
Volume 35 Number 3 September 2011 ISSN 0350-5596

Informática
An International Journal of Computing
and Informatics

1977

EDITORIAL BOARDS, PUBLISHING COUNCIL

Informatica is ajournai primarily covering intelligent systems
in the European computer science, informatics and cognitive com-
munity; scientific and educational as well as technical, commer-
cial and industrial. Its basic aim is to enhance communications
between different European structures on the basis of equal rights
and international refereeing. It publishes scientific papers ac-
cepted by at least two referees outside the author's country. In ad-
dition, it contains information about conferences, opinions, criti-
cal examinations of existing publications and news. Finally, major
practical achievements and innovations in the computer and infor-
mation industry are presented through commercial publications as
well as through independent evaluations.

Editing and refereeing are distributed. Each editor from the
Editorial Board can conduct the refereeing process by appointing
two new referees or referees from the Board of Referees or Edi-
torial Board. Referees should not be from the author's country. If
new referees are appointed, their names will appear in the list of
referees. Each paper bears the name of the editor who appointed
the referees. Each editor can propose new members for the Edi-
torial Board or referees. Editors and referees inactive for a longer
period can be automatically replaced. Changes in the Editorial
Board are confirmed by the Executive Editors.

The coordination necessary is made through the Executive Edi-
tors who examine the reviews, sort the accepted articles and main-
tain appropriate international distribution. The Executive Board
is appointed by the Society Informatika. Informatica is partially
supported by the Slovenian Ministry of Higher Education, Sci-
ence and Technology.

Each author is guaranteed to receive the reviews of his article.
When accepted, publication in Informatica is guaranteed in less
than one year after the Executive Editors receive the corrected
version of the article.

Executive Editor - Editor in Chief
Anton P. Železnikar
Volariceva 8, Ljubljana, Slovenia
s51em@lea.hamradio.si
http://lea.hamradio.si/~s51em/

Executive Associate Editor - Managing Editor
Matjaž Gams, Jožef Stefan Institute
Jamova 39, 1000 Ljubljana, Slovenia
Phone: +386 1 4773 900, Fax: +386 1 251 93 85
matjaz.gams@ijs.si
http://dis.ijs.si/mezi/matjaz.html

Executive Associate Editor - Deputy Managing Editor
Mitja Luštrek, Jožef Stefan Institute
mitja.lustrek@ijs.si

Executive Associate Editor - Technical Editor
Drago Torkar, Jožef Stefan Institute
Jamova 39, 1000 Ljubljana, Slovenia
Phone: +386 1 4773 900, Fax: +386 1 251 93 85
drago.torkar@ijs.si

Editorial Board
Juan Carlos Augusto (Argentina)
Costin Badica (Romania)
Vladimir Batagelj (Slovenia)
Francesco Bergadano (Italy)
Marco Botta (Italy)
Pavel Brazdil (Portugal)
Andrej Brodnik (Slovenia)
Ivan Bruha (Canada)
Wray Buntine (Finland)
Ondrej Drbohlav (Czech Republic)
Hubert L. Dreyfus (USA)
Jozo Dujmovic (USA)
Johann Eder (Austria)
Ling Feng (China)
Vladimir A. Fomichov (Russia)
Maria Ganzha (Poland)
Marjan Gušev (Macedonia)
N. Jaisankar (India)
Dimitris Kanellopoulos (Greece)
Samee Ullah Khan (USA)
Hiroaki Kitano (Japan)
Igor Kononenko (Slovenia)
Miroslav Kubat (USA)
Ante Lauc (Croatia)
Jadran Lenarčič (Slovenia)
Shiguo Lian (China)
Huan Liu (USA)
Suzana Loskovska (Macedonia)
Ramon L. de Mantras (Spain)
Angelo Montanari (Italy)
Pavol Ndvrat (Slovakia)
Jerzy R. Nawrocki (Poland)
Nadja Nedjah (Brasil)
Franc Novak (Slovenia)
Marcin Paprzycki (USA/Poland)
Ivana Podnar Žarko (Croatia)
Karl H. Pribram (USA)
Luc De Raedt (Belgium)
Shahram Rahimi (USA)
Dejan Rakovic (Serbia)
Jean Ramaekers (Belgium)
Wilhelm Rossak (Germany)
Ivan Rozman (Slovenia)
Sugata Sanyal (India)
Walter Schempp (Germany)
Johannes Schwinn (Germany)
Zhongzhi Shi (China)
Oliviero Stock (Italy)
Robert Trappl (Austria)
Terry Winograd (USA)
Stefan Wrobel (Germany)
Konrad Wrona (France)
Xindong Wu (USA)

mailto:s51em@lea.hamradio.si
http://lea.hamradio.si/~s51em/
mailto:matjaz.gams@ijs.si
http://dis.ijs.si/mezi/matjaz.html
mailto:mitja.lustrek@ijs.si
mailto:drago.torkar@ijs.si

Informatica 35 (2011)289-321 289

Regression Test Selection Techniques: A Survey

Swarnendu Biswas and Rajib Mall
Dept. of Computer Science and Engineering
IIT Kharagpur, India - 721302
E-mail: {swarnendu, rajib}@cse.iitkgp.ernet.in

Manoranjan Satpathy and Srihari Sukumaran
GM India Science Lab, Bangalore, India
E-mail: {manoranjan.satpathy, srihari.sukumaran}@gm.com

Overview paper

Keywords: software maintenance, regression testing, regression test selection, model-based testing, UML, software com-
ponents, embedded programs

Received: April 12, 2010

Regression testing is an important and expensive activity that is undertaken every time a program is mod-
ified to ensure that the modifications do not introduce new bugs into previously validated code. An im-
portant research problem, in this context, is the selection of a relevant subset of test cases from the initial
test suite that would minimize both the regression testing time and effort without sacrificing the thorough-
ness of regression testing. Researchers have proposed a number of regression test selection techniques for
different programmingparadigms such as procedural, object-oriented, component-based, database, aspect,
and web applications. In this paper, we review the important regression test selection techniques proposed
for various categories of programs and identify the emerging trends.

Povzetek: Podan je pregled tehnikizbora testov za regresijsko testiranje programov.

1 Introduction

Software maintenance activities, on an average, account
for as much as two-thirds of the overall software life cycle
costs [75]. Maintenance of a software product is frequently
necessitated to fix defects, to add, enhance or adapt exist-
ing functionalities, or to port it to different environments.
Whenever an application program is modified for carrying
out any maintenance activity, resolution test cases are de-
signed and executed to check that the modified parts of the
code work properly. Regression testing (also referred to as
program revalidation) is carried out to ensure that no new
errors (called regression errors) have been introduced into
previously validated code (i.e., the unmodified parts of the
program) [55]. Although regression testing is usually asso-
ciated with system testing after a code change, regression
testing can be carried out at either unit, integration or sys-
tem testing levels. The sequence of activities that take place
during the maintenance phase after the release of a software
is shown in Figure 1. The figure shows that after a software
is released, the failure reports and the change requests for
the software are compiled, and the software is modified to
make necessary changes. Resolution tests are carried out to
verify the directly modified parts of the code, while regres-
sion test cases are carried out to test the unchanged parts
of the code that may be affected by the code change. After

the testing is complete, the new version of the software is
released, which then undergoes a similar cycle.

Regression testing is acknowledged to be an expensive
activity. It consumes large amounts of time as well as
effort, and often accounts for almost half of the software
maintenance costs [55, 49]. The extents to which time and
effort are being spent on regression testing are exemplified
by a study [22] that reports that it took 1000 machine-hours
to execute approximately 30,000 functional test cases for a
software product. It is also important to note that hundreds
of man-hours are spent by test engineers to oversee the re-
gression testing process; that is to set up test runs, moni-
tor test execution, analyze results, and maintain testing re-
sources, etc [22]. Minimization of regression test effort
is, therefore, an issue of considerable practical importance,
and has the potential to substantially reduce software main-
tenance costs.

Regression test selection (RTS) techniques select a sub-
set of valid test cases from an initial test suite (T) to test
that the affected but unmodified parts of a program con-
tinue to work correctly. Use of an effective regression test
selection technique can help to reduce the testing costs in
environments in which a program undergoes frequent mod-
ifications. Regression test selection essentially consists of
two major activities:

- Identification of the affected parts - This involves

290 Informatica 35 (2011) 289-321 S. Biswas et al.

Figure 1: Activities that take place during software maintenance and regression testing.

identification of the unmodified parts of the program
that are affected by the modifications.

- Test case selection - This involves identification of a
subset of test cases from the initial test suite T which
can effectively test the unmodified parts of the pro-
gram. The aim is to be able to select the subset of test
cases from the initial test suite that has the potential to
detect errors induced on account of the changes.

Rothermel and Harrold [78] have formally defined the
regression test selection problem as follows: Let P be an
application program and P' be a modified version of P.
Let T be the test suite developed initially for testing P. An
RTS technique aims to select a subset of test cases T' C T
to be executed on P', such that every error detected when
P' is executed with T is also detected when P' is executed
with T .

Leung and White [57] have observed that the use of an
RTS technique can reduce the cost of regression testing
compared to the retest-all approach, which involves run-
ning the entire test suite T to revalidate a modified pro-
gram P , only if the cost of selecting a reduced subset of
test cases to be run on P' is less than the cost of running the
tests that the RTS technique omits. The retest-all approach
is considered impractical on account of cost, resource and
delivery schedule constraints that projects are frequently
subjected to. Another approach is to randomly select test
cases from T to carry out regression testing. However, ran-
dom selection of test cases may fail to expose many regres-
sion errors. RTS techniques aim to overcome the draw-
backs associated with the retest-all approach and in random
selection of test cases by precisely selecting only those test
cases that test the unmodified but affected parts of the pro-
gram.

Though substantial research results on RTS have been
reported in the literature, several studies [35, 36] show that
very few software industries deploy systematic test selec-
tion strategies or automation support during regression test-
ing. The approaches that are most often used in the indus-
try for identification of relevant regression test cases are
either based on expert judgment, or based on some form of
manual program analysis. However, selection of test cases
based on expert judgment tends to become ineffective and
unreliable for large software products. Even for moderately

complex systems, it is usually extremely difficult to man-
ually identify test cases that are relevant to a change. This
approach often leads to a large number of test cases being
selected and rerun even for small changes to the original
program, leading to unnecessarily high regression testing
costs. What is probably more disconcerting is the fact that
many test cases which could have potentially detected re-
gression errors could be overlooked during manual selec-
tion. Another problem that surfaces during regression test-
ing stems from the fact that testers (either from the same or-
ganization or from third-party companies) are usually sup-
plied with only the functional description of the software,
and therefore lack adequate knowledge about the code to
precisely select only those test cases that are relevant to a
modification [74].

A large number of RTS techniques have been reported
for procedural [5, 7, 10, 37, 43, 44, 54, 56, 58, 80] and
object-oriented programs [4, 14, 41, 73, 82], each aimed at
leveraging certain optimization options. These techniques
trade-off differently with regards to the cost of selection
and execution of test cases and fault-detection effective-
ness. In the recent past, the problem of RTS has actively
been investigated and new approaches have emerged to
keep pace with the newer programming paradigms. Dur-
ing the last decade, there has been a proliferation in the use
of different programming paradigms such as component-
based development, aspect-oriented programming, embed-
ded and web applications, etc. It is, therefore, not surpris-
ing that a number of RTS techniques have been proposed
for component-based [31,66,67,72,115,116,117], aspect
programs [114, 109], web applications [86, 93, 61, 110,
85], etc.

RTS techniques have been reviewed by several authors
[79, 6, 8, 34, 25, 24, 112]. In [79], Rothermel and Har-
rold have proposed a set of metrics to evaluate the effec-
tiveness of different RTS techniques. Baradhi and Man-
sour [6], Bible et al. [8], and Graves et al. [34] have per-
formed experimental studies on the performance and effec-
tiveness of different RTS techniques proposed for proce-
dural programs. Based on these studies, it is difficult to
choose any technique as the best because these empirical
studies have been performed on different categories of pro-
grams and also under different conditions [25]. This lead
Engström et al. to perform a qualitative study [25, 24] of

REGRESSION TEST SELECTION TECHNIQUES. Informatica 35 (2011)289-321 291

the nature of the empirical data considered. The studies
reported in [25, 24] are based on the similarities of the dif-
ferent RTS techniques and the quality of the empirical data
used. Engstrom et al. [25] observe that it is very diffi-
cult to come up with an RTS technique which is generic
enough (i.e., can be applied to different classes of applica-
tions) and is superior to all other techniques. The survey
carried out by Engstrom et al. considers techniques which
have been published before 2006. Therefore, their survey
does not include many RTS techniques proposed after 2006
[114, 109, 18,61, 86, 93, 85, 65, 31], and also does not in-
clude a few RTS techniques which were proposed before
2006 [10, 110, 107]. Moreover, their study does not in-
clude a detailed discussion about the merits and demerits
of each technique.

In this paper, we present a detailed review of the RTS
techniques proposed for different programming paradigms
such as procedural, object-oriented, component-based,
database, aspect and web software. Since a large number
of RTS techniques have been proposed in the literature, we
have limited our study to only the more prominent classes
of RTS techniques. The techniques we have reviewed have
been chosen based on their prominence determined by the
number of citations and their frequency of referrals in other
related studies. Our sources of information are existing re-
views on RTS techniques [79, 6, 8, 25, 24, 34, 112], the
citation index of the papers that we studied, and the on-
line digital libraries, such as IEEE Xplore, ACM Digital
Library, ScienceDirect, etc. The keywords that we used for
our search on the online digital libraries include regression
testing, regression test selection, test selection, etc. As an
aid to understanding, and to keep the size of the review
manageable, we have classified different RTS techniques
together into relevant classes based on the motivation and
similarity of the proposed approaches. We present a brief
discussion on the working of each class of techniques, and
discuss the merits and demerits of each. We also discuss
issues that arise while designing RTS techniques for em-
bedded programs, and identify the emerging trends in re-
gression testing.

This paper is organized as follows: Section 2 presents
basic concepts related to regression testing and which have
been used in the rest of this paper. In Section 3, we discuss
and compare various RTS approaches proposed for proce-
dural programs. Subsequently, we discuss RTS techniques
for object-oriented, component-based, database, web and
AspectJ programs in Sections 4, 5, 6, 7, and 8 respectively.
We discuss techniques for RTS of embedded software in
Section 9. We discuss RTS techniques proposed for .Net
and BPEL programs in Section 10. We discuss future re-
search directions in regression testing and finally conclude
the paper in Section 11.

2 Basic Concepts
In this section, we first discuss a few basic concepts that
are extensively used in the context of regression testing.
We then discuss some popular intermediate representations
which are used for program model-based RTS.

For notational convenience, in the rest of the paper we
denote the original and the modified programs by P and
P' respectively. The initial regression test suite is denoted
by T, and a test case in T is denoted by t.

2.1 Concepts Related to Regression Testing

In this section, we discuss a few important notations and
concepts relevant to regression testing.

Obsolete, Retestable and Redundant Test Cases: Ac-
cording to Leung and White [55], test cases in the initial
test suite can be classified as obsolete, retestable and re-
dundant (or reusable) test cases. Obsolete test cases are
no more valid for the modified program. Retestable test
cases are those test cases that execute the modified and the
affected parts of the program and need to be rerun during
regression testing. Redundant test cases execute only the
unaffected parts of the program. Hence, although these are
valid test cases (i.e., not obsolete), they can be omitted from
the regression test suite without compromising the quality
of testing.

Execution Trace of a Test Case The execution trace of
a test case t on a program P (denoted by ET(P(t))) is
defined as the sequence of statements in P that are exe-
cuted when P is executed with t [80]. The execution trace
information for P can be generated by appropriately instru-
menting the source code.

Fault-revealing Test Cases: A test case t e T is said
to be fault-revealing for a program P, iff it can potentially
cause P to fail by producing incorrect outputs for P [79].

Modification-revealing Test Cases: A test case t e T is
considered to be modification-revealing for P and P', iff it
produces different outputs for P and P' [79].

Modification-traversing Test Cases: A test case t e T
is modification-traversing for P and P', iff the execu-
tion traces of t on P and P' are different [79]. In other
words, a test case t is said to be modification-traversing
if it executes the modified regions of code in P'. For a
given original program and its modified version, the set of
modification-traversing test cases is a super-set of the set of
the modification-revealing test cases.

Inclusive, Precise and Safe Regression Test Cases: In-
clusiveness measures the extent to which an RTS technique

292 Informatica 35 (2011) 289-321 S. Biswas et al.

selects modification-revealing tests from the initial regres-
sion test suite T [79]. Let us consider an initial test suite T
containing n modification-revealing test cases. If an RTS
technique M selects m of these test case, the inclusiveness
of the RTS technique M with respect to P, P' and T is
expressed as (m/n) * 100 [79].

A safe RTS technique selects all those test cases from the
initial test suite that are modification-revealing [79]. There-
fore, an RTS technique is said to be safe, iff it is 100% in-
clusive. Regression test cases that are relevant to a change
but are not selected by an RTS technique are instances of
false negatives. Therefore, an RTS technique is safe if the
test suite selected by it has no false negatives [18].

Precision measures the extent to which an RTS algorithm
ignores test cases that are non-modification-revealing [79].
Test cases that are selected by a technique but are not rel-
evant are false positives. An RTS technique is, therefore,
precise iff it there are no false positives among the selected
test cases [18].

2.2 Regression Test Suite Minimization and
Prioritization

Regression test suite minimization (TSM) techniques [40,
62, 64] aim to reduce the size of the regression test suite
by eliminating redundant test cases such that the cover-
age achieved by the minimized test suite is same as the
initial test suite. Different studies published in the litera-
ture [83, 106, 62] report conflicting results on the impact
of TSM techniques on the fault-detection capabilities of
the reduced test suites. Lin et al. have observed [62] that
the TSM problem is NP-complete, since the minimum set-
covering problem [20] can be reduced to the TSM problem
in polynomial time.

Regression test case prioritization (TCP) techniques [23,
99, 84] order test cases such that test cases that have a
higher fault-detection capability are assigned a higher pri-
ority and can gainfully be taken up for execution earlier.
TCP approaches usually aim to improve the rate of fault de-
tection by the ordered test suite [23, 84]. The main advan-
tage of ordering test cases is that bugs are detected and can
be reported to the development team early so that they can
get started with fixing the bugs [84]. Also TCP techniques
provide testers with the choice of executing only a certain
number of higher priority test cases to meet the given time
or cost considerations. This is advantageous especially in
case of unpredicted interruptions to testing activities on ac-
count of delivery, resource or budget constraints.

Several TSM and TCP approaches have been proposed
in recent years, and have emerged as active areas of re-
search by themselves. However, our current work focuses
only on RTS techniques. More detailed information about
TSM and TCP approaches can be found in [22, 23, 112].

/

-C-

I Service Broker
i K (UDDI)

-A

Service)
Provider

\
Bind _

" (SOAP)
Service

Requester

Figure 2: Web service architecture.

2.3 Few Other Relevant Concepts

In the following, we briefly discuss few other concepts that
are relevant to this survey.

Program Slicing: Program slicing is a program analysis
technique which was first introduced by Weiser [103] to aid
in program debugging. A program slice is usually defined
with respect to a slicing criterion. A slicing criterion SC
is a pair < p,V >, where p is a program point of interest
and V is a subset of the program's variables. A slice of a
program P with respect to a slicing criterion SC is the set
of all the statements of the program P that might affect the
slicing criterion for every possible input to the program.

Since the publication of Weiser's seminal work, the con-
cept of slicing has been extended and many slicing algo-
rithms have been proposed in the literature for other ar-
eas of program analysis such as program understanding,
compiler optimization, reverse engineering, etc. More de-
tailed information regarding program slicing can be found
in [108, 95].

Web Services: Web services are now being extensively
used in application development across distributed and re-
mote platforms, and are examples of service-oriented ar-
chitecture (SOA) based development. SOA-based develop-
ment has received a big boost with the advent of standard-
ized web services. A web service can be defined as a soft-
ware component which implements a logic and is designed
to be inter-operable over a network providing platform-
independence.

Figure 2 shows the typical architecture and the specifi-
cations of a web service [93, 13]. A service provider pub-
lishes services to a service broker. Service requesters find
required services using a service broker and then bind to
them. Platform independence is achieved through use of
the following web specifications:

- Simple Object Access Protocol (SOAP) - SOAP is an
XML-based protocol for information exchange over
the network between web service and the users. The
XML messages can be transferred using any applica-
tion layer protocol such as Hypertext Transfer Proto-
col (HTTP). An advantage of SOAP messages is that

REGRESSION TEST SELECTION TECHNIQUES. Informatica 35 (2011)289-321 293

int a, b, sum;

1. read(a);
2. read(b);
3. sum = 0;
4. while (a < 8) {
5. sum = sum + b;
6. a = a + 1;}
7. write(sum);
8. sum = b;
9. write(sum);

Figure 3: A sample program.

they can be exchanged between applications regard-
less of the development platform and the program-
ming language being used.

- Web Service Description Language (WSDL) - WSDL
is an XML-based language that is designed to provide
an interface between a web service and its users.

- Universal Description Discovery and Integration
(UDDI) - UDDI is an XML-based information reg-
istry where servers can publish their services. It al-
lows users to locate any specific web services they
might be interested in.

2.4 Graph Models for Procedural Programs

Graph models of programs have extensively been used
in many applications such as program slicing [60, 89],
impact analysis [52], reverse engineering [19], computa-
tion of program metrics [100], regression test selection
[80, 73, 41, 7], etc. Analysis of graph models of programs
is more efficient compared to textual analysis, and various
types of relationships among program elements are also not
explicit in the code. This has led to several representations
such as Control Flow Graph (CFG) [3], Program Depen-
dence Graph (PDG) [29] and System Dependence Graphs
(SDG) [46] being proposed for procedural programs. In the
following, we briefly discuss the important graph models
proposed for procedural programs.

2.4.1 Flow Graph

A flow graph for a program P is a directed graph (N , E)
where the program statements correspond to the set of
nodes N in the flow graph, and the set of edges E repre-
sent the relationships among the program statements. How-
ever, the nodes in a flow graph can also correspond to basic
blocks in a program. Typically it is assumed that there are
two distinguished nodes called start with in-degree zero
and stop with out-degree zero. There exists a path from
start to every other node in a flow graph, and similarly,
there exists a path from every other node in the graph to
stop.

2.4.2 Control Flow Graph

A control flow graph (CFG) [3] is a flow graph that rep-
resents the sequence in which the different statements in a
program get executed. That is, it represents the flow of ex-
ecution of control in the program. In fact, a CFG captures
all the possible flows of execution of a program.

The CFG of the program P is the flow graph G =
(N, E) where an edge (m, n) e E indicates possible flow
of control from node m to node n. Figure 4 represents the
CFG of the program shown in Figure 3. Note that the exis-
tence of an edge (x, y) in a CFG does not necessarily mean
that control must transfer from x to y during a program run.

Figure 4: CFG for the example program shown in Figure
3.

2.4.3 Data Dependence Graph

Dependence graphs are used to represent potential depen-
dencies between the elements of a program. In the fol-
lowing, we discuss data and control dependencies between
program elements and their graph representations.

Data Dependence: Let G be the CFG of a program P. A
node n e G is said to be data dependent on a node m e G,
if there exists a variable var of the program P such that the
following hold:

1. The node m defines var,
2. The node n uses var,
3. There exists a directed path from m to n along which

there is no intervening definition of var.

Consider the sample program shown in Figure 3 and its
CFG shown in Figure 4. From the use of the variables sum
and b in line 5, it is evident that node 5 is data dependent
on nodes 2, 3 and 5. Similarly, node 8 is data dependent
on only node 2. However, node 8 is not data dependent on
either of the nodes 3 and 5.

Data Dependence Graph: The data dependence graph
(DDG) of a program P is the graph Gddg = (N, E),
where each node n e N represents a statement in the pro-
gram P and if x and y are two nodes of G, then (x, y) e E
iff y is data dependent on x.

294 Informatica 35 (2011) 289-321 S. Biswas etal.

2.4.4 Control Dependence Graph 2.4.5 Program Dependence Graph

The concept of control dependence [3] captures the depen-
dency existing between two program elements when the
execution of the second element is dependent on the out-
come of the first.

Dominance: If x and y are two nodes in a flow graph,
then x dominates y iff every path from start to y passes
through x. Similarly, y post-dominates x iff every path
from x to stop passes through y.

Let x and y be two nodes in a flow graph G. Node
x is said to be the immediate post-dominator of node y
iff x is a post-dominator of y, x = y and every other
post-dominator z = x of y post-dominates x. The post-
dominator tree of a flow graph G is the tree that consists of
the nodes of G, has stop as the root node, and has an edge
(x, y) iff x is the immediate post-dominator of y.

Control Dependence: Let G be the CFG of a program
P. Let x and y be two arbitrary nodes in G. A node y
is said to be control dependent on another node x if the
following hold:

1. There exists a directed path Q from x to y,
2. y post-dominates every z in Q (excluding x and y),
3. y does not post-dominate x.

The concept of control dependence implies that if y is
control dependent on x, then x must have multiple succes-
sors in G. Conversely, if x has multiple successors, then at
least one of its successors must be control dependent on it.
Consider the program of Figure 3 and its CFG in Figure 4.
Each of the nodes 5 and 6 is control dependent on node 4.
Note that although node 4 has two successor nodes 5 and
7, only node 5 is control dependent on node 4.

Control Dependence Graph: The control dependence
graph (CDG) of a program P is the graph GCDG =

(N, E), where each node n e N represents a statement
of the program P, and (x, y) e E, iff y is control depen-
dent on x.

. 0

^ data dependence edge

_ _ _ _ ^ control dependence edge 6 0

• f i b

The program dependence graph (PDG) [29] for a program
P explicitly represents both control and data dependencies
in a single intermediate representation of P. The PDG of
a program P is a directed graph Gpdg = (N, E), where
each node n e N represents a statement of the program P.
A PDG contains both control dependence and data depen-
dence edges. A control (or data) dependence edge (m, n)
indicates that n is control (or data) dependent on m. There-
fore, the PDG of a program P is the union of a pair of
graphs: the data dependence graph of P and the control
dependence graph of P. The PDG for the program in Fig-
ure 3 is shown in Figure 5.

2.4.6 System Dependence Graph

A major limitation of a PDG is that it can model only a
single procedure and cannot handle inter-procedural calls.
Horwitz et al. [46] enhanced the PDG representation to
handle procedure calls and introduced the system depen-
dence graph (SDG) representation which models the main
program together with all the non-nested procedures.

int x = 0;

CE1 class A {
E2 void mA() {
5 3 int a = 0;
5 4
5 5
5 6
C7
5 8
5 9

B *bptr = new B();
c in>>a;
try {

bp t r ->mB(a) ; }
catch(E1 &e1) {

cout<<"Error E1"<<endl; }
5 1 0 catch(...) {
5 1 1 cout<<"Error"<<endl ; }
5 1 2 cout<<x<<endl ; }

};

CE13 class B {
E14 f loat mB(int y) {

5 1 5 try {
5 1 6 if (y < 0)
5 1 7 throw new E2();
5 1 8 x = sqrt(y); }
5 1 9 catch(E2 &e2) {
5 2 0 cout<<"Error E2"<<endl;
5 2 1 throw; }
5 2 2 cout<<x<<endl ; }

};

E23 main(int argc, char *argv[]) {
S24 A *aptr = new A();
C25 ap t r ->mA() ; }

Figure 5: PDG of the program in Figure 3.

Figure 6: An example program.

An SDG is very similar to a PDG. In fact, the PDG of the
main program is a subgraph of the SDG. In other words, for
a program without procedure calls, the PDG and the SDG
are identical. The technique for constructing an SDG con-
sists of first constructing a PDG for every procedure, in-
cluding the main procedure, and then adding auxiliary de-
pendence edges which link together the various subgraphs
while maintaining call-return discipline.

2.5 Graph Models for Object-Oriented
Programs

The object-oriented paradigm is based on several impor-
tant concepts such as encapsulation, inheritance, polymor-
phism, dynamic binding, etc. These concepts usually lead
to complex relationships among program elements, and
render the graph models proposed for procedural programs

REGRESSION TEST SELECTION TECHNIQUES. Informatica 35 (2011)289-321 295

inadequate for representing object-oriented programs [60].
Therefore, various models for object-oriented programs
such as the Class Call Graph (CCG) [42], Inter-procedural
Program Dependence Graph (IPDG) [77], Class Depen-
dence Graph (ClDG) [77, 78], and Java Interclass Graph
(JIG) [41] have been proposed. In the following, we briefly
discuss the ClDG and JIG models.

• control dependence edge

• data dependence edge

• class member edge

• call edge

S3 S4 S5 (S6) I

x_ in = x) I

. -V-+C- -

S 1 5) (S 1 6) (S 1 8) (S 1 9

/ ' N

control dependence edge

> data dependence edges

• class member edge

Figure 7: ClDG for class A of the program shown in Figure
6.

2.5.1 Class Dependence Graph

A ClDG [77, 78] is an extensively used model for inter-
mediate representation of object-oriented programs. Each
method in a ClDG is represented by its corresponding
PDG. A class in a ClDG is denoted by a class entry node
and the entry point for each method is represented by a
method entry node. The class entry node is connected to
each method entry node by a class member edge. A repre-
sentative driver node (RDN) is added to the ClDG which
summarizes the set of test driver routines used for class
testing [77]. This RDN acts as the root of the ClDG for
the whole program. Each entry node of a public method
of the class is directly connected to the RDN by means of
driver edges, thus implying that the driver routines can in-
voke the public methods of the class under test. For ex-
ample, Figure 7 shows the ClDG constructed for class A
of the program shown in Figure 6. The node labels in the
ClDG correspond to the statement numbers in the program
of Figure 6. The rectangular node labeled CE1 in Figure 7
represents the class entry vertex for class A. Node E2 rep-
resents a method entry node corresponding to the method
void A::mA(). The edge C E 1 ^ E2 in Figure 7 is a
class member edge. Figure 8 shows the ClDG for class B
defined in Figure 6.

Figure 8: ClDG for class B of the program in Figure 6.

2.5.2 Java Interclass Graph

Intermediate representations such as IPDG and ClDG have
been proposed in the context of C++ programs and do not
satisfactorily model Java programs. Harrold et al. pro-
posed an extended control flow model for Java programs
called Java Interclass Graph (JIG) [41] that extends a CFG
to capture the following features of a Java program:

- Variable and object type information - The variable
or object type information is stored in a JIG node.
The names of classes are represented using the full
inheritance hierarchy which helps to easily detect any
change to the inheritance tree for the class in the mod-
ified program.

- Internal and external methods of a class - Internal
methods are represented in a JIG with an extended
CFG. The extensions are: each call site is broken into
a call and a return node. The call and return nodes
are inter-connected with a path edge that represents
the execution path through the called method.
Since the source code is usually not available for
externally-defined methods, these are represented in
a JIG using collapsed CFGs.

- Calls to internal or external methods from internal
methods - In a JIG, the call node is connected to
the entry node of the called method with a call edge.
There can only be one call edge if the method call
is not polymorphic. For a polymorphic method call,
the call node is connected to the entry node of each
method that can be bound to the call. The class hier-
archy analysis technique [21] can be used to identify
all possible virtual call bindings.
We illustrate the representation of method calls from
internal methods in a JIG with the help of an exam-
ple reported in [41]. Figure 9 shows a code snippet
with calls to methods foo() and m(). In the pro-
gram, class B extends class A (external to the pro-
gram) and overrides the method m() . Class C extends
class B and also overrides method m() . For poly-
morphic calls in a JIG, there exists an edge to all the
methods for possible bindings. In the program, call to
A.foo() from within function bar() represents a

296 Informatica 35 (2011) 289-321 S. Biswas etal.

// A is externally defined
// and has a public static
// method foo ()
// and a public method m ()

1 class B extends A {
1a public void m(){...};
2 };
3 class C extends B {
4 public void m (){...};
5 };
6 void bar(A p) {
7 A.foo ();
8 p m ();
9 }

CFG edge

Call edge

Path edge

JIG for the program

Figure 9: An example of method calls from internal methods in a JIG.

static binding. Therefore, in Figure 9, there exists only
a single call edge between the nodes 7 A.foo() and
A.foo(). The method call p.m() is polymorphic,
and there can be three possible bindings, one each for
class A, B, and C. This is represented in the JIG by
the three out edges from the node 8 p.m(). Each
outgoing edge connects to a possible method call to
which it can bind during run-time.

- Calls to internal methods from external methods -
There can be calls from externally-defined methods to
internally-defined methods in Java due to inheritance
and polymorphism. The external code is represented
in a JIG as a node labeled ECN where ECN stands
for external code node. For each internal class that is
accessed from an external class, there is an outgoing
edge from the ECN node to the class entry node of
that internal class.

- Exception handling - A JIG represents a try state-
ment with a try node. The code within the try block
is represented as a CFG, and is connected with a con-
trol flow edge with the try node. Each catch state-
ment is represented using a catch node, and the corre-
sponding catch block is modeled using a CFG. The
catch node is connected with the CFG using a con-
trol flow edge. The try node is connected to the catch
node of the first catch block using a path edge la-
beled exception. A finally node and a CFG are used to
represent the finally block of the try statement.
Uncaught exceptions are modeled as exceptional exit
nodes.

3 RTS Techniques for Procedural
Programs

RTS techniques were first studied in the context of proce-
dural programs [55, 56]. RTS for procedural programs is,
therefore, an extensively researched topic, and many tech-
niques have been proposed over the years [17, 56, 58, 37,
43, 92, 54, 76, 5, 80, 97, 98, 7, 10]. These techniques se-
lect relevant regression test cases using either control flow,
data or control dependence analysis, or by textual analy-
sis of the original and the modified programs. Depending
on the type of the program analysis technique used and to
aid in understanding, we have grouped the different RTS
techniques into the following major classes:

1. Dataflow analysis-based techniques [43, 92,44, 37]
2. Slicing-based techniques [7, 10, 2]
3. Firewall-based techniques [56, 58]
4. Differencing-based approaches [97, 98, 17]
5. Control flow analysis-based techniques [54, 80, 5]

In the following, we briefly discuss these different cate-
gories of RTS techniques and compare their effectiveness.
We base our comparisons on the set of metrics introduced
by Rothermel and Harrold [79]: safety, precision, effi-
ciency, and generality. Rothermel and Harrold have pre-
sented a comprehensive survey of procedural RTS tech-
niques in [79]. For the sake of completeness and continuity
of the paper, we have included brief discussions on these
techniques. We also discuss a few techniques [97, 98, 5]
which were published after their work.

3.1 Dataflow Analysis-Based Techniques
In this subsection, we review RTS techniques [43, 92, 44,
37] based on dataflow analysis.

REGRESSION TEST SELECTION TECHNIQUES... Informatica 35 (2011) 289-321 297

Dataflow analysis-based RTS techniques explicitly de-
tect definition-use pairs for variables that are affected by
program modifications, and select test cases that exercise
the paths from the definition of modified variables to their
uses. The use of a variable is further distinguished into
computation uses (c-uses) and predicate uses (p-uses). A
c-use occurs for a variable if it is used in computations, and
a p-use occurs when it is used in a conditional statement. A
c-use may have an indirect effect on the control flow of the
program, while a p-use may either directly affect the flow
of control or may also indirectly affect some other program
statements.

Harrold and Soffa [43] have proposed a dataflow
coverage-based RTS technique that can be applied to ana-
lyze changes across multiple procedures. Their approach
involves processing the dataflow information incremen-
tally, i.e., process a single change, select test cases for that
change, and update the dataflow information and test cov-
erage information. The same process is repeated for all the
changes one by one. In their approach, P is represented by
a CFG, in which the nodes represent basic blocks. This re-
duces the size of the flow graph and makes graph analysis
more efficient as compared to representing the individual
program statements as nodes. Additional nodes are intro-
duced in the flow graph to model global variables, function
parameters, and return values of functions. Modifications
to P usually result in changes to the basic blocks or the
control flow structure of the program. The information in
each node of the flow graph is extended to include the as-
sociated dataflow information for variables present in the
node. For each variable definition in a node n, the node
numbers of all the c-uses of the variable in the flow graph
are stored in node n. The block numbers for all the p-uses
of the variable are also stored in n. The information about
the paths traversed when P is executed on each t e T is
used to select test cases which exercise the modified def-
use pairs for any variable, and are selected for retesting P'.

Dataflow-based RTS techniques reported in [43, 92, 44]
usually carry out analysis either by processing the changes
one by one and then incrementally updating the dataflow
information for P ', or compute the full dataflow informa-
tion for P and P' and compare the differences between
def-use pairs. Both these approaches require saving the
dataflow information across testing sessions, or recompute
them at the beginning of each testing session. The program
slicing-based RTS technique proposed by Gupta et al. [37]
is based on inter-procedural slicing which does not require
saving or recomputing the dataflow information across test-
ing sessions. The technique uses the concepts of backward
and forward slices to determine the affected def-use pairs
that must be retested. The program to be regression tested
is sliced to select test cases that execute the affected def-use
pairs.

3.1.1 Critical Evaluation

The techniques reported in [37, 43, 44] are based on com-
puting dataflows in a program and are not able to deter-
mine the effect of program modifications that do not cause
changes to the dataflow information [112]. The techniques
also do not consider control dependencies among program
elements for selecting regression test cases. As a result,
these techniques are unsafe. Dataflow techniques are also
imprecise because the presence of an affected definition
or use in a new block of code does not guarantee that all
test cases which execute the block will execute the affected
code [79]. Examples illustrating the unsafe and imprecise
nature of dataflow-based techniques are available in [79].

3.1.2 Slicing-Based Techniques

Agrawal et al. [2] have proposed a set of program slicing-
based RTS techniques. The aim of these techniques is to
select those test cases which can produce different outputs
when executed with the modified program version P . The
authors define a slice with respect to a test case t as the set
of program statements which are executed when P is exe-
cuted with t. The authors have proposed four slicing tech-
niques [2]: execution slice, dynamic slice, relevant slice,
and approximate relevant slice. The RTS techniques pro-
posed in [2] select a test case t for regression testing only
if the slice of t computed using any one of the four ap-
proaches contains a statement modified in P .

A PDG-based slicing approach for procedural programs
was proposed by Bates and Horwitz [7]. However,
the PDG-based slicing technique did not support inter-
procedural regression testing. In [10], Binkley proposed an
inter-procedural RTS technique based on slicing SDG mod-
els of P and P . Two components are said to have equiv-
alent execution patterns, iff they are executed the same
number of times on any given input [10]. The concept of
common execution patterns [10] has been introduced as an
inter-procedural extension of the equivalent execution pat-
terns proposed in [7]. Code elements are said to have a
common execution pattern if they have the same equivalent
execution pattern during some call to procedures. Common
execution patterns capture the semantic differences among
code elements [10]. The semantic differences between P
and P are determined by comparing the expanded version
(i.e., with every function call expanded in place) of the two
programs. The expanded versions of the two programs are
analyzed to find out affected program elements which need
to be regression tested.

3.1.3 Critical Evaluation

The program slicing-based RTS techniques proposed by
Agrawal et al. [2] are unsafe [112]. The techniques are
however precise [6] because they omit test cases that do not
produce a different output. This eliminates the possibility
of selecting non-modification-revealing test cases.

298 Informatica 35 (2011) 289-321 S. Biswas etal.

According to the studies reported by Rothermel and Har-
rold [79], the PDG [7] and SDG-based [10] slicing tech-
niques are not safe when the changes to the modified pro-
gram involve deletion of statements. The techniques are
also imprecise. However, the SDG slicing-based RTS tech-
nique can be applied to select test cases for both intra- and
inter-procedural modifications.

3.2 Module Level Firewall-Based
Techniques

The firewall-based approach, first proposed by Leung and
White [56, 58], is based on analysis of data and control
dependencies among modules in a procedural program. A
firewall is defined as the set of all the modified modules in
a program along with those modules which interact with
the modified modules. A firewall is a conceptual bound-
ary that helps in limiting the amount of retesting required
by identifying and limiting testing to only those modules
which are affected by a change. The firewall techniques
use a call graph to represent the control flow structure of a
program [56]. Module A is called an ancestor of module B,
if there exists a path (a sequence of calls) in the call graph
from module A to B, and module B is then called a de-
scendant of module A. The direct ancestors and the direct
descendants of the modified modules are also included dur-
ing the construction of a firewall to account for all possible
interactions with the modified modules. The test coverage
information for P is used to select the subset of test cases
from T which exercise the affected modules included in the
firewall.

3.2.1 Critical Evaluation

The firewall technique is not safe as it does not select
those test cases from outside the firewall that may exe-
cute the affected modules within the firewall [79]. The
firewall techniques are imprecise because all test cases
which execute the modules within the firewall do not nec-
essarily execute the modified code within modules. How-
ever, the firewall techniques are efficient because the ap-
proaches consider only the modified modules and their re-
lationships with other modules in the firewall, and hence
limit the total amount of the source code that need to be
analyzed. The firewall techniques handle RTS for inter-
procedural program modifications but are not applicable for
intra-procedural modifications [79].

3.3 Differencing-Based Techniques
In this subsection, we discuss RTS techniques [17, 97] that
are based on analysis of the differences between the origi-
nal and the modified programs.

3.3.1 Modified Code Entity-Based Technique

A modified code entity-based RTS technique was proposed
by Chen et al. [17] for C programs. They have decomposed

program elements into functional and non-functional code
entities. A code entity is defined as either a directly exe-
cutable unit of code such as a function or a statement, or a
non-executable unit such as a global variable or a macro.
The original program P is executed with each test case
t e T. The test coverage information is analyzed to deter-
mine the set of executable code entities that are exercised
by each test case t e T. For each function that is executed
by a test case t, the transitive closure of the global vari-
ables, macros, etc. referenced by the function is computed.
When the original program P is modified, all the code enti-
ties which were modified to create the revised program P'
are identified. Test cases that exercise any of the modified
entities are selected for regression testing P'.

3.3.2 Technique Based on Textual Differencing

Vokolos and Frankl [97, 98, 30] have proposed an RTS
technique which is based on a textual differencing of the
original and the modified programs (i.e., P and P'), rather
than using any intermediate representation of the programs.
A naive textual differencing of the programs will include
trivial differences between the two versions, such as inser-
tion of blank lines, comments etc. Therefore, their tech-
nique first converts a program to its canonical form [96,97]
before comparison. This conversion ensures that the orig-
inal and the modified programs follow the same syntactic
and formatting guidelines. The canonical version of P is
instrumented and then executed to generate the test cover-
age information. The test coverage information identifies
the basic blocks that are executed by each test case instead
of the program statements. The canonical versions of P
and P' are syntactically compared to find out modifications
to the code. The test coverage information is then used to
identify test cases which execute the affected parts of the
code.

3.3.3 Critical Evaluation

The modified code entity technique is safe because it iden-
tifies all possible affected code entities, and selects regres-
sion test cases based on test coverage [8, 79]. The tech-
nique proposed in [97] is also safe because it identifies
all the basic blocks that are affected due to modifications
and selects regression test cases that execute those basic
blocks. However, both the techniques are imprecise. For
example, if a function f is modified, the modified code en-
tity technique selects all those test cases which execute f.
But there might be tests which execute f without executing
the modified code in f . The textual differencing technique
can be highly imprecise when code changes are arbitrary
since differentiation is based on only syntax and the test
cases are selected based on coverage of basic blocks. The
code entity technique is considered to be the most efficient
and safe RTS technique for procedural programs [79], and
its time complexity is bounded by the size of T and P.
The time complexity of the textual differencing technique

REGRESSION TEST SELECTION TECHNIQUES... Informatica 35 (2011) 289-321 299

is O(\P \ * \ P '*log\P |) which may not be scalable for large
programs.

3.4 Control Flow Analysis-Based
Techniques

A few RTS techniques [54, 80, 5] have been proposed
which analyze control flow models of the input programs
for selecting regression test cases. We briefly discuss these
RTS techniques in the following.

3.4.1 Cluster Identification Technique

The main concept used in the cluster identification tech-
nique proposed by Laski and Szermer [54] is localization
of program modifications into one or more areas of the code
referred to as clusters. Clusters are defined as single-entry,
single-exit parts of code that have been modified from one
version of a program to the next. The cluster identification
technique models programs P and P' as CFGs (denoted
by G and G'). The nodes in G and G' which correspond to
the modifications in the code are identified, and the set of
all such identified nodes in G and G' are marked as clus-
ters. A cluster identification-based technique uses control
dependence information of the original and the modified
procedures to compute the clusters in the two graphs.

Once the clusters have been identified in the CFGs, each
cluster is then represented by a single node to form a re-
duced CFG. Analysis of the reduced flow graphs is based
on the assumption that any complex program modifica-
tion can be achieved by one of the following three opera-
tions: inserting a cluster into the code, deleting a cluster, or
changing the functionality of a cluster. Test cases are clas-
sified into two categories: local to the clusters and global in
the entire program. The former includes test cases which
execute modified clusters, and the latter includes test cases
which execute other areas of the program affected due to
the modified clusters based on control dependencies. The
test coverage information is then used to select regression
test cases.

3.4.2 Graph Walk-Based Technique

Rothermel and Harrold have proposed an RTS technique
based on traversal of CFGs of the original and the mod-
ified programs [80]. This technique [80] is more effi-
cient as compared to the graph walk-based RTS approaches
based on dependence graph models [76, 78] proposed by
the same authors. The approach proposed in [80] involves
constructing CFGs G and G' for programs P and P' re-
spectively. The execution trace information for each test
case t, ET(P(t)), is recorded. This is achieved by instru-
menting P. In [80], a simultaneous depth-first traversal
of the two CFGs G and G' is performed corresponding to
each modified procedure in P and P'. The traversal is per-
formed according to the execution trace for each test case
in T. For each pair of nodes n and n' belonging to G and

G' respectively, the technique finds out whether the pro-
gram statements associated with the successors of n and
n' along identically-labeled edges of G and G' are equiv-
alent or not. If a pair of nodes n1 and n'1 is found such
that the statements associated with ni and n'1 are not iden-
tical, then the edges that lead to the non-identical nodes
are identified as dangerous edges. Test cases which exe-
cute the set of identified dangerous edges are assumed to
be modification-revealing. Therefore, a test case t e T is
selected for retesting P' if ET(P(t)) contains node n1 .

3.4.3 DFA Model-Based Approach

Ball [5] has proposed a more precise RTS technique com-
pared to [80] by modeling CFG G for a program P as a
deterministic finite state automaton (DFA). A DFA M for
a CFG G can be constructed such that the following condi-
tions hold:

1. Each node v in G corresponds to two states v1 and
v2 of M. The two states are connected by a transi-
tion v1 —^BB(V) v2, where BB(v) is the basic block
associated with node v in G.

2. The set of edges in G are modeled as state transitions.
Therefore, an edge m — n in G represents a state
transition m2 — n1 in M.

These two conditions ensure that the DFA M accepts the
set of all possible complete paths in G.

Ball introduced an intersection graph model for a pair of
CFGs G and G' corresponding to the original and modified
programs. The intersection graph also has an interpretation
in terms of a DFA. Ball's RTS technique is based on reach-
ability of edges in the intersection graphs. The technique
uses edge coverage criterion as the basis for RTS analysis.

3.4.4 Critical Evaluation

The RTS techniques proposed in [80, 5, 54] are safe.
Among the three techniques, the cluster identification tech-
nique is comparatively more imprecise because the test
cases are selected based on whether they execute a clus-
ter rather than the actually affected statements. The time
complexity of the cluster identification technique [54] is
bounded by the time required to compute the control scope
of decision statements and is dependent on the input pro-
gram size [79]. The techniques proposed in [80, 5] are
the two most precise procedural RTS techniques. How-
ever, Ball's DFA-based approach is computationally more
expensive than [80].

Ball has proposed another RTS technique [5] which uses
path coverage criterion and is still more precise than the
edge-coverage criterion proposed in [5]. The higher preci-
sion is attributable to the fact that path coverage is stronger
than an edge coverage criterion. This increase in precision
is however accompanied by an increase in the computation
effort. Additionally, it cannot analyze control flows across

300 Informatica 35 (2011) 289-321 S. Biswas et al.

Class of RTS Tech- References Key Features Merits Demerits
niques

Dataflow analysis-based
techniques

[37, 43, 44, 92] Based on dataflow and structural
coverage criteria

Can analyze both intra- and inter-
procedural modifications provided the
modifications alter some def-use rela-
tions

Low on safety, imprecise

Slicing-based techniques [7,10, 2] Based on slicing of programs or
dependence graph models

Can analyze both intra- and inter-
procedural modifications

Low on safety, imprecise, com-
putationally more expensive
than dataflow techniques

Module level firewall-
based techniques

[56, 58] Based on analyzing dependen-
cies among modules

Comparatively more efficient as anal-
ysis of source code is limited to only
modified modules

Low on safety, and highly im-
precise

Modified code entity-
based technique

[17] Level of granularity can be
adapted

Safe, and most efficient procedural
RTS technique

Highly imprecise

Textual differencing-
based technique

[97, 98, 30] Based on textual differencing of
C programs

Safe, and comparatively easy to imple-
ment a prototype

Imprecise, and difficult to adapt
to other languages, maybe inef-
ficient for large programs

Graph walk-based tech- [80] Based on analysis of control Safe and most precise procedural RTS Less efficient than [17,56,58]
nique flow models technique

Table 1: A comparison of RTS techniques for procedural programs.

procedures and hence cannot be applied for RTS of inter-
procedural code modifications.

An important difference between graph walk and slicing-
based techniques is that the latter uses dependence relation-
ships to analyze the source code and identify the affected
regions in the source code. Regression test selection is per-
formed by monitoring the execution of the sliced region of
code on T. On the other hand, the graph walk techniques
use comparison of graph models of the program to identify
the modifications [76, 80].

Table 1 summarizes the merits and demerits of the pro-
cedural RTS techniques discussed in Section 3. In column
3, we highlight the key features of each class of techniques,
and summarize the merits and demerits in columns 4 and
5.

4 RTS Techniques for
Object-Oriented Programs

The object-oriented paradigm is founded on several impor-
tant concepts such as encapsulation, inheritance, polymor-
phism, dynamic binding, etc. These concepts lead to com-
plex relationships among various program elements, and
make dependency analysis more difficult [104]. Moreover,
in object-oriented development, reuse of existing libraries,
class definitions, program executables (blackbox compo-
nents), etc. are emphasized to facilitate faster development
of applications. These libraries and components frequently
undergo independent modifications to fix bugs and enhance
functionalities. This creates a new dimension in regression
testing of object-oriented programs that use these third-
party components or libraries, since the source code for
such libraries are often not available. These features, there-
fore, raise challenging questions on how to effectively se-
lect regression test cases that are safe for such programs
[9, 68].

The reported RTS techniques for object-oriented pro-
grams can broadly be classified into the following three
major categories:

1. Firewall-based techniques [53,47, 1,48]

(a) Class firewall technique [53]
(b) Method level firewall technique [48]

2. Program model-based techniques [77, 82, 41, 73]
3. Design model-based techniques [4, 27, 69, 33, 14]

In the following, we briefly review the different classes
of RTS techniques that have been proposed for object-
oriented programs.

4.1 Firewall-Based Techniques

Firewall-based RTS techniques for object-oriented pro-
grams have been proposed by Kung et al. [53], Hsia et al.
[47], Abdullah and White [1] and Jang et al. [48]. These
techniques are based on the concept of a firewall defined
originally by Leung and White [58] for procedural pro-
grams. The firewall techniques aim to identify the affected
classes for the modified version of the software. A firewall
can be defined as the set of all the affected classes that need
to be retested. These techniques select all test cases which
exercise at least one class from within the firewall.

4.1.1 Kung's Class Firewall Technique

Kung et al. [53] have proposed a firewall-based RTS tech-
nique for C++ programs. They have proposed the follow-
ing three models to represent dependencies between vari-
ous elements of a C++ program: Object Relation Diagram
(ORD), Block Branch Diagram (BBD), and Object State
Diagram (OSD). An ORD is a digraph that represents in-
heritance, aggregation and association relations, and cap-
tures the static dependencies between classes. An edge in

REGRESSION TEST SELECTION TECHNIQUES... Informatica 35 (2011) 289-321 301

an ORD is annotated with the type of relationship (inheri-
tance, association, aggregation) that exists between the end
nodes associated with that edge. A BBD represents the in-
terface and the control structure of a method of a class, and
the relationship of a class with the other classes in the pro-
gram. An OSD is designed to capture the dynamic behavior
of a class.

Changes to data items, methods and class definitions of
the original program (if any) are identified by analyzing the
three models corresponding to P and P'. The technique
of Kung et al. [53] instruments P to collect information
about which classes are exercised by which test cases. A
class is potentially affected by a change to another class
if it is either directly or indirectly related to the changed
class through inheritance, aggregation or association rela-
tionships. The firewall for a class C is computed as the
set of classes that are directly or transitively dependent on
C (by virtue of relations such as inheritance, aggregation
or association) as described in an ORD. When a class C is
modified, the technique selects all the test cases that exer-
cise one or more classes within the firewall for C.

Figure 10 shows an example ORD (along with test cases)
adapted from [90]. In the figure, a solid arrow from one
class to another indicates that the two classes are related by
inheritance, aggregation or association relationships. The
boundary (denoted by the dashed line) around the classes
A, B, C and D depicts the firewall computed for class D.
Whenever the class D is modified, classes A, B and C also
need to be regression tested for they belong to the set of
classes which constitute the firewall for class D. In Figure
10, a solid line from a test case to a class indicates that
the test case is used to test the class (e.g., test case TC1 is
used to validate classes D and F). Thus according to the
firewall technique, only test cases TC 1 and TC2 should be
executed again after class D is modified since they exercise
those classes within the firewall for D.

H

4.1.2 Method-level Firewall Technique

Jang et al. [48] have proposed a change impact analysis
approach to select regression test cases for C++ programs.
While a class and a statement are considered as the units of
testing in [53] and [77], the technique reported in [48] con-

siders a method as the unit of retesting and aims to iden-
tify all affected methods. The authors have identified cer-
tain common types of modifications that are possible for
a C++ program, and a method-level firewall is constructed
for each modification to identify the impact of the changes.

4.1.3 Critical Evaluation

Firewall techniques are not safe because these techniques
do not select test cases which may execute the affected
modules from outside the firewall. These techniques are
also imprecise since all test cases that execute a class in
the firewall do not necessarily execute the affected parts of
the code. For example, suppose that a class C is modi-
fied. Let another class D contain two methods D::foo()
and D::bar(), of which the method D::foo() invokes
the services provided by class C. Then, by the approach
described in [53], class D is included in the firewall com-
puted for C. Therefore, any test case which exercises D is
included in the regression test suite. However, there might
be test cases which exercise only the method D::bar()
and hence could have been omitted from the regression test
suite. The firewall-based approaches are however computa-
tionally more efficient and are preferred for RTS analysis of
large programs. Moreover, the technique proposed in [48]
is more efficient than [53] since this method aims to achieve
a balance between the efficiency of class firewall-based
technique [53], and the precision of more fine-grained ap-
proaches like [77].

4.2 Program Model-Based Techniques
In the following, we discuss different RTS techniques [77,
73, 82, 41, 65] that have been proposed for object-oriented
programs and are based on an analysis of program models
for selecting regression test cases.

4.2.1 Technique Based on Class Dependence Graphs

Rothermel and Harrold were one of the earliest to propose
an RTS technique for object-oriented programs [77]. They
have divided the problem of RTS for object-oriented pro-
grams into two parts: RTS of the application program, and
RTS of the modified or derived classes. For RTS of the ap-
plication program, the technique models the original pro-
gram P and the modified program P' using IPDG models.
However, it is difficult to use an IPDG for RTS of modi-
fied and derived classes because an IPDG models programs
having a single entry point whereas a class can have multi-
ple entry points. This problem can be overcome by treating
the test routines as application programs and then applying
the approach for RTS of application programs. However,
this approach incurs a large overhead because it may be
necessary to construct and traverse a PDG for each method
of a class several times. Therefore, the original and the
modified programs are modeled as ClDGs for RTS of mod-
ified and derived classes. The test coverage information is
used to associate the predicate and statement nodes of the

302 Informatica 35 (2011) 289-321 S. Biswas etal.

ClDG models with each test case. Then, a technique simi-
lar to [80] is used to select regression test cases.

