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We are pleased to present you the proceedings of the 16th International Benchmark Workshop
on Numerical Analysis of Dams, held in Ljubljana on April 5th and 6th, 2022. Organised by
Slovenian national committee on large dams (SLOCOLD), under the auspices of the International
Commission on Large Dams' Technical Committee on Computational Aspects of Analysis and
Design of Dams, this workshop brought together experts and practitioners from around the globe
to exchange insights, innovative approaches and best practices in the numerical analysis of dams.

ICOLD has long been at the forefront of progress of the dam engineering science and has
contributed greatly to the development and advance of dam design, safety, and performance
evaluation. In this spirit, the Benchmark Workshops serve as vital platforms for fostering
collaboration, refining methodologies, and addressing emerging challenges in the field, as well as
a reference for the global dam community, offering valuable insights and benchmarks for
engineers, researchers, and stakeholders alike. They are particularly valuable for young
engineers, providing them with essential resources and challenges as they contribute to the
critical task of ensuring dam safety and resilience in the face of evolving environmental and
societal demands.

The benchmarking activities of the Technical Committee on Computational Aspects of Analysis
and Design of Dams have attracted significant participation from technicians operating in the dam
sector, with attendance consistently reaching up to 190 participants in recent workshops. Despite
the fact that 16th benchmark workshop was only held online, due to the uncertain situation
triggered by the COVID-19 pandemic, it attracted a participation of significant number of
contributors and gained the attendance of over 100 participants from all over the world. For the
first time, we tackled topics such as Dam behaviour prediction and fitting to actual
measurements, modelling of AAR affected dams and Behaviour of the embankment dam, right
after the rehabilitation works.

The proceedings herein encapsulate the collective knowledge and expertise shared during the
16th International Benchmark Workshop, by formulators, contributors and participants. From
innovative modelling approaches to practical application, these papers offer valuable insights and
perspectives for researchers, engineers, and stakeholders involved in dam design, surveillance
and management.

We extend our gratitude to all the contributors, presenters, and attendees whose dedication
and enthusiasm have made this workshop a resounding success. It is our hope that these
proceedings will serve as a lasting resource for advancing the state-of-the-art in the numerical
analysis of dams and contribute to the ongoing efforts to ensure the safety and resilience of dam
infrastructure worldwide.

Nina Humar,
President of Slovene national committee on large dams SLOCOLD
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1 INTRODUCTION

Dam monitoring is an important part of the dam safety work to obtain a greater understanding
of the dam and is essential to identify changes in its behavior that can occur during their service
life. Proper assessment of the aging dams increases the knowledge of their current safety and
allows for better planning of renovation and rebuilding investments.

Prediction of measurements and interpretation of future dam behavior, based on the data
gained with measurements, can therefore be considered as a common task for dam engineers
nowadays. Previous research has shown that the behavior of concrete dams is, to a great extent,
governed by the ambient variation in temperature and water level. Thereby, utilizing different
type of behavior models that can account for these variations in ambient conditions has great
potential to capture the expected response of a dam.

Moreover, these behavior models are often a crucial part of dam safety systems. With the help
of various prediction models, engineers can evaluate dams’ performance, estimate its response
to actual load conditions and define warning levels. In recent years, a vast development has
occurred in the field of prediction models, especially regarding data-based and machine learning
approaches. In addition to data-based models, numerical models based on the finite element
method (FEM), are widely used to estimate displacements, stresses, and strains of dams and
therefore predict their response. These models are based on the physical laws that govern the
processes. Due to the increased computer power, both data-based and numerical models gained
in their level of detail and accuracy but also in their complexity. Both are used by dam specialists,
and it is therefore important to study the capabilities of these methodologies for assessing the
dam behavior and predict the expected future behavior of the dam.

The Technical Committee A “Computational Aspects of Analysis and Design of Dams” within
International Commission of Large Dams (ICOLD) has organized international Benchmark
Workshops (BW) on the topic of numerical analysis of dams since 1990. The purpose of these is
to share knowledge and experience regarding numerical modelling within the fields of dam
safety, planning, design, construction as well as operation and maintenance of dams. In the 6th
ICOLD BW in 2001, interpretation of the measurements at the Schlegeis dam was one theme at
the workshop. Years later, in 2017, at the 14th ICOLD BW, a theme was focused on predicting the
dam behavior, including cracking, caused by seasonal temperature variations. The aim of the
current theme for the 2022 ICOLD BW is to build from the experience of past workshops and see
how modern tools can be used in the prediction of dam behavior.

1.1 Focus of this benchmark problem

In this benchmark problem, denoted as Theme A in the 2022 ICOLD BW, a double curvature
arch dam, located in the south of France and owned by the EDF (Electricité de France) is used as
a case study. The name of the dam remains undisclosed. The aim of the theme was to establish a
prediction model for the dam. For this task, all types of models were welcome to use (statistical,
hybrid, deterministic, machine learning, finite element modelling) from the simplest to the most
complex ones.

The geometry and material properties of the dam and foundation were delivered by the
formulators. The participants were also given the monitoring data from the dam for the period
2000-2012. The provided data has been pre-processed and so it could be directly used for the
analysis, e.g. no further cleaning was necessary. Furthermore, the data was provided without any
modification of the actual time series and is measured with different frequencies. The
participants were asked to build a model, calibrate it, and use it for long-term and short-term
predictions using the provided data and by making their assumptions and choose suitable
approaches to solve the problem.

Theme A consists of mandatory and optional tasks that are divided among three cases:
calibration (Case A), short-term predictions (Case B), and long-term predictions (Case C). For the
participants, it was mandatory to consider the radial displacement from two pendulums, evaluate
them and provide results for all three cases. Other variables (crack opening, piezometric level,
and seepage) are provided as well, while interpretation and prediction of them were optional.
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1.2 General basic assumptions

The focus of the theme is on the following variables:
e Radial displacement (two pendulums in the central block of the dam)
e Crack opening displacement (sensor at the rock-concrete interface)
e Piezometric levels (vibrating wire piezometers at the rock-concrete interface)
e Seepage (weir at the downstream toe of the dam).

The material properties that were considered in the design studies of the dam are provided by
the formulators. The geometry of the dam is provided in different CAD formats.

1.3 Deliverables

All participants were requested to deliver their solution to the defined problem including
output data, description of modelling assumptions, used software, etc. For the mandatory tasks,
the participants were asked to provide both predictions and warning levels for the monitored
phenomenon.

In addition to delivering the requested results, all participants were required to provide a paper
describing the problem and the chosen solution methods. The participants presented their
results during the Workshop.

2 FORMULATION OF THE THEME

2.1 Description of the dam

The studied dam is owned by EDF (Electricité de France) and it is named ‘Dam_EDF’ in the
following text. Dam_EDF was constructed between 1957 and 1960. It is a double curvature arch
dam, which is asymmetric because of the shape of the valley. Dam_EDF is made of concrete with
cement dosage at 300 kg/m? and it consists of 13 blocks:

e 1 block of 12 m wide on the right bank
e 11 blocks of 12.5 m wide
e 1 block of 17 m wide on the left bank

In Figure 1 and Figure 2, illustrations of the dam are presented. The foundation of Dam_EDF
consists of laminated metamorphic slate which have a high compressive strength. However, the
anisotropy of foundation confers a higher deformability to the left bank.

Crest Level 239 ) . ) ) ) /

L= = = L AT
- I ; i
i v 220
., | ./"
207
02~ e
Right bank L .dL._.;_.’ : 195 Laft bank

172

170 *

161

Figure 1. Downstream view of Dam_EDF.
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Figure 2. View from the top. The crosses indicate the position of the pendulums.

2.1.1 Dam Geometry
The main technical data are:

e Dam height above foundation 45m

e (Crest thickness 2m

e Base thickness 6m

e Crest radius 110 m (90°)
e (Crest length 166 m

e Normal Water Level * 237 m

e C(Crest Level * 239 m

* In the following text, all altitudes refer to a common arbitrary reference point, which is not
the sea level. Water levels in the reservoir, altitudes of pendulums and piezometric levels all refer
to this point. The unit of altitude is meter [m]. It should be noted that the real altitude of the
Dam_EDF is approximately 2000 m above sea level.

2.1.2 Material properties

Dam_EDF is made of concrete with cement dosage at 300 kg/m®. The average value of
compressive strength is 34 MPa (after 90 days) with values varying from 22 MPa to 45 MPa.

2.2 Measurements

2.2.3 Introduction

Dam_EDF is equipped with a comprehensive monitoring system, including pendulums, crack
opening displacement sensors, piezometers and seepage measurements. Only the valid
measurements are stored in the database. Thus, the provided data in this benchmark is the
reference and valid data for behavior analysis and does not need any further cleaning.

11
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2.2.4 Water level

Time series of water levels were provided for the period 1995 to 2017. The time format is
common to all time series given in this benchmark: day/month/year hour:minutes:seconds
(dd/mm/yyyy hh:mm:ss). For water level in the reservoir, there is at least one value per day. The
unit of water level is meter [m]. When the water level is lower than +196 m, the complete
upstream surface is exposed the air. This can happen because Dam_EDF is located on the top of
a glacial threshold. Hence, when water level is lower than +196 m, there is only water in a lake
located below the upstream toe of Dam_EDF.

Water level [m]

B e L e e T T e B e e e Damcrest _ _ _

1994 1995 1996 1997 1958 1998 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
Date

Figure 3. Time series of water level in the reservoir.

2.2.5 Air temperature

The air temperature is not measured at the location of the dam. However, two time series of
daily air temperature are given:

e T a, which is a time series of measurements located in the area of the dam. Measurements
are carried out according to the standard of WMO (World Meteorological Organization) and
are located 50 km from the dam, at a different altitude.

eT b, which is a time series calculated by interpolation from several air temperature
measuring stations. The interpolation takes into account the altitude of the dam and is
calculated on a mesh of 1 square kilometer.

Time series of air temperature were provided for the period 1995 to 2017 and the unit is °C
(degree Celsius).

Air Temperature [degree Celsius] ©Ta =Th

204

204

-104

1984 1995 1896 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2018
Nata

Figure 4. Time series of air temperature T_aand T_b.

2.2.6 Rainfall

Data from a rain gauge located about 5 km from Dam_EDF were provided. The daily cumulative

precipitation time series was provided for the period 1995 to 2017. The unit of precipitation is
mm.

12
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Figure 5. Time series of daily rainfall (mm).

2.2.7 Pendulums (downstream and upstream displacements between two points)
The dam is equipped with several pendulums, as illustrated in Figure 6 below.

Pendulums
242
crest level 159 ;
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_ A
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. e ) -
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Right bank 02 x —
1
Left bank

174 | minimum opersting i=uel 174

164 —— wire nnchar
— i
150 Empry 154
= <~ reading teble

Figure 6. Location of pendulums (downstream view).

For this benchmark, only the measurements of pendulums on the Central Block (CB) were
given. CB2 is the radial displacement between the altitudes 236m (just under the crest of
Dam_EDF) and 196 m (toe of Dam_EDF). CB3 is the radial displacement in the foundation
between the altitudes 195 m and 161 m. An increasing radial displacement indicates a movement
of the highest point in the downstream direction.

13
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Block CB

236 F T
Upstream Downstream
Bl

220

B2
236-196

A% o 195

CB3
195-161

161
Figure 7. View of block CB and location of pendulums.

The provided radial displacements measured using the pendulums is presented in Figure 8. An
increasing radial displacement indicates a movement of the highest point in the downstream
direction. The unit of displacements is mm.

Radial displament [mm)] CB2_236_196 « CB3_195_161

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
Date

Figure 8. Time series of pendulums CB2 and CB3.

2.2.8 Crack opening displacements sensor

A crack opening displacement sensor is located at the rock concrete interface of the Central
Block (CB). The sensor measures the opening between C4 (in the foundation) and C5 (in the
concrete, at the toe of the dam). The location of the sensor is illustrated on the Figure 9. An
increasing value of C4-C5 means that the distance between C4 and C5 is increasing.

c2

Figure 9. Location of crack opening displacements sensor in the block CB.

14
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The time series of the relative distance between C4-C5 is given in the Excel file. The data is
given from 2000 to 2012 as seen in Figure 10. An increasing value of C4-C5 means that the
distance between C4 and C5 is increasing. The unit of displacement is mm.

Crack apening [mm] « C4-C5

-24

2000 2001 2002 2003 2004 2005 2006 2007 2008 2008 2010 2011 2012 2013
Date

Figure 10. Time-series of crack opening displacements.

2.2.9 Piezometers

For this benchmark only piezometers located in the block CB were provided. Their locations in
the block CB are indicated on the Figure 11 below.

Block CB

Upstream Dowstream

4
}, grout curtains

Figure 11. Location of piezometers in the block CB.

PZCB4, PZCB5 and PZCB6 are embedded deeply in the foundation and will not be analyzed.
PZBC1 is located at the upstream of the grout curtain and thus its levels are quite equal to the
hydraulic head. Consequently, PZCB1 is not analyzed in this benchmark.

Time series of piezometric levels PZCB2 and PZCB3 are given from 2000 to 2012. The unit of

piezometric levels is meter (m). The reference for altitude is the same as for water level and
elevations (see Figure 3).

15



Salazar, Simon, Malm, Hellgren, Klun
BEHAVIOUR PREDICTION OF A CONCRETE ARCH DAM — Description and Synthesis of Theme A

Time series of PZBC3 contains missing values from the 5th of February 2008 to the 10th of
September 2008. A leakage in the standpipe of piezometer PZBC3 was observed during this
period that is why measurements were removed. In September 2008, a cleaning of the drainage
system was carried out. This has to be considered when analyzing the monitoring data.

Piezometric level [m] PZCB2 PZCB3

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
Figure 12. Time series of piezometric levels.

2.2.10 Seepage

The total seepage flowrate of Dam_EDF were also provided. The flowrate is measured using a
weir located in the gallery at the downstream toe of Dam_EDF. The measured total seepage is
the total amount of water originated from different locations such as the surrounding rock,
moisture transport in concrete, potential leakages in concrete cracks and the drainage system.
Times series of flowrate are given from 2000 to 2012 and the unit is L.min (Liter per minute).

Seepage [I/m]

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
Date

Figure 13 — Time series of seepage.

2.3 Delivered data from the formulators

2.3.1 Data preparation

Variables are measured with different and irregular frequency. One of the goals of this Theme
is to compare criteria to handle the data preparation caused by issues that may appear in practice
such as resampling, missing values, etc. Therefore, the dataset was provided without any
modification of the actual time series. The main features of the data are summarized in Table 1.

16
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Table 1. Summary of the main features of the provided data.

Variable type [units]  Variable name Period Average reading #
frequency Measurements

Water Level [m] Water Level 1995-2017 1 day 9736
Air Temperature T a 1995-2017 1 day 8401
[eC] Tb 1995-2017 1 day 8401
Rainfall [mm] Rainfall 1995-2017 1 day 8401
Radial displacement CB2_236_196 2000-2012 1.5 weeks 703
[mm] CB3_195_161 2000-2012 1.5 weeks 698
Crack opening [mm] C4-C5 2000-2012 1.5 weeks 676
Piezometric level PZCB2 2000-2012 1.5 weeks 705
[m] PZCB3 2000-2012 1.5 weeks 670
Seepage [I/min] seepage 2000-2012 1.5 weeks 672

The most appropriate format of the time series depends on the chosen model (either FEM or
data-based) and the software tool used. The participants received the data in three different
versions to facilitate the analysis:

e An excel file with each variable in a different sheet (‘ThemeA_data_fmt01.xIsx’). It should
be noted that the time vector differs among variables, due to the different reading
frequency and reading period.

e An excel file with all variables in one sheet (‘ThemeA_data_fmt02.xlsx’). The time vector
encompasses all time stamps from all variables. Since this includes the hour, several rows
appear for the same day in case more than one record was taken at different hours.

e An excel file with all variables in one sheet with a common time vector in the format
dd/mm/yyyy (‘ThemeA_data_fmt03.xIsx’). This is a transformation of the original dataset:
if more than one record is available for some variable within one day, the mean value is
taken. As a result, the number of records is lower than in the original dataset.

