus striatus Vahl Sud-Est-Europeo OX 909 Thymus vulgaris L. ssp. vulgaris Stenomediterraneo OX 910 Ziziphora acinos (L.) Melnikov Eurimediterraneo NY 911 Ziziphora granatensis (Boiss. & Reut.) Melnikov ssp. alpina (L.) Bräuchler & Gutermann Orof. Sud-Europeo EX, EY, FY, GY ,HK, HX, IK, NY OROBANCHACEAE 912 Bellardia trixago (L.) All. Eurimediterraneo NY 913 Euphrasia italica Wettst. Subendemico OX 914 Euphrasia salisburgensis Funck ex Hoppe Europeo EX , EY 915 Euphrasia stricta D. Wolff. Ex J. F. Lehm. Europeo EY, NH 916 Melampyrum arvense L. ssp. arvense Eurasiatico OX 917 Melampyrum barbatum Waldst. & Kit. ssp. carstiense Ronniger Appennino-Balcanico NY 918 Melampyrum italicum Soò Endemico NY 919 Odontites luteus (L.) Clairv. Eurimediterraneo MS, NS, NY 920 Odontites vernus (Bellardi) Dumort. ssp. serotinus Corb. Eurasiatico NY 921 Orobanche caryophyllacea Sm. Eurimediterraneo OX 922 Orobanche crenata Forssk. Mediterraneo-Turaniano NY 923 Orobanche gracilis Sm. Europeo-Caucasico NY 924 Orobanche hederae Vauchere ex Duby Eurimediterraneo NY 925 Orobanche minor Sm. Paleotemperato NY 926 Orobanche teucrii Holandre Orof. Sud-Europeo NY 927 Parentucellia latifolia (L.) Caruel Eurimediterraneo NY, OX 928 Pedicularis comosa L. ssp. comosa Mediterraneo-Montano GY, HK 929 Pedicularis elegans Ten. Endemico EX, FH, FY, MS 930 Pedicularis verticillata L. ssp. verticillata Artico-Alpino GM 931 Phelipanche nana (Reut.) Soják Paleotemperato NY 932 Rhinanthus alectorolophus (Scop.) Pollich ssp. alectorolophus Centro-Europeo NY, OX 933 Rhinanthus minor L. Circumboreale NY 934 Rhinanthus wettsteinii (Sterneck) Soò Endemico OX VERBENACEAE 935 Verbena officinalis L. Paleotemperato NY, OX CAMPANULACEAE 936 Campanula cochleariifolia Lam. Mediterraneo-Montano NX 937 Campanula erinus L. Stenomediterraneo NY 938 Campanula fragilis Cirillo ssp. cavolinii Ten. Endemico AK, CH, CY, DK, NY, OX 939 Campanula glomerata L. Eurasiatico NH 940 Campanula micrantha Bertol. Endemico HK, HX, IK 941 Campanula persicifolia L. ssp. persicifolia Eurasiatico NY 942 Campanula rapunculus L. Paleotemperato AK, NY, PK 943 Campanula scheuchzeri Vill. ssp. scheuchzeri Mediterraneo-Montano EX, EY, FY 944 Campanula sibirica L. ssp. divergentiformis (Jáv.) Domin Sud-Europeo Sud-Siberiano °° AK, AX, AY, CH, DK, GH. Sono state ricondotte al taxon le segnalazioni di Campanula sibirica L. ssp. sibirica. ANNALES · Ser. hist. nat. · 34 · 2024 · 2 349 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI TARANTA PELIGNA (ABRUZZO, ITALIA), 317–356 945 Campanula spicata L. Endemico °° GH, GY, LX, NY 946 Campanula tanfanii Podlech Endemico EX, EY 947 Campanula trachelium L. Eurasiatico NY, OX 948 Edraianthus graminifolius (L.) A. DC. ssp. graminifolius Appennino-Balcanico EX, EY, FH, FY, GM, NY, OY 949 Legousia falcata (Ten.) Fritsch Stenomediterraneo NY 950 Legousia hybrida (L.) Delarbre. Atlantico NY 951 Legousia speculum-veneris (L.) Chaix Eurimediterraneo NY 952 Phyteuma orbiculare L. Mediterraneo-Montano EY, FY, MS, NY ASTERACEAE 953 Achillea barrellieri Ten. ssp. barellieri Endemico EX, EY, FH, FY 954 Achillea collina Becker ex Rchb. Sud-Est-Europeo. LK, MH 955 Achillea millefolium L. ssp. millefolium Eurosiberiano NY, OX 956 Adenostyles australis (Ten.) Iamonico & Pignatti Endemico NY, OX 957 Anthemis cretica L. ssp. petraea (Ten.) Greuter Endemico EY 958 Arctium lappa L. Eurasiatico NY 959 Artemisia absitnthium L. Subcosmopolita OX 960 Artemisia alba Turra Sud-Europeo MS, NY 961 Artemisia eriantha Ten. Orof. Sud-Europeo AH, BK, EX 962 Artemisia vulgaris L. Circumboreale NY, OX 963 Aster alpinus L. ssp. alpinus Circumboreale AH, BK, EX, FH 964 Bellis annua L. ssp. annua Stenomediterraneo NY 965 Bellis perennis L. Circumboreale NY, OX 966 Bellis sylvestris Cirillo Stenomediterraneo NY, OX 967 Bombycilaeana erecta (L.) Smoljan Eurosiberiano NY, OX 968 Calendula arvensis L. Eurimediterraneo NY 969 Calendula officinalis L. Eurimediterraneo NY 970 Carduus affinis Guss. ssp. affinis Appennino-Balcanico OX 971 Carduus carlinifolius Lam. ssp. carlinifolius Mediterraneo-Montano 0X 972 Carduus chrysacanthus Ten. ssp. chrysacanthus Appennino-Balcanico EX, EY 973 Carduus corymbosus Ten. Endemico NY 974 Carduus nutans L. ssp. nutans Ovest-Europeo NY, OX 975 Carduus pycnocephalus L. ssp. pycnocephalus Eurimediterraneo NY 976 Carlina acanthifolia All. Orof. Sud-Europeo DY, MY 977 Carlina acaulis L. ssp. caulescens (Lam.) Schubl. & G. Martens Europeo NX, NY 978 Carlina corymbosa L. Stenomediterraneo DY, NY 979 Carlina vulgaris L. ssp. pinosa (Velen.) Vandas Nord-Mediterraneo NY 980 Carthamus lanatus L. ssp. lanatus Eurimediterraneo NY 981 Centaurea calcitrapa L. Eurimediterraneo OX 982 Centaurea diluta Aiton Mediterraneo-Occidentale NY 983 Centaurea jacea L. ssp. gaudinii (Boiss. & Reut.) Gremli Orof. Sud-Europeo NY 984 Centaurea solstitialis L. ssp. solstitialis Stenomediterraneo NY, OX 985 Centaurea tenoreana Willk. Endemico CH, DX, HK, IK, LX 986 Centaurea triumfetti All. Europeo NY, OX 987 Chondrilla juncea L. Eurosiberiano NY 988 Cichorium intybus L. Paleotemperato NH, OX 989 Cirsium arvense (L.) Scop. Eurasiatico NY 990 Cirsium creticum (Lam.) d'Urv. ssp. triumfettii (Lacaita) K. Werner Appennino-Balcanico NY 991 Cirsium tenoreanum Petr. Endemico NY 992 Cirsium vulgare (Savi) Ten. Paleotemperato NY 993 Cota tinctoria (L.) J. Gaj ssp. tinctoria Pontico NY, OX 994 Cota triumfettii (L.) J.Gay Sud-Europeo NY 995 Crepis aurea (L.) Cass. ssp. glabrescens (Caruel) Arcang. Appennino-Balcanico EX 996 Crepis lacera Ten. Appennino-Balcanico OX ANNALES · Ser. hist. nat. · 34 · 2024 · 2 350 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI TARANTA PELIGNA (ABRUZZO, ITALIA), 317–356 997 Crepis magellensis F. Conti & Uzunov Endemico LK, MH, NY 998 Crepis neglecta L. ssp. neglecta Eurimediterraneo NY 999 Crepis pygmaea L. Orof. Sud-Ovest-Europeo AK, BH, IW ,LX 1000 Crepis pulchra L. Eurimediterraneo NY 1001 Crepis sancta (L.) Babc. ssp. nemausensis (P. Fourn.) Babc. Mediterraneo-Turaniano NY, OX 1002 Crepis setosa Haller f. Mediterraneo-Orientale NY 1003 Crepis vesicaria (L.) Subatlantico NY 1004 Crupina vulgaris Cass. Eurosiberiano NY 1005 Cynara cardunculus L. ssp. scolymus (L.) Hegi Stenomediterraneo NY, NY 1006 Dittrichia viscosa (L.) Greuter Eurimediterraneo NY 1007 Doronicum columnae Ten. Orof. Sud-Europeo NY, OX 1008 Echinops ritro L. ssp. ritro Orof. Sud-Europeo OX 1009 Erigeron bonariensis L. Americano NY 1010 Erigeron canadensis L. Nord-Americano NY 1011 Erigeron epiroticus (Vier.) Halàcsy Appennino-Balcanico EX, EY, FY 1012 Erigeron sumatrensis Retz. Americano NY 1013 Eupatorium cannabinum L. ssp. cannabinum Paleotemperato NY 1014 Filago pyramidata L. Eurimediterraneo NY 1015 Gaillardia x grandiflora Van Houtte Avventizio CK 1016 Geropogon hybridus (L.) Sch.Bip. Stenomediterraneo NY 1017 Hedypnois rhagadioloides (L.) F.W. Schmidt Stenomediterraneo CK, NY 1018 Helichrysum italicum (Roth) G. Don ssp. italicum Eurimediterraneo LH, NY, OX 1019 Helminthotheca echioides (L.) Holub Eurimediterraneo NY 1020 Hieracium acanthodontoides Arv.-Touv. & Belli Endemico GK 1021 Hieracium amplexicaule L. ssp. berardianum (Arv.-Touv.) Zahn Orof. Sud-Europeo GK 1022 Hieracium bifidum Kit. ex Hornem. ssp. caesiiflorum (Almq. ex Norrl.) Zahn Europeo °° GK 1023 Hieracium dentatum Hoppe ssp. subvillosum Nägeli & Peter Subendemico °° GK 1024 Hieracium dentatum Hoppe ssp. xanthostylophorum Furrer & Zahn Endemico GK 1025 Hieracium huetianum Arv.-Touv. Subendemico GK 1026 Hieracium humile Jacq. ssp. brachycaule Vuk. ex Zahn Orof. Sud-Europeo EY 1027 Hieracium murorum L. ssp. pleiotrichum (Zahn) Zahn Subendemico °° GK 1028 Hieracium naegelianum Pančić Appennino-Balcanico GK 1029 Hieracium neomalyi Zahn Appennino-Balcanico GK 1030 Hieracium pellitum Fr. Subendemico GK 1031 Hieracium pictum Pers. Nord-Ovest-Mediterraneo °° GK 1032 Hieracium pilosum Schleich. ex Froel. ssp. portae (Nägeli & Peter) Gottschl. Endemico °° GK 1033 Hieracium pulchellum Gren. ex Griseb. Subendemico °° GK 1034 Hieracium racemosum Waldst. & Kit. ex Willd. ssp. pulmonarifolium Endemico GK 1035 Hieracium scorzonerifolium Vill. ssp. flexuosum Waldst. & Kit. ex Nägeli & Peter Subendemico CH, GK 1036 Hieracium tomentosum L. ssp. tomentosum Subendemico °° AK, AX, AY, BW, CH, GK, MY 1037 Hieracium villosum Jacq. ssp. doratophyllum Nägeli & Peter Endemico GK 1038 Jacobaea erucifolia (L.) G. Gaertn., B.Mey. & Scherb. ssp. erucifolia Eurasiatico NY 1039 Hyoseris scabra L. Stenomediterraneo NY 1040 Hypochaeris achyrophorus L. Stenomediterraneo NH, OX 1041 Jurinea mollis (L.) Rchb. ssp. mollis Sud-Est-Europeo GH, NY, OX 1042 Lactuca perennis L. Europeo NY 1043 Lactuca saligna L. Mediterraneo-Turaniano NY 1044 Lactuca sativa ssp. serriola (L.) Galasso, Banfi, Bartolucci & Ardenghi Eurimediterraneo NY 1045 Lactuca viminea (L.) J.& C. Presl. ssp. viminea Eurimediterraneo NY 1046 Lapsana communis L. ssp. communis Paleotemperato NY 1047 Leontodon crispus Vill. Sud-Europeo-Sud-Siberiano CH, MY, NY 1048 Leontodon hispidus L. ssp. dubius (Hoppe) Pawłowska Orof. Sud-Europeo CH, FY 1049 Leontodon rosanoi (Ten.) DC. Nord-Ovest-Mediterraneo FK, MY, NY ANNALES · Ser. hist. nat. · 34 · 2024 · 2 351 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI TARANTA PELIGNA (ABRUZZO, ITALIA), 317–356 1050 Leontopodium nivale (Ten.) Huet ex Hand.-Mazz. Appennino-Balcanico BY, EX, FH, FY, GM, HX, IK, LX, MK, MS 1051 Leucanthemum pallens (J.Gay ex Perreym.) DC. Eurimediterraneo NY 1052 Leucanthemum tridactylites (Kern. & Huter) Huter, Porta & Rigo Endemico EY, NY 1053 Leucanthemum vulgare Lam. ssp. vulgare Eurimediterraneo FY 1054 Mantisalca duriaei (Spach) Briq. & Cavill. Stenomediterraneo NY 1055 Matricaria chamomilla L. Subcosmopolita OX 1056 Mycelis muralis (L.) Dumort. ssp. muralis Eurasiatico NY, OX 1057 Notobasis syriaca (L.) Cass. Stenomediterraneo NY 1058 Omalotheca diminuta (Braun-Blanq.) Bartolucci & Galasso Appennino-Balcanico EX, EY 1059 Pallenis spinosa (L.) Cass. ssp. spinosa Eurimediterraneo NY 1060 Pentanema montanum (L.) D. Gut.Larr., Santos-Vicente, Anderb., E.Rico & M.M. Mart.Ort Mediterraneo-Occidentale NY 1061 Pentanema salicinum (L.) D. Gut.Larr., Santos-Vicente, Anderb., E.Rico & M.M. Mart.Ort. Eurasiatico NY 1062 Pentanema squarrosum (L.) D. Gut.Larr., Santos-Vicente, Anderb., E.Rico & M.M. Mart.Ort Centro-Europeo BK 1063 Petasites albus (L.) Gaertn. Europeo EX.NY 1064 Petasites hybridus (L.) P. Gaertn. B. Mey. & Scherb. Eurasiatico NY 1065 Picnomon acarna (L.) Cass. Stenomediterraneo AH, EX , NY 1066 Picris hieracioides L. ssp. hieracioides Eurosiberiano NY 1067 Pilosella anchusoides Arv.