4.2.2 Technique Based on Extended Control Flow for
C++

Rothermel et al. [82] have proposed an approach for RTS
of C++ programs based on an analysis of the control flow
representations of the original and the modified programs
by extending the technique proposed in [80]. Since a
CFG represents the control flow information of only a sin-
gle method, the concepts of Inter-procedural Control Flow
Graph (ICFG) and Class Control Flow Graph (CCFG) have
been introduced to represent control flow of multi-function
programs and object-oriented programs respectively. An
ICFG for program P is composed of CFGs for each
method in P. Each call site in P is represented by a pair of
nodes called call and return nodes [82]. Each call node is
connected to the entry node of the called method by a call
edge, and each exit node is connected to the return node
of the calling method by a return edge. An ICFG is used
to model programs having a single entry point, whereas a
class can have multiple entry points [82]. A CCFG is used
to model classes, and consists of individual CFGs for all
methods of a class. Given the graph models for the original
and the modified programs, the RTS algorithm [82] extends
the graph walk-based approach [80] to traverse the models
and select relevant regression test cases.

4.2.3 Technique Based on Extended Control Flow for
Java

Harrold et al. were the first to develop a safe RTS tech-
nique [41] for Java programs based on control flow analy-
sis. Their technique is an adaptation of the graph walk tech-
niques proposed in [80, 82], and can handle various object-
oriented features such as inheritance, polymorphism, dy-
namic binding and exception handling. Their method con-
sists of three steps: constructing intermediate representa-
tions for the source programs, analyzing the graphs and de-
termining the set of dangerous edges, and test case selec-
tion. Harrold et al. use a JIG representation for modeling
Java programs.

The two JIGs constructed for the original and the modi-
fied programs are simultaneously traversed (depth-first) to
identify dangerous edges. Finally, based on the test cov-
erage information obtained through code instrumentation,
the technique selects test cases that exercise the dangerous
edges identified during graph traversal.

4.2.4 Partition-Based Techniques

Partition-based techniques are motivated by the need to
combine the effectiveness of precise but expensive RTS
techniques with techniques that work at a higher-level of
abstraction and are relatively imprecise.

Partition-Based RTS Technique for Java Programs:
Orso et al. have presented a novel two-phase partitioning
approach for RTS of large Java programs [73]. Their tech-
nique works in two phases, called partitioning and selec-
tion. In the partitioning phase, the original and the modified
programs are modeled as Interclass Relation Graphs (IRG)
[73]. The two IRGs are analyzed to identify hierarchical,
aggregation, and use relationships among classes and inter-
faces. Then, the set of classes and interfaces that have been
changed are identified. The partition phase analyzes syn-
tactical changes at the statement level and the declaration
level. A change at the statement level consists of addition,
deletion or modification of program statements. A decla-
ration level change means modifications in the declaration
of the type of a variable, addition or deletion of a method,
change in the modifier list of an existing method, etc. The
class dependency information along with the changes is
used to identify at an abstract level the affected parts of the
code. The set of affected classes and interfaces identified
from the first phase constitutes a partition of the program.

In the selection phase, a more detailed analysis of the
partitions are carried out. The selection phase builds JIG
models representing the modified regions of code from the
partitions. The JIG models are then analyzed using the RTS
technique proposed by Harrold and Rothermel in [80]. An
edge-level test selection criterion is used to select test cases
which execute the affected parts of code.

Partition-Based RTS Technique for C# Programs:
Mansour and Statieh [65] have proposed a two phase RTS
technique targeted for the C# programs. Their RTS tech-
nique first constructs an Affected Class Diagram (ACD)
based on the changes made to the modified program. An
ACD represents modifications made at the level of a class,
an interface, web or window services, and COM+ compo-
nents. Their technique then uses a test coverage criterion
based on the ACD to select a subset of test cases. An ACD
models a program at a high level of abstraction. A more de-
tailed analysis is then carried out by modeling the programs
using C# Interclass Graphs (CIG). A C# Interclass Graph
(CIG) is a control flow graph that captures all the affected
methods in an ACD. The technique constructs CIG models
for the original and the modified programs, and regression
test cases are selected based on the graph walk techniques
[41, 82].

4.2.5 Critical Evaluation

The program model-based object-oriented RTS techniques
[77, 82] are safe and are more precise as compared to the
firewall-based techniques [53, 47, 1, 48], but are less ef-
ficient. This is because of the high overhead incurred in
inter-procedural dependence analysis for large software.
The ClDG model-based technique is also less efficient than
the technique proposed in [82] since it is based on an analy-
sis of dependence graphs while the analysis in [82] is based
on control flow relationships. Both the techniques reported

REGRESSION TEST SELECTION TECHNIQUES... Informatica 35 (2011) 289-321 303

in [82, 77] do not consider several other common features
of object-oriented programs such as exception handling.
These techniques [82, 77] can also be imprecise when test-
ing affected polymorphic calls [41].

The techniques proposed in [41, 73] are safe RTS tech-
niques for Java software, and are able to handle important
object-oriented features of Java such as polymorphism, dy-
namic binding and exceptions. These techniques use a dif-
ferent method for capturing polymorphism than [82] which
leads to a more precise selection of regression test cases.
The two phase partition-based RTS technique proposed for
Java programs [73] is comparatively more efficient than
[41] because the analysis of the affected parts of the pro-
gram is divided across two phases - a coarse-grained first
phase and a more fine-grained second phase. This two-
phased approach helps to limit the extent of code for which
a minute low-level analysis is required.

Although the class firewall based technique [53] does
not consider certain object-oriented features such as ex-
ceptions, the technique can still be extended for selecting
regression test cases for a subset of the Java program fea-
tures. The advantages of the firewall techniques are that
they are comparatively more efficient than the program
model-based techniques [41, 73], and can be applied for
RTS of large programs. However as already discussed, the
firewall techniques are unsafe and are relatively less precise
than the techniques reported in [41, 73].

Mansour and Statieh's RTS technique [65] is a safe RTS
technique tailored for C# programs. But the technique can
be computationally expensive for large programs since the
complexity of the algorithm is quadratic in the number of
the CIG nodes.

4.3 Design Model-Based Techniques

Model-based testing of software has become very pop-
ular with the advent of the model-driven development
paradigm. In the model-driven development (MDD)
paradigm, a design model is usually refined to obtain the
code. The widespread use of CASE tools for object-
oriented system development ensures a close correspon-
dence between a design model and its code. Hence, design
models can effectively be used for RTS analysis of object-
oriented programs [15].

Unified Modeling Language (UML) [12] is an ISO stan-
dard for representing analysis and design models of object-
oriented programs. The following are some important ad-
vantages of UML-based regression testing [26]:

- Traceability - It is easier to maintain traceability be-
tween the design artifacts and the test cases than main-
taining traceability between code and the test cases. It
is also easier to identify changes between across dif-
ferent versions of design artifacts as compared to ana-
lyzing changes across code versions [15, 14].

- Scalability - Code-based regression testing becomes
very expensive when applied to large programs. A

model being a simplified representation of a code,
model-based testing is comparatively more efficient.

- Language independence - Different parts of a software
may be developed using different programming lan-
guages. It, therefore, is difficult to design and im-
plement an RTS technique which can take into ac-
count parts developed using different programming
languages during test case selection. A UML model-
based RTS technique helps to overcome this short-
coming since it is independent of the implementation
[14].

We now briefly discuss few UML model-based RTS
techniques [4, 27, 33, 14, 69] that have been proposed in
the literature.

4.3.1 RTS Based on Class and Sequence Models

Ali et al. have proposed an RTS technique based on anal-
ysis of UML class and sequence diagrams [4]. Their tech-
nique analyzes class and sequence diagrams at the level of
class attributes and operations. Concurrency in sequence
diagrams is captured by the use of asynchronous messages
and parallel instructions which cannot be adequately repre-
sented by traditional CFG models [32]. Therefore, an ex-
tended control flow model called Concurrent Control Flow
Graph (CCFG) has been introduced in [32]. Ali et al. ex-
tends the model-based control flow analysis proposed by
Garousi et al. in [32] for regression testing based on UML
design models by also including information available from
class diagrams. A CCFG model is constructed for each se-
quence diagram. To model a sequence diagram invoking
other sequence diagrams, the corresponding CCFGs are
connected using control flow edges. The sequence and the
corresponding class diagrams are analyzed and an extended
concurrent control flow graph (ECCFG) is constructed to
model the program. The information about which attributes
of a class receive messages in a sequence diagram are de-
rived from the corresponding class diagrams, and are rep-
resented in the ECCFG. The pre- and post-conditions of
a method are also represented in an ECCFG by introduc-
ing new nodes. The ECCFG models for the original and
the modified version of the application are then analyzed
to find out the changes between program versions. This
information is used to select regression test cases.

4.3.2 RTS Based on Class and State Machine
Diagrams

Farooq et al. [27, 28] have presented a model-based RTS
technique that uses information from UML 2.1 behavioral
state machine and the structural class diagrams for test
selection analysis. During software development, UML
documents such as state machine and class diagrams de-
scribing the design and working of the software often un-
dergo several modifications. The modifications made to
one document may also affect other parts of the software.

304 Informatica 35 (2011) 289-321 S. Biswas etal.

Their proposed approach uses information from the mod-
ified class and state diagrams to find out the directly and
indirectly affected elements of the model. For example, a
state transition is considered to be affected if it uses any
changed attribute or method of the corresponding class in
its events, guard conditions, or actions. Those test cases
that cover the modified transitions during execution are
classified as retestable test cases.

4.3.3 RTS Based on Control Flow Analysis of
Sequence Diagrams

Naslavsky and Richardson have proposed an RTS approach
[69] based on control flow analysis of UML sequence dia-
grams for a MDD environment. The technique involves a
model-based transformation from a sequence diagram to a
CFG. The traceability between test cases and the sequence
diagrams is used to determine which CFG elements are ex-
ecuted by each test case. The two CFGs corresponding to
P and P' are then analyzed to find out the affected model
elements, and the traceability information is used to select
relevant regression test cases.

4.3.4 RTS Based on Use Case Diagrams

Gorthi et al. have proposed an RTS technique [33] based on
UML use case diagrams. Their approach uses the concept
of behavioral slicing which decomposes use cases into user
actions followed by some computations and the output. Be-
havioral slicing helps in identifying changes made to the
activity diagrams. Each node in an activity diagram is also
assigned a criticality value to help increase the effective-
ness of the selected test cases. Whenever the requirements
are modified, the activity diagrams are also modified to re-
flect the changes to the system. The models for the original
and the modified specifications are then analyzed to find
out the affected paths in the diagram. The paths in the dia-
gram that have one or more modified nodes are considered
to be affected and the test cases which execute the affected
paths are selected for regression testing.

4.3.5 RTS Based on UML Architectural and Design
Models

Briand et al. have proposed an RTS approach based on
analysis of UML design models [14]. Their approach as-
sumes full traceability between the design model(s), the
code and the test cases. The traceability between the design
and test cases helps in associating the changes in the design
models to the test cases which need to be executed to ex-
ercise the affected parts in design. Their approach involves
analysis of use case, class and sequence diagrams. Their
technique also assumes that there is a unique sequence di-
agram specifying possible object interactions along with
each use case. The approach assumes that any pre- or post-
conditions among classes are specified using the Object
Constraint Language (OCL). Their analysis classifies test
cases as obsolete, retestable and reusable test cases.

4.3.6 Critical Evaluation

In the following, we present a comparative evaluation of
the UML-based RTS techniques that we discussed in sub-
section 4.3. The RTS evaluation framework proposed by
Rothermel and Harrold [79] were originally for code-based
techniques, and hence cannot be used in a straightforward
manner to evaluate UML-based RTS techniques. For ex-
ample, in the context of a UML-based RTS technique, a
test case is modification-traversing iff it triggers a changed
UML model element (e.g., messages for UML sequence
diagrams).

The techniques proposed in [27, 28, 14] are safe with
respect to the changes possible to the UML artifacts. An
advantage of RTS based on analysis at a higher level of ab-
straction is improved efficiency as compared to code-based
techniques. However, RTS based on UML design models
are not as precise when compared to detailed code analysis-
based techniques [26].

UML model-based RTS techniques require a close corre-
spondence between the requirement artifacts, design mod-
els, code and the test cases, which may not always be pos-
sible in practice. Therefore, the applicability of these tech-
niques is limited to a MDD environment.

4.4 Specification-Based RTS Techniques

In the industry, a practical difficulty in RTS is that the
testers may not have access to the design models or the ac-
tual source code. In such scenarios, model-based or code-
based analysis is not possible. This is especially true for
COTS applications. Also, it is difficult to apply program
analysis techniques and tools for many legacy software
which have been developed using older programming lan-
guages (e.g., COBOL) for which there is a dearth of effec-
tive program analysis techniques [18]. Code-based tech-
niques may also suffer from problems of scalability [16].
These limitations have motivated researchers to develop
RTS techniques [18, 16] based on specifications which are
usually available to the testers. In this context, it should
be noted that although we have classified these techniques
as a subtype of object-oriented RTS techniques, these tech-
niques can be extended to a wider variety of programming
paradigms such as component-based software.

4.4.1 Activity Diagram-Based Selection

Chen et al. have proposed a specification-based RTS tech-
nique [16] which uses UML activity diagrams for model-
ing the potentially affected requirements and system behav-
ior. They have also classified the regression test cases that
are to be selected into target and safety test cases. Target
test cases are those that exercise the affected requirements,
while safety test cases help achieve a pre-defined coverage
target. The steps involved in selecting target test cases are
as follows: A traceability matrix is created to capture the
association between requirements and the test cases, i.e.,
which test cases exercise a particular requirement. The

REGRESSION TEST SELECTION TECHNIQUES... Informatica 35 (2011) 289-321 305

Class of RTS Tech- References Key Features Merits Demerits
niques

Firewall-based techniques [53,1,48,47] Analyzes dependencies among mod-
ules

Computationally efficient Unsafe and imprecise, need to be
extended to handle certain object-
oriented features such as excep-
tions

Program model-based
techniques

[77] Analysis is based on dependencies
among class elements

Safe, and more precise than
firewall-based techniques, is appli-
cable for RTS of both modified
classes, and classes derived from
the modified classes, and applica-
tion programs

Computationally more expensive
than the firewall techniques

[82] Based on analysis of control flow
models

Safe RTS technique for C++ pro-
grams, more efficient than [77]

Does not consider some common
object-oriented constructs like ex-
ception handling, can be imprecise

[41,73] Based on analysis of control flow
models, two-phased technique [73]

Safe and precise RTS techniques
for Java programs, two-phased
technique is more computationally
more efficient than [41]

Expensive for large programs with
small changes because of fine-
grained analysis

Design model-based tech- [69, 4, 14, 27, Based on analysis of different UML More efficient than program Not safe, comparatively less pre-
niques 33] design models (e.g, sequence, activ- model-based approaches, suited cise than program model-based

ity, use case diagrams), assumes that for RTS of large programs, RTS techniques
a traceability exists between the de- analysis is at a higher level of
sign models, the source code, and the abstraction, and is independent of
test cases, suited to model-driven de- the implementation
velopment environments

Specification-based tech- [18,16] Based on analysis of requirement More efficient than program Not safe, comparatively less pre-
niques models, assumes complete traceabil- model-based approaches, can cise than program model-based

ity from the specifications to test be applied to systems with RTS techniques
cases large test suites, techniques are

platform-independent can be
easily extended to a wide class of
programs

Table 2: A comparison of RTS techniques for object-oriented programs.

modifications that are made to the original program P can
result in a change of specification, or can be changes which
are limited only to the code. In case when the changes are
limited only to the code, the elements (nodes and edges)
which are affected in the relevant activity diagrams are
identified. Chen et al. have extended the RTS technique
proposed in [82] to handle those modifications which lead
to changes in the specifications also. Safety test cases are
selected with an aim to mitigate risks. The idea is to more
thoroughly test those parts of the code for which the proba-
bility of a fault being present and its cost (i.e., consequence
of impact) is high [16].

4.4.2 Requirement Coverage Matrix-based Approach

Chittimalli and Harrold [18] have proposed a specification-
based RTS approach. Their technique is essentially based
on tracking which specifications are being tested by which
test case from T. This information is represented as a re-
quirement coverage matrix between the set of requirements
and the test cases. The technique proposed in [73] has been
used to identify the affected parts of the code, and sub-
sequently the set of requirements that are affected due to
changes are also identified. These are termed as affected
requirements. The information from the requirement cov-
erage matrix is used to select the test cases which exercise
the affected requirements.

4.4.3 Critical Evaluation

The specification-based approaches are efficient as they do
not depend on any static analysis of the source code. For
the technique proposed in [18], the safety and precision of
the approach is largely dependent on the quality and ac-
curacy of the requirement coverage matrix. However, the
safety of the approach is compromised by fact that depen-
dence relationships existing among program elements can-
not be completely and accurately captured by the require-
ment coverage matrix. Moreover, often in practical situa-
tions, code changes may be too trivial to affect the require-
ments, and the requirement coverage matrix may also be
out of date.

We summarize the merits and demerits of the different
RTS techniques applicable for object-oriented programs in
Table 2. In column 3, we highlight the key features of each
class of techniques, and summarize the merits and demerits
in columns 4 and 5.

5 RTS Techniques for
Component-Based Software

In the component-based software development model, a
software product is developed by integrating different com-
ponents developed either in-house or by third-party ven-
dors. The reliability of a component-based software ap-

306 Informatica 35 (2011) 289-321 S. Biswas etal.

plication, to a large extent, depends on the reliability of
the individual components. These blackbox components
are often modified by the concerned vendor to fix bugs
and incorporate enhancements. Hence, regression testing
of component-based software needs to address how the
changes made to a component might affect the execution
of application programs which use those modified compo-
nents. Techniques which perform RTS of traditional pro-
grams cannot meaningfully be used for RTS of software
using COTS (Commercial Off-The-Self) components be-
cause the code for the components are usually not avail-
able. RTS for component-based software is a challenging
research problem due to the following reasons [31, 72]:

- In a component-based development environment, of-
ten there is a lack of adequate information about the
changes made to each release of a component. Rel-
evant information such as control and data flow rela-
tionships among the modules are usually not supplied
to the application programmer. Moreover, there is also
a lack of adequate documentation for third-party com-
ponents.

- A change made to a component may be reflected both
at the component level and at the system level func-
tioning of the software. Even trivial changes made
to a component in a system may at times affect the
proper working of the software as a whole.

- There is a lack of test tools which can be used to iden-
tify changes in a component and its impact on the soft-
ware.

Depending on the type of program analysis, we classify
the RTS techniques [72, 66, 67, 87, 31, 74, 115, 117, 116,
107] proposed for component-based software into the fol-
lowing classes:

1. Metacontent-based RTS approaches

(a) Code coverage-based approach [72]
(b) Enhanced change information-based approaches

[66, 67]

2. Model-based techniques

(a) UML model-based techniques [87, 107]
(b) Component model-based technique [31]
(c) Dynamic behavior and impact analysis using

models [74]

3. Analysis of executable code [115, 116, 117]

In the following, we review a few prominent RTS tech-
niques reported for component-based software.

5.1 Metacontent-Based RTS Approaches
The difficulty of inadequate information exchange between
the component user (c-user) and the component developer
(c-developer) during component-based software develop-
ment can be overcome by sharing relevant component in-
formation required for RTS analysis. Orso et al. [71] have

proposed the concept of content change information, called
component metacontent, as a means of sharing information
about the changes that a component undergoes across dif-
ferent versions. Different RTS techniques may define their
own sets of required metacontents that need to be shared by
the c-developers. Some examples of the type of informa-
tion that are shared as metacontents range from the compo-
nent version to more detailed like the coverage information
of a particular test suite on the concerned component.

In the following, we discuss the different metacontent-
based RTS techniques [72,66,67] reported in the literature.

5.1.1 Code Coverage-Based Approach

The code coverage-based RTS technique for component-
based software was proposed by Orso et al. [72] and is
based on existing procedural RTS techniques [17, 80, 81].

In case the c-users are unaware of the components that
have undergone a change, then during RTS for the applica-
tion code, any test case in which a method of the modified
components is called is selected for regression testing. This
can lead to selection of test cases unrelated to the specific
change. A more precise selection of test cases can be made
with information about the modifications made to the com-
ponents. To enable a more precise selection of regression
test cases, the technique [72] assumes the availability of the
following metacontent information:

- Coverage information of the initial test suite on the
component.

- Component version.
- Set of control flow edges affected due to the modifica-

tions to the component.

The c-developer supplies this information in the form of
metadata and metamethods during the release of the modi-
fied component. The coverage information is based on the
CFG edges traversed during execution of a test case. Based
on the coverage information, test cases which execute the
affected edges of the CFG are selected for regression test-
ing according to the graph walk technique proposed by
Rothermel and Harrold [80] .

5.1.2 Enhanced Change Information-Based
Approaches

Mao et al. have observed [66] that the applicability of the
technique suggested by Orso et al. [71,72] is restricted due
the fact that it requires a very detailed metacontent informa-
tion to be provided by the c-developer. They have proposed
RTS approaches [66, 67] which emphasize the availability
of specific data from the c-developers to the c-users.

Change Information-Based Approach: A component
provides services when invoked through its published
APIs. Information is exchanged between components and
the application program by means of the parameters of the
published APIs, and the component variables which can
directly be accessed from the application program (called

REGRESSION TEST SELECTION TECHNIQUES... Informatica 35 (2011) 289-321 307

published variables or PVs). Keeping this in view, the
approach suggested by Mao and Lu [66] aims to identify
changes at the method level for the modified components
(to be performed by the c-developers). Invocation of meth-
ods within each component is modeled by constructing a
Labeled Method Call Graph (LMCG) for each component.
An LMCG for a component C is defined as LMCG(C) =
(V, E), where V represents the set of methods in the com-
ponent (both published APIs and internal methods), and
E represents the call relations among different methods of
the component along with the pre-conditions required for
a successful invocation. The enhanced change information
(ECI) consists of the set of published APIs and the pre-
conditions for invoking each published API. The ECI for
the modified program statements in a component can be
computed as follows: Suppose a certain method A invokes
a method B in some component C. Then, the pre-condition
for the method A invoking method B can be found out by
analyzing LMCG(C).

The ECI for the modified components are supplied to the
c-users as files in a standard format (such as XML) along
with the executable of the updated component. The c-users
need to instrument the application source code to find out
the values of the PVs and the parameters that are passed
to each published API that is present in the ECI. For each
test case, if the recorded values of the input parameters and
the PVs satisfy the pre-condition for that published API,
then the test case is selected for retesting the application
integrated with the modified component.

Built-in Test Script-Based Approach: An RTS technique
for component-based software using another level of in-
formation interchange between c-users and c-developers
has been reported in [67]. This approach is motivated by
the fact that it is only the c-developers who have detailed
knowledge of the working of a component and the mod-
ifications effected to each of its versions. This technique
proposes that the c-developers place test scripts in the com-
ponent source code during modifications. The purpose of
these test scripts is to gather information about the exe-
cution pattern of the component during execution of the
test cases. This information helps to identify the test cases
which cover the modified statements of the component.

A Method Call Graph (MCG) for a component C is de-
fined as MCG(C) = (V, E), where V represents the set
of methods in the component (both published APIs and in-
ternal methods), and E represents call relations among the
different methods in the component. The component APIs
affected due to modifications to a component C are identi-
fied by the c-developers by analyzing the relationships be-
tween component methods using MCG(C). Test functions
for the affected methods are designed by the c-developers
and are also published so as to facilitate selection of test
cases by the c-users. The execution information gathered
on invoking the test methods are used by the c-users to se-
lect test cases which execute the affected component meth-
ods.

5.1.3 Critical Evaluation

The metacontents-based approach [72] selects regression
test cases by performing control flow analysis at the
statement-level, and hence can be expensive for large pro-
grams. This problem can be overcome by using a coarser
granularity during RTS analysis (method or class level)
[66, 67]. The metacontent information in this case should
be provided at the method or class levels.

5.2 Model-Based RTS Techniques

Model-based RTS techniques proposed for component-
based software products are essentially refinements to
model-based RTS techniques proposed for procedural and
object-oriented programs. In the following, we briefly dis-
cuss a few model-based RTS techniques [87, 107, 31, 74]
proposed for component-based software.

5.2.1 UML Model-Based RTS Techniques

Sajeev and Wibowo have proposed an RTS technique [87]
for component-based software using UML and OCL mod-
els. Their technique assumes that the functionalities pro-
vided by the modified component is a superset of the func-
tionalities provided by the original component, i.e., the new
component version may include bug fixes and optimiza-
tions of the existing functionalities along with new func-
tionalities that have been introduced. While UML is used to
model the function call relations across components, OCL
is used to represent the change information across compo-
nent versions. The sequence of methods that are invoked by
each test case is also tracked. All those test cases which ei-
ther execute a directly modified method or a method which
in turn invokes a directly or indirectly modified method are
selected for regression testing.

Wu and Offutt have proposed another UML model-based
RTS technique [107] for component-based software. In this
technique, collaboration and sequence diagrams are used to
analyze the control flow behavior of a component and how
objects interact with each other through message descrip-
tion. The changes made to a modified component version
will be reflected in a collaboration diagram as a change to
a class method, or a change in the interaction sequences.
The statechart diagrams are used to analyze the internal
behavior of objects of a component. The class diagrams
are used to identify the affected classes when the defini-
tion of one class is modified. For each modification in the
collaboration diagram, the affected parts of the component
are identified using control and data dependency analysis
on the collaboration and the corresponding statechart dia-
grams. The test cases executing the affected parts are se-
lected for regression testing.

5.2.2 Component Model-Based Technique

Gao et al. [31] have introduced several new models such as
the Component Function Access Graph (CFAG), the Dy-

308 Informatica 35 (2011) 289-321 S. Biswas etal.

Class of RTS Tech- References Key Features Merits Demerits
niques

Metacontent-based ap- [72,66,67] Assumes availability of metacontent Metacontent information can Emphasizes mutual collaboration
proaches information for RTS analysis be easily prepared, exchange of between c-users and c-developers,

change information is simpler in control flow-based analysis in [72]
[66, 67] than [72] may be expensive for large pro-

grams

Model-based [87,31,74,107] Based on analysis of component mod- Computationally more efficient Proposed techniques are not
els, models are passed as metadata than the metacontent-based ap- safe and are less precise than

proaches metacontent-based approaches

Executable analysis-based [115,117,116] Novel approach based on reverse en- Minimum dependence on the c- Can be imprecise as selection anal-
gineering the component binaries developers ysis is at the function level, diffi-

cult to precisely identify changes
among binaries

Table 3: A comparison of RTS techniques for component-based software.

namic CFAG (DCFAG), the Function Dependency Graph
(FDG) and the Data-and-Function Dependency Graph
(DFDG) to represent component API-based information at
the system level. A CFAG models the static function call re-
lationship of the component APIs, i.e., function calls from
the application code to the component APIs. Each node in a
CFAG represents a component API. An edge ei = (f i , f j)
between two nodes (i.e., methods) fi and f j denotes that
the second method is invoked after the first method. A
DCFAG model provides a dynamic view of the function
call sequences during the execution of a particular test case.
Therefore, there can be many DCFAGs possible for a com-
ponent C and a component API Ai. An FDG model is used
to represent invocation dependencies between two func-
tions in a component. A DFDG model is used to represent
the define and use relationships among functions and vari-
ables. The technique [31] assumes that these models are
supplied as metadata with new component releases.

For RTS analysis, the c-users require information about
the modifications made to the component APIs. Changes to
a component API are possible due to many reasons, such
as modification to a function prototype, addition/deletion
of parameters to a function, etc. These changes can be
identified by comparing the revised component API spec-
ifications with the older version. However, there may be
other dependency relations (control and data) which may
indirectly affect APIs which are not themselves modified.
These indirectly affected APIs are identified by analyzing
the FDGs (for functions) and the DFDGs (for data vari-
ables).

Gao et al. have extended the firewall approach [53, 58]
to identify the impact of component modifications on the
other elements of the component (functions and variables).
New types of firewalls are introduced to compute the set
of affected functions due to changes in other APIs, func-
tions or data variables of the component. For each mod-
ified element of a component, the firewall approach helps
to identify the set of directly or indirectly affected compo-
nent APIs. Regression test cases are then selected based on
whether a test case executes the affected component APIs
or not.

5.2.3 Dynamic Behavior and Impact Analysis Using
Models

In [74], Pasala et al. have proposed an RTS technique for
component-based software that analyzes the dynamic be-
havior (e.g., interaction of methods at runtime) of compo-
nents to select test cases. This technique [74] is able to
select regression test cases for components developed in
.NET and Java. The information about the dynamic behav-
ior is captured by executing the initial test suite and track-
ing the sequence of method invocations. These interactions
are modeled as Functional Interaction Graphs (FIG). This
step needs to be run once for every software application that
is to be regression tested. To identify the affected methods
in the newer component versions, the component binaries
are reverse engineered to generate an intermediate code.
The syntactical changes between different components are
identified to track the directly affected methods, and the
changes are then semantically analyzed to determine the
set of indirectly affected methods. Once the complete set
of affected methods are determined, the FIGs are then ana-
lyzed to select test cases relevant for regression testing.

5.2.4 Critical Evaluation

The RTS techniques proposed by Sajeev and Wibowo [87]
and Wu and Offutt [107] are imprecise because these tech-
niques perform RTS analysis at a high level of abstraction
such as classes and methods. These techniques are also
less safe than [31, 74] because they do not involve detailed
dependency analysis at the statement level. However, the
technique proposed by Gao et al. [31] is also not safe as it
does not consider the effect of component modifications on
the software as a whole and limits impact analysis to only
the component level.

5.3 Analysis of Executable Code
Zheng et al. have proposed a family of RTS techniques
[115, 116, 117] based on analysis of the executable code
(binaries such as .dll, .lib) of the modified components.
Their techniques are known as Integrated - Black-box Ap-
proach for Component Change Identification (I-BACCI),

REGRESSION TEST SELECTION TECHNIQUES... Informatica 35 (2011) 289-321 309

along with a version number to specify the exact approach.
The I-BACCI technique uses the firewall approach for anal-
ysis of the glue code (application code which integrates the
COTS components [116]). This technique utilizes the fol-
lowing information for RTS analysis:

- Binary files for the original and the modified versions
of all the changed components.

- Glue code.
- Initial test suite developed for the glue code.

This technique involves reverse engineering the executa-
bles to identify the function definitions, code sections, etc.
The extracted source code of the two versions of a com-
ponent are then analyzed to find out the functions which
have been modified between the two versions. Then, func-
tion call graphs (FCG) are constructed based on the iden-
tified function call relationships for the modified compo-
nents. The FCGs are analyzed to find out the functions in
the glue code which call published component functions.
The glue code functions which directly or indirectly invoke
the modified component functions are considered to be af-
fected. The test cases that execute the affected functions in
the glue code are selected for regression testing.

5.3.1 Critical Evaluation

The I-BACCI technique has the minimum dependency on
information required from c-developers. However, an im-
portant limitation of the approaches proposed in [115, 117,
116] is precise identification of the changes between the
component versions by reverse engineering the executa-
bles. For example, during RTS analysis, the technique may
fail to identify and ignore all trivial differences that are in-
troduced in the component executables due to build config-
urations, build and target platforms, etc. These techniques
are also not precise since they do not perform a statement-
level analysis, and affected code elements are identified
at the level of functions. Therefore, there might be glue
code functions which invoke modified published functions
of the component but do not actually execute the modi-
fied program statements in the published function. Test
cases which exercise such glue code functions can in fact
be safely ignored during regression testing.

We summarize the important characteristics of RTS tech-
niques proposed for component-based software in Table
3. The key features, merits and demerits of each RTS
technique as compared to similar techniques proposed for
component-based software have been presented in columns
3, 4 and 5 respectively.

6 RTS Techniques for Database
Applications

A large number of database applications are currently in
use. These applications are usually composed of several

components contributing to an increase in their sophistica-
tion [38]. Database applications also need to be frequently
modified due to different requirements, e.g., change in
components, growing number of users and data, etc. In
this context, regression testing of database applications is
an important activity.

The requirements and challenges in regression test selec-
tion of database applications are different from the classes
of programs that we have discussed so far. Regression test
selection of database applications need to take into account
the following features:

- RTS techniques for other classes of programs implic-
itly assume that the test cases are independent of each
other and can be executed in any order. This assump-
tion is not valid for database applications as the out-
put of a test case may change the database state, in
the process affecting the execution of other test cases.
Therefore, in addition to the global program state, the
states of the database need to considered during RTS
for database applications.

- The state of the database may have to be reset, i.e.,
restore the initial database configuration, many times
during regression testing. Resetting of a database
is acknowledged to be an expensive activity both in
terms of cost and time [38].

- Database languages support features such as struc-
tured queries, integrity constraints, exception han-
dling and table triggers, which complicate impact
analysis of the modified parts of the program. For
example, firing of triggers can create implicit inter-
modular control dependencies [39].

The traditional notions of safety and dependencies can-
not be applied in regression testing of database applications
because those techniques were developed for stateless ap-
plications. In this context, a few RTS techniques have been
proposed for database applications [105, 39]. We briefly
review these techniques in this section.

6.1 Two Phase RTS Technique for
SQL-Based Systems

Haraty et al. [39] have proposed a two-phase technique for
RTS of structured query language (SQL) based database
applications. Apart from traditional control and data de-
pendencies among elements in a database application,
Haraty et al. have identified the following aspects that need
to be considered:

- Dataflow dependencies - Dataflow dependencies can
arise among database modules due to usage of tables
across modules.

- Component dependencies - These arise among differ-
ent database modules due to firing of table triggers,
modifications to tables or views, or due to modifica-
tions to SQL statements. Component dependencies
are transitive in nature.

310 Informatica 35 (2011) 289-321 S. Biswas etal.

- Exception handling - Raising of exceptions can affect
control flow relationships, which need to be taken into
account during RTS analysis.

Haraty et al. have proposed a control flow model of SQL
statements where a node in the CFG represents an SQL
statement. Their modeling technique also represents pos-
sible changes in control flow that arise due to exceptions.
They have identified two types of changes that are possible
in a database application:

1. Code changes - These are possible additions, dele-
tions, and modifications to SQL statements within a
database module.

2. Database component changes - These include changes
to the database component definition itself, e.g.,
changes in the interface.

Their technique determines modifications between the
two versions of the program and identifies potential areas
of the code where the changes can impact. To identify the
set of affected components due to modifications, Haraty
et al. have used the concept of a component firewall. A
database module is considered to be affected and is, there-
fore, included in the component firewall if any one of the
following conditions holds:

- The definition of the module is modified.
- The module is deleted.
- The module is data or control dependent on another

modified or deleted module.
- The module becomes dependent on some other mod-

ule due to modifications.

The first step in constructing the component firewall is
to identify the directly changed modules. Then, the tran-
sitive closure of the directly changed modules is computed
to find the set of all potentially affected database modules.
In the second phase, relevant test cases are selected based
on any one of the two algorithms: one is based on traversal
of CFGs and the other is based on firewalls. The firewall-
based algorithm is based on analyzing the module-level de-
pendencies among database components.

6.1.1 Critical Evaluation

Experimental studies show that the firewall-based RTS may
ignore omitting potential modification-revealing test cases,
and is therefore unsafe [105]. The firewall-based tech-
nique is also imprecise for reasons similar to the firewall
approaches proposed for traditional programs.

6.2 CFG-Based Safe RTS Technique
Willmor and Embury [105] have extended the safe control
flow analysis-based RTS algorithm proposed by Rother-
mel and Harrold [80] for procedural programs to database
applications. RTS based on only definition-use relation-
ships is not safe for database applications. This is because

it is possible for an instruction to write some data to the
database that will later be read by a program statement
that precedes the earlier instruction in some execution path
[105]. Therefore, the authors have introduced the concept
of database dependencies to capture the additional depen-
dencies that arise among elements in a database program.
A statement is called database dependent if the statement
can update the database, and has been modified in P ' such
it can affect the database state. Statements which are de-
pendent on database dependent statements are considered
affected, and the test cases that execute these statements
are called database-dependent test cases. Based on these
additional dependencies, Willmor and Embury's technique
selects modification-revealing test cases with respect to the
program state, and database-dependent test cases with re-
spect to the database state.

6.2.1 Critical Evaluation

The technique proposed in [105] is the first safe RTS tech-
nique for database applications. However, the approach can
be imprecise. Consider the case in which a statement that
adds new tuples to a table is modified so that it is capable of
adding only a subset of the tuples that could be added by the
original statement. In such circumstances, no new faults
can be introduced in the modified code due to the change
which cannot already be detected in the original program.
Therefore, those test cases which test code that can poten-
tially be affected by this change need not be selected.

7 RTS Techniques for Web
Applications and Services

Web applications and services are dynamic in nature and
constantly evolve. They are frequently updated and, there-
fore, need to be regression tested to verify the correctness
of the unmodified functionalities. In the following, we dis-
cuss the main features of web applications and services that
need to be taken into account during RTS:

- Web applications are composed of server side ser-
vices, user applications, and middleware. A safe RTS
technique for web applications should consider all
types of dependencies that can arise in the different
layers of the web application under test.

- Web applications and services are inherently dis-
tributed in nature and are loosely-coupled.

- Web services are usually composed of and make use
of other services. Therefore, the dependencies arising
due to a modification to another service also need to
be considered during RTS.

A difference in the nature of composition of component-
based and web applications is that a component-based soft-
ware physically integrates a component. Therefore, it is
up to the component user to upgrade to newer releases

REGRESSION TEST SELECTION TECHNIQUES... Informatica 35 (2011) 289-321 311

of the component. However, a web service can be up-
dated as deemed fit by the concerned developer and is not
owned and neither controlled by the application develop-
ers, thereby further complicating RTS of web applications.

Recently, many RTS techniques have been proposed for
web applications [86, 93, 61, 110, 85]. We briefly review
these techniques in this section.

7.1 RTS for Web Applications Based on
Slicing

Xu et al. have proposed an RTS technique for web appli-
cations based on slicing [110]. They assume that web ap-
plications consist of multiple static HTML pages and pro-
grams running on the server side. The types of changes that
an HTML page can undergo can be divided into the follow-
ing basic classes: insertion of a page element (e.g., anchor,
hyperlink, etc.), deletion of a page element, insertion of a
page and deletion of a page. More complex changes are de-
composed into a combination of these basic modifications.
In this context, it needs to be noted that certain kinds of
changes, such as formatting related changes, cannot affect
other web pages. The different HTML pages in an web ap-
plication can be data or hyperlink dependent on each other.
The dependencies that can arise are further divided into di-
rect and indirect dependencies. For example, if a hyper-
link is inserted, then it needs to be checked that the link is
working if the target page is part of the website. Indirect de-
pendencies arising due to definition-usage relationships of
variables are analyzed using traditional techniques. Then,
the slice is computed on the indirect data dependencies on
an extended SDG model of the web application which is to
be regression tested. Test cases that execute the potentially
affected web elements are selected for regression testing.

7.1.1 Critical Evaluation

The details of the slicing technique used for identifying po-
tentially affected web elements have not been provided in
[110]. However, it can be inferred that the technique will
suffer from drawbacks similar to slicing SDGs for proce-
dural programs. The technique is, however, precise in se-
lecting relevant test cases for the types of changes that have
been considered.

7.2 RTS Based on System Models

Tarhini et al. have proposed a safe RTS technique for web
services-based applications [93]. The technique defines
web services as self-contained component-based applica-
tions residing at separate locations and communicating us-
ing XML-encoded messages using SOAP interfaces. The
communication using message exchange may also be time-
constrained. The services provided by a web service are
shared using WSDL specifications.

The authors have modeled a web application in two hier-
archical levels to avoid state explosion. In the first level, the

interaction of the components with the main application is
modeled using a Timed Labeled Transition System (TLTS).
Each node in a TLTS represents a component, and an edge
joining two nodes represents a transition between the two
components. The internal behavior of each component is
modeled in the second level. Each node in the second-level
TLTS represents a state of the component that is being mod-
eled. The authors have proposed an RTS technique which
selects all relevant test cases that test the side-effects of
adding, removing or fixing an operation or a timing con-
straint in an existing component based on an analysis of
the constructed two-level TLTS models. The approach for
selecting relevant regression test cases is as follows: Con-
struct the TLTS for the modified web service; generate test
cases for testing the TLTS model corresponding to the mod-
ified web service; find the difference between the initial test
suite and the generated test suite. The differential set of test
cases are selected for regression testing.

7.2.1 Critical Evaluation

The technique in [93] is safe because it selects every test
case that produces a different behavior in the modified sys-
tem. However, this technique cannot strictly be considered
as a pure RTS technique because the analysis involves gen-
eration of test cases as an intermediate step.

7.3 Control Flow-Based RTS Techniques

Ruth et al. [86, 85] and Lin et al. [61] have proposed safe
RTS techniques for web services based on analysis of con-
trol flow models. We discuss these techniques in the fol-
lowing.

The RTS technique proposed by Ruth et al. [86, 85] is
a gray-box technique since it is difficult to carry out white-
box regression testing for web services because often the
source code for the components may not be available with
the web service developer. It is a gray-box technique be-
cause it does not require the source code of the web ser-
vices. Instead, their approach assumes that the component
web service providers would provide the following infor-
mation as metadata along with a service release: WSDL
specification, a set of test cases, CFGs for the web services,
and test coverage information.

Their technique requires that each procedure in a web
service is modeled as a CFG at the service developer side.
Their technique also assumes that the method calls to other
services are decided statically. The CFGs for all the in-
dividual procedures are then combined to form a global
CFG. When a web service is modified, then a global CFG
is also constructed for the modified web service. Each
node in a CFG stores a hash code of the corresponding
statement. The authors have extended the graph traversal
algorithm proposed in [80] to simultaneously traverse the
global CFGs for the original and the modified programs
and identify the nodes of the graph which are changed. All
control flow edges which can be reached from the modified

312 Informatica 35 (2011) 289-321 S. Biswas etal.

nodes are marked as dangerous. The changes made to the
modified web service can be identified from a difference
in the hash values without requiring analysis of the source
code. The test cases which execute the dangerous edges are
selected for regression testing.

Lin et al. have proposed a safe RTS technique [61] for
Java web services based on code transformation. Their
technique models Java code at the client side and the ser-
vice side as a single combined program. The services and
the interfaces provided by the web service are available
from the WSDL specifications. The technique simulates
message passing between the client application and the web
service through local proxy objects. The merged program
is then modeled as a JIG which has the same structure as
the original application. Once modeling of the original and
the modified web service is complete, the algorithm pro-
posed in [41] is used to select relevant regression test cases.

7.3.1 Critical Evaluation

The control flow-based techniques proposed in [61, 85, 86]
have advantages and disadvantages that are comparable to
the control flow-based RTS techniques proposed for proce-
dural programs. These techniques are safe, and compara-
tively more precise and at the same time less efficient than
the technique proposed in [93]. The technique proposed by
Ruth et al. [86, 85] is also similar to component-based RTS
techniques [72, 66, 67] because it relies on metacontent in-
formation supplied by the web services developers.

8 RTS Techniques for
Aspect-Oriented Programs

Aspect-oriented software development paradigm is an
emerging methodology that aims to modularize software
development by isolating low priority and auxiliary func-
tionalities from the application's main business logic. In
the traditional programming model, it is up to the pro-
grammer to manage and interleave other auxiliary issues
(called as concerns) into the main application code. Con-
cerns which are spread across multiple modules are called
crosscutting concerns. For example, for a programmer who
is developing a module for a banking software, related is-
sues such as logging, performance, security, authentica-
tion, exception handling, etc. are examples of crosscut-
ting concerns. Aspect-oriented programming (AOP) allows
programmers to relegate these secondary crosscutting con-
cerns to stand-alone modules called aspects. AOP has also
introduced new terminologies such as advice, pointcut, in-
troduction, join points, shadow.

AOP has been adopted for many object-oriented pro-
gramming languages and AOP languages such as AspectJ
has gained considerable popularity among the Java devel-
oper community. Introduction of aspects usually change
the behavior of the original Java program. Therefore, As-
pectJ programs also need to be thoroughly regression tested

after some modifications. In this section we discuss the
proposed RTS techniques for AspectJ programs [114, 109]
since AspectJ is the most widely used aspect-oriented lan-
guage [50].

8.1 RTS of AspectJ Programs using Control
Flow Models

Zhao et al. [114] proposed an RTS technique for AspectJ
programs by extending the work of Harrold et al. [41].
They have proposed a System Control Flow Graph (SCFG)
and an Aspect Control Flow Graph (ACFG) to model an
AspectJ program. The authors have introduced additional
nodes and edges, such as join point vertex, in an SCFG
to model AspectJ constructs. Each individual aspect in a
program is represented using an ACFG. An ACFG is com-
posed of individual CFGs which represent static control
flow relationships that exist among advice, inter-type mem-
bers, and methods of an aspect. An aspect entry vertex is
used to represent entry to the aspect. An aspect member-
ship edge is used to connect the aspect entry vertex to dif-
ferent possible aspect members such as advice, inter-type
members, pointcuts, or methods. Their model is also able
to represent interactions between aspects and classes.

Once the SCFG graphs have been constructed for the
original and modified pair of AspectJ programs, the depth-
first search technique proposed in [41] is used to identify
the dangerous edges in the graph. The test cases that exe-
cute the dangerous edges are selected for regression testing.

8.2 RTS for AspectJ Programs Based on
Extended JIG

Xu and Rountev [109] have proposed a safe intermedi-
ate graph representation-based RTS technique for AspectJ
programs. They have first proposed a control flow-based
graph model for AspectJ programs named AspectJ Inter-
module Graph (AJIG) which is an extension of a JIG. An
AJIG consists of CFGs that model control flow relation-
ships within Java classes similar to JIGs, within aspects,
and across boundaries between aspects and classes through
non-advice method calls. An AJIG also consists of interac-
tion graphs that model interactions between methods and
advices at certain join points. The following types of inter-
actions are modeled by an AJIG:

- A method call from a Java class method to another
class method or an aspect method.

- A method call from an advice to a class method or an
aspect method.

- A method call from an aspect method to a class or an
aspect method.

Relevant regression test cases are selected by comparing
the AJIG graphs for P and P'. The authors have extended
the graph traversal algorithm proposed in [41]. Their two-
phase algorithm also handles situations where the destina-

REGRESSION TEST SELECTION TECHNIQUES... Informatica 35 (2011) 289-321 313

tion nodes for a pair of edges that are compared are state-
ment shadows. In the first phase, the invocation order of
the advices are compared using the two interaction graphs
corresponding to P and P'. The output of the first phase is
a set of dangerous edges in P that are changed in P' and
a set of advices whose invocation order remains the same
and whose bodies need to be further inspected in the sec-
ond phase. In the second phase, the CFGs for each advice
identified in the first phase are traversed to identify danger-
ous edges. The test cases executing the set of dangerous
edges are selected for regression testing.

8.3 Critical Evaluation

The technique proposed by Zhao et al. [114] ignores situ-
ations where multiple advices apply at a shadow, or where
there can be dynamic advices. Their proposed graph model
cannot represent these suitably, and hence, may miss out
on selecting potentially fault-revealing test cases.

The RTS technique proposed by Xu and Rountev is a
safe RTS technique for AspectJ programs and overcomes
the drawbacks inherent in the RTS technique proposed in
[114].

9 RTS Techniques for Embedded
Programs

During the last decade, there has been a rapid surge in the
usage and reach of embedded applications. A variety of
embedded applications have infiltrated almost every facet
of our daily lives. Over the years, embedded applications
are becoming more and more sophisticated and are being
extensively used in real-time and safety critical applica-
tions. The domains where embedded applications are be-
ing heavily used at present include entertainment, automo-
biles, life-saving medical instruments, nuclear power sta-
tions, and defense warfare. As a result, extremely reliable
operation of these applications has become an essential ne-
cessity.

Regression testing is a challenging task in the life cycle
of an embedded software [88, 70, 91]. Embedded applica-
tions are often composed of concurrent, co-operating tasks,
many of which may be real-time in nature. Issues such as
concurrent execution and deadlines of tasks add new di-
mensions to the complexity of testing embedded programs.
For example, concurrent tasks in an embedded program
may get scheduled differently even when the same set of
events occur with minor alterations to their timing of oc-
currence. This can cause unrepeatable test results. Further-
more, an error which is not manifested in one test case may
be exposed by another test case having the same inputs,
same start state and executing the same functions but hav-
ing a different timing behavior. Embedded systems usually
accept inputs (in the form of events) from the environment
concurrently and asynchronously. Since it is not always
possible to predict the exact input pattern, therefore, the

behavior of an embedded system needs to be tested for all
possible input combinations. This may necessitate testing
of embedded software using a large number of test cases.
Moreover, the high cost of execution of test cases for em-
bedded programs makes minimization of the costs incurred
in regression testing highly desirable [36]. Selection of a
set of safe test cases for embedded applications has, there-
fore, been acknowledged as an important research problem
[118].

The RTS techniques for traditional programs cannot sat-
isfactorily be used to select regression test cases for embed-
ded programs, since embedded programs have many fea-
tures that are radically different from traditional programs.
A few examples of these features are the following:

- A real-time task is usually associated with a dead-
line by which it needs to produce the required re-
sults. Thus, test cases validating the timing aspects
of a modified feature need to included. Therefore,
an RTS approach based solely on analysis of data and
control dependency aspects alone would be unsafe. In
this context, analysis of control flow information for
checking the timing properties has been advocated by
many researchers [102, 45].

- Embedded programs are concurrent and event-driven.
The dependencies arising due to these features can re-
sult in subtle bugs in the programs, and need to be
specifically regression tested.

- Embedded programs often use explicit exception han-
dling mechanisms. This is especially true for safety-
critical applications where error situations need to be
properly handled. Throwing an exception alters the
normal flow of control in a program. Hence, all af-
fected control flow paths in the program need to be
regression tested.

In the literature, we could find only one study by Biswas
et al. [11] related to RTS of embedded applications. In
[11], the authors have proposed an EClDG model for rep-
resenting embedded programs. An EClDG model is an ex-
tension of a ClDG and represents both control and data de-
pendencies that exist among program elements. An EClDG
also contains control flow edges to represent tasks in an
embedded program which are essentially a sequential exe-
cution of program statements. An entry node in an EClDG
model associated with each task in the corresponding em-
bedded program also stores the priority and the criticality
information related to the task. Some of the additional fea-
tures that are represented in an EClDG are exception han-
dling, and information available from UML design models,
such as, object states and state transitions. Regression test
cases are selected by slicing the EClDG model. Each point
of change between the original (P) and the modified (P')
program acts as a slicing criterion. Identification of which
model element is executed by each test case is determined
by instrumenting the source code. The test cases that ex-
ecute the potentially affected model elements are selected
for regression testing.

314 Informatica 35 (2011) 289-321 S. Biswas et al.

Class of RTS Tech-
niques

References Key Features Merits Demerits

Database [105,39] RTS techniques need to consider
database states

Willmor and Embury's technique
[105] is safe

Proposed techniques are imprecise

Web applications [86, 93, 61, 110,
85]

Analysis cannot rely on the availabil-
ity of the source code of web services

Techniques proposed in [93, 86,
85, 61] are safe, system model-
based approach [93] is more effi-
cient than [86, 85, 61]

Techniques can be imprecise, and
depend on metacontent informa-
tion

AspectJ [114,109] Needs to take into account the depen-
dencies that arise due to pointcut, join
points, etc.

Technique reported in [109] is safe Control flow-based techniques
may be computationally expen-
sive, cannot be directly adapted
for higher-level analysis

Table 4: A comparison of RTS techniques proposed for database, web, and aspectj programs.

void foo () { ,

try {
bodyl ^

} catch (A) {
body2;

} finally {
body4;

}
body5;

}

• CFG ed

O Path edg

Figure 11: Modeling exceptions in the RTS technique pro-
posed in [51].

10 Other RTS Techniques

In this section, we discuss a few RTS techniques proposed
for BPEL programs [59, 63, 101] and programs developed
in .Net framework [51]

10.1 RTS Technique for .Net Programs

In recent times, many virtual machine environments have
been proposed such as Java and Microsoft .Net framework.
In a virtual machine (VM) environment, the program is
compiled into a platform-independent intermediate code.
The advantage of such virtual machine environment is that
it introduces a layer of abstraction and hides the low-level
intricacies of the target architecture. The VM environment
can also introduce check points to enhance performance,
security, etc. of the application code. In the following, we
discuss a safe RTS technique proposed for programs devel-
oped in Microsoft .Net framework.

Koju [51] have presented a safe RTS technique for pro-
grams developed in .Net framework. Since Microsoft .Net
framework supports many programming languages such as
Visual Basic, C++, C#, an RTS technique based on source-
code analysis would require to take into account the fea-

tures of all the .Net framework supported programming
languages. The authors have avoided this problem by se-
lecting regression test cases based on an analysis of the in-
termediate code, which is in Microsoft Intermediate Lan-
guage (MSIL). Their technique is based on the graph walk-
based RTS technique proposed by Harrold [41] for Java
programs. However, the JIG model proposed in [41] can-
not model .Net specific features such as delegates. The au-
thors have also proposed a more efficient and precise way
of analyzing the dependencies introduced due to class hi-
erarchies and exceptions compared to [41]. The improved
analysis of class hierarchies is applied to model method
calls from code internal and external to the application un-
der test. The modeling of exceptions is improved by rep-
resenting the catch and finally block on the opposite
sides of a try block. An example of the exception mod-
eling technique proposed by Koju et al. [51] is shown in
Figure 11. The figure shows a partial JIG modeling the
exception handling code shown in Figure 11.

The important steps in the RTS technique proposed in
[51] are as follows:

- Construct the extended JIG models corresponding to
the MSIL code for the original and the modified pro-
grams.

- Instrument the original source program and execute
the instrumented program with the initial test suite to
generate the test coverage information.

- Traverse the two extended JIG models to identify dan-
gerous edges. The test cases executing the dangerous
edges are selected for regression testing.

This technique is safe for RTS based on MSIL lan-
guages, and is more precise than [41] because of the im-
proved representation for exception handling and the de-
pendencies arising due to class hierarchies. In spite of our
best efforts, this is the only technique that we could find in
the literature for RTS in a virtual machine framework.

10.2 RTS Techniques for BPEL Programs
We have pointed out in subsection 2.3 that SOA-based de-
velopment is increasingly being adopted in different ser-
vices industries. Business process execution language

REGRESSION TEST SELECTION TECHNIQUES... Informatica 35 (2011) 289-321 315

(BPEL) is a part of the SOA standards, and is popularly
being used to develop business process and composite ser-
vices. Composite services in BPEL are composed of a pro-
cess, an interface described in WSDL, and component ser-
vices that interact with the process. The component ser-
vices can be elementary services or composed of other ele-
mentary services. Modifications to a BPEL composite ser-
vice can take place due to different reasons such as mod-
ifications to the process or the interface, replacement of a
service with another service, etc. Whenever a BPEL com-
posite service is modified, it becomes necessary to select
regression test cases to test the unmodified parts of the
program. In the following, we briefly discuss the control
flow analysis-based RTS techniques proposed by Li et al.
[59, 63, 101].

A BPEL flow graph [113] can only capture the control
flow relations in a BPEL process. Therefore, it cannot be
used to model BPEL composite services. In view of this,
Li et al. [59] have proposed an Xtended BPEL Flow Graph
(XBFG) to model BPEL composite services. Along with
the business process, an XBFG is also able to model com-
posite services and the message interactions between the
process and the composite services. The technique con-
structs XBFG models for both the original and the modi-
fied BPEL composite services. The types of changes pos-
sible between two BPEL composite services are assumed
to be: process change, binding change, change in the path
conditions, and interface change. The technique then com-
pares the test paths between the two XBFGs to find out the
model elements influenced by the process and the binding
changes. The paths in the XBFG models which are affected
due to the changes are identified, and relevant regression
test cases are selected to test the affected paths.

11 Conclusion and Future Research
Directions

It is acknowledged that RTS techniques which analyze
modifications at a finer level of granularity (e.g., program
statements) are more precise than techniques which per-
form analysis at a comparatively higher level of abstraction
(e.g., design models). Rothermel and Harrold have shown
that the problem of designing precise RTS techniques is
PSPACE-hard [80]. Moreover, the extensive computa-
tions for a fine-grained analysis (e.g., graph walk-based
techniques for procedural/object-oriented programs) make
these techniques more expensive, less efficient, and less
scalable compared to the coarse-grained approaches. This
is an important trade-off that needs to be considered while
selecting a suitable RTS technique. After all, selection of
an RTS technique makes sense only if the cost of test se-
lection is less than the difference in cost between running
the entire test suite and the selected test suite [57].