In all versions, the cells in the forecasting period for the output variables were left blank.
Participants were able to explore the provided data by loading either the second or the third
versions into the free online app: https://cimnetest.shinyapps.io/PREDATOR/. The participants
are free to use any version of the data for each part of the analysis.

2.3.2 Data-based models

Participants were free to use their preferred software or algorithm to compute predictions and
warning levels. The most popular data-based approach for dam monitoring analysis is the
hydrostatic-seasonal-time (HST) model. It was first proposed by Willm and Beaujoint in 1967 [1]
to predict displacements in concrete dams, and has been widely applied ever since. Other
statistical methods have also been used for this purpose. Examples include neural networks [2],
[3], support vector machines [4] and boosted regression trees [5], among others [4], [6].

2.3.3 Numerical FE model

The participants were free to perform the finite element analyses in any way that they find
suitable. A geometrical model was developed by the formulators and was provided to the
participants. The geometry consists of two separate parts; the concrete arch dam (including the
abutment), and the rock foundation. In this geometry, the dam is described as a monolithic
structure.

2.3.3.1 Geometry files

The geometry of the dam were provided in different CAD-based file formats that can be
imported into most of the existing finite element codes

e ACIS .sat

e STEP .stp

* |GES .igs

17
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Figure 14. lllustration of the geometry of the arch dam and foundation used as a case-study for the theme.

2.3.3.2 Mesh file

An input-file in ASCII code (.inp) was provided with the raw data of the coordinates of all nodes
and the topology of the elements in the FE-model. The dam has been meshed with 4-node linear
tetrahedron elements (C3D4 in Abaqus), with a typical length of about 1.0 m. The concrete parts
consist of 32195 nodes and 155780 elements. The rock foundation has been meshed with 4-node
linear tetrahedron elements (c3D4 in Abaqus), with a typical length of about 1.0 m at the rock-
concrete interface and 20 m near its exterior surfaces. The rock parts consist of 7224 nodes and
31073 elements.

Defining a suitable mesh is an important part of numerical analyses, and the requirement of
the mesh, regarding the size of the elements, depends on many factors, such as defined material
behavior, type of loads considered etc. Therefore, even though the formulators provided one
suggestion for mesh, the participants could define a mesh of their own that was suitable for their
analyses.

Figure 15. lllustration of the geometry of the arch dam and foundation used as a case-study for the theme.

2.4 Case studies and tasks

The tasks are divided into three Cases, in accordance with the period of analysis.
e (Calibration (Case A): 2000-2012

e Short term prediction (Case B): January 2013 - June 2013

e |ongterm prediction (Case C): July 2013 - December 2017.
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For all cases and each output variable (pendulums, crack opening displacements, piezometers,
and seepage), the participants were requested to submit:

e Avector of the predictions, with one value for each time stamp in the provided time series

e Two vectors of lower and upper warning thresholds.

The time series for both the input variables and the dam responses were provided for the
period 2000-2012. They can be used to calibrate the parameters of the models: material
properties, boundary conditions and other features of FEM, and training parameters for data-
based models. Records of rainfall, water level and air temperature are provided from 1995.
Participants using FEM models may find this information useful for computing the thermal and
stress field of the dam at the beginning of the calibration period. Predicted values should be the
best estimate of the dam response in terms of each of the output variables. These predictions
will be compared to the actual measurements by the formulators. Participants are free to define
the warning thresholds with their own criterion.

In addition to the predictive task, it was requested to perform one interpretive task. The
interpretation task should be considered as a general analysis of the dam, measurements, data,
and modelling in the context of dam safety. The participants were asked to explain how their
analysis and results could teach us anything about the dam’s performance, if the model can
provide support for the decision-making process, etc. This task was considered as very open
where the participants could decide to perform risk analysis, assess maintenance needs, failure
simulations, establish link between external load and monitored phenomenon, or any other
approach based on their judgement, experience, and motivation. All tasks are summarized in
Table 2.

Table 2. Summary of the mandatory and optional tasks.

Interpretation Case A: calibration Case 2: Short term Case 3: Long term
Prediction Warning  Prediction  Warning  Prediction ~ Warning
levels levels levels

CB2_236_196 Mandatory Mandatory  Mandatory Mandatory Mandatory Mandatory Mandatory
CB3_195 161 Mandatory Mandatory ~ Mandatory Mandatory Mandatory Mandatory  Mandatory

C4-C5 Optional Optional Optional Optional Optional Optional
pPzCB2 Optional Optional Optional Optional Optional Optional
pPzCB3 Optional Optional Optional Optional Optional Optional
Leakage Optional Optional Optional Optional Optional Optional

In summary, six output variables and three different time periods were considered. All records
corresponding to the Case A (calibration; 2000-2012) were available to the participants.
Therefore, the results for this period are described and discussed in detail in each paper and only
a general summary is included in this report. In contrast, the actual measurements for Case B
(January-June 2013) and Case C (July 2013 — December 2017) were not provided before the
benchmark. These results are considered as more relevant and will be analyzed in more depth in
this synthesis.

2.4.4 Required output from the participants

The participants delivered their results to the formulators of the theme via the provided excel
template files. In these template files, the first section was used for participants to provide
general information about their group, which will help with the synthesis of the results
(experience, software used, consumption of time, etc.).

For Cases A, B, and C, the spreadsheets contain time stamps for each variable, where the
participants are asked to copy their prediction vectors, with one value for each time stamp, and
two vectors for the lower and upper thresholds, respectively. Radial displacement results were
mandatory, while other variables are optional.

The formulators analyzed the data provided in the excel spreadsheets and the papers prepared
by the participants in which the modelling assumptions, calibration process, pre-processing, etc.
were explained. The participants were also asked to highlight the specific information regarding
the lessons learned and specific steps to solve the tasks.
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3 DESCRIPTION OF CONTRIBUTIONS

3.1 Statistics

In total, 18 teams participated in theme A and provided 23 solutions to the formulators. The
participants were from the following countries: Austria, Canada, China, France, Iran, Italy, North
Macedonia, Portugal, Russian Federation, Spain, Switzerland, and United States of America. In
average 3 authors collaborated in a team that provided a contribution. By composition, 11 groups
were from consultancy or a dam owner, 5 groups from universities or research centers, and the
authors of 2 groups were from combined affiliations.

The participants were asked to submit the results and 6 tasks were marked as obligatory, while
there were also 15 optional tasks that could be performed. The formulators received 18 full
solutions of the obligatory tasks and 5 partials. Additionally, 3 groups provided also all the
optional tasks, while the formulators also received 12 partial solutions for the optional tasks. Time
spent by the participants varied substantially, from 3 days to 124 days, while the average time
spent per solution was 30.5 days (see Figure 16). Majority of the solutions were provided using 2
inputs for prediction of pendulums and joint opening (20 solutions), all of them used water level,
while 16 used air temperature measured 50 km from the dam (Th), 4 used interpolated air
temperature (Ta), and 2 used precipitation time series, only 3 solutions were provided using 3
input parameters. Similarly, for the optional results for the pores pressures and water seepage, 3
solutions were provided using only water level, 5 solutions used water level and Thb, or Ta, or rain,
and 3 solutions were provided using 3 or more input parameters.
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Figure 16. Number of tasks performed and time spent to provide solution.

The motivation to participate and provide results were in 38% to expand and share expertise,
in 29% to test new methods and compare results with others, in 19% to learn from others, and in
14% the participants didn’t report on their motivation to participate. 7 groups have already
participated in previous Benchmark workshops, while 11 groups participated for the first time.
Participants were also asked to report on their confidence in the provided result in percentage,
not all groups reported on their confidence, and for those who did, the lowest confidence level
was 10%, and only one group was 100% confident in their results, while the average reported
confidence level was at 60%.

3.2 Summary of methods used by the participants

Table 3 shows a summary of the submissions received for all Cases and variables, classified by
the approach used. Overall, 3 submissions were based on FEM, 8 on machine learning (one of
which added an analytical formula), 6 employed an analytical approach and 5 a hybrid method,
correcting the outcome of a FEM model with machine learning (1) or with an analytical model (4).

20



Salazar, Simon, Malm, Hellgren, Klun
BEHAVIOUR PREDICTION OF A CONCRETE ARCH DAM — Description and Synthesis of Theme A

Table 3. Summary of methods used and variables considered by each participant.
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Participant 1 (France): analytical model with user-defined correlation functions. Simultaneous
Perturbation Stochastic Approximation (SPSA) method for calibration (10 parameters). Threshold
function added for joint opening. For piezometers, 14 parameters were used, four of which are
included to model a change in behavior after August 2008. During Case A, the authors observed
a decrease in accuracy in 2002 attributed to a rapid increase in water level, different from other
years. The authors recommend to re-calibrate the model yearly to adjust to the time variation of
the response (they observed a drop in piezometric levels for a given reservoir level). Accuracy for
seepage in Case A is clearly lower than for other variables. The authors hypothesize that part of
the seepage may come from runoff due to rainfall, and that the precipitation data taken 5 km far
from the dam may represent the precipitation at the dam incorrectly. In conclusion, they state
that the use of an analytical approach including correlation functions, defined based on
engineering knowledge, allows for a better interpretation of dam behavior. However, such
functions are complex and not easy to associate to physical phenomena, which, in turn, are
complex and dependent.

Participant 2 (Austria): FEM model including thermal and mechanical effects. The results are
fed, together with the monitoring data, into a Long-Short Term Memory (LSTM) neural network.
The data provided for the calibration period (Case A) is divided into a training set (95% initial
period) and a test set (5% final records). They used Tensorfolw/Keras in the Python environment.
Forecasts are submitted for displacements and joint openings. The authors noticed lower
accuracy during unloading periods.

Participant 3 (Iran): hybrid approach using moving averages and gradients of inputs as
predictors. Radial displacements are predicted with a polynomial of fourth degree dependent on
the reservoir level. The results are corrected with a Gradient Boosted Regression based on all
inputs except level. The resulting approach is named Hydrostatic Machine Learning. The models
are interpreted using word clouds and partial dependence plots. The process for computing
variable importance is unclear, since inputs associated to reservoir level are considered
differently (in a polynomial) to the others (which are fed into a GBR model).

Participant 4 (China-USA): data-driven model. Inputs are taken from HST (polynomial of 4th
degree for the hydrostatic load. The temperature effect is considered from average temperatures

21



Salazar, Simon, Malm, Hellgren, Klun
BEHAVIOUR PREDICTION OF A CONCRETE ARCH DAM — Description and Synthesis of Theme A

along a number of periods (e.g., last 2 days, previous week, previous month, etc.). The time effect
is also included as a polynomial. The final model has 14 inputs. For the seepage, an additional
term is added, depending on the rainfall, also over different time periods, adding 6 additional
coefficients to the model. They used “Kernel Extreme learning machine”, described as a version
of neural networks. In addition to the coefficients to be fit for the network, this approach requires
adjusting the parameters related to a kernel. Particle Swarm Optimization (PSO) was used for
calibration. The warning levels were defined assuming a normal distribution of residuals and a
bandwidth corresponding to 99% of the samples, i.e., predictions plus/minus 2.58 times the
standard deviation. The model interpretation was performed using a version of global sensitivity
analysis, grouping the inputs by loads (hydrostatic, temperature, time, rainfall). Only
displacements and seepage were considered.

Participant 5 (Canada): Bayesian dynamic linear model (BDLM) coupled with Bayesian long-
short-term memory (LSTM) neural network. The authors claim that their method does not require
re-training, which allows for detecting anomalies that evolve over years. Only displacements are
considered. Moving averages of temperature, up to 54 days, are used for the BDLM, while the
LSTM considers raw data for reservoir level and temperature. The authors developed the
OpenBDLM library for BDLM. They concluded that a change in behavior occurred between
February 2004 and 2007 for CB3, based on the visual exploration of the residuals of the model
and on the plot of probability of switching regime. They introduced artificial anomalies on the raw
data to verify their model’s detection capability. The effect of inputs is evaluated based on the
BDLM, showing the hydrostatic load as the most important effect.

Participant 6 (Russia): HST for CB3 and neural network (multilayer perceptron) for CB2 using
Keras. They defined the warning intervals based on the predicted value +/- 3 times the standard
deviation of the residuals, which encompasses 99.7 % of values in a perfect Gaussian distribution.
The histogram of residuals is close to a normal distribution for CB2 (HST model), but that is not
the case for CB3 (NN). The author also considered a FEM model using Simulia Abaqus. First, the
thermal problem was solved with a time step of one day. Then, the resulting deformation was
added to that obtained from the mechanical calculation resulting from the application of the
hydrostatic load with a time increment of one week. The accuracy of the FEM model was reported
to be lower for both outputs considered.

Participant 7 (USA): First, a finite element model based on LS-DYNA software was developed,
but not used for generating predictions. Displacements and crack opening were considered. Two-
week moving average of temperatures were taken as input. The time series of crack opening was
taken to segment the data, as a function of the state of the crack, i.e., closed, moderately open
(<1.85 mm) or wide open (>1.85 mm). The data were further subdivided according to the pool
level. For each of the final sets, the effect of the temperature was seen to be close to linear. As a
result of the approach used, the crack opening needs to be estimated before predicting
displacements. This is done by means of curve fitting based on pool level and temperature.
Warning levels were defined so that they contained around 90% of the data.

Participant 8 (Portugal): finite element analysis with consideration of joints and solar radiation.
Some assumptions were made for the thermal analysis: T_b was applied and the orientation of
the dam was estimated. Different models with varying degrees of complexity were developed.
The results of a thermal analysis in an elastic FE model are fed into an analytical model (Separation
of Effects, SEM). The result resembles an HST in which the thermal effect is modelled by the FEM
results (instead of the conventional term). The warning levels were defined based on the
predictions +/- 3 times the standard deviation of the residuals. The authors mention 5 times the
standard deviation as an additional warning (maybe alarm) threshold. For pendulums, using the
FE instead of the regular HST resulted in an improvement in R from 0.93 to 0.95.

Participant 9 (Italy): ensemble model, based on a weighted combination of a multi-linear
regression model and a Seasonal Autoregressive Integrated Moving Average (SARIMA) model.
Pendulums, crack opening and one piezometer were considered. The authors mention that Case
C (5-year prediction) is a challenging task, not often considered in practice. The weights for each
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model are defined based on engineering judgement. Warning levels are based on the 95%
confidence intervals, i.e., 1.96 times the standard deviation of the residuals. The temperature
records provided were not considered, because they were not taken at the dam site and thus the
authors assumed that they would not represent the local peaks. Rainfall was also discarded, in
view of the correlation matrix. The water level is modified, assuming a constant value equal to
195 m when the actual record is lower (and thus below the dam toe). PZCB3 was not considered
due to the reported change in behavior during the training period.

Participant 10 (Spain): machine learning model based on boosted regression trees (BRT).
Moving averages of different periods of water level and temperatures were considered as inputs.
Predictions were provided for all proposed outputs. A preliminary variable selection process was
followed, after which T_a was selected and T_b discarded; the modified water level (with a lower
bound in 195 m) was taken instead of the original series; rainfall was neglected. Then, for each
output, a calibration process was followed, which included 100 pseudo-random selections of
inputs and 36 combinations of model parameters for each input set. The final models were
selected in view of the accuracy on the training set (2000-2010) and on the test set (2011-2012)
selected by the authors. The predictions for Case B and C were computed from these final models
with a bias correction. The warning levels were defined on the basis of the corrected predictions
and the 100% quantile range of the residuals. The models were interpreted to draw practical hints
on dam behavior.