-Touv. Europeo GK 1068 Pilosella lactucella (Wallr.) P.D. Sell & C.West Eurosiberiano GK 1069 Pilosella officinarum Vaill. Europeo-Caucasico EX, FY, GK 1070 Pilosella piloselloides (Vill.) Soják ssp. piloselloides Europeo-Caucasico GK, GX, HK, HX, IK 1071 Pilosella ziziana (Tausch) F.W. Schultz & Sch.Bip. Orof. Sud-Europeo GK 1072 Pseudopodospermum hispanicum s. l. (L.) Zaika, Sukhor. & N. Kilian Sud-Europeo-Sud-Siberiano NY 1073 Ptilostemon strictus (Ten.) Greuter Appennino-Balcanico NY 1074 Pulycaria dysenterica (L.) Bernh. Eurimediterraneo NY 1075 Reichardia picroides (L.) Roth Stenomediterraneo NY 1076 Rhagadiolus stellatus (L.) Gaertn. Eurimediterraneo EX , NY 1077 Robertia taraxacoides (Loisel.) DC. Endemico NY 1078 Scolymus hispanicus L. Eurimediterraneo NY 1079 Scorzoneroides montana (Lam.) Holub ssp. breviscapa (DC.) Greuter. Endemico EY, FH, FY 1080 Senecio apenninus Tausch Endemico AK 1081 Senecio doronicum (L.) L. ssp. orientalis J. Calvo. Appennino-Balcanico EX 1082 Senecio rupestris Waldst. & Kit. Orof. Sud-Est-Europeo OX 1083 Senecio scopolii Hoppe & Hornsch. ssp. floccosus (Bertol.) Greuter Appennino-Balcanico OX 1084 Senecio vulgaris L. Eurimediterraneo NY 1085 Silybum marianum (L.) Gaertn. Eurimediterraneo NY 1086 Solidago virgaurea L. ssp. virgaurea Circumboreale BK, CH, CY, EK, CK, NY 1087 Sonchus arvensis L. ssp. arvensis Eurosiberiano MY, NL 1088 Sonchus asper (L.) Hill. ssp. asper Cosmopolita NY 1089 Sonchus bulbosus (L.) N. Kilian & Greuter Stenomediterraneo NY, OX 1090 Sonchus oleraceus L. Eurasiatico NY 1091 Symphyotrichum squamatum (Spreng.) G.L.Nesom Neotropicale NY 1092 Tanacetum corymbosum (L.) Sch.Bip. ssp. achilleae (L.) Greuter Sud-Est-Europeo NY 1093 Tanacetum parthenium (L.) Sch.Bip. Eurasiatico NY 1094 Taraxacum apenninum (Ten.) Ten. Endemico EX, EY, FY 1095 Taraxacum glaciale E. & A. Huet. ex Hand.-Mazz. Endemico EX, EY 1096 Taraxacum officinale Weber Circumboreale NH, OX 1097 Tragopogon crocifolius L. ssp. crocifolius Stenomediterraneo AY, BH 1098 Tragopogon eriospermus Ten. Eurimediterraneo NY 1099 Tragopogon porrifolius L. ssp. porrifolius Eurimediterraneo NY ANNALES · Ser. hist. nat. · 34 · 2024 · 2 352 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI TARANTA PELIGNA (ABRUZZO, ITALIA), 317–356 1100 Tragopogon pratensis L. Eurosiberiano OX 1101 Tussilago farfara L. Paleotemperato NY 1102 Urospermum dalechampii (L.) F. W. Schmidt Eurimediterraneo NY, OX, PK 1103 Urospermum picroides (L.) Scop. ex F.W. Schmidt Paleotemperato NY 1104 Xanthium orientale L. Americano NY 1105 Xanthium spinosum L. Sud-Americano NY 1106 Xeranthemum cylindraceum Sm. Eurasiatico NY 1107 Xeranthemum inapertum (L.) Mill. Pontico NY VIBURNACEAE 1108 Adoxa moschatellina L. ssp. moschatellina Eurasiatico NY 1109 Sambucus ebulus L. Eurimediterraneo NY 1110 Sambucus nigra L. Europeo NY, OX 1111 Viburnum lantana L. Eurasiatico AK, EK, IK, MS, MY, NL, NS 1112 Viburnum tinus L. ssp. tinus Stenomediterraneo NY CAPRIFOLIACEAE. 1113 Lonicera caprifolium L. Pontico LH, NY, OX 1114 Lonicera etrusca Santi Eurimediterraneo NY, OX, PK 1115 Lonicera implexa Aiton ssp. implexa Stenomediterraneo NY DIPSACACEAE 1116 Cephalaria leucantha (L.) Roem. & Schult. Sud-Europeo HX, MK , NY 1117 Cephalaria transsylvanica (L.) Roem. & Schult. Pontico NY 1118 Dipsacus fullonum L. Eurimediterraneo NY 1119 Lomelosia crenata (Cirillo) Greuter & Burdet ssp. crenata Sud-Mediterraneo EX, IK. Sono state assegnate al taxon le precedenti segnalazioni di Knautia purpurea 1120 Lomelosia crenata (Cirillo) Greuter & Burdet ssp. pseudisetensis (Lacaita) Greuter & Burdet Endemico OX 1121 Lomelosia graminifolia (L.) Greuter & Burdet ssp. graminifolia Orof. Sud-Europeo CK, MS, NH, NY 1122 Scabiosa columbaria L. ssp. portae (Huter) Hayek Sud-Est-Europeo OX 1123 Scabiosa pyrenaica All. Sud-Ovest Europeo GH, MS 1124 Scabiosa uniseta Savi Endemico OX 1125 Sixalix atropurpurea (L.) Greuter & Burdet Stenomediterraneo NY VALERIANACEAE 1126 Centranthus angustifolius (Mill.) DC. ssp. angustifolius Mediterraneo-Occidentale °° DX, GY, HK, LK, MH, MY, NY 1127 Centranthus ruber (L.) DC. ssp. ruber Stenomediterraneo BW, NY, OX 1128 Valeriana montana L. Orof. Sud-Europeo EY 1129 Valeriana saliunca All. Orof. Sud-Est-Europeo EX, EY, FH, NY 1130 Valeriana tripteris L. ssp. tripteris Mediterraneo-Montano OX 1131 Valeriana tuberosa L. Mediterraneo-Montano EY 1132 Valerianella coronata (L.) DC. Eurimediterraneo NY 1133 Valerianella locusta (L.) Laterr. Subcosmopolita NY ARALIACEAE 1134 Hedera helix L. ssp. helix Mediterraneo-Atlantico NY, OX APIACEAE 1135 Ammi majus L. Eurimediterraneo NY 1136 Anethum foeniculum L. Eurimediterraneo NY 1137 Anethum piperitum Ucria Sud-Mediterraneo NY 1138 Angelica sylvestris L. Eurosiberiano NY 1139 Apium graveolens L. Eurosiberiano OX 1140 Bunium bulbocastanum L. Ovest-Europeo AK, NY 1141 Bunium petraeum Ten. Endemico EK 1142 Bupleurum baldense Turra Eurimediterraneo EX, IK, NL, NY 1143 Bupleurum falcatum L. ssp. cernuum (Ten.) Arcang. Orof. Sud-Europeo AK, EK, MY, NY 1144 Buplerurum praealtum L. Pontico OX ANNALES · Ser. hist. nat. · 34 · 2024 · 2 353 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI TARANTA PELIGNA (ABRUZZO, ITALIA), 317–356 1145 Bupleurum subovatum Link ex Spreng. Eurimediterraneo NY 1146 Carum carvifolium (DC.) Arcang. Endemico NY, OX 1147 Caucalis platycarpos L. Mediterraneo-Turaniano NY 1148 Cervaria rivini Gaertn. Eurosiberiano NY 1149 Chaerophyllum aureum L. Nord-Mediterraneo AK, NY 1150 Chaerophyllum temulum L. Eurasiatico NY 1151 Conium maculatum L. ssp. maculatum Eurasiatico NL 1152 Coristospermum cuneifolium (Guss.) Bertol. Endemico AK, EK, MX, NY 1153 Daucus carota L. ssp. carota Paleotemperato NY, OX 1154 Eryngium amethystinum L. Sud-Est-Europeo CH, NY, OX 1155 Eryngium campestre L. Eurimediterraneo OX 1156 Ferula