Modern commercial software products are becoming in-
creasingly large and complex, and are usually tested using
thousands of test cases. Therefore, to obtain further savings

in regression testing effort, researchers need to consider the
following issues:

- With the trend of increasing application size, an RTS
technique should scale to very large programs having
code sizes of the order of millions of KLOC. For mod-
ern large software systems, scalability is an important
issue. Therefore, an interesting direction of research
would be to investigate compositional and summary-
based approaches to RTS.

- The RTS technique should take into account all pos-
sible relationships depending on the targeted class of
programs while selecting test cases, i.e., it should be a
safe technique for that class of programs.

Model-based regression testing: In view of the fact that
static analysis of large software systems is computation-
ally expensive, model-based RTS techniques appear to be
a promising approach that not only scales well, but is more
efficient [112]. Furthermore, of late MDD has been re-
ceiving a lot of attention. In MDD, there exists a close
relationship between the design model(s) and code in the
sense that any change to the model gets reflected in the
code and vice versa. Therefore, instead of performing RTS
on code, test selection could be automatically performed
based on design models. Model-based RTS can also help to
take into consideration several aspects of program behavior
(like state transitions, message paths, task criticality, etc.)
that are not easily identified from static code analysis.

Improved RTS tool support: In future, the reported
work on RTS should gradually shift from theoretical re-
search to tool implementations. It has been pointed out in
several studies [35, 36, 112] that the current tool support
for automated RTS is rather poor. Therefore, concerted ef-
fort should be directed towards developing integrated RTS
tools using capture-and-replay mechanisms.

Synthesized regression testing techniques: Most of the
RTS techniques reported in the literature are either code-
based or model-based. Since both these approaches have
their own unique advantages, these approaches can pos-
sibly be meaningfully synthesized and this issue deserves
further investigation. For example, the analysis performed
in a code-based RTS technique can be made more effective
by using the information available from the UML design
models, SRS documents, etc.

Yoo and Harman [112] have pointed out that real-world
regression testing needs to select test cases keeping in mind
multiple objectives such as, the number of test cases ex-
ecuted, cost involved in testing, code coverage achieved,
time available for testing, etc. However, most of the re-
ported work on multi-objective regression testing is in the
fields of test suite minimization and prioritization [111,99].
An interesting avenue of research could be to merge regres-
sion test selection techniques with either minimization or
prioritization approaches. In such a synthesized approach,

316 Informatica 35 (2011) 289-321 S. Biswas etal.

the regression test suite first selected by a structural RTS
technique can then be further minimized/prioritized. Re-
gression testing using such a synthesized approach can help
take into account multiple objectives during testing, and
can potentially help achieve further savings in regression
test effort without compromising the thoroughness of test-
ing.

RTS techniques for other domains: Increased usage of
real-time embedded products in safety-critical applications
has resulted in greater emphasis being placed on the quality
of the code. The high costs and complexities involved in
carrying out regression testing of these products act as an
added incentive for developing improved RTS techniques
for these programs. However, not much research work has
so far been reported on investigations into effective RTS for
embedded, real-time and safety-critical software, though it
appears to be a promising avenue for research.

For discrete control applications, industry practitioner's
usually use UML models whereas for hybrid control ap-
plications, MATLAB Simulink/Stateflow models [94] are
popular. In this context, suitable RTS techniques are
needed for hybrid control applications and reactive soft-
ware.

Moreover, as pointed out by Yoo and Harman [112],
more detailed investigation is required to study the effec-
tiveness of RTS techniques for testing non-functional re-
quirements.

References

[1] K. Abdullah and L.White. A firewall approach for
the regression testing of object-oriented software. In
Proceedings of 10th Annual Software Quality Week,
page 27, May 1997.

[2] H. Agrawal, J. Horgan, E. Krauser, and S. London.
Incremental regression testing. In IEEE Interna-
tional Conference on Software Maintenance, pages
348-357, 1993.

[3] A. Aho, R. Sethi, and J. Ullman. Compilers: Prin-
ciples, Techniques and Tools. Dorling Kindersley
(India) Pvt Ltd, 2nd edition, 2008.

[4] A. Ali, A. Nadeem, Z. Iqbal, and M. Usman. Re-
gression testing based on UML design models. In
Proceedings of the 13th Pacific Rim International
Symposium on Dependable Computing, pages 85-
88, 2007.

[5] T. Ball. On the limit of control flow analysis for
regression test selection. In ISSTA '98: Proceed-
ings of the 1998 ACM SIGSOFT international sym-
posium on Software testing and analysis, pages 134-
142, 1998.

[6] G. Baradhi and N. Mansour. A comparative study of
five regression testing algorithms. In Proceedings of
Australian Software Engineering Conference, Syd-
ney, pages 174-182, 1997.

[7] S. Bates and S. Horwitz. Incremental program test-
ing using program dependence graphs. In Confer-
ence Record of 20th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages,
pages 384-396, January 1993.

[8] J. Bible, G. Rothermel, and D. Rosenblum. A com-
parative study of coarse- and fine-grained safe re-
gression test-selection techniques. ACM Transac-
tions on Software Engineering and Methodology,
10(2):149-183, April 2001.

[9] R. Binder. Testing Object-Oriented Systems:Models,
Patterns, and Tools. Addison-Wesley, 1999.

[10] D. Binkley. Semantics guided regression test cost re-
duction. IEEE Transactions on Software Engineer-
ing, 23(8):498-516, August 1997.

[11] S. Biswas, R. Mall, M. Satpathy, and S. Sukumaran.
A model-based regression test selection approach
for embedded applications. ACM SIGSOFT Soft-
ware Engineering Notes, 34(4):1-9, July 2009.

[12] G. Booch, J. Rumbaugh, and I. Jacobson. The Uni-
fied Modeling Language User Guide. Addison Wes-
ley, 2nd edition, 2005.

[13] Mustafa Bozkurt, Mark Harman, and Youssef Has-
soun. Testing web services: A survey. Technical
Report TR-10-01, Kings College London, 2010.

[14] L. Briand, Y. Labiche, and S. He. Automating re-
gression test selection based on UML designs. Infor-
mation and Software Technology, 51(1):16-30, Jan-
uary 2009.

[15] L. Briand, Y. Labiche, and G. Soccar. Automat-
ing impact analysis and regression test selection
based on UML designs. In Proceedings of the
International Conference on Software Maintenance
(ICSM'02), pages 252-261, 2002.

[16] Y. Chen, R. Probert, and D. Sims. Specification-
based regression test selection with risk analysis. In
CASCON '02: Proceedings of the 2002 conference
of the Centre for Advanced Studies on Collaborative
research, page 1, 2002.

[17] Y. Chen, D. Rosenblum, and K. Vo. TestTube: A
system for selective regression testing. In Proceed-
ings of the 16th International Conference on Soft-
ware Engineering, pages 211-222, May 1994.

[18] P. Chittimalli and M. Harrold. Regression test se-
lection on system requirements. In ISEC '08: Pro-
ceedings of the 1st conference on India software en-
gineering conference, pages 87-96, 2008.

REGRESSION TEST SELECTION TECHNIQUES... Informatica 35 (2011) 289-321 317

[19] A. Cleve, J. Henrard, and J. Hainaut. Data reverse
engineering using system dependency graphs. In
Proceedings of the 13th Working Conference on Re-
verse Engineering, pages 157-166, 2006.

[20] T. Cormen, C. Leiserson, R. Rivest, and C. Stein.
Introduction to Algorithms. MIT Press, Cambridge,
MA, 2001.

[21] J. Dean, D. Grove, and C. Chambers. Optimization
of object-oriented programs using static class hierar-
chy analysis. In Lecture Notes in Computer Science,
volume 952, pages 77-101. Springer-Verlag, 1995.

[22] H. Do, S. Mirarab, L. Tahvildari, and G. Rothermel.
The effects of time constraints on test case priori-
tization: A series of controlled experiments. IEEE
Transactions on Software Engineering, 36(5):593-
617, September 2010.

[23] S. Elbaum, A.Malishevsky, and G. Rothermel. Test
case prioritization: A family of empirical stud-
ies. IEEE Transactions of Software Engineering,
28(2):159-182, February 2002.

[24] E. Engstrom, P. Runeson, and M. Skoglund. A
systematic review on regression test selection tech-
niques. Information and Software Technology,
52(1):14-30, January 2010.

[25] E. Engstrom, M. Skoglund, and P. Runeson. Em-
pirical evaluations of regression test selection tech-
niques: a systematic review. In Proceedings of
the Second ACM-IEEE international symposium on
Empirical software engineering and measurement,
pages 22-31, 2008.

[26] M. Fahad and A. Nadeem. A survey of uml based
regression testing. In Zhongzhi Shi, E. Mercier-
Laurent, and D. Leake, editors, Intelligent Informa-
tion Processing IV, volume 288 of IFIP Advances in
Information and Communication Technology, pages
200-210. Springer Boston, 2008.

[27] Q. Farooq, M. Iqbal, Z. Malik, and A. Nadeem. An
approach for selective state machine based regres-
sion testing. In Proceedings of the 3rd international
workshop on Advances in model-based testing, A-
MOST '07, pages 44-52. ACM, 2007.

[28] Q. Farooq, M. Iqbal, Z. Malik, and M. Riebisch. A
model-based regression testing approach for evolv-
ing software systems with flexible tool support. In
17th IEEE International Conference on Engineering
of Computer-Based Systems (ECBS), pages 41-49.
IEEE Computer Society, March 2010.

[29] J. Ferrante, K. Ottenstein, and J. Warren. The pro-
gram dependence graph and its use in optimization.
ACM Transactions on Programming Languages and
Systems, 9(3):319-349, July 1987.

[30] P. Frankl, G. Rothermel, K. Sayre, and F. Voko-
los. An empirical comparison of two safe regression
test selection techniques. In ISESE '03 Proceedings
of the 2003 International Symposium on Empirical
Software Engineering, pages 195-204. IEEE Com-
puter Society, 2003.

[31] J. Gao, D. Gopinathan, Q. Mai, and J. He. A sys-
tematic regression testing method and tool for soft-
ware components. In Proceedings of the 30th An-
nual International Computer Software and Applica-
tions Conference (C0MPSAC'06), pages 455-466,
2006.

[32] V. Garousi, L. Briand, and Y. Labiche. Model Driven
Architecture - Foundations and Applications, vol-
ume 3748 of Lecture Notes in Computer Science,
chapter Control Flow Analysis of UML 2.0 Se-
quence Diagrams, pages 160-174. Springer Berlin /
Heidelberg, October 2005.

[33] R. Gorthi, A. Pasala, K. Chanduka, and B. Leong.
Specification-based approach to select regression
test suite to validate changed software. In Proceed-
ings of the 2008 15th Asia-Pacific Software Engi-
neering Conference, pages 153-160, 2008.

[34] T. Graves, M. Harrold, J. Kim, A. Porter, and
G. Rothermel. An empirical study of regression
test selection techniques. ACM Transactions on
Software Engineering and Methodology, 10(2):184-
208, April 2001.

[35] M. Grindal, J. Offutt, and J. Mellin. On the test-
ing maturity of software producing organizations. In
TAIC-PART '06: Proceedings of the Testing: Aca-
demic & Industrial Conference on Practice And Re-
search Techniques, pages 171-180, 2006.

[36] J. Guan, J. Offutt, and P. Ammann. An industrial
case study of structural testing applied to safety-
critical embedded software. In Proceedings of the
2006 ACM/IEEE international symposium on Em-
pirical software engineering, pages 272-277, 2006.

[37] R. Gupta, M. Harrold, and M. Soffa. Program
slicing-based regression testing techniques. Jour-
nal of Software Testing, Verification, and Reliability,
6(2):83-112, June 1996.

[38] F. Haftman, D. Kossmann, and E. Lo. A frame-
work for efficient regression tests on database appli-
cations. The VLDB Journal, 16(1):145-164, January
2007.

[39] R. Haraty, N. Mansour, and B. Daou. Advanced Top-
ics in Database Research, volume 3, chapter Regres-
sion test selection for database applications, pages
141-165. Idea Group, 2004.

318 Informatica 35 (2011) 289-321 S. Biswas etal.

[40] M. Harrold, R. Gupta, and M. Soffa. A methodology
for controlling the size of a test suite. ACM Trans-
actions on Software Engineering and Methodology,
2(3):270-285, July 1993.

[41] M. Harrold, J. Jones, T. Li, D. Liang, A. Orso,
M. Pennings, S. Sinha, S. A. Spoon, and A. Gu-
jarathi. Regression test selection for Java software.
In Proceedings of the 16th ACM SIGPLAN Con-
ference on Object-Oriented Programming, Systems,
Languages and Applications, pages 312-326, Jan-
uary 2001.

[42] M. Harrold and G. Rothermel. Performing data flow
testing on classes. In Proceedings of the 2nd ACM
SIGSOFT symposium on Foundations of software
engineering, pages 154-163, 1994.

[43] M. Harrold and M. Soffa. An incremental approach
to unit testing during maintenance. In Proceedings
of the International Conference on Software Main-
tenance, pages 362-367, October 1988.

[44] M. Harrold and M. Soffa. Interprocedural data flow
testing. In Proceedings of the ACM SIGSOFT '89
third symposium on Software testing, analysis, and
verification, pages 158-167, December 1989.

[45] D. Hatley and I. Pirbhai. Strategies for Real-
Time System Specification. Dorset House Publishing
Company, 1987.

[46] S. Horwitz, T. Reps, and D. Binkley. Interprocedural
slicing using dependence graphs. ACM Transactions
on Programming Languages and Systems, 12(1):26-
61, January 1990.

[47] P. Hsia, X. Li, D. Kung, C. Hsu, L. Li, Y. Toyoshima,
and C. Chen. A technique for the selective revalida-
tion of object-oriented software. Journal of Software
Maintenance: Research and Practice, 9(4):217-
233, 1997.

[48] Y. Jang, M. Munro, and Y. Kwon. An improved
method of selecting regression tests for C++ pro-
grams. Journal of Software Maintenance: Research
and Practice, 13(5):331-350, September 2001.

[49] G. Kapfhammer. The Computer Science Handbook,
chapter on Software testing. CRC Press, Boca Ra-
ton, FL, 2nd edition, 2004.

[50] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. Griswold. An overview of AspectJ.
In Proceedings of the 15th European Conference on
Object-Oriented Programming, ECOOP '01, pages
327-353. Springer-Verlag, 2001.

[51] T. Koju, S. Takada, and N. Doi. Regression test se-
lection based on intermediate code for virtual ma-
chines. In Proceedings of the International Con-
ference on Software Maintenance, ICSM '03, page
420. IEEE Computer Society, September 2003.

[52] J. Korpi and J. Koskinen. Advances and Innovations
in Systems, Computing Sciences and Software En-
gineering, chapter Supporting Impact Analysis by
Program Dependence Graph Based Forward Slicing,
pages 197-202. Springer Netherlands, 2007.

[53] D. Kung, J. Gao, P. Hsia, F. Wen, Y. Toyoshima,
and C. Chen. On regression testing of object-
oriented programs. Journal of Systems and Software,
32(1):21-40, January 1996.

[54] J. Laski and W. Szermer. Identification of pro-
gram modifications and its applications in software
maintenance. In Proceedings of the Conference on
Software Maintenance, pages 282-290, November
1992.

[55] H. Leung and L. White. Insights into regression test-
ing. In Proceedings of the Conference on Software
Maintenance, pages 60-69, 1989.

[56] H. Leung and L. White. A study of integration test-
ing and software regression at the integration level.
In Proceedings of the Conference on Software Main-
tenance, pages 290-300, November 1990.

[57] H. Leung and L. White. A cost model to compare re-
gression test strategies. In Proceedings of the Con-
ference on Software Maintenance, pages 201-208,
1991.

[58] H. Leung and L. White. A firewall concept for both
control-flow and data-flow in regression integration
testing. In Proceedings of the Conference on Soft-
ware Maintenance, pages 262-270, 1992.

[59] B. Li, D. Qiu, S. Ji, and D. Wang. Automatic test
case selection and generation for regression test-
ing of composite service based on extensible BPEL
flow graph. In 26th IEEE International Conference
on Software Maintenance, ICSM 2010, pages 1-10.
IEEE Computer Society, 2010.

[60] D. Liang and M. Harrold. Slicing objects using
system dependence graphs. In Proceedings of the
International Conference on Software Maintenance,
pages 358-367, November 1998.

[61] Feng Lin, Michael Ruth, and Shengru Tu. Applying
safe regression test selection techniques to Java web
services. In International Conference on Next Gen-
eration Web Services Practices, 2006. NWeSP 2006.,
pages 133-142, Los Alamitos, CA, USA, September
2006. IEEE Computer Society.

[62] J. Lin, C. Huang, and C. Lin. Test suite reduction
analysis with enhanced tie-breaking techniques. In
4th IEEE International Conference on Management
of Innovation and Technology, 2008. ICMIT 2008.,
pages 1228-1233, September 2008.

REGRESSION TEST SELECTION TECHNIQUES... Informatica 35 (2011) 289-321 319

[63] H. Liu, Z. Li, J. Zhu, and H. Tan. Business process
regression testing. In Proceedings of the 5th interna-
tional conference on Service-Oriented Computing,
ICSOC '07, pages 157-168. Springer-Verlag, 2007.

[64] N. Mansour and K. El-Fakih. Simulated annealing
and genetic algorithms for optimal regression test-
ing. Journal of Software Maintenance: Research
and Practice, 11(1):19-34, 1999.

[65] N. Mansour and W. Statieh. Regression test selec-
tion for C# programs. Advances in Software Engi-
neering, 2009:1:1-1:16, January 2009.

[66] C. Mao and Y. Lu. Regression testing for
component-based software systems by enhancing
change information. In APSEC '05: Proceedings of
the 12th Asia-Pacific Software Engineering Confer-
ence, pages 611-618. IEEE Computer Society, De-
cember 2005.

[67] C. Mao, Y. Lu, and J. Zhang. Regression testing for
component-based software via built-in test design.
In Proceedings of the 2007 ACM symposium on Ap-
plied computing, pages 1416-1421, 2007.

[68] J. McGregor and D. Sykes. A Practical Guide to
Testing Object-Oriented Software. Addison-Wesley,
March 2001.

[69] L. Naslavsky and D. Richardson. Using traceabil-
ity to support model-based regression testing. In
Proceedings of the twenty-second IEEE/ACM inter-
national conference on Automated software engi-
neering, ASE '07, pages 567-570. ACM, November
2007.

[70] M. Netkow and D. Brylow. Xest: an automated
framework for regression testing of embedded soft-
ware. In Proceedings of the 2010 Workshop on Em-
bedded Systems Education, WESE '10, pages 7:1-
7:8. ACM, October 2010.

[71] A. Orso, M. Harrold, and D. Rosenblum. Compo-
nent metadata for software engineering tasks. In Re-
vised Papers from the Second International Work-
shop on Engineering Distributed Objects, EDO '00,
pages 129-144. Springer-Verlag, November 2000.

[72] A. Orso, M. Harrold, D. Rosenblum, G. Rothermel,
M. Soffa, and H. Do. Using component metacontent
to support the regression testing of component-based
software. In Proceedings of the IEEE International
Conference on Software Maintenance (ICSM'01),
pages 716-725, 2001.

[73] A. Orso, N. Shi, and M. Harrold. Scaling regres-
sion testing to large software systems. In Proceed-
ings of the 12th ACM SIGSOFT Twelfth Interna-
tional Symposium on Foundations of Software En-
gineering, pages 241-251, November 2004.

[74] A. Pasala, Y Fung, F. Akladios, A. Raju, and R. Gor-
thi. Selection of regression test suite to validate soft-
ware applications upon deployment of upgrades. In
19th Australian Conference on Software Engineer-
ing, pages 130-138, March 2008.

[75] R. Pressman. Software Engineering: A Practi-
tioner's Approach. McGraw-Hill, New York, 2002.

[76] G. Rothermel and M. Harrold. A safe, efficient al-
gorithm for regression test selection. In Proceedings
of the Conference on Software Maintenance, pages
358-367, 1993.

[77] G. Rothermel and M. Harrold. Selecting regression
tests for object-oriented software. In International
Conference on Software Maintenance, pages 14-25,
March 1994.

[78] G. Rothermel and M. Harrold. Selecting tests and
identifying test coverage requirements for modified
software. In Proceedings of the International Sym-
posium on Software Testing and Analysis, pages
169-184, August 1994.

[79] G. Rothermel and M. Harrold. Analyzing regres-
sion test selection techniques. IEEE Transactions
on Software Engineering, 22(8):529-551, August
1996.

[80] G. Rothermel and M. Harrold. A safe, efficient
regression test selection technique. ACM Trans-
actions on Software Engineering and Methodology,
6(2):173-210, April 1997.

[81] G. Rothermel and M. Harrold. Empirical studies
of a safe regression test selection technique. IEEE
Transactions on Software Engineering, 24(6):401-
419, June 1998.

[82] G. Rothermel, M. Harrold, and J. Dedhia. Regres-
sion test selection for C++ software. Software Test-
ing, Verification and Reliability, 10(2):77-109, June
2000.

[83] G. Rothermel, M. Harrold, J. Ostrin, and C. Hong.
An empirical study of the effects of minimization on
the fault detection capabilities of test suites. In Pro-
ceedings of the International Conference on Soft-
ware Maintenance, pages 34-43, November 1998.

[84] G. Rothermel, R. Untch, C. Chu, and M. Harrold.
Prioritizing test cases for regression testing. IEEE
Transactions on Software Engineering, 27(10):929-
948, October 2001.

[85] M. Ruth, S. Oh, A. Loup, B. Horton, O. Gallet,
M. Mata, and S. Tu. Towards automatic regression
test selection for web services. In Proceedings of the
31st Annual International Computer Software and
Applications Conference - Volume 02, COMPSAC
'07, pages 729-736. IEEE Computer Society, 2007.

320 Informatica 35 (2011) 289-321 S. Biswas etal.

[86] M. Ruth and S. Tu. A safe regression test selec-
tion technique for web services. In Proceedings of
the Second International Conference on Internet and
Web Applications and Services, pages 47-. IEEE
Computer Society, 2007.

[87] A. Sajeev and B. Wibowo. Regression test selection
based on version changes of components. In APSEC
'03: Proceedings of the Tenth Asia-Pacific Software
Engineering Conference Software Engineering Con-
ference, APSEC '03, pages 78-. IEEE Computer So-
ciety, 2003.

[88] A. Sangiovanni-Vincentelli and M. Di Natale. Em-
bedded system design for automotive applications.
Computer, 40(10):42-51, October 2007.

[89] S. Sinha, M. Harrold, and G. Rothermel. System-
dependence-graph-based slicing of programs with
arbitrary interprocedural control flow. In Proceed-
ings of the 21st International Conference on Soft-
ware Engineering, pages 432-441, 1999.

[90] M. Skoglund and P. Runeson. A case study of the
class firewall regression test selection technique on
a large scale distributed software system. In Interna-
tional Symposium on Empirical Software Engineer-
ing, pages 74-83, November 2005.

[91] D. Sundmark, A. Pettersson, and H. Thane. Regres-
sion testing of multi-tasking real-time systems: A
problem statement. ACM SIGBED Review, 2(2):31-
34, April 2005.

[92] A. Taha, S. Thebaut, and S. Liu. An approach to
software fault localization and revalidation based on
incremental data flow analysis. In Proceedings of the
13th Annual International Computer Software and
Applications Conference, pages 527-534, Septem-
ber 1989.

[93] A. Tarhini, H. Fouchal, and N. Mansour. Regression
testing web services-based applications. In AICCSA
'06 Proceedings of the IEEE International Confer-
ence on Computer Systems and Applications, pages
163-170. IEEE Computer Society, 2006.

[94] The Mathworks, Inc. MATLAB. Website, April
2011. http://www.mathworks.com.

[95] F. Tip. A survey of program slicing techniques.
Journal of Programming Languages, 3(3):121-189,
September 1995.

[96] F. Vokolos. A regression test selection technique
based on textual differencing. PhD thesis, Poly-
technic University, 1998. UMI Order No. GAX98-
10583.

[97] F. Vokolos and P. Frankl. Pythia: A regression test
selection tool based on textual differencing. In Pro-
ceedings of the 3rd International Conference on Re-
liability, Quality & Safety of Software-Intensive Sys-
tems (ENCRESS' 97), pages 3-21, May 1997.

[98] F. Vokolos and P. Frankl. Empirical evaluation of the
textual differencing regression testing technique. In
ICSM '98: Proceedings of the International Confer-
ence on Software Maintenance, pages 44-53, 1998.

[99] K. Walcott, M. Soffa, G. Kapfhammer, and R. Roos.
Time aware test suite prioritization. In Proceedings
of the 2006 International Symposium on Software
Testing and Analysis, pages 1-12, 2006.

[100] N. Walkinshaw, M. Roper, and M. Wood. The Java
system dependence graph. In Third IEEE Interna-
tional Workshop on Source Code Analysis and Ma-
nipulation, pages 55-64, September 2003.

[101] D. Wang, B. Li, and J. Cai. Regression testing of
composite service: An XBFG-based approach. In
Proceedings of the 2008 IEEE Congress on Services
Part II, pages 112-119. IEEE Computer Society,
2008.

[102] P. Ward and S. Mellor. Structured Development for
Real-Time Systems. Prentice Hall Professional Tech-
nical Reference, 1991.

[103] M. Weiser. Program slicing. In ICSE '81: Proceed-
ings of the 5th international conference on Software
engineering, pages 439-449, 1981.

[104] N. Wilde and R. Huitt. Maintenance support for
object-oriented programs. IEEE Transactions on
Software Engineering, 18(12):1038-1044, Decem-
ber 1992.

[105] D. Willmor and S. Embury. A safe regression test
selection technique for database-driven applications.
In Proceedings of the 21st IEEE International Con-
ference on Software Maintenance, pages 421-430.
IEEE Computer Society, 2005.

[106] W. Wong, J. Horgan, S. London, and A. Mathur.
A study of effective regression testing in practice.
In Proceedings of the Eighth International Sym-
posium on Software Reliability Engineering, pages
230-238, November 1997.

[107] Y. Wu and J. Offutt. Maintaining evolving
component-based software with UML. In Proceed-
ings of 7th European Conference on Software Main-
tenance andReengineering (CSMR '03), pages 133-
142, March 2003.

[108] B. Xu, J. Qian, X. Zhang, Z. Wu, and L. Chen. A
brief survey of program slicing. ACM SIGSOFT
Software Engineering Notes, 30(2):1-36, March
2005.

http://www.mathworks.com

REGRESSION TEST SELECTION TECHNIQUES... Informatica 35 (2011) 289-321 321

[109] G. Xu and A. Rountev. Regression test selection for Object-Oriented Real-Time Distributed Computing,
AspectJ software. In ICSE '07: Proceedings of the page 373, 1998.
29th international conference on Software Engineer-
ing, pages 65-74, 2007.

[110] Lei Xu, Baowen Xu, Zhenqiang Chen, Jixiang Jiang,
and Huowang Chen. Regression testing for web ap-
plications based on slicing. In Proceedings of the
27th Annual International Computer Software and
Applications Conference, 2003. COMPSAC 2003.,
pages 652-656, Los Alamitos, CA, USA, Novem-
ber 2003. IEEE Computer Society.

[111] S. Yoo and M. Harman. Pareto efficient multi-
objective test case selection. In Proceedings of the
2007 International Symposium on Software Testing
and Analysis, pages 140-150, 2007.

[112] S. Yoo and M. Harman. Regression testing mini-
mization, selection and prioritization: a survey. Soft-
ware Testing, Verification and Reliability, 1(1):121-
141, March 2010.

[113] Y. Yuan, Z. Li, and W. Sun. A graph-search based
approach to BPEL4WS test generation. In Pro-
ceedings of the International Conference on Soft-
ware Engineering Advances (ICSEA' 06), pages 14-
. IEEE Computer Society, October 2006.

[114] J. Zhao, T. Xie, and N. Li. Towards regression test
selection for AspectJ programs. In Proceedings of
the 2nd workshop on Testing aspect-oriented pro-
grams, WTAOP '06, pages 21-26. ACM, 2006.

[115] J. Zheng, B. Robinson, L. Williams, and K. Smi-
ley. An initial study of a lightweight process for
change identification and regression test selection
when source code is not available. In Proceedings of
the 16th IEEE International Symposium on Software
Reliability Engineering, pages 225-234, November
2005.

[116] J. Zheng, B. Robinson, L. Williams, and K. Smi-
ley. Applying regression test selection for COTS-
based applications. In ICSE '06: Proceedings of the
28th international conference on Software engineer-
ing, pages 512-522, May 2006.

[117] J. Zheng, B. Robinson, L. Williams, and K. Smi-
ley. A lightweight process for change identification
and regression test selection in using COTS compo-
nents. In ICCBSS '06: Proceedings of the Fifth In-
ternational Conference on Commercial-off-the-Shelf
(COTS)-Based Software Systems, pages 137-143,
February 2006.

[118] F. Zhu, S. Rayadurgam, and W. Tsai. Automating
regression testing for real-time software in a dis-
tributed environment. In ISORC '98: Proceedings
of the The 1st IEEE International Symposium on

322 Informatica 35 (2011) 289-321 S. Biswas etal.

Informática 35 (2011) 323-361 351

Distributed Multi-ant Algorithm for Capacity Vehicle Route Problem

Jie Li, Yi Chai and Cao Yuan
Chongqing University
E-mail: leighby16@gmail.com, cqchaiyi@gmail.com, 122269587@qq.com

Keywords: capacity vehicle route problem, distributed multi-ant algorithm, cellular ants, performance potential

Received: November 2, 2010

This paperproposes a Distributed Multi-ant Algorithm for capacity vehicle route problem (CVRP) where
cooperation is helpful for accelerating prior solution by executing a decomposition-based separation
methodology for the unsteady capacity constraints. It decreases the complex coupling network with others
to solve small instances with less correlation in parallel processing. The main goal of this work is to play
well on large scale CVRP with interaction between subsystems and certain state vectors. The results show
that Distributed Multi-ant Algorithm plays better performance on average solution and the importance of
potential action is analyzed.

Povzetek: Za problem CVRP je razvit izboljšan postopek, temelječ na algoritmih z mravljami.

1 Introduction

With decomposition, every subsystem could be described
as a Markov Decision Process (MDP) model: Let M =
{S, A, T, R, fv} be a five tuple model, where S = j s}
is a set of states, A = {a} is a set of actions, T =
jp(-|s, a), s e S,a e A} is the next-state transition prob-
ability distribution, with p(- | s, a) describing the proba-
bility of action a in state s to s \ R(s, a, s') is the reward
function. fv is the additional reward function. n(s) is a
policy function in the state space. The discussion about ap-
plicability and feasibility is based on discount value MDP
and Q-learning.
Algorithms works on CVRP are researched for years. Edge
assembly (EAX) crossover with well-known local searches
is employed to CVRP (Yuichi Nagata et al, 2009). De-
oxyribonucleic acid (DNA) computing model and a modi-
fied Adleman-Lipton model accelerate the search on large
nodes CVRP (Yeh Chung Wei, 2009). Ellipse rule ap-
proach reduces the average distance to the lower bound by
about 44% (Santos Luis et al, 2009). A multi-objective
evolutionary algorithm is used for CVRP (Borgulya Istvan,
2008). Particle swarm optimization (PSO) can also apply
for CVRP, in two models (Ai The Jin et al, 2009). Cel-
lular GAs has solved vehicle routing problem, minimized
transportation cost and recombined a new problem (Carlos
Bermudez et al, 2010) and genetic algorithm has worked at
it fewer than 100 nodes (Wang Chungho et al, 2010).
Normally, it is solved based on decentralized model. How-
ever, coupling among subsystems (called SCVRP in the pa-
per) is not considered well and being trap into a local solu-
tion or no solution easily, deviating from what we expected.
Multi-ant algorithm is extension of ant algorithm who plays
a better performance in the best solution and used to VRP
already (Yuvraj Gajpal et al, 2009). The ant isn't punished

if the strategy misleads it to suboptimal policies. And if
there isn't new knowledge during state s, the reward func-
tion is still working accumulation. In this paper, decom-
position of CVRP based on a distributed model is pre-
sented with iteration and cooperation between subsystems
searching for their own optimization by distributed multi-
ant algorithm. As cooperation, a cellular ant contacts with
other ants both in its own subsystem and others through
reward strategies obtained whenever the related strategy is
optimal by traditional relative reinforcement learning. Re-
ward shaping undergoes through structuring additional re-
ward function for distributed multi-ant algorithm, making
it more efficient.
As the large scale of CVRP is divided into smaller SCVRPs
in a distributed system where bunches of cellular ants set
to seek an optimal solution of corresponding subgraph for
SCVRP. On the one hand, cellular ants in the same sub-
system collaborate with each other and refresh their own
knowledge. On the other hand, cellular ants in different
SCVRP regenerate strategies as they meet in the crossed
arcs over several disparate SCVRPs.
The paper is organized as follows: Section 2 will introduce
some basic knowledge of tree cutest and decomposition of
CVRP for distributed system using tree cut-set. Section
3 describes how those SCVRPs figuring out the optimal
solution respectively based on distributed multi-ant algo-
rithm with reward shaping. The procedure of cooperation
between subsystems is gotten. Then, the experimental re-
sults in several algorithms are contrasted using ArcView,
matlab R2009a and GAMS softwares in Section 4. Finally,
the discussion and conclusions is in Section 5, as well as
directions for future work.

mailto:leighby16@gmail.com
mailto:cqchaiyi@gmail.com
mailto:122269587@qq.com

33G Informática 35 (2011) 323-329 J. Li et al.

2 Decomposition algorithms for
CVRP

For the limited capacity constraint, a large scale of CVRP
is decomposed into SCVRPs with unsteady capacity con-
straints in the distributed system. The mathematical model
of CVRP is transformed through Tree Description (Chen
Yulin et al, 2002). An algorithm named Tree Cut-Set (TCS)
is proposed for decomposition. The number of subsystems
is determined by the carrying capability of vehicles, de-
mands of customers and connection between customers.

A large scale of undirected graph can be transformed
into complete trees and split into subgraphs where leaves of
subgraphs are the compound boundaries. Then, the seman-
tic representation of CVRP could be replaced by SCVRPs.
Based on these definitions in (Y Xiang, 1996), calculation
must comply for some principle as follows:

(1) a * b = ab
(2) (a * b)' = ab' + a'b = a + b
(3) aKb = a'b + ab' = a + b
(4) (aAb)' = (ab)' = 1

In ripping, two subgraphs are brought out and the sum-
mation of their semantic representation is equat to the orig-
inal graph. We can call the original graph the father graph
of the two subgraphs. It requires the knowledge of the in-
terface between SCVRPs only, not the knowledge of the
internal structure of them. TCS is applied to closed the
structural details to separate the model. In the result, ev-
ery SCVRP could obtain its own solution through an in-
dependent set of ants and the link between them is loosely
coupled by employing TCS. Whatever the structure CVRP
is, TCS is suitable for it, whether customers may join and
leave or not.

We will explain the theory of t - sepset couple based on
d - sepset (Li Yan et al, 2004).

Definition 1 In a tree, for tree-node i, there is only two
parents and one child node j. For tree-node j, there is only
two different children. Then, (i,j) is called as a t-sepset
couple nodes.

Searching the tree created from Definition 1 from top
to button by Greedy policy, t-sepset couple nodes for
customers with uncertain demands are ripped. As what
Bayesian Theory (Andrew Y Ng et al, 1999) says, every
separate demand is weighted by wi a random variable that

2
must satisfy some limitation: w > 0 and J2 wi = 1.

i = i

For the limited carrying capability of vehicles b, the total
demands ta in each subsystem must be lower than b. The
purpose is that the parameter e = ta - b is gradually close
to zero. If every SCVRP meets this condition, the prob-
lem would be solved perfectly. The procedure would stop
till e is lower than a by constant p. Otherwise, TCS will
continue.

3 Distributed Multi-ant Algorithm

3.1 Reward shaping
(Andrew Y Ng et al, 1999) presents a method that if
a potential function $(s) exists so that R'(s,a,s') =
R(s, a, s') + $ (s ') - $(s) for any policy n(s), V*(s) =
n(s) - &(s). Reward shaping causes the optimal policies
in M would be the optimal policies in M , to exchange the
original reward function R of MDP M with new reward
function R' of new MDP M'. In this paper, we definite
the R' in M' :

R'(s, a, s') = R(s, a, s') + fv(s, a, s') (1)

Where fv(s, a, s') is a function, carrying ant colony infor-
mation. The proof of this equation is in next chapter.

3.2 Cellular ant
Cellular automata (CA) is a discrete grid dynamics model
both in time, space and state vector. It is utilized to imitate
complex and abundant macroscopic phenomenon in single
regulations of parallel evolutionary. The distributed cellu-
lar in grid net of SCVRP has finite discrete state, follow-
ing the same action regulations to update its state by local
rules synchronously.

As equations in reference (Moere Andrew Vande et al,
2005), the dynamic evolutionary of CAs is: F(S\ + 1) =
f (si-r, ...,st,..., s\+r). Si describes the state of cellular
ant in position i at time t and the local updating rule is
f : s 2 r + 1 S t .

The structure of CAs contain four basic parts: cellu-
lar ants space, grid dynamics net, local rules and transfer
function, discrete time set. For the speciality of SCVRP,
cellular space has two dimensions with uncertainty states
of cellular ant. The renewed knowledge function is com-
posed of its information at time t and its neighbors' using
the extended Moore neighbor model:

f : st+i = f (s i , sN) (2)

The key of CAs is to gain the strategies of certain neigh-
bors' by the extended Moore neighbor model, then it could
compare decision strategies referred to the last state in
MDP of cellular ant with its neighbors. Reward function
of distributed multi-ant algorithm is gotten as follows by

N

f = f (si(a),J2 sj(a)) and fv(s,a,s') = F(s\+i) :
j=0

2r N

R' (s, a, s') = R(s, a, s') + £ f (si+ (a),J2 4 (a)) (3)
r = 0 j=0

Proof of Equation 3: From Equation 1, we can see the ad-
ditional reward function should be potential function which
is proven (Moere Andrew Vande et al, 1999). Equation 2
gives the description of f function that includes local rules
and transfer principles. The action of f function is renew-
ing information among neighbors for best states of each

DISTRIBUTED MULTI-ANT ALGORITHM FOR... Informatica 35 (2011) 323-329 325

ant at the next moment. For this system, it is a discrete
simple space model. Every state is a dot in the time vec-
tor, function f could be considered as the max value in
each state dot. We could say f is the gradient function in
the space/time vector space. Then, F is a vector field com-
posed by a set of gradient field, in other words, F is deemed
as potential field which is also called potential function.

3.3 Distributed Multi-ant Algorithm
Dynamic learning promotes the efficiency in Back Propa-
gation (Yu Xiaohu et al, 1995). It is expected to acceler-
ate the learning rate so that running time could cut down
and final solution could be gained sooner. The value ^t(i)
describes the learning rate of ant i at time t being gradu-
ally decreased to zero in the limit of search procedure. Let

t(i) > 0 be a series of constants for every ant at time t
T

and satisfy the equation: lim J2 pt(i) =
T — t + 1

There are some destabilization in the circumstance in
SCVRP, for example, the weather will delay the arriving
time of transportation, the difference performance of the
vehicles may also influent the efficiency, and so on. The
influence of disturbance in the system can be measured by
Performance Potential (Cao Xien et al, 1997). As the defi-
nition, it could set performance potential of a random state
being benchmark for any other states. We choose the last-
step state as the basis of performance potential for current-
step state where it helps to make decision more accurately.
Let X = {X t ,t = 1, 2... } picture the decision progress
of MDP. Considering the principles of reward function,
the description of performance potential in state s' (s is the
last-step state) is as following:

N - 1

gs, = lim {E[p^y/ R'(s,a,s')\Xo = s]
T —^^o ' *

-(N - 1)gs}

s = 0

cellular ants which chose city j for the next city is rk where
Mi) = 1 - Rk.

Proof of Equat ion 4 Convergence : An equation
is proposed and proven in (Jiang Lingyan et al, 2007)
as Qt+i(s,a) <— (1 - a)Qt(s,a) + a.[rk + Y *
maxQt(s', a')], according to this equation, it is easy to say
Y * maxQt(s', a') is bounded. Because Rk is greater than
rk, Arij is bounded in each updating, in other words, the
amount of trail every iteration is bounded. By reason of
nij is finite constant, then P(i,j) is bounded. To sum up,

N

f = f (st(a), J2 sj (a)) should be bounded and that results
j=0

in bounded n(i,j). \S\ and are both finite sets, then
N j

f = f (sl(a),J2 sj(a)) is the state transition in MDP
j=0

that must be finite. Therefore, n(i,j) is bounded and fi-
nite, for every decision, there is a prior strategy n(i,j) to
leading cellular ants towards global optimal solution.

3.4 Algorithm process

For the simulation, one formula should be presented firstly.
Formula 1: Transition probability Pk of each cellular ant
facing the near city is defined as following:

a M%j (t)
P k
P i j

sEj*

0
r°s(t)ni(t)

j e j

otherwise

Standard ant colony algorithm is integrated with reward
shaping function. New value function and strategy function
are gained based on Q-learning (Bagnell J Andrew et al,
2006; Dietterich Thomas G, 2000):

n*k(i,j) = argminmax{^2 na(i,j) * Q*} (4)
aeA

Q* = maXa=kQ(i,j, k) - Q(i,j, s)

Q(i,j,k) = (i - rk) • Q - s • gs- + rk • V*
Rk Rk

V * = R'(i,k,j) + YV *(s')

Where a is the discounted factor. As the amount of cel-
lular ants which arrived in city i is Rk , and the amount of

Where rij expresses the trail of arc (i,j), nij describes
heuristic degree and j* is the set of allowed cities for cel-
lular ant j. The pseudo-codes are shown as following:

1: Put m cellular ants on n cities of a
decomposed SCVRP stochastically.

2: Choose the next city j for each ant by
probability Pi

k
j when it stands in city i;

3: Calculate values of target function
(F function) for each cellular ant and list
the best one;

4: Search for the best performance by
evolving in neighbors' as the definition
from equation 2;

5: Update R' function. If latest strategy is
helpful for the program, reward value is
positive and it becomes advanced step,
vice versa;

6: Replace gs for gs by rewards from the
latest iteration to weaken influence from
disturbance variables;

7: Renew Q(i,j, k) function for ant k
through their knowledge and others';

8: Make the prior strategy n following
equation 4 and choose the next city
according to strategy n;

9: End till no optimal solution figuring out.

T

33G Informática 35 (2011) 323-329 J. Li et al.

4 Computational experiments
Computational experiments have been conducted to ana-
lyze the performance of the proposed algorithm and present
the results along with comparative analyse. All these
algorithms have been compared with result quality. In
the experiments, corresponding parameters could be: The
amount of cellular ants is 31; Parameter a is trail evapo-
ration coefficient, if it is over certain limit, the probabil-
ity of revisiting the same city could be increased. If it is
lower than certain limitation, it could influence the con-
vergence; Parameter / is the heuristic information. From
(Jiang Lingyan et al, 2007), the best parameters regions are
0.1 < a < 0.3 3 < / < 6; Combining the Q-learning, the
parameters are set as following: y = 0.8, a = 0.2, / = 4,
Q = 2,p = 0.7.

4.1 Case 1: computational analysis on
benchmark problems

For decomposition, we establish the extended
codes based on GrThoery toolbox (http :
//www.mathworks.com/matlabcentral/file—
exchange/4266) in software Matlab R2009a. Some
existing functions are utilized for simulations, such as
grMinCutSet function, grMaxFlows function, grDecOrd
function and grValidation function.
With further verification of our algorithm, standard
CVRP (http://www.branchandcut.org/) is also solved
by those three algorithms. For each algorithm variant,
ten independent simulations are taken per benchmark.
With different iteration value, the average distances are
illustrated in Table 1. The convergence of distributed
multi-ant algorithm (DMA) is around 100 to 150 shown in
Figure 1 as the benchmark problem E-n101-k14 presented
by (Christofides Nicos et al, 1979). Therefore, it is quick
to find out best solutions with our algorithm. To test the
determinacy, we make experiments under iteration 1000.
In most benchmark problems, best solutions are almost the
same as the one that under around iteration 150. To limit
disturbance, iteration value of our algorithm is set as 200.

ues of the best found feasible solutions (column Average).
Compared to adaptive ant colony (AAC) and distributed
ant cooperation without decomposition (DAC), DMA ob-
tains better solutions to those 10 problems. Moreover,
DMA runs less time (The unit of CPU time is second.).
With incremental scale of problem, executed time increases
slowly.
Table 3 illustrates the comparative results of best per-
formances on the benchmark problem proposed by
(Christofides Nicos et al,1979) according to the literature
(Richard Eglese, 2009). For the experimental results of
branch-and-cut algorithm and the algorithm presented by
Richard Eglese, performing larger problems by exponen-
tial growing costs too much time. But the performance on
DMA is stable. The fluctuation of time consume is steady
growth and the quality of solution is outperformed at the
large scale CVRP. By reason of decomposition, DMA plays
well even on large scale problems, inducing the disadvan-
tage of DMA that behaviors on smaller problems also take
high time consume.

4.2 Case 2: computational analysis with an
ArcView graph data

Based on the customers address and request, we try to set
forth the location of cities by utilizing an GIS software,
"ArcView", creating geographic data and transformed to
network data containing latitude vector and longitude vec-
tor. The data set of original map is loading automatically
in ArcView software shown as Figure 2.
We store the digital map data of autologous city in Ar-
cView. Its information is shown through digital road map
utilized in several areas and edited layer structured data of
spatial objects with latitude and longitude, buildings and
so on. It could be found in Figure 3 amplifying Figure 2
for details. The building with red square is the distributed
center and the buildings with red triangle are part of the
distributed destinations. For the readability, we scale down
the latitude and longitude in the digital road map by one
hundred times.

Figure 1: Computational results ofE-n101-k14

In Table 2, the figures stand for best obtained fitness
values (column Best solution) and average objective val- Figure 2: Digital road map of city

http://www.mathworks.com/matlabcentral/file%e2%80%94
http://www.branchandcut.org/

DISTRIBUTED MULTI-ANT ALGORITHM FOR... Informatica 35 (2011) 323-329 327

Table 1: Results comparison under different iterations

Benchmark problem
Iteration: 200 Iteration: 50

Benchmark problem
Best solution Time Best solution Time

E-n22-k4 252.610 56.3131 305.696 12.8750
E-n30-k3 393.427 79.1482 463.636 18.9688
E-n33-k4 511.208 84.1334 640.079 19.8906
E-n51-k5 416.059 114.7873 525.942 34.3906
E-n76-k7 528.711 187.1651 677.091 53.2969
E-n76-k8 536.684 189.2290 668.377 57.0469

E-n76-k10 559.024 242.3379 672.265 59.3671
E-n76-k14 610.793 250.3661 784.509 61.2823
E-n101-k8 635.468 307.6808 854.114 89.3750

E-n101-k14 677.007 386.9579 757.438 87.7813

Table 2: Solutions comparison with the Christofides et al. instances

Benchmark problem
AAC DAC DMA

Benchmark problem
Best solution Average Best solution Average Best solution Average

E-n22-k4 310.524 317.191 305.696 309.958 252.610 257.295
E-n30-k3 466.714 472.816 458.745 465.064 393.427 400.841
E-n33-k4 651.878 659.097 640.079 651.852 511.208 527.384
E-n51-k5 520.126 523.726 514.174 518.546 416.059 419.572
E-n76-k7 677.091 680.483 672.844 673.267 528.711 535.547
E-n76-k8 686.901 688.339 668.377 676.189 536.684 539.960

E-n76-k10 679.881 683.925 672.265 675.061 559.024 560.275
E-n76-k14 689.764 690.598 672.265 675.696 610.793 613.670
E-n101-k8 816.362 819.362 732.735 751.482 635.468 637.117

E-n101-k14 927.577 934.523 883.894 898.789 677.007 678.563

Figure 3: Details of digital road map

4.2.1 Results comparison

The number of places in the city is 500. In other words,
the scale of CVRP is 500. Performance potential param-
eter S is 1. The simulations have undergone under three
algorithms: AAC, DAC and DMA. Time consume time or-
dered by AAC,DAC and DMA is 1.7514e+003 s | 202.8906
s | 179.5156 s. Shortest distance by the same order is
1.4263e+004 | 1.4164e+003 | 1.3541e+003. From these
data, DMA gets prior performance on best solution and
costs less running time. With the amount of places increas-
ing, distributed multi-ant cooperation with decomposition
will play more excellent. These graphs also display that
DAC is easy to trap into local solution, even though DMA
takes more iteration.

4.2.2 Performance potential analysis

With the scale of problem increasing, decentralized algo-
rithm becomes weaker than distributed one according to its
interrelate variables restrained with each others. Interaction
and cooperation are critical characters of distributed model
where each ant communicates through reinforcement learn-
ing and renovates its next strategy even under additional
places. The experiments run from two points.
In Table 4, performance potential parameter S is 1. The
scales of CVRP are 50,100,200,300,500 and 1000. Three
algorithms are executed: adaptive ant colony (AAC), dis-
tributed ant cooperation without decomposition (DAC) and
DMA. The results are in table 4. Best solutions in DAC and
AAC are trapping into local ones. While the scale is small,
DMA costs more time than DAC. Because complex struc-
ture process in DMA needs additional operation. However,
DMA shows disadvantages in a large scale one. It takes
less running time and gains better solutions than DAC and
AAC.
As the scale of problem is 1000, simulation runs with dif-
ferent S value. Noise misleads to trivial solutions. The ef-
ficiency of performance potential who is utilized to re-
duce noisy impact on the system is determined by param-
eter S value. If S is too small to zero, the influence from
performance potential can be ignored. From Table 5,
because of noisy disturbance, smaller S costs much itera-
tion and more time for best solutions. The difference be-
tween best solution and average solution is in inverse pro-
portion to S value. Consequently, performance potential

33G Informática 35 (2011) 323-329 J. Li et al.

Table 3: Best solution and time consume comparison with the Christofides et al. instances

Benchmark problem
Branch-and-cut algorithm Richard Eglese's algorithm DMA

Benchmark problem
Best solution Time Best solution Time Best solution Time

E-n22-k4 375.28 0.2 252.614 0.08 252.610 56.3131
E-n30-k3 535.797 2 393.512 1 393.427 79.1482
E-n33-k4 837.672 2 511.263 0.6 511.208 84.1334
E-n51-k5 524.611 11 416.063 16 416.059 114.7873
E-n76-k7 682.563 3600 530.022 1103 528.711 187.1651
E-n76-k8 733.686 3600 537.239 636 536.684 189.2290

E-n76-k10 828.655 3600 559.233 3600 559.024 242.3379
E-n76-k14 989.257 3600 614.442 3600 610.793 250.3661
E-n101-k8 820.552 3600 639.744 2379 635.468 307.6808

E-n101-k14 1049.534 3600 699.985 3600 677.007 386.9579

Table 4: Experimental results comparison of DAC and DMA(ó=1)

amount of places
Adaptive ant colony Decentralized algorithm Distributed multi-ant algorithm

amount of places
Best solution Cost time Best solution Cost time Best solution Cost time

Amount=50 58.76 3.4875 58.69 3.8653 56.86 4.1250
Amount=100 157.4581 25.1541 111.86 20.6354 109.22 24.7343
Amount=200 451.5714 74.1572 296.26 57.1351 235.72 50.5688
Amount=300 2874.1674 558.1547 882.29 198.7326 719.18 103.2497
Amount=500 1.4263e+004 1.7514e+004 2967.53 289.5187 1354.11 179.5156

Amount=1000 4.8417e+005 7.1541e+005 9233.76 3.5763e+003 4617.43 815.9327

plays a crucial role in distributed multi-ant algorithm.

5 Conclusion
Decomposition is usually used in decentralized model to
scale down the problem into subsystems we can handle
with. However, the relationship between subsystems is ig-
nored easily, leading to local solution or non-solution. In
this analysis, decomposition is undergoing through hybrid
algorithms for large scale of CVRP in a distributed model.
Cooperation and interaction are considered and solved by
distributed multi-ant algorithm. Disturbance from circum-
stance is conquered by Potential function whose efficiency
is verified from simulations. From the experiments, the al-
gorithm has solved the large scale CVRP better and ef-
ficiently. Furthermore, the next work is further control of
fluctuation on solutions.

References
[1] Yuichi Nagata, Olli Braysy (2009) Edge Assembly

based Memetic Algorithm for the Capacitated Vehi-
cle Routing Problem, Networks, 54(4) pp. 205-215.

[2] Yeh Chung Wei (2009) Solving Capacitated Vehi-
cle Routing Problem using DNA-based Computation,
Proceedings International Conference On Informa-
tion Management and Engineering, pp. 170-174.

[3] Santos Luis, Coutinho Rodrigues Joao, Current John
R (2009) An Improved Heuristic for the Capacitated
Arc Routing Problem, Computers and Operations Re-
search, 36(9) pp. 2632-2637.

[4] Borgulya Istvan (2008) An Algorithm for the Capaci-
tated Vehicle Routing Problem with Route Balancing,
Central European Journal of Operations Research,
16(4) pp. 331-343.

[5] Ai The Jin, Kachitvichyanukul Voratas (2009) Par-
ticle Swarm Optimization and Two Solution Repre-
sentations for Solving the Capacitated Vehicle Rout-
ing Problem, Computers and Industrial Engineering,
56(1) pp. 380-387.

[6] Carlos Bermudez, Patricia Graglia, Natalia Stark,
Carolina Salto, Hugo Alfonso (2010) Comparison of
Recombination Operators in Panmictic and Cellular
GAs to Solve a Vehicle Routing Problem, Inteligen-
cia Artificial, 14(46) pp. 34-44.

[7] Wang Chungho, Lu Jiuzhang (2010) An Effective
Evolutionary Algorithm for the Practical Capacitated
Vehicle Routing Problems, J Intell Manuf, 21(4) pp.
363-375.

[8] Gajpal Yuvraj, Abad PL (2009) Multi-ant Colony
System(MACS) for a Vehicle Routing Problem with
Backhauls, European Journal of Operational Re-
search, 196(1) pp. 102-117.

[9] Chen Yulin, Liu Jiancheng (2002) An Tree Genera-
tion Algorithm of Undirected Graphs, The Applica-
tion of Computer Engineer, 38(20) pp. 115-117.

[10] Y Xiang (1996) Distributed Structure Verification in
Multiply Sectioned Bayesian Networks, Florida Arti-
ficial Intelligence Research Symposium, pp. 295-299.

DISTRIBUTED MULTI-ANT ALGORITHM FOR... Informatica 35 (2011) 323-329 329

Table 5: Experimental results under different S value (places=1000)

Parameter value
Distributed ant algorithm

Parameter value
Best solution Average solution Cost time Iteration

¿=0 4822.31 6728.34 3.2644e+004 545
¿=0.1 4792.93 6577.19 2.9883e+004 357
¿=0.2 4881.27 6221.69 2.3458e+004 288
¿=0.5 4632.36 5994.62 1.2336e+004 214
¿=0.8 4723.56 5938.43 899.3654 194
¿=1 4617.43 5769.27 815.9327 106

[11] Li Yan, Yin Zongmou (2004) Techniques by Com-
pound Branch and Network Ripping to Find out All
Spanning Trees of an Undirected Graph, Journal of
Naval University of Engineering, 16(5) pp. 74-77.

[12] Andrew Y Ng, Daishi Harada, Stuart Russell (1999)
Policy Invariance under Reward Transformations:
Theory and Application to Reward Shaping, ICML
1999.

[13] Moere Andrew Vande, Clayden Justin James (2005)
Cellular Ants: Combining Ant-based Clustering
with Cellular Automata, International Conference on
Tools with Artificial Intelligence (ICTAI), pp. 177-
184.

[14] Yu Xiaohu, Chen Guoan, Cheng Shixin (1995) Dy-
namic Learning Rate Optimization of the Backpropa-
gation Algorithm, IEEE Transactions on Neural Net-
works, 6(3) pp. 669-677.

[15] Cao Xien, Chen Hanfu (1997) Perturbation Realiza-
tion, Potentials and Sensitivity Analysis of Markov
Processes, IEEE Transactions of Automatic Control,
42(10) pp. 1382-1393.

[16] Bagnell J Andrew, Ng Andrew (2006) On Local Re-
wards and Scaling Distributed Reinforcement Learn-
ing, Neural Information Processing Systems.

[17] Dietterich Thomas G (2000) Hierarchical Reinforce-
ment Learning with the MAXQ Value Function De-
composition, JAIR.