Participant 11 (Spain): machine learning approach. Several ML algorithms were considered,
namely random forest (RF), generalized linear regression, bayesian neural network, hydrostatic-
season-time (HST), neural networks (NN), support vector machines (SVM) and BRT. Synthetic
variables were generated to be considered as inputs: moving averages, aggregates (sum of values
along the period) and variation ratio. Variable selection was later performed on the basis of the
importance computed from an SVM model. Model parameters were calibrated with cross
validation. Year 2012 was considered for validation. The warning levels were defined as the
predictions 2 times the standard deviation of the residuals. As a result, 95% of the records are
expected to be within the interval. Model interpretation suggests a long-term inertia of CB2 (180
days). The authors analyzed the similarity among years in terms of load values. The final models
used were based on SVM for pendulums, on BRT for piezometers and on NN for crack opening
and seepage.

Participant 12 (Switzerland): 3D numerical model. Joints among blocks and between dam and
foundation were considered. T_b was used to account for the thermal effects in a transient
analysis, assuming 1D thermal flow. The displacement due to hydrostatic load was computed
from an analytical expression, i.e., a polynomial of 4th order of the reservoir level. The
contribution of the thermal load was considered from the results of the numerical model. The
material properties were calibrated with an in-house software. As a result, the final values used
are slightly different to those mentioned in the formulation of the Theme. The warning levels are
defined as the envelope of the maximum differences between predictions and observations for
the calibration period.

Participant 13 (Portugal): combination of an analytical approach (HTT) and a deterministic
calculation (ANSYS software). The authors also mention “brief implementations” of gradient
boosted trees and neural networks, with “promising” results. A sensitivity analysis on mesh size
was performed, showing that coarser meshes result in stiffer models. Material properties were
calibrated based on results for CB2. Predictions were computed ass the sum of the result obtained
from the FEM, which account for hydrostatic and thermal loads, and those from the HTT model,
to consider the time effect. In the thermal calculation, air temperature was assumed to be equal
to T_b and a different value was considered for the wetted part of the upstream face. For the
calibration period, the authors reported the highest differences between predictions and
observations during periods of decreasing water level. Predictions for Case B and C were
generated assuming constant time effect for CB2 and linear evolution for CB3. The warning levels
were computed as predictions 43 times the RMSE for each output.
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Participant 14 (Portugal): combination of multi-linear regression and neural networks was used
for displacements and crack opening. The hybrid approach includes predictions based on HST
corrected by a NN model, which estimates the residuals. For other outputs, HST model was
applied. An exploratory analysis was made to check the effect of the cleaning of the drainage
system performed in 2008. Some data for PZCB3 were excluded from the training set because of
some abnormal behavior identified. The authors noticed that some load combinations in the
prediction period (Case B and C) were not presented during the calibration period, which may
result in less accurate predictions.

Participant 15 (France): two analytical models (HST and HSTT) model and two versions of a
deterministic model based on FLAC3D software (with different conditions for the foundation) are
used. For the analytical models, predictions are provided for all outputs except for seepage. As
for the FEM model, only the displacements are considered. The time series of water level was
modified, as other participants did, by bounding the lower limit to the bottom of the dam (195
m). Warning levels are computed as predictions £2.5 times the standard deviation of the
corrected data (which are computed as the observations minus the hydrostatic and thermal
effects). Since they are based on the corrected data, these results couldn’t be evaluated. The
material properties of the concrete and foundation were calibrated to approximate the output of
the HSTT model. Both the vertical and the dam-foundation joints are reproduced with numerical
shear keys, which allow opening but not sliding. A transient thermal analysis was carried out to
reproduce the thermal load, with a time step of one day. The predictions of the deterministic
model are in good agreement with those of the analytical approaches for CB2. As for CB3, results
diverge, in particular for low water levels. The authors perform a safety analysis of the dam.

Participant 16 (France): thermal HST for displacements; a non-linear version of HST for crack
opening displacements; a physically based and non-linear version of HST for piezometers at the
rock concrete interface; artificial neural networks for leakages. T_a is used instead of T_b. They
use the “corrected measurements” concept, i.e., the result of subtracting the reversible effects
from the raw measurements. They are useful for identifying trends. Some deviation from the
overall trend is observed for CB2 in 2003 and 2012, which is attributed to the limitations of the
HST model used. For crack opening, a non-linear term is added based on the observed behavior.
Predictions for seepage are not provided. Warning levels are generated from 2 times the standard
deviation of the residuals.

Participant 17 (North Macedonia): deterministic model based on FEM (Sofistik software). The
damis considered monolithic. The model is calibrated by focusing on the maximum and minimum
displacements along the training period (Case A). Results for CB3 are less accurate, though with
a similar trend. As for the crack opening, the authors considered a kinematic constraint, which
resulted in lower variation than observed. They suggest that the behavior may be better captured
with interface elements. Piezometric levels were computed with 2D hydraulic models. The
permeability of the material was calibrated based on the observed values for the maximum water
level. The grout curtain was considered in a simplified way, which is mentioned as a potential
source of discrepancy between model predictions and observed values. The model also
underestimated the seepage flow values recorded.

Participant 18 (France): first, a simple HST model was applied; then, an HST-T model was used
to better capture the thermal effects. Predictions for CB2 were improved, but those for CB3 (less
affected by temperature), did not change. Also, ML algorithms were explored, namely SVM, LSTM
and RF. The HST models were fit with a software developed by the authors, which includes a
process for selecting the terms in the final model. No term associated with time was included. As
for the ML models, 30% of the data in 2000-2010, taken at random, has been used for selecting
model parameters via cross-validation. The final models were later evaluated by comparing
predictions with observations for 2011-2012. Although the submitted predictions are based on
LSTM, the authors use HST and HSTT as references. They focus on some specific load
combinations and interpret all three models from an engineering perspective. Warning levels are
based on 2.5 times the standard deviation of the residuals.
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4 EVALUATION OF THE RESULTS FROM THE CONTRIBUTIONS

4.1 Tasks:

During the discussion, we will mention the approach used by the contributors. In this regard,
we grouped the methodologies as follows:

e Pure machine learning, solely based on data (ML)

e Pure analytical, similar to Hydrostatic-Season-Time (AN)

e Finite element method (FEM)

e Hybrid models, which combine two or more of the previous three methods (HY).

4.2 Predictions

4.2.5 Case B

Load conditions during Case B are similar to those observed during the calibration phase in a
number of years, with a decrease in water level followed by an increase at the end of the
semester. The air temperature was also within the observed values for the first six months of the
year. As a result, good prediction accuracy was expected from many models.
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Figure 17. Water level variation during prediction periods for Case B (red) and Case C (green).

4.2.5.1 Radial displacements

The radial displacement for the period follows a similar trend to that observed in previous
years: the dam deforms towards the upstream side during the first 3 months in response to the
decrease in reservoir level. In the second half of the period, the records are sensibly stable,
because the increase in water level is compensated by the increase in air temperature —which
has an opposite effect—. This applies to both variables considered of this kind (CB2 and CB3),
though the range of variation is —obviously— much lower for the foundation (CB3). This behavior
was captured by all participants, though with varying accuracy.

For CB2, the median MAE is close to 2 mm, which is a useful value, since it represents around
10% of the variation of the observations in the period. The more accurate results correspond to
A03 (MAE 1.05 mm), with three more contributions with MAE below 1.2 mm (A01, A10, A15.1).
Interestingly, these 4 contributions were generated with different approaches, namely ML (A03
and A10), analytical (A01), and FEM+AN (A15.1). The lowest accuracy was registered for A06.2,
based on ML, probably due to some degree of overfitting. However, relatively high errors were
also obtained for a hybrid approach based on FEM and AN (A13), and strictly on FEM (A17).
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Figure 18. Radial displacement at CB2. Top: Predictions (lines) versus observations (squares) Bottom: Mean
Absolute Error (MAE) for predictions and median of all contributions (dashed line).

As regards the displacements in the foundation (CB3), predictions are in general more
accurate, with only three participants clearly off the observed series. In this case, the highest
accuracy was obtained by A05 (MAE 0.19 mm), with a method based on ML. Nonetheless, similar
accuracy was obtained by A06.1 using FEM and all predictions except the three mentioned can
be considered as useful and accurate (median MAE was 0.43 mm).
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Figure 19. Radial displacement at the foundation (CB3). Predictions (lines) versus observations Mean
Absolute Error (MAE) for predictions and median of all contributions (dashed line).
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Figure 20. Mean Absolute Error (MAE) for predictions and median of all contributions (dashed line).

4.2.5.2 Joint opening - C4_C5

The evolution of joint opening for Case B is similar to that of the displacements previously
discussed, with closing from January to mid-March and barely constant value from then on,
except for the last record at the end of June. This trend was correctly captured by all submitted
contributions (12 from 11 participants) but A12 (AN for joint opening?) and A17 (FEM).
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Figure 22. Accuracy of all contributors for C4-C5, Case B.

The most accurate predictions were provided by A16 (ML, MAE 0.06 mm), with two other
participants having a MAE in the environment of the accuracy of the device (0.1 mm): AO1 (AN;
MAE 0.08 mm) and A10 (ML, MAE 0.10 mm). It is worth mentioning that only one participant
submitted predictions of joint opening using FEM (A17), and the results were less accurate than
all other approaches, based on AN or ML.

1 A12 used a hybrid approach for displacement, combining FEM (for thermal load) and AN (for hydrostatic load).
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4.2.5.3 Piezometers

Ten contributions were received for piezometers from nine participants. Again, only A17 was
computed with FEM, which, as before, was the less accurate. The other predictions were
computed with ML (A10, A11, A16) or AN (A01, A082, A0S and A15). Results are clearly different
between the piezometers considered. While predictions are accurate in general for PZCB2 and
capture the observed evolution, differences are higher among participants for PZCB3. It should
be mentioned that the variation of the latter in the period considered is much lower. The best
results for piezometers were obtained by A01 (AN), A10 (ML), and A11 (ML).
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Figure 23. Predictions vs observations for Case B and PZCB2.
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Figure 24. Accuracy of all contributors for PZCB2, Case B.
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Figure 25. Predictions vs observations for Case B and PZCB3.

2 A08 used a hybrid approach for displacements, adding the results of FEM to a HST model

28



Salazar, Simon, Malm, Hellgren, Klun
BEHAVIOUR PREDICTION OF A CONCRETE ARCH DAM — Description and Synthesis of Theme A

1.004 Method
Median B~
o 0751 MAE [ rFem
] . HY-AN
INCER
o 0 |
___________________ - - ML
0.251
l l . -
0.001
T L ST TSP S - S S RN, VR S S N, SRNNY SR SR SR WY
L S S A & L S S A S S S GO pb T e LR S S

Participant

Figure 26. Accuracy of all contributors for PZCB3, Case B.

4.2.5.4 Seepage

The recorded time series for seepage is clearly noisier than all other variables considered in
the benchmark. This can be derived from the observation of the records in the calibration period
and was pointed out by all participants who considered this output. Such feature results in less
accurate predictions in general, as can be seen in Figure 27.
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Figure 27. Predictions vs observations for Case B and seepage flow.

Only 7 contributions were received, generated with AN (A01, A08), ML (A04, A10, All), a
hybrid approach combining AN and ML (A14), and FEM (A17). All participants underestimated the
seepage flows observed during the first two months of the period. This suggests that some
important driver of seepage exists, which is not included among the input variables available.
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Figure 28. Accuracy of all contributors for seepage flow, Case B.

4.2.6 Case C

This task is more challenging than Case B, not only because the forecasting period is longer and
further from the last available observed record, but also due to the irregular evolution of reservoir
level for some years. While for 2013 and 2014 the loading conditions followed the more frequent
trend, i.e., drawdown in the first quarter, followed by a fast filling and high levels during the
second semester, there was a longer and greater emptying during 2015 and —not so important—
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2016. As a result, prediction accuracy is expected to be lower in general. In addition to that, some
of the output variables may undergo some change during such long prediction period, which
would also negatively affect the forecasting accuracy.

4.2.6.1 Radial displacements

All participants submitted predictions for both displacements and Case C. As before, most of
them were able to capture the evolution of the observed behavior. In this case, AO9 (AN) resulted
as the less accurate, in particular after mid-2015. Other models also failed to reproduce the
behavior during the abnormal drawdown in early 2016, namely A11 (ML) and A16 (ML).
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Figure 29. Predictions vs observations for Case C and CB2. Many participants captured the general trend,

except A09. Some models failed to correctly predict the response during the abnormal emptying of the
reservoir during the first semester of 2016 (A11, A16, both ML).
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Figure 30. Accuracy of all contributors for CB2, Case C.

As for CB3, all three the contributions based solely on FEM (A15.3, A15.4 and A17) provided
results clearly off the observed behavior. The same applies to A04 (ML). Both A03 (ML), A11 (ML)
and A16 (AN) provided highly accurate predictions until early 2016 and poor estimates from there
on, with special problems to reproduce the response during the first semester of 2016.
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Figure 31. Predictions vs observations for Case C and CB3.

30



Salazar, Simon, Malm, Hellgren, Klun
BEHAVIOUR PREDICTION OF A CONCRETE ARCH DAM — Description and Synthesis of Theme A

14 Method

B~

Median . FEM
2 MAE B
B A

11 } ML
_._ __________________ = wean

o m B 1]
: 3 v@ v"% v\‘; \b‘l\ éﬁq’ \‘3% @“; v"é’ \5‘\ \i“lb

CB3

=}

S T Y SRS
¢ & T P e e & &S S N
Ko SR S S S R L A S S = . N N .

Participant

Figure 32. Accuracy of all contributors for CB3, Case C.

In general, accuracy decreased after January 2016. Not only during the abnormal emptying,
but also —to a lesser extent— in the subsequent years. Even the predictions of the most accurate
models (A02, AO5, A06.1, and A12) depart from the observed trend after October 2016.
Interestingly, they all predicted values higher than observations for such period, which may
indicate a change in dam behavior. Figure 33 shows the observations and these predictions.

»
»

Possible change in
dam response after
October 2016

A02, A05, A06-1,A12, ...

Jul2013  Oct2013 Jan2014 Apr2014 Jul2014 Oct2014 Jan2015 Apr2015 Jul2015 Oct2015 Jan2016 Apr2016 Jul2016 Oct2016 Jan2017 Apr2017 Jul2017 Oct2017

Figure 33. Best predictions (lines) for CB3, Case C, suddenly depart from observations (green dots) after
October 2016.

4.2.6.2 Joint opening

As observed for Case B, observations for joint opening follow a similar trend to that for radial
displacements. However, this only applies to the first period, before the mentioned drawdown in
early 2016. This can be observed in Figure 34, which shows that joint opening remains almost
constant from 2016 until the end of the period considered.

Twelve participants submitted a total of 13 predictions for this output and period. A17 (FEM)
failed to capture the observed evolution, while predictions by A09 (AN), A12 (HY) and A16 (ML)
are close to observations only for the first six months. All other participants (A01, A02, A07, A0S,
A10, Al1, Al4, A15.1 and A15.2) basically capture the evolution before 2016 with varying
accuracy. Nonetheless, even the more accurate predictions overestimate the response between
October and November 2014. Again, this may indicate some change in dam behavior.
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Interestingly, the period of abnormal low water level is correctly predicted by A01, A02, AO7,
Al10and Al1l. Errors are higher after July 2017, when observations remain stable while all models
predict some variations over the period.
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Figure 34. Predictions vs observations for Case C and C4-C5.
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Figure 35. Accuracy of all submitted contributions for C4-C5, Case C.

4.2.7 Piezometers

Only 9 participants submitted a total of 10 forecasts for piezometers and Case C, though A15.1
and A15.2 are almost identical in this case. As shown in Figure 36, predictions from A17 (FEM) are
far from observations for most of the interval. A15.1, A15.2 and A16 captured the evolution until
the end of 2015. Again, the exceptionally low water level negatively affects to their accuracy.