communis L. ssp. communis Eurimediterraneo OX 1157 Ferula glauca L. Stenomediterraneo NL 1158 Grafia golaka (Hacq.) Rchb. Appennino-Balcanico MY, NY 1159 Helosciadium nodiflorum (L.) W.D.J. Koch ssp. nodiflorum Eurimediterraneo GY, HK, NY 1160 Heracleum orsinii Guss. Appennino-Balcanico CH 1161 Katapsuxis silaifolia (Jacq.) Reduron, Charpin & Pimenov Sud-Est-Europeo NY 1162 Laserpitium latifolium L. Europeo MY 1163 Oenanthe pimpinelloides L Mediterraneo-Atlantico NY 1164 Opopanax chironium (L.) W.D.J.Koch Stenomediterraneo MY 1165 Oreoselinum nigrum Delarbre Stenomediterraneo EX ,NY 1166 Orlaya grandiflora (L.) Hoffm. Centro-Europeo LX, MK, NY 1167 Orlaya platycarpos W.D.J. Koch. Stenomediterraneo NY 1168 Pastinaca sativa L. ssp. urens (Req. ex Godr.) Celak. Eurosiberiano ny, OX 1169 Petroselinum crispum (Mill.) Fuss Mediterraneo-Orientale NY 1170 Pimpinella anisum L. Asiatico OX. Coltivato e spontaneizzato. 1171 Pimpinella saxifraga L. ssp. axifraga Europeo OX 1172 Pimpinella tragium Vill. Mediterraneo-Turaniano OX 1173 Prangos ferulacea (L.) Lindl. Mediterraneo-Turaniano HY, NY 1174 Sanicula europea L. Mediterraneo-Montano HY, IK, NY 1175 Scandix pecten-veneris L. Eurimediterraneo NY 1176 Seseli montanum L. ssp. montanum Mediterraneo-Montano EK, MY, NY 1177 Siler montanum Crantz ssp. siculum (Spreng.) Iamonico, Bartolucci & F. Conti Endemico NY 1178 Seseli tommasinii Rchb. Sud-Est-Europeo MY, NL 1179 Sison amomum L. Subatlantico NY 1180 Thapsia asclepium L. Stenomediterraneo NY 1181 Tordylium apulum L. Stenomediterraneo OX 1182 Tordylium maximum L. Eurimediterraneo NY 1183 Torilis arvensis (Huds.) Link Subcosmopolita NY 1184 Torilis nodosa (L.) Gaertn. ssp. nodosa Mediterraneo-Turaniano NY 1185 Trinia dalechampii (Ten.) Janch. Appennino-Balcanico EX, EY, FH, FY, GM ZYGOPHYLLACEAE 1186 Tribulus terrestris L. Cosmopolita NY ANNALES · Ser. hist. nat. · 34 · 2024 · 2 354 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI TARANTA PELIGNA (ABRUZZO, ITALIA), 317–356 FLORA TARANTA PELIGNA (ABRUCI, ITALIJA) Amelio PEZZETTA Via Monteperalba 34, 34149 Trieste e-mail: fonterossi@libero.it Marco PAOLUCCI Contrada Sant’Antonio 24 – 66041 Atessa (Ch) e-mail: majella@virgilio.it POVZETEK Občina Taranta Peligna, ki se nahaja v provinci Chieti (regija Abruci), je delno vključena v nacionalni park Majella in pokriva 21,65 km² površine. Avtorja poročata o florističnem seznamu proučevanega območja, ki vključuje 1186 taksonov, vključno s 83 endemičnimi vrstami, ki povečujejo njegov fitogeografski pomen. Horološki spekter kaže, da ugotovljene vrste pripadajo 52 različnim korotipom, razdeljenim v 9 geografskih kontingentov. Ključne besede: Taranta Peligna, Majella, Abruci, flora, reka Aventino ANNALES · Ser. hist. nat. · 34 · 2024 · 2 355 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI TARANTA PELIGNA (ABRUZZO, ITALIA), 317–356 BIBLIOGRAFIA Abbate, E. (1903): La flora. In: Guida d’Abruzzo. CAI, Roma, pp. 62-115. Accordi, G. & F. Carboni (1988): Carta delle lito- facies del Lazio-Abruzzo ed aree limitrofe. Quaderni della Ricerca Scientifica, vol. 5, Consiglio Nazionale delle Ricerche, Roma. Atti e resoconti sociali (1978): Escursione sociale sulla Majella: Mirastelle di Pretoro (Chieti), 8–10 luglio 1978. Inform. Bot. Ital., 10(2), 204-208. Bartolucci, F., L. Peruzzi, G. Galasso, A. Alessan- drini, N. Ardenghi, G.L. Bacchetta, E. Banfi, G. Bar- beris, L. Bernardo, D. Bouvet, M. Bovio, G. Calvia, M. Castello, L. Cecchi, E. Guacchio, G.A. Domina, S. Fascetti, L. Gallo, G. Gottschlich, F. Conti (2024): A second update to the checklist of the vascular flora native to Italy. Plant Biosystems, 158, 219-296. Blasi, C., R. Di Pietro & G. Pelino (2005): The vegetation of alpine belt karst-tectonic basins in the central Apennines (Italy). Plant Biosystems, 139(3), 357-385. Bortolotti, L. & A. Pierantoni (1984): Majella Madre. Casa Editrice Massimo Baldini, Como. Carulli, A., F. Di Primio, S. Mariani & M.A, Martellotta (2020): Complesso delle grotte del Ca- vallone: esplorazioni, scoperte, studi e prospettive. http://www.speleologiassi.it/82-cavallone/. Cesati, V. (1872): Piante della Majella, del Mor- rone e delle loro adiacenze nell’Abruzzo Citeriore. Stamperia della Regia Università, Napoli. Ciaschetti, G. & Di Cecco M. (2023): Ulteriore contributo alla flora vascolare del Parco Nazionale della Maiella e aree limitrofe. Not. Soc. Bot. Ital., 7, 1-6. Ciaschetti, G., F. Bartolucci, F. Conti & L. Di Martino (2015): Contributo alla flora del Parco Nazionale della Majella. Micol. Veget. Medit., 30(1), 65-72. Conti, F., F. Bartolucci, G. Ciaschetti, A. Manzi & L. Di Martino (2020): Flora del Parco della Majella. Poligrafica Mancini, San Giovanni Teatino (Ch). Conti, F., G. Ciaschetti, L. Di Martino & F. Barto- lucci (2019): An annotaded chck-list of the vascular flora of Majella National Park (Central Italy). Phyto- taxa, 412, 1-90. Conti, F. & M. Pellegrini (1988): Secondo con- tributo alla flora della Majella. Archivio Botanico e Biogeografico Italiano 64, (1/2), 34-42. Conti, F. & M. Pellegrini (1990): Orchidee spon- tanee d’Abruzzo. Cogecstre Ed., Penne (PE). Conti, F., F. Bartolucci, A. Manzi, M. Miglio & D. Tinti (2007): Aggiunte alla flora d’Abruzzo III contributo. Ann. Mus. Civ. di Rovereto, 23, 127-140. Cutini, M., A. Stanisci & G. Pirone (2002): L’al- leanza Berberidion vulgaris in Appennino centrale (Italia centrale). Fitosociologia, 39(2), 31-50. Del Re, G. (1835): Descrizione topografica fisica economica politica