[18] Jiang Lingyan, Zhang Jun, Zhong Shuhong (2007)
Analysis of Parameters in Ant Colony System, Com-
puter Engineering and Applications, Beijing, China,
40(20) pp. 31-36.

[19] Richard Eglese (2009) The Open Vehicle Rout-
ing Problem and the Disrupted Vehicle Routing
Problem: a Tale of two Problems. http:// www-
eio.upc.es/seminar/09/r_eglese.pdf.

[20] Christofides Nicos, Mingozzi Aristide, Toth Paolo
(1979) The Vehicle Routing Problem-Combinatorial
Optimization, Wiley, Chichester, pp. 315-338.

33G Informática 35 (2011) 323-329 J. Li et al.

Informática 35 (2011)331-342 331

Mutant Hierarchies Support Selective Mutation

Kalpesh Kapoor
Department of Mathematics,
Indian Institute of Technology Guwahati 781 039, India.
E-mail: kalpesh@iitg.ernet.in

Keywords: fault-based testing, mutation testing, first-order mutants, selective mutation

Received: October 25, 2009

Mutati on testing attempts to assess the quali ty of a test set by its abili ty to distinguish the program under test
from its mutants. One of the main difficulties faced in practice is due to the large number of mutants that
can be generated for a program under test. Earlier research to solve this problem has suggested variants of
mutation testing, and finding an effective set of mutation operators referred to as selective mutation. This
paper presents an alternative approach for reducing the cost of testing by identifying hierarchies among
first-order mutants. The key idea is to evaluate the strength of a mutant with respect to other mutants
and ignore "weaker" mutants during testing. Unlike previous approaches, our method is formal and it is
guaranteed that the effectiveness of a test suite will be identical with that can be achieved using all mutants.
The theory described here is also applicable to the quantitative assessment of testing effort and can be used
to guide successive testing steps in fault-based testing. We present an empirical evaluation to find reduction
in the test effort using mutant classification and show that it supports selective mutation.

Povzetek: Metodo testiranja z mutanti so izboljšali s hierarhijo mutacij, ki izloča slabše mutante.

1 Introduction

Fault-based [23] testing approach relies on generating
test set that can guarantee to detect all hypothesized faults
in a Program Under Test (PUT). A fault is a manifesta-
tion of an error, for example, misunderstanding about the
semantics of an operator. A failure is the inability of the
system or a system component to perform a function as dic-
tated by the specification [15, 37]. In other words, a fault is
locally incorrect (computational or control) operation that,
when propagated, results in a failure [29, 35].

Mutation testing [4, 6] is a fault-based approach to test
programs written in an imperative programming language.
In mutation testing, a set of programs is generated by mak-
ing a single (well-defined) syntactic change in a given PUT.
This set of programs, referred to as first-order mutants, are
used for evaluating a test set. A test set is a collection of test
cases where each test case is a set of inputs with expected
output values for a PUT.

A mutant is said to be killed by a test set if it can dis-
tinguish the mutant to be different from a PUT. Given
a test set, its effectiveness, defined as mutation score, is
measured by computing the percentage of first-order mu-
tants that it killed with respect to the total number of non-
equivalent mutants. Since the semantics of a PUT is not

A preliminary version of the theoretical foundation of this paper ap-
peared in: K. Kapoor and J. P. Bowen, Ordering mutants to minimise
test effort in mutation testing, proceedings of 4th International Workshop
on Formal Approaches to Testing of Software (FATES), Springer-Verlag,
LNCS, Volume 3395, pages 195-209, September 2004.

considered while generating mutants, some of them could
be semantically equivalent to the PUT. Such mutants have
to be identified manually or by other methods [26] and their
number is reduced from the total number of mutants before
computing the mutation score. In rest of the paper we refer
to non-equivalent first-order mutants as simply mutants.

The two test hypotheses [11, 13] that form the basis for
mutation testing are competent programmer; and coupling
effect [6]. The former assumes that programmers are com-
petent, however, they make small mistakes while writing
programs. These small mistakes can be modelled as syntac-
tic changes such as replacing > by < etc. and are referred
to as mutation operators. In practice, it is expected that
the set of mutation operators either represent the commonly
occurring faults or they enable generation of test cases that
can expose complex faults. Thus the benefits of mutation
analysis depends on the mutation operators that are used to
generate the mutants from a PUT.

During mutation testing only those mutants are con-
sidered that can be obtained by making single syntactic
change. Those mutants that can be obtained by making
multiple changes, called as higher-order mutants, in a PUT
are ignored. The basis for this is the coupling effect hypoth-
esis which states that if a test set can guarantee killing first-
order mutants then it is also likely to guarantee the same for
higher-order mutants. Coupling hypothesis has been inves-
tigated both theoretically [19, 36] and empirically [25] and
is found to hold for several fault classes. However, there is
a recent research on higher order mutants by Jia and Har-
man [17], which suggests that some strongly subsuming
higher order mutants are in fact harder to kill than some

mailto:kalpesh@iitg.ernet.in

332 Informatica 35 (2011)331-342 K. Kapoor

first order mutants.
If a PUT gives correct results for all the test cases in a

test set with 100% mutation score then it is concluded that
the PUT is correct with respect to the faults represented by
the mutation operators. Thus such a test set is good at dis-
tinguishing a program from its mutants and, if the program
is faulty, the test set is also likely to be good at distinguish-
ing the program from a correct program [13].

Thus, mutation testing provides a means of evaluating
a test criteria and test sets. However, with the increase
in size of implementation, it is computationally expensive
or infeasible to consider all possible mutants that can be
hypothesized as the number of possible mutants is usu-
ally very large which makes the testing process expensive
[14, 28, 27, 39].

The number of possible mutants is proportional to the
product of the number of variables with the count of num-
ber of times they are referred either in a definition or in
use[27, 38]. A consequence of the generation of a large
number of possible mutant programs is that they need to be
executed in each step of the testing phase till an adequate
test set is obtained. To overcome this problem, a number of
approaches have been suggested, such as finding an effec-
tive set of mutation operators, referred to as selective mu-
tation [27], and variants of mutation testing [14, 40]. The
original idea, as described above, is referred to as strong
mutation testing.

This paper presents an alternative approach for reducing
the cost of mutation testing by the identification of hierar-
chies among mutants. Let Pk and Pj be two mutants of a
given PUT. It is possible to reduce test effort by consider-
ing only Pk if it can be deduced that a test set which can
kill Pk is also be guaranteed to kill Pj.

The approach described here is also applicable to the
quantitative assessment of testing effort and can be used
to guide successive testing steps in fault-based testing. In
particular, the objectives of this paper are:

a. To give theoretical foundation for identifying the rela-
tionship among mutants and show that mutation oper-
ator cannot be ordered without reference to a PUT;

b. To empirically evaluate the reduction in test effort that
can be achieved by identifying the relationship among
mutants;

c. To find if selective mutation study [27] is supported
by our study.

The rest of the paper is organized as follows. The next
section presents formal definitions in the context of mutant
hierarchies. Section 3 describes the properties and condi-
tions to identify the relationship among mutants. Section 4
gives an overview of the related work. An empirical study
conducted to evaluate our approach and compare it with
selective mutation is described in Section 5. Finally, con-
clusions are presented in Section 7.

2 Mutant Hierarchies
The theoretical and empirical study presented in this paper
is done for the programs written in a subset of C program-
ming language which include constructs such as loop, ar-
ray and function calls. However, this does not impose any
restriction on the use of those language constructs in pro-
grams that are not included in the subset.

For the purpose of theoretical analysis below, we assume
that the statements, and predicates in conditional state-
ments (such as if and while), of a program are uniquely
labelled. Boolean conditions are used solely for deciding
the branch to be followed in the next step of the execu-
tion and therefore are assumed not to modify the state of a
program during execution. The assumption is justified as
program transformation techniques can be used to achieve
this and make programs more testable [12].

A label when given to a Boolean condition is said to be a
p-location, otherwise it is said to be a c-location. Note that
a condition in an if or while statement is given a unique
label (i.e., different from the labels that are given to state-
ments that appear inside the then-else or body of a while
statement, respectively). Let lk and lj be two locations in P
that are mutated to obtain mutants Pk and Pj respectively.
These mutants will be known as intra-location mutants of
P if lk = lj, otherwise they will be referred to as inter-
location mutants.

We denote the output obtained on execution of a program
M with an input x by M(x). The notation M = M' will
be used to signify that a program M is semantically equiv-
alent to another program M'. The state of a program under
execution at an instant is set of pairs of variable and their
corresponding values. A test case is a pair of input and the
expected output. For simplicity, we will use input and test
case interchangeably.

Definition Let P be a PUT and Pk be a first-order mutant
that differs from P at a location. A test case, t, is said to
kill a mutant Pk if one of the following conditions hold:

a. P(t) = Pk (t), where both P(t) and Pk (t) are non-
erroneous states.

b. either P(t) or Pk (t), but not both, results in an erro-
neous state.

c. both P(t) or Pk (t) results in different erroneous
states.

We say a test set kills Pk if it includes a test case that kills
Pk. Thus, a test case that kills a mutant identifies that a
PUT and its mutant represent two distinct functions. For
comparison, we observe the final internal state of programs.

During an execution of a program, it may fail, for exam-
ple due to division by zero or insufficient memory, we call
such a state an erroneous state. It may happen that one of
the program fails while the other does not, in which case
they are obviously distinguishable as stated in the defini-
tion 2(b) above. We classify non-termination of a program
among the erroneous state. The definition 2(c) includes the

MUTANT HIERARCHIES SUPPORT... Informática 35 (2011)331-342 333

case where both programs result in distinguishable erro-
neous states such as a floating point exception and a mem-
ory fault.

Our analysis remains applicable even if we change the
definition with respect to other variants: weak [14] and firm
[40] mutation testing which allow to distinguish a PUT and
its mutant by observing their internal states that are not fi-
nal. A partial order between mutant programs can be de-
fined using the following relation.

Definition [Relation between Mutants] Let Pk and Pj be
the two mutants of P and t be a test case. Then Pk is said
to be stronger than Pj denoted by P,t h Pk >m Pj if

3 t 11 kills Pk ^ t kills Pj

The notation P,t h Pk £m Pj will be used to indicate
that Pk is not stronger than Pj. For a pair of mutants, Pk

and Pj, of P if both P,t h Pk £m Pj and P,t h Pj £m

Pk hold for all test cases t in a test set then both Pk and Pj
must be considered during mutation testing.

Definition [Mutant Class] A set of mutants, S, of a PUT
is said form a mutant class if there exists a test case that
kills all the mutants in S.

Note that the relation among the mutants and the defini-
tion of mutant class are within the context of one test case.
In other words, the mutant classes are induced by a test set.
Therefore, for a given set of mutants, the mutant classes
may be different with respect to different test sets. An al-
ternative way to define the mutant relation, >m, could be
on the basis of comparing the constraints of all possible test
inputs that kills a mutant rather than just by one single test
case. This would make mutant classes unique for a given
program and independent of test cases. However such a
strong requirement will be hard and expensive to analyse
in comparison to our weaker definition.

Fact 1. [26, 29, 35] A test case, t, can kill Pk provided
the following necessary and sufficient conditions hold on
executing P and Pk with input t:

a. the execution must reach location l (reachability);

b. the evaluation of expressions at location l in P and Pk

must result in different values at least once (infection);

c. the final states on termination of execution of P and
Pk must be different (propagation).

Condition (b) (i.e., infection) has been referred to as ne-
cessity in [26], and the original state failure condition in
[29] consisting of an origination condition and computa-
tional transfer conditions.

Given a mutant Pk which is obtained by applying a mu-
tation operator at a location l in a PUT with input domain
D, let subdomain Dr

k C D be the set of inputs which
reaches location l; similarly, Dl

k C D be the set of inputs
that can cause the original and mutated expression at the lo-
cation l to result in different values and Dp C D be the set
that causes P and Pk to result in different final outcomes.

int fun(int x, int i) {
L I : while (i <= 2) { funi
L2: if (x <= 4) if (x < 4)
L3: x = x + 1;
L4: else
L5: x = x + 2;
L6: i = i + 1;
L7: }
L8: return x;

fun2
if (x > 4)

}

Figure 1: An example to illustrate the insufficiency of in-
fection conditions.

Fact 2. [26] Given P, a test case, t, will kill Pk iff t e Dp
k

which implies t e Dr
k n D\ and Dp C Dr

k n D\.

Note that there may be test cases in D\ that does not
satisfy the reachability condition. The computation of a
test case that can kill a mutant is undecidable as the sets
Dk, Dk and Dp cannot be computed, in general. How-
ever, in practice it is often possible to find such test cases
using approximation techniques. On one hand, to compute
(whenever feasible) the set Dl

k requires only analysis of the
expression at location l. On the other hand, computation of
Dk is more expensive and complex as it requires analysis
of the paths that can reach location l.

Proposition 1. Vt(P, t h Pk >m Pj) & D{ C Dk, where
Pk and Pj are mutants of P and t represents a test case.

Proof. The proof follows from the definitions. •

3 Identifying Mutant Hierarchies
A brute-force method to identify >m relation is by check-
ing if Dp

k C Dp. It is also possible to restrict the test cases
to be selected from the set Dk n Dp, provided that this set
is not empty, in which case killing Pk will also guarantee
the same for Pj.

The objective of our analysis is to identify a subset of
mutants with the same effectiveness as the whole set with-
out generating all mutants. Therefore, if possible, the >m

relation between mutants should be established during their
generation itself, thereby only producing the strongest mu-
tants. This approach is an improvement over the method
where mutants are first generated explicitly and then an at-
tempt to establish a partial order among them is made.

3.1 Intra-location Mutants
Let P be an implemented program and Pk and Pj be two
mutants of P that are obtained by applying mutation oper-
ator at location l in P. Let Ck and Cj be the predicates that
correspond to the sets Dl

k and Dj, respectively.
Now consider the example program shown in Figure 1.

The mutants funi and fun2 are shown in boxes and are ob-
tained by applying mutation operator at location L2, where

334 Informatica 35 (2011)331-342 K. Kapoor

Input Output
x i fun fun1 fun2

3 1
4 1

5 6 6
7 8 7

Compi and Comp2 are not related under > m with respect

LI:

L2:

L3:

L4:

L5:

L6:

int Comp(int x) { Compi Comp2

x = x + 1; x = x - 1; x = x + 2;

Input
(x)

Output Comp1 Comp2
Input

(x) Comp Comp1 Comp2
Comp1 Comp2

8
3

6 9 6
6 6 9

D"
Dp

D D
{4, 8} {3, 4, 5, 6}

Table 2: Input, output and subdomains for the programs
shown in Figure 2.

to all possible test cases. •
The following formal observation gives insight into The-

orem 1.
Table 1: A counter example for Theorem 1 based on the
program shown in Figure 1. DP Q Dk n Dk

DP Q Dk
 n D j

Dk = Dk
Dk Q Dj

(Fact 2)
(Fact 2)
(Same location mutants)
(given)

if (x == 5 | | x == 7)
x = 9;

else
x = 6;

return x;

Figure 2: An example for Theorem 1.

< = , < and > are relational operators. The conditions (ob-
tained by taking exclusive-or of two expressions, for in-
stance, C f u n i = x <= 4 © x < 4, where © is exclusive-
or operator) C f u n i and C f u n 2 , in this case are x = 4 and
true, respectively. Although C f u n i implies C f u n 2 , it is
not sufficient to claim a hierarchy between funi and fun2,
in general. This is illustrated by the following theorem.

Theorem 1. Let P be a PUT and Pk and Pj be its two mu-
tants obtained by mutating a statement at location l then,
D\ Ç Dj does not guarantee Vt(P,t h Pk >m Pj).

Proof. The statement holds for both a p-location and a c-
location. We give counter-examples as a proof. Table 1
gives the output of two test cases for the program and its
two mutants that are shown in the Figure 1. The first row
shows that the mutants are not equivalent to the original
program, whereas the second row shows that the conjecture
is true for p-locations as fun1 is killed and fun2 remains
live. Note that, as mentioned above, C f u n i ^ Cfun2 i.e.
Dfun Dfun . funi fun2

Figure 2 shows a concrete example that illustrates the
above theorem for a c-location. Consider the two mutants,
Comp1 and Comp2, obtained by applying mutation oper-
ator at location L1 in Comp (see Figure 2). The Dl sets
for both mutants is the whole input domain D since the
mutated statements would result in different values for any
integer input. In other words, the conditions C1 and C2 are
true. However, input x = 8 will kill Comp1 ; whereas in-
put x = 3 will kill Comp2 (see Table 2). Thus, mutants

The most favourable conclusion that can be drawn from
the above statements is that both Dp

k and Dp are subsets
of Dr

k n Dk. But this does not guarantee Dp
k C Dk (as

required by Proposition 1).

Theorem 2. Let P, Pk, Pj and l be the entities as stated in
Theorem 1. If D\ n Dj = 0 then Pk and Pj are not related
under >m P or P is equivalent to Pk or Pj.

Proof. The first three conditions are identical with the
above formal observation.

Dk n Dj = 0 (given)
^ Dk n Dk = 0 (set theory)
^ Dk = 0 V Dk = 0V

(Dk £ Dj A Dj £ Dk) (set theory)
^ P = Pk V P = Pj V

Vt (P,t h Pk tm Pj A
P,t h Pj ^m Pk) (Fact 2 & Prop. 1)

•
This is particularly helpful in isolating those mutants that

definitely need to be considered during testing. However, a
hierarchy can be established between mutants under certain
conditions. These conditions are discussed below.

Theorem 3. Let P be a given PUT and l be a p-location
that corresponds to a condition, c. Further, let c be mutated
to cC and cC' giving mutants Pk and Pj, respectively. If
(c! ^ c'') then one of the mutant Pk or Pj need not be
considered during testing.

Proof. As per Fact 1 (c), P and Pr (r e {k, j}) must fol-
low different paths after reaching location l (sometime dur-
ing an execution) in order to be killed.

The condition (c' ^ c'') ensures that condition c' and
c'' always evaluate to the same Boolean value. Thus, for
a given test case, the path followed by Pk and Pj will al-
ways be the same, ensuring that the infection and propa-
gation conditions for both Pk and Pj will be identical i.e.
yt(P, t h Pi >m P2 A P,t h P2 >m Pi). •

The above condition in Theorem 3 is a very strong re-
quirement. However, the property was found to be helpful
in reducing the test effort during empirical study described
in Section 5.

Remark 1. Why do we need c' c" condition to hold in
general? To answer this question, let us consider the two
mutants Pk and Pj, obtained by mutating a condition for a
while loop of P. For a given test case, let i,ik and ij be

}

MUTANT HIERARCHIES SUPPORT... Informática 35 (2011)331-342 335

the number of times the while loop is executed in P, Pk and
Pj, respectively. Thus, the necessary conditions for killing
Pk and Pj are i = ik and i = j respectively. To establish
Vt(P, t h Pk >m Pj), one of the following properties must
hold:

a. ik = i j , or

b. the resulting states must be the same after executing
the body ofwhile loop ik and ij times.

The condition in Theorem 3 is equivalent to (a) above.
However, the condition (b) is equally acceptable, but re-
quires analysis of the program segment to guarantee that it
holds for any test case that kills Pk; this may be difficult
to establish. It is also possible to weaken the requirement
in Theorem 3 under certain conditions as described by the
following theorem.

Theorem 4. Let P be a PUT, t be a test case and l be a
p-location that corresponds to a condition, c, in P. Fur-
ther, let c be mutated by two operators to C and c" giving
mutants Pk and Pj, respectively. If (c © c') ^ (c © c''),
where © is exclusive-or operator, and the label l is reached
during the execution exactly once then P,t h Pk >m Pj.

Proof. The programs P and Pk must follow different paths
after reaching location l, sometime during an execution, in
order to be distinguished. The condition (c©c') ^ (c©c'')
ensures that Pk and Pj will follow the same path, if P and
Pk take different paths.

The necessity for the criterion of checking the internal
state can be explained as follows. Assume that the Boolean
condition is evaluated twice and c differs from c in the
second execution. However, it is possible that only c may
differ from c in the first execution but not in the second
execution, in which case it is not guaranteed that killing Pk

Ri

will also ensure the same for P~. •

L a :b = -y; b = y;

R2 R3
L: if (x + y == a + b) x - y == a + b x + y == a - b

St
else

Se
end

Figure 3: Fragment of a program R.

figure. If the definition of variable b at location La is guar-
anteed to reach location L then we can compare R1, R2 and
R3 under > m . Let orig, r1, r2 and r3 be predicates as
defined below:

orig: x + y =:
r1: x + y =:
r2: x - y =:
r3: x + y =:

= a + b
= a + y
= a + b
= a - b

Thus, Theorem 3, Remark 1 and Theorem 4 give three
different possibilities to identify the hierarchies among mu-
tants and also present the reasoning for the conditional re-
quirements associated with them.

Note that in Theorem 4, c and c'' may differ, but c and
c' may evaluate to the same values, in which case Pj may
be killed but Pk will not. Thus Pj could be killed by more
test cases than Pk. This can also be observed by noting
that c © c' defines the subdomain Dl

k and considering the
implication as a subset relation.

3.2 Inter-location Mutants
The above analysis is restricted to mutations in p-locations.
For mutants that can be generated by mutating c-locations,
we need to symbolically propagate the effect to nearest
variable use in a predicate and then use theorems men-
tioned above to identify the relationship among mutants.
We illustrate this by an example:

Consider the fragment of a PUT, R, shown in Figure 3.
Let Ri, R2 and R3 be three mutants of R as shown in the

By observing that the predicate

b == —y ^ ((orig © r2) ^ (orig © r3))

is valid, we conclude that R2 >m R3. To check the relation
of R1 with R2 , we propagate the assignment at La to L
which give us the following predicates:

orig': x + y == a - y
r2': x - y == a - y

Since the predicate (orig' © r2') ^ (orig' © r1) is also
valid, R2 >m R1. Thus, if the mutant R2 can be killed,
the other two mutants need not be considered during the
testing. Note that, here we have also used known properties
of the PUT in establishing the hierarchies. To consider the
mutant R1, the impact of mutation is propagated to location
L. This can also be seen as making the control conditions
more explicit and has been studied in the context of test
data generation in [12].

Let Pj and Pk be two mutants of a program P that are
obtained by mutating location lj and lk respectively. Con-
sider the set R = Dk n Dr

k. If R = 0, there is no rela-
tionship between Pj and Pk and both of them must be con-
sidered during mutation testing. The checking of condition
R = 0 does not necessarily require explicit computation of
the reachability sets. An example where such a condition
holds is when lj and lk appear in then and else branches of
an if statement that is reached exactly once in an execution
with a test case.

Consider the other case when R = 0; i.e., there may be
an execution that passes through both j and lk . In this case
in order to find if the two mutants are related, it is necessary
to evaluate the impact of mutation at lj at location lk (or
vice versa). If this symbolic evaluation can be done then

336 Informatica 35 (2011)331-342 K. Kapoor

the hierarchies among the mutants can be identified with
the aid of theorems mentioned above.

Such an analysis, in which the internal state is observed
and the effect of a fault is propagated, is studied in the liter-
ature in terms of propagation conditions. For example, the
local propagation of origination conditions is referred to as
transfer conditions in [29].

The deductions required can be done automatically using
existing tools such as the CVC3 [5], which can check the
validity of quantifier-free first-order formulas over several
interpreted theories including real linear arithmetic, arrays,
uninterpreted functions, constants and abstract data types.

In the next section we give an overview of the related
work.

4 Related Work

A number of research studies have been conducted to test
the feasibility of mutation testing in an industrial context.
For a recent survey on mutation testing see [18]. These
studies concluded that mutation testing is difficult as the
number of mutants generated and the time taken to kill each
mutant when executed against the original program is myr-
iad [28]. These research studies have proposed several vari-
ations of mutation testing. The two variants suggested by
them are weak mutation [14] and firm mutation [40].

In weak mutation, the outputs of the original and mu-
tated programs are compared immediately after the execu-
tion of the mutated statement. Firm mutation is a kind of
"in-between" approach where the output of the original and
mutated program can be compared at any location after the
mutated statement and the end of the program. A short
survey is presented in [28]. The variants of firm mutation
testing can save some time during the execution and com-
parison phase of a PUT with its mutants, since the whole
program need not be executed when comparing the outputs
of the original program with the mutants.

An approach of computing the detection conditions for
hypothesized faults has been extensively studied, for ex-
ample, in constraint-based testing [7] and computation of
failure conditions in [23, 29]. This require the sets Dj

and Dj to be computed by using symbolic execution tech-
niques, which give a constraint on inputs that must be sat-
isfied by a distinguishing test case. Let Ck and Cj be two
constraints that correspond to the subdomains Dj and Dj
respectively. Then, Ck ^ Cj will also guarantee that
yt(p,t h Pk >m Pj).

Another alternative to reduce the test effort is selective
mutation [27] which attempts to identify a subset of muta-
tion operators without significantly affecting the effective-
ness. The analysis of Boolean expressions has been exten-
sively studied in the literature; see for example [33, 37].
In [21, 34], a hierarchy between different types of faults
that can arise in Boolean specifications is analyzed. These
results are applicable in the context of Theorem 4.

It was found that the mutation operators, ABS, AOR,

LCR, ROR and UOI, were sufficient for generating mu-
tants. It was also observed that among those generated by
these operators 57% mutants were equivalent mutants.

A similar approach, but complementary to that presented
in this paper, has been suggested in [9, 30], involving the
determination of an optimal ordering for the relational op-
erators. The key idea can be stated as follows. Let P be a
given program and Pk and Pj be two of its mutants that are
obtained by replacing a relational operator, say RO, in P
by other relational operators, ROk and ROj respectively,
where ROk is higher in the optimal ordering relation than
ROj [30]. Then, for a given input, if Pk remains live then
Pj will also remain live. Thus, when attempting to kill mu-
tants, Pk should be tried before Pj. However, Woodward
in [39] has shown a fallacy in the above argument by pro-
viding a counter example and suggested the following in
the conclusion:

One final point is that the fallacious argument
... is, in a sense, the opposite of that which a
mutation tester really wants. The argument that
"since this test data kills this mutant, it must be
good and will kill these other mutants", would
offer even greater potential benefits.

This paper contributes towards the above argument.
In the next section, we describe the empirical study per-

formed to evaluate the cost savings obtained by identifying
the relationship among mutants.

5 Experimental Evaluation
The programs considered in this study are written in C pro-
gramming language. As mentioned earlier, a mutation op-
erator can be defined to be a rule for generating mutants
by making a single syntactic change in PUT for example,
changing operator ' + ' to '—'.

5.1 Experimental Setup

We have used 23 mutation operators that are adapted from
operators defined in [20] for FORTRAN programming lan-
guage. The summary of these operators is given in Table
3. Since mutation testing is applied at a unit or component
level, in our study we have mutated all the functions in a
PUT except the main function.

As mentioned before, in common with a number of pro-
gram analysis problems such as reachability of a location,
identifying every possible > m relation is undecidable in
general. Nevertheless, in the restricted setup of mutation
testing, where a program differs from its mutants in a well-
defined way, it is possible to find the relationship between
some, if not all, mutant programs. The consequence of
any technique being inherently incomplete is that it may
not always be able to deduce the > m relation between two
given mutants. However, this is not harmful except that the
number of mutants to be considered during testing will not

MUTANT HIERARCHIES SUPPORT... Informática 35 (2011)331-342 337

Operator Description
AAR array reference for array reference replacement
ABS absolute value insertion
ACR array reference for constant replacement
AOR arithmetic operator replacement
ASR array reference for scalar variable replacement
CAR constant for array reference replacement
CNR comparable array name replacement
CRP constant replacement
CSR constant for scalar variable replacement
DER do/while statement end replacement
LCR logical connector replacement
ROR relational operator replacement
RSR return statement replacement
SAN statement analysis (replacement by TRAP)
SAR scalar variable for array reference replacement
SCR scalar for constant replacement
SDL statement deletion
SRC source constant replacement
SVR scalar variable replacement
UOI unary operator insertion

Table 3: Mutation operators [20]

be minimal. The symbolic evaluation is not done for the
complete unit under test but for a segment consisting of the
mutated line upto nearest p-location as mentioned in the
section 2.

However, generating the set of strongest mutants may
lead to problems due to the presence of equivalent mutants
already in the set. Note that the property P,t h Pk >m Pj
holds trivially for all j if P is equivalent to Pk (i.e., when
Dp

k = 0). The statistics, as reported in [26], indicate that
the number of equivalent mutants is typically in the range
of 7 to 12% of the total number of mutants and the auto-
matic detection rate using symbolic execution varies from
12 to 84% of the total number of equivalent mutants. An-
other recent study [31] further explores the identification
of equivalent mutants. Therefore in our empirical study we
rely on the fact that a randomly selected mutant from the
set of all mutants is likely to be non-equivalent.

Thus, although explicit generation of all mutants may
not be required, the information regarding them must still
be maintained. This information about P,t h Pk >m Pj
will be required whenever it is deduced or suspected that
P = Pk, for example when a significant amount of effort
is spent in killing Pk without success (such as, large size
of the test set and large number of times reachability and
infection conditions are met). The instantiation order for
mutants is guided by the hierarchies among them.

We considered terminating sequential programs. Since
application of a mutation operator can generate a program
which may not terminate on execution, we kept a threshold
of 5 seconds to decide if the execution is in an infinite loop.
This approach is similar to that implemented in MuJava
tool[22]. The comparison is made on the output as in the
case of strong mutation testing.

The analysis for empirical study was done manually with
the aid of CVC [5] tool. To analyze a given program, we
used symbolic execution techniques which have been used
in a wide variety of problems, such as, test data genera-
tion [7] and detecting equivalent mutants [26]. In symbolic
execution, a program is executed with the symbolic values
representing arbitrary values, instead of actual input val-
ues. Such an execution results in a tree in which every
node consists of symbolic values of the variables and the
path constraint that must be true to reach that node.

The steps to carry out the experiments are given in Table
4. Let P be a PUT and M be the set of mutants of P. We
start with the execution of an instrumented mutant using a
test case that kills the selected mutant. The instrumentation
is done to enable the observation of internal state which are
used to identify other mutants in M that can also be killed
using the same test case. Such mutants form a class. We
restart the process with the remaining mutants and continue
until no mutants are left to be classified or they are identi-
fied as equivalent.

We illustrate the approach using an example shown in
Figure 4. Consider the three possible mutants marked as
minx to min3. Assume that we explicitly generate minx
and would like to know if a test set that kills minx will also
kill any of the other two mutants. Since mini and min2

are obtained by mutating a c-location, we will propagate
the effect to the p-location at L3. The necessary (but not
sufficient) condition at location L3 to kill these mutants are
given below.

Cmin1 : a != b V (a > b © b > b)
Cmin2 : (a != -abs(a)) V (a > b ©

-abs(a) > b)

338 Informatica 35 (2011)331-342 K. Kapoor

1. Create a list of all mutants for the given PUT in increas-
ing order of line number of the PUT. Let N be the num-
ber of possible mutants.

2. Seti = 0

3. Let Pi be the ith mutant.

4. If Pi is already classified to be equivalent or in a mutant
class then goto step 9.

5. Identify the condition that are needed to establish the
hierarchies for other intra-location and inter-location
mutants with Pi.

6. Check the conditions with theorem prover if they are
valid. If yes, mark the corresponding mutants and Pi
to belong to a single class.

7. Generate Pi with statements to observe satisfiability of
conditions identified in the step 5.

8. Identify a test case to kill Pi. Mark the mutants to be-
long to a single class for which conditions identified in
step 5 are satisfied while executing Pi with the test case
that kills Pi.

9. Set i = i + 1

10. I f i = N goto step 3.

Table 4: Steps for Experimental Study.

int min(int x, int y) {
LI: float m;

mini
m = a; L2:

L3:

L4:

L5:

min2

m = b; m = -abs(a);
min:i

if (m > b) if (m != b)
m = b;

L6: return m;
}

Figure 4: An example to illustrate the experimental ap-
proach.

Cmin3 : (a > b © a != b)
If the test case {x = - 6 , y = 2} is used to kill mu-

tant mini then it is guaranteed that the same test case
will also kill min2 and min3. However, if the test case
{x = 0,y = 1} is used to kill mutant min1 then only
min3 will be killed. This can be observed by checking the
satisfiability of conditions given above for these test cases.
Therefore, if we use latter test case, min1 and min2 will be
the same class, whereas with former all three mutants will
belong to the same class.

In step 6, the identification of hierarchies require check-
ing validity of first-order quantifier-free logical formulas.

Let C be such a formula that we want to validate to deter-
mine if it holds at a location l in a program P. There are
three possibilities for the property to hold: (a) C is valid;(b)
C is satisfiable for some test cases; (c) C is false. For case
(c), we did not the put the required checks in the generated
mutant.

The following programs were considered for the empiri-
cal study.

compare_str The program is taken from [1] and is in-
tended to compares two strings. The specification re-
quires to return true if the given input strings are iden-
tical, otherwise false. However, the implementation
returns correct output for unequal length strings and
strings of equal length with the identical last charac-
ters. Thus, the strings "cat" and "mat" are reported to
be identical. The subtle issue, as mentioned in [1], is
that the probability of random selection of input which
will reveal the bug is very low. Probability that n
strings will expose the fault is 1 - (25/26)" [1]. In
our study, a strong mutant forced to select such an in-
put. The implemented program is a first-order mutant
of the intended program.

find This is an implementation of Hoare's find algorithm.
This program and its buggy version are studied earlier
in [3, 10]. We have used the correct version of find al-
gorithm. One of the strong mutant forced selection of
input that detected it to be different from the incorrect
version. As noted in [3], for the buggy version, it is
extremely difficult to identify test case using random
selection. The buggy version has two faults and there-
fore is a second order mutant. Unlike previous studies,
we decided to consider the correct version and check
if the test set with 100% mutation score can also kill
the second order buggy mutant.

gcd This program computes the greatest common divisor
of given two positive integers.

iroot The program is taken from [16] and computes inte-
ger square root of a given positive integer. This was
given as an exercise to the students of first course in
structured programming. We observed that it was dif-
ficult to get a correct implementation.

min Computes minimum of two numbers and is also stud-
ied in [26, 27].

prime Tests if a given positive integer is prime. The im-
plementation has a subtle bug which causes it to give
incorrect result for only one input. The implemented
(faulty) program is directly representable as a first or-
der mutant of the intended program. It was required
to generate the test case that detects the fault.

selection This is a faulty implementation of selection sort
algorithm. The program is taken from the book [2]
which contains program with a single, hard-to-detect

MUTANT HIERARCHIES SUPPORT... Informática 35 (2011)331-342 339

but realistic bug. In this case also, a test case detected
the fault.

triangle This is the famous program, first mentioned in
Myers [24], for testing whether the three given inte-
gers form a triangle and its classification.

tcas TCAS (Traffic Alert and Collision Avoidance Sys-
tem) is an aircraft conflict detection and resolution
system. The SIR Siemens suite [8, 32] includes an
ANSI C version of the resolution advisory component
of TCAS system along with 41 faulty versions. The
"Siemens" programs were assembled by Tom Ostrand
and colleagues at Siemens Corporate Research. Our
experiments include the 41 faulty versions and some
other mutants.

5.2 Results Discussion
For the above programs, we studied number of equivalent
mutants, number of mutant classes, operators with respect
to those mutants in each mutant class that cannot be killed
by the test cases used for other mutant classes. The statis-
tics for these programs is given in Table 5 and 6. The sav-
ings are calculated using the formula given below.

number of mutant classes
number of mutants - equivalent mutants

x 100

As can be observed in Table 6 the overall savings is above
90% in all the cases.

The maximum number of equivalent mutants and mutant
classes were found for the triangle program. The reason
for the higher number of equivalent mutants is due to the
redundant test a < 0 V b < 0 V c < 0 in the presence of
another check that sum of two sides is more than the third
side. Also, the application of abs operator after initial test-
ing of values to be positive since all values are guaranteed
to be positive afterwards. Finally, the application of SVR
operator on test for equilateral triangle a = b A b = c also
generates equivalent mutants.

For each of the above example, once the identification
of mutant classes was complete, we identified those mu-
tants in each class that cannot be killed by the test cases of
all other classes. The table reports the mutation operators
associated with such mutants.

In selective mutation study [27], it was found that the
mutation operators, ABS, AOR, LCR, ROR and UOI, were
sufficient for generating mutants. In our study, we also find
that the strong mutant were generated by these operators.
However, we also observed that some strong mutants were
generated by SVR operator. In one case we found that DER
operator too generated a strong mutant.

6 Threat to Validity
The threat to validity of our empirical results could be due
the set of programs used in the study. Although the pro-

grams are selected from the variety of sources, they can-
not be claimed to be representatives of set of all programs.
Our strategy requires pre-analysis to identify the relation-
ship among mutants.

In comparison, the selective mutation [27] does not re-
quire any pre-analysis to generate mutants for a program al-
though it may generate more mutants. The mutants are gen-
erated using a subset of set of operators defined in the previ-
ous study [20]. In contrast, our approach does not classify
operators but attempts to identify relationship among mu-
tants to avoid ignoring any mutant. Thus it is guaranteed
to ensure the quality of a test set. Although this enables in-
clusion of new operators without affecting the effectiveness
but increases the overall cost of testing.

We expect the cost of our technique to be more than se-
lective mutation but less compared to full mutation testing.
From the effectiveness point of view, if selective mutation
chooses appropriate set of mutants than it may be as ef-
fective as full mutation testing. Also, since the program
analysis in our study was done manually there is a possibil-
ity that the results may differ with a completely automated
analysis. Nevertheless, the results of empirical study pro-
vide some confidence in the approach.

7 Conclusions

Mutation testing is a powerful testing approach that can not
only ensure the checking of hypothesized faults but also the
generation of test data satisfying common structural cov-
erage criteria. The main difficulty faced in mutation test-
ing is due to the large number of mutant programs that can
be generated for a given implemented program. We have
given a strategy that suggests the ordering of the mutants
such that if a mutant is stronger than another, then killing
the stronger will automatically kill the weaker. This ap-
proach can significantly reduce the cost of mutation test-
ing. Although our approach ensures the same effectiveness
as full mutation testing, it is expensive than selective mu-
tation testing. To obtain the exact cost comparison we will
require extensive research on automation of our approach,
which we plan to pursue in future.

Identification of such hierarchies is also useful in the
quantitative assessment of the quality of fault detection ef-
fectiveness, since, with the knowledge about mutant hier-
archies, it is possible to reason if the mutation-adequacy
score includes strong mutants. This is particularly helpful
in directing the test effort with every step of the testing pro-
cess.

The issue in identifying all possible orderings is mainly
due to the undecidability of the problem and it also depends
on the complexity of the program. However as our empir-
ical study shows, a significant cost saving can be achieved
even if one can identify some of the possible orderings
among the mutants.

We have presented various conditions to identify the re-
lationship between mutants that can be analyzed locally

340 Informatica 35 (2011)331-342 K. Kapoor

Table 5: Statistics for programs considered in empirical study

Program Lines of Mutants Equivalent
code mutants

compare_str 26 111 9
find 65 464 36
gcd 23 136 13
iroot 26 134 5
min 21 53 3
prime 26 99 10
selection 55 263 38
triangle 37 524 59
tcas 174 85 2

Program Mutant Operators for Savings
classes strong mutants %

compare_str 7 ABS, ROR, RSR, SVR, UOI 93
find 5 ABS, ROR, UOI, SVR 99
gcd 4 ABS, AOR, ROR, UOI, SVR 97
iroot 4 AOR, CSR, UOI, DER 96
min 4 ABS, SVR, UOI 92
prime 4 CSR, ROR, UOI 95
selection 4 ABS, AOR, ROR, UOI 96
triangle 24 ABS, ROR, SVR 93
tcas 17 CRP, LCR, ROR, SVR 79

Table 6: Results for programs considered in empirical study

and thus can be evaluated in an effective way. Our work
gives theoretical proof and the empirical evaluation with
the examples taken from previous studies shows the fea-
sibility of idea and significant cost savings that can be
achieved. We found that the operators associated with
strong mutants were the same as those identified in selec-
tive mutation. However in addition SVR and DER opera-
tors also generated strong mutants in some cases.

As the kind of analysis required to establish hierarchies
is already part of various program analysis such as constant
propagation, and transformation tools, and also tools like
CVC3 [5] are already available, the given approach should
be practical.

References
[1] R. C. Backhouse. Program Construction and Verifi-

cation. Prentice-Hall International, 1986.

[2] A. Barr. Find the Bug: A Book of Incorrect Programs.
Addison-Wesley, 2004.

[3] R. S. Boyer, B. Elspas, and K. N. Levitt. SELECT —
a formal system for testing and debugging programs
by symbolic execution. In International conference
on Reliable software, pages 234-245, 1975.

[4] T. A. Budd, R. A. DeMillo, R. J. Lipton, and F. G.
Sayward. Theoretical and Empirical Studies on using

Program Mutation to Test the Functional Correctness
of Programs. In 7th Symposium on Principles of Pro-
gramming Languages, pages 220-233. ACM, 1980.

[5] CVC3: An Automatic Theorem Prover, 2007.
http://www.cs.nyu.edu/acsys/cvc3/ (last accessed:
Dec. 2007).

[6] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints
on Test Data Selection: Help for the Practicing Pro-
grammer. IEEE Computer, 11(4):34-41, April 1978.

[7] R. A. DeMillo and A. J. Offutt. Constraint-Based
Automatic Test Data Generation. IEEE Transactions
on Software Engineering, 17(9):900-910, September
1991.

[8] H. Do, S. G. Elbaum, and G. Rothermel. Supporting
Controlled Experimentation with Testing Techniques:
An Infrastructure and its Potential Impact. Empiri-
cal Software Engineering: An International Journal,
10(4):405-435, 2005.

[9] I. M. M. Duncan and D. J. Robson. Ordered Muta-
tion Testing. In ACM SIGSOFT Software Engineering
Notes, volume 15, pages 29-30, April 1990.

[10] P. G. Frankl, S. N. Weiss, and C. Hu. All-uses
vs mutation testing: An experimental comparison
of effectiveness. Journal of Systems and Software,
38(3):235-253, September 1997.

http://www.cs.nyu.edu/acsys/cvc3/

MUTANT HIERARCHIES SUPPORT... Informática 35 (2011)331-342 341

[11] M.-C. Gaudel. Testing can be Formal too. In Theory
and Practice of Software Development (TAPSOFT),
volume 915, pages 82-96, March 1995.

[12] M. Harman, L. Hu, R. Hierons, J. Wegener,
H. Sthamer, A. Baresel, and M. Roper. Testability
Transformation. IEEE Transactions on Software En-
gineering, 30(1):3-16, 2004.

[13] R. M. Hierons. Comparing test sets and criteria in the
presence of test hypotheses and fault domains. ACM
Transactions on Software Engineering and Method-
ology, 11(4):427-448, October 2002.

[14] W. E. Howden. Weak Mutation Testing and Com-
pleteness of Test Sets. IEEE Transactions on Software
Engineering, 8:371-379, July 1982.

[15] IEEE. IEEE Standard Glossary of Software Engi-
neering Terminology, ANSI/IEEE Std. 610.12. New
York: Institute of Electrical and Electronics Engi-
neers, 1990.

[16] J. Jacky. The Way ofZ: Practical Programming with
Formal Methods. Cambridge University Press, 1997.

[17] Y. Jia and M. Harman. Higher Order Mutation
Testing. Information and Software Technology,
51(10):1379-1393, October 2009.

[18] Y. Jia and M. Harman. An Analysis and Survey of
the Development of Mutation Testing. IEEE Trans-
actions on Software Engineering, To appear, 2010.

[19] K. Kapoor. Formal Analysis of Coupling Hypothe-
sis for Logical Faults. Innovations in Systems and
Software Engineering (A NASA Journal), 2(2):80-87,
July 2006.

[20] K. N. King and A. J. Offutt. A Fortran Language Sys-
tem for Mutation-Based Software Testing. Software
Practice and Experience, 21(7):685-718, 1991.

[21] D. R. Kuhn. Fault Classes and Error Detection Ca-
pability of Specification-based Testing. ACM Trans-
actions on Software Engineering and Methodology,
8(4):411-424, October 1999.

[22] Y.-S. Ma, A. J. Offutt, and Y. R. Kwon. MuJava: An
Automated Class Mutation System. Software Testing,
Verification and Reliability, 15(2):97-133, June 2005.

[23] L. J. Morell. A Theory of Fault-based Testing. IEEE
Transactions on Software Engineering, 16(8):844-
857, August 1990.

[24] G. Myers. The Art of Software Testing. Wiley-
Interscience, 1979.

[25] A. J. Offutt. Investigations of the Software Test-
ing Coupling Effect. ACM Transactions on Software
Engineering and Methodology, 1(1):5-20, January
1992.

[26] A. J. Offutt and J. Pan. Automatically Detecting
Equivalent Mutants and Infeasible Paths. Software
Testing, Verification and Reliability, 7(3):165-192,
September 1997.

[27] A. J. Offutt, G. Rothermel, R. H. Untch, and C. Zapf.
An Experimental Determination of Sufficient Mutant
Operator. ACM Transactions on Software Engineer-
ing and Methodology, 5(2):99-118, April 1996.

[28] A. J. Offutt and R. H. Untch. Mutation 2000: Uniting
the Orthogonal. In W. E. Wong, editor, Mutation Test-
ing in the Twentieth and the Twenty First Centuries,
pages 45-55. Kluwer, October 2000.

[29] D. J. Richardson and M. C. Thompson. An Analy-
sis of Test Data Selection Criteria using the RELAY
Model of Fault Detection. IEEE Transactions on Soft-
ware Engineering, 19(6):533-553, June 1993.

[30] I. J. Riddell, M. A. Hennell, M. R. Woodward, and
D. Hedley. Practical Aspects of Program Mutation.
Technical report, University of Liverpool, UK, 1982.

[31] D. Schuler and A. Zeller. (Un-)Covering Equivalent
Mutants. In 3rd International Conference on Software
Testing Verification and Validation (ICST'10), Paris,
France, April 2010.

[32] SIR: Software-artifact Infrastructure Repository
(SIR), 2010. http://sir.unl.edu/ (last accessed: Oct.
2010).

[33] K.-C. Tai. Theory of Fault-based Predicate Testing for
Computer Programs. IEEE Transactions on Software
Engineering, 22(8):552-562, August 1996.

[34] T. Tsuchiya and T. Kikuno. On Fault Classes and Er-
ror Detection Capability of Specification-based Test-
ing. ACM Transactions on Software Engineering and
Methodology, 11(1):58-62, January 2002.

[35] J. M. Voas. PIE: A Dynamic Failure-Based Tech-
nique. IEEE Transactions on Software Engineering,
18(2):717-727, August 1992.

[36] K. S. H. T. Wah. An Analysis of the Coupling Effect I:
Single Test Data. Science of Computer Programming,
48:119-161,2003.

[37] E. J. Weyuker, T. Goradia, and A. Singh. Automat-
ically Generating Test Data from a Boolean Specifi-
cation. IEEE Transactions on Software Engineering,
20(5):353-363, May 1994.

[38] W. E. Wong and A. P. Mathur. Reducing the Cost
of Mutation Testing: An Empirical Study. Journal
of Systems and Software, 31(3):185-196, December
1995.

http://sir.unl.edu/

342 Informatica 35 (2011)331-342 K. Kapoor

[39] M. R. Woodward. Concerning Ordered Mutation
Testing of Relational Operators. Software Test-
ing, Verification and Reliability, 1(3):35-40, October
1991.

[40] M. R. Woodward and K. Halewood. From Weak to
Strong, Dead or Alive? An Analysis of some Mu-
tation Testing Issues. In 2nd Workshop on Software
Testing, Verification, and Analysis, pages 152-158,
July 1988.

Informatica 35 (2G11) 343-35G 343

Improved ID-based Ring Signature Scheme with Constant-size Signatures

Hongwei Li, Xiao Li and Mingxing He
School of Mathematics and Computer Engineering
Xihua University
E-mail: lhwlihongwei@gmail.com

Shengke Zeng
School of Computer Science and Engineering
University of Electronic Science and Technology of China
E-mail: doris82414@sina.com

Keywords: ring signature, accumulator, constant-size, random oracle

Received: September 7, 2001

Ring signature enable a user to sign a message on behalf of the ring, without revealing the actual signer.
Constant-size ring signature is the ring scheme that the size of the signature does not grow with the size of
the ring(or group), so it is practical for large rings. In this paper weusethe Collision Resistant Accumulator
from bilinearpairing to construct anidentity-basedring signature scheme with constant-size signature. Our
scheme actually is an improvement on the modified version of the scheme proposed by Nguyen, but we
greatly improved the efficiency in terms of computational complexity and signature size. To the best of
our knowledge, our scheme is the most efficient secure ID-based ring signature with constant-size based
on accumulator proposed to date. Our scheme is proven secure in the random oracle model based on a
simplified and general Forking Lemma under the k-strong Diffie-Hellman assumption.

Povzetek: Predstavljena je izboljšana metoda podpisa za obroč.

1 Introduction

Ring signature schemes, introduced by Rivest, Shamir and
Tauman [1], allow a signer to form a group without a cen-
tral authority and sign messages on behalf of the group.
A user might not even know that he has been included in a
group and even a party with unlimited computing resources
can not find out the actual signer. In order to remove the
need of certification of the public keys, Shamir [2] pro-
posed the concept of ID-based cryptology to simplify pub-
lic key management. Zhang and Kim [3] extended the ring
signature to the ID-based ring signature schemes, where
the user's public keys is their identities. The accumulator
was introduced by Benaloh and de Mare [4] in order to de-
sign distributed protocols without the presence of a trusted
central authority. Such a cryptographic primitive is an al-
gorithm allowing the aggregation of a large set of elements
into a single value of constant size. So the accumulator
could be applied to construct constant size ring signature.
Baric and Pfitzmann [5] generalized the definition of ac-
cumulators and constructed a collision-free subtype. As
an application, they construct a fail-stop signature scheme
based on their collision-free accumulator. Camenisch and
Lysyanskaya [6] extended the concept of accumulators to
dynamic accumulators which allow the addition and dele-
tion of values from the original set of elements. Dodis,
Kiayias, Nicolosi and Shoup [7] introduced ad hoc anony-

mous identification schemes based on the notion of ac-
cumulator with one-way domain, an extension of crypto-
graphic accumulators. In 2005, Nguyen [8] proposed a dy-
namic accumulator based on bilinear pairings to design ID-
based ad-hoc anonymous identification schemes and iden-
tity escrow protocols with membership revocation. How-
ever, Tartary, Zhou, Lin, Wang and Pieprzyk [9] demon-
strated that the security model proposed by Nguyen did
lead to a cryptographic accumulator which is not collision
resistant. later, Nguyen had modified the security model
[10] so that collision resistance can be provided. In 2009,
Camenisch, Kohlweiss and Soriente proposed a new dy-
namic accumulator [24] based on bilinear maps for revoca-
tion of the authentication credentials. In their construction,
however, in the case of accumulating an arbitrary set of
size n, the issuer of the accumulator would need to pub-
lish a mapping from the set of identities to the elements of
destined group. It looks like very difficult to construct ring
signature schemes by hiring their accumulator [24].

Since Zhang and Kim [3] proposed the first ID-based
ring signature scheme, there are lots of excellent Id-based
ring signature schemes have been proposed [11, 12, 13],
but all of them the size of ring signatures linearly depend
on the group size, thus not practical for large groups. Ac-
tually, all the previous proposals had signature size pro-
portional to the size of the ring before the scheme [7]
proposed by Dodis, Kiayias, Nicolosi and Shoup. They

mailto:lhwlihongwei@gmail.com
mailto:doris82414@sina.com

344 Informatica 35 (2011) 343-350 H. Li et al.

provided an ad-hoc anonymous identification scheme and
used the Fiat-Shamir heuristics [15] to convert it into the
public key which was prime, so an extension supporting
ID-based keys seemed to be non-trivial [14]. The first
ID-based ring signature scheme with constant-size signa-
tures [8] was proposed by Nguyen. Similar to scheme [7],
Nguyen also obtained the constant-size ring signature using
the Fiat-Shamir transform [15] from anonymous identifica-
tion scheme. However, the scheme [8] was found flawed
by Zhang and Chen [16]. After that, Nguyen proposed the
modified version [10] of the original scheme [8] and shown
that the ring signature in their scheme [10] is much more ef-
ficient than previous one [7]. So, is there still some room
for the computational efficiency of the constant-size ring
signature to improve? Is there a way to reduce the size of
the constant-size ring signature scheme?

We provide the affirmative answer to these questions
and deem that the constant-size ring signature scheme [10]
is still not efficient enough. We propose the improved
constant-size ring signature scheme which is much more
efficient either on computational complexity or signature
size than the scheme [10] proposed by Nguyen. More-
over, Nguyen doesn't directly give the security reduction
of their ring signature scheme, but we provide the secu-
rity proof in the random oracle model under the k-strong
Diffie-Hellman assumption. To the best of our knowledge,
our scheme is the most efficient ID-based constant-size ring
signature based on accumulator in the literature.

The rest of this paper is organized as follows. In Sec-
tion 2, we briefly review some notations and complexity
assumptions that will be used throughout this paper. We
explain the general characteristics of a ID-based constant-
size ring signature scheme, and the security properties that
such a scheme must satisfy in Section 3. In Section 4, We
present our new ring scheme, and provide security results
for it in the section 5. In section 6, we compare its ef-
ficiency with previous schemes. Finally, we sum up the
work in Section 7.

2 Preliminaries

In this section, we briefly introduce some preliminaries that
will be used throughout this paper. A string means a binary
one. If xi,x2,... are objects, then xi\\x21|... denotes an
encoding of them as strings from which the constituent ob-
jects are easily recoverable. If S is a set, s eR S denotes
the operation of assigning to s an element of S chosen at
random. s — s means we let s = s .If A is a randomized
algorithm, then A(xi,...; p) denotes its output on inputs
xi,... and p, while y ——R A(xi,...; p) means that we
choose p at random and let y = A(xi,...; p).

2.1 Bilinear map groups and related
computational problems [25]

Let l be a security parameter and p be a l-bit prime. Let us
consider groups Gi, G2 and GT of the same prime order p
and let P, Q be the generators of G1 and G2 respectively.
We say that (Gi, G2,GT) are bilinear map groups if there
exists a bilinear map e : Gi x G2 ^ GT satisfying the
following properties:

- Bilinearity: V(S,T) e Gi x G2, Va,b e
Z*p, e(aS, bT) = e(S, T)ab.

- Non-degeneracy: VS e Gi,e(S, T) = 1 for all T e
G2 iff S = O.

- Computability: V(S,T) e Gi x G2,e(S,T) is effi-
ciently computable.

- There exits an efficient, publicly computable (but not
necessarily invertible) isomorphism ^ : G2 ^ Gi
such that ^(Q) = P

Such bilinear map groups are known to be instantiate with
ordinary elliptic curves such as that suggested in [21]. In
this case, the trace map can be used as an efficient isomor-
phic ^ as long as G2 is properly chosen [22]. With super-
singular curves, symmetric pairings(i.e.Gi = G i) can be
obtained and ^ is the identity. The computational assump-
tion for the security of our scheme was proposed by Boneh
and Boyen [27] and is recalled in the following definition.

Definition 1. Let us consider the bilinear map groups
(Gi,G2,GT) and the generators P e Gi and Q e
G2. The k-strong Diffie-Hellman problem in the groups
Gi,G2 is defined as follows: given a (k+2)-tuple
(P, Q, aQ, o?Q,..., akQ) as input, where P = ^(Q),
output a pair (c, P) with c e Zp.

2.2 Collision Resistant Accumulator
Here we present the definition of accumulators and the col-
lision resistance property as set by Nguyen [10].

Definition 2. (Accumulator[10]) Accumulator is a tuple
({ X i } i e N , { F i } i e N) , where { X i } i e N is called the value
domain of the accumulator and {Fi }ieN is a sequence of
families of pairs of functions such that each (f , g) e Fl is
defined as f : Uf x Xe

f
xt ^ Uf for some Xi C Xe

f
xt,

and g : Uf ^ Ug is a bijective function. In addition, the
following properties are satisfied:

- (efficient generation) There exists an efficient algo-
rithm G that takes as input a security parameter ll

and outputs a random element (f , g) eR Fl, possibly
together with some auxiliary information af .