The best models for PZCB2 were A01 (AN), AO8 (HY), A09 (AN), A10 (ML), A11(ML) and Al4
(ML+AN). They reproduced qualitatively the observed records even during the first 6 months of
2016. All of them also reproduced the evolution during the last period, except AO1 and A14, which
predictions were almost constant and thus did not follow the observed behavior in the last year.

2104

method
- AN
FEM
— HY-AN

)

=4

5}
'

Predictions

HY-ML
ML
ML+AN

®
S
v

| [
]
LJ

180

2014 2015 2016 2017 2018
Time

Figure 36. Predictions vs observations for Case C and PZCB2.
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Figure 37. Accuracy of all submitted contributions for PZCB2, Case C.

As for PZCB3, accuracies are in general lower. Although the median MAE is similar (around 1
m), such error is more important for PZCB3, because the range of variation is lower (4 m, while
the range for PZCB2 was 11 m). Even the more accurate models (A10 and A11, both ML) failed to
correctly capture the observed evolution for some periods (January-July 2013, July 2014-February
2015, May-September 2016).
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Figure 38. Predictions vs observations for Case C and PZCB3.
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Figure 39. Accuracy of all submitted contributions for PZCB3, Case C.

4.2.7.1 Seepage

As for Case B, forecasts for seepage flow were in general less accurate than for the other
outputs. The median MAE for Case C is much lower than for Case B, which is due to the lower
ratio of high flows observed. In particular, all records after mid-2016 are lower than 10 I/s, in
accordance with the relatively low water levels occurred. It can be concluded that predictions are
more accurate for low hydrostatic load.
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None of the models were capable of capturing the higher flows observed in the period. Only
A04 (ML) approached some high flows in early 2015, but its predictions were consistently lower
than observations during 2016. Even A10 and A11 (both ML), which featured relatively low error
(around 0.5 I/s), cannot be considered useful for detecting anomalies, since they fail to estimate
the majority of records above 10 I/s.

Results for Case C confirm that the inputs considered exclude some important information that
has a clear influence on the observed seepage.
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Figure 40. Predictions vs observations for Case C and seepage flow
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Figure 41. Accuracy of all submitted contributions for Seepage flow, Case C.

4.2.8 Overall assessment of model accuracy

Table 4 shows the summary of results in terms of model accuracy (MAE) for each task. Each
column is colored in accordance with the corresponding MAE (from dark green for lowest error
to dark red for highest MAE).
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Table 4. Summary of submitted forecasts: participants, approaches used and MAE for each period and
output. The colors of numerical columns correspond to the rank of each model within each output and

Case.

CASE B - SHORT TERM

Participant | Approach

CASE C - LONG TERM

CB3 | CAC5 | PZCB2 | PZCB3 | Seep.

0.54 0.64 03 253

CB2

2.06 1.03 0.7

0.34 0.16

CB3 | CAC5 | PZCB2 | PZCB3 | Seep.

2.62

2.01

0.41

2.93

0.29

2.19

2.3

0.63 415 058
035 0.16 261 0.65
0.69 0.25 0.8 219 07 031 0.83
075 0.23 1.53 052 0.88
029 3.04|215 076 2.36
272| 48 086 018 0.66
1.87 044 061 2.07 0.47
0.59 232 0.64
076 021 086 036 387|233 118 035 107 1.02
058 02 158 227 075 022 23
036 018 1.57 315 078 022 231
1.63 265 1.59
349 325
121 03 601 0093 041 231 094

2.67 0.65

A strict quantitative comparison of model accuracy is neither feasible nor the objective of the
benchmark. Accuracy is not the unique criterion for assessing models. Instead, robustness,
flexibility, complexity, and interpretability must also be considered. In addition, the rank among
models cannot be considered as the unique criterion for model assessment: a model with low
ranking may be useful —in case many models provided highly accurate results— and vice versa,
as is the case for seepage flows, for which all models were basically incapable of predicting high
flows. It should also be remembered that MAE is measured in the same units as the output
considered and, therefore, it cannot be compared between variables of different nature.
Nonetheless, some conclusions can be drawn from the overall picture of accuracy for all tasks

proposed:

e For the problems in this theme, FEM was not the optimal approach for accurately
estimating the behavior of the arch dam. Among the three contributions based on FEM,
they ranked lower in terms of accuracy when compared to other models. Furthermore,
only one of these FEM-based models provided predictions for outputs beyond radial
displacements, and even those predictions lacked significant accuracy. Although FEM
remains invaluable for other purposes, such as estimating the dam response under
extraordinary loads, data-based approaches clearly demonstrated higher accuracy in

predicting observed dam behavior for all problems in this theme.

e FEM resulted to be very useful as part of hybrid models, which ranked among the top

accurate models for some tasks (e.g., AO2 for Case C and CB2, CB3 and C4-C5).

e Only four teams submitted predictions for all outputs and periods proposed. Among them,
A01 (AN) and A10 (ML) can be considered as the most accurate overall. They succeeded in
modelling the results for all outputs during the exceptional load combination occurred in

the final period for Case C.

e Radial displacements are the most frequently controlled variables in dam safety. They are
essential in identifying anomalies and can be estimated with FEM models. All participants
submitted predictions for both variables of this kind. If only these outputs are considered,
A01 and A10 are still among the more accurate, but other models provided similar results,

namely AO2 (HY-ML), AO5 (ML) and A06.1 (ML).
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4.3 Warning thresholds

The participants were also asked to provide prediction intervals with the aim of being used to
detect anomalies. This task was more open to interpretation than pure predictions, and,
therefore, more difficult to evaluate. The submissions received included low and high thresholds
for each output, obviously based on the previous predictions, for both Case B and Case C. In
principle, we assumed that the corresponding contributor considers any observed record that
does not lie within the thresholds as an anomaly. Also based on the information from the dam
owner, the dam underwent no relevant safety issue. Therefore, all observations for all outputs
and periods are considered as normal and should be within the warning thresholds. As a result,
submissions are evaluated considering the number of observations out of the intervals as errors,
i.e., the “perfect” prediction interval would include all the observations. Table 5 show the
summary of all contributions received.

Table 5. Summary of submitted warning levels: participants, approaches used, outputs considered and
criterion for defining the warning thresholds.

o VELEL][S Criterion
Participant | Approach .
CB2 | CB3 | C4C5 | PZCB2 | PZCB3 | Seep. | Warning levels

99% percentile
99% percentile
2 std dev.
- 2.58 std dev.
2 std dev.

3 std dev.

3 std dev.
90% percentile
3 std dev.
-- 95% percentile
100% percentile
2 std dev.
100% percentile
3 std dev.
3 std dev.
2.5 std dev.
2.5 std dev.
2.5 std dev.
2.5 std dev.
2 std dev.
NA
2.5 std dev.

More precisely, we excluded isolated errors, i.e., if some record falls out of the prediction
interval but the subsequent value returns and is thus considered as normal, it was not counted
for the final sum. In addition, we also considered the width of the submitted ranges. This is a
relevant issue from a practical viewpoint: since the final goal is detecting anomalies, a method
which results in a very wide interval would success in including all observations, but would also
be less useful for detecting anomalies, because these would also lie inside the interval and would
thus be taken as normal values.

The width of the interval is considered in relative terms, i.e., as the ratio between the average
width and the range of variation of each variable in the period. This allows for comparing
approaches and variables of different kind. In the next subsections, the results are presented two
ways: first, observations are plotted along with the upper and lower thresholds from all
participants, to show a general view of the submissions; then, the number of observed values
outside of the prediction interval is shown for each participant —with a dashed line indicating the
95%—, together with the relative width of the intervals —with a dashed line highlighting the
median width for each case and output—.
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4.3.1 Case B

4.3.1.1 Radial displacements

All contributors but 15.1 and 15.2 (both AN) submitted intervals following the observed
evolution of CB2, as expected from the predictions previously analyzed. 12 out of the 22 total
submissions succeeded in having all observations within the prediction interval. They are based
on different approaches. None of the intervals generated with FEM resulted as valid (i.e., having
more than 95% of observed values in range). Indeed, both of them (15.3 and 15.4) used narrow
intervals and were not among the more accurate contributions, which explains the outcome.

Submissions A01 (AN) and A16 (ML) can be considered as the more useful, since they provided
the narrowest intervals among those having all observations between the upper and lower
thresholds. On the other hand, contribution A06.2, though having all observed values inside the
range, used an interval width greater than the range of variation of the output, which reduces
the capability for anomaly detection. Very similar results were obtained for CB3, with the same
amount of solutions with all observations in range and similar interval widths.
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Figure 42. Prediction intervals and observations for Case B, CB2
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Figure 43. Percentage of observations inside prediction interval for Case B, CB2, along with the
corresponding interval width.
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Figure 44. Prediction intervals and observations for Case B, CB3.
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Figure 45. Percentage of observations inside prediction interval for Case B, CB3, along with the
corresponding interval width.

4.3.1.2 Joint opening - C4_C5

Eight out of the 10 submitted contributions for joint opening encompassed all observations for
Case B, as shown in figure 47. Only A16 (AN) and AO7 (AN) provided predictions intervals
considered as invalid with the criterion applied. In both cases, the width is clearly below the
median value. However, while for A16 this is the reason of the poor result, AO7 provided values
clearly off the observations, therefore, the outcome would have been similar with a wider
interval.
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A12 stands out for using the greater width among all contributions, which helps in avoiding
false anomalies at the cost of lower potential for detecting anomalies. For this output, A11
provided the narrowest interval among all participants with all observations in range.
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Figure 46. Prediction intervals and observations for Case B, C4-C5
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Figure 47. Percentage of observations inside prediction interval for Case B, C4-C5, along with the
corresponding interval width.

4.3.1.3 Piezometers

Only 9 submissions were received for piezometers, 4 of which are considered as valid, i.e., free
of false detected anomalies. As before, A15.1 and A15.2 are clearly off the observed values. The
high number of observations out of range for A14 (ML+AN) is due to the use of a narrow interval,
much smaller than all other participants. A11 (ML) can be considered as the best model for
piezometers, since all observations lied within the prediction interval for both PZCB2 and PZCBS3,
being the width lower than other submissions. The result for A10 is similar (except for a slightly
wider interval for PZCB3), while A12 again avoided false positives by using a very wide interval.
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Figure 48. Prediction intervals and observations for Case B, PZCB2
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Figure 49. Percentage of observations inside prediction interval for Case B, PZCB2, along with the
corresponding interval width.
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Figure 50. Prediction intervals and observations for Case B, PZCB3
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Figure 51. Percentage of observations inside prediction interval for Case B, PZCB3, along with the
corresponding interval width.

4.3.1.4 Seepage

All participants observed high variability in seepage flow and poor prediction accuracy, which
led to the use of relatively wide prediction intervals. Four out of the 6 submitted contributions
were based on intervals wider than the range of variation of the output in the period, even though
most of them limited the lower threshold to avoid negative values (in accordance with the
physical meaning of the data). This results in less useful models. In this sense, it is worth
mentioning A04 (ML), which was capable of having more than 80% of the observations in range
despite using a very narrow interval. In turn, A14 again failed to capture the observations because
of the narrow interval.
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Figure 52. Prediction intervals and observations for Case B, Seepage.
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Figure 53. Percentage of observations inside prediction interval for Case B, Seepage, along with the
corresponding interval width.

4.3.2 Case C

This task is more difficult than Case B, not only because of the longer time period (with more
observations), but also because predictions are made based on information taken as far as 5 years
before. In addition, we already verified that the abnormal emptying of the reservoir at the
beginning of 2016 resulted in poor predictions for some participants. Finally, there is higher
probability that some indicators underwent some change in behavior over the long period
considered. In this regard, the comparative analysis among participants is more interesting.

4.3.2.1 Radial displacements

For CB2, only 7 out of the 22 submissions succeeded in having more than 95% of the
observations inside the prediction interval. Four of them are based on hybrid approaches, two on
ML and one on an analytical model. It is worth mentioning that all of them except A01 (AN) used
an interval wider than the median of all contributions. Nonetheless, they can be considered as
useful: although they are above the median width, they range between 0.3 and 0.5 times the
range of variation of the output.
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Figure 54. Prediction intervals and observations for Case C, CB2
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Figure 55. Percentage of observations inside prediction interval for Case C, CB2, along with the
corresponding interval width.

As for CB3, only 5 contributions are considered valid, again with relatively wide intervals if
compared with other participants. Still, also as for CB2, the relative width of the ranges is around
0.3-0.5. These results are closely related to those for prediction: again, A15.1 and A15.2 are far
off the observations, and many of the problems appear during and after the anomalous period
early in 2016. However, the observed behavior in the last period, which was considered as
potentially anomalous in view of the predictions of the best models (Figure 33), is now considered
as normal: the recorded values fall inside the intervals, though close to the lower threshold.
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Figure 56. Prediction intervals and observations for Case C, CB3.
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Figure 57. Percentage of observations inside prediction interval for Case C, CB3, along with the
corresponding interval width.

4.3.2.2 Joint opening - C4_C5

As before, results for C4-C5 from A08 and A12 (both AN) are valid but based on wide intervals.
In this case, two contributions based on ML (A10 and A11), as well as A02 (HY-ML), succeeded in
capturing the observations with a relative width below 0.3, clearly narrower. Likewise, AO1 (AN)
identified near 95% of the observations, also with a narrow interval.
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Figure 58. Prediction intervals and observations for Case C, C4-C5
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Figure 59. Percentage of observations inside prediction interval for Case C, C4-C5, along with the
corresponding interval width.

4.3.2.3 Piezometers

Only 7 participants considered these outputs for Case C. For PZCB2, four of them approached
the 95% threshold: two based on ML with narrow intervals (A10 and A11), one based on AN (AQ9)
and, as before, A12 (HY-AN) with a very wide prediction interval. All these four models can be
considered as useful. Predictions from A15.1 and A15.2 are barely constant and far from the
observed values, as for other outputs. Upper and lower limits from A16 (ML) are reasonable
except for the first semester of 2016. Figure 60. Prediction intervals and observations for Case
C, PZCB2.
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Figure 60. Prediction intervals and observations for Case C, PZCB2.
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Figure 61. Percentage of observations inside prediction interval for Case C, PZCB2, along with the
corresponding interval width.

Results are poorer for PZCB3. Only AO8 was capable of taking all observations in range, at the
cost of a very wide interval, within the same order of magnitude of the range of variation of the
output. Interestingly, both A10 and A11 considered observations in July-August 2016 as out of
range, while both A11 and A01 took also the first observations in 2015 as anomalous.
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Figure 62. Prediction intervals and observations for Case C, PZCB3.

46



Salazar, Simon, Malm, Hellgren, Klun

BEHAVIOUR PREDICTION OF A CONCRETE ARCH DAM — Description and Synthesis of Theme A

A184
A17 4
A6

A15.4+

A15.31

A15.24

A15.1 4
A4
A134
Al124
A1 4
A104
A09 4
A0S A
AOT 4

ACB.2

ADB.1
A05 4
A04 4
A03 4
AD2 4
A0 4

Participant

|| ‘
1

Participant

Figure 63. Percentage of observations inside prediction interval for Case C, PZCB3, along with the

25 50 75
PZCB3 - # records inside interval

o4

corresponding interval width.

4.3.2.4

Seepage
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As for Case B, seepage was difficult to predict and thus also to generate useful warning
thresholds. Still, 4 contributions were capable of considering all observed values inside the
warning thresholds, with interval widths of around 0.5 times the range of variation of the seepage
in the period. In this case, all valid models (A01, A08, A10, and Al11l) used similar widths.
Interestingly, as for other outputs, different approaches were used for the best models.
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Figure 64. Prediction intervals and observations for Case C, Seepage
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Figure 65. Percentage of observations inside prediction interval for Case C, Seepage, along with the
corresponding interval width.

4.3.3 General comments on warning thresholds

As mentioned before, the main criterion for evaluating the warning thresholds is the
percentage of observed records that fall within the prediction interval, i.e., between the upper
and lower threshold. The dam owner reported that no anomalous behavior has been verified
neither in period B nor in period C. Hence, all records should be considered as normal by a good
model, i.e., inside the normal range.

Nonetheless, such outcome is easier to achieve by a model using a wide prediction interval,
which, at the same time, is less useful for detecting anomalies. As a result, we also analyzed the
width of the interval for those models with high percentage of values inside the range: for a
similar result in terms of correct classification of records, narrow intervals are more useful.

Table 6 includes the summary of the percentage of correct classification for each participant,
period and variable. As before, the colors depict the order for each task. In this case, green is used
for 100 % of correct records and red for low percentages. It can be seen that A08 is the only
contribution that succeeded in considering over 95% of records as normal for all scenarios.
Results are better in general for Case B, for which A10 also provided perfect classification. In
addition, A0O5, A06.1, A06.2, A09, A12, and A18 achieved similar results, although neither of them
considered all outputs. For Case C, the percentage of correct classification is lower in general,
although A05, A06.2 and A12 correctly classified over 95% of records from the outputs analyzed
(which exclude piezometers and seepage).
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Table 6. Summary of results for prediction intervals: participants, approaches used and percentage of
records correctly considered as normal. The colors of numerical columns correspond to the rank of each
model within each output and Case.

. . CASE B - SHORT TERM CASE C - LONG TERM
Participant Approach
CB2 | CB3 | C4C5| PZCB2 | PZCB3 |Seep. CB2 | CB3 | C4C5| PZCB2 | PZCB3 | Seep.

A more detailed analysis has been made considering the interval width. The contributions with
over 95% of correct classifications were ordered as a function the interval width. Table 7 shows
the results for Case B, with some contributors highlighted.

Table 7. Ranking of contributor for Case B, considering the percentage of correct classification and the
width of the prediction interval.

Al6 ML 100 0.439| |All ML 100 0.337| |Al11 ML 100 0.377
A0l AN 100 0.443| |ALO ML 100 0.356| |A02 HY-ML 100 0.405
Al4 ML+AN 100 0.489| |Ale ML 100 0.336| |Al4 ML+AN 100 0.437
A06_1 FEM+AMN+ML 100 049| (A02 HY-ML 100 0.351| |A10 ML 100 0.479
A10 ML 100 0.504| |AD1 AN 100 0.427| |A01 AN 100 0.549
A0S ML 100 0.584| |A18 ML 100 0.44| A0S AN 100 0.771
AlB ML 100 0.624| |AO5 ML 100 0.457

ADB_2 FEM+AN+ML 100 0.534| |Al12 HY-AN 100 151
Al12 HY-AN 100 0.633| |AD9 AN 100 0.582
A0S AN 100 0.681
Al3 HY-AN 100 0.752| |AD6_1 FEM+AN+ML 100 0.635
A0B_2 FEM+AN+ML 100 1.056| (A12 HY-AN 100 1.114
Contrib Method Leak Thres.
All ML 100 0.377| |All ML 100 0.764
A0 ML 100 0.352| |AD1 AN 100 0.867| (Al0 ML 100 1.361
AlB ML 100 0.479| |A10 ML 100 1.106 |M]1 AN 100 1.385
A0S AN 100 0.602| |AlG ML 100 1.133
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Both AO8 (HY-AN, green) and A10 (ML, light blue) achieved perfect classification for all outputs,
the latter having the narrower interval. AO1 (AN, orange) obtained perfect classification for 5 out
of the 6 variables with an interval width similar to that from A10, while A11 (ML, yellow) correctly
classified all observations for 4 out of the 6 outputs, always with the narrowest interval.

The same result is shown for Case Cin Table 8. As before, AO8 (HY-AN, green) achieved perfect
results with wide intervals. In this case, A10 (ML, light blue) was only valid for 3 out of the 6
outputs, with intervals much narrower (around half of those from A08) except for seepage
(similar widths).

Table 8. Ranking of contributors for Case C, considering the percentage of correct classification and the
width of the prediction interval

AL AN 95.5 0.212| AO5 ML 58.65 0.365| All ML 95.63 0.225
AD3 ML 57.3 0.294| |A06_2 FEM+AN+ML 97.3 0.392| (A02 HY-ML 98.06 0.266
AODS HY-AN 100 0.302| AO08 HY-AN 96.4 0431 A0 ML 96.6 0.286
AlL2 HY-AN 100 0.303| |A06_1 FEM+AN+ML 100 0.445| |AD8 HY-AN 100 0.516
Al3 HY-AN 59.1 0.378| |A12 HY-AN 100 0.788| (A12 HY-AN 100 114

Al6_2 FEM+AN+ML 97.3 0.505

Contrib Method PZCB2 Thres. | Contrib Method PZCB3 Thres.
A0 ML 9519 0.225 |A08  HY-AN 96.65 0.965| AD8  HY-AN 98.97 0526
ADS  HY-AN 100 0585 AD1 AN 97.94 0.537
AlD ML 97.94 0.566

Piezometers, and specially PZCB3, were the variables more difficult to control for Case C. Only
one participant sent intervals including all records, and the interval used was as wide as the range
of variation of the output. In addition, even for this model, the time series could be interpreted
as anomalous, as see in Figure 66.
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Figure 66. PZCB3. Observations (dots) and warning thresholds (lines) from the only valid model (A0S, lines).
Although more than 95% of the records fall within the normal interval, they are close to the upper
threshold, occasionally above, which could be considered as anomalous.

This might indicate some change in behavior of the piezometric level. However, results from
other models differ, with observations far from the upper threshold and different periods of
records out of prediction interval. We consider the results for Case B as more relevant, since
predictive models —as well as warning thresholds— are typically updated over time. The
frequency with which this is done may vary, but once a year can be a reasonable value. As a result,
usefulness in practice of any model is better evaluated from the results for Case B (six months’
prediction period) than for Case C (four and a half years). For such period, a number of models
provided what can be considered as good warning thresholds for variables free from anomalies,
with reasonably narrow intervals and over 95% of observations included. Some examples are
shown below.
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Figure 67. Warning thresholds provided by A01 (AN) for Case B, CB2.
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Figure 68. Warning thresholds provided by A11 (ML) for Case B, C4-C5.

Although results are poorer for Case C, still some models also offered reasonable predictions,
as shown in the examples below.
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Figure 69. Warning thresholds provided by A10 (ML) for Case B, PZCB2.

All predictions and warning thresholds received can be explored in the interactive plots
provided in the supplementary material. Overall, none of the contributors prevailed over the rest
for all periods and outputs. There is neither a clear result as for the best approach, which suggests
that various methods can be equally useful, provided that they are correctly applied. This also
confirms that neither model of any nature shall be applied without the contribution of
experienced engineers, with deep knowledge on dam engineering and in particular on the specific
features of the dam under consideration. Models are powerful tools, which should always be
used by high-skilled engineers.
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4.4 Interpretation

4.4.1 Introduction

The task of interpretation was not formally described in the formulation document. It was
simply asked to demonstrate how the analyses and the results could teach us elements on the
functioning of the dam, its evolution over the time, its safety margins, etc. Thus, for example in
the formulation document, when using the classical HST model, the contribution of each load can
be interpreted to better understand the functioning of the structure. This type of analysis can
also be reproduced with all types of complex analyses used by participants. However, this kind of
analysis was not compulsory for the benchmark.

This section compares the interpretations given by the participants as precisely as possible,
given the fact that it is not possible to carry out a comparison by quantitative estimators. In order
to organize the restitution, it is proposed to focus initially on the identification of the explanatory
variables. This step is crucial because it determines the sequence of possible interpretations.
Then, the different sensitivity studies proposed by the participants will be discussed. Finite
element analyzes occupy a special place in the interpretation, so that a paragraph will be devoted
to them. Finally, and since the comparison of interpretations is a complex task, the last subsection
includes some interpretations that may be interesting to share within the framework of this
synthesis.

4.4.2 Identification of explanatory variables

For the analysis of monitoring measurements, the selection of the explanatory variables is
among the most important steps, which greatly impacts the results of the model and the
interpretation. First, the choice of the nature of the physical phenomena which accounts for the
explanatory processes: should we take into account the rain, the effect of the temperature, the
effect of the aging of the materials?

Secondly, the transformation of the measurement of the physical phenomenon into an
explanatory variable can take different forms: the measurement can be integrated directly into
the model (water level for example) or be transformed with the aim of better showing certain
effects such as a threshold. We could also create a variable that incorporates a historical effect
with the technique of moving averages, etc. The trickiest explanatory variable transformation is
the one concerning the delayed effects, for phenomena such as temperature or water diffusion.

Itis not possible to directly compare the techniques and the transformations of the explanatory
variables used by the different participants. Different tests and statistical criteria can be used to
select the explanatory variables and it is not possible to compare them directly with each other.
But it is interesting to share the visual means that make it possible to select the explanatory
variables. Regarding the choice of explanatory variables, there is no fixed criterion adopted by
the profession, we must do the best and demonstrate pragmatism. The following figures show
different visualization techniques provided by the participants.

CB2_236_196
Most impariant variables

brgertancs
-
-

Figure 70. Example of selection of most important variables. In this case, the number of explanatory
variables is high.
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Some participants built numerous explanatory variables, such as moving averages (several
values tested) or threshold effects. The next challenge is to find a statistical criterion that specifies
from what threshold we can keep an explanatory variable in the final model. Defining this

threshold is not obvious and often involves user experience.

Most influential variables

Inarasal Greun Filp and save

Relatwe Influenca %

Figure 71. Selection of explanatory variables. On this example, the choice of the most influential variables is

obvious.
In some cases, the most influential variables are easy to rank, and it follows an easy selection

of the most significant variables.
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Figure 72. Synoptic diagram of the most influential variables

With the aim of facilitating the identification of the most significant explanatory variables,
synoptic diagrams can be very useful to quickly understand which are the explanatory variables
that most influence what is measured at different positions in the dam (see Figure 72).
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4.4.3 Sensitivity studies

Sensitivity studies make it possible to study the specific effect of an explanatory variable on the
monitoring measurement. These studies are calibrated on monitoring measurements.
Consequently, their modeling reproduces exactly the real effects undergone by the structure
within the uncertainty of the model. Sensitivity studies are therefore of great importance for
interpretation. Care must be taken to remain within the range of validity of the calculated effects
and to explain the sensitivities in relation to the physics of the phenomenon being monitored. It
may also be interesting to ensure that these effects do not change over time.
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Figure 73. Example of the effect of the 15-day moving average water level on the displacements. The
display of monitoring measurements and the uncertainty of the model are precious to interpret the graph.
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Figure 74. When several parameters influence the monitoring measurements, it may be of interest to use a
3D-vizualisation. In this case the 14-day moving average of the air temperature and the modified (with a
threshold) water level influence the monitoring measurement.
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Figure 75. Seasonal effect which depends on the water level to better explain the crack opening
displacement.

4.4.4 Finite element Analysis

Three contributions performed finite element analysis. The prediction from these models were
less accurate than the models based on the data, but they allow easier access to interpretable
physical quantities. For example, while a model based on the data only reproduces the
displacement, a finite element analysis provides the calculation of the stresses in the concrete.
These stress values are much easier to interpret by a dam engineer and can be compared to a
safety criterion. Nevertheless, the calibration of a finite element model is a complex task which
integrate many uncertainties. This issue is the subject of numerous ICOLD bulletins whose analysis
goes beyond the scope of this benchmark.

0.0000E+00
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I -1,00D0E-02

Figure 76. Example of crack opening displacement at the rock-concrete interface at normal water level. The
use of finite element analysis provides spatial information between measuring devices and simultaneously
considers the information of several sensors.
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4.4.5 Focus on some interpretations

Regarding the thermal effects, many participants checked that the value of thermal diffusion
calibrated on the monitoring data is consistent with the dam thickness and the physical properties
of the dam. For participant A11 the short-term average temperature is correlated with CB2 and
the long-term average is correlated with CB2. This result is somehow surprising because the
thickness of concrete (and thus the thermal inertia) is greater in the displacement measured
around CB3.

To interpret the irreversible effects, some participants (A15, A16) used the “corrected” or
“compensated” measurements. These terms refer to raw data which are removed from reversible
effects.

Regarding the structural behavior, some analyses are interesting to share:

e Participant A12: the behavior of CB2 could be explained with an opening of the vertical
contraction joints in wintertime with a low water level. In this case, the arch effect is
reduced, and the structure is more deformable than the monolithic one. With higher water
level, joints are closing, and the full stiffness of the monolithic structure is restored.

e Numerical models confirm the crack opening at the upstream toe of the dam, and
consequently the propagation of uplift pressure in the crack.

e Thanks to the use of finite element analysis, participant A15 was able to carry out a
comparison of different dam / foundation shear parameters, as regard to the French
guideline and then proposed a discussion about the sliding of the dam. This discussion
covers topics such as keying of the dam and seasonal and drawdown cycles.

e For participant A12, Dam_EDF seems more rigid for higher water levels and less rigid for
lower water levels.

Some participants could provide a combined interpretation i.e., an interpretation which
combined two different kinds of monitored phenomenon:
e Participant AO7 noted the correlation between displacements and crack opening
displacements.
e Participant A09 highlighted that the crack opening is strongly correlated with piezometric
levels (PZCB2 and PZCB3) which is a good indication of the response of the rock mass.

Participant A12 carried out a detailed analysis of the rock modulus obtained from the
calibration process. This rock modulus is quite low. The dam behavior is basically reversible,
without any drift or irreversible displacements. Only a modest delay between models and
measurements is visible for CB3, indicating that the rock mass behavior is affected by some
viscous effect. Numerical model also estimates the maximum compressive stress in the arch,
which is far below the compressive maximum strength of concrete.

Regarding the piezometric levels PZCB3, participant A10 detected a change in 2008 (given in
the description of the theme and detected by other participants), but also in 2012. This change
in 2012 is also confirmed in the dam’s owner safety report without confirming whether the cause
is the sensor or the end of the benefit of the drainage refection operated in 2008.

Leakages are difficult to model as they are subjected to non-linearities which are described by
the law of Poiseuille, thresholds and cross effects (participant A15). Several attempts of models
were made by considering the rainfall, but without any success (participant A08). Participant A10
noted that the accuracy is low in high leakage flows essentially due to low reading frequency. Two
outliers were detected (> 25 L/min) in the period Dec-2008/Mar 2009. Participant A17 also
mentioned that the calculated values of seepage are lower than measured, which is an indication
for additional leakage occurrence that affects the seepage process.

4.4.6 Overall remarks

The analysis of the comments provided by the participants on the conclusions drawn from the
models on the dam behavior was of great interest. There was a great variety of interpretations,
both regarding which outputs were assessed and on the insights mentioned.

56



Salazar, Simon, Malm, Hellgren, Klun
BEHAVIOUR PREDICTION OF A CONCRETE ARCH DAM — Description and Synthesis of Theme A

All kinds of approaches were allowed for interpreting the response of the dam. In this regard,
FEM has greater capabilities, since it allows for simulating extreme scenarios. Nonetheless,
participants using data-driven approaches also provided reasonable interpretations regarding
possible changes in behavior and relations between loads and responses. Some tools are also
available for these models, from conventional sensitivity analysis to more complex measures of
importance of inputs. In this regard, it is worth to mention that all conclusions were made also
making use of the knowledge on dam behavior, the physical phenomena involved in arch dams,
etc. This confirms the impression that engineering knowledge is the key asset when performing
this kind of analysis. In other words, different approaches can be useful, but a skilled engineering
team is always necessary.

5 SUMMARY AND CONCLUSIONS

In this Theme, tasks have been proposed to predict the behavior of a double curvature arch
dam in terms of displacements, crack opening, piezometric levels and seepage, in two different
time horizons, i.e., 6 months and 4.5 years.