de’ Reali Dominj al qua del Faro nel Regno delle Due Sicilie con cenni storici fin da’ tempi avanti il dominio de’ Romani. Tomo II, Tip. Dentro la Pietà de’ Turchini, Napoli. Di Marco, D. (1963): La Majella di Taranta Pelig- na e la Grotta del Cavallone, L’Universo, 3, 573-590. Di Pietro, R., P. Pelino, A. Stanisci & C. Blasi (2008): Phytosociological Features of Adonis distorta and Trifolium noricum ssp. praetutianum, two en- demics of the Apennines (Peninsular Italy). Acta Bot. Croat., 67(2), 175-200. Galasso, G., F. Conti, L. Peruzzi, A. Alessandrini, N.M.G. Ardenghi, G. Bacchetta, E. Banfi, G. Barberis, L. Bernardo, D. Bouvet, M. Bovio, M. Castello, L. Cec- chi, E. Del Guacchio, G. Domina, S. Fascetti, L. Gallo, R. Guarino, L. Gubellini, A. Guiggi, N. Hofmann, M. Iberite, P. Jiménez-Mejías, D. Longo, D. Marchetti, F. Martini, R.R. Masin, P. Medagli, C.M. Musarella, S. Peccenini, L. Podda, F. Prosser, F. Roma-Marzio, L. Rosati, A. Santangelo, A. Scoppola, A. Selvaggi, F. Selvi, A. Soldano, A. Stinca, R.P. Wagensommer, T. Wilhalm & F. Bartolucci (2024): A second update to the checklist of the vascular flora alien to Italy. Plant Biosystems, 158(2), 297-340. Galetti, G. (1995): Fiori della Majella. Ed. Mena- bò, Ortona (Ch). Galetti, G. (2008): Abruzzo in fiore. Ed. Menabò. Ortona (Ch). Giardino Botanico Daniela Brescia di Sant’Eu- femia a Majella (Pe) Italy (2022-23): Index semi- num 2022, 2023. https://www.parcomajella.it/ Index-seminum.htm. Giardino Botanico Michele Tenore Lama dei Peligni (Ch) Italy (2011-2023): Index seminum 2011, 2012, 2013, 2014, 2015, 2016, 2018, 2019, 2020,2022, 2023. https://www.parcomajella.it/Index-seminum.htm. Grande, L. (1925): Note di floristica. Nuovo Giorn. Bot. Ital. 32, 62-101. Lancioni, A., J. Facchi & F. Taffetani (2011): Syntaxonomical analysis of the Kobresio-Myosur- oidis-seslerietea caeruleae and Carici Rupestris-Ko- bresietea Bellardii classes in the central southern Apennines. Fitosociologia, 48(1), 3-21. Manzi, A. (1999): Le piante alimentari in Abruz- zo. Tinari (Ch). Meteomondo.It. (2024): Il clima di Taranta Peligna e il periodo migliore per viaggiare. https:// meteomondo.it/italia/taranta-peligna-2302231/. Paolucci, M. (2022): Altre piante della Flora d’Abruzzo. http://pallano.altervista.org/altre-pi- ante-della-flora-d-abruzzo.html. Pellegrini, M. & F. Pinchera (2018): Relazione documentata per la valutazione d’incidenza. Mano- scritto inedito. ANNALES · Ser. hist. nat. · 34 · 2024 · 2 356 Amelio PEZZETTA & Marco PAOLUCCI: LA FLORA DI TARANTA PELIGNA (ABRUZZO, ITALIA), 317–356 Pezzetta, A. (2010): Gli elementi appennino-bal- canici, illirici, pontici e sud-est-europei della flora italiana: origini e distribuzione geografica. Ann. ser. Hist. Nat. 20 (1): 75-88. Pezzetta, A. (2019): Le Orchidaceae del Parco Nazionale della Maiella. Gortania, 41, 9-30. Pezzetta, A. M. Di Cecco & M. Di Santo (2012): Prodromo della flora di Palena (Regione Abruzzo, Par- co Nazionale della Majella). Annales, Ser. Hist. Nat., 22(2), 145-174. Pezzetta, A. Galetti G. & M. Pellegrini (2013): La flora di Fara San Martino (Parco Nazionale della Majella) e sua importanza fitogeografica. Natura e montagna, 60(1), 44-64. Pezzetta, A. & M. Paolucci (2023): La flora di Lama dei Peligni (Abruzzo, Italia): aggiornamento sistematico e nuove segnalazioni. Annales, Ser. Hist. Nat., 33(2), 279-324. Pezzetta, A., M. Paolucci & M. Pellegrini (2022): Le Orchidaceae della Provincia di Chieti (Abruzzo): ag- giornamento sistematico e nuove stazioni di presenza. Atti Mus. Civ. Stor. Nat. Trieste, 63, 67-140. Pignatti, S., R. Guarino & M. La Rosa (2017-219): Flora d’Italia, Ed. 2 (voll. 1-4). Edagricole, Bologna. Pirone, G. (2015): Alberi, arbusti e liane d’Abruzzo. Cogecstre Ed. Penne (Pe). Rivas-Martinez, S. (1996): Classificacion bioclimat- ica de la tierra. Folia botanica madritensis, 16, 1-29. Simeone, M.C., R. Bellarosa, G. Tucci & B. Schirone (2006): Indagini preliminari sulla diversità genetica presente negli ecosistemi forestali del Parco Nazionale della Majella. Atti del Convegno “Biodiversità vegetale delle aree protette in Abruzzo, studi ed esperienze a confronto”, Documenti tecnico-scientifici del Parco Nazionale della Majella 3, 225-240. Stanisci, A., G. Pelino & A. Guisan (2006): Cam- biamenti climatici ed effetti sulla flora d’alta quota nel parco nazionale della Majella. Atti del Convegno “Bio- diversità vegetale delle aree protette in Abruzzo, studi ed esperienze a confronto”, Documenti tecnico-scien- tifici del Parco Nazionale della Majella 3, 192-209. Tammaro, F. (1986): Documenti per la conoscenza naturalistica della Majella: repertorio sistematico della flora. Centro Servizi Culturali, Chieti. Tammaro, F. (1998): Il paesaggio vegetale dell’Abru- zzo. Cogecstre Ed. Penne (Pe). Tammaro, F., L. Veri & G. Chichiriccò (1978): Segnalazioni Floristiche Italiane: 2–3. Informatore Botanico Italiano, 10, 293. Tenore, M. (1832): Relazione del viaggio fatto in alcuni luoghi di Abruzzo Citeriore nelle state del 1831, Tipografia di Pasquale Tizzino, Napoli. Villani, A. (1921): Primo contributo allo studio della flora nella Provincia di Chieti. Nuovo Giorn. Bot., 28, 69-111. www.naturgucker.de: https://www.naturgucker.de. 357 ANNALES · Ser. hist. nat. · 34 · 2024 · 2 KAZALO K SLIKAM NA OVITKU SLIKA NA NASLOVNICI: Dve rdečezobi (Odonus niger) sta bili septembra 2024 ulovljeni v sirskih vodah. Gre za prvi zapis o pojavljanju te vrste v Sredozemskem morju, kamor je najverjetneje prišla