- (quasi commutativity) For every l e N, (f , g) e
Fi, u e Uf, xi,x2 e Xi, f (f (u , x i) , x 2) =
f (f (u, x2), x f) . For any l e N, (f , g) e Fl, and X =
{xi, ...,xk } C Xl, we call g(f (...f (u,xf)...,xk)) the

IMPROVED ID-BASED RING SIGNATURE SCHEME. Informatica 35 (2011) 343-350 345

accumulated value of the set X over u. Due to quasi
commutativity, the value g(f (...f (u,xl)...,xk)) is in-
dependent of the order of the xi's and is denoted by
f (u,X).

- (efficient evaluation) For every (f , g) e Fl, u e Uf
and X c Xl with size bound by a polynomial of
l • g(f (u,X)) is computable in time polynomial in
l, even without the knowledge of af .

Definition 3. (Collision Resistant Accumulator [9] [10]).
An accumulator is defined as collision resistant if for every
PPT algorithm A, the following function Advc£l'acc(l) =
Pr[(f,g) £R Fi; u £R Uf ;(x,w,X) i A(g o
f,Uf,u)\(X c Xl) A (w e Ug) A (x e Xext \ X) A
(f (g-i (w),x) = f (u,X))] is negligible as a function of l.
We say that w is a witness for the fact that x e Xl has been
accumulated in v e Ug whenever g(f (g-i(w), x) = v.

To generate an instance of the accumulator [10] from
the security parameter l, run the algorithm G with 1l to
obtain a tuple t = (p,Gi,G2,GT,e(•, -),P,Q) and a
uniformly chosen element s from Z*. We construct a
tuple t = (P, Q, sQ,..., sq Q) where q is the an upper
bound on the number of elements to be accumulated. The
corresponding functions (f , g) for this instance (t, t) are
defined as:

IG, hl,...,hq i R H; (J, a) i R B(x, h i , . . . , HQ)] be
the accepting probability of B. The forking algorithm FB

associated to B is the randomized algorithm that takes in
input x and proceeds as follows:

Algorithm FB (x)
Pick random coins p for B
h i , . . . , H Q i R H

(J, a) i B (x, h1:..., HQ; p)
If J = 0 then return (0, ±)
h i , . . . , H Q i R H

(J , a) i B(x, hi,..., h j - i , h j , . . . , HQ; p)
If (J = J and hJ = hJ) then return (1, a, a)
Else return (0, ±) .

Let frk = Pr[b = 1 • x i R IG;(b,a,a i R FB (x)].
Then frk > accB (tQ - H) .

The exactly proof of this lemma could be found in [18].
Roughly says that if an algorithm B accepts with some
non-negligible probability, then a "rewind" of B is likely
to accept roughly with the probability squared[23]. The
intuitions are that: (1)hi,... ,HQ can be seen as the set
of replies to random oracle queries made by the original
adversary and (2) the forking algorithm implements the
rewinding. Moreover, it is important that in FB the two
executions of B are run with the same random coins.

f : Zp x Zp ^ Zp g : Zp ^ G 2
(v, x) ^ (x + s)v v ^ vQ

This construction involves that we have:

Uf = X p = Zp Ug = G2 Xl = Zp \ { - s }

It is clear that f is quasi-commutative. In addition, for u e
Zp and a set X = {xi,..., xk} Q Zp \ { - s } where k < p,
the accumulated value g(f (u, X)) = f] k

= i (x i + s)uQ is
computable in time polynomial in l from the tuple t and
without the knowledge of the auxiliary information s. The
accumulator proposed by Nguyen [10] has been proven se-
cure by [9] under the k-strong Diffie-Hellman assumption.

2.3 New General Forking Lemma
The security proof of our ID-based constant-size Ring Sig-
nature scheme relies on a generalization of the Forking
Lemma [18] proposed by Bellare and Neven instead of the
Forking Lemma in ring scenario [20] proposed by Herranz
and Saez.

Lemma 1. (General Forking Lemma [18] [23]). Fix an
integer Q > 1 and a set H of size \ H \> 2. Let B
be a randomized algorithm that on input x,hi,... ,HQ re-
turns a pair (J, a) where J e { 0 , . . . , Q} and a is referred
as side output. Let IG be a randomized algorithm called
the input generator. Let accB = Pr[J > 1 • x i R

3 The Model of ID-based
Constant-size Ring Signature

3.1 ID-based Constant-size Ring Signature
Schemes

Here we give the definition of ID-based constant-size ring
signature schemes, which is quite the same as the definition
in [10].

Definition 4. An ID-based constant-size ring signature
scheme is as a tuple IR =(Setup, KeyGen, MakeGPK,
MakeGSK, Sign, Verify) of PT algorithms, which are de-
scribed as follows.

- Setup: takes as input a security parameter ll and re-
turns the public parameters params and a master key
mk. The master key is only known to the Private Key
Generator (PKG).

- KeyGen: run by the PKG, takes as input params, mk
and an arbitrary identity idi and outputs a private key
sidi. The identity is used as the corresponding public
key.

- MakeGPK: takes as input params and a set ofidenti-
ties and deterministically outputs a single group pub-
lic key gpk which is used in the ID-based ring sig-
nature scheme described below. Its cost linearly de-
pends on the number of identities being aggregated.
The algorithm is order invariant that means the order
ofaggregating the identities does not matter.

346 Informatica 35 (2011) 343-350 H. Li et al.

MakeGSK: takes as input params, a set of iden-
tities R, a pair of an identity idi and the cor-
responding private key sidi and deterministically
outputs a single group secret key gskidi which is
used in the ID-based ring signature scheme de-
scribed below. It should be noted that each user
has its own group secret key gskidi which is dif-
ferent from the others. Its cost linearly depends
on the number of identities being aggregated. It
can be observed that a group secret key gskidi ^
MakeGSK (params, S , (sidi ,idi)) corresponds to
a group public key gpk ^ MakeGPK(params, S)
if and only if S = S U idi. More than one group
secret key might correspond to the same group public
key.

Sign: takes as input the public parameter params,
a user private key sidi, the user's group secret key
gskidi, group public key gpk which includes the iden-
tity corresponding to idi, and a message m, outputs a
signature a for m.

Verify: The deterministic polynomial time(DPT) algo-
rithm takes as input a set of identities R, group public
key gpk, a message m and a ring signature a, and
outputs either accept or reject.

3.2 Security Requirements

There are two preliminary security requirements for ID-
based ring signature schemes: Anonymity and Unforge-
ability.

- Anonymity: the anonymity requires, informally, that
an adversary should not be able to tell which member
of a ring generated the particular signature.

- Unforgeability: the intuitive notion of unforgeabil-
ity is that an adversary should be unable to output
(m, a) such that Verify(m, a) = 1. However, there
are lots of security definitions about unforgeability of
ring signature [20]. We use the unforgeability defi-
nition [26] proposed by Herranz. It should be noted
that [26]'s unforgeability definition is very similar to
the strongest unforgeability definition(unforgeability
w.r.t. insider corruption) proposed in [20].

Definition 5. (Unforgeability against chosen mes-
sages/identies attacks). A ring signature scheme
(Setup, KeyGen, MakeGPK, MakeGSK, Sign, Verify)
is unforgeable with chosen-subring attacks if for any
PPT adversary A and for any polynomial n(-), the
probability that A succeeds in the following game is
negligible:

- the challenger takes a security parameter k and
runs the Setup algorithm of the scheme. He gives
the resulting parameter to adversary.

4

- A is given access to a signing oracle
OSign(-, •, •), OSign(ids,m, R) returns
Signsid (m, R), where we require ids G R,
where R is a set of identities.

- A is also given access to extraction oracle
Extraction(^), where Extraction(IDi) out-
puts corresponding secret key ski.

- at the end of the above execution, A
outputs (R* ,m* ,a*) and succeeds if
VerifyR* (m* ,a*) = 1, A never queried
(R*,m*, •) to its signing oracle, and for all
IDi G R, the adversary has not requested an
extraction query for IDi.

The Proposed Constant-size Ring
Signature Scheme

In this section, we present our ID-based constant-size
ring signature scheme, Our scheme is the modified ver-
sion of the scheme [10] proposed by Nguyen, we describe
our scheme as the following algorithms: Setup, KeyGen,
MakeGPK, MakeGSK, Sign, Verify.

- Setup: on a security parameter l, chooses s Gr Z**,
u Gr Z* and generates an collision resistant accu-
mulator as in section 2.2, including functions (f , g)
and tuples t ^ (p,G1,G2,GT,e(•, •) a n d t ^
(P, Q, sQ,..., sqQ), where q is the upper bound on
the number of identities to be aggregated. It sets
Qpub = sQ, Ppub = ^(Qpub). L e t Ho ,Hi b e

collision-free hash function H 0 : {0,1}* ^ Z*, H i :
{0,1}* ^ Z*. Then, public parameter params ^
(l, t,t ,u,H0,Hi, f o g) and the master key is mk ^

- KeyGen: extracts a private key sidi ^ i
Ho(idi)+s P

for an identity idi. The identity is used as the cor-
responding public key. The user can verify the pri-
vate key by checking e(Ho(idf)Q + Q*ub,sidi) =
e(Q,P).

- MakeGPK: given a set of identities R = {idi}k;=1,
computes the set X = {H0(idi)}k=1 and generates the
group public key for the set gpk = V ^ g(f (u, X)).

- MakeGSK: generates the group secret key gsk for a
user ids G R, R = {idi}k

=1 by just computing the
set X ^ {Ho(idi)}k

=1i=s, hids ^ Ho(ids) and the
witness W ^ g(f (u,X')). Note that X = X ' U hids.
The group secret key is gsk = (hids, sids, W).

- Sign: given a message m, a set of identities R =
{idi}k=1 which includes the signer's identity ids, the
signer's private key sids.

- Given a message m GR {0,1}*, choose
r1,r2,k1,k2,k3,kA,kz GR Z*.

s.

IMPROVED ID-BASED RING SIGNATURE SCHEME. Informatica 35 (2011) 343-350 347

- Compute Ui ^ Sids + r1P; U2 ^ W + r2Q\
then compute n 1 ^ e(Q, U i) - k 5 • e(Q, P)k2 •
e(Qpub,P)k1; n ^ e(P,U2)-k5 • e(P,Q)k4 •
e(Pp ub,Q)k3.

- Get c ^ Hi(m\\Ui\\U21| n i || n 2 R

- Then compute s i ^ ki + c r i ; s2 ^ k2 +
crihids; S3 ^ k3 + cr2; S4 ^ kA + cr2hids;
S5 ^ k5 + chids.

- The signature is a =
(Ui, U2, n P EI2 , Si, S2, S3, S4, S5).

- Verify: Given signature a, message m, a set of iden-
tities R = [i d i } k

= i .

- Get c ^ H i (m \ \ U i \ \ U 2 \ \ n i \ \ n 2 \\R).

- C h e c k n i = e(Q,Ui)-S5 • e(Q,P)s2 •

e(Qpub,P)S1 • e(Qpub, U i) - c ' • e(P, Q)c';

n 2 = e(P,U2)-S5 • e(P,QQ)s4 • e(Ppub,Q)S3 •

e(Ppub,U2)-C • e(P,V)C .

If above condition holds, the verifier accept the ring sig-
nature, else reject. It's easy to see that our ring signa-
ture scheme can be converted into an ad-hoc anonymous
identification scheme [7], where a user can form ad-hoc
groups and anonymously prove membership in such group.
Although we use the collision-free accumulator in our
scheme, the dynamic accumulators are also available such
that the addition and deletion of members from the original
group(or ring) are allowed.

It should be noted that Nguyen' scheme and our ring
signature scheme actually are both non-interactive proof
of the knowledge of (sid, hid, W) satisfying e(hidQ +
Q pub, Sid) = e(Q,P) and e(hidP + Ppub,W) = e(P,V),
although Nguyen' scheme is much more complex than
ours. The exact reason why our scheme could cut down
the computation and size of the signature will be given in
section 6.

5 Security Analysis

5.1 Unforgeability

theorem 1. Assume that an adversary F has an advan-
tage e against our scheme when running in time t, asking
qHi queries to random oracles Hi(i = 0,1), qs signature
queries to signature oracle. Then there is an adversary B
to solve the k-strong Diffie-Hellman problem with probabil-
ity e' > ^ + (qHn + H + + H + q s) — 1 within

qHi qHi •

atimet < 2t+qs[10texp+9tp + (n+1)qmuU]+O[(qs(n+
1)+qH)(1+qs +qH)], where tp denotes the require time for
a paring evaluation, texp denotes the costs of an exponen-
tiation in Gt , tmult denotes the costs of a multiplication in
G2 and qH denotes the maximum total number of queries
to all random oracles.

Proof: Here, we are ready to present the actual proof.
On a security parameter l, Algorithm B takes as input
(p, Gi,G2, GT, ^, P, Q, aQ, a2Q,..., akQ) and aims to
find a pair (w*, w,\aP) where w* e Z*. We first show
how to provide the adversary with a consistent view. In
setup phase, it builds a generator G e Gi such that it knows
k - q(k> q) pairs (wi, w-+aG) for w i , . . .,wk-q GR Z*.
It should be noted that q is the an upper bound on the num-
ber of elements to be accumulated and k - q is the an upper
bound on the number of extraction queries. To do so,

- It picks wi,..., wk-q eR Z* and expands f (z) ^
ni—9 (wi + z) to obtain e0,..., ek-q GR Z** so that

f (z) ^ E— eizi.

- It sets generators H ^ TllS ei(aiQ) = f (a)Q G
G2 and G ^ $(H) = f (a)P e Gi.

Z+Wi to obtain di0,

- For 1 < i < k — q, B expands fi(z) ^
&R Z*p so

that fi(z) = YljZo^1 dijzj. Then compute

E k X 1 dij Q) = fi(a)P = P =
1 G. Then all pairs (wi, G

a+Wi
could be available.

a+Wi) for 1 < i < k — q

- It sets aH
k-q

<r- ei(ai+1 Q), a2H
<r-J2iZq ei (ai+2Q),...,aq H

Yk-q ei(ai+qQ). let t =
{p, Gi, G2, Gt , e(•, •), ^, G, H,aH,..., aq H}.

Now, B first chooses a random u eR Z** and generates an
collision resistant accumulator f o g as in section 2.2, then
send (l, t,u,f o g) to adversary F. To handle the oracle
queries, B maintains two lists LHo and LHl. For simplic-
ity, we assume that adversary F asks qHo distinct queries
for qHo distinct identities. Simulates adversary's environ-
ment as follows:

- H0 queries on an identity ID e {0,1}*: B selects a
random index 7, where 1 < 7 < qHo and fixes IDY

as target identity. B first initializes a counter index
to 1 and answers w ^ windex G Z* and increments
index if ID = IDY, else B returns a random wY eR

Z*. Add the tuple (ID , windex) to LHO .

- Hi queries on a tuple n =
(m \ \ U i \ \ U 2 \ \ n i \ \ n 2 \\R): If M has been de-
fined in LHl, retrieves c from LHl and returns c to F,
else chooses a new random c eR Z * and adds (p, c)
into LHl.

- Key extraction queries on ID: B recovers the matching
pair (ID, w) from L0 and returns the previously com-
puted a+w G if ID = IDy, else B sets badi = true,
then aborts.

- Signature queries on a pair (m,ID,R): If ID =
IDy, B proceeds according to the sign algorithm.
This is possible for B knows the private key of ID.
If ID = IDy , then:

348 Informatica 35 (2011) 343-350 H. Li et al.

- Chooses Ui Gr Gi, U2 Gr G2, chooses pair-
wise different s i , . . . , s5 GR Z*.

- Selects a random c GR Zp, then com-
putes n i ^ e(H,Ui)-s5 • e(H, G)s2 •
e(Hpub,G)S1 • e(Hpub,Ui)-c • e(G,H)c;
JJ2 ^ e(G, U2)-S5 • e(G, H)s4 • e(GPub, H)s3 •
e(Gpub, U2)-c • e(G, V)c. Then add the new
tuple (m | |U i | |U2 | | n i II EI2 \\R,Ci) in LHl(if
(p,ci) had already been defined in LHl, set
bad2 ^ true, aborts).

- Returns a = (Ui, U2, f] p]12 , si, s2, S3, S4, s5)
as the signature.

We have explained how to simulate F's environment in
chosen-messages and chosen-identities attack. So, B
runs the algorithm FB(t) as described in section 2.3.
In this way we get two forgeries a0 and ai together
with a set of identities R and message m. Let c0

be the answer from the random oracle Hi given to F
in the first execution, i.e., hJ in FB (t), and let ci be
the second answer hJ. The forged signature a0 =

(U i , U 2 , n i , n 2 ' S i ' S2: s3: s4: s5) a n d a n o t h e r s i g n a t u r e

i s ai = (Ui,U2, n i > n 2 , s i , s 2 , s 3 , s 4 , s 5) . L e t fi ^
for i G {1,..., 5}, then we get a tuple (f5,Ui -fiG)

satisfying e(f5H+Hpub, Ui - fiG) = e(H, G). It implies
that w* = f5 and —WG = (Ui - fiG). We note that
w* = wi,..., wk-q with probability at least 1 - K-q. If
both forgeries satisfy the verification equation, B can pro-
ceed as in [27] to extract 1

a+w P from 1
a+w: G:

- Writes f (z) = Y]kJ(wi + z) = 7(z)(z + w*) + 7-1,
where 7 - 1 G Zp and Y(Z) = £ = 1 YiZ.

- Then f (z)
w*+z

Y — 1 k-q-
0

^(H) = f (a)P G G1 , as thus

P + £ k = 0 q - 1 7i(aiP).

7izi. Since G =
J G = f (a) p =

a+w* a+w:

a+w*

- It's easy to get 1 P

E k-q-1
i=0

, _ [
a+w* Y—1 L

7i(aiP)], then the tuple (w*
w*+a
1

G

+ P) will a+w* '
be the answer of the k-strong Diffie-Hellman problem.

Let Pr[bad^ denote the probability of the event that flag
badi set to be true(fails in providing a consistent simula-
tion). We bound the accepting probability acc as follows :

acc > E — Pr\bad{] — Pr\bad2]

> E- qH0 qHi + qs

2l 2l

The probability that algorithm B succeeds in getting the
answer of the k-strong Diffie-Hellman problem is given by

>

>

frk

qHi

- qHi

1
2l

The running time t is twice that of once execution in
FB (t) plus the time needed to compute the solution of
the k-strong Diffie-Hellman problem. The running time
of once execution in FB (t) is the running time t of F
plus the time needed to answer qH random oracle queries
and qs signature queries, where qH denotes the maximum
total number of queries to all random oracles. We as-
sume that tp denotes the require time for a paring eval-
uation, texp and tmuit respectively denotes the costs of
an exponentiation in GT and a multiplication in G2 , and
all other operations take unit time. Each random oracle
query at most cause B to perform O(1 + qH + qs) unit-
time operations. Each signature query involves at most
10texp + 9tp + (n +1)qmult + (n +1)O(1 + qH + qs) opera-
tions, where n is the maximum number of identities of each
signature query. Therefore, we have t < 2t + qs [10texp +
9tp + (n +1)qmult] + O[(qs(n + 1) + qH) (1 + qs + qH)].

5.2 Anonymity

In order to give the proof for anonymity, we present
the proofs of our scheme's perfect zero-knowledge is
enough. The simulator randomly chooses Ui,U2 GR

G I , c,si,s2,s3,s4,s5 GR ZP, then computes H i =
e(Q, Ui)-s5 • e(Q, P)s2 • e(Qpub, P)si • e(Qpub, Ui)-c •
e(P,Q)clU2 = e(P, Uc)-s5 • e(P,Q)s4 • e(Ppub,Q)s3 •
e(Ppub, U2)-c • e(P, V)c. We can see that the distribution
of the simulation is the same as the real transcript. This
completes the proof.

6 Some Remarks and Efficiency
Comparison

In many scenarios, as pointed in [7], the group doesn't
change for a long time or has a short description. So an ap-
propriate measurement of ring signature-size does not need
to include the group description. In this situation, both the
signer and verifier need to perform a one-time computation
proportional to the size of the ring, and get the gpk and
gsk which allow them to produce/verify many subsequent
signatures in constant time. It's obvious that the constant-
size ring signature scheme will be much more efficient than
the previous schemes which signature size proportional to
the size of the ring in such scenarios. We note that even
in large ad-hoc groups, the size of our signature scheme is
much smaller than that of schemes which the size of sig-
nature linearly depends on the group size. To the best of
our knowledge, Chow et al.'s scheme [14] is the most ef-
ficient one among all the ID-based ring signature schemes
which the size of signature linearly depends on the group
size. For the sake of comparison and concreteness, we fix
| Gi | = = 256 bits for a security level equivalent to
a 128-bit symmetric key for AES(cf.[28]). We conclude
that our scheme has smaller size than Chow et al.'s scheme
when the number of identities of the ring over 8.

The first constant-size ring signature scheme (DKNS04)

w z

1

E

2 acc

IMPROVED ID-BASED RING SIGNATURE SCHEME...

had been proposed by Dodis, Kiayias, Nicolosi and Shoup
[7], after that, no more efficient constant-size ring signa-
ture scheme was found until the first secure ID-based ring
signature scheme with constant-size signatures proposed
by Nguyen [10]. Nguyen had compared his constant-size
ID-based ring signature scheme with DKNS04 at the same
level of security. The conclusion is that the signature size is
very much smaller than that of constant-size ring signature
scheme DKNS04 [7]. He also pointed out that in the future,
when higher levels of security are required, this difference
even grows much larger.

We now make a specific comparison between our
scheme and that of Nguyen's. Due to our scheme actually
is an improvement on the modified version of the scheme
proposed by Nguyen [10], it seems that our scheme and
Nguyen's scheme are implemented by the same elliptic
curve or hyperelliptic curve over a finite field is reason-
able. As shown in [10], we assume p is a 160-bit Jacobian
of a hyperelliptic curve over a finite field with order p and
compression techniques are used. GT is a subgroup of a
finite field of size approximately 21 0 2 4 . A possible choice
of these parameters is that G 1 (G 1 = G2) is derived from
the curve E/GF(3l) defined by y2 = x3 — x + 1.

We summarize the result in Table 1. It's obvious that
we greatly reduce the size of the signature, although the
computational efficiency is improved slightly. It should
be noted that our scheme has the same keys(GSK, GPK)
with Nguyen's, so we don't list them(i.e. computation
of keys and size of keys) in the table 1. Here we
give our analysis of why our scheme could cut down
the computation and size of the signature. As we
mentioned is section 4, our ring signature scheme and
Nguyen's scheme actually are both non-interactive proof
of the knowledge of (s i d , hid, W) satisfying e(hidQ +
Qpub,Sid) = e(Q,P) and e(hidP + Ppub,W) = e(P,V).
In our signature a = (U1,U2,Y[1 2 , s ^ s2, s3, s4, s5),

a1
 d=f (U^U 1,s1,s2,s5) are used to prove the knowl-

edge (s id , hid) satisfying e(hHdQ + Qpub, Sid) = e(Q, P),

and a2
 d=f (U2,\[2,s3,s4,s5) are used to prove the

knowledge (sid, hid) satisfying e(hidP + Ppub, W) =
e(P, V). It looks like that there should be some extra
"useful" data to set up a tough relation between a1 and
a2 to build up resistance to attack whereby the adversary
"tricked" generate a new valid signature use several valid
signatures. Actually, this is what Nguyen's scheme did.
However, it's easy to see that a1 and a2 share the same
element s5 = k5 + chid which is used to prove the re-
lationships of (sid,hid,W). In our scheme, s5 , f] 1 and
n 2 share the same random number k5. It implies that
each signature has a unique random number, and it doesn't
leave open the possibility of an attack whereby the adver-
sary "tricked" generate a new valid signature use several
valid signatures. So, the extra "useful" data is really re-
dundancy. Our constant-size ring signature actually is the
essence of the Nguyen's scheme, i.e. the remaining part of
the Nguyen's scheme after cut extra "useful" data down.
Then, there is a question: is there a possibility that cut
something down from our signature scheme? Due to the
way we construct the private key of user's, it looks like

Informatica 35 (2011) 343-350 349

Table 1: Efficiency comparison
scheme signature size mul padd pmul
Nguyen's 2,240 bits 7 15 20
Ours 1,440 bits 5 2 2
*mul, padd and pmul respectively indicate the num-
ber of multiplications, point additions and point scalar
multiplications.

paring operation is necessary. If paring operation is neces-
sary, it's really very hard to cut something down from our
signature scheme.

7 Conclusions
We have proposed an improved ID-based constant-size ring sig-
nature scheme based on Nguyen's scheme, which will be useful
for implementation in large ring scenario. Our scheme outper-
forms in size of signature the previously proposed constant-size
ring signatures and admits proofs of secure in the random oracle
model based on a simplified and general Forking Lemma under
the k-strong Diffie-Hellman assumption.

Acknowledgments
This work is supported by National Natural Science Foundation
of China (60773035), The fund of Key Disciplinary of Computer
Software and Theory(SZD0802-09-1), The research fund of key
disciplinary of application mathematics (XZD0910-09-1).

References
[1] R.Rivest,A.Shamir, and Y.Tauman. How to Leak a Secret:

Theory and Applications of Ring Signatures. in: Theoretical
Computer Science. LNCS, vol.3895, Springer Berlin, 2006,
pp.164-186.

[2] A.Shamir. Identity-Based Cryptosystems and Signature
Schemes. in: Advances in Cryptology. LNCS, vol.196,
Springer Berlin, 1985, pp.47-53.

[3] F.Zhang, and K.Kim. ID-Based Blind Signature and ring
from pairings. in: Advances in Cryptology - ASIACRYPT
2002. LNCS, vol.2501, Springer Berlin, 2002, pp.629-637.

[4] J.Benaloh and M.de Mare. One-Way Accumulators: A De-
centralized Alternative to Digital Signatures. in: Advances
in Cryptology - EUROCRYPT'93. LNCS, vol.765, Springer
Berlin, 1994, pp.274-285.

[5] N.Baric and B.Pfitzmann. Collision-Free Accumulators
and Fail-Stop Signature Schemes Without Trees. in: Ad-
vances in Cryptology - EUROCRYPT'97. LNCS, vol.1233,
Springer Berlin, 1997, pp.480-494.

[6] J.Camenisch, and A.Lysyanskaya. Dynamic Accumulators
and Application to Efficient Revocation of Anonymous Cre-
dentials. in: Advances in Cryptology - CRYPTO 2002.
LNCS, vol.2442, Springer Berlin, 2002, pp.101-120.

350 Informatica 35 (2011) 343-350 H. Li et al.

[7] Y.Dodis, A.Kiayias, A.Nicolosi, and V.Shoup. Anonymous
Identification in Ad Hoc Groups. in: Advances in Cryp-
tology - EUROCRYPT 2004. LNCS, vol.3027, Springer
Berlin, 2004, pp.609-626.

[8] Lan Nguyen. Accumulators from Bilinear Pairings and Ap-
plications. in: Topics in Cryptology - CT-RSA 2005. LNCS,
vol.3376, Springer Berlin, 2005, pp.275-292.

[9] C Tartary, S Zhou, D Lin, H Wang and J Pieprzyk. Analysis
of bilinear pairing-based accumulator for identity escrow-
ing. Information Security, IET 2(4)(2008), pp.99-107.

[10] Lan Nguyen. Accumulators from Bilinear Pairings and Ap-
plications to ID-based Ring Signatures and Group Member-
ship Revocation. http://eprint.iacr.org/2005/123.

[11] Chih-Yin Lin and Tzong-Chen Wu. An Identity-based Ring
Signature Scheme from Bilinear Pairings. in: AINA'04,
Also appear in http://eprint.iacr.org/2003/117.

[12] Javier Herranz and German Saez. New Identity-Based Ring
Signature Schemes. in: Information and Communications
Security. LNCS, vol.3269, Springer Berlin, 2004, pp. 269-
274.

[13] Sherman S.M.Chow, S.M.Yiu, and Lucas C.K.Hui. Efficient
Identity Based Ring Signature. in: Applied Cryptography
and Network Security. LNCS, vol.3531, Springer Berlin,
2005, pp.499-512.

[14] S.S.M. Chow,R.W.C. Lui, L.C.K.Hui, and S.M.Yiu. Identity
Based Ring Signature: Why, How and What Next. in: Public
Key Infrastructure. LNCS, vol.3545, Springer Berlin, 2005,
pp.144-161.

[15] A.Fiat, and A.Shamir. How To Prove Yourself: Practi-
cal Solutions to Identification and Signature Problems. in:
Advances in Cryptology - CRYPTO'86. LNCS, vol.263,
Springer Berlin, 1987, pp. 186-194.

[16] F.Zhang and Xiaofeng Chen. Cryptanalysis and improve-
ment of an ID-based ad-hoc anonymous identification
scheme at CT-RSA 05. Information Processing Letters
105(15)(2009) pp.846-849.

[17] D.Boneh, and X.Boyen. Short Signatures Without Random
Oracles and the SDH Assumption in Bilinear Groups . Jour-
nal of Cryptology 21(2)(2008), pp.149-177.

[18] M.Bellare and G.Neven. Multi-signatures in the plain
public-key model and a generalized forking lemma. in: Con-
ference on Computer and Communications Security: Pro-
ceedings of the 13th ACM conference on Computer and
communications security, ACM, New York, 2006, PP.390-
399.

[19] J.Herranz and G.Saez. Forking lemmas for ring signature
schemes. in: Progress in Cryptology - INDOCRYPT 2003.
LNCS, vol.2904, Springer Berlin, 2003, pp.266-279.

[20] Adam Bender, Jonathan Katz, Ruggero Morselli. Ring
Signatures: Stronger Definitions, and Constructions with-
out Random Oracles. Journal of Cryptology 22(1)(2009),
pp.114-138.

[21] A.Miyaji, M.Nakabayashi, and S.Takano. New explict con-
ditions of elliptic curve traces for FR-reduction. IEICE
Transactions on Fundamentals E84-A(5)(2001), pp.1234-
1243.

[22] N.P.Smart and F.Vercauteren. On computable iso-
morphisms in efficient pairing based systems.
http://eprint.iacr.org/2005/116.

[23] Fiore,D., Gennaro,R. Making the Diffie-Hellman Protocol
Identity-Based. in: Topics in Cryptology - CT-RSA 2010.
LNCS, vol.5985, Springer Berlin, 2010, pp.165-178.

[24] J.Camenisch, M.Kohlweiss and C.Soriente. An accumulator
based on bilinear maps and efficient revocation for anony-
mous credentials. in: Public Key Cryptography - PKC 2009.
LNCS, vol.5443, Springer Berlin, 2009, pp.481-500.

[25] Paulo S.L. Barreto, B.Libert, N.McCullagh, J.J.Quisquater.
Efficient and provably-secure identity-based signatures and
signcryption from bilinear maps. in: Advances in Cryptol-
ogy - ASIACRYPT 2005. LNCS, vol.3788, Springer Berlin,
2005, pp.515-532.

[26] J.Herranz. Identity-based ring signatures from RSA. Theo-
retical Computer Science 389(1-2)(2007) pp.100-117.

[27] D.Boneh and X.Boyen. Short Signatures Without Random
Oracles. in: Advances in Cryptology - EUROCRYPT 2004.
LNCS, vol.3027, Springer Berlin, 2004, pp.56-73.

[28] ECRYPT II Yearly Report on Algorithms and Key Lengths
(2010), http://www.ecrypt.eu.org/documents/D.SPA.13.pdf
(revision 1.0, 30 March 2010).

http://eprint.iacr.org/2005/123
http://eprint.iacr.org/2003/117
http://eprint.iacr.org/2005/116
http://www.ecrypt.eu.org/documents/D.SPA.13.pdf

Informática 35 (2011) 351-361 351

Content-sensitive Approach for Video Browsing and Retrieval in the
Context of Video Delivery: VBaR Framework
Phooi Yee Lau and Sungkwon Park
Media Communications Laboratory, Hanyang University, Seoul 133-791, Republic of Korea
E-mail: {laupy,sp2996}@hanyang.ac.kr

Keywords: browsing behavior, corner detection, image processing, video analysis, shot detection, low bit-rate
channel, video delivery

Received: August 27, 2009

Information is doubling at a rate of once every few months and the rate of increase is growing. Video
and media transport plays an important part of that growth. It has spurred the development of
broadband access and slowly gained increasing prominence especially for multimedia-rich Internet
contents. Operators are now under pressure to efficiently use available resources for delivering targeted
contents in a reliable and consistent manner. The present work proposes a new strategy to select intra-
coded frames that best represent the entire video. The proposed approach, tri-step approach, uses low-
level image features to select representative key frames which enable random access to any part of the
video sequence while avoiding the overhead incurred to transmit periodic intra-coded frames. The first
step discriminates non-transition frames by checking adjacent frame characteristics using low level
features. The second step refines our selection of key frame by dropping non-commonly browsed frames,
being the non-informative frames. The final step verifies the remaining frames if they are far apart in
time to maintain the efficiency of video delivery over low bit rate channel. Thirteen video sequences,
obtained from MPEG-4 industry forum, are used in the experiments. A framework, named the Video
Browsing and Retrieval (VBaR), is developed and it allows user to analyze input videos at their full
control. Experimental results, using the proposed framework, show the ability to effectively select intra-
coded frames in video delivery.

Povzetek: Predstavljeno je kontekstno odvisno indeksiranje in iskanje video vsebin.

1 Introduction
Today, streaming videos became a popular medium of
entertainment and advertisement, with many websites
providing direct links to videos from all over the internet.
Viewers can now stream videos through a simple and
searchable interface. What actually attracts the viewer's
interest? Research shows that it is important to track the
browsing behavior of viewers, both within and across
videos, to obtain important clues to the effectiveness of a
videos e.g. to an advertisement or to a trailer video
preview [1-3]. Browsing behavior can be revealed by the
choice of control used, e.g. fast-forwarding or pause, or
by the enhanced user area which allows viewers to rate
their video links and states their favorites.

Viewers, nowadays, have the privilege to download
videos according to their preferences which sometimes,
may require constant interactivity. Among the existing
pressing issues resulted from the interactivities are: 1) the
ability to playback or pause a video, and 2) the ability to
guarantee transmittable and playable video using
available resources. Because a video is essentially a
collection of still images, presumably long (e.g. 120
minutes), one cannot tell what it is about without
watching the whole video. Nonetheless, there has already
been a wide spread of research interest in the delivery of

selected content to any users, e.g. content-based video
analysis or segmentation which has been intensively
studied since the past decade [1-6]. In 1999, He et al.
proposed a simple tracking of video usage by using
server logs, which keeps information about the segments
watched by viewers, to generate the summary of viewing
behavior [5]. In 2001, Syeda-Mahmood presents a
framework to continuously track viewers through HMMs,
by observing their interaction with video based on
deducing interest of viewers, a rather unusual approach
[1]. Both methods studied the viewer's interest,
irrespective of the video content or scene. At the content
level, Zhu et al. present a system developed for content-
based video browsing and retrieval, integrating audio-
visual as well as text information and natural language
understanding techniques analysis to extract scenes and
content information of video documents, and to organize
and classify video scenes [2]. In 2002, Chen and Yang
presented an MPEG4 simple profile compatible approach
for video browsing and retrieval over low bit rate channel,
whereby, a new stream is generated from the video
server to enable random access [6]. This method is
oriented towards the viewers' browsing requirements, i.e.
according to video content and the channel

352 Informatica 35 (2011) 351-361 P.Y. Lau et al.

characteristics, so that transmission overhead could be
concealed. These two later methods, though studied
video contents, ignore the viewer's interest with respect
to the contents. Most importantly, these works show that
there is a need to study viewer's interest and video
content to enable video to be streamed across in the
shortest possible time.

But, some questions still arise, such as, how to best
represent the underlying content? Due to the need to have
an efficient playback system, extracting representative
key frames to describe the contents of a video will play a
fundamental role for many video applications. Key
frames are often used to define the starting and ending
point of smooth transition; i.e. frames that best represent
the underlying content. Key frames can be sampled
randomly or uniformly at some definite time intervals.
The main drawback of uniform sampling, while easy to
implement, is that it may cause some important short
clips without representative key frames while longer
clips might have multiple frames with similar content,
thus failing to represent the actual video [7]. One of the
most popular ways to extract key frames is by adapting
to the dynamic video content. Shot-based key frame
extraction segments a video within a continuous period
and uses the first frame of each shot as key frames. It
heavily depends on the temporal dynamics in the scene.
In this case, though the selected key frames can represent
the entire video, it may miss the important part of video
as it is not possible to select key frames that can
represent the video content well [8-10]. On the other
hand, we know that content-based video analysis has
been studied intensively for the past decade to support a
variety of applications, including video indexing and
browsing [11-13]. For example, shot-based video
segmentation is used to provide abstraction and
delineation for video indexing, browsing and retrieval
[14].

But, in video delivery, not only do we need to
consider the above stated requirements, we also need to
consider how to deliver videos in the shortest time in
order to maximize available resources, especially videos
that are simultaneously viewed by many subscribers or
high quality multimedia contents such as HDTV and
3DTV. Therefore, video delivery services need to be
natural, intuitive, and guided by user's viewing interest.
It is, thus, important to optimally select intra-coded
frames, e.g. incorporating viewer's browsing patterns and
viewer's interest into the selection process, since the
largest part of traffic growth over the next decade will be
associated with video delivery [11, 15]. Failure to do so
will prove to be very capital-intensive as service operator
may be force to purchase new infrastructure components.
One of the solutions is to represent the content of video
using key frames and these key frames should be able to
1) index videos to help search for a particular scene 2)
automatically identify user preference through preference
modeling, 3) facilitate automatic movie content
summarization.

In this paper, a new strategy, tri-step approach, is
used to select intra-coded frames that best represent and
describe the entire video well. The first step uses low-

level image processing techniques used for shot detection
(scene change); the second step, uses low-level image
processing techniques to classify key frames into
informative and non-informative (common browsing
behavior); and the third step, uses temporal constraints
to enable distinct distribution of key frames spanning the
entire video (decoder limitations). The method is tested
under two experimental set-ups: 1) different video
sequence: sports video (with motion) and news (less
motion), and 2) different scenario: multiple-scene video
(abrupt scene change) and single-scene video (gradual
scene change). The purpose is to allow user randomly
access any part of the video sequence while avoiding the
overhead incurred in transmitting periodic intra-coded
frames, thus, maximizing the resources available.

The remainder of this paper includes: Section 2 that
describes and discusses the proposed approach and
algorithms for selecting intra-coded frames; Section 3
that outlines the Video Browsing and Retrieval (VBaR)
framework; Section 4 that evaluates several experimental
results; Section 5 that discusses and concludes the paper
with future work.

2 Analysis of Content-sensitive
Frames for Video Streams - Tri-
Step Approach

A video can be considered as being made up of
numerous snapshots, called frames or picture. The
volume generated by digitizing all frames is too large for
the video delivery channel. Among the much used video
compression standards, aimed to reduce the amount of
data required to store or transmit video while maintaining
an acceptable level of video quality on low-bit-rate
channels, are the ISO MPEG4 Part 10 of MPEG4 and
ITU-T H.264. Low bitrate channels are constraint by a
few important characteristics: 1) prevent transporting
video frames that takes up resource, and 2) eliminate
redundant data to be delivered to prevent channel
congestion. Let us look at the role of image coding in
video delivery. Intra-coding, often used to enable random
access, refers to the individually compressed image
without any reference to the other frames. On the other
hand, the compression performance could be further
improved when the temporal redundancy in video
sequences is exploited. Known as the inter-coded frame,
this coding refers to a frame that is coded based on some
relationship with adjacent frames, i.e. proposed to exploit
the interdependencies between adjacent frames. In
reality, transmitting intra-coded frames (I-frames),
compared to inter-coded frames (P-frames or B-frames),
will increase the bit-rates greatly. Therefore, for video
streaming in low bitrate channel, transmitting inter-coded
frames are more favorable. In general, these three
pictures types (I-, P-, and B-frames) are encoded with a
group of pictures (GOP) length in the general reference
encoder [16].

In a video itself, there are two potential issues which
will affect the quality of video received. One is the delay
in packet delivery which may prevent the video being

CONTENT-SENSITIVE APPROACH FOR. Informatica 35 (2011) 351-361 353

played smoothly, often referred as jitter or frame
reversal. If jitter exceeds the buffer size in a device,
video quality will degrade noticeably. The second is
dropped frames. During congestions, significant numbers
of packets are dropped; inter-coded frames are dropped
first, followed by intra-coded frames, and this may also
cause a noticeable degradation in video quality. In
reality, network bandwidth is usually time-varying. If a
user constantly searches a video for interesting video
clips, then adapting a video to the start of all interesting
clips could minimize video traffic as "watch" only
frames are delivered. For example, Lee's work [15]
adaptively assigned intra-coded frames by considering
the scene changes and rapid motion in video sequences.
Such type of strategy, i.e. placing intra-coded frames
strategically to improve coding efficiently, is receiving
increasing attentions in the video research community
[17-18]. These works, for example, discuss how to
efficiently place inter-coded frames for variety of video
clips, especially those that do not contain frequent scene
change. It shows that there is a need to reduce bandwidth
consumption, especially crucial during peak-hours. It
could be accomplished by avoiding the delivery of "non-
watched" video data units to the set-top-box (STB),
especially if users often quit video sessions prior to its
completion. As we know, contents that are requested on
demand, i.e. stored video contents, has recently emerged
as a new business model. This business model redefines
the subscriber-provider relationship, i.e. delegating
content selection to the customer while the service
provider manages the content distribution. As roughly
40% of sessions contain some interactivity, certainly
there is a pressing need to deliver video data units
efficiently in order to reduce performance bottlenecks,
long delays and poor user experience for subscribers..

Figure 1: Input sequence: illustration of key frames for a
video sequence.

The primary objective of this paper is to present a tool
for selecting intra-coded frames that best represent and
describe the entire video well. The proposed approach,
using a tri-step approach, are able to select intra-coded
frames by analyzing the video content for interesting
scene that would attract viewers - see Figure 1. Our
motivation is to enable user to retrieves requested video
clips efficiently, without delivering too many redundant
frames. We satisfy the following criteria in our approach:
1) reduce redundant frames that viewers will receive due
the start of the clip is far from the periodically intra-
coded frames; and 2) allow viewers to make browsing
selection because a full video clip can themselves be long
and needs to be segmented; and 3) adjust the video

sequence to fully grasp the scene change, depending on
the content, thus saving bandwidth and storage.

The proposed technique is divided into 3-step. The
first step provides an efficient discrimination of input
videos to select scene change frames.. The second step
proceeds with a further evaluation of the selected frames
in Step 1, verifying if these frames correspond to a set of
common browsing behavior, i.e. informative frames. The
final step studies the decoder limitation and verifies if the
remaining frames are far apart in time to maintain the
efficiency of video delivery over a low bitrate channel,
i.e. determining the start frame of interesting video
segments to enable distinct distribution of these frames
spanning the entire video.

2.1 Step 1: Discriminate non-shot
transition frames as candidate key
frames

There are two type of scene change: 1) abrupt transition,
which corresponds to a sudden change between two
consecutive frames, and 2) gradual transition, which
corresponds to a small change throughout a number of
frames, detecting a transition frame could mean detecting
the precise frame when the changes happen. The simplest
feature that indicates a scene change is with low level
features. They can be reliably used to indicate the
starting position of a change in video sequences for shot
boundary studies. The low level features applied in this
paper are hue, saturation, value, and corners.

2.1.1 Preliminary Analysis
As discussed above, most images present high relativity
with regards to some of its basic features except when
scene change occurs, due to the presence of a new scene.
This paper extracts the hue (i/p). saturation (5F). value

(VF). and corner (CF). as the set features to determine a
scene change. Color saturation, hue and value can be
easily obtained by converting the input videos to the
HSV color space. The RGB color space is fundamentally
different from the HSV color space as it separates the
luminance from the color information (chromaticity) -
see experimental results in Figure 2. Therefore, RGB
color space image has to be converted to HSV color

space by normalizing the RGB values - see equation (1).
The H component, S component and V component can
be obtained using equation (2), equation (3), equation (4)
and equation (5), respectively.

(a) (b) (c) (d)

Figure 2: An input image from 'football' sequence: (a)
Original CIF (352 x 288) video frame; (b) HSV - Hue
feature; (c) HSV - Saturation feature; and (d) HSV -
Value feature.

354 Informatica 35 (2011) 351-361 P.Y. Lau et al.

G B

H =

H

R + G + B R + G + B

_1 I 0.5 x [(r - g) + (r - b)] |

[[(r - g) 2 + (r - b\g - b)] 2]

R+G+B

180 f b < x , i f b < g
n

2n - cos - 11
 0 5 x [(r - g) + (r - b)]

 1

[[(r - g) 2 + (r - b)(g - b)]2

S = (1 - 3 x min (r, g, b))x 255

180 . . .
x , il b > g

n

(1)

(2)

(3)

(4)

1 26 51 76 101 126 151 176 201 226 251 1 26 51 76 101 126 151 176 2 01 226 251 1 36 51 76 101 126 151 176 2 01 226 251

(a) (b) (c)
HSV Values Difference for Adjacent Frames in "Football" Sequence

Figure 4. Figure 4 (a) shows the corners count for
"Football" sequence with sample frames. The number of
corners detected for each consecutive frame is later
threshold to determine if there is a scene change. Figure
4 (b) shows the number of key frames selected using
different threshold values for the "Football" sequence.

V = (max(r, g, b))x 255 (5)

The hue (H) varies from 0° to 360°, and is here
quantized into 12 color intervals, each spanning 30°,
[red, orange, yellow, yellow-green, green, green-cyan,
cyan, cyan-blue, blue, blue-magenta, purple and
magenta-red]. Saturation, S, is the intensity of specific
hue, whereby, highly 'attractive' areas typically have
vivid colors; therefore the color saturation is high. The V,
also known as value, is also used as it allows selecting
the highest pixel values and visually corresponding to
brighter image areas. The HSV value seems to be a good
cue to discriminate the non-short transition frames as
they almost do not change with respect to small scene
change. The HSV value that is computed for each video
frame and the difference of these value based on adjacent
frames are plotted onto chart - see Figure 3 (a/b/c) and
Figure 3 (d), respectively. Later, a threshold is applied
for each frame to determine if there are the scene
changes.

* iA

1 11 21 31 51 61 71

Frame No.

(a)

(d)

Figure 3: An input image (Figure 2) pixel count for: (a)
Hue-, (b) Saturation-, (c) Value-level, and (d) Difference
between adjacent frames for HSV value.

Corners have been traditionally used to detect or track
motion. Here, we used it to assist us in tracking transition
frames. This paper adopts a curvature-based corner
detector which detects both fine and coarse features
accurately at low computational cost [5]. It utilizes global
and local curvature properties and balances their
influence when extracting corners, allowing different
parameters to be automatically determined for different
images, different curves, and different kinds of corner
candidates. The corner detector's step-by-step details can
be found in [5] and experimental results are shown in

5 10 15 20 25 30 35 40 45 50 55 60 65

C o r n e r D i f f e r e n c e (C o u n t)

(b)

Figure 4: (a) Corners count for "Football" sequence with
sample frames (b) Total key frames selected with
different corner difference value.

2.1.2 Shot detection and elimination of frames
From exhaustive tests, it was observed that a scene
change incurs more abrupt changes in the HSV values
and the corner count, and is illustrated in Figure 3 (d) and
Figure 4, respectively. In practice, one feature alone
could not identify clearly the position of a scene change.
Due to this, a more reliable shot detection can be
obtained by combining the results coming from a set of
features, discussed earlier in subsection 2.1.1. Votes are
taken from each feature which favours the scene change
detection and decisions are made based on a majority
vote, according to equation (6). Experimental examples
are shown in Figure 5.

FS,
fCut :
\Non •

(6)
cut : otherwise

Video frames that are classified as transition frames will
be kept for further processing. This initial discrimination
is conducted to allow fast analysis of a complete video
and to discard non-scene transition key frames. Figure 5
shows key frames selected in Step 1 for "Football"
sequence. Notice, however, some frames shown in
Figure 5 (a) are either appearing too close together in
time or do not provide sufficient information about the
scene, even though they represent a distinctive scene
change. These frames will be further verified in the
subsequent step and its initial classification revised.

R
b

Hue (bd)

> two vote from HFSFVFCF

CONTENT-SENSITIVE APPROACH FOR. Informatica 35 (2011) 351-361 355

2.2 Step 2: Discriminate non-informative
candidate key frames

Tracking the browsing behavior of viewers are valuable,
not only for forecasting future visit patterns for content-
sensitive e-commerce, but are also useful in the
generation of fast previews of videos for easy pre-
download [20-22]. If we could learn the center of interest
to which the viewers are attracted, it could be used to
help viewers find and select appropriate content from the
vast amount of data available. Viewers often look for
ways to quickly grasp the content by visual fast-
forwarding and the ability to determine each interesting
clip would enable distinct browsing states, distributed
over the entire video. Whole video, which is sometimes
too long, needs to be segmented into shorter and more
interesting segments. These segments are often
determined by the statistical inference over extensive
historical samples, i.e. preferred content or preferred
video clips. The basic idea is to evaluate the content
using low-level features to enable the user to grasp the
potential knowledge about the content to be browsed. But,
what content would represent an interesting video clips?

Syeda-Mahmood's work [1] grouped three browsing
behaviors by summarizing various potential states that
viewers could be in: 1) curious, 2) aimless browsing, and
3) explicit queries/search [1]. The first two states are
viewers with no specific agenda and they generally do
not capture the actual browsing behavior i.e. passive
viewers. The third state requires urgency and viewers
tend to look for something intriguing, which often state
the browsing patterns - active viewers (age under 40s).
To assist these active viewers, the authors provide video
abstracts, i.e. representative key frames, to represent the
video's content (aka summary shots), to denote each shot.
They then reclassify these shots into two categories -
interesting and mundane. So, the question is how we can
classify interesting shot, beyond the browsing behavior?
Rich content shots, e.g. shots which include many details
and garner most viewers' attention are considered
interesting - see Figure 6.

The selection of interesting shots may be associated
with the search for content which could elicit viewer's
behavioral patterns in browsing. We relate rich content
shots, i.e. interesting video frames, with image details
which could be obtained through low-level image

processing techniques. For example, we obtained the
rough contour of objects, which strongly relates to the
image content itself, by studying the edges and the
corners of an input image. But analyzing the whole
image could not specifically represent the content details.
As such, here, we adopted the block based approach. The
following describes how interesting frames (aka
informative) can be extracted.

(a) (b)

Figure 6: Sample images - (a) rich content shot, and (b)
and mundane shot.

At first, a block-based analysis of the image's edge
and corner is performed. Each image is divided into 16 x
16 pixel blocks, and for every block, Bi, the edge, I E (B ,)

and corner, I C (B ,) are calculated. The images are
discriminated into informative and non-informative using
a 5-level classification system. Each level is represented
using a gray level code, as shown in Figure 7. The
decision on the informative level can be expressed as
follows:

Level 0 (Non-informative block):
I f I E (B ,) | I C (B I) =0

Level 1 (Low informative block):
If 0 < IE(B) <= n or 0 < IC(B) <= m

Level 2 (Average informative block):
If n < I E (B) <= 2n or m < IC(B) <= 2m

Level 3 (High informative block):
If 2n < I E (B) < = 3n or 2m < IC(B) <= 3m

Level 4 (Extreme informative block):
If IE(B) > 3n or IC(B) > 3m

Informative level 0 1 2 3 4

Gray level

Figure 7: Representation of informative level using 5
different gray levels.

m and n is a margin of safety, here set to 1 and 10,
based on extensive experimental testing. k is the total
block in a video frame. The image is then discriminated
into the informative (non-informative) if more than (less
than) 10 blocks are Level 3 - see equation (7). Candidate
key frames from Step 1 are further classified into
informative and non-informative frames. Informative
frames are selected as Step 2 candidate key frames and
will be further classified and analysed - see Figure 8.

iInformativ e :
I Non - informative

if (sum (Bt > Level 2) > 10) (7)
otherwise i = 1,2,3...k

356 Informatica 35 (2011) 351-361 P.Y. Lau et al.

(a) (b) (c)

Figure 8: Input images (a and d) with its respective
informative level - edge blocks (b and e) and - corner
blocks (c and f), and (g) Step 2 candidate key frames
after discriminating non-informative frame.

2.3 Step 3: Applying temporal constraints
to verify selected key frames

Only frames labelled as informative (in Step 2) are
further analyzed in Step 3. This final step verifies if the
remaining frames occur far apart in time to maintain the
efficiency of video delivery over low bitrate channel.
This is because there is a significant overhead associated
with the transmission of periodic intra-coded frames, as
intra-coded frames typically require 5-10 times as many
bits as inter-coded frames [23-24]. For videos, during
normal speed playback, intra-coded frames do not
provide additional functionality, and this overhead
should be avoided. Conversational applications, on the
other hand, do not require frequent transmission of intra-
coded frames, and often placed infrequently to allow
bandwidth saving.

It is typical to have at least two intra-coded frames
per each second of video in order to allow decoder to
begin decoding with sufficient frequency. For example,
we have an intra-coded frame every 15th frame on 29-
30Hz systems, or every 12th frame on 24-25Hz systems,
insinuating that a transition frame could take place in a
window of 10-30 frames. If an intra-coded frame (after
Step 2) surpasses this window, which may represent a
gradual transition between the two shot, and if channel
error propagation occurs, the inability to correct the error
due to the unavailability of intra-coded frame will
degrade the video quality at the receiver. On the other
hand, more intra-coded frames are needed for a more
frequent and pronounced scene change activity in a video
sequence.

Figure 9: Examples of Step 3 final key frames selection:
(a) select (b) dropped (c) insert additional key frames.

Here, we proposed using temporal constraint to limit the
GOP size (or window), a minimum of five to a maximum
of thirty, using one-per-window (intra-coded frame)
policy. This window allow us to select representative key
frames that describe the content of the video, whether in
abrupt scene transition or in gradual scene transition.
Figure 9 (a) shows that frame number 14 (Step 2) or
video frame number 62 has a GOP of 11 while Figure 9
(b) shows that frame number 26 (Step 2) or video frame
number 119 has a GOP of 1 - being too small, and
Figure 9 (c) shows that frame number 2 (Step 2) or video
frame number 98 has a GOP of 97 - being too big. In
Step 3, when the GOP size is too small - as shown in
Figure 9 (b) - the intra-coded frame will be dropped. On
the other hand, when the GOP size is too big - as shown
in Figure 9 (c) - additional intra-coded frame will be
inserted based on one-per-window policy. This is to
ensure the videos have an intra-coded frame that are
placed a second apart in order to control random
accesses, at least, to every second - see experimental
results in Figure 10. The remaining frames are named
key frames.

0| 10 20 30 40 501 6 o|
701

Figure 10: Selected key frames after temporal constraints
in Step 3.

3 Content-sensitive Video Delivery
System

3.1 Materials
The analysis was run on a PC platform, using thirteen
(13) YUV format test video sequence from MPEG-4
industry forum ("http://www.m4if.org/resources.php").
The dataset is composed of thirteen sequences with
different scenarios ranging from news, foreman, tennis,
soccer, football, hall, coastguard, harbour, mobile, city
skyline, crew, bus, and multiple scenarios - as shown in
Table 2. Each selected video sequence has different
number of frames and with 352 x 288 (CIF) resolutions.

3.2 VBAR Framework
The analysis framework, Video Browsing and Retrieval
(VBaR) framework, is a research-oriented framework

http://www.m4if.org/resources.php

CONTENT-SENSITIVE APPROACH FOR. Informatica 35 (2011) 351-361 357

developed in the Media Communication Laboratory at
Hanyang University to analyze video delivery
performances. The framework was developed using
MATLAB®GUIDE tools to achieve a user-friendly
interface, as shown in Figure 11. At the moment, the
system can analyze targeted videos, i.e. to select a set of
representative key frames for a video

Figure 11: Graphical user interface for VBaR framework.

3.3 Using the GUI

Table 1: Standard operating procedure for VBaR
Video Control: Select input video
1) Browse video for the *.yuv video
2) Convert video to extract the video

Frame Selection: Select the start and end frame for analysis
1) Select Start frame by clicking at the bar
2) Select End frame by clicking at the bar

Control Key Selection: Select the control options
Options: Show/Play/Pause/Analyze
Show : Show an image
Play : Play a video sequence from Start frame to End frame
Pause : Pause the execution
Analyze : Analyze the selected process - Step 1/Step 2/Step 3

Analyze Selection: Select the process option
Option: None/Step 1/Step 2/Step 3
None : No process

Step 1 : To select shot detection
Step 2 : To eliminate non-informative frames
Step 3 : To dropped or insert frames

"Resu l t s are shown in the main window and stored to file

The user interface supports the configuration of the
desired task in a user friendly way. The input images or
video, and the analysis results are shown in Figure 11.
The software is able to analyze grayscale and color video
sequences. The user interaction with the analysis
software using the GUI follows the main steps listed in
Table 1.