Some participants have noted that behavior models are usually updated on an annual basis,
which implies that long-term prediction does not correspond to usual practice. This is true, but in
the context of the benchmark, the aim was to pose a difficult problem, to assess the limits of the
predictive capabilities of the different approaches.

Although the behavior of the dam, according to the information provided by the owner, has
not undergone relevant changes in the period considered, the loads did register exceptional
values, with an extraordinary draw-down of the reservoir, which has been a problem for some
participants.

Thus, although machine learning (ML) models have a higher risk of overfitting, which can result
in erroneous predictions in the face of new input data, the results of the analysis show that, in
general, the predictions are good and the used calibration processes have succeeded in avoiding
this problem. No relevant difference is observed in this sense between these models and other
approaches —which, in principle, are less sensitive to overfitting—. Up to 4 teams that have used
ML have only considered displacements. In principle, once the data is prepared and an ML model
selected, the effort required to consider other outputs should be small. Participants may not have
been very confident in the prediction of piezometric levels and seepage.

A wide variety of approaches have been used. As for ML-based solutions, different algorithms
have been employed: boosted regression trees, two versions of long-short-term memory neural
networks, kernel extreme learning machine, random forests, and support vector machines; and
two programming languages, R and Python. Regarding those based on FEM, different software
tools have been used, namely: Sofistik, Ansys, Abaqus, LS-DYNA, FLAC-3D, and an in-house
developed code (Parmac3D-PAVK). In this sense, a great advance is observed with respect to the
last benchmark problem that can be considered similar, which was proposed in 2003. This reflects
the advance in available technologies that has occurred in recent years, and that these new
techniques are already entering the professional practice of dam engineering.

If we order the participants from highest to lowest prediction accuracy, taking into account
only the displacements —the mandatory task that all have answered— Table 9 is obtained, which
shows the low precision for the three FE-models. The 5 approaches with the lowest average error
are based on ML, except for the second, which uses a hybrid approach (also with ML).
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Table 9. Ranking of contributions by accuracy for displacements.

Ranking

Average| Overall
Participant Approach | CASEB | CASEC
pant Approach | CASEB [CASEC | Lol D

10 15 15 103
7.3

(1002 9

This shows the high capability of data-driven models once a long enough period of records is
available. As mentioned before, FEM models have other advantages and are essential during the
design stage and for other purposes. The results confirm the greater flexibility of data-based
models, and in particular those of ML, to consider variables of different types: of the 18
participating teams, only 6 have submitted solutions for all tasks, only one of which was based
solely on FEM The FE-model had lower accuracy in general. This can be seen in Table 10 that
presents the ranking of all teams that have offered solutions for all the variables.

Table 10. Ranking of participants which sent solutions for all outputs, based on prediction accuracy.

Ranking

Average Overall
CASE B - SHORT TERM CASE C - LONG TERM

Participant | Approach ranking ranking
CB2|CB3|C4C5|PZCB2(PZCB3|Seep.|CB2(CB3|C4C5|PZCB2|PZCB3|Seep.

Regarding the definition of warning thresholds, the proposed approaches can be considered
conventional, based on prediction error statistics for the calibration phase. Specifically, between
2 and 3 times the standard deviation of said error, or according to some percentile of the
residuals. Perhaps the formulation of the topic was oriented towards the use of this conventional
approach. The design of the task may also be considered less realistic than that for prediction,
since decisions in dam safety are usually made in real time, i.e., in view of some potentially
anomalous record, instead of by looking at a long period.

The evaluation of the contributions was made based on the number of observations captured
within the warning thresholds, conditioned to the width of the interval. The results were related
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to the prediction accuracy, with some influence of the approach used for the warning thresholds.
In particular, AO8 was the only solution that captured over 95% of the records inside the
thresholds, despite not being among the more accurate models, due to the use of a wide interval
(3 times the standard deviation of the residuals).

Among the future lines of research, which have not been considered by any of the participating
teams, it is worth mentioning the possibility of jointly considering several outputs. This can apply
to the prediction task (multivariate prediction approaches are available), but also to the definition
of anomalies. Likewise, additional criteria can be considered to detect abnormal values or
behavior changes, such as the observation of trends. For instance, a set of consecutive records
out of the interval may be more relevant than a set —of the same size— of isolated anomalies.
This was partially considered during the synthesis (isolated errors were discarded). Another
option would be to visually explore the observations in reference to the warning thresholds: some
trend could be identified, which may reveal some change in behavior, before any value falls out
of the interval. This applies in particular when wide intervals are used. Overall, this task was more
difficult to evaluate. A specific Theme could be designed to specifically address this topic in some
future benchmark.

The main conclusion that can be drawn from the analysis of the submitted solutions is that
none of the techniques clearly stands out as the best in all the evaluated aspects: prediction
accuracy, flexibility to consider different results and ability to adapt to different scenarios of load
combination. As expected, the experience of the modelers and their ability to make appropriate
decisions during modeling and calibration are very important to obtain useful results.

The need for engineering knowledge was further verified by the analysis of the interpretation
of the models. All participants who answered this question provided reasonable, sophisticated
explanations on the possible origin of the observed behavior and of the analysis of their predictive
models. This was clearly driven by the participation of high-skilled professionals teaming up with
experts in modeling.

A limitation of these results is that they correspond to a given typology and a well-instrumented
dam. In addition, the past related Theme posed in 2003 was based on a dam of the same type.
Future endeavors of the Committee might be oriented towards posing some similar themes
based for different type of dams, possibly with more issues regarding the monitoring records.
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DATA-BASED STATISTICAL MODEL WITH PHYSICALLY
SOUND ANALYSIS AND CORRELATION FUNCTIONS

Moez Jellouli
ISL Ingénirie, Paris, France

Frédéric Dufour
ISL Ingénierie, Lyon, France

ABSTRACT: Dam safety assessment is a key societal issue to keep the risk as low as possible. To
this end, several measurements are performed on site (displacement, piezometric head and
seepage are the most common ones). Based on these data, an efficient model must be
constructed to analyze the time evolution of the dam behavior and detect as early as possible
some irreversible effects. For this purpose, in this contribution, we propose an original analytical
model halfway between pure statistical model and pure physical FE model. Based on expert
judgements, some physically sound correlation functions are proposed in the view of minimizing
the total number of parameters. These functions link the data of interest with several
environmental phenomena such as the water level in the reservoir, the air and water
temperatures, the rainfall. Of course, except for the water level, which is perfectly known, those
data bring some uncertainties in the statistical process since they are not usually directly
measured on site. Indeed, both temperatures are estimated by means of a model. Some thermal
phenomena such as convection and radiation are disregarded or roughly approximated which
may further affect the estimation of the dam temperature. Those functions are calibrated for
each time series of measured data to provide predictive estimation. Except for the seepage data,
the coefficient of determination is very good, and the physical statistically calibrated parameters
are in the expected range. Both checking gives us good confidence for the model prediction.
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1 INTRODUCTION

Safety is a very important issue for dam management. On one hand, the structural vulnerability
may increase with the dam ageing (for instance due to creep, swelling or cracking), and on the
other hand, due to the climate change the environmental loading may increase (for instance,
temperature increase, higher frequency of exceptional floods, heat wave). Those phenomena
may increase the failure risk and highlight the need for the monitoring of dams to ensure their
safety over the long term. Dam surveillance mainly consists of analyzing gathered data to verify
that the dam is functioning as expected, to detect any possible anomalies, and to warn of any
change which could endanger its safety. Displacements, internal pressures, and seepages are
classical measures. A precise enough and efficient model is needed to compare its prediction with
the measures to detect any change in the dam behavior. This model can be either based on
physics (for instance, Finite Element Model - FEM) or on data (for instance, digital twin).

In a FEM, the geometry of the dam and its foundation, the boundary conditions, the loads, and
the material behavior must be described explicitly for all thermal and mechanical phenomena
(Leger and Leclerc, 2007; Leger et al., 1993). This numerical model must be calibrated on the data
to improve its predictability. However, due to the number of parameters, the associated
uncertainties, the spatial and time variabilities, the mesh size needed to capture short term
thermal effects, some hypotheses are made. Therefore, although the model construction is
rather expensive, the results are not fully satisfactory.

A digital twin construction, such as the worldwide known HST (Hydrostatic, Season, Time)
method from Ferry and Willm (1958), Willm and Beaujoint (1967), and Lugiez et al. (1970), and
its derivatives (see for instance, Tatin et al. 2015 and 2018 who added the water temperature
effect) is based on correlation functions between data and external loads, and a statistical
calibration process of the parameters. For instance, a polynomial of order 4 is generally proposed
for the hydrostatic effect on the displacement. Once the twin model and its parameters have
been calibrated during the learning period, it can easily predict some estimation at nearly no cost.
Besides, the construction itself of the twin model is much cheaper than a physically based model.

To the authors’ viewpoint, a FEM model is required in two conditions; (a) the period to predict
the dam behavior contains some loading conditions which have never been met in the past and
(b) the safety margin is addressed in terms of stress state. These conditions are not met in the
present ICOLD benchmark. We thus have chosen to provide predictions solely based on data
analysis. After some mathematical tools, the physical-based functions are introduced, and the
results of the calibration process are analyzed.

2 ORIGINAL FUNCTIONS AND CALIBRATION METHODOLOGY

2.1 Convolution product

Most of the phenomena for very large structures such as dams highlight a response to a load
which is not instantaneous. Therefore, a time convolution product is introduced as:

[fOgl®) = Ximt—t, 9t —Wf (W) (1)

Where g is the convolution function, fthe time series and the parameter to be calibrated to is
the time duration of the effect, usually few hundreds of days for dam analysis.

2.2 Convolution function g1 without time delay

In practice, the convolution function g1 without a time delay is introduced to convolute a time
series so that the effect is diffused in time. For instance, it may be used to compute the mean
concrete temperature in the bulk with respect to the boundary values.

A 1+2n)%.t
9l () = P Y3 _1€xp (_—( +tn) ) (2)
c1l c1l

Where t.; is the characteristic time of the phenomenon, and A is added so that the integral of
g1 is unit (see Figure 1(a)).
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2.3 Convolution function g2 with time delay

Compared to the previous function g1, the function g2 (see Figure 1(b)) is built to introduce a
time delay in some physical phenomena. For instance, for diffusion problem, such as the
piezometric pressure as a function of the water level in the reservoir, or the temperature at some
points in the dam as a function of the air temperature, a time shift t., is introduced as follows:

92tc2(t) = gliei (t).erfc (é) (3)
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Figure 1. Typical convolution functions, (a) without time delay and a characteristic time length of t.; = 40
days, and (b) with a time delay of t., = 10 days.

2.4 Threshold function

A threshold effect is observed in some phenomena. For instance, in the present benchmark,
although the water height in the reservoir is always measured, it applies a hydrostatic pressure
only down to the level 196 m NGF. Thus, to build the correlation between the water height and
the horizontal displacement, one needs to introduce a cut-off effect in the time series. In the
present work, it is done by means of the following function:

f) =n(1+exp®)) (4)

It has the property to be nearly null below -2 and to value the identity above 2 (see Figure 2).

Threshold function
10

5 4 3 -2 -1 0 1V2 3 4 5 6 7 8

Figure 2. Activation function with a threshold.

2.5 Calibration methodology

All the model parameters are calibrated simultaneously. Although it does not prevent
compensation between different effects, it avoids giving an emphasis to one of the phenomena.

The numerical algorithm is based on Simultaneous Perturbation Stochastic Approximation
(SPSA) method developed by Spall (1992). The main ingredient is a minimizing cost process based
on gradients. It is capable to find a global minimum from an initial guess.

63



Jellouli, Dufour
DATA-BASED STATISTICAL MODEL WITH PHYSICALLY SOUND ANALYSIS AND CORRELATION FUNCTIONS

3 PHYSICAL ANALYSIS

3.1 Hydrostatic effect

The dependency of a data on the hydrostatic pressure is introduced by means of a single
monomial, in contrary to HST method which uses a 4™ order polynomial. This minimizes the
number of parameters to be calibrated while keeping the physical meaning.

3.2 Thermal effect

3.2.1 Air temperature

The external air temperature is computed based on the provided raw data T, which are
extrapolated and corrected from a weather station at 50 km away. Although an altitude
correction is performed, the absence of recorded air temperature on site introduces some
uncertainties. This is particularly true in the alpine context where temperature may vary daily
from one valley to another and depending on the hillslope orientation. According to Tatin (2014),
the solar radiation may play a significant role in the concrete temperature. Thus, an arbitrary
increase of 2°C in winter and 8°C in summer at t=t; is added to the air temperature as follows:

Toir =Tp + (5 + 3 cos (%)) (5)

After calibration, t; has been fixed to the 10" of July with a low sensitivity to the results.

3.2.2 Water temperature

According to Tatin et al. (2015), the mean water temperature T, is accounted for. It is
estimated as the mean between the top surface temperature and the bottom one. The latter has
been chosen as 4°C which is the temperature of maximum density at a depth Py of 100 m. This
depth was initially part of the learning process and has been finally fixed to a value close to the
optimal one.

The top temperature varies during the season following where the temperature parameters
(5°C and 6°C) have been calibrated once for all before hand:

Ttop = max [0; 5+ 6cos (%)] (6)

3.2.3 Concrete temperature

For a given day, the mean concrete temperature T, of the arc dam is the convolution without
time delay of a linear weighted function of both the air and the water temperatures:

Tne = [a.Tgir + (1 — )T, |Qg1 (7)

The weighting coefficient o depends on the water level of the reservoir to account for the
coupling between the water level and the temperature distribution. If the reservoir is empty, then
a = 1, otherwise 0 < a < 1. In details, a is computed according to the relation:

a=1-P.7P (8)

Where Z is the relative water level varying from 0 for an empty reservoir and 1 for the
maximum absolute water level, and P; and P, two parameters to calibrate. One example of such
a function is provided in Figure 3.
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Figure 3. Weighting coefficient a as a function of the water level in the reservoir.
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Since we have chosen here the convolution without the time delay, only the characteristic time
tc is to be calibrated for each sensor. For the diffusion thermal problem, the initial guess for tc
can be taken as L?/m?. D where D is the concrete thermal diffusivity taken approximatively as
0.08 m?/day, and L is the mean dam thickness.

4 RESULTS AND ANALYSIS

4.1 Pendulum displacement

The pendulum displacement is computed as the sum of 4 effects detailed in the following table.

Table 1. The correlation functions for the displacement and the parameters to be calibrated.

Effects Mathematical relation Parameters to be calibrated
Hydrostatic pressure  C; + Cy. (WL — Z0)©3 C1, C2, C3, Zmin

Mean dilation Cy-Tne Cq P1, P2, tc

Thermal gradient Cs.Z.(Tyy — Trne) Cs

Time Ce. (t —tg) Cs

Where t-tp is the time duration since the beginning of the provided time series and WL is the
absolute water level floored to Zmin.

4.1.1 Calibration and prediction for the pendulum CB2
The calibration process yields the following parameter values.

Table 2. Calibrated parameters for the pendulum CB2.

Parameter C; G Cs Cy Cs Ce Ps P, Znmin te
Value -13.33 0.008137 2.2382 -1.4768 1.508 0.03 21.5 0.2356 194.15 14.8
Unit mm mm (-) mm/°C mm/°C mm/year % (-) m NGF days

Remark: According to the rough estimation of the characteristic diffusion time, 14.8 days
corresponds to a width of 3.4 m which agrees with the dam thickness of 2 m at the crest and 6 m
at bottom.

This set of parameters yields the following time series.
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Figure 4. Learning process on the pendulum CB2; (a) raw time series with dots for the on-site measures and
thick line for the digital twin, and (b) the time series of the difference between the model and the data.

The coefficient of determination is R?=0.964 and the standard deviation is 1.78 mm. The
confidence intervals are [—2.9; 3.0] and [—4.5; 3.9] in mm for 95% and 99% respectively.
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Due to the sake of conciseness, only the model for CB2 is analyzed in detail. However, since all

the calibrated parameters are provided, the interested reader can easily construct the
corresponding functions.