skozi Sueški prekop kot lesepska selivka. (Foto: Borut Furlan) Sl. 1: Rdečezoba balestra (Odonus niger) je grebenska riba s temno modrim trupom, ki meri do 50 cm v dolžino. Barvo lahko spreminja glede na razpoloženje in prehrano. (Foto: Borut Furlan) Sl. 2: Plamenka (Pterois miles) se je prvič pojavila v vzhodnem Sredozemlju leta 1991 v Izraelu in se nato razširila na druga območja Sredozemskega morja. Povprečna zimska temperatura površinskega sloja vode je glavni omejevalni dejavnik, ki uravnava širjenje areala vrste. Njena razširjenost v Sredozemskem morju se bo verjetno še povečala, razen v najhladnejših severnih regijah. (Foto: Borut Furlan) Sl. 3: Poročila o ugrizih navadnih, tipično neagresivnih ribjih vrst so v znanstveni literaturi redka oziroma nedokumen- tirana. Nepreverjeni primeri iz intervjujev v časopisih in na spletu pa kažejo, da so osebki D. sargus različnih velikosti v poletnih mesecih ugriznili več kopalcev na počitniških območjih Sredozemskega morja. (Foto: Borut Furlan) Sl. 4: Polž zaškrgar Tylodina perversa je intenzivno rumene barve, ki jo pridobi iz spužve žveplenjače (Aplysina aerophoba), s katero se prehranjuje. Rumeni barvni vzorec ga učinkovito prikrije na spužvi, zaradi česar je polž neviden za plenilce. (Foto: Borut Furlan) Sl. 5: Polža zaškrgarja vrste Atalodoris camassae so pred kratkim odkrili na območju Fiese (Tržaški zaliv, Slovenija) in ga opisali kot novo vrsto. Našli so ga na velikem leščurju, kjer se je prehranjeval s skorjastim mahovnjakom Calpensia nobilis. (Foto: I. Frkovič) Sl. 6: 6: Armina rubida je tujerodna vrsta polžev zaškrgarjev, nedavno odkrita na območju Fiese (Tržaški zaliv, Slovenija). Zaradi nočnih navad vrste je bila njena prisotnost verjetno prej spregledana. (Foto: T. Knapič) INDEX TO PICTURES ON THE COVER FRONT COVER: Two red-toothed triggerfish (Odonus niger) were caught in Syrian waters in September 2024. This is the first recorded appearance of this species in the Mediterranean Sea, where it most likely arrived through the Suez Canal as a Lessepsian migrant (Photo: Borut Furlan). Fig. 1: The red-toothed triggerfish (Odonus niger) is a dark blue reef fish that can grow up to 50 cm in length. Its colouration can change depending on its mood and diet. (Photo: Borut Furlan) Fig. 2: The lionfish Pterois miles first appeared in the eastern Mediterranean Sea in 1991, in Israel, and subsequently spread to other areas in the Mediterranean Basin. The mean winter sea surface temperature is the primary limiting factor governing the species’ range expansion, which is likely to continue throughout the Mediterranean, exception in the coolest northernmost regions. (Photo: Borut Furlan) Fig. 3: Reports of bites by common, typically non-aggressive fish species are scarce or undocumented in scientific literature. However, anecdotal evidence from media interviews in newspapers and on the internet suggests that D. sargus specimens of various sizes have occasionally been involved in biting incidents with swimmers in summer vacation areas of the Mediterranean Sea. (Photo: Borut Furlan) Fig. 4: The sea slug Tylodina perversa has an intense yellow colouration, which it acquires from the sponge Aplysina aerophoba it feeds on. This yellow pattern allows the sea slug to camouflage itself effectively on the sponge, rendering it nearly invisible to predators. (Photo: Borut Furlan) Fig. 5: The sea slug species Atalodoris camassae was recently discovered in Fiesa (Gulf of Trieste, Slovenia) and described as a new species to science. It was found on a large noble pen shell, feeding on the encrusting bryozoan Calpensia nobilis. (Photo: I. Frkovič) Fig. 6: Armina rubida is an alien heterobranch species recently discovered in the area of Fiesa (Gulf of Trieste, Slo- venia). Its presence may have been previously overlooked due to the species’ nocturnal habits. (Photo: T. Knapič) 358 ANNALES · Ser. hist. nat. · 34 · 2024 · 2 Anali za istrske in mediteranske študije - Annali di Studi istriani e mediterranei - Annals for Istrian and Mediterranean Studies UDK 5 Letnik 34, Koper 2024 ISSN 1408-53 3X e-ISSN 2591-1783 VSEBINA / INDICE GENERALE / CONTENTS 2024(1) SREDOZEMSKE HRUSTANČNICE SQUALI E RAZZE MEDITERRANEE MEDITERRANEAN SHARKS AND RAYS Hakan KABASAKAL & Murat BİLECENOĞLU A Review of Occurrences of Hammerhead Shark (Carcharhiniformes: Sphyrnidae) on Turkish Seas over the Past Five Decades .................................. Pregled pojavljanja kladvenic (Carcharhiniformes: Sphyrnidae) v turških morjih v zadnjih petih desetletjih Alen SOLDO & Rigers BAKIU Additional Historical Records of the Great White Shark, Carcharodon carcharias (Lamniformes: Lamnidae) in the Eastern Adriatic: Updating Regional Occurrence of a Critically Endangered Shark ......................... Dodatni historični zapisi o pojavljanju belega morskega volka, Carcharodon carcharias (Lamniformes: Lamnidae) v vzhodnem Jadranskem morju: aktualno regionalno pojavljanje kritično ogrožene vrste Farid HEMIDA, Christian REYNAUD & Christian CAPAPÉ First Records of Sawback Angelsharks Squatina Aculeata (Squatinidae) from the Algerian Coast (Southwestern Mediterranean Sea) .............. Prvi zapisi o pojavljanju trnastega sklata Squatina aculeata (Squatinidae) iz alžirskih voda (jugozahodno Sredozemsko morje) Cemal TURAN, Mevlüt GÜRLEK, Servet Ahmet DOĞDU, Deniz ERGÜDEN, Ali UYAN, Ayşegül ERGENLER, Nuri BAŞUSTA & Alen SOLDO Phylogenetic Relationships and Conservation Implications of Shark Species from Turkish Waters ................................ Filogenetski odnosi in posledice ohranjanja vrst morskih psov v turških vodah Farid HEMIDA, Christian REYNAUD & Christian CAPAPÉ On the Occurrence of Undulate Ray, Raja undulata (Rajidae), from the Algerian Coast (Southwestern Mediterranean Sea) ....................... O pojavljanju valovito progaste raže, Raja undulata (Rajidae), iz alžirske obale (jugozahodno Sredozemsko morje) Sara A.A ALMABRUK, Abdulghani ABDULGHANI & Francesco TIRALONGO First Record of Himantura Müller & Henle, 1837 in Libyan Waters: a Comprehensive Discussion of Misidentification Issues and Ecological Implications in the Mediterranean Sea ................. Prvi zapis o pojavljanju rodu Himantura Müller & Henle, 1837 v libijskih vodah: celostna razprava o problemu napačne identifikacije in ekoloških posledicah v Sredozemskem morju Hakan KABASAKAL, Ayşe ORUÇ, Ebrucan KALECİK, Efe SEVİM, Nilüfer ARAÇ & Cansu İLKILINÇ Recent Occurrences of Rhinoptera marginata and Mobula mobular in Turkish Aegean and Mediterranean Waters ......................................... Recentno pojavljanje vrst Rhinoptera marginata in Mobula mobular v turških egejskih in sredozemskih vodah IHTIOFAVNA ITTIOFAUNA ICHTHYOFAUNA Deniz ERGUDEN, Servet AHMET DOGDU & Cemal TURAN On the Occurrence of the Greater Pipefish Syngnathus acus Linnaeus, 1758 in the South-Eastern Mediterranean, Turkey ................... O pojavljanju velikega morskega šila Syngnathus acus Linnaeus, 1758 v jugovzhodnem sredozemskem morju, Turčija Deniz ERGUDEN, Servet AHMET DOGDU & Cemal TURAN First Record of Roche’s Snake Blenny Ophidion rochei Müller, 1845 (Osteichthyes: Ophidiiformes) in the North-Eastern Mediterranean ..................... Prvi zapis o pojavljanju huja vrste Ophidion rochei Müller, 1845 (Osteichthyes: Ophidiiformes) v severovzhodnem Sredozemskem morju Osama A. ELSALINI & Laith A. JAWAD Fluctuating Asymmetry in Chelon auratus from the Libyan Mediterranean Coast and the Ain Ziana Lagoon ................................... Nihajoča asimetrija pri zlatem ciplju iz libijske sredozemske obale in lagune Ain Ziana 11 1 21 27 37 63 51 69 75 45 359 ANNALES · Ser. hist. nat. · 34 · 2024 · 2 Francesco TIRALONGO & Enrico RICCHITELLI Salaria basilisca (Actinopterygii: Blenniidae) in Mediterranean Waters: New Biological and Ecological Data Emerging from the Collaboration between Citizen Scientists and Researchers .......................... Salaria basilisca (Actinopterygii: Blenniidae) v sredozemskih vodah: novi biološki in ekološki podatki na podlagi sodelovanja med ljubiteljskimi raziskovalci in raziskovalci BIOTSKA GLOBALIZACIJA GLOBALIZZAZIONE BIOTICA BIOTIC GLOBALIZATION Jakov DULČIĆ, Robert GRGIČEVIĆ & Branko DRAGIČEVIĆ Additional Record of Pterois miles (Scorpaenidae) in Croatian Waters (Eastern Adriatic Sea) ................ Dodatni zapis o pojavljanju navadne plamenke Pterois miles (Scorpaenidae) v hrvaških vodah (vzhodno Jadransko morje) Okan AKYOL & Zafer TOSUNOĞLU On the Occurrence of the Indo-Pacific Nakedband Gaper Champsodon nudivittis (Champsodontidae) in the Sea of Marmara, Turkey ................................. O pojavljanju zobate krokodilke Champsodon nudivittis (Champsodontidae) v Marmarskem morju, Turčija Deniz AYAS, Sibel ALAGOZ ERGUDEN & Deniz ERGUDEN Range Expansion of Priacanthus hamrur (Fabricius, 1775) in the Northeastern Mediterranean (Mersin Bay, Turkey) ...................... Širjenje areala lunastorepega veleokega ostriža Priacanthus hamrur (Fabricius, 1775) v severovzhodnem Sredozemskem morju (zaliv Mersin, Turčija) Malek ALI, Aola FANDI, Amina ALNESSER & Christian CAPAPÉ Confirmed Occurrence of Jaydia smithi (Apogonidae) and Seriola fasciata (Carangidae) on the Syrian Coast (Eastern Mediterranean Sea) .................................. Potrjeno pojavljanje smithovega morskega kraljička Jaydia smithi (Apogonidae) in malega gofa Seriola fasciata (Carangidae) na sirski obali (vzhodno Sredozemsko morje) Deniz ERGUDEN, Deniz AYAS & Sibel ALAGOZ ERGUDEN Range Expansion of Synodus randalli Cressey, 1981 in the Northeastern Mediterranean .......................... Širjenje areala Randalljevega morskega kuščarja Synodus randalli Cressey, 1981 v severovzhodno Sredozemsko morje Abdel Fattah N. ABD RABOU, Jehad Y. SALAH, Mohammed A. ABUTAIR, Sara A.A. AL MABRUK, Bruno ZAVA & Maria CORSINI-FOKA Occurrence of Cheilinus lunulatus (Labridae), Triacanthus cf. biaculeatus (Triacanthidae) and Other Four Non-Indigenous Fish Species New to the Gaza Strip Waters, Palestine .............. Prvo pojavljanje vrst Cheilinus lunulatus (Labridae), Triacanthus cf. biaculeatus (Triacanthidae) in še štirih tujerodnih vrst v vodah ob Gazi, Palestina FAVNA FAUNA FAUNA Nour BEN MOHAMED & Abdelkarim DERBALI Status of the Exploited Clam Ruditapes decussatus in the Littoral Zone of Sfax, Tunisia ............................................................... Stanje komercialno izkoriščene brazdaste vongole Ruditapes decussatus v litoralnem območju Sfax, Tunizija Izdihar Ali AMMAR A Preliminary Checklist of Marine Heterobranchs (Mollusca: Gastropoda: Heterobranchia) of Syria ..................................... Preliminarni seznam morskih polžev zaškrgarjev (Mollusca: Gastropoda: Heterobranchia) Sirije FLORA FLORA FLORA Martina ORLANDO-BONACA, Diego BONACA, Romina BONACA, Erik LIPEJ & Domen TRKOV Five-Year Monitoring of the Ecological Status of the Cymodocea nodosa Meadow near the Port of Koper .......................... Petletno spremljanje ekološkega stanja travnika kolenčaste cimodoceje (Cymodocea nodosa) v bližini koprskega pristanišča IN MEMORIAM Alenka MALEJ Thomas Charlton Malone (7. september 1943 – 24. februar 2024) ................ Kazalo k slikam na ovitku ................................... Index to images on the cover .............................. 101 95 107 113 87 145 137 171 125 159 173 173119 360 ANNALES · Ser. hist. nat. · 34 · 2024 · 2 UDK 5 Letnik 34, Koper 2024 ISSN 1408-53 3X e-ISSN 2591-1783 VSEBINA / INDICE GENERALE / CONTENTS 2024(2) BIOTSKA GLOBALIZACIJA GLOBALIZZAZIONE BIOTICA BIOTIC GLOBALIZATION Malek ALI, Aola FANDI & Christian CAPAPÉ The First Mediterranean Record of Red-Toothed Triggerfish Odonus niger (Balistidae) from the Syrian Coast (Eastern Mediterranean Sea) ............... Prvi zapis o pojavljanju rdečezobe balestre Odonus niger (Balistidae) iz sirske obale (vzhodno Sredozemsko morje) Zafer TOSUNOĞLU & Okan AKYOL Occurrence of Pterois miles (Scorpaenidae) in the Mediterranean Sea ....................................... Pojavljanje navadne plamenke Pterois miles (Scorpaenidae) v Sredozemskem morju Izdihar Ali AMMAR New Non-Native and Rare Marine Invertebrates in Syrian Waters .................... Novi primeri o pojavljanju tujerodnih in redkih morskih nevretenčarjev v sirskih vodah Luca CASTRIOTA, Manuela FALAUTANO & Laura SINAPI A New Locality Record for the Range Expanding Fish Seriola fasciata in the Mediterranean ................. Nova lokaliteta pojavljanja vrste Seriola fasciata, ki širi areal v Sredozemskem morju F. Saadet KARAKULAK, Mehmet GÖKOĞLU, Uğur UZER & Hakan KABASAKAL First Record of the Abudefduf cf. saxatilis/vaigiensis/ troschelii Species Complex (Pisces: Pomacentridae) in the Black Sea ........................ Prvi zapis o pojavljanju primerka vrste iz kompleksa Abudefduf cf. saxatilis/vaigiensis/troschelii (Pisces: Pomacentridae) iz Črnega morja SREDOZEMSKE HRUSTANČNICE SQUALI E RAZZE MEDITERRANEE MEDITERRANEAN SHARKS AND RAYS Farid HEMIDA, Christian REYNAUD & Christian CAPAPÉ Occurrence of the Rare Blonde Ray, Raja brachyura (Rajidae), Off the Algerian Coast (Southwestern Mediterranean Sea) ........................ Pojavljanje redke okraste raže, Raja brachyura (Rajidae), ob alžirski obali (jugozahodno Sredozemsko morje) Hakan KABASAKAL, Uğur UZER & F. Saadet KARAKULAK Occurrence of Longnosed Skate, Dipturus oxyrinchus, in the Sea of Marmara ...................................................... Pojavljanje koničaste raže, Dipturus oxyrinchus, v Marmarskem morju Cem ÇEVİK, Gökhan GÖKÇE & Deniz ERGUDEN Capture of a Juvenile Sharpnose Sevengill Shark, Heptranchias perlo (Bonnaterre, 1788), from the Turkish Coast (Eastern Mediterranean Sea) with Updated Records from Mediterranean Waters ............................................ Ulov mladostnega primerka morskega psa sedmeroškrgarja, Heptranchias perlo (Bonnaterre, 1788), iz turških voda (vzhodno Sredozemsko morje) z posodobljenim seznamom zapisov o pojavljanju v Sredozemskem morju 173 179 199 205 221 213 229 187 361 ANNALES · Ser. hist. nat. · 34 · 2024 · 2 Eloïse DEYSSON, Sarah FOXONET, Etienne RÉGNIER, Chloé MOSNIER, Florane TONDU, Janis BROUTIN-RENAUD Bruno COGNIE, Ales- sandro DE MADDALENA, Hakan KABASAKAL & Nicolas ZIANI Additional Historical Records of Great White Sharks, Carcharodon carcharias, Caught in the Gulf of Lion, Northwestern Mediterranean Sea, Between the 1920s and 1950s ............................... Dodatni zgodovinski zapisi o belih morskih volkih, Carcharodon carcharias, ujetih v zalivu Lyon (severozahodno Sredozemsko morje) v dvajsetih in petdesetih letih Malek ALI, Aola FANDI, Dima GHANEM & Christian CAPAPÉ Capture of a Juvenile Basking Shark, Cetorhinus maximus (Cetorhinidae), Off the Syrian Coast, With Comments on the Occurrence of the Species in the Levant Basin (Eastern Mediterranean Sea) ................................................ Ulov mladostnega primerka morskega psa orjaka, Cetorhinus maximus (Cetorhinidae), ob sirski obali s komentarji o pojavljanju vrste v levantskem bazenu (vzhodno Sredozemsko morje) Hakan KABASAKAL, Uğur UZER & F. Saadet KARAKULAK Impact of Fishing Capacity and Environmental Parameters on Landings of Hexanchus griseus in the Sea of Marmara ............................................ Vpliv ribolovne zmogljivosti in okoljskih parametrov na ulov vrste Hexanchus griseus v Marmarskem morju MORSKA FAVNA FAUNA FAUNA MARINE FAUNA Tea KNAPIČ, Irena FRKOVIČ, Borut MAVRIČ & Lovrenc LIPEJ An Insight into the Heterobranch Fauna of Fiesa (Slovenia, Northern Adriatic Sea) ................... Vpogled v favno polžev zaškrgarjev Fiese (Slovenija, severni Jadran) Francesco TIRALONGO, Alessandro NOTA, Emanuele MANCINI & Luigi MUSCO Wounds Inflicted on Humans by the White Seabream (Diplodus sargus): First Scientific Report of Aggressive Behavior ................................ Rane, ki jih ljudem zadajajo šargi (Diplodus sargus): prvo znanstveno poročilo o agresivnem vedenju ORNITOFAVNA ORNITOFAUNA ORNITHOFAUNA ANDREA DE ANGELIS & MARIO PELLEGRINI Nuovo Sito di Nidificazione di Aquila Reale Aquila chrysaetos nel Subappennino Abruzzese ...... Novo gnezdišče planinskega orla v subapeninskih Abrucih FLORA FLORA FLORA Amelio PEZZETTA & MARCO PAOLUCCI La flora di Taranta Peligna (Abruzzo, Italia) ............. Flora Taranta Peligna (Abruci, Italija) Kazalo k slikam na ovitku .................................... Index to images on the cover ............................... 251 257 239 301 291 275 317 357 357