4 Experimental Results
The proposed algorithm is evaluated using thirteen
selected video sequences, each with different number of
video frames. The selected video sequences evidence a
range of scenarios. Experimental results obtained using
VBaR framework is presented. In these videos,
experimental results are evaluated: 1) key frame analysis,
2) GOP analysis, 3) performance - speed, 4) comparison
among different sequences, and 5) performance
comparison.

Table 2: Video sequence details
Video 1: News - camera static, slow motion and few scene changes
Video 2: Foreman - camera moving, slow motion and few scene changes
Video 3: Stefan - camera moving, fast motion and many scene changes
Video 4: Soccer - camera moving, fast motion and many scene changes
Video 5: Football - camera moving, fast motion and many scene changes
Video 6: Hall - camera static, slow motion and few scene changes
Video 7: Coastguard - camera moving, slow motion and few scene changes
Video 8: Harbour - camera static, fast motion and few scene changes
Video 9: Mobile - camera moving, fast motion and few scene changes
Video 10: City - camera moving, fast motion and many scene changes
Video 11: Crew - camera moving, slow motion and few scene changes
Video 12: Bus - camera moving, fast motion and many scene changes
Video 13: Multiple scenes - combination of Stefan/Football/Soccer/News

4.1 Key Frame Analysis
This key frame analysis counts the number of frames
selected/dropped in each process, e.g. Step 1/Step 2/Step
3 - as shown in Table 3, VideoFile 1, VideoFile 2, and
VideoFile 3.1 For example, in Video 5, a total of 15
frames were selected as key frames, i.e. that is average
GOP size of about 9, compared to Video 1, with 10 key
frames and average GOP size of about 30. The reason is
because Video 5 has frequent scene change (usual for
sports video). Notice that when there are few scene
changes - e.g. Video 1 and Video 6, only few key frames
are selected in Step 1 and Step 2. Step 3 compensates this
problem by inserting appropriate key frames based on
one-per-window policy. In Video 1, a total of 6 key
frames are inserted in Step 3 - as shown in Table 3. Scene
changes for sports video are more frequent. Due to this,
quite a number of frames were selected as candidate key
frames in Step 1 and Step 2; with many having a GOP
size as small as 1. In this case, the framework
automatically dropped candidate key frames when the
GOP is smaller than 5. For example, for Video 3, out of
the 20 candidate key frames, 12 frames are selected as

1 Please contact first author for VideoFile*.

358 Informatica 35 (2011) 351-361 P.Y. Lau et al.

key frames in Step 3; i.e. 8 candidate key frames are
dropped.

We notice that Video 3 and Video 8 have the smallest
average GOP size, even though both videos observe
different camera settings and scene change details. In
Video 13, for example, where multiple scenes change
occurs ("Stefan"^ "Football"^ "Soccer"^ "News"),
our framework is robust in selecting key frames - see
VideoFile4.

Table 3: Step-by-step key frame(s) selection
Video No. Total Frame Step 1 Step 2 Step 3 Ave GOP size
Video 1 300 4 4 10 30
Video 2 150 9 9 10 15
Video 3 90 20 20 12 7
Video 4 150 12 12 9 16
Video 5 130 31 30 15 8
Video 6 300 4 4 10 30
Video 7 300 22 22 18 16
Video 8 150 31 31 19 7
Video 9 150 17 17 12 12
Video 10 150 22 22 13 11
Video 11 150 31 31 15 10
Video 12 75 18 18 9 8
Video 13 300 34 34 21 14

To summarize, in order to meet bandwidth and
buffer size limit, especially if service providers want to
guarantee transmittable and playable video, there exist
two important contribution of our work: 1) for video
sequences with few scene change, the system
compensates by inserting key frames, and 2) for video
sequences with frequent scene change, key frames are
dropped.

4.2 GOP Analysis

Table 4: GOP size for each video sequence
^"-„Video 1 2 3 4 5 6 7 8 9 10 11 12 13
GOPNo*—
1
2

1 1 1
30*30*6

1
15

1
5

1 1 1
30* 8 5

1
17

1
21

1
14

1
6

1
14

3 30*30*8 13 5 30* 30* 5 8 8 16 15 12
4 30*30*7 6 14 30* 9 14 12 14 6 8 10
5 30*9 5 25 12 30* 12 5 30* 14 6 5 5
6 30*9 7 24 9 30*7 15 9 15 30* 12 6
7 30*7 7 12 5 30* 7 14 8 9 23 6 12
8 30*9 8 20 11 30* 17 5 14 13 6 14 15
9 30*13 8 30* 8 30* 30* 8 9 9 10 8 5
10 30* 8 5 6 30*27 5 21 28 6 10
11 13 16 30* 7 7 5 9 13
12 15 11 17 9 14 8 5 6
13 7 10 5 5 7 9
14 8 7 7 5 8
15 8 10 14 6 5
16 30* 5 16
17
18

30* 5
18 14

30*
30*

19 6 30*
20 13
21 30*
FIX GOP (15): 20 10 6 10 9 20 20 10 10 10 10 5 20
Difference -10 0 +6 -1 +6 -10 -2 +9 +2 +3 +5 +4 +1

*key f rames inserted

We analyze the GOP size for all video sequences using
our proposed VBaR framework. We compared the GOP
size and its frequency for all video sequences, and
experimental results are shown in Table 5. To begin
with, there are more key frames selected for Video 3,

Video 5, Video 8 and Video 11 (GOP size small)
compared to Video 1 and Video 6 - due to the number of
scene change detected. More significantly, we manage to
show the robustness of our proposed framework for all
types of video: sequences that have few scene change
(Video 1) or sequences that have frequent scene change
(e.g. Video 13) - as shown in Table 4. Our proposed
method, i.e. variable GOP, compared to fixed GOP leads
to significant reduction in the overhead involved in the
transmission of intra-coded frames - shown in Table 4
(Video 1 and Video 6). The GOP size, for all thirteen
video sequences, range from 5 to 18, with few intra-
coded frames of higher than 18 - see Figure 12. Those
GOPs that is higher than 20 are mainly for Video 1,
Video 2 and Video 6 - having fewer scenes change.
Experimental results show that our proposed approach
(variable GOP) is very useful to save bit rate for video
with fewer scene change (e.g. romance or documentary
film) and to compensate frequent scene change video
(e.g. action film) with lower GOP.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

GOP (size)

Figure 12: GOP statistics for thirteen different video
sequences.

4.3 System Performances
The performance of the proposed framework is evaluated
for all thirteen selected video sequences. Comparison of
computational speed on the PC platform helps to identify
the potential implementation of the method proposed.
The algorithms are tested on an Intel E7300 Core 2 Duo
2.66GHz with 2GB of RAM - PC platform, using
MATLAB®. The computation time is calculated for
every Step - shown in Table 5. The time durations are
represented in second (s).

Table 5: Comparison of Test Speed (in seconds)
Process Step 1 Step 2 Step 3 Total time Average/frame
Video1 285.8 3.7 13.8 303.3 1.01
Video2 135.5 8.1 16.6 160.2 1.06
Video3 149.3 29.8 26.1 205.2 2.28
Video4 133.0 10.6 22.1 165.7 1.10
Video5 126.5 30.3 48.5 205.3 1.57
Video6 279.4 4.4 13.6 297.4 0.99
Video 7 333.6 24.1 76.9 434.6 1.44
Video 8 245.9 48.8 61.4 356.1 2.37
Video 9 228.9 24.6 32.2 285.7 1.90
Video 10 221.0 31.6 40.4 29 1.95
Video 11 146.7 33.4 57.6 237.7 1.58
Video 12 91.5 21.5 19.2 132.2 1.76
Video 13 351.2 44.1 115.4 510.7 1.70

CONTENT-SENSITIVE APPROACH FOR. Informatica 35 (2011) 351-361 359

Video 6, which requires an average of 0.93
seconds/frame in Step 1 and 1.1 seconds/frame in Step 2,
while 3.4 seconds/frame in Step 3, has one the fastest
processing speed - shown in Figure 13 (b). Figure 13 (a)
also shows that complex video such as Video 8 requires
higher computation time. Nevertheless, experimental
result shows that the time required for selecting key
frame depends on the content in each video sequence,
highest being 2.37 seconds/frame and lowest being 0.99
seconds/frame, relatively short.

1

•
I I I I I . 1 1

1 2 3 4 5 6 7 8 9 10 11 12 13

Video No.

(a)

1 Step 1 • Step 2 • Step 3 |

35

i. i. jiii
05

0

III1IIP íti rrr i 1 IIP Wl 1111111
1 2 3 4 5 6 7 8 9 10 11 12 13

Video No.

(b)

Figure 13: Average processing time (seconds) per frame
using VBAR for each (a) Video (b) Step

4.4 Comparison with different sequences

Table 6: Comparison among different types of video
sequences
Features # frame(s) # key frame(s) Average GOP
1. Camera setting

a. Camera static 750 39 19
b. Camera moving 1645 133 12

2. Activities
a. Slow motion 1350 63 16
b. Fast motion 1045 109 9

3. Scene change
a. Few scene changes 1500 94 16
b. Many scene changes 895 78 11

We compared different type of video sequences
characteristics to ascertain the potential of our proposed

approach. We classified all videos into different settings:
(1) camera settings, (2) activities, and (3) scene changes.
We analyzed the number of key frame selected for each
category. Experimental results are presented in Table 6.
Experimental results show that fast motion video
sequences have lower average GOP size, about 9, or
more key frames, about 109. Also, the number of key
frames selected for videos with frequent scene change
and moving camera are much lower. Overall, in terms of
video representation efficiency, the experiment results
demonstrate the performance of the proposed VBAR
framework.

4.5 Comparison with other work
We compared four other key frames selection methods to
ascertain the potential of our proposed approach - shown
in Table 7.

Table 7: Comparison with other key frames extraction
methods
Features Andreas [25] Liu [11] Chau [26] Ouyang[27] VBAR

1. Key frame selection
Temporal(T) Color(C) Visual (V) Motion T / C/ V

2. Application
Skimming Segmentation Efficiency Skimming Skimming

3. Test Videos
ND** 9 video 3 videos 18 videos 13 videos

4. Total Frames
ND** 1397 ND** 3912 2395

5. Analysis***
FrB FrB BlB FrB FrB/BlB

6. Temporal Constraint
Yes No No No Yes

a. Min (Reported)
ND** None 1 None 5

b. Max (Reported)
ND** None 13 None 30

*Color/Visual/Temporal **ND -Not described ***FrB-Frame-based/BlB-Block-
based

Our proposed approach not only outperforms these
methods, but also has three other advantages. Firstly, it
applies temporal constraints for key frame selection (Step
3). Our proposed temporal constraints prevent key
frames from occurring too far apart in time or too close
together in time. Although Andreas's work [25] uses
temporal constraints to filter out unsuitable clusters, its
method only uses temporal constraints to cluster the
frames in a video and to select a representative frame for
each cluster in order to prevent selecting key frames
which appear too close together in time. Chau's work
[26], on the other hand, gives a set of key frame based on
an objective model of visual content flow, but it failed to
consider the temporal constraints in its method. As such,
there exist many video shots having a GOP size as small
as 1 to a maximum size of 13. Secondly, Liu's work [11]
which extracts key frames based on parametric Gaussian
Mixture Model (GMM) that are associated with video
objects but did not report the computation time required.
In comparison, the VBAR has lower computational
complexity, as reported in Table 5, and a simpler
representation. It is easy to implement and comes with a
user-friendly interface. The VBAR system is able to
generate summary for quick browsing of video content,
i.e. dynamically generate flexible and effective summary.

360 Informatica 35 (2011) 351-361 P.Y. Lau et al.

Though Ouyang's work [27] proposed a similar
interactive model of key frame selection, the graphical
user interface does not describe and display how the
parameters are selected and managed for the key frame
selection.

5 Conclusions
In this paper, we assume that the intra-coded frame
assignment and the intra-quantization parameter is taken
care by the decoder. We focus on selecting intra-coded
frames that best represent and describe the entire video
well. We studied viewer's browsing patterns and
incorporate viewer's interest into the key frame selection.
Our major contributions are threefold. First, our proposed
method manage to reduce the number of intra-coded
frames by optimally selecting key frames using the
proposed tri-step approach, being a simpler and faster
alternative. Second, we proposed to limit the GOP size to
allow bandwidth saving and to avoid video degradation
due to unavailability of key frames. Third, we implement
our framework on VBaR on a software platform to enable
users to analyze selected video using a user-friendly
graphical user interface.

The proposed VBaR framework is evaluated based on
four important aspects: 1) key frame analysis, 2) GOP
analysis, 3) system performance, and 4) performance
comparison. The framework has been tested under
various scenarios: sports video sequences, news video
sequence, and other motion-filled sequences. The results
were nevertheless promising: a consistent ability to
divide a video into different clips using representative
key frames. We anticipate that by delivering interesting
video clips to subscriber, i.e. select representative key
frames for all targeted content, we could minimize
interactivity and eventually, reduce performance
bottlenecks, long delays and poor user experience for
subscribers, especially when roughly 40% of sessions
contain some interactivity.

Future plans include testing the framework by using
videos taken from different formats and scale. For the
specific case of the intra-frame selection, where
quantization parameter (QP) selection and transcoding
technique selection can further reduce channel bandwidth
utilization within a guaranteed picture quality, there is
still considerable amount of work ahead. Nonetheless,
the usage of VBAR in the present conditions is possible,
providing a means to divide an entire video into video
data units using representative key frames, and deliver
only "watch" video data units to the STB, thus, enabling
tremendous savings in bandwidth.

Acknowledgement
This work was supported by research fund of Hanyang
University (HYU-2006-I).

References
[1] T. Syeda-Mahmood and D. Ponceleon, "Learning

video browsing behavior and its application in the
generation of video previews", in Proceedings of

the Ninth ACM International Conference on
Multimedia, Ottawa, Canada, 30 September - 05
October, 2001, pp. 119-128.

[2] Y. Zhu and D. Zhou, "Video Browsing and
Retrieval Based on Multimodal Integration", in
Proceedings of the 2003IEEE/WIC, 13 - 17
October, 2003, pp.650.

[3] H. J. Zhang, J. Wu, D. Zhong and S. W. Smoliar,
"An integrated system for content-based video
retrieval and browsing", Pattern Recognition, vol.
30, no. 4, pp. 643-658, 1997.

[4] T. Syeda-Mahmood, S. Srinivasan, A. Amir, D.
Ponceleon, B. Blanchard, D. Petkovic , "CueVideo:
a system for cross-modal search and browse of
video databases," in Proceedings IEEE Conference
on Computer Vision and Pattern Recognition,
vol.2, no., pp.786-787 vol. 2, 2000

[5] L. He, E. Sanocki, A. Gupta, and J. Grudin, "Auto-
summarization of audio-video presentations", in
Proceedings of the Seventh ACM international
Conference on Multimedia (Part 1), Orlando,
Florida, United States, 30 October - 05 November
1999, pp. 489-498.

[6] C. Chen and Z. Yang, "MPEG4 Compatible Video
Browsing and Retrieval over Low Bitrate Channel",
in Proceedings of the Third IEEE Pacific Rim
Conference on Multimedia: Advances in
Multimedia information Processing, 16 - 18
December, 2002, pp. 1221-1226.

[7] M. Mills, "A magnifier tool for video data", in
Proceedings of ACM Human Computer Interface,
pp. 93-98, May 1992.

[8] W. Wolf, "Key frame selection by motion
analysis", in Proceedings of the 21st International
Conference on Acoustics, Speech, and Signal
Processing, vol. 2, pp. 1228-1231, 1996.

[9] H. Zhang, Z. Liu, H. Zhao, G., Cheng
"Recognizing Human Activities by Key Frame in
Video Sequences", Journal of Software, vol. 5, no.
8, pp. 818-825, Aug 2010

[10] A. Divakaran, K. A. Peker, R. Radhakrishnan, Z.
Xiong and R. Cabasson, "Video Summarization
Using MPEG-7 Motion Activity and Audio
Descriptors", Video Mining, Rosenfeld, A.;
Doermann, D.; DeMenthon, D., October 2003
(Kluwer Academic Publishers)

[11] L. Liu and G. Fan; , "Combined key-frame
extraction and object-based video segmentation,"
IEEE Transactions on Circuits and Systems for
Video Technology, vol.15, no.7, pp. 869- 884, July
2005.

[12] X. Song, G. Fan, , "Joint Key-Frame Extraction and
Object-Based Video Segmentation", in Proceedings
of IEEE Workshop on Motion and Video
Computing, vol.2, pp.126-131, Jan. 2005.

[13] X. Song, G. Fan, "A New Video Analysis
Approach for Coherent Key-frame Extraction and
Object Segmentation", in Proceedings of IEEE 7th
Workshop on Multimedia Signal Processing, pp. 1-
4, Oct. 30 2005-Nov. 2 2005

[14] P. Aigrain, H. J. Zhang, D. Petkovic, "Content-

CONTENT-SENSITIVE APPROACH FOR. Informatica 35 (2011) 351-361 361

Based Representation and Retrieval of Visual
Media: A State-of-the-Art Review", MultToolApp,
no. 3, pp. 179-202, November 1996.

[15] J. Lee, I. Shin H. W. Park, "Adaptive intra-frame
assignment and bit-rate estimation for variable
GOP length in H.264", IEEE Transactions on
Circuits and Systems for Video Technology, vol. 16,
no. 10, pp. 1271-1279, Oct 2006.

[16] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A.
Luthra, "Overview of the H.264/AVC video coding
standard", IEEE on Transactions Circuits and
Systems for Video Technology , vol. 13, no. 7, 2003,
pp. 560-576.

[17] R. Hammoud and R. Mohr, "A probabilistic
framework of selecting effective key frames for
video browsing and indexing," in Proceedings of
International Workshop on Real-Time Image
Sequence Analysis, pp. 79-88, 2000.

[18] A. Girgensohn and J. Boreczky, "Time-constrained
keyframe selection technique," Multimedia Tools
Application, vol. 11, pp. 347-358, 2000.

[19] X. C. He and N. H. C. Yung, "Corner detector
based on global and local curvature properties",
Opt. Eng., vol. 47, no. 5, 2008, pp. 057 008-1-057
008-12,.

[20] C. Y. Wei, M. B. Evans, M. Eliot, J. Barrick, B.
Maust, and J. H. Spyridakis, "Influencing web-
browsing behavior with intriguing and informative
hyperlink wording", J. Inf. Sci., vol. 31, no. 5,
2005, pp. 433-445.

[21] T. Zhu, R. Greiner, G. Haubl, K. Jewell, and R.
Price, "Using Learned Browsing Behavior Models
to Recommend Relevant Web Pages", in
Proceeding of the 2005 International Joint
Conference on Artificial Intelligence, Edinburg,
Scotland, 30 July-5 August, 2005, pp. 1589-1590.

[22] B. A. Huberman, P. L. T. Pirolli, J. E. Pitkow, and
R. M. Lukose, "Strong Regularities in World Wide
Web Surfing", Science, Apr 3, vol. 280, no. 5360,
pp. 95- 97, 1998

[23] D. Tao, J. Cai, H. Yi, D. Rajan, L. T. Chia, and K.
N. Ngan, "Dynamic Programming-Based Reverse
Frame Selection for VBR Video Delivery Under
Constrained Resources," IEEE Transactions on
Circuits and Systems for Video Technology, vol. 16,
no.11, pp. 1362-1375, 2006.

[24] E. R. Iain, "Video Codec Design", John Wiley &
Sons, April 2002.

[25] A. Girgensohn and J. Boreczky, "Time-Constrained
Keyframe Selection Technique", Multimedia Tools
Application, vol. 11, no. 3, 347-358, August 2000.

[26] W.-S. Chau, O. C. Au, T.-W. Chan, T.-S. Chong,
"Optimal key frame selection using visual content
metric," in Proceedings of International
Conference on Communications, Circuits and
Systems, vol. 1, pp. 551- 555, 27-30 May 2005.

[27] J. Ouyang, J. Li, and H. Tang, "Interactive key
frame selection model", Journal Visual,
Communication and Image Representation, vol. 17,
no. 6, pp. 1145-1163, December 2006.

362 Informatica 35 (2011) 351-361 P.Y. Lau et al.

Informática 35 (2011) 363-361 351

Multivariable Generalized Predictive Control Using an Improved
Particle Swarm Optimization Algorithm
Moussa Sedraoui and Samir Abdelmalek
Laboratoire (PI : MIS) Problèmes Inverses: Modélisation, Information et Systèmes,
Université 08Mai 1945, Guelma, Algérie
E-mail: msedraoui@gmail.com

Sofiane Gherbi
Laboratoire d'Automatique de Skikda (LAS),
Université 20 Aout1955, Skikda, Algérie
E-mail: sgherbi@gmail.com

Keywords: improved particle swarm optimization, multivariable generalized predictive control, feasible region

Received: November 16, 2010

In this paper, an improvement of the particle swarm optimization (PSO) algorithm is proposed. The aim
of this algorithm is to iteratively resolve the cost problem of the Multivariable Generalized Predictive
Control (MGPC) method under multiple constraints previously reduced. An ill-conditioned chemical
process modelled by an uncertain Multi-Input & Multi-Output (MIMO) plant is controlled in order to
verify the validity and the effectiveness of the proposed algorithm. The performances obtained are
compared with those given by the MGPC method using the standard PSO algorithm. The simulation
results shows that the proposed algorithm outperforms standard PSO algorithm in terms of performance
and robustness.

Povzetek: Predstavljena je metoda optimiranja z roji za nadzor s splosnim napovedovanjem in vec
spremenljivkami.

1 Introduction
Multivariable generalized predictive control (Morari &
Lee, 1999) is a very powerful method. It has been the
subject of many researches during the last few years and
it was applied successfully in industry, particularly in
chemical processes. It is based on MIMO predictive
model [1], [2] where the expected behaviour of the
system can be predicted in the extended time horizon.
The MGPC law is obtained by minimizing linear or non-
linear criterion (Magni, 1999, Duwaish, 2000). This
criterion is composed by the sum of the square prediction
errors between the predicted and desired outputs, the
weighted sum of the square change-controls (control-
increments) and others [3]. The constraints inclusion (as
mathematical inequalities type) distinguishes most
clearly MGPC from other process control paradigms as
suggested in (Richalet, 1993, Qin 1997, Rawlings, 1999).
These constraints are imposed in order to ensure a better
stability and performance robustness (Al Hamouz and
Duwaish, 2000, Imsland, 2005). The MGPC method
formulates the constraint optimization problem at every
step time for solving the optimal control move vector [4].
At the next sampling time, a new process measurement is
received, the process is updated, and a new constraint
optimization problem is solved for the next control move
vector. An efficient randomized constraint optimization
algorithm is suggested to the MGPC method named by

PSO algorithm (Rizvi & al, 2010, Yousuf & al, 2009, Al
Duwaish, 2010). This algorithm explores the search
space using a population of particles, each one with a
particle or an agent, starting from a random velocity
vector and a random position vector. Each particle in the
swarm represents a candidate solution (treated as a point)
in an n-dimensional space for the constraint optimization
problem, which adjusts its own "flying" according to the
other particles [5]. The PSO algorithm can resolve
successively various constraint optimization problems,
such as linear or non-linear, convex or non-convex
problems. Unfortunately, it cannot provide satisfactory
results when the MGPC method is applied to poorly
modelled processes [6] operating in ill-defined
environments. This is, as often, the case when the plant
has different gains for the operational range designed by
user's trial-and- error. In addition, the PSO algorithm's
convergence cannot satisfy multiple time domain
specifications if the process (to be controlled) is
constrained by a high number of hard constraints
(Leandro dos Santos Coelho & al, 2009). Several
heuristic algorithms have been developed in recent years
to improve the performance and set up the parameters of
the PSO algorithm [7].This paper investigates the
analysis of the above mentioned problems. Two main
contributions are proposed in this paper in order to

mailto:msedraoui@gmail.com
mailto:sgherbi@gmail.com

364 Informatica 35 (2011) 363-374 M. Sedraoui et al.

improve the performances of the MGPC method. The
first one consists to reduce (if possible) the imposed
inequality constraints which are reformulated as
boundary constraints. The second one is to resolve the
bounds constraints optimization problem by the
improved PSO algorithm.

2 Unconstrained MGPC Method
All the considered matrices are in discrete time domain.

A CARIMA (Controller Auto Regression Integrated
Moving Average) model for an m inputs and m outputs
multivariable process can be expressed by [8]:

A(q-1)Ay(t):= B(q ~X)Au(t-1) + C(q ^ (t) (1)
Where

y(t) e ^ m x 1 : = [y 1 (t) y 2 (t) ••• ym(t)T

u(t) e ^ m x 1 : = [M l (t) «2(t) ••• «m(t)Y

A(q-1), B(qand C(q_1)are m x m monic

polynomial matrices^ Set C(qequal to the unity

diagonal matrix^ £(t) is an uncorrelated random process

and A (q = 1 - q_1, this form enables to introduce an
integrator in the control law^ Without lost of generality
one can suppose A as diagonal polynomial matrix^

yi (t) e ^ , ui (t) e ^ denotes respectively, the
process output and the control input of the channel
number ' i \ q 1 denotes the backward shift operator The

role of A (q i s to ensure an integral action of controller
in order to cancel the effect of the step varying output in
the channel ' i \

As in all receding horizon predictive control
strategies, the control law provides that, for each channel
'i ' , the control-increment Aui (t) which minimizes the
following unconstraint cost problem of the MGPC
method [8]:

m f N2 N«
J : = Z i [y (t + j /1) - w (t+j)}2+Ai £ K (t + j -1)]2

j=1 j = 1

(2)
Where
yi (t + j) e ^ is an optimum j-step-ahead prediction

of the system output vector on data up to time t,
therefore, the expected value of the output vector at time
t if the past input vector, the output vector, and the future
control sequence are knowa Noting that yt (t + j) is
depending to the control-increment Aui from resolving
two Diophantine equations (more details are available in
the reference [9])

wi (t) e ^ is the future set-point or the reference

sequence for the output yi (t) •
N2, N'u (with respect: N'u < N2) denotes

respectively, the maximum output prediction horizon

(assumed equal to N2 e) and the maximum control

prediction (assumed equal to Nu e) for each channel

'/"• A e denotes the positive parameter weighting the
control input for each channel ' i \

3 Classification of Constraints and
Problem Formulation

In constrained control, a set of inequality constraints may
be set as addition of the control objective and the
variation limits of certain variables to the given ranges:

vi < vi (t + j) < vi, with i := 1,2,„m and

j := N
Sl,•••,N

s2 •

Where
vi (t + j) e ^ is a variable under restriction,
vi e ^ and vi e ^ are the lower and the upper

boundaries,
Ns1 and Ns2 are the lower and the upper constraint

horizons respective^
The two main objectives of constrained predictive

control are set-point tracking and prevention / reduction
of constraint transgressions^ These constraints can be
imposed (with respect to the time index) on the control-
increment vector, or/and on the control vector as follows:

- Constrained on the control-increment:
u <Aui (t + j) < Aui (3)
Where i = 1,2,,,m and j = 0V„, Nu - 1 •

- Constrained on the control:
ut < ui (t + j) < ui (4)

Where i = 1,2,,,m and j = 0V„, Nu - L
By using:

j
ui (t + j) := ui (t -1) + £ Aui (t + k) (5)

k=0

The control constraints (4) becomes as follow:
j _

u - ui (t -1) < £ Aui (t + k) < ui - ui (t -1) (6)
k=0

The constraints on the control vector and the rate of
control changes, with respect to the batch index, can be
easily combined together:

(7) Amq 'AU < Bmq

Where

AU,

f AU (t) ^

AU (t +1)
(m-Nu)x1 • denotes the design

VAU(t + Nu - 1) ,

parameter vector which will be determined later by the
PSO algorithm, it contains the future control- increment
vector (AU (t + j))mx1 of each channel as:

f Au1(t + j) ^

AU (t + j):=
Au2(t + j)

Aum (t + j) / j = 0 , 1 , - , N „ -1

1=1

MULTIVARIABLE GENERALIZED PREDICTIVE... Informatica 35 (2011) 363-374 365

(Amq) > {Binq inqj(4.m.nu)y.(m.Nu) , \Btnq j (4 m N)x1
 3 1 6 d e f i n e d by:

(diag(Imxm
) ^

À : = inq •
- diag(Imxm)

t r i l (I mxm)

- tril(Imxm) .

Where

diag (Imxm) e ^ (m N ") x (m N ") denotes the unity diagonal

matrix, and tril(Imxm) e ^ (m N ") x (m N ") denotes the lo

triangular matrix of the unity diagonal matrix (I m x m) .

B :
inq ~

K 1
-[Au

l(m-Nu)x1

i J(m-Nu)x1

[u i - U i (t - 1)] (m ,

- [U i - u i
 (t - 1)],

l(m-N„)x1

(m - N u)x1

as:
J (AU, t) :_AUT - Q 2 -AU + QT -AU + Q0

Where Q2 :_ G T • G + A , QT :_ 2(r - W)T G and

Qo : _ (r - W) T - (r - W)
A :_ A-1 (m - N)x(m - N) is diagonal matrix weighting

projected set-point vector.
l are the polynomial matrices

min J (AU, t) : _ A U t -Q2 - AU + QT - AU + Q0
AU

Is.t: À inq A U — Binq

(9)

propose a systematic method that determines the
minimum set vector of limiting constraints. The lower
and the upper bounds of the feasible region are given as
below:
For each channel i := 1, —, m , the control-increment
Aui (t) is simultaneously constrained by:
1- For the control prediction horizon j = 0 :

(10)

The cost index (2) can be expressed in matrix form

(8) J —

I Au- < Aui (t) < Aui

[ui - u(t -1) < Aui(t) < ui - u(t - 1)

It is easy to see that the new lower and upper bounds are
determined by:

v i(t) < AU- (t) < V(t) (11)

Where

vi (t) := max{Aui ui - u (t -1)}

Vj (t) := min{Au, ut - u (t -1)}

2- For the control prediction horizon j = 1:

Aui < Aui (t +1) < Au-

(12)

(13)

(14)
I ui - u(t -1) < Aui (t +1) + Aui (t) < u- - u(t -1)

The new lower and upper bounds are determined for
j =1 by:

Vi (t +1) — AM1 (t +1) — Vi (t +1) (15)
the control-increment vector, and W(m N2)x1 is the Wh e r e

G(m-N2)x(m-Nu), T(m-N2)x1

which are determined by the recursively resolution of the
two Diophantine equations [9].
The cost index (8) and the inequality constraints (7)
formulate the following constraint optimization problem
as:

vi (t +1) :_ max{AM1 {ui - u(t - 1) } - vi (t)}

Vj (t +1) :_ min{Au i {ui - u(t -1)} - Vi (t)}

(16)

(17)
This procedure is repeated until the control prediction
horizon j = Nu - 1 . Therefore the control-increment
Aui (t + Nu -1) is constrained by the new bounds:

Nu-2

Vi (t + Nu -1) := max{Aui {ui - u (t - 1) } - ^ v t (t + k)}

Now, an optimal control vector is given by the PSO
algorithm. This algorithm should minimize the objective
function (8) under 4 x m x Nu inequality constraints. The
computational requirements of the PSO algorithm
depend heavily on the number and the type of the
constraints to be satisfied. An efficient off-line constraint
PSO algorithm, suggested by Ichirio & al, 2009, can
resolve this problem [10]. Unfortunately, this algorithm
is difficult to extend to the MGPC method for two
reasons: the first one is due to a large dimension of the
inequality constraints which needs excessive
computation time. The second one is due to a real-time
output feedback implementation of the MGPC method
which requires a minimum consuming time. To resolve
these above problems, the inequality constraints should
be reduced, for each step time, and reformulated as
bounds constraints type. Only those constraints (which
limit the feasible region) must be taken into account. The
efficiency of the PSO algorithm can be increased if the
superfluous constraints (which do not limit the feasible
region) should be eliminated [11]. In this paper we

k _0

Nu-2
(18)

vi (t + Nu -1) :_ min{Aui {ui - u(t -1)} - ^Vi (t + k)}
k _0

(19)
Then, for each step time valuet0 ,tj ,---,tmax , the feasible

region D(i, j, t):_ (vt (t + j) vt (t + j)) j_0,-Nu -
i_1,-" ,m

j can be

determined by the following proposed algorithm:

3.1 Reduced constraints algorithm
For each point time t0, t1, , t„ the feasible region is
determined by the followings steps:
[Step 1]: Set the first counter i ^ 1 which denotes the
number of channels, and go to the next step.
[Step 2]: Set the second counter j ^ 0 which denotes the
control horizon prediction, and go to the next step.
[Step 3]: Set the parameters hmax ^ 0, hmin ^ 0 and go
to the next step.
[Step 4]: Build the followings ranges:
bound_maxi- := {Au-- {u- - u t (t - 1) } - h m a x } .

366 Informatica 35 (2011) 363-374 M. Sedraoui et al.

bound _ min i := {Au, {ui - ui (t -1)} - hmin }.
[Step 5]: Calculate the new upper and the new lower
bounds which limit the control- increment Aui (t + j) by:

vi (t + j) := min{bound _ max,}

vi (t + j):= max{bound _min i }
From these above bounds, the feasible region is
determined as follow:
D(i, j, t) := v (t + j) vt(t + j))

[Step 6]: Update the parameters: hmin , h max as follows

h m a x ^ h max + v , (t + j K

h m i n ^ h m i n + v, (t + j) , and go to the next step
[Step 7]: Update the second counter j ^ j +1 and go
back to the step 4 if j -< Nu - 1 . Otherwise, go to the next
step.
[Step 8]: Update the first counter i ^ i +1 and stop
algorithm if i := m . Otherwise go back to the step 2.
From this above algorithm, the constraint optimization
problem (9) under inequality constraints is reformulated
as the bounds optimization problem:
| m i n J (AU, t) : = A U t • Q2 •AU + QT •AU + Q0

j A U (20)
[s.t: AU < AU < AU

Where AU , AU denotes respectively, the new lower and
the new upper bounds vector which limit the feasible
region D(m,Nu>2 := (AU, AU) , with:

(M > . N u) x 1 := (v, (0 £ (t + 1) . . . v , (t + Nu - \)) T = h 2 . . . m

(A U) (m . N u) x 1 : = f ~ (/) v,(t + 1) . . . 7 f t + Nu - 1))T=1,2..m

From (20), it is easy to see that the inequality constraints
number is reduced to m x Nu constraints at each step
time. This dramatic reduction has a capital importance
for the success of the PSO algorithm.
Now, we are able to find the optimal control of the
MGPC law. The new constraint optimization problem
(20) should be resolved for each step time
t := t 0 , t j , . - . , tm a x , its solution vector AU * denotes the
optimal design parameter vector. Only the first m rows

of AU * is used to obtain the optimal desired control-
increment vector of each channel (' i '). The optimal
control vector is obtained by adding the previous control
vector to the optimal control-increment vector as follow:
ui (t):= ui (t -1) + Au*(t) (21)

4 Improved PSO Algorithm [6]
Particle swarm optimization algorithm, introduced first
by Kennedy and Eberhart in (1995), is one of the modern
heuristic algorithms which belong to the category of
Swarm Intelligence method (Kennedy, 2001). The PSO
algorithm uses a swarm consisting of Np e K particles for

each control-increment vector (Au, (t + j)) j = 0 1 . N - 1 to
,=1,2,.-m

get an optimal solution Au* (t + j) which minimizes the
optimization problem (20). The position of (ith) particle
and its velocity are respectively denoted as [12]:

AUi (t + j) : = (A u u (t + j) Au i , 2 (t + j) — Aui,Np (t + j)f

Wi (t + j) : = W i , i (t + j) Wi,2 (t + j) V, N, (t + j) f

Then, the position of the (ith) particle, Au, (t + j) , is
based on the following update law:

for £ = 1,2,...£max , which indicates the iteration
number [12]

Vi
f+1 := c W + cirfi (h ^ - Auf)+ ^ (^ i " Auf 1

2 2,A swarm

Auf+1 := Auf + v f + 1

(22)

(23)
Where c1 and c2 are respectively, the cognitive

(individual) and the social (group) learning rates and are
both positive constants. The value of cognitive parameter
c1 signifies a particle's attraction to a local best position
based on its past experience. The value of social
parameter c2 determines the swarm's attraction towards a
global best position.

c0 e is the inertia weight factor whose value
decreases linearly with the iteration number (Shi &
Eberhart, 1999) as [13]:

C0 : = ^max

fe -e . ^ max min

fmax
(24)

Where dmax and 0mm are the initial and the final IIldA II11I1
values of the inertia weight, respectively. The values of
dmax = 0.9 and dmm = 0.4 are commonly used [13].

The random numbers r1 ,i and r2 ,i are uniformly

distributed in [0,1].

Hbest,£ and h^L denotes respectively, the best
previously obtained position of the (ith) particle (the
position giving the lower value of the objective criterion)
and the best position in the entire swarm at the current
iteration £ [10]:

r (25) Hbest:= argmin{J (Auf),0 < r < f}
Aui

hWi := argmm{J(Au f),Vi}
Auf

(26)

From equation (23), some current position of (ith)
particle (in each dimension) can exceed the
corresponding lower bound or upper bound of the
feasible region. Consequently, the given optimal control
vector of the MGPC method cannot satisfy some
specifications and also some constraints are non-
satisfactoriness' in some range time. To avoid, we should
improve the convergence of PSO algorithm by adjusting
only the corrupted position of (ith) particle with the
region around the current established solution, if it is too
smaller than the corresponding lower bound, its value v,
should be replaced. If it is too higher than the

MULTIVARIABLE GENERALIZED PREDICTIVE... Informatica 35 (2011) 363-374 367

corresponding upper bound, then its value is replaced by
Vj . The proposed modification can be formulated as
follows:

Let consider:
AM/ (t + j) : The corrupted position of (ith) particle

given at current iteration £ := q.

Vi (t + j) , vi (t + j) : The lower bound and upper
bound which are determined by the reduced constraints
algorithm. So that, the above corrupted position can be
adjusted by using the following inequalities:

fvi (t + j) : if AM/ (t + j) X Vi (t + j)

5 Simulation Results and Discussion
In this section, a multivariable generalized predictive
control method using a modified particle swarm
optimization algorithm is applied to a distillation column
which is MIMO plant with two input and output vectors
(benchmark problem, see [14]). The two inputs are the
reflux and the vapour boil up rate and the outputs are the
distillate and the bottom product. The results are
compared with those given by the MGPC method using
the standard PSO algorithm. The mathematical model is
given by [14]:

A u f (t + j):=< G(s) :=
1

k (t + j) : if Auf (t + j) y vt (t + j) 75s +1

0.878 - 0.864

1.082 -1.096
Ke

(27)
Consequently, from the equation (23), the current

velocity should be limited by the following bounds:

vt - A u f 1 X v~ - Am^1 (28)
Now, the modified current positions with their

modified velocity are used to improve the next best
position and their velocity vector for the next iteration as
follow:

Ki(i=1,2) e[0.8 1.2], Ti(i=12) e[0.0 1.0].

0

(31)

W?+ï := coWf + crf \Hr,q -Au 1r1f (H
best ,q)+ c rq (hbest,q - A u f

/ + c 2 r 2 , i Vhswarm Aui

Auf+1 := Auf + W
f+X

(29)
(30)

The improved PSO algorithm consists of the
following steps:

4.1 Proposed algorithm
For each step time t := t0,t1,—,tmax the optimal control-
increment is determined by the following steps:

[Step 1]: Determine the lower bound and the upper

boundvi (t + j) ,Vj (t + j) which are corresponding the

design parameter [AM, (t + j)]i:=i/--,»N ^.

[Step 2]: Initialize random swarm positions and
velocities:

initialize a population (array) of particles with
random positions and velocities (array) from the search
domain D := (AU, AU).

Set the counter £ ^ 1 and go to the next step.
[Step 3]: Evaluate the objective criterion (20) and

obtain Hbest'£, h^ti according to (25) and (26).
[Step 4]: Update of a particle's velocity and its

position according to (22) and (23).
[Step 5]: Check each parameter of the particle's

position by the following corresponding lower bound and
upper boundvt (t + j) , vi (t + j) . Replace only those

exceeding these above bounds.
[Step 6]: Update the counter £ ^ £ +1 and go back

to the step 3 if £ X £ max . Otherwise, stop algorithm and
take the best position vector as an optimal solution which
minimize the constrained optimization problem (20).

¿(¿=1,2)

Where
ri, Ki denotes respectively, the uncertainty

temperatures and uncertainty gains of the process.
The time domain specifications are formulated, for

the time range t e [0,400] minutes, as below:

\ a- For the first set-point reference vector: w = (1 0)7

\ the first and the second output channels yjand y2must
satisfy[14]:

(51): y j (t) > 0.9 in more than 30 minutes.

(52): y1(t) < 1.1: the maximum over-shoot
corresponding the first output channel cannot exceed
11% for all range time t e [0,400].

(53): 0.99 < y^t») < 1.01: the static error value

cannot exceed 1% (\y1 (») - wx (») < 1%).
(54): y2(t) < 0.5: the maximum over-shoot of the

second output channel cannot exceed to 50% for all
range time t e [0,400].

(55):For t ^ » : -0.01 <y 2 (t) < 0.01: the static error
value cannot exceed 1%. From another word:

|y2 (») - w2 (») < 1% .

(56):Closed loop stability.
(57):Control signals should be limited by

[- 200 + 200].
(58):Control-increment signals should be limited by

[-12 +12].

For the set-point reference vector: w = (1 0 f , the
sampling time Te = 1 minute is used to determine a
CARIMA predictive model of the chemical process for
two followings parameters cases [14]:

K 1 2 = r u = 1 and K1 = 1.2, K 2 = 0.8, r u = 1.

b-The same previous time domain specifications
should be satisfied for the second set-point reference

vector w = (0 corresponding to the low gains

direction K1 = K2 = 0.8 and the same time delay
constants z1 = T2 = 1.

Xi s

K,e ~r2S 0 2

q

368 Informatica 35 (2011) 363-374 M. Sedraoui et aL

The MGPC method is tuned by choosing:
(N2, N'u , A) i = 1 , 2 = (8,6,0^01) at time range t := [0,400]
minutes^

For each step time: t := t 0 , t 1 , - , 4 0 0 , the feasible
region is determined from the following constraints:

-200 < ut (t + j) j=0 - 5 < +200 •
i =1,2

-12 <Aut (t + j) j=0,- ,5 < +12 •
i =1,2

From the reduced constraints algorithm (see section 3J) ,
these above inequality constraints are reduced in order to
determine the search space D at each step time^ The
constrained optimization problem is resolved by standard

and improved PSO algorithms according to the following
parameters:

- Swarm size: Np := 24 •

- Maximum iteration: £ max := 100 •

- Cognitive and social learning rates: c1 = c2 := 1 •

For the set-point reference vector: w = (1 0)T and
the parameter system's: K1 2 = z1 2 = 1, the figures L1 to
L3 shows the results given by the MGPC method using
the standard PSO algorithm (dashed curves), and the
MGPC method using the improved PSO algorithm (line
curves) The table1 summaries the results obtained by the
two algorithms^

1.1
1

0 . 9

= 0 . 6

0 . 4

0 . 2

0

0

0 . 5

^ 0 . 2

0

- 0 . 2

1.1
1

0 . 9

= 0 . 6

0 . 4

0 . 2

0

0

0 . 5

^ 0 . 2

0

- 0 . 2

1.1
1

0 . 9

= 0 . 6

0 . 4

0 . 2

0

0

0 . 5

^ 0 . 2

0

- 0 . 2

1.1
1

0 . 9

= 0 . 6

0 . 4

0 . 2

0

0

0 . 5

^ 0 . 2

0

- 0 . 2

1.1
1

0 . 9

= 0 . 6

0 . 4

0 . 2

0

0

0 . 5

^ 0 . 2

0

- 0 . 2

1.1
1

0 . 9

= 0 . 6

0 . 4

0 . 2

0

0

0 . 5

^ 0 . 2

0

- 0 . 2

1.1
1

0 . 9

= 0 . 6

0 . 4

0 . 2

0

0

0 . 5

^ 0 . 2

0

- 0 . 2

1.1
1

0 . 9

= 0 . 6

0 . 4

0 . 2

0

0

0 . 5

^ 0 . 2

0

- 0 . 2

3 0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0
tim e (m i n u t e s)

1.1
1

0 . 9

= 0 . 6

0 . 4

0 . 2

0

0

0 . 5

^ 0 . 2

0

- 0 . 2

; \

1.1
1

0 . 9

= 0 . 6

0 . 4

0 . 2

0

0

0 . 5

^ 0 . 2

0

- 0 . 2

1.1
1

0 . 9

= 0 . 6

0 . 4

0 . 2

0

0

0 . 5

^ 0 . 2

0

- 0 . 2

1.1
1

0 . 9

= 0 . 6

0 . 4

0 . 2

0

0

0 . 5

^ 0 . 2

0

- 0 . 2
D 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0

tim e (m i n u t e s)

Figure L1: Set-point tracking results with standard and improved PSO algorithms for w = (1 0)T and K 1 2 = r1,2 = 1 •

Figure L2: Control effort results with standard and improved PSO algorithms for w = (1 0)T and K 1 2 = r 1 2 = 1 •

MULTIVARIABLE GENERALIZED PREDICTIVE... Informatica 35 (2011) 363-374 369

»JU,— u ¡A*A J

V
200

t ime (minutes)

50

0 100

j£

rp

iu
V

200
t ime (minutes)

50

0 100

Figure 1.3: Control-increment results with standard and improved PSO algorithms for w = (1 0)T and K 1 2 = r1,2 = 1.

Specifications (S1) (S2) (S3) (S4) (S5) (S6) (S7) (S8) Decision
(Sk): yi(30) yi(400) y(400) stable

/
Unsatisfactory/

satisfactory
Unsatisfactory/

satisfactory
&

reasons
Algorithms: max(yi) time m a x (y 2) time unstable constraints constraints

Standard 1.010 1.074 23 1.010 0.343 8 0.006864 stable unsatisfactory unsatisfactory Rejected
PSO -9.1<u1<349.3

-9.9<U2<351.4
-44<Au1<93
-44<JU2<91

algorithm
(S7),(S8)

Improved 0.990 1.096 40 0.9975 0.4846 13 0.002512 stable Satisfactory Satisfactory Accepted
PSO -20.1 <u i<200 -12<Auj<12 algorithm

-20.3<U2<199 -12<Au2<12 -20.3<U2<199 -12<Au2<12

Table 1: Summary of the results (unsatisfactory performances are in bold) for the nominal model and the set-point

reference w = (1 0 ^ .

According to the figure 1.1, we can see that, the tracking
dynamic of set-point reference vector found by MGPC
method based on a standard PSO algorithm is better than
the other algorithm but unfortunately, the time domain
specifications: (S7) and (S8) are not satisfied.

In the figure 1.2, the obtained control signals of the
MGPC method based on standard PSO algorithm exceed
the constraint ranges at t := {5,6,-15} minutes such as:
u1max (9) = 349.3 and u2max (9) = 351.4 . In addition, the

control-increment signals presented in the figure 1.3 also
violate the constraint ranges at times:

t := {(2 - 5), (7-11) , (13 - 22)} minutes.
Consequently, the performance robustness of this method
is very poor in comparison with the MGPC method using
the improved PSO algorithm which is capable to satisfy
all time domain specifications. These results confirm the
usefulness and the robustness of the proposed algorithm.

Figures 2.1, 2.2, 2.3 and table 2 give the results of
the MGPC method with the following parametric
changes in the process: (K1 = 1.2,K2 = 0.8,z12 = 1) for

the set-point reference vector w = (1 0 ^ .

According to the figures 2.1 to 2.3, the better results are
obtained by the improved PSO algorithm which satisfies
all time specifications (S1 to S8). These results can be
explained by the best stability robustness against the
process parametric disturbances. Furthermore, the control
and the control-increment signals from the standard PSO
algorithm show a dramatic oscillation at transient time
region and exceed the constraint ranges. In fact, this
algorithm cannot fulfill the three followings time domain
specifications: (S2) withmax(y1) = 11.124%, (S7) with
u1max = 251, u 2 m a x = 374 and(S8)with
-26.4 < Au1 = 70.76 , -39.7 < Au2 = 99.05 , which can
be explained by a high sensitivity to the parametric
process variations. Thus, from these figures and table 2,
we confirm the superiority of the proposed algorithm.

Figures 3.1, 3.2, 3.3 and table 3 give the results of
the MGPC method using both algorithms when low gains
directions of the process and set-point reference vector

change simultaneously as follows:
(K = 0 .8 ,K 2 = 0 . 8 , r u = 1), w = (0 1)T .

370 Informatica 35 (2011) 363-374 M. Sedraoui et al.

Figure 2.1: Set-point tracking results with standard and improved PSO algorithms for w = (1 0 f and
K = 1.2, K 2 = 0.8, r u = 1).

co
nt

ro
l e

ffo
rt

u1

0
0

0

0

0
0

0
0

0
 A

co
nt

ro
l e

ffo
rt

u1

0
0

0

0

0
0

0
0

0

co
nt

ro
l e

ffo
rt

u1

0
0

0

0

0
0

0
0

0

Y \

co
nt

ro
l e

ffo
rt

u1

0
0

0

0

0
0

0
0

0

Y \ - ""

co
nt

ro
l e

ffo
rt

u1

0
0

0

0

0
0

0
0

0

co
nt

ro
l e

ffo
rt

u1

0
0

0

0

0
0

0
0

0

co
nt

ro
l e

ffo
rt

u1

0
0

0

0

0
0

0
0

0

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0
t i m e (m i n u t e s)

co
nt

ro
l e

ffo
rt

u2

0
0

0

0

0

0
0

0
0

0
0

co
nt

ro
l e

ffo
rt

u2

0
0

0

0

0

0
0

0
0

0
0

co
nt

ro
l e

ffo
rt

u2

0
0

0

0

0

0
0

0
0

0
0

X \

co
nt

ro
l e

ffo
rt

u2

0
0

0

0

0

0
0

0
0

0
0

/ \ V - 1 r-t m

co
nt

ro
l e

ffo
rt

u2

0
0

0

0

0

0
0

0
0

0
0

/ \ V v -

co
nt

ro
l e

ffo
rt

u2

0
0

0

0

0

0
0

0
0

0
0

co
nt

ro
l e

ffo
rt

u2

0
0

0

0

0

0
0

0
0

0
0

co
nt

ro
l e

ffo
rt

u2

0
0

0

0

0

0
0

0
0

0
0

5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0
t i m e (m i n u t e s)

Figure 2.2: Control effort results with standard and improved PSO algorithms for w = (1 0 f and
(K = 1.2, K 2 = 0.8, Tj,2 = 1).

These above figures clearly show the performance
superiority of the proposed PSO algorithm over standard
PSO. For this case, the time domain specifications: S2 , S7

and S8 are satisfied with the proposed PSO algorithm,
while the same specifications are not satisfactoriness
with standard PSO. In addition, the obtained outputs by
the standard PSO algorithm converge to the set-point
references but unfortunately, two other specifications
cannot be satisfied at time t = 208 minutes which are:

(S3): |>"2(208) - w2(208)| = 5%.
(S5): |>1 (208) - wx(208)| = 3%.

6 Conclusion
In this study, we proposed an improvement of the PSO
algorithm, it has been introduced and applied to solve the

constrained MGPC problem. In order to find a feasible
region, the constraints on the controls and their
increments have been previously reduced at each step
time, the obtained convergences by improved PSO
algorithm are well improved in comparison with the
standard PSO algorithm. The efficient of the proposed
algorithm is clearly shown and the performances
robustness and the stability robustness are guaranteed
with little still sensitivity to a set-point references
changes and parametric model uncertainties. The results
of the proposed algorithm justifies its efficiency and
presents quite promising results and can be a subject of
an interesting investigations.

MULTIVARIABLE GENERALIZED PREDICTIVE... Informatica 35 (2011) 363-374 371

Figure 2.3: Control-increment results with standard and improved PSO algorithms for w = (1 0 f and

K = 1.2, K 2 = 0.8, r u = 1).

Specifications (S1) (S2) (S3) (S4) (S5) (S6) (S7) (S8) Decision
(Sk): yi(30) yi(400) yi(400) stable Satisfactory/ Satisfactory/ for

/ unsatisfactory unsatisfactory reasons (St)
max(yi) time max(y2) time unstable constraints constraints

reasons (St)

Algorithms:
Standard 1.061 1.1124 24 0.9953 0.2562 8 0.006142 stable unsatisfactory unsatisfactory Rejected

PSO -19.2<u1<251 -26.4<Au1<70.76 algorithm
-29.4<u2<374 -39.7<Au2<99.05 (S2).(S7).(S8)

Improved 0.920 1.054 40 0.9953 0.493 12 0.006142 stable Satisfactory Satisfactory Accepted
PSO -3.5<ui<133.5 -8.38<Au,<12 algorithm

-6.4<u2<199 -12<Au2<12 -6.4<u2<199 -12<Au2<12

Table 2: Summary of the results (unsatisfactory pe
(K = 1.2, K 2 = 0.8, r 1 2 = l) and the set-point reference w = (l

References
[1] D.W Clarke, C. Mohtadi & P.S Tuffs, Generalized

Predictive Control -Part I : The basic algorithm -
Part II: extensions and interpretation. Automatica,
23(2), 1987, 137-160.

[2] D.W Clarke & C. Mohtadi, Properties of
generalized predictive control, Automatica, 25(6),
1989, 859-875.

[3] P. Codron & P. Boucher, Improvement for
multivariable generalized predictive control with
multiple reference models. Proc. 12th IASTED
International Conf. Modeling. Identification. And
Control, Innsbruck, Austria, Feb.1993.

[4] T.S. Chang & D.E. Seborg, A linear approach
programming for multivariable feedback control
with inequality constraints, International journal of
control 37,1983, 583-597.

[5] M. Zribi, M. Al-Rashed & M. Alrifai. Adaptive
decentralized load frequency control of multi-area
power systems. Electrical Power and Energy
Systems, 27:575583, 2005.

[6] J.P. Coelho, P.B.M. Oliveira & J.B. Cunha.
Greenhouse air temperature control using the

formances are in bold) for the uncertainty model

o f .

particle swarm optimization algorithm. 15th

Triennial world congress. Barcelona, Spain. IFAC,
2002.

[7] L.D.S. Coelho & al. Model-free adaptive control
optimization using a chaotic particle swarm
approach. Chaos, solutions and fractals. Elsevier.
41, 2009, pp2001-2009.

[8] P. Codron & P. Boucher. Multivariable generalized
predictive control with multiple reference models:
A new choice for the reference model, ECC'93.
European Control Conf., June 28- July1993.

[9] P. Zelinka, B.R. Ilkiv & A.G. Kuznetsov.
Experimental verification of stabilizing predictive
control. Control engineering practice7. 1999, pp
601-610.

[10] I. Maruta, T. Hyoung & T. Sugie: Fixed-Structure
H œ Controller: A Meta-Heuristic Approach Using
Simple Constrained Particle Swarm Optimization.
pp:553-559.Automatica 45(2009).

[11] E.F. Camacho. Constrained Generalized Predictive
Control, IEEE Transaction on Automatic Control,
AC-38 (2), 1993, 327-332.

372 Informatica 35 (2011) 363-374 M. Sedraoui et al.

t ime (minutes)

Figure 3.1: Set-point tracking results with standard and improved PSO algorithms for w = (0 1f and
(K = 0.8, K 2 = 0.8, r u = 1).

Figure 3.2: Control effort results with standard and improved PSO algorithms for w = (0 1f and
(K = 0 .8 ,K 2 = 0 . 8 , r u = 1) .

[12] H.N. Al-Duwaish, S.Z. Rizvi & al. PSO based
Hammerstein modeling and predictive control of
non linear multivariable boiler. Control
Engineering practice, pp.1-12, 2010.

[13] S. R. Singiresu: Engineering Optimization: Theory
and Practice, Fourth Edition, by John Wiley &
Sons, Inc. Hoboken, New Jersey. pp:708-714, &
pp:761-768, 2009.

[14] D.J.N Limebeer. The specification and purpose of a
controller design case study, IEEE Conf. Decision
Control, Brighton, U.K, 1991, 1579-1580.

MULTIVARIABLE GENERALIZED PREDICTIVE... Informatica 35 (2011) 363-374 373

i

1
A

'" l f t 1 , 11 ,1 r

f
200

t ime (minutes)

Figure 3.3: Control-increment results with standard and improved PSO algorithms for w = (0 i f and
(K = 0.8,K2 = 0.8, z ^ = i) .