180 190 200 210 220 230

(a ) WL(m) ( b) 7 Tmoy("C)

d(mm)

T
-8 6 -4 2 0 2 1995 2000 2005 2010 2015

(C) RWL (Tw-Tmoy)(*C) ( d ) Date

Figure 5. For each physical phenomenon which affects the pendulum CB2 displacement, comparison

between the calibrated function and the data: (a) hydrostatic, (b) mean temperature, (c) thermal gradient,
and (d) irreversible.

4.1.2 Calibration and prediction for the pendulum CB3
The calibration process yields the following parameter values.

Table 3. Calibrated parameters for the pendulum CB3.

Parameter C; G Cs Cy Cs Ce Ps P, Znmin te
Value -3.68 0.00423 2.0594 -0.1798 -0.107 0.035 8.5 0.056 194.95 65
Unit mm mm (-) mm/°C mm/°C mm/year % (-) m NGF days

This set of parameters yields the following time series.
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Figure 6. Learning process on the CB3 pendulum; (a) raw time series with dots for the on-site measures and
thick line for the digital twin, and (b) the time series of the difference between the model and the data.
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The coefficient of determination is R?=0.966 and the standard deviation is 0.498 mm. The
confidence intervals are [—0.76; 0.78] and [—1.0; 1.3] in mm for 95% and 99% respectively.
4.2 Calibration and prediction of the joint openings

The joint opening is computed as the pendulum displacement since it is also a kinematic
variable. Two differences are included:

e a delay on hydrostatic pressure term with convolution function gli; to consider
delayed elastic behavior of the structure,
e athreshold effect to account for the closing effect with a minimum value dXmin.

Thus, the joint opening dx reads:

dx = dxpin + ln(l + exp(v)) (10)
where v here stands for:
c
C1+ Co.(WL®GL,,, = Zimin) ° + Ca-Tre + C5.Z.(Tyy = Tip) + Co. (= tg)  (11)
Table 4. Calibrated parameters for the joint openings.
Parameter C1  C2 Cs Cs Cs Cs P1 P Zmin te  tz  dXmin
Value -1.05499.10°1.982 -0.128 0.047 0.050 49.1 0.23 197.25 172 6.5 -2.67
Unit mm mm (-) mm/°C mm/°C mm/year % (- m NGF days days mm
This set of parameters yields the following time series.
“7 ER .%% i
T E 31 g&gé & °§ :
o, o
8 s o o got e’ g ggz 5
3 _ g - %ﬁﬁfggg% §°%Qﬁ%&
- Is Sl R
o 34 ¢ H ¢
e | 2

T
2010 2015

Figure 7. Learning process on the joint opening; (a) raw time series with dots for the on-site measures and
thick line for the digital twin, and (b) the time series of the difference between the model and the data.

The coefficient of determination is R?=0.984 and the standard deviation is 0.200 mm. The
confidence intervals are [—0.31; 0.31] and [—0.51; 0.56] in mm for 95% and 99% respectively.
4.3 Piezometric head

For the piezometric head, the first tries have shown a change in the behavior from August
2008. Thus, a head decrease has been modelled from this date. The piezometric head is
computed as the sum of 6 effects detailed in the following table.

Table 5. The correlation functions for the piezometric head and the parameters to be calibrated.

Effect

Mathematical relation

Parameters to be calibrated

Hydrostatic pressure
Drainage

Seasonal due to air temperature
Rainfall

Time

Behavior change from 08/08

Cl + CZ- (WL@thcl - Zmin)c?’
C4- (WL@gztcz - Zmin)c5

Co- Th®G2¢c3

C;.RFQQG2icq

Cg. (t — to)

Co. (1 — exp(Cyo. (tog — £))).max[Cy1/Co; WLE3]

C1, Cz, C3, te1, Zmin
C4, Cs, te2

Cs, tc3

C7, tea

Cs

Co, C19, C11
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Where t — ty and tyg — t are the time durations since the beginning of the provided time
series and the start of the piezometric head decrease respectively.

The threshold effect to account for dry piezometer with a minimum value PZnmi, is added at the
end. Thus, the piezometric head PZ reads:

PZ = PZpyin + In(1 + exp(v)) (12)
where v here stands for:

Ci+ Co. WLRG2¢c1 — Zmin)® + Coo WLG2¢cr — Zimin)®s + Co. Ty®92¢c3 +

C7.RF®g2¢cs + Cg. (t — to) + Co. (1 — exp(Cro. (tog — t))). max [%1 WLCs] (13)

4.3.1 Calibration and prediction of the piezometer PZCB2

Table 6. Calibrated parameters for the piezometric head PZCB2.

Parameter C: C2 C3 Cs Cs Cs C7 Cs Co Cio Ci1
Value 1.182 0.0115 1.94 -0.011 0.863 -0.08 O 0.100 -5.04 -0.527 -4.79
Unit m (-) (-) (-) (-) m/°C  m/mm m/year m (-)/year m
Parameter Zmin te1 tez te3 tea PZmin

Value 195.7 0.75 36 28 0 (no correlation) 195

Unit m NGF days days days days m NGF

This set of parameters yields the following time series.

PZCB2(m)
Measure-Model(mm)
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Figure 8. Learning process on the piezometer PZBC2; (a) raw time series with dots for the on-site measures
and thick line for the digital twin, and (b) the time series of the difference between the model and the data.

The coefficient of determination is R?=0.988 and the standard deviation is 0.511 m. The
confidence intervals are [—0.85; 0.77] and [—1.3; 1.09] in m for 95% and 99% respectively. The
large discrepancy in 2002 is due to a fast water level increase in the reservoir. This is typical of an
exceptional event for which statistical models only provide a rough estimate due to the lack of
similar data during the learning process. One can notice that drainage and rainfall terms
(downstream effects) are almost null for this piezometer. At the end, after few weeks, the model
is back to good quality for the prediction. Indeed, after august 2008, the measures dropped
significantly. Until the last measure in 2012, the model still detects a decrease of the piezometric
level. It is not easy to extrapolate the measure until 2017 since the drop is not yet stabilized. From
a practical viewpoint, it is recommended to calibrate the model yearly until the drop begins to
stabilize.
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4.3.2 Calibration and prediction of the piezometer PZCB3

For PZCB3, the first calibration tries showed that the drop initiated in august 2008 is stopped
or extremely faded in the last months of provided data. We took the hypothesis of stopping the
drop term starting from July 2012.

Table 7. Calibrated parameters for the piezometric head PZCB3.

Parameter Ci Cz Cs3 Cs Cs Cs C7 Cs Co Cro Ci
Value 1.382 0.2154 0.956 -0.475 0.460 -0.0246 0.029 -0.0436 -2.14 -1344 -1.34
Unit m (-) (-) (-) (-) m/°C m/mm m/year m (-)/year m
Parameter Zmin te1 te2 te3 tes PZmin

Value 203.8 0.75 56 8 26 196

Unit m NGF days days days days m NGF

This set of parameters yields the following time series.

PZCBA(m)
200 202
Il 1 Il
o
05 10

198
1

Measure-Model{mm)
05 00
1 Il

196
1

T T T
1995 2000 2005 2010 2015

Date

(a) (b)
Figure 9. Learning process on the piezometer PZBC3; (a) raw time series with dots for the on-site measures
and thick line for the digital twin, and (b) the time series of the difference between the model and the data.

The coefficient of determination is R?=0.972 and the standard deviation is 0.265 m. The
confidence intervals are [—0.40; 0.41] and [—0.71; 0.77] in m for 95% and 99% respectively.
Compared to PZCB2, the drainage and rainfall terms are not null. Their amplitudes are
respectively 2.0 m and 0.3 m.

4.4 Calibration and prediction of the seepage

For the seepage predictive model, we use the same set of functions as for the piezometric
head. Unfortunately, so far, the results are not that good. The seepage prediction is much more
complex. Indeed, if part of the seepage comes from the runoff along the hillslopes, this may
introduce several characteristic times depending for instance on the ground hydric state.
Furthermore, the rainfall data provided are measured 5 km away from the dam. As for the air
temperature, in alpine regions, 5 km may change a lot the water quantities thus inducing
uncertainties in the input data.

Nevertheless, a statistical model has been calibrated.

Table 8. Calibrated parameters for the seepage.

Parameter Ci C2 C3 (4 Cs Cs C7 Cs Co
Value 2,50 0.0399 1.70 -0.18 0.43 ~0 0.95 -285 ~0
Unit [/min () (<) l/min/°C  I/min/mm |/min/year I/min  (-)/year I/min
Parameter Zmin te1 tz  tezs  PZmin

Value 208.5 ~0 16 22 O

Unit m NGF days days days |/min
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This set of parameters yields the following time series.

Measure-Model(mm)

Figure 10. Learning process on the seepage; (a) raw time series with dots for the on-site measures and thick
line for the digital twin, and (b) the time series of the difference between the model and the data.

The coefficient of determination is R?=0.567 and the standard deviation is 2.88 |/min. The
confidence intervals are [—3.37; 4.80] and [—5.8; 9.8] in I/min for 95% and 99% respectively.

5 CONCLUSION

In this contribution, we have proposed a statistical data-based model which is supported by
physically sound functions. Some phenomena have been accounted for based on expert
judgement yielding some specific correlation functions. They are different from the bibliography,
and we do believe that their physical meaning is stronger. In contrary to neural network, for
instance, the physical meaning can be evaluated a posteriori, after the calibration process, to
eventually propose improvements. For instance, the characteristic times calibrated are
systematically analyzed in view of the physics to check their coherency with the diffusivity of the
concrete and the characteristic size of the dam. Besides, we have restricted ourselves to the
minimum number of parameters required by the physics. Further parameters may be added to
statistically improved the model at the risk of losing the physical meaning and introducing cross
correlation between parameters. Except for the seepage, the coefficients of determination are
above 0.95 which shows the very good quality of our approach.

On the other hand, this work, although innovative, has taken 3 days of work in total including
the definition of the correlation functions, their calibrations, and the validation of the results. This
is by far less than a FE model for a result we believe of the same quality.

In the next future, this innovative approach should be used on several other dams to determine
some reference correlation functions depending on the dam typology and the type of sensors.
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ABSTRACT: Prediction and interpretation of deformation measurements based on data
obtained from previous monitoring is one of the most common tasks for dam engineers to
assess dam safety today. Deterministic and statistical approaches are used to solve these tasks.
Finite element models offer the possibility to study the behavior of dams in great detail when
mechanical parameters as well as geotechnical and geological information is available.
However, compared to statistical models, they often lack predictive accuracy due to rheological
time-dependent behavior and the lack of information on the geological conditions. This is
especially the case when limited data is available to calibrate material models and body
interactions, e.g., between individual blocks or to the foundation. Hybrid modeling combines
the advantages of both approaches. The ICOLD Technical Committee on Computational Aspects
of Analysis and Design of Dams called for a workshop on the behavior and predictive analysis
of a double-curvature arch dam. For the given task, a finite element model is created and
calibrated using available monitoring data. A recurrent neural network is then trained using the
same data and the results of the finite element analysis to compensate for its lack of predictive
accuracy. It is shown that this procedure not only improves the quality of modeling but also
reveals deficiencies of the mechanical model alone. Furthermore, prediction intervals are
derived from quantile regression neural networks to define warning levels and identify
anomalies in the monitoring data.
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1 INTRODUCTION

Prediction and interpretation of monitoring data is one of the most important tasks of a dam
engineer today. This is done either by data-driven models or deterministic models such as finite
element analysis (FEA). It is also possible to combine both approaches by performing a hybrid
analysis. The knowledge gained from these analyses is critical for estimating the current safety
condition of the dam, monitoring time-dependent changes over the years and coping with ageing.
While FEA is best suited to provide insight into the behavior of the dam, statistical models are
usually better at predicting it. These predictions can be used to detect anomalies in the measured
data. Based on these detections, the responsible dam engineer must decide whether
countermeasures must be taken. One method that can be used for this time series prediction is
Long-Short-Term-Memory (LSTM) presented by Hochreiter & Schmidhuber (1997).

LSTMs are a further development of Recurrent Neural Networks (RNN), which were originally
developed to represent the temporal relationship within data sequences. However, they have
one major drawback. During the training process, weights are updated at each iteration based on
the gradient of the error function. Sometimes this gradient can become so small that the weights
no longer change or even the entire network can no longer be trained. One advantage of LSTMs
is that they do not suffer from this vanishing gradient problem.

However, prediction of monitoring data alone is not sufficient. Suitable warning levels must be
derived to detect abnormal behavior. One possibility is to derive them from alarm levels based
on failure analysis of the monitored structure. Another approach is to derive them purely from
measured data. In this case, the prediction intervals must be determined based on the underlying
statistical model. For time series, this usually requires dealing with inhomogeneous variances.
One method to achieve this is Quantile Regression (QR). QR does not assume identical,
independent, and normally distributed individual values, as is the case with ordinary least squares
models. The use of this method in neural networks leads to the Quantile Regression Neural
Network (QRNN), as proposed by Taylor (2000).

This paper is a contribution to Theme A of the 16th International Benchmark Workshop on
Numerical Analysis of Dams, organized by ICOLD in Ljubljana. The aim of this workshop is to
interpret and predict measured data collected over a period of 13 years of a double-curvature
arch dam. The prediction itself is to be performed for two cases. First, a short-term period from
January to June 2013 will be predicted. Second, a prediction is needed for a long-term period
from July 2013 to December 2018. In this paper, a combination of deterministic and statistical
approaches is presented to achieve the most accurate predictions possible.

Firstly, a thermal-structural FEA is conducted to interpret the dam’s behavior. Then a LSTM
network is used to improve the predictive capability of the FEA. Finally, QRNNs are used to derive
appropriate warning levels for monitoring.

2 METHODS

2.1 Finite Element Analysis

The FEA is performed with Ansys Mechanical Workbench (2020). The dam body is separated
into 11 blocks (Fig. 1), which are connected by contact interfaces. Therefore, a bounded contact
setting — no separation, no sliding —and a multi-point constraint formulation are used. Frictional
contacts are used for the base joint, except for the embankment blocks. There, bonded contacts
with a multi-point constraint are used.

A mesh with a total number of 10353 elements and 22656 nodes is used. The mesh of the dam
body consists of quadratic hexahedral elements in both thermal and structural analysis. The
foundation was discretized by quadratic tetrahedral elements. Displacement boundary
conditions are applied to the edges of the foundation block. The lowest element quality — ratio of
smallest to largest element axis —is 0.31 and is located within the rock mass. The same mesh is
used for thermal and structural analysis.

According to the description in the assignment sheet, the rock foundation is divided into three
parts: Left slope, middle slope, and right slope (Fig. 2). The left embankment’s slope is used as
the rock joint orientation since no other information about the rock joints is available. An
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orthotropic linear elastic material model is used. The material properties normal and parallel to

the assumed joints were taken from the task sheet.
The results of the analysis are extracted from the nodes at the central block at an elevation of
236 m for CB2 and 195 m for CB3. Deformations C4-C5 are extracted from the upstream base

joint opening (Fig. 1-2).

B1& B2

B13 & B14 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3

Right Bank
Left Bank

0.00 25.00

12.50 37.50
Center

Figure 1. Dam body mesh with investigated nodes at the central block.
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Figure 2. Mesh of the rock foundation with the dam body (left) and cross section showing positions of
monitoring devices at the central block (right).