Specifications (S1) (S2) (S3) (S4) (S5) (S6) (S7) (S8) Decision
(Sk): y2(30) yi(400) yi(400) stable Satisfactory/ Satisfactory/ for

/ unsatisfactory unsatisfactory reasons
max(y2) time max(yi) time unstable constraints constraints (Sk)

Algorithms:
Standard 1.046 1.167 21 0.9985 0.202 8 -0.003 stable unsatisfactory unsatisfactory Rejected

PSO -379.7<uj<56 -97.7<Ju,<62.4 algorithm
-383<u2<55.3 -99.2<Ju2<62.5 (S2).(S7).(S8)

Improved 1.032 1.10 40 1.005 0.345 12 0.0009 stable Satisfactory Satisfactory Accepted
PSO -199<u1<20.3 -12<Au1<12 algorithm

-200<U2<19.9 -12<Au2<12 -200<U2<19.9 -12<Au2<12

Table 3: Summary of the results (unsatisfactory performances are in bold) for the uncertainty model

K i = 0.8,K2 = 0.8, T 2 = i)and the change set-point reference w = (0 l) 7 .

100

0

0 100 150

374 Informatica 35 (2Q11) 363-374 M. Sedraoui et al.

Informática 35 (2011) 375-361 351

Mutual Information and Cross Entropy Framework to Determine Relevant
Gene Subset for Cancer Classification

Rajni Bala
Deen Dayal Upadhyaya College, University of Delhi, Delhi, India
E-mail: rbala@ddu.du.ac.in

R.K. Agrawal
School of Computer and Systems Sciences, Jawaharlal Nehru University, Delhi, India
E-mail: rka@mail.jnu.ac.in

Keywords: cancer classification, microarray datasets, mutual information, cross entropy, gene selection

Received: August 5, 2010

Classification of microarray datasets has drawn attention of research community in last few years.
Microarray datasets are characterized by high dimension and small sample size. To avoid curse of
dimensionality good gene selection methods are needed. Here, we propose a two stage algorithm MICE for
finding a small subset of relevant genes responsible for classification of high dimensional microarray datasets.
The proposed method is based on the principle of Mutual Information and Cross Entropy. In first stage of
algorithm, mutual information is employed to select a set of relevant genes and cross entropy is used to
determine independent genes. In second stage, a wrapper based forward feature selection method is used to
obtain a set of optimal genes for a given classifier. The efficacy ofproposed algorithm is tested on seven well
known publicly available microarray datasets. Comparison with other state-of-art methods shows that our
proposed algorithm is able to achieve better classification accuracy with less number of genes.

Povzetek: Opisana je metoda za določanje relevantnih skupin genov za rakave bolezni.

1 Introduction
In last few years, classification of microarray datasets has
drawn attention of research community. Various machine
learning and data mining methods have been applied for
classification of microarray datasets. But classification of
microarray datasets faces many challenges. One of the
main challenges is that such datasets are characterized by
large number of genes and small number of samples.
This small number of samples compared to the large
number of genes wakes up the curse of dimensionality
[2]. Also, many of these genes are not relevant to
discriminate samples. These irrelevant genes not only
have negative effect on the classification accuracy of the
classifier but also increase data acquisition cost and
learning time. For better classification there is a need to
reduce dimension of such datasets.

Dimension Reduction can be done in two ways:
feature selection and feature extraction [8]. Feature
Selection refers to reducing the dimensionality of
measurement space by discarding redundant, noisy and
irrelevant features. It leads to saving in measurement cost
and the selected features retain their original physical
interpretation. In addition, the retained features may be
important for understanding the physical process that
generates patterns. Feature extraction methods like
Principle Component Analysis, Independent Component
Analysis utilize all the information contained in the
measurement space to obtain a new transformed space
and then important features are selected from the new
transformed space. Transformed features generated by
feature extraction methods may provide a better

discriminative ability than the best subset of given
features, but these new features may not provide any
physical meaning. The choice between feature selection
and feature extraction depend on the application domain
and specific training data available. In microarray
datasets one is not only interested in classifying the
sample based on gene expression but also in identifying
important genes/features. Hence dimension reduction is
normally carried out with feature selection rather than
feature extraction. Therefore, efficient feature/gene
selection methods are necessary for selecting a small set
of informative features/genes. Gene selection not only
allows for faster and efficient model building by
removing irrelevant, redundant and noisy features but
also provides better understanding of genes which lead to
a particular disease.

There are numbers of feature selection methods
proposed in last few years. These methods broadly fall
into two categories: filter and wrapper methods [8]. Most
filter methods employ statistical characteristics of data
for feature selection which needs less computation. They
independently measure the importance of features
without involving any learning algorithm. The filter
approach does not take into account the learning bias
introduced by the final learning algorithm, so it may not
be able to select the most relevant set of features for the
learning algorithm. Wrapper methods use learning
algorithm for selecting feature set. It tends to find
features better suited to the predetermined learning
algorithm resulting in better performance. But, it is

mailto:rbala@ddu.du.ac.in
mailto:rka@mail.jnu.ac.in

376 Informatica 35 (2011) 375-382 R. Bala et al.

computationally more expensive since the classifier must
be trained for each candidate subset. Hence, when
number of features is large wrapper approaches become
unfeasible.

Many filter based feature/gene selection methods have
been proposed in literature [1, 6, 14, 17, 22, 23]. Broadly
they are categorized in two categories: univariate and
multivariate evaluation methods. Univariate evaluation
methods evaluate the relevance of each feature
individually. They are simple and fast therefore
appealing and popular [3, 7, 13, 26]. However, they
assume that the features are independent of each other.
Multivariate approaches, on the contrary, evaluate the
relevance of features considering how they function as a
group, taking into consideration their dependency [4, 5,
9].

One of the univariate methods determines the
relevance of genes by computing the mutual information
between each gene and the class label. The genes are
ranked based on their relevance with class i.e. in
decreasing order of their mutual information and then top
m genes are selected. In literature, it has been observed
that the combination of individual good genes does not
necessarily lead to good classification performance.
Also, since genes are selected based on the correlation
between individual gene and target class, it doesn't
capture the correlation among genes. Hence gene subset
so obtained may contain redundant genes. A good gene
selection method is the one that not only selects the
relevant genes but also reduces redundancy among the
selected gene subset. In literature, some multivariate
methods have been suggested to reduce the redundancy
among the selected set of genes [1, 15, 22]. However,
these methods consider weighted average of only
pairwise correlation instead of considering joint
correlation among a set of features. Hence these
approaches may not select the optimal feature subset in
the presence of large number of redundant features.

In this paper, we have proposed a two stage algorithm
MICE for determining an optimal feature subset. In the
first stage, a pool of relevant and independent genes is
created using Mutual Information (MI) and cross-entropy
(CE). In second stage, forward feature selection is used
to find a compact feature subset that minimizes
classification error (maximizes classification accuracy),
from the candidate feature set.

This paper is organized as follows - Section 2 presents
some of feature selection methods based on mutual
information. Section 3 includes proposed algorithm
MICE for gene selection based on mutual information
and cross entropy. Experimental results on some well-
known publicly available datasets are presented in
Section 4. Conclusions are drawn in Section 5.

2 Mutual Information
Mutual information (MI) measures the dependency
between a feature set and target class. Mutual
information I(X m; C) between set of m features (Xm
and class label (C) is given by

I (X m; C) = JJ p (X m, C)log P (X
 m , C) ¿X dC (1)

P (X m) f (C) m

Higher value of MI means given feature set represents
the class well. Battiti [1] defined feature selection
problem as the process of selecting the most relevant m
features from the initial set of d features. Ideally,
problem can be solved by maximizing I(Xm;C) , the

joint entropy between set of features Xm and the target

class C. But it is often difficult to estimate the joint

probability density p (X m) . For this a greedy feature
selection method based on mutual information (MIFS)
was proposed by Battiti. Battiti [1] adopted a heuristic
criterion for approximating the ideal solution. Battiti's
MIFS selects the subset of features which maximizes the
information about the class corrected by subtracting a
quantity proportional to average MI with the previously
selected features. Kwak and Choi [15] proposed a greedy
feature selection method called MIFS-U which provides
a better estimate of the MI between input features and
target class in comparison to MIFS. Peng et al. [22]
suggested another variant of Battiti's MIFS as min-
redundancy and max-relevance (mRMR) criterion. In this
work a heuristic framework was suggested to minimize
redundancy and maximize relevance to select important
features incrementally [22]. In this incremental

approach, mth feature x, can be selected from the

remaining set of features which maximizes the following
criterion:

max
x ; e X - S „

I (x , , C) -
1

m - 1 X I (X j , Xi) (2)

where S m - 1 is the set of already selected (m-1) features.
However, MIFS, MIFS-U and mRMR algorithms use

incremental search approach which considers weighted
average of only pair-wise correlation instead of
considering joint correlation among a set of features.
Hence, these approaches might not select the optimal
feature subset in presence of large number of redundant
features. In this paper, we have calculated the joint MI
between a set of features and target class C under the
assumption that data follows multivariate normal
distribution. We have employed cross entropy to
determine dependency among selected genes. By
combining MI and CE measures we are able to obtain a
reduced set of non-redundant relevant genes. This allows
us to use a wrapper based forward feature selection at the
second stage to search a compact feature subset, from the
above gene set, that maximizes classification accuracy.

3 Proposed Method
To measure the relevance of a gene subset, mutual
information between gene subset and target class is
calculated for which we should have the knowledge of
the joint probability density. In reality, the probability

x e S m -1

MUTUAL INFORMATION AND CROSS ENTROPY... Informatica 35 (2011) 375-382 377

density is not known. So, we can assume parametric form
of p(Xm) and p(Xm|C) and the parameters involved in
parametric form of probability density can be estimated
from the observed data. Here, we assume that the
probability density p(Xm|C) follows multivariate normal
density which is given by

p(Xm\C) =
1

m r e x P

(2^)T \S c *
- " (X m - ß c) ' (S c) X m - ß) (3)

where j c , Z c are respectively mean and covariance of
class C data. p(Xm) is also approximated by a
multivariate normal density with mean j and
covariance S. Under this approximation, the closed form
expression for MI is known. According to Padmanabhan
and Dharanipragada [21], for multivariate normal
density, the upper bound on mutual information is given
by

Si = - j p (x i) log p(x i)dxi i = 1,2,.. . , m (11)

Dm can be used to measure dependency among

genes. Dm is nonnegative i.e. Dm >= 0. If genes

Xj, x2, x3 , . . . , xm are independent then Dm = 0 ,
whereas if there is a dependency among the set of genes
then Dm > 0 . Higher value of Dm signifies greater
dependency among the genes. For m dimensional
multivariate normal density the values of joint entropy
S and marginal entropy Si [12] are given as follows:

m 1 1
S = — log 2 ^ + — log | S | +— m

2 2 2

1 1 2 1
Si =— log 2^ H logCTi H— i = 1,2,...

i 2 2 2
m

(12)

(13)

I v p (X m ; C) = i l o g | S | - 1 H p c log | S c | (4)

^ 2 2 c
Equ. (4) gives an upper bound on joint mutual

information between m-dimensional gene vector Xm and
the target class C. However, the selected gene subset Xm
may contain redundant features which can degrade the
performance of the classifier. We can reduce the
redundancy by using cross-entropy. The cross entropy D
[12], measures the difference between the two
probability distributions f (X) and q (X) and is given
by

D(f (X), q (X))= J f (X) log f ^ d X (5)
q(X)

If we consider

f (X) = P (x2,•••, xm)
And q (X) = P () P (x 2) P (xm)

Then D takes the following form

Dm = J J P<>1)log
p (x 1 , X2, X 3 ,•••, xm

)

P 1 (X 1) P l ^ l l - P m (Xm)

(6)

(7)

(8)

d X ^ X j dXm

If x1, x2, x3,..., xm are statistically independent,

then p (x 1 , x2 , . . . , xm) = P1(x1) P 2 (x2) pm (xm) . In
this case Dm becomes zero. When features are not
statistically independent, Dm is given by

Dm =J •J P(X1, X 2 , • • • , Xm) l o g [P (X 1 , X 2 Xm A ¿ V - A , (9)

m

- E J Pi (X i
) i o g Pi (X i) d X i

Dm = - s s t m ^ ^ 1 (10)
i=1

where
S = - J J P (X 1 ,

 X
 2 ' • • • '

 Xm) l o g P (X 1 ,
 X

 2 ' • • • '
 Xm) dX

 1
 dX

 2 ~
 dX m

and

Using eqa (12) and equ. (13), we can rewrit^4e)qu. (10)
as

1 m 2 1
Dm = - Z C T — log| S |

2 i=1 2
(14)

Since the value of Dm increases with number of
features so there is need of defining normalized value
o f D m . It is known that marginal entropy Si is always

less than equal to joint entropy S i.e. St < S

i = 1,2,..., m . This allows us to write

(15) S 1 + S 2 + . . . + Sm < mS

Using equ. (10) and equ. (15), we have

Dm = S1 + S2 + S3 + + Sm - S < (m - 1)S

The normalized value of Dm is given by

D = S1 + S2 +... + Sm - S
Dm =

(m - 1)S

(16)

(17)

Here, 0 < Dm < 1. Zero value of Dm corresponds to
gene set consisting of independent genes. Higher value

of Dm signifies more dependence among genes. To
consider a set of independent genes, we can choose a

threshold T. If the value of D m is less than equal to
threshold value T then gene subset is considered as a set
of independent genes.

We have employed MI to measure relevance between
a subset of genes and class label. Cross entropy is used to
measure redundancy among genes. Our proposed
algorithm MICE is incremental in nature and consists of
two phase. In the first phase a set S of relevant and
independent genes is created. We initially start with S as
empty set and F a set which contain all the genes. Mutual
information of each gene with respect to target class is

378 Informatica 35 (2011) 383-390 R. Piltaver et al.

estimated using equ 4. The gene which maximizes
mutual information is selected. Let it be xk, then
S={xk }and F=F- {xk.}. Now a set of genes independent
of selected gene subset S is created. This is done by
calculating the cross entropy of SU{xj} for all xj in F. i.e.
D(S,xj). All the features whose D(S,xj) >T are considered
dependent with respect to the geneset S and hence these
genes are removed from F. Again, a gene xi in F which
maximizes the mutual information of set S=SU{xt} with
respect to target class, is selected and included in set S.
This gene xi is removed from F. We determine
consequently gene subset F which contains genes
independent of S using cross entropy. This process is
repeated till F becomes empty. In this way we create a
set of independent and relevant genes.

In the second stage an optimal set of genes is
determined from the gene subset selected in the first
stage. To obtain the optimal set we have used a wrapper
based forward feature selection. We have used
classification accuracy as a criterion in the forward
feature selection. The gene subset that maximizes the
classification accuracy is selected. The outline of the
proposed algorithm MICE is as follows.

MICE Algorithm

Input-Initial Set of genes,Class Labels C,Classifier M

PHASE 1 // to determine a subset of relevant and
independent genes S
1. Intialization: Set F="initial set of genes" ; S = O //Set
of Selected Attributes
2. Choose Threshold value T.

3. For each gene xi in F calculate I(xi; C) using (4)

4. Select the gene xk which maximizes Mutual

Information I (x i ; C) i.e. xk = max I (x t , C)
i

5. S = S u {xk }; F = F - {xk }

6. Calculate Dm (S, x j) for all xj e F ;

if Dm (S, x }) >T F = F - {xj} //Identifying set of

independent genes F with respect to S
7. Choose a gene from xk e F which maximizes

I (S, xk; C)

8. S = S u {xk }, F = F - {xk }

9. Repeat steps 6-8 till F becomes empty
10. Return S

PHASE 2 // to determine subset of genes which provides
maximum classification accuracy
1. Initialization R = O

2. For each xi e S calculate classification accuracy
for classifier M.

3. [xk, max_ acc] = max Classif _ Acc(xi)

4. R = R u {x k } ; S = S - { x k } ; R _ m i n = R
// R_min is the gene subset corresponding to
maximum accuracy

5. For each xj e S calculate classification_accuracy

of S U{x j} for classifier M
6. \xk, new _ max_ acc] = m a x Classif _ Acc (S u xi)

i
7. R = R u {x k }, S = S - {xk }

8.
If new_max_acc > max_acc then R_min=R;
max_acc=new_max_acc;

9. Repeat steps 5-8 until max_acc=100 or S = O
10. Retum R_min, max_acc

4 Experimental Setup and Results
To test the efficacy of our proposed algorithm MICE, we
have carried out experiments on seven well known
datasets. Colon, Leukemia, Prostate, Lung cancer and
Ovary datasets are downloaded from Kent Ridge Bio-
medical Dataset data repository [31]. For SRBCT we
have used the dataset used by Khan [13]. NCI60 data is
downloaded from the NCI Genomics and Bioinformatics
Group Datasets resource [32]. The details of these
datasets are given in Table 1. Before carrying
experiments datasets are normalized using Z-score. In
NCI60 dataset one class contained only two samples, so
this class is removed from the dataset. Also number of
samples belonging to each class is very small, therefore
2000 genes with highest variance are selected and then
algorithm is applied on the reduced set of 2000 genes.

Table 1: Datasets Used.

Dataset
No. of

Samples
No. of

Features
Classes

Colon 62 2000 2
S R B C T 83 2308 4
Leukemia 72 7129 3
Prostate 102 5966 2
Ovary 253 15154 2
Lungcancer 181 12533 2
NCI60 60 2000 9

After normalizing the datasets, the first phase of our
proposed algorithm MICE is applied to obtain the subset
of relevant and independent genes. We performed
experiments with different values of threshold. The value
of threshold is varied from 0.1 to 0.9 with an increment
of 0.1. It is observed that subset of genes selected is same
for threshold values between 0.4 and 0.6. So, the value of
threshold T is set as 0.5 in our experiments i.e. all the

genes with Dm greater than 0.5 are rejected as
dependent genes. The number of the reduced genes
obtained after phase I of MICE algorithm for each
dataset is given in Table 2.

MUTUAL INFORMATION AND CROSS ENTROPY...

Table 2: Size of Reduced Dataset after Phase I.

It can be observed from Table 2 that the number of
relevant genes obtained is significantly smaller in
comparison to the original gene set. Now once a reduced
set of relevant and independent genes is obtained, phase
II of MICE algorithm is applied. Phase II of our proposed
algorithm uses a forward feature selection strategy with a
known classifier to obtain a set of genes which
maximizes classification accuracy. We have employed
four classifiers: linear discriminant classifier (LDC),
quadratic discriminant classifier (QDC), k-nearest
neighbor (KNN) and support vector machine (SVM).
Classification accuracy is calculated using leave-one-out
cross validation (LOOCV). The algorithm is
implemented in matlab. For KNN the optimal value of k
is chosen. In SVM linear kernel is used. Results of our
algorithm MICE are presented in Table 3. It contains
maximum classification accuracy achieved along with
the number of genes obtained by our algorithm MICE. It
can be observed from Table 3 that our algorithm MICE is
able to achieve maximum classification accuracy with
small number of genes. For all the classifiers used we are
able to achieve good classification accuracy with few
numbers of genes. We compared the performance of our
algorithm MICE with well known algorithm mRMR
given by Peng et al (2005). The code of mRMR_d and
mRMR_q is taken from [30]. As a preprocessing step,
datasets are discretized into 3 values using ^ ± G . The
values which are less than / j , - g are assigned -1 ,
values between / j , - g and ^ + G are assigned value 0
and rest 1. Discretized data are passed to mRMR_d and
mRMR_q and a ranked list of features is obtained from
both the methods. Using the ranked list of genes obtained
from mRMR, classification accuracy (LOOCV) is
calculated as genes are added one by one. The maximum
classification accuracy along with the minimum number
of genes obtained for each classifier is shown in Table 3.
We can observe the following from Table 3:

1. For Colon dataset a maximum accuracy of 96.77% is
achieved with genes selected by our proposed
algorithm MICE. It is achieved with 14 genes with
QDC. For KNN results of MICE are better than
mRMR. For SVM and LDC classification accuracy
using MICE is same as mRMR.

2. For SRBCT dataset maximum classification accuracy
of 100% is achieved with 15 genes with LDC and
SVM classifier using MICE. For QDC results of
MICE are better than mRMR. Only for KNN
performance of mRMR is better.

Informatica 35 (2011) 375-382 379

Table 3: Comparison of maximum classification
accuracy along with number of genes for different
classifiers using various genes selection methods.

Dataset Classif ier MICE m R M R d m R M R q
(L O O C V) (L O O C V) (L O O C V)

Colon L D C 91.94(9) 91.94(3) 90.32(6)

Q D C 96.77(14) 88.71(6) 87.10(27)
K N N 96.77(31) 93.55(5) 91.94(32)

SVM 93.55(23) 93.55(18) 93.55(50)
S R B C T L D C 100(15) 97.59(21) 98.80(30)

Q D C 98.80(10) 49.40(66) 71.08(73)
K N N 98.80(15) 100(83) 100(29)
SVM 100(15) 100(19) 100(15)

Leukemia L D C 98.61(12) 97.22(35) 98.61(14)
Q D C 100(6) 95.83(5) 88.89(9)
K N N 100(15) 97.22(75) 97.22(80)
SVM 98.61(7) 98.61(60) 100(18)

Prostate L D C 97.06(6) 96.10(6) 96.08(8)
Q D C 96.08(4) 92.16(22) 89.22(9)
K N N 98.04(9) 97.16(14) 98.04(27)
SVM 99.02(45) 98.04(87) 98.04(26)

Ovary L D C 100(5) 100(4) 100(8)
Q D C 100(4) 100(4) 100(8)
K N N 100(4) 100(4) 100(10)
SVM 100(3) 100(5) 100(8)

LungCancer L D C 100(44) 100(36) 99.45(14)
Q D C 100(5) 100(40) 100(41)
K N N 100(3) 100(20) 100(5)
SVM 100(4) 100(23) 100(6)

NCI60 L D C 84.48(26) 75.86(94) 82.76(67)
Q D C 56.90(5) 56.90(5) 43.10(5)
K N N 86.21(18) 89.66(95) 87.93(98)
SVM 87.93(36) 81.03(34) 89.66(97)

3. For Leukemia dataset maximum classification
accuracy of 100% is achieved with 6 genes in QDC
classifier and 15 genes in KNN classifier using
MICE. Same classification accuracy is achieved
using MICE with LDC as with mRMR but with less
number of genes.

4. For prostate dataset maximum classification accuracy
of 99.02% is achieved with 45 genes in SVM
classifier using MICE. Also for other classifiers, the
accuracy achieved by our algorithm MICE is better
in comparison to mRMR.

5. For Ovary dataset maximum classification accuracy
of 100% is achieved for all classifiers using different
gene selection methods but the number of genes
selected by our proposed method MICE is same or
comparitively less.

6. For Lungcancer dataset maximum classification
accuracy of 100% is achieved for all classifiers using
genes selected by our method MICE . The number of
genes selected by MICE are significantly less in
comparison to mRMR with QDC, KNN and SVM.
The best result is obtained for KNN using only 3
genes.
For NCI60 dataset maximum classification accuracy
of 87.93% is achieved with 36 genes in SVM
classifier using MICE. For LDC and QDC classifier
accuracy achieved using genes selected by MICE is
better in comparison to mRMR. For KNN and SVM
performance of mRMR is better than MICE.

7. The performance of our proposed algorithm MICE
with different classifiers is better in comparison to

Dataset
Original No. Of
genes

No. of genes
selected

Colon 2000 56
S R B C T 2308 46
Leukemia 7129 54
Prostate 5966 66
Ovary 15154 98
Lungcancer 12533 159
NCI60 2000 60

380 Informática 35 (2011) 375-382 R. Bala et al.

mRMR algorithm in terms of classification accuracy
in most cases. Our proposed algorithm MICE also
provides a smaller subset of relevant genes for most
of the cases.

The comparative results of classification accuracy
obtained by different methods as the genes are added one
by one for Leukemia dataset are shown in Figure 1. It
can be observed from Figure 1 that classification
accuracy obtained by our algorithm is more in
comparison to mRMR_d and mRMR_q with the same
number of genes for all the classifier. Similar results are
observed for other datasets also.

To check the relevance of the selected genes subset
we carried out 10 fold cross validation using the selected
genes for all the datasets. Experiment is repeated 10
times. The average accuracy of 10 runs along with
standard deviation is given in Table 4. It can be observed
from the table that the 10 fold cross validation accuracy
does not deviate much from LOOCV accuracy except for
NCI60 dataset with QDC classifier. This shows that the
gene set selected is not over fitted.

Table 4: 10 fold cross-validation accuracy achieved by
the genes selected by MICE for different classifier.
Quantity in bracket represents standard deviation.

Dataset Classif ier Dataset
L D C Q D C K N N SVM

Colon 91.13(1.14) 86.32(3.30) 96.32(1.41) 91.13(1.90)
S R B C T 99.40(0.85) 96.39(2.13) 98.07(1.3) 99.52(1.02)
Leukemia 96.94(1.71) 98.89(1.28) 99.44(0.97) 98.33(0.59)
Prostate 96.67(0.69) 96.20(1.08) 96.78(0.93) 96.96(1.26)
Ovary 100(0) 100(0) 99.88(0.27) 100(0)
LungC 99.17(0.39) 99.83(0.27) 99.89(0.23) 100(0)
NCI60 75.69(3.68) 41.72(2.12) 81.72(2.72) 79.66(4.36)

In literature a number of gene selection methods have
been proposed and applied on these datasets. In Table 5,
we have compared performance of our proposed method
in terms of classification accuracy achieved and number
of genes selected with some already existing gene
selection methods in literature [6, 9, 10, 11, 13, 16, 18,
19, 20, 24, 25, 26, 27, 28, 29]. From Table 5, it can be
observed that the performance of our proposed algorithm
MICE is significantly better in terms of both
classification accuracy and number of genes selected.

5 Conclusion
In this paper, we proposed a two stage algorithm MICE
for finding a small subset of relevant genes responsible
for better classification of high dimensional microarray
datasets. The proposed method is based on the principle
of Mutual Information and Cross Entropy. In first stage
of algorithm, Mutual information is employed to select a
set of relevant genes and Cross Entropy is used to
determine independent genes. This provides a set of
independent and relevant genes and reduces the size of
gene set significantly. This allows us to use wrapper
approach at the second stage. The use of wrapper method
at the second stage gives a better subset of genes.

- î î ^ Î Î ^ Î :

—
• • • _ _ _ <

- mRMR_d
- mRMR_q

10 15

Number of genes

(a)

0 5 10 15

Number of genes

20 25

(b)

(c)

10 15

Number of genes

(d)
Figure 1: Classification accuracy Vs number of genes for
Leukemia dataset using (a) LDC (b) QDC (c) KNN (d)
SVM.

Experimental results show that our proposed method
MICE is able to achieve a better classification accuracy
with small number of genes. In case of Lungcancer and
Ovary 100% accuracy is achieved with 3 genes. For
other datasets, the method provides competitive
accuracy. Comparisons with other state-of-art methods
show that our proposed algorithm is able to achieve
better or comparable accuracy with less number of
features in all the datasets.

10 20 25

MUTUAL INFORMATION AND CROSS ENTROPY... Informatica 35 (2011) 375-382 381

Table 5: Comparison of Maximum Classification
accuracy and number of genes selected with other state
of art methods.

References
[1] Battiti R (1994), Using mutual information for

selecting features in supervised neural net learning,
IEEE Trans. Neural Network 5(4) pp 537-550.

[2] Bellman R (1961), Adaptive Control Processes: A
Guided Tour, Princeton University Press.

[3] Ben-Dor A, Bruhn L, Friedman N, Nachman I,
Schummer M and Yakhini (200), Tissue
classification with gene gene expression profiles, In
Proceedings of the fourth annual international
conference on Computational molecular biology,
pp 54-64, ACM Press.

[4] Bhattacharya C, Grate LR, Rizki A, Radisky D,
Molina FJ, Jordan MI, Bissell MJ and Mian IS
92003), Simultaneously classification and relevant
feature identification in high dimensional spaces:
application to molecular profiling data, Signal
Processing 83(4).

[5] Bo T and Jonassen I (2002), New feature subset
selection procedures for classification of expression
profiles, Genome biology 3.

[6] Fu LM and Liu CSF (2005), Evaluation of gene
importance in microarray data based upon
probability of selection, BMC Bioinformatics
6(67).

[7] Golub TR, Slonim DK, Tamayo, Huard C,
Gaasenbeek M, Mesirov JP, Coller H, Loh ML,
Downing JR, Caligiuri, Bloomfield CD and Lander
ES (1999), Molecular classification of cancer: class
discovery and class prediction by gene expression
monitoring, Science 286 pp 531-537.

[8] Guyon I and Elisseeff A (2003), An Introduction to
Variable and feature Selection, Journal of Machine
Learning Research (3):1157-1182.

[9] Guyon I, Weston J, Barnhill S, Vapnik V (2003),
Gene Selection for cancer classification using
support vector machine, Machine Learning (46) pp
263-268.

[10] Hong JH and Cho SB (2006), The classification of
cancer based on DNA microarray data that uses
diverse ensemble genetic programming, Artif.
Intell. Med. 36 pp 43-58.

[11] Jirapech-Umpai T and Aitken S (2005), Feature
selection and classification for microarray data
analysis: Evolutionary methods for identifying
predictive genes, BMC Bioinformatics 6:148.

[12] Kapur JN, Kesavan HK (1992) Entropy
Optimization Principles with Applications,
Academic Press.

[13] Khan J, Wei S, Ringner M, Saal LH, Ladanyi M,
Westermann F (2001), Classification and diagnosis
prediction of cancers using gene expression
profiling and artificial neural networks, Nat. Med 7
pp 673-679.

[14] Kohavi R and John G (1997), Wrapper for feature
subset selection, Artificial Intelligence (1-2) pp
273-324.

[15] Kwak N and Choi CH (2002), Input Feature
Selection for classification problems, IEEE Trans.
Neural Netw 3(1) pp 143-159.

C O L O N

Proposed method 96.77(14)
P S O + A N N [27] 88.7
Chen and Zhao [29] 95.2
B I R S W [24] 85.48(3.50)
BIRSF [24] 85.48(7.40)

O V A R Y

Proposed Method 100(3)
P S O + A N N [27] 97 .0
N B [10] 96.2
B K S [10] 97.0
DT[10] 97.8
Chen and Zhao [29] 99.6

P R O S T A T E

Proposed Method 99.02(45)
G A K N N [16] 84.6(205)
BIRS [24] 91.2(3)
Hong and Cho [[10] 96.3(79)

NCI60

Proposed Method 87.93(36)
J i rapech-Umpai [11] 76.23
Liu [19] 88.52
Ooi [20] 85.37
Lin [18] 87.80
Re l ie fF /SVM [28] 58.33(30)
m R M R / R e l i e F [28] 68.33(30)

L E U K E M I A

Proposed Method 100(6)
G S 2 + K N N [27] 98.6(10)
G S 1 + S V M [27] 98.6(4)
C h o ' s + S V M [27] 98.6(80)
Ftest + S V M [27] 98.6(33)
Fu and Liu [6] 97.0(4)
Guyon [9] 100(8)
Tibsrani [26] 100(21)
Chen and Zhao [29] 98.6

S R B C T

Proposed Method 100(15)
G S 2 + S V M [27] 100(96)
G S 1 + S V M [27] 98.8(34)
C h o ' s + S V M [27] 98.8(80)
Ftest + S V M [27] 100(78)
Fu and Liu [6] 100(19)
Tibsrani [26] 100(43)
Khan [13] 100(96)

L U N G C A N C E R

Proposed Method 100(3)
G S 2 + K N N [27] 93.1(44)
G S 1 + S V M [27] 98.6(4)
C h o ' s + S V M [27] 98.6(80)
Ftest + S V M [27] 98.6(94)
Shah and Kaushik [25] 100(8)
P S O + A N N [27] 98.3
Chen and Zhao [29] 98.3
G A K N N [16] 95.6(325)
Hong and Cho [10] 99.4(135)

382 Informatica 35 (2011) 383-390

[16] Li L,Weinberg CR, Darden TA, Pedersen LG
(2001), Gene Selection for sample classification
based on gene expression data: Study of sensitivity
to choice of parameters of the GA/KNN method,
Bioinformatics 17(12) pp 1131-1142.

[17] Li T ,Zhang C, Ogihara M (2004), Comparative
study of feature selection and multiclass
classification methods for tissue classification
based on gene expression, Bioinformatics (20) pp
2429-2437.

[18] Lin TC, Liu RS, Chen CY, Chao YT and Chen SY
(2006), Pattern classification in DNA microarray
data of multiple tumor types, Pattern Recognition,
39 pp 2426-2438.

[19] Liu JJ, Cutler G, Li WX, Pan Z, Peng SH, Hoey T,
Chen LB and Ling XFB (2005), Multiclass cancer
classification and biomarker discovery using GA-
based algorithms. Bioinformatics 21 pp 2691-2697.

[20] Ooi CH, Tan P (2003), Genetic algorithms applied
to multi-class prediction for the analysis of gene
expression data, Bioinformatics, 19 pp 37-44.

[21] Padmanabhan M and Dharanipragada S (2005),
Maximizing Information Content in Feature
Extraction, IEEE Transaction on speech and audio
processing 13(4).

[22] Peng H, Long F, Ding C (2005), Feature Selection
Based on Mutual Information: Criteria of Max-
Dependency, Max-Relevance and Min-
Redundancy, IEEE Trans. On Pattern Analysis and
Machine Intelligence 27 pp 1226-1238.

R. Piltaver et al.

[23] Ramaswamy S, Tamayo P (2001), Multiclass
cancer diagnosis using tumour gene expression
signature, Proc Natl Acad Sci, USA, 98(26) pp
15149-15154.

[24] Ruiz R, Riqueline J C, Aguilar-Ruiz JS (2006),
Incremental wrapper based gene selection from
microarray data for cancer classification, Pattern
Recognition 39(12) pp 2383-2392.

[25] Shah, S and Kusiak A (2007), Cancer gene search
with Data Mining and Genetic Algorithms,
Computer in Biology medicine, Elsevier 37(2) pp
251-261.

[26] Tibsrani R , Hastie T, Narasimhan B and Chu G
(2002), Diagnosis of multiple cancer types by
shrunken centriods of gene expression, Proc. Natl
Acad. Sci., USA (99) pp 6567-6572.

[27] Yang K, Cai Z, Li J, Lin G (2006), A stable gene
selection in microarray data analysis, BMC
Bioinformatics 7:228 .

[28] Yi Zhang, Chris HQ, Ding, Tao Li (2007), A Two-
Stage Gene Selection Algorithm by Combining
ReliefF and mRMR. BIBE 2007 pp 164-171.

[29] Chen Y and Zhao Y (2008), A novel ensemble of
classifiers for microarray data classification,
Applied Soft computing (8) pp 664-1669.

[30] http://www.mathworks.com/matlabcentral/fileexch
ange/14608.

[31] http://datam.i2r.a-star.edu.sg/datasets/krbd/
[32] http://discover.nci.nih.gov/datasetsNature2000.jsp

http://www.mathworks.com/matlabcentral/fileexch
http://datam.i2r.a-star.edu.sg/datasets/krbd/
http://discover.nci.nih.gov/datasetsNature2000.jsp

Informática 35 (2011) 383-361 351

An Intelligent Indoor Surveillance System
Rok Piltaver, Erik Dovgan and Matjaž Gams
Jožef Stefan Institute, Department of Intelligent Systems,
Jamova cesta 39, 1000 Ljubljana, Slovenia.
E-mail: rok.piltaver@ijs.si, erik.dovgan@ijs.si, matjaz.gams@ijs.si

Keywords: intelligent system, fuzzy logic, expert system, real-time locating system, surveillance

Received: February 2, 2011

The development of commercial real-time location system (RTLS) enables new ICT solutions. This paper
presents an intelligent surveillance system for indoor high-security environments based on RTLS and
artificial intelligence methods. The system consists of several software modules each specialized for
detection of specific security risks. The validation shows that the system is capable of detecting a broad
range of security risks with high accuracy.
Povzetek: Predstavljen je varnostni sistem za nekaj sob z uporabo RTLS.

1 Introduction
Security of people, property, and data is becoming
increasingly important in today's world. Security is
ensured by physical protection and technology, such as
movement detection, biometric sensors, surveillance
cameras, and smart cards. However, the crucial factor of
most security systems is still a human [7] , providing the
intelligence to the system. The security personnel has to
be trustworthy, trained and motivated, and in good
psychically and physical shape. Nevertheless, they are
still human and as such tend to make mistakes, are
subjective and biased, get tired, and can be bribed. For
example, it is well known that a person watching live
surveillance video often becomes tired and may therefore
overlook a security risk. Another problem is finding
trustworthy security personnel in foreign countries where
locals are the only candidates for the job.

With that in mind there is an opportunity of using the
modern information-communication technology in
conjunction with methods of artificial intelligence to
mitigate or even eliminate the human shortcomings and
increase the level of security while lowering the overall
security costs. Our first intelligent security system that is
focused on the entry control is described in [5] . In this
paper we present a prototype of an intelligent indoor-
surveillance system (i.e. it works in the whole indoor
area and not only at the entry control) that automatically
detects security risks.

The prototype of an intelligent security system,
called "Poveljnikova desna roka" (PDR, eng.
commander's right hand), is specialized for surveillance
of personnel, data containers, and important equipment in
indoor high-security areas (e.g., an archive of classified
data with several rooms). The system is focused on the
internal threats; nevertheless it also detects external
security threats. It detects any unusual behaviour based
on user-defined rules and automatically extracted models
of the usual behaviour. The artificial intelligence
methods enable the PDR system to model usual and to
recognize unusual behaviour. The system is capable of

autonomous learning, reasoning and adaptation. The
PDR system alarms the supervisor about unusual and
forbidden activities, enables an overview of the
monitored environment, and offers simple and effective
analysis of the past events. Tagging all personnel, data
containers, and important equipment is required as it
enables real-time localization and integration with
automatic video surveillance. The PDR system notifies
the supervisor with an alarm of appropriate level and an
easily comprehensible explanation in the form of natural
language sentences, tagged video recordings and
graphical animations. The PDR system detects intrusions
of unidentified persons, forbidden actions of known and
unknown persons and unusual activities of tagged
entities. The concrete scenarios detected by the system
include thefts, sabotages, staff negligence and
insubordination, unauthorised entry, unusual employee
behaviour and similar incidents.

The rest of the paper is structured as follows. Section
2 summarizes the related work. An overview of software
modules and a brief description of used sensors are given
in Section 3. Section 4 describes the five PDR modules,
including the Expert System Module and Fuzzy Logic
Module in more detail. Section 5 presents system
verification while Section 6 provides conclusions.

2 Related Work
There has been a lot of research in the field of automatic
surveillance based on video recordings. The research
ranges from extracting low level features and modelling
of the usual optical flow to methods for optimal camera
positioning and evaluating of automatic video
surveillance systems [8] . There are many operational
implementations of such system increasing the security
in public places (subway stations, airports, parking lots).

On the other hand, there has not been much research
in the field of automatic surveillance systems based on
real-time locating systems (RTLS), due to the novelty of
sensory equipment. Nevertheless, there are already some
simple commercial systems with so called room accuracy
RTLS [20] that enable tracking of objects and basic

mailto:rok.piltaver@ijs.si
mailto:erik.dovgan@ijs.si
mailto:matjaz.gams@ijs.si

384 Informatica 35 (2011) 383-390 R. Piltaver et al.

alarms based on if-then rules [18] . Some of them work
outdoors using GPS (e.g., for tracking vehicles [21])
while others use radio systems for indoor tracking (e.g.,
in hospitals and warehouses). Some systems allow video
monitoring in combination with RTLS tracking [19] .

Our work is novel as it uses several complex
artificial intelligence methods to extract models of the
usual behaviour and detect the unusual behaviour based
on an indoor RTLS. In addition, our work also presents
the benefits of combining video and RTLS surveillance.

3 Overview of the PDR System
This section presents a short overview of the PDR
system. The first subsection presents the sensors and
hardware used by the system. The second subsection
introduces software modules. Subsection 3.3 describes
RTLS data pre-processing and primitive routines.

3.1 Sensors and other hardware
The PDR system hardware includes a real-time locating
system (RTLS), several IP video cameras (Figure 1), a
processing server, network infrastructure, and optionally
one or more workstations, such as personal computers,
handheld devices, and mobile phones with internet
access, which are used for alerting the security personnel.

RTLS provides the PDR system with information
about locations of all personnel and important objects
(e.g. container with classified documents) in the
monitored area. RTLS consists of sensors, tags, and a
processing unit (Figure 1). The sensors detect the
distance and the angle at which the tags are positioned.
The processing unit uses these measurements to calculate
the 3D coordinates of the tags. Commercially available
RTLS use various technologies: infrared, optical, ultra-
sound, inertial sensors, Wi-Fi, or ultra-wideband radio.
The technology determines RTLS accuracy (1 mm - 10
m), update frequency (0.1 Hz - 120 Hz), covered area (6
- 2500 m2), size and weight of tags and sensors, various
limitations (e.g., required line of sight between sensors
and tags), reliability, and price (2.000 - 150.000 €) [13] .
PDR uses Ubisense RTLS [15] that is based on the ultra-
wide band technology and is among the more affordable
RTLSs. It uses relatively small and energy efficient
active tags, has an update rate of up to 9 Hz and accuracy
of ±20 cm in 3D space given good conditions. It covers
areas of up to 900 m2 and does not require line of sight.

The advantages of a RTLS are that people feel more
comfortable being tracked by it than being filmed by
video cameras and that localization with a RTLS is
simpler, more accurate, and more robust than localization
from video streams. On the other hand, RTLS is not able
to locate objects that are not marked with tags. Therefore,
the most vital areas need to be monitored by video
cameras also in order to detect intruders that do not wear
RTLS tags. However, only one PDR module requires
video cameras, while the other four depend on RTLS
alone. Moreover, the cameras enable on-camera
processing, therefore only extracted features are sent
over the network.

Integration &
User Interface

>

AI
modules

m2

J T
J Preprocessing L
1 Preprocessing 1

Figure 1: Overview of the PDR system.

3.2 Software structure
The PDR sofware is divided into five modules. Each of
them is specialized for detecting a certain kind of
abnormal behaviour (i.e., a possible security risk) and
uses an appropriate artificial intelligence method for
detecting it. The modules reason in real time
independently of each other and asynchronically trigger
alarms about detected anomalies. Three of the PDR
modules are able to learn automatically while the other
two use predefined knowledge and knowledge entered by
the supervisor. The Video Module detects persons
without tags and is the only module that needs video
cameras. The Expert System Module is customisable by
the supervisor, who enters information about forbidden
events and actions in the form of simple rules, thus
enabling automatic rule checking. The three learning
modules that automatically extract models of the usual
behaviour for each monitored entity and compare current
behaviour with it in order to detect abnormalities are
Statistic, Macro and Fuzzy Logic Modules. The Statistic
Module collects statistic information about entity
movement such as time spent walking, sitting, lying etc.
The Macro model is based on macroscopic properties
such as the usual time of entry in certain room, day of the
week etc. Both modules analyse relatively long time
intervals while the Fuzzy Logic Module analyses short
intervals. It uses fuzzy discretization to represent short
actions and fuzzy logic to infer whether they are usual or
not.

3.3 RTLS data pre-processing and
primitive routines

Since the used RTLS has relatively low accuracy and
relatively high update rate, a two-stage data filtering is
used to increase the reliability and to mitigate the
negative effect of the noisy location measurements. In
the first stage, median filter [1] with window size 20 is

AN INTELLIGENT INDOOR. Informatica 35 (2011) 391-390 385

used to filter sequences of x, y, and z coordinates of tags.
Equation (1) gives the median filter equation for
direction x. The median filter is used to correct the RTLS
measurements that differ from the true locations by more
than ~1.5 m and occur in up to 2.5 % of measurements.
Such false measurements are relatively rear and occur
only in short sequences (e.g., probability of more than 5
consecutive measurements having a high error is very
low) therefore the median filter corrects these errors well.

~n ~ med{xn-10,Xn-9v?x-, xn+8, xn + 9 (1)

The second stage uses a Kalman filter [6] that
performs the following three tasks: smoothing of the
RTLS measurements, estimating the velocities of tags,
and predicting the missing measurements. Kalman filter
state is a six dimensional vector that includes positions
and velocities in each of the three dimensions. The new
state is calculated as a sum of the previous position (e.g.
xn) and a product between the previous velocity (e.g. vx,n)
and the time between the consecutive measurements At

for each direction separately. The velocities remain
constant. Equation (2) gives the exact vector formula
used to calculate the next state of the Kalman filter. The
measurement noise covariance matrix was set based on
RTLS system specification, while the process noise
covariance matrix was fine-tuned experimentally.

Once the measurements are filtered, primitive
routines can be applied. They are a set of basic pre-
processing methods used by all the PDR modules and are
robust to noise in 3D location measurements. They take
short intervals of RTLS data as input and output a
symbolic representation of the processed RTLS data.

n +1

y n + 1

zn+1

vx, n+1

vy, n+1

vz, n+1

1 0 0 j A t 0

0 1 0 : 0 At

0

: 't 0
0 0 1 j 0 0 A t

0 " o " " o ï " ï 0 0'
0 0 0 j 0 1 0
0 0 0 ; 0 0 1

n

yn

zn

y, n

(2)

posture is set to the posture that occurs most often in the
window of consecutive tag heights according to the
dynamically set thresholds. The thresholds tlo and thi were
obtained from the classification tree that classifies the
posture of a person based on the height of a tag. It was
trained on half an hour long manually labelled recording
of lying, sitting and standing.

A currently

thi + d
thi L
thi-d-1

f + d I

standing

sitting

standing

currently

t,„ - d
lying

Figure 2: Dynamic thresholds.

standing

sitting

currently
lying

The first primitive routine detects in which area (e.g., a
room or a user-defined area) a given tag is located, when
it has entered, and when it has exited from the area. The
routine takes into account the positions of walls and
doors. A special method is used to handle the situations
when a tag moves along the boundary between two areas
that are not separated by a wall.

The second primitive routine classifies the posture of
a person wearing a tag into: standing, sitting, or lying. A
parameterized classifier, trained on pre-recorded and
hand-labelled training data, is used to classify the
sequences of tag heights into the three postures. The
algorithm has three parameters: the first two are
thresholds tlo and thi dividing the height of a tag into the
three states, while the third parameter is tolerance d. The
algorithm stores the previous posture and adjusts the
boundaries between the postures according to it (Figure
2). If the current state is below the threshold ti, it is
increased by d, otherwise it is decreased by d. The new

The third group of primitive routines is a set of routines
that detect whether a tag is moving or not. This is not a
trivial task due to the considerable amount of noise in the
3D location data. There are separate routines for
detecting movement of persons, movable objects (e.g., a
laptop) and objects that are considered stationary. The
routines include hardcoded, handcrafted, common sense
algorithms and a classifier trained on extensive, pre-
recorded, hand labelled training set. The classifier uses
the following attributes calculated in a sliding window
with size 20: the average speed, the approximate distance
travelled, sum of consecutive position distances, and the
standard deviation of moving direction. The classifier
was trained on more than two hours long hand-labelled
recording of consecutive moving and standing still.
Despite the noise in the RTLS measurements the
classification accuracy of 95 % per single classification
was achieved. [12] describes the classifier in more
detail.

The final group of routines detects if two tags (or a
tag and a given 3D position) are close together by
comparing the short sequences of tags' positions. There
are separate methods used for detecting distances
between two persons (e.g., used to detect if a visitor is
too far away from its host), between a person and an
object, and between a person and a given 3D location
(e.g., used to assign tags of moving persons to locations
of moving objects detected by video processing).

All of the described primitive routines are robust to
the noise in RTLS measurements and are specialized for
the PDR's RTLS. Primitive routines' parameters were
tuned according to the noise of the RTLS and using data
mining tools Orange [4] and Weka [16] . In case of more
accurate RTLS, the primitive routines could be simpler
and more accurate. Nevertheless, the presented primitive
routines perform well despite the considerable amount of
noise. This is possible because of the relatively high
update rate. If it was significantly lower, the primitive
routines would not work as well. Therefore, the accuracy,
reliability and update rate of RTLS are crucial for the
performance of the entire PDR system.

J

v x, n

V7n

386 Informatica 35 (2011) 383-390 R. Piltaver et al.

4 PDR Modules

4.1 Expert System Module
The Expert System Module enables the supervisor to
customize the PDR system according to his/her needs by
setting simple rules that must not be violated. It is the
simplest and the most reliable module of the PDR system
[11] . It is capable of detecting a vast majority of the
predictable security risks, enables simple customization,
is reliable, robust to noise, raises almost no false alarms,
and offers comprehensible explanation for the raised
alarms. In addition, it does not suffer from the typical
problems common to the learning modules/algorithms,
such as long learning curve, difficulty to learn from
unlabeled data, relatively high probability of false
alarms, and the elusive balance between false negative
and false positive classifications. The expert system
consists of three parts described in the following
subsections.

4.1.1 Knowledge base
Knowledge base of an expert system contains the
currently available knowledge about the state of the
world. The knowledge base of PDR expert system
consists of RTLS data, predefined rules, and user-defined
rules. The first type of knowledge is in form of data
stream, while the latter two are in form of if-then rules.

The expert system gets the knowledge about objects'
positions from the RTLS data stream. Each unit of the
data stream is a filtered RTLS measurement that contains
a 3D location with a time stamp and a RTLS tag ID.

User-defined rules enable simple customization of
the expert system according to specific supervisor's
needs by specifying prohibited and obligatory behaviour.
Supervisor can add, edit, view, and delete the rules at any
time using an intuitive graphic user interface. There are
several rule templates available. The supervisor has to
specify only the missing parameters of the rules, such as
for which entities (tags), in which room(s) or user-
defined areas(s), and at which time the rules apply.

For instance, a supervisor can choose to add a rule
based on the following template: "Person P must be in
the room R from time Tmin to time Tmax." and set P to
John Smith, R to the hallway H, Tmin to 7 am, and Tmax to
11 am. Now the expert system knows that John must be
in the hallway from 7 am to 11 am. If he leaves the
hallway during that period or if he does not enter it
before 7 am, the PDR supervisor will be notified.

Some of the most often used rule templates are
listed below:
• Object Oi is not allowed to enter area A i.
• Object Oi can only be moved by object Oj.
• Object Oi must always be close to object Oj.

The predefined rules are a set of rules that are valid
in any application where PDR might be used.
Nevertheless, the supervisor has an option to turn them
on or off. Predefined rules define when alarms about
hardware failures should be triggered.

4.1.2 Inference engine
The inference engine is the part of the PDR expert
system that deduces conclusions about security risks
from the knowledge stored in the knowledge base. The
inference process is done in real-time. First, the RTLS
data stream is processed using the primitive routines.
Second, all the rules related to a given object (e.g., a
person) are checked. If a rule fires, an alarm is raised and
an explanation for the raised alarm is generated. An
example is presented in the next paragraph.

Suppose that the most recent 3D location of John
Smith's tag (from the previous example) has just been
received at 8:32 am. The inference engine checks all the
rules concerning John Smith. Among them is the rule Ri
that says: "John Smith must be in the hallway H from 7
am to 11 am." The inference engine calls the primitive
routine that checks whether John is in the hallway H.
There are two possible outcomes. In the first outcome, he
is in the hallway H, therefore, the rule Ri is not violated.
If John was not in the hallway H in the previous instant,
there is an ongoing alarm that is now ended by the
inference engine. In the second outcome, John is not in
the hallway H; hence the rule Ri is violated at this
moment. In this case the inference engine checks if there
is an ongoing alarm about John not being in the hallway
H. If there is no such ongoing alarm the inference engine
triggers a new alarm. On the other hand, if there is such
an alarm, the inference engine knows that the PDR
supervisor was already notified about it.

If an alarm was raised every time a rule was violated,
the supervisors would get flooded with alarm messages.
Therefore, the inference engine automatically decreases
the number of alarm messages and groups alarm
messages about the same incident together so that they
are easier to handle by the PDR supervisor. The method
will be illustrated with an example. Because of the noise
in 3D location measurements the inference engine does
not trigger or end an alarm immediately after the status
of rule Ri (violated/not violated) changes. Instead it waits
for more RTLS measurements and checks the trend in the
given time window: if there are only few instances when
the rule was violated they are considered as noise. On the
other hand, if there are many (over the global threshold
set by the supervisor) such instances, then the instances
when rule was not violated are treated as noise. Two
consecutive alarms that are interrupted by a short period
of time will therefore result in a single alarm message. A
short period in which a rule seems to be violated because
of the noise in RTLS data, however, will not trigger an
alarm. The grouping of alarms works in the following
way: the inference engine groups the alarm messages
based on the two rules Ri and Rj together if at the time
when rule Ri is violated another rule Rj concerning John
Smith or hallway H is violated too. As a result, the
supervisor has to deal with fewer alarm messages.

4.1.3 Generating alarm explanations
The Expert System Module also provides the supervisor
with an explanation of the alarm. It consists of three

AN INTELLIGENT INDOOR. Informatica 35 (2011) 391-390 387

parts: explanation in natural language, graphical
explanation, and video recording of the event.

Each alarm is a result of a particular rule violation.
Since each rule is an instance of a certain rule template,
explanations are partially prepared in advance. Each rule
template has an assigned pattern in the form of a
sentence in natural language with some objects and
subjects missing. In order to generate the full
explanation, the inference engine fills in the missing
parts of the sentence with details about the objects (e.g.,
person names, areas, times, etc.) related to the alarm.
IJ'tmMSJBlllCffi^—iSgSHSIIIIII

' 'Hf i l ^ K P
p i

Figure 3: Video explanation of an alarm.

Graphical explanation is given in form of a ground plan
animation and can be played upon supervisors' request.
The inference engine determines the start and the end
times of an alarm and sets the animation to begin slightly
before the alarm was caused and to end slightly after the
causes for the alarm are no longer present. The animation
is generated from the recorded RTLS data and the ground
plan of the building under surveillance. The animated
objects (e.g., persons, objects, areas) that are relevant to
the alarm are highlighted with red colour.

If a video recording of the incident that caused an
alarm is available it is added to the alarm explanation.
Based on the location of the person that caused the alarm,
the person in the video recording is marked with a
bounding rectangle (Figure 3). The video explanation is
especially important if an alarm is caused by a person or
object without a tag.

The natural language explanation, ground plan
animation, and video recordings with embedded
bounding rectangles produced by the PDR expert system
efficiently indicate when and to which events the security
personnel should pay attention.

4.2 Video Module
The video Module periodically checks if the movement
detected by the video cameras is caused by people
marked with tags. If it detects movement in an area
where no authorised humans are located, it triggers an
alarm. It combines the data about tag locations and
visible movement to reason about unauthorised entry.

Data about visible moving objects (with or without
tags) is available as the output of video pre-processing.

Moving objects are described with their 3D locations in
the same coordinate system as RTLS data, sizes of their
bounding boxes, similarity of the moving object with a
human, and a time stamp. The detailed description of the
algorithm that processes the video data (developed at the
Faculty of Electrical Engineering, University of
Ljubljana, Slovenia) can be found in [9] and [10] .

The Video Module determines the pairing between
the locations of tagged personnel and the detected
movement locations. If it determines that there is
movement in a location that is far enough from all the
tagged personnel, it raises an alarm. In this case the
module reports moving of an unauthorised person or an
unknown object (e.g., a robot) based on the similarity
between the moving object and a person. The probability
of false alarms can be reduced if several cameras are
used to monitor the area from various angles. It also
enables more accurate localization of moving objects.

Whenever the Video Module triggers an alarm it also
offers an explanation for it in form of video recordings
with embedded bounding boxes highlighting the critical
areas (Figure 3). The supervisor of the PDR system can
quickly determine whether the alarm is true or false by
checking the supplied video recording.

The video pre-processing algorithm is also capable
of detecting if a certain camera is blocked (e.g. covered
with a piece of fabric). Such information is forwarded to
the Video Module that triggers an alarm.

4.3 Fuzzy Logic Module
The Fuzzy Logic Module is based on the following
presumption: frequent behaviour is usual and therefore
uninteresting while rare behaviour is interesting as it is
highly possible that it is unwanted or at least unusual.
Therefore the module counts the number of actions done
by the object under surveillance and reasons about oddity
of the observed behaviour based on the counters. If it
detects a high number of odd events (i.e., events that
rarely took place in the past) in a short period of time, it
triggers an alarm.

The knowledge of the module is stored in two four-
dimensional arrays of counters for each object under
surveillance (implemented as red-black trees [2]).
Events are split into two categories, hence the two arrays:
events caused by movement and stationary events. A
moving event is characterised by its location, direction,
and the speed of movement. A stationary event, on the
other hand, is characterised by location, duration and
posture (lying, sitting, or standing). When an event is
characterised, fuzzy discretization [17] is used, hence
the name of the module. The location of an event in the
floor plane is determined using the RTLS system and
discretized in classes with size 50 cm, therefore the
module considers the area under surveillance as a grid of
50 by 50 cm squares. The speed of movement is
estimated by the Kalman filter. It is used to calculate the
direction which is discretized in the 8 classes (N, NE, E,
SE, S, SW, W, and NW). The scalar velocity is
discretized in the following four classes: very slow, slow,
normal, and fast. The posture is determined by a

388 Informatica 35 (2011) 383-390 R. Piltaver et al.

primitive routine (see Section 3.3). The duration of an
event is discretized in the following classes: 1, 2, 4, 8,
15, 30, seconds, minutes or hours.

The fuzzy discretization has four major advantages.
The first is a smaller amount of memory needed to store
the counters, as there is only one counter for a whole
group of similar events. Note that the accuracy of the
stored knowledge is not significantly decreased because
the discrete classes are relatively small. The second
advantage is the time complexity of counting the events
that are similar to a given event, which is constant
instead of being dependent on the number of events seen
in the past. The third advantage is the linear interpolation
implicitly introduced by fuzzy discretization, which
enables a more accurate estimation of the rare events'
frequencies. The fourth advantage is the low time
complexity of updating the counters' values compared to
the time complexity of adding a new counter with value
1 for each new event.

The oddity of the observed behaviour is calculated
using a sliding window over which the average oddity of
events is calculated. Averaging the oddity over time
intervals prevents the false alarms that would be
triggered if the oddity of single events was used
whenever RTLS data noise or short sequences of
uncommon events would occur. The oddity of a single
event is calculated by comparing the frequency of events
similar to the given event with the frequencies of the
other events. For this purpose the supervisor sets the two
relative frequencies fiow and fhi. The threshold f o w
determines the share of the rarest events that are treated
as completely unusual and therefore they get assigned the
maximum level of oddity. On the other hand, fhi
determines the share of the most frequent events that are
treated as completely usual and therefore they get
assigned 0 as the level of oddity. The oddity of an event
whose frequency is between the thresholds flow and fhi is
linearly decreasing with the increasing share of the
events that are rarer than the given event (Figure 4).

The drawback of the described method is a relatively
long learning period which is needed before the module
starts to perform well. On the other hand, the module
discards the outdated knowledge and emphasizes the new
data, which enables adapting to the gradual changes in
observed person's behaviour. The module is also highly
responsive: it takes only about 3 seconds to detect the
unusual behaviour. The module autonomously learns the
model of usual behaviour which enables the detection of
the unusual behaviour. It can detect events such as an
unconscious person lying on the floor, running in a room
where people usually do not run, a person sitting at the
table at which he usually does not sit etc. The module
also triggers an alarm when a long sequence of events
happens for the first time. If such false alarm is triggered,
the supervisor can mark it as false. Consequently, the
module will increase the appropriate counters and will
not raise an alarm for that kind of behaviour in the future.

When the Fuzzy Logic Module triggers an alarm, it
also provides a graphical explanation for it. It draws a
target-like graph in each square of the mesh dividing the
observed area. The colour of a sector of the target

represents the frequency of a given group of similar
events. The concentric circles represent the speed of
movement, e.g., a small radius represents a low speed.
The triangles, on the other hand, represent the direction
of movement. The location of a target on the mesh
represents the location in the physical area. White colour
depicts the lowest frequency, black colour depicts the
highest frequency while the shades of grey depict the
frequencies in between. The events that caused an alarm
are highlighted with a scale ranging from green to red.
For stationary events, tables are used instead of the
targets. The row of the table represents the posture while
the column represents the duration. A supervisor can read
the graphical explanations quickly and effectively. The
visualization is also used for the general analysis of the
behaviour in the observed area.

fhi frequency
of events

Figure 4: Calculating the oddity of events.

4.4 Macro and Statistic Modules
Macro and Statistic modules analyse persons' behaviour
and trigger alarms if it significantly deviates from the
usual behaviour. In order to do that, several statistics
about the movement of each tagged person are collected,
calculated, and averaged over various time periods.
Afterwards, these statistics are compared to the
previously stored statistics of the same person and the
deviation factor is calculated. If it exceeds the predefined
bound, the modules trigger an alarm.

The Statistic Module collects data over time periods
from one minute to several hours regardless of person's
location or context. On the other hand, the Macro
Module collects data regarding behaviour in certain areas
(e.g. room), i.e. the behaviour collection starts when a
person enters the area and ends when he/she leaves it.

Both modules use behaviour attributes such as: the
percentage of the time the person spent lying, sitting,
standing, or walking during the observed time period, the
average walking speed. Additionally, Macro module uses
the following attributes: area id, day of the week, length
of stay, entrance time, and exit time.

The behaviours are classified with the LOF
algorithm [3] , a density-based kNN algorithm, which
calculates the local outlier factor of the tested instance
with respect to the learning instances. The LOF
algorithm was chosen based on the study [14] . Bias
towards false positives or false negatives can be adjusted
by setting the alarm threshold.

AN INTELLIGENT INDOOR. Informatica 35 (2011) 391-390 389

The modules show a graphical explanation for each
alarm in form of parallel coordinates plot. Each attribute
is represented with one of the parallel vertical axes, while
statistics about given time periods are represented by a
zigzag line connecting values of each attribute from the
leftmost to the rightmost one. Past behaviour is
represented with green zigzag lines, while the zigzag line
portending to the behaviour that triggered the alarm is
collared red. The visualisation offers a quick and simple
way of establishing the cause of alarm and often
indicates more specific reason for it.

5 Verification
Due to the complexity of the PDR system and the diverse
tasks that it performs it is difficult to verify its quality
with a single test or to summarize it in a single number
such as true positive rate. Therefore, validation was done
on more subjective and qualitative level with several
scenarios for each of the individual modules. Four
demonstration videos of the PDR tests are available at
http://www.youtube.com/user/ijsdis. A single test case or
a scenario is a sequence of actions and events including a
security risk that should be detected by the system. "A
person enters a room without the permission" is an
example of scenario. Each scenario has a complement
pair: a similar sequence of actions which, on the
contrary, must not trigger an alarm. "A person with
permission enters the room" is the complement scenario
for the above example. The scenarios and their
complements were carefully defined in cooperation and
under supervision of security experts from the Slovenian
Ministry of Defence .

The Expert System Module was tested with two to
three scenarios per expert rule template. Each scenario
was performed ten times with various persons and
objects. The module has perfect accuracy (no false
positives and no false negatives) in cases when the RTLS
noise was within the normal limits. When the noise was
extremely large, the system occasionally triggered false
alarms or overlooked security risks. However, in those
cases even human experts were not able to tell if the
observed behaviour should trigger an alarm or not based
on the noisy RTLS measurements alone. Furthermore,
the extreme RTLS noise occurred in less than 2 % of the
scenario repetitions and the system made an error in less
than 50 % of those cases.

The Video Module was tested using the following
three scenarios: "a person enters the area under
surveillance without the RTLS tag", "a robot is moving
without authorised person's presence", and "a security
camera is intentionally obscured". Scenarios were
repeated ten times with different people as actors. The
module detected the security risks in all of the scenario
repetitions with movement and distinguished between a
human and a robot perfectly. It failed to detect the
obscured camera in one out of 10 repetitions. The
module also did not trigger any false alarms.

The Fuzzy Logic Module was tested with several
scenarios while the fuzzy knowledge was gathered over
two weeks. The module successfully detected a person

lying on the floor, sitting on colleagues chair for a while,
running in a room, walking on a table, crawling under a
table, squeezing behind a wardrobe, standing on the same
spot for extended period of time, and similar unusual
events. However, the experts' opinion was that some of
the alarms should not have been triggered. Indeed we
expect that in more extensive tests the modules
supervised learning capabilities would prevent further
repetitions of unnecessary alarms.

The test of the Macro and Statistic Modules included
the simulation of a usual day at work condensed into one
hour. The statistic time periods were 2 minutes long.
Since the modules require a collection of persons' past
behaviour, two usual days of work were recorded by a
person constituting of two hours of past behaviour data.
Afterwards, the following activities were performed 10
times by the same person and classified: performing a
normal day of work, stealing a container with classified
data, acting agitated as under the effect of drugs and
running. The classification accuracy was 90 %. This was
due to the low amount of past behaviour data. Therefore,
the modules did not learn the usual behaviour of the test
person but only a condensed (simulated) behaviour in a
limited learning time. We expect that the classification
accuracy would be even higher, if the learning time was
extended and if the person would act as usual instead of
simulating the condensed day of work.

Module TP TN FP FN N

Expert Sys. 197 199 2 2 400

Video 30 30 0 0 60

Fuzzy Logic 47 42 8 3 100

Macro 9 10 1 0 20

Statistic 9 10 1 0 20

Total 292 291 12 5 600

Percentage
(%)

48.7 48.5 2 0.8

Table 1: Evaluation of PDR system.

The overall system performance was tested on a single
scenario: "stealing a container with classified
documents". In the test five persons tried to steal the
container from a cabinet in a small room under
surveillance. Each person tried to steal the container five
times with and without a tag. All the attempts were
successfully detected by the system that reported the
alarm and provided an explanation for it.

The validation test data is summarized in Table 1. It
gives the number of true positive (TP), true negative
(TN), false positive (FP), and false negative alarms (FN),
and total number (N) of scenario repetitions. Each row
gives the results for one of the five modules. The bottom
two rows give the total sum for each column and the
relative percentage.

The system received the award for the best
innovation among research groups in Slovenia for 2009
at the Fourth Slovenian Forum of Innovations.

http://www.youtube.com/user/ijsdis

390 Informatica 35 (2011) 383-390 R. Piltaver et al.

6 Conclusion
This paper presents an intelligent surveillance system
utilizing a real-time location system (RTLS), video
cameras, and artificial intelligence methods. It is
designed for surveillance of high security indoor
environments and is focused on internal security threats.
The data about movement of personnel and important
equipment is gathered by RTLS and video cameras. After
basic pre-processing with filters and primitive routines
the data is sent to the five independent software modules.
Each of them is specialized for detecting specific security
risk. The Expert System Module detects suspicious
situations that can be described by location of a person or
other tagged objects in space and time. It detects many
different scenarios with high accuracy. The Video
Module automatically detects movement of persons and
objects without tags, which is not allowed inside the
surveillance area. Fuzzy Logic, Macro, and Statistics
Modules automatically extract the usual movement
patterns of personnel and equipment and detect
deviations from the usual behaviour. Fuzzy Logic is
focused on short-term anomalous behaviour such as
entering an area for the first time, lying on the ground or
walking on the table. Macro and Statistic Modules, on
the other hand, are focused on mid- and long-term
behaviour such as deviations in daily work routine.

The validation of the system shows that it is able to
detect all the security scenarios it was designed for and
that it does not raise too many false alarms even in more
challenging situations. In addition, the system is
customizable and can be used in a range of security
applications such as confidential data archives and banks.

Acknowledgement
Research presented in this paper was financed by the
Republic of Slovenia, Ministry of Defence. We would
like to thank the colleges from the Machine Vision
Laboratory, Faculty of Electrical Engineering, University
of Ljubljana, Slovenia and Špica International, d.o.o. for
fruitful cooperation on the project. Thanks also to
Boštjan Kaluža,. Mitja Luštrek, and Bogdan Pogorelc for
help regarding the RTLS and discussions, and Anže
Rode for discussions about security systems, expert
system rules templates and specification of scenarios.

References
[1] G. R. Arce. "Nonlinear Signal Processing: A

Statistical Approach", Wiley: New Jersey, USA,
2005.

[2] R. Bayer. "Symmetric Binary B-Trees: Data
Structures and Maintenance Algorithms", Acta
Informatica, 1, pp. 290-306, 1972.

[3] M. M. Breunig, H. P. Kriegel, R. T. Ng, J. Sander.
"LOF: Identifying densitybased local outliers,"
Proceedings of the International Conference on
Management of Data -SIGMOD '00, pp. 93-104,
Dallas, Texas, 2000.

[4] J. Demšar, B. Zupan, G. Leban. "Orange: From
Experimental Machine Learning to Interactive Data
Mining," White Paper (www.ailab.si/orange),

Faculty of computer and information science,
University of Ljubljana, Slovenia, 2004.

[5] M. Gams, T. Tušar. (2007), "Intelligent High-
Security Access Control", Informatica, vol 31(4),
pp. 469-477.

[6] R.E. Kalman. "A new approach to linear filtering
and prediction problems". Journal of Basic
Engineering, 82 (1), pp. 35-45, 1960.

[7] M. Kolbe, M. Gams. "Towards an intelligent
biometric system for access control," Proceedings
of the 9th International Multiconference
Information Society - IS 2006, Ljubljana, Slovenia,
2006, pp. 118-122.

[8] B. Krausz, R. Herpers. 'Event detection for video
surveillance using an expert system', Proceedings of
the 1st ACM Workshop on Analysis and Retrieval of
Events/Actions and Workflows in Video Streams -
AREA 2008, Vancouver, Canada, pp. 49-56.

[9] M. Kristan, J. Perš, M. Perše, S. Kovačič. "Closed-
world tracking of multiple interacting targets for
indoor-sports applications", Computer Vision and
Image Understanding, vol 113, 5, pp. 598-611,
2009.

[10] M. Perše, M. Kristan, S. Kovačič, G. Vučkovic, J.
Perš. "A trajectory-based analysis of coordinated
team activity in a basketball game", Computer
Vision and Image Understanding, vol 113, 5, pp.
612-621, 2009.

[11] R. Piltaver, G. Matjaž. "Expert system as a part of
intelligent surveillance system", Proceedings of the
18th International Electrotechnical and Computer
Science Conference - ERK 2009, vol. B, pp. 191-
194, 2009.

[12] R. Piltaver. "Strojno učenje pri načrtovanju
algoritmov za razpoznavanje tipov gibanja",
Proceedings of the 11th International
Multiconference Information Society - IS 2008, str.
13-17, 2008.

[13] V. Schwarz, A. Huber, M. Tüchler. "Accuracy of a
Commercial UWB 3D Location Tracking System
and its Impact on LT Application Scenarios,"
Proceedings of the IEEE International Conference
on Ultra-Wideband, Zürich, Switzerland, 2005.

[14] T. Tušar, M. Gams. "Odkrivanje izjem na primeru
inteligentnega sistema za kontrolo pristopa,"
Proceedings of the 9th International
Multiconference Information Society - IS 2006,
Ljubljana, Slovenia, 2006, pp. 136-139.

[15] Ubisense: awailable at: http://www.ubisense.net/
[16] H. Witten, E. Frank. Data Mining. "Practical

Machine Learning Tools and Techniques" (2nd
edition), Morgan Kaufmann, 2005.

[17] L. A. Zadeh. "Fuzzy sets", Information and Control
8 (3), pp. 338-353, 1965.

[18] http://www.pervcomconsulting.com/secure.html
[19] http://www.visonictech.com/Active-RFID-RTLS-

Tracking-and-Mangement-Software-Eiris.html
[20] http://www.aeroscout.com/content/healthcare
[21] http://www.telargo.com/solutions/track_trace.asp

http://www.ailab.si/orange
http://www.ubisense.net/
http://www.pervcomconsulting.com/secure.html
http://www.visonictech.com/Active-RFID-RTLS-
http://www.aeroscout.com/content/healthcare
http://www.telargo.com/solutions/track_trace.asp

Informática 35 (2011) 3 9 1 - 3 6 1 351

Query Preserving Relational Database Watermarking
S.A. Shah, Sun Xingming and Hamadou Ali
Network and Information Security Lab Hunan University, Changsha, Hunan, China
E-mail: saeed.arif@gmail.com; sunnudt@126.com: alihamadou@yahoo.fr

Majid Abdul
Pervasive Computing Lab Zhejiang University Hangzhou, Zhejiang P.R. China
E-mail: majedabbasi@yahoo.com

Keywords: right protection, relational data, watermarking

Received: March 25, 2010

In order to preserve the query results after watermarking relational data, it is necessary to keep the
semantic value of data intact during watermark embedding process. A query preserving relational
database-watermarking scheme is proposed in this paper. For watermark embedding, we use
alphanumeric data as new embedding channel. The scheme retains the semantic meaning of data after
embedding, which makes this a distortion free and query preserving technique. Watermark Embedding
is done by adjusting the case of securely selected text data. Our proposed method provides better
relational database watermarking solution for the database, which either has no numeric attribute, or
has data with zero resilience to data alteration. To make this scheme more secure tuples and attributes
selection is done using a secret key known only to the owner. Later the same key is used in detection
process. Moreover, there is no need of original data for watermark detection so it is a fully blind
scheme. The method proved (through experiments) to be robust against various kinds of attacks. An SQL
Server database implementation has shown that our algorithms can be used successfully in real world
applications.

Povzetek: Predstavljeno je obvarovanje relacij pri povpraševanju v relacijskih bazah.

1 Introduction
Easy modification and reproduction of digital data
(software, images, video, audio, and text) without leaving
any trace of manipulation makes it very easy victim of
piracy. Number of watermarking based solutions
proposed so far for copyright protection of relational
data. Watermark is a secret code embedded in digital
contents. This watermark can be extracted/detected from
the watermarked contents and can be used to establish
the ownership of data. Watermarking fails to prevent
illegal copying but it can be an effective tool for
establishing original ownership of pirated data. This
discourages piracy and enables owners to prosecute
copyright violators.

Growing use of outsourced relational data, especially
availability of relational data over the internet, demanded
an effective mechanism for copyright protection so that
owner of the data can identify pirated copies of their
data. Watermarking has proved to be an effective tool for
multimedia data so researchers explored this technology
for relational data also. Agrawal et al [1] pioneered
research on relational database watermarking in 2002.
Different schemes [1, 4, 3, 9, and 13] have been
proposed after that. Most of the previous work in this
area use numeric data as embedding domain for
watermark insertion. All these schemes are based on the
assumption that there are some data, which can tolerate

small changes, without affecting its usability. Some of
them use direct LSB domain [1] while other manipulates
statistics of the data for watermark embedding [4, 13].

There are few schemes proposed for categorical data
watermark but these schemes also introduce significant
change to data [2, 15]. A large number of techniques
available for multimedia watermarking [3, 5, 7, 10]
which proved to be effective but these cannot be applied
directly to database. For multimedia, there is a lot of
room for embedding any extra information, as there is a
large amount of redundant bits. One can play with these
bits as long as these manipulations are imperceptible. For
multimedia, the most important requirement is to avoid
visual distortion whereas for relational data, preservation
of semantic value of data is essential. Sometimes even a
change of a single bit will change the meaning of data
and thus affect query results. For example change of
single bit in date like name, address, age, account
number etc, will change the value and in turn the query
result. Another important challenge that still needs
attention is; what if there is no numeric data or, there is
data which is not resilient enough for watermark
embedding? All these factors lead to the need of scheme,
which not only retain the semantic value of data but also
preserve query results after watermark embedding. In
this paper we are going to propose such a scheme which

mailto:saeed.arif@gmail.com
mailto:sunnudt@126.com
mailto:alihamadou@yahoo.fr
mailto:majedabbasi@yahoo.com

392 Informatica 35 (2011) 391-396 S.A. Shah et al.

works for non-numeric data and also preserve query
results by introducing almost zero distortion to semantic
value of data while watermark embedding.

The paper is organized as follows. In section 2
related work is discussed. Section 3 discusses our scheme
in detail. Section 4 analyzes main features of our scheme.
In section 5 different attacks are discussed. Experimental
setup and results are also outlined in section 5. A multi-
bit watermarking scheme; an extended version of the
proposed solution is described in Section 6. Section 7
concludes.

2 Related Work
Work on database watermarking started in 2002 when
Agrawal and Kiernan presented a robust watermarking
scheme for databases [1]. The scheme focused on
watermarking relational data with numeric attributes. It is
assumed that these numeric attributes can tolerates small
amount of modification. Using a secret key and secure
hash algorithm, first tuple and then attribute within that
tuple are randomly selected for watermark embedding.
Finally, selected bits of that attribute are modified in
order to embed watermark bits. Robustness of the
scheme is shown through experiments and theoretical
analysis against different kind of attacks including such
as rounding attack, subset attack, and additive attack etc.

Another significant contribution in this area is by
Radu Sion et al. [2]. Sion presented different schemes for
numeric data and categorical data [4]. For the first time
Sion proposed a subset based watermarking method for
numeric data. According to this method first all the
numeric data is partitioned into subsets using some secret
key and then a single bit is embedded within each subset
by playing with its statistics. The scheme claimed to be
robust against variety of attacks including subset attack,
data resorting and transformations attacks. However, it
does not seem effective for database which need frequent
update, as it requires re watermarking of all the data.

In [14] Yingjiu Li et al proposed a fragile
watermarking scheme for relational data authentication.
This is a group based technique. Watermark calculated
from message digest of the group, which is then
embedded in the same group. Since the message digest is
fragile even for single bit change, it can be used for
authentication of relational data.

In [13] M. Shehab et al presented optimization
based watermarking for numerical data. The relational
data watermarking is first formulated as constrained
optimization problem then solution to this problem is
sought either using Genetic algorithms or Pattern search.
Here again data is partitioned into subsets and
distribution of each partitions is modified to embed a
single bit, but embedding is done by solving the
optimization problem either for maximization or
minimization. This technique is state of the art for
numerical data as it introduces minimum distortion to
data and is more robust against different attack than
earlier schemes.

The above mentioned schemes work only for
numeric data. In [2] a robust watermarking proposed by

Sion for categorical data copyright protection. In the
scheme first tuples are securely selected using secret key
then values of categorical attributes of selected tuples are
changed to some other values from available pool valid
values based on the watermark to be embedded (e.g.
change city from New York to Washington). The values
are changed by satisfying some constraints so that this
change does not affect data usability.

David Gross proposed a scheme for query preserving
relational data watermarking in [15]. Scheme claimed to
be robust against local queries. For watermark
embedding first local queries are identified and then
selected data values are modified while preserving these
queries. However, the changes made to the data values
are significant to most of the applications, which limits
its scope.

Notation Description
r Row or record of a relation
K Secret key known only to owner
n Number of tuples in the relation
v Number of attributes in the tuple
t No of tuples to be marked

1/m Fraction of tuples to be watermarked
s Size of watermark

K w Selected watermark key
E b Existing bit pattern
W Embedded Watermark
G Pseudo random sequence generator

Table 1 : Notations and parameters.

3 Our Scheme
Most of the above mentioned schemes [1, 2, 4, 9] are
based on the manipulation of numeric data (which must
have some margin of error), thus have limited domain.
In addition, the schemes discussed above including those
for categorical data, introduce distortion in the contents
by changing meaning of attribute values which is often
not desirable.

In our scheme we introduce a new embedding
channel by embedding watermark in non numeric data or
more precisely the alphabetic data attributes. Since the
database, queries are case insensitive so it will not affect
the semantic meaning of data if the case is changed from
small to capital or vice versa. We are going to exploit
this inherent property present in such kind of data
attributes. The proposed method is applicable to all the
languages with upper/lower character cases. This work is
actually an extension of our previous work for copyright
protection of relational data [16]. We now present our
technique for watermarking relational database. This
technique marks only alphabetic attributes without
introducing any change in their semantic meaning. Not
all attributes need to be watermarked. Data owner will
decide which attributes are more suitable for
watermarking. Let R be the database relation with
schema R (P, A0 . . .A v-1) where P is the primary key
attribute. Table 1 shows the important parameters used in

QUERY PRESERVING DATABASE. Informatica 35 (2011) 391-396 393

our algorithms. For simplicity assume that all the
attributes are candidate for watermarking. m is used to
determine the number of tuple to be watermarked. If t
denotes the number of tuples to be marked then

t ~n / m
r.Ai is used to denote the value of attribute Ai. In this

technique, we are using one way hash function H for
hash value calculation. There are number of hash
function like MD4, MD5 SHA1 SHA256 etc.

A Message Authentication Code (MAC) is computed
using a one way hash function that depends on a key[11].
If K denotes the key then H will randomize the input
primary key "r.P" of relation R when H is seeded with
K known only to owner. The Following MAC is used in
our Scheme

MAC=H (K, r.P)
Where we are using SHA-1 as one way hash function H.

3.1 Watermark embedding
Watermark embedding algorithm is given in table 2.
Given the relation R (P, A1, A2 A v -1) with primary
key P. Lines 1 through 6 determine tuples and attribute
to be marked respectively, using primary key Hash value.
Selection of both depends on secret key K known to the
owner, so only the owner can identify which tuple and
which attribute of that tuple is to be marked. An attacker
has to guess the tuple as well as attribute within the tuple
to destroy the watermark. In line 8 existing bit sequence
Eb is extracted by inspecting the text case of selected
data. Bit 1 or 0 is extracted following same rules outlined
in detection algorithm. Lines 9-11 generate L number of
candidate watermark sequences Cj, each of which is then
compared to existing bit pattern Eb. Keys used to
generate these candidate watermarks may be obtained by
seeding G with secret key K and index j of the
watermark.

// Secret keys K, Kw and parameters m, v are private to
the owner.

1. foreach tuple r e do step 2 to 5
2. Calculate PrimaryKeyHash pHash=H (K, r.P)
3. Select tuple with (pHash mod m ==0)
4. Select attribute with index: i= pHash mod v
5. selected attribute array: SelectedValue[i]=r.Ai
6. Sort Selected tuples using pHash
7. watermark size 5= length of SelectedValue[]
8. Extract Existing Bit (Eb) pattern From selected
data values
9. Generate random candidate watermarks Cj each of
length 5 using G and keys Kj

Cj= G(Kj) where 1<=j<=L
10. a) Select watermark W= Cj with minimum
hamming distance from Eb

b) Kw = Key of selected wm sequence
11. Call embedwm(SelectedValue[], W)//Embed

Watermark in Selected Data

Table 2: Watermark embedding algorithm.

Finally the bit sequence having minimum hamming to Eb
is selected for embedding as watermark W and its key
isrecorded as Kw which will be used later for watermark
extraction. embedwm actually embeds the watermark
depending on the corresponding watermark bit. It adjusts
the case of selected attribute value according to the
conditions laid down in Algorithm 1. Case is adjusted so
as to follow most common practice e.g. if watermark bit
is 1 then case is converted to title case and for 0 to
sentence case.

Sometimes database contain null values in that case
mark is not applied. In addition, when there is text such
as abbreviation, where a standard is there, no change is
applied.

//Given R. K, Kw and parameters m, v
1. foreach tuple r r e do steps 2 to 4
2. PrimaryKeyHash pHash=H(K, r.P)
3. if (pHash mod m ==0) then Select This tuple
4. attribute_index i= pHash mod v //Select Attribute
Ai
5. Sort Selected tuples using pHash

//Extract Watermark We
6. Repeat 7 to 10 for selected tuples
7. Case-I: When r.Ai is single word
8. If (r.Ai has title case) then
W e [i]=1
else If (r.Ai has all caps) then
W e [i]=0
9. Case-II: When r.Ai is multi word
10. If (whole text of r.Ai has Title case) then

W e [i]=1
else We [i] =0

// Verify Watermark
11. Generate W using key Kw
12. result_vector=W XOR We

Table 3: Watermark detection algorithm.

3.2 Watermark detection algorithm
Let Alice be the owner of the database and Mallory
another person with pirated copy of Alice's Data. We
assume that the primary Key is intact because dropping it
may cause loss of important data. The algorithm for
watermark detection is given in the table 3. In line 3 the
tuple is selected where watermark is supposed to be
embedded. Line 4 determines attribute marked. Both of
these are selected using same secret key K used during
embedding. In lines 6 to 10, watermark bits are extracted
using the predefined conditions.

When the attribute value consists of a single word
then extracted watermark bit is 1, if it has Title case and
0 otherwise. For attribute having multiple words, the
watermark bit is 1 if whole text has title case and 0 for
sentence case. Watermark verification is done in lines 11
& 12, where, first the original watermark is generated
using same secret key and then compared with the
extracted watermark.

394 Informatica 35 (2011) 391-396 S.A. Shah et al.

4 Discussion
In this section, we discuss some important features of our
scheme related to security, detection, query preservation
and case alterations.

4.1 Security
Security of our schemes can be defined in terms of
difficulty for a malicious attacker to recover, locate or
even guess originally embedded watermark. For
watermark generation a secure pseudorandom sequence
generator G is used. It is computationally infeasible to
predict the next number in the sequence [6]. Statistically,
the numbers generated by G appear to be a realized
sequence of independent and identically distributed
random variables, in the sense that the numbers pass
standard statistical tests for these properties [8]. A seed
value is used to generate the random number.

Same sequence will be generated every time with
repeated execution of G with given seed value [6]. We
used the secret key K as seed and only the owner knows
it. Selection of tuples and attributes is purely key based.
Moreover, use of a secure one-way hash function makes
this scheme more secure.

4.2 Blind detection
There are two types of watermarking methods, one which
require original data for the detection of embedded
watermark called non-blind and other which don't called
blind [10]. Since there is no need of original database to
recover/decode embedded watermark, so we can claim
that our scheme is Blind in nature.

The watermark We is extracted from watermarked
relation, which is then verified. It is difficult to keep
original version of distributed copy of database because
it requires frequent updates, so a blind technique is very
helpful.

4.3 Query preserving watermark
Watermark embedding is done by adjusting the case of
selected data according to predefined rules, which does
not change the meaning of data so queries result will not
be affected even after embedding.

4.4 Reduced number of case alterations
For watermark, a number of random sequences are
generated and one of them is selected for embedding.
This selected sequence has minimum hamming distance
to existing bit sequence, which is extracted from current
text case of selected attribute values before embedding.
Applying hamming distance for final watermark
selection reduces number of text case alteration leading
to low text case distortion. This is one of the important
contributions.

5 Experiments and Attacks Analysis
In this section, we will discuss the survival of embedded
watermark against common database attacks. Watermark
that survives when its host data is exposed to attacks is
called robust watermark. The watermarked data can be
attacked in various ways through malicious attacks and
benign updates. The most common attacks are:

i. Tuple deletion
ii. Modifying attributes values

iii. Case alteration
The first two attacks may affect the usability of data,

so, for an attacker these kinds of attack are often less
desirable. The third one is actually a legal attack, which
does not affect the usability of data so is most important
to study it. We analysed our scheme against these attacks
through experiments, and results show that it is robust
against the above attacks; means there is very high
probability of correctly decoding the embedded
watermark even after these attacks.

For experimental purpose, we used SQL server
database of more than half million records on Windows
Xp platform. The value of "m" is kept 10 and number
of watermarkable attributes "v" is 3 in our sample
database. In the following, we present experiment
involving different attacks (Data loss, Data Alterations,
Change in Case). Experiments were performed
repeatedly and their results are averaged over multiple
runs.

5.1 Tuple deletion attack
In this experiment, randomly selected tuples are deleted
and after deletion of every few tuples, the watermark is
extracted and compared with originally embedded
watermark. The experiment performed many times and
average behaviour is plotted in figure 1. It shows that
even after deleting 35-40% of tuples, distortion in
decoded watermark is up to 12%. In our experiments, we
used binary watermark so in this case 88% bits of
decoded watermark matched with the actual embedded
watermark so distortion (damage/loss in watermark) is
only 12%.

Effect of Tuple Deletion on Watermark

i n
% != o £
£ ^

14
12
10
8
6
4
2
0
<V

1 1 1 1 r~

N V
% of Tuples Deleted

Figure 1: Tuple deletion attack.

5.2 Data modification attack
Mallory's (The attacker) priority would be to destroy
watermark, while preserving the data. Given no

QUERY PRESERVING DATABASE. Informatica 35 (2011) 391-396 395

knowledge of secret key or the original data, the attacker
may try to make random modifications to watermarked
data values, thus hoping to destroy watermark at some
point. In this experiment, we analyse the sensitivity of
our scheme to random updates of watermarked data. The
demonstrated behaviour is shown in the figure 2. The
results show that only 6% distortion in watermark is
observed if 35-40% data values are randomly modified.
Hence, it is more robust against such kind of attacks as
compared to other attacks.

Loss In Watermark Detection After
Modifications

6 -,
5 -
4 -
3 -
2 -
1-
0-

6 10 14 18 22 26 30

% Tuples Modified

Figure 2: Data modification attack

5.3 Tuple sorting attack
During embedding, we sort the selected tuples before
embedding watermark, using primary key hash value,
and the same process is repeated during detection, so any
kind of sorting attack will not harm the detection of
watermark.

It is evident from the results of above experiments,
that we can correctly decode the embedded watermark
with very high ratio (up to 80%) even after different
attacks. Hence we can claim that our scheme is robust
against common database attacks.

6 Multi-bit watermarking
In this section, an extension to multi-bit watermarking of
the proposed scheme is presented. For this purpose, the
watermark embedding and detection algorithms are
modified. For embedding first all the tuples are securely
divided into partitions. A single bit embedded into each
partition, which requires that the number of partitions
should be much greater than the watermark size so that a
single bit can be embedded multiple times.

The simplified versions of embedding and detection
algorithms are given in the table 4 and 5 respectively. For
sake of simplicity only overview of embedding and
detection process is given.

E1. Secret Grouping:
All tuples are securely divided into "g" number of

groups. Grouping is done as proposed by Shehab in [13]
E2. Tuple Sorting:
All the tuples are sorted based on secure hash value

of each tuple's primary key
E3. Secure Tuple and Attribute Selection:
Within each group, first a tuple then an attribute is

randomly selected for marking (same as in algorithm 1)
E4. Watermark Embedding:
The case of selected attribute data in a specific group

is adjusted to represent the embedded watermark bit

Table 4: Multi-bit embedding algorithm.

Figure 3: Case alteration attack.

5.4 Case alteration attacks
Since we are playing with the case of attributes values so
this kind of attack is only specific to our scheme and it is
a legal attack so robustness against it must be checked.
In this experiment, we randomly (and repeatedly) change
the case of attributes values, then extract watermark, and
compare it with embedded one. The results are averaged
our various runs. As shown in the figure 3. It is observed
that our scheme is robust against this kind of attack.
After changing the case of up to 60% tuples, the
watermark distortion is less than 20%.

Figure 4: Robustness against value modification attack.

D1. Grouping:
All the tuples are securely divided into g groups

using the same secret key K and number of group's g
D2. Extract Watermark We:
Sort tuples within each group

(a). Determine marked tuples and attributes from
groups (same as in encoding)

(b). Extract watermark bit from the Case of
selected data

396 Informatica 35 (2011) 391-396 S.A. Shah et al.

(c). Apply majority voting method for final
watermark extraction

D3. Watermark verification:
(a) Bit matching of We with actual watermark W

(Generated using same key K)
(b) If match_count/total_count > T then

watermark detected

Table 5: Multi-bit detection algorithm

Experiments show that robustness of the scheme can be
improved significantly by using multi-bit embedding.
Figure 4 shows the robustness of the multi-bit scheme
against data modification attack.
In our experiments we used value of threshold T= 0.8.
We suggest its value within 0.6 < T < 0.8. If an image is
embedded as watermark then T can be set to even lower
value.

7 Conclusions and Future Work
In this paper, we introduced a new scheme for
watermarking relational database for owner verification
and copyright protection. A solution is proposed by:

i. Discovering a new embedding channel for
watermarking.

ii. Building an algorithm for watermarking such that
it preserves data integrity by introducing zero
distortion to its semantic meaning.

iii. Improving robustness by multi-bit embedding

We thus provided an efficient watermarking technique
for copyrights protection of relational data. Through
experiments, we proved that our scheme is robust against
common database attack as well attacks specific to our
scheme. In future, we intend to analyze and improve this
scheme against other attacks such as subset and
partitioning attacks. Another research direction may be to
investigate a method for data authentication using fragile
watermarks.

Acknowledgment
This work is supported by the National Basic Research
Program of China (973 Program) under grant No.
2006CB303000, the National High Technology Research
and Development Program of China (863 Program)
under grant 2007AA010404, NSFC Key Project grant
No. 60736016, NSFC grants No. 60702065, 60873198,
60973113 and 60973128, Science and Technology
Program of Hunan Province grants No.2008FJ4221,
Special for National Basic Research Program of China
(973 Program) grants No. 2009CB326202 and Higher
Education Commission Pakistan through University of
AJ&K FDP 2008.

References
[1] R. Agrawal and J. Kiernan. Watermark relational

databases. In Proc. of the 28th International .
Conference. On Very Large Data Bases, 2002.

[2] R.Sion. Proving ownership over categorical data. In
Proceedings of ICDE 2004.

[3] I. J. Cox, M. Miller, and J. Bloom. Watermarking
applications and properties. In Proc. International
Conference on Information Technology: Coding
and Computing, 2000.

[4] R.Sion, M. Atallah, and S. Prabhakar. Rights
protection for relational data. In Proceedings of
ACMSIGMOD 2003, 2003.

[5] C. Rey and J. Dugelay, A Survey of
Watermarking Algorithms for Image Authentication
In JASP, No.6, pp. 613-621, 2002.

[6] Schneider B. Applied cryptography", 2nd ed.
(1996) Wiley, New York

[7] I. J. Cox, J. Kilian, T. Leighton and T. Shamoon,
Secure Spread Spectrum Watermarking for
Multimedia, IEEE Trans. on Image Processing, 6,
12, 1673-1687, (1997).

[8] Knuth D. Semi numerical algorithms. In: The art of
computer programming, vol 2.Addison-Wesley,
Reading, MA, 1981

[9] Y. Li, V. Swarup, and S. Jajodia, A Robust
Watermarking scheme for relational data. In Proc.
The 13th workshop on information technology and
engineering, pages 195-200, December 2003.

[10] Ingemar Cox, Matthew Miller, Jeffrey Bloom.
Digital Watermarking Morgan Kaufmann .2002

[11] N. Ferguson and B. Schneider, Practical
Cryptography. Wiley & Sons, 2003.

[12] J. Brassil, L. O'Gorman Watermarking Document
Images with Bounding Box Expansion, in Proc. of
1st Int'l Workshop on Information Hiding,
Newton Institute, Cambridge UK, May 1996, pp.
227-235.

[13] Mohammad Shehab, Elisa Bertino, Arif Ghafoor
Watermarking Relational Data using Optimization
Based Techniques IEEE Transactions on
Knowledge and Data Engineering Volume 20 ,
Issue 1 (January 2008) Pages 116-129

[14] Y. Li, H. Guo, S. Jajodia, Tamper detection and
localization for categorical data using fragile
Watermarks in: 4th ACM Workshop on Digital
Rights Management, CCS04, October 2004.

[15] D. Gross-Amblard, Query-preserving watermarking
of relational databases and xml documents, in:
Proc. of the 22ndACMSIGMOD-SIGACT-SIGART
Symposium on Principles of Database, June 9-12,
2003, pp. 191-201.

[16] S. A. Shah, S. A. M. Gilani, I. A. Awan: Owner
Verification and Copyright Protection of Relational
Data. in: Proc. Of IMEC Jun 2006 252-257 Hong
Kong.

Informática 35 (2011) 397-361 351

JOŽEF STEFAN INSTITUTE

Jožef Stefan (1835-1893) was one of the most prominent
physicists of the 19th century. Born to Slovene parents,
he obtained his Ph.D. at Vienna University, where he was
later Director of the Physics Institute, Vice-President of the
Vienna Academy of Sciences and a member of several sci-
entific institutions in Europe. Stefan explored many areas
in hydrodynamics, optics, acoustics, electricity, magnetism
and the kinetic theory of gases. Among other things, he
originated the law that the total radiation from a black
body is proportional to the 4th power of its absolute tem-
perature, known as the Stefan-Boltzmann law.

The Jožef Stefan Institute (JSI) is the leading indepen-
dent scientific research institution in Slovenia, covering a
broad spectrum of fundamental and applied research in the
fields of physics, chemistry and biochemistry, electronics
and information science, nuclear science technology, en-
ergy research and environmental science.

The Jožef Stefan Institute (JSI) is a research organisation
for pure and applied research in the natural sciences and
technology. Both are closely interconnected in research de-
partments composed of different task teams. Emphasis in
basic research is given to the development and education of
young scientists, while applied research and development
serve for the transfer of advanced knowledge, contributing
to the development of the national economy and society in
general.

At present the Institute, with a total of about 900 staff,
has 700 researchers, about 250 of whom are postgraduates,
around 500 of whom have doctorates (Ph.D.), and around
200 of whom have permanent professorships or temporary
teaching assignments at the Universities.

In view of its activities and status, the JSI plays the role
of a national institute, complementing the role of the uni-
versities and bridging the gap between basic science and
applications.

Research at the JSI includes the following major fields:
physics; chemistry; electronics, informatics and computer
sciences; biochemistry; ecology; reactor technology; ap-
plied mathematics. Most of the activities are more or
less closely connected to information sciences, in particu-
lar computer sciences, artificial intelligence, language and
speech technologies, computer-aided design, computer ar-
chitectures, biocybernetics and robotics, computer automa-
tion and control, professional electronics, digital communi-
cations and networks, and applied mathematics.

The Institute is located in Ljubljana, the capital of the in-
dependent state of Slovenia (or S9nia). The capital today
is considered a crossroad between East, West and Mediter-

ranean Europe, offering excellent productive capabilities
and solid business opportunities, with strong international
connections. Ljubljana is connected to important centers
such as Prague, Budapest, Vienna, Zagreb, Milan, Rome,
Monaco, Nice, Bern and Munich, all within a radius of 600
km.

From the Jožef Stefan Institute, the Technology park
"Ljubljana" has been proposed as part of the national strat-
egy for technological development to foster synergies be-
tween research and industry, to promote joint ventures be-
tween university bodies, research institutes and innovative
industry, to act as an incubator for high-tech initiatives and
to accelerate the development cycle of innovative products.

Part of the Institute was reorganized into several high-
tech units supported by and connected within the Technol-
ogy park at the Jožef Stefan Institute, established as the
beginning of a regional Technology park "Ljubljana". The
project was developed at a particularly historical moment,
characterized by the process of state reorganisation, privati-
sation and private initiative. The national Technology Park
is a shareholding company hosting an independent venture-
capital institution.

The promoters and operational entities of the project are
the Republic of Slovenia, Ministry of Higher Education,
Science and Technology and the Jožef Stefan Institute. The
framework of the operation also includes the University of
Ljubljana, the National Institute of Chemistry, the Institute
for Electronics and Vacuum Technology and the Institute
for Materials and Construction Research among others. In
addition, the project is supported by the Ministry of the
Economy, the National Chamber of Economy and the City
of Ljubljana.

Jožef Stefan Institute
Jamova 39, 1000 Ljubljana, Slovenia
Tel.:+386 1 4773 900, Fax.:+386 1 251 93 85
WWW: http://www.ijs.si
E-mail: matjaz.gams@ijs.si
Public relations: Polona Strnad

http://www.ijs.si
mailto:matjaz.gams@ijs.si

Informatica 35 (2011)

INFORMATICA
AN INTERNATIONAL JOURNAL OF COMPUTING AND INFORMATICS

INVITATION, COOPERATION

Submissions and Refereeing

Please submit a manuscript at:
http://www.informatica.si/Editors/PaperUpload.asp. At least two
referees outside the author's country will examine it, and they are
invited to make as many remarks as possible from typing errors to
global philosophical disagreements. The chosen editor will send
the author the obtained reviews. If the paper is accepted, the edi-
tor will also send an email to the managing editor. The executive
board will inform the author that the paper has been accepted,
and the author will send the paper to the managing editor. The
paper will be published within one year of receipt of email with
the text in Informatica MS Word format or Informatica ETEX
format and figures in .eps format. Style and examples of papers
can be obtained from http://www.informatica.si. Opinions, news,
calls for conferences, calls for papers, etc. should be sent directly
to the managing editor.

QUESTIONNAIRE
| | Send Informatica free of charge

| | Yes, we subscribe

Please, complete the order form and send it to Dr. Drago Torkar,
Informatica, Institut Jožef Stefan, Jamova 39, 1000 Ljubljana,
Slovenia. E-mail: drago.torkar@ijs.si

Since 1977, Informatica has been a major Slovenian scientific
journal of computing and informatics, including telecommunica-
tions, automation and other related areas. In its 16th year (more
than seventeen years ago) it became truly international, although
it still remains connected to Central Europe. The basic aim of In-
formatica is to impose intellectual values (science, engineering)
in a distributed organisation.

Informatica is a journal primarily covering intelligent systems in
the European computer science, informatics and cognitive com-
munity; scientific and educational as well as technical, commer-
cial and industrial. Its basic aim is to enhance communications
between different European structures on the basis of equal rights
and international refereeing. It publishes scientific papers ac-
cepted by at least two referees outside the author's country. In ad-
dition, it contains information about conferences, opinions, criti-
cal examinations of existing publications and news. Finally, major
practical achievements and innovations in the computer and infor-
mation industry are presented through commercial publications as
well as through independent evaluations.

Editing and refereeing are distributed. Each editor can conduct
the refereeing process by appointing two new referees or referees
from the Board of Referees or Editorial Board. Referees should
not be from the author's country. If new referees are appointed,
their names will appear in the Refereeing Board.

Informatica is free of charge for major scientific, educational and
governmental institutions. Others should subscribe (see the last
page of Informatica).

ORDER FORM - INFORMATICA

Name: Office Address and Telephone (optional):

Title and Profession (optional):

E-mail Address (optional):

Home Address and Telephone (optional):

Signature and Date:

http://www.informatica.si/Editors/PaperUpload.asp
http://www.informatica.si
mailto:drago.torkar@ijs.si

Informatica WWW:

http://www.informatica.si/

Referees from 2008 on:

Ajith Abraham, Siby Abraham, Renato Accornero, Raheel Ahmad, Cutting Alfredo, Hameed Al-Qaheri, Gonzalo
Alvarez, Wolfram Amme, Nicolas Anciaux, Rajan Arora, Costin Badica, Zoltän Balogh, Andrea Baruzzo, Borut
Batagelj, Norman Beaulieu, Paolo Bellavista, Steven Bishop, Marko Bohanec, Zbigniew Bonikowski, Borko
Boskovic, Marco Botta, Pavel Brazdil, Johan Brichau, Andrej Brodnik, Ivan Bruha, Maurice Bruynooghe, Wray
Buntine, Dumitru Dan Burdescu, Yunlong Cai, Juan Carlos Cano, Tianyu Cao, Norman Carver, Marc Cavazza,
Jianwen Chen, L.M. Cheng, Chou Cheng-Fu, Girija Chetty, G. Chiola, Yu-Chiun Chiou, Ivan Chorbev, Shauvik
Roy Choudhary, Sherman S.M. Chow, Lawrence Chung, Mojca Ciglaric, Jean-Noël Colin, Vittorio Cortellessa,
Jinsong Cui, Alfredo Cuzzocrea, Darko Cerepnalkoski, Gunetti Daniele, Grégoire Danoy, Manoranjan Dash, Paul
Debevec, Fathi Debili, Carl James Debono, Joze Dedic, Abdelkader Dekdouk, Bart Demoen, Sareewan
Dendamrongvit, Tingquan Deng, Anna Derezinska, Gaël Dias, Ivica Dimitrovski, Jana Dittmann, Simon
Dobrišek, Quansheng Dou, Jeroen Doumen, Erik Dovgan, Branko Dragovich, Dejan Drajic, Jozo Dujmovic, Umut
Riza ErtÄijrk, CHEN Fei, Ling Feng, YiXiong Feng, Bogdan Filipic, Iztok Fister, Andres Flores, Vladimir
Fomichov, Stefano Forli, Massimo Franceschet, Alberto Freitas, Jessica Fridrich, Scott Friedman, Chong Fu,
Gabriel Fung, David Galindo, Andrea Gambarara, Matjaž Gams, Maria Ganzha, Juan Garbajosa, Rosella Gennari,
David S. Goodsell, Jaydeep Gore, Miha Grcar, Daniel Grosse, Zhi-Hong Guan, Donatella Gubiani, Bidyut Gupta,
Marjan Gusev, Zhu Haiping, Kathryn Hempstalk, Gareth Howells, Juha Hyvärinen, Dino Ienco, Natarajan
Jaisankar, Domagoj Jakobovic, Imad Jawhar, Yue Jia, Ivan Jureta, Dani Juricic, Zdravko Kacic, Slobodan
Kalajdziski, Yannis Kalantidis, Boštjan Kaluža, Dimitris Kanellopoulos, Rishi Kapoor, Andreas Kassler, Daniel S.
Katz, Samee U. Khan, Mustafa Khattak, Elham Sahebkar Khorasani, Ivan Kitanovski, Tomaž Klobučar, Jän
Kollär, Peter Korošec, Valery Korzhik, Agnes Koschmider, Jure Kovac, Andrej Krajnc, Miroslav Kubat, Matjaz
Kukar, Anthony Kulis, Chi-Sung Laih, Niels Landwehr, Andreas Lang, Mohamed Layouni, Gregor Leban, Alex
Lee, Yung-Chuan Lee, John Leggett, Aleš Leonardis, Guohui Li, Guo-Zheng Li, Jen Li, Xiang Li, Xue Li,
Yinsheng Li, Yuanping Li, Shiguo Lian, Lejian Liao, Ja-Chen Lin, Huan Liu, Jun Liu, Xin Liu, Suzana
Loskovska, Zhiguo Lu, Hongen Lu, Mitja Luštrek, Inga V. Lyustig, Luiza de Macedo, Matt Mahoney, Domen
Marincic, Dirk Marwede, Maja Matijasevic, Andrew C. McPherson, Andrew McPherson, Zuqiang Meng, France
Mihelic, Nasro Min-Allah, Vojislav Misic, Vojislav Mišic, Mihai L. Mocanu, Angelo Montanari, Jesper
Mosegaard, Martin Možina, Marta Mrak, Yi Mu, Josef Mula, Phivos Mylonas, Marco Di Natale, Pavol Navrat,
Nadia Nedjah, R. Nejabati, Wilfred Ng, Zhicheng Ni, Fred Niederman, Omar Nouali, Franc Novak, Petteri Nurmi,
Denis Obrul, Barbara Oliboni, Matjaž Pancur, Wei Pang, Gregor Papa, Marcin Paprzycki, Marek Paralic,
Byung-Kwon Park, Torben Bach Pedersen, Gert Schmeltz Pedersen, Zhiyong Peng, Ruggero G. Pensa, Dana
Petcu, Marko Petkovšek, Rok Piltaver, Vid Podpecan, Macario Polo, Victor Pomponiu, Elvira Popescu, Božidar
Potocnik, S. R. M. Prasanna, Kresimir Pripuzic, Gabriele Puppis, HaiFeng Qian, Lin Qiao, Jean-Jacques
Quisquater, Vladislav Rajkovic, Dejan Rakovic, Jean Ramaekers, Jan Ramon, Robert Ravnik, Wilfried Reimche,
Blagoj Ristevski, Juan Antonio Rodriguez-Aguilar, Pankaj Rohatgi, Wilhelm Rossak, Eng. Sattar Sadkhan, Sattar
B. Sadkhan, Khalid Saeed, Motoshi Saeki, Evangelos Sakkopoulos, M. H. Samadzadeh, MariaLuisa Sapino,
Piervito Scaglioso, Walter Schempp, Barabara Koroušic Seljak, Mehrdad Senobari, Subramaniam Shamala,
Zhongzhi Shi, LIAN Shiguo, Heung-Yeung Shum, Tian Song, Andrea Soppera, Alessandro Sorniotti, Liana
Stanescu, Martin Steinebach, Damjan Strnad, Xinghua Sun, Marko Robnik Šikonja, Jurij Šilc, Igor Škrjanc,
Hotaka Takizawa, Carolyn Talcott, Camillo J. Taylor, Drago Torkar, Christos Tranoris, Denis Trcek, Katarina
Trojacanec, Mike Tschierschke, Filip De Turck, Aleš Ude, Wim Vanhoof, Alessia Visconti, Vuk Vojisavljevic,
Petar Vracar, Valentino Vranic, Chih-Hung Wang, Huaqing Wang, Hao Wang, Hui Wang, YunHong Wang, Anita
Wasilewska, Sigrid Wenzel, Woldemar Wolynski, Jennifer Wong, Allan Wong, Stefan Wrobel, Konrad Wrona, Bin
Wu, Xindong Wu, Li Xiang, Yan Xiang, Di Xiao, Fei Xie, Yuandong Yang, Chen Yong-Sheng, Jane Jia You, Ge
Yu, Borut Zalik, Aleš Zamuda, Mansour Zand, Zheng Zhao, Dong Zheng, Jinhua Zheng, Albrecht Zimmermann,
Blaž Zupan, Meng Zuqiang

http://www.informatica.si/

Informática
An International Journal of Computing and Informatics

Web edition of Informatica may be accessed at: http://www.informatica.si.

Subscription Information Informatica (ISSN 0350-5596) is published four times a year in Spring, Summer,
Autumn, and Winter (4 issues per year) by the Slovene Society Informatika, Vozarski pot 12, 1000 Ljubljana,
Slovenia.
The subscription rate for 2011 (Volume 35) is
- 60 EUR for institutions,
- 3 0 EUR for individuals, and
- 15 EUR for students
Claims for missing issues will be honored free of charge within six months after the publication date of the issue.

Typesetting: Borut Žnidar.
Printing: Dikplast Kregar Ivan s.p., Kotna ulica 5, 3000 Celje.

Orders may be placed by email (drago.torkar@ijs.si), telephone (+386 1 477 3900) or fax (+386 1 251 93 85). The
payment should be made to our bank account no.: 02083-0013014662 at NLB d.d., 1520 Ljubljana, Trg republike
2, Slovenija, IBAN no.: SI56020830013014662, SWIFT Code: LJBASI2X.

Informatica is published by Slovene Society Informatika (president Niko Schlamberger) in cooperation with the
following societies (and contact persons):
Robotics Society of Slovenia (Jadran Lenarčič)
Slovene Society for Pattern Recognition (Franjo Pernuš)
Slovenian Artificial Intelligence Society; Cognitive Science Society (Matjaž Gams)
Slovenian Society of Mathematicians, Physicists and Astronomers (Bojan Mohar)
Automatic Control Society of Slovenia (Borut Zupancic)
Slovenian Association of Technical and Natural Sciences / Engineering Academy of Slovenia (Igor Grabec)
ACM Slovenia (Dunja Mladenic)

Informatica is surveyed by: ACM Digital Library, Citeseer, COBISS, Compendex, Computer & Information
Systems Abstracts, Computer Database, Computer Science Index, Current Mathematical Publications, DBLP
Computer Science Bibliography, Directory of Open Access Journals, InfoTrac OneFile, Inspec, Linguistic and
Language Behaviour Abstracts, Mathematical Reviews, MatSciNet, MatSci on SilverPlatter, Scopus, Zentralblatt
Math

The issuing of the Informatica journal is financially supported by the Ministry of Higher Education, Science and
Technology, TrgOF 13, 1000 Ljubljana, Slovenia.

http://www.informatica.si
mailto:drago.torkar@ijs.si

Volume 35 Number 3 September 2011 ISSN 0350-5596

Informática
An International Journal of Computing and Informatics

Regression Test Selection Techniques: A Survey

Distributed Multi-ant Algorithm for Capacity
Vehicle Route Problem
Mutant Hierarchies Support Selective Mutation
Improved ID-based Ring Signature Scheme with
Constant-size Signatures
Content-sensitive Approach for Video Browsing and
Retrieval in the Context of Video Delivery: VBaR
Framework
Multivariable Generalized Predictive Control Using
An Improved Particle Swarm Optimization
Algorithm
Mutual Information and Cross Entropy Framework
to Determine Relevant Gene Subset for Cancer
Classification

An Intelligent Indoor Surveillance System

Query Preserving Relational Database Watermarking

S. Biswas, R. Mall, 289
M. Satpathy, S. Sukumaran
J. Li, Y. Chai, C. Yuan 323

K. Kapoor 331
H. Li, X. Li, M. He, S. Zeng 343

P.Y. Lau, S. Park 351

M. Sedraoui, 363
S. Abdelmalek, S. Gherbi

R. Bala, R.K. Agrawal 375

R. Piltaver, E. Dovgan, 383
M. Gams
S.A. Shah, S. Xingming, 391
H. Ali, M. Abdul

Informatica 35 (2011) Number 3, pp. 289-397