2.1.1 Thermal Modelling

The thermal load is considered by convection on all free surfaces of discretized domain. The
necessary parameters for convection between media and thermal properties such as conductivity
and specific heat capacity are taken from the task sheet. Since no information is available on the
orientation of the dam, radiation is considered only on the downstream side of the dam. A typical
emission factor for concrete of 0.91 is used. The ambient air temperature is varied over time
according to the reference temperature T, 4;,. The ambient temperature and the conductivity of
the water-contacting surfaces are updated at each time step as a function of the current water
level in the reservoir. For simplicity, the water temperature T,, results from a functional relation

of the air temperature T, g4

(1)

Twater = max { 0.7 * Ty air

The transient thermal analysis is performed with a constant time step of 1 day. The results are
then used as input for a subsequent structural analysis.
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2.1.2 Structural Modelling

This analysis is divided into four steps. In the first step, the dam body alone is loaded by gravity,
with only the base joint contacts being active. In the second step, the block joint contacts are
activated. In the third step, the thermal load is applied and simulated for the period from 1995
to 2000. In the last step, the hydrostatic load is applied to the upstream side of the dam and the
upstream valley. The hydrostatic pressure head and temperature distribution within the dam
body are updated at each time step. The hydrostatic pressure acting within the block and bottom
joints is not considered. The static analysis is performed with a constant time step of 7 days.

The concrete material parameters Young’s modulus and the coefficient of thermal expansion
(Tab. 1) are optimized to minimize the sum of squared errors from the calculated deformation in
CB2 and the reference. Further material properties were taken from the task sheet.

Table 1. Optimized concrete material parameters.

Coefficient of Thermal Expansion Young’ Modulus
m/m°C GPa
1.15e-5 24.0

2.2 Long-Short-Term Memory

LSTMs were introduced by Hochreiter & Schmidhuber (1997) as further development of RNNs.
RNNs were developed to represent the temporal relationship within data sequences. They have
the ability to pass information from one time step to the next. According to the representation in
Figure 3, the output from the previous time step h;_; and the input of the current time step
X; are combined via an activation function, e.g. tanh, to create the new output h;, which is also
passed on to the next time step.

® ® )
t t t
A s A
| |
© ® &)

Figure 3. Unrolled RNN containing a single layer, depiction by Colah (2015).

During the training process, the weights are updated at each iteration based on the gradient
of the error or loss function. Sometimes this gradient can become so small that the weights no
longer change or even the entire network can no longer be trained.

LSTMs were introduced to solve the vanishing gradient problem. Each LSTM unit is composed
of a cell that stores values over a period of time and three gates which regulate the flow of
information to and from this cell. According to the representation in Figure 4, the first gate
decides, based on the previous output h;_; and the current input X¢, which parts of the passed
cell state Cy_; should to be forgotten and which parts should be remembered. To do this, it uses
multiplication with a sigmoid function. The next gate updates the cell state by adding new
information. The third gate produces the actual output of the current time step h;. This output
and the new cell state C; are again passed on to the next time step.

® ()
—

®
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I

v

AN

I |
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Figure 4. LSTM contains four interacting layers, depiction by Colah (2015).
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2.2.1 Quantile Regression

QR models the relationship between a set of predictor variables and specific percentiles of a
target value. In contrast to ordinary least squares, QR does not depend on assumptions about the
distribution of the target value and also tends to resist the influence of outliers, Koenker et al.
(1978).

In machine learning, QR is often used to create prediction intervals, e.g., for predicting
upcoming demand or price changes on the stock exchange. Following Taylor (2000), the
corresponding minimization problem can be stated as:

minimize (max(@(yi -y), 6 -1, — 3’/}))) (2)

Where the 8-th quantile is derived from y; and ¥, is the predicted value. Setting 8 = 0.5 leads
to the prediction of the median.

To use this approach in neural networks, the function presented has to be defined as a user-
defined loss function. In this work, the 97.5% quantile is used as the upper bound and the 2.5%
quantile as the lower bound of the prediction interval.

2.2.2 Data Preparation and Training

The provided data for the pendulums and the extensometer were previously cleaned and have
a temporal resolution of 1.5 weeks. FEA provides results at weekly intervals. These time series
are resampled by linear interpolation to daily resolution to account for the frequency of water
level, precipitation and air temperature measurements. Prediction is also done on a daily basis.

Figure 5 shows a flowchart of the hybrid model process. After resampling, the data is scaled to
the same magnitudes. Temperature and the FEA data are standardized, i.e. zero mean and unit
variance. Water level and precipitation data are normalized between zero and one while
maintaining the original scale of the structural response measurements.

After scaling the data, a training set is created ranging from January 1, 2000 to May 10, 2012
(95.0% of the data) and a validation set is created ranging from May 11, 2012 to December 31,
2012 (5.0% of the data). Initially, the model is trained on the training data only. The
hyperparameters, i.e. network depth, number of neurons per layer, dropout rate and activation
functions, are adjusted based on the determined losses in the training and evaluation set. After
the adjustment process is performed and the final model is selected, training continues with the
validation set. Finally, the obtained model is used to predict the monitoring values and their
warning levels.

Optimize}
E FEA —7/ FE Reactions / Training set (95%) | Validation set (5%)
| Loadings

’

model )

Adjust hyper-

\
1
Train the 1
1
1
1

—_— -

Data

: X Preparation paramoters !
Reactions | Evaluate the } |
! model I
________ 7/ |
Monitoring Data ¢ QRNN :
|

with LSTM
| )
Prediction Continue )
| training |

—_— e e e e e e e e — - =

Figure 5. Flowchart for hybrid modelling.

During the training process, the weights and bias of the neural network are updated by
backpropagation depending on the gradient of the loss function. There are several optimization
methods for this process. In this work, a stochastic gradient descent method that is based on an
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adaptive estimation of first and second order momentums called “Adam” is used, Kingma et al.
(2015). In addition, a learning rate scheduler with exponential decay is defined.

A total of 9 models are trained — three for each measured value — using the Tensorflow/Keras
framework within Python provided by Chollet (2015).

3 RESULTS

3.1 Interpretation of FE Results

The thermal field is extracted from the transient thermal analysis. Figure 6 clearly shows the
difference in surface temperature between water-contacted and air-contacted faces. Moreover,
the downstream surface of the dam has slightly higher temperatures than the upstream surface
due to the applied radiation.

Figure 6. Temperature distributions in °C within central block for on 29" of August 2010 (left: during
summer with high water level) and 11% of February 2010 (right: during winter with low water level).

Deformation and stress distributions provide further important information on the behavior of
the dam. The maximum downstream displacement of the central block was measured on July 30,
2006, when summer temperatures were high and the reservoir was full (Fig. 7). The stress
distribution at this time shows that tensile hoop stresses develop in the lower part of the block
(Fig. 9). This is due to the unfavorable rock conditions in the center of the valley, resulting in the
downstream deformations recorded by pendulum CB3.

Figure 8 shows the maximum upstream deformation occurring on December 31, 2007,
during winter and when the reservoir was almost empty. The stress distribution in the central
block (Fig. 9) shows that almost the entire cross section is under compression.

central
, block

i I

—
12,50 37.50 |

Figure 7. Deformation on time maximum downstream deformation — high temperature, high water level on
July 30, 2006. Positive values indicate movement in downstream direction.
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Figure 8. Deformation on time maximum upstream deformation — low temperature, low water level on 31,

2007. Positive values indicate movement in downstream direction.
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Figure 9. Vertical and hoop stresses in the central block for high temperature, high water level on July 30,

2006 (left) and low temperature, low water level on of December 31, 2007 (right).

3.2 Predictions and Warning Levels
In Figure 10, the FE results for CB2 show a delayed response to decreasing hydrostatic

pressure, while loading periods are quite well captured. The largest errors are observed during
the first quartiles of 2002 to 2004 and in 2012, when the water level in the reservoir reached its

lowest level.

The median prediction using of the LSTM model reduces the mean absolute error from the FE
calculation by 42.1% to 1.50 mm during the calibration period. The evaluation of anomalies in this
period shows slight differences between the desired quantiles (2.5% - 97.5%) and the quantiles
estimated by the models (2.7% - 97.7%). Similar results are obtained for CB3 and C4-C5 as well.
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Figure 10. Calibration period with 10% evaluation split showing results from FEA and predictions of LSTM
with their error compared to measurements.

The accuracy of the prediction can be significantly improved by additional use of the LSTM
model. As the scatter plots in Figure 11 show, the total variance due to the non-linear behavior
of CB2 can be decreased compared to the pure FE-results.
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Figure 11. Scatter plots of reference measurements vs. LSTM predictions and initial FE results for CB2 (left).

Figure 12 shows anomalies identified from the 95% prediction interval. 205 anomalies were
detected during the training process from 2000 to 2011, while 33 anomalies were detected in the
testing process during the year 2012. Figure 13 and 14 show the final prediction with warning
levels for pendulum measurements CB2 and CB3. The presented results for the short-term (case
B) and long-term prediction periods (case C) have be evaluated and compared with participants
during the benchmark workshop.
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Figure 12. Identified anomalies from the 95% prediction interval for pendulum motion CB2 in the training
and 10% test set (case A).
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Figure 13. CB2 predictions including warning levels (95% prediction intervals) for all cases B and C compared
with FE results and reference measurements.
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Figure 14. CB3 predictions including warning levels (95% prediction intervals) for all cases B and C compared
with FE results and reference measurements.

4 CONCLUSION

In summary, hybrid analysis combines the advantages of the deterministic approach to
describe mechanical behavior with FEA and those of the statistical approach to account for
uncaptured time-dependent effects.

Finite element modelling provides important information about the behavior of the dam. In

this case, the model is calibrated using measurements on one block only. Therefore, additional
measurements are crucial to verify the deformations calculated by the FEA. Some essential
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information to allow a more advanced numerical modelling is not given by the formulator - or
unfortunately in general not available. Especially information on the geotechnical aspects such as
joint orientation and spacing is necessary to further improve FE results. Lack of data on the
thermal field within the dam body further complicates calibration, as additional assumptions
must be made. The largest error is found during unloading periods, indicating a delayed response
of the rheology of the surrounding rock that is not captured by the FE model. Similar deviations
were found by Zenz (2003) when investigating the Zillergrindl arch dam.

The LSTM model improves the prediction quality of the FE results. It is also capable to provide
predictions intervals without making assumption about the parameter distributions in the FE
analysis, such as Young’s modulus or density. The latter requires data that is often scarce,
especially for dams built decades ago. In the presented work, the linear material behavior and
base joint interactions are captured in the FEA, while the LSTM model considers nonlinearities
and time depending behavioral changes such as creep and rheological effects that are not
captured.
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ABSTRACT: Health monitoring of dams is based on measuring significant quantities that
characterize their behavior (like Crack opening displacement, radial displacements, etc.) and on
visualization inspections of the structures. Predictive models are essential in dam safety
assessment. They have been conventionally based on simple statistical tools such as the
hydrostatic-seasonal-time (HST) model. In recent years, examples of machine learning and
related techniques are becoming more frequent as alternatives to HST. In this work, the most
popular machine learning techniques such as gradient boosting regression, support vector
machines, neural networks are utilized to predict radial displacements of a double curvature arch
dam. The possibilities of model explanation are explored: the relative influence of each predictor
is computed, and a new combination method is constructed based on HST and machine learning
algorithms and called the Hydrostatic Machine Learning (HML) model. This study shows a
comparison between HML and other machine learning tools for the description of dam behavior
under environmental loads. This study indicates that HML models can be a powerful tool that can
efficiently identify concrete dam behavior performance changes with higher flexibility and
reliability than simple regression models.

82



Mojtaba, Moradabbasi, Kolaee
HYDROSTATIC MACHINE LEARNING MODEL FOR PREDICTION OF CONCRETE DAM BEHAVIOUR

1 INTRODUCTION

Dam monitoring is essential to ensure the satisfactory operation and long-term safety. In terms
of safety, the aim of controlling a concrete dam is to guarantee the functions for which it was
built by maintaining its functionality and structural integrity. Monitoring activities and model
analysis are tools by which safety control is being carried out [1]. One of the main tasks to be
performed is to compare the expected responses registered by the monitoring system,
understand the dam behavior, and detect potential anomalies [2]. The actual responses of dams
are compared with the prediction models aiming to detect anomalies and prevent failures. Such
predictive methods can be classified into four scopes: Deterministic, Statistic, Hybrid, and Mixed
Models [3]. Deterministic models such as FE models based on mechanical principles are often
challenging to construct. Although numerical models based on the FEM provide a proper
estimation of dam displacements and stresses, this method faces a significant degree of
uncertainty in the characterization of the materials, especially concerning the dam foundation
[3]. Such numerical tools are of great essentiality during the initial stages of the structure's life
cycle unless there are enough data available to build data-based predictive models. However,
their results are often not accurate enough for a precise dam safety assessment [3].

There are still quite a few dams with slightly observed data. However, there is a consistent
trend towards the installation of a larger number of devices with higher data collection frequency.
Data that is driven by tools allows for building predictive models based on monitoring data
without explicitly considering the physical properties of the dam and the foundation. Many in-
operation dams have quite a few monitoring and recording devices. Various indicators are
acquired, such as displacement, the temperature in multiple levels, water temperature, leakage
flow, and pore water pressure. This being the case, an increasing amount of information is
available on the dam performance, which makes it interesting to study the ability of machine
learning (ML) tools to process them, build and predict behavior models, and extract useful
information.

1.1 Statistical models

1.1.1 HST

The hydrostatic-seasonal-time (HST) model is the most widely applied and generally accepted
by practitioners in which three effects are taken into account: 1) A reversible effect of the
hydrostatic loads, 2) A reversible seasonal thermal influence of the temperature, and 3) An
irreversible term due to the evolution of the dam response over time [3]. The coherence of these
assumptions is evident in the observed behavior of many concrete dams in terms of
displacements [3]. De Sortis and Paoliani [4] and Léger and Leclerc [5] successfully obtained
structural identification techniques using a very complex procedure. The main disadvantages of
HST and other methods based on linear regression are as follows [1], [3]:

e The functions have to be defined in advance and thus may not represent the actual

behavior of the structure.

e Some of the governing variables have been proven to be correlated. However, they are

seemingly independent.

e They are not well-suited to model non-linear interactions between input variables.

HST also characterizes conceptual limitations that impact the prediction accuracy and may lead
to misinterpretation of the results since the hydrostatic load and the temperature are considered
to be independent, while these variables are coupled in reality. The thermal field in the dam
structure, especially in the vicinity of the water surface, heavily relies on the temperature of the
water in the upstream face [2]. In turn, the thermal load influences the stress and displacement
fields. Various modifications to the original HST model have been proposed to tackle its
drawbacks. They focus on improving the consideration of the thermal load by taking into account
the actual air temperature instead of the historical mean [2] or how the water temperature
affects the upstream face [6], [7].
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1.1.2 HTT:

HTT (hydrostatic, temperature, time) [5] is another statistical model which interprets concrete
dam-recorded pendulum displacements. In the HTT model, the thermal loads are arbitrary and
contain temperature drift or unusual temperature conditions to analyze recorded concrete dam
displacements. The HTT model uses thermometric data to compute effective linear temperature
differences across dam sections and their effects on dam displacements.

1.1.3 Multiple linear regression and Multilayer Perceptron:

In recent years, non-parametric techniques have appeared as an alternative to HST data-based
behavior models [8]. Support vector machines (SVM) [9], neural networks (NN) [1], adaptive
neuro-fuzzy systems (ANFIS) [10] can be pointed out. In general, these tools are perfectly proper
for non-linear cause-effect relations modeling and interacting among external variables, as
previously mentioned between hydrostatic load and temperature. On the contrary, they are
typically more difficult to interpret, leading them to be called black box models. Most of the
published work focused on the accuracy of such predictive models, which was generally higher
than what was offered by HST [1], [3], [11]. Although the HST model is simple, many exceptions
were made by Santillan et al.[12], Mata [1], and Cheng and Zheng [13]. Therefore, a dilemma is
posed to engineers. The HST model is perfectly known, used, and easily interpretable; however,
it is based on some incorrect assumptions, and its accuracy can be increased. On the other hand,
more flexible and accurate models are available, but they have difficulties in implementation and
analysis.

For analyzing multifactor effects, the multi-linear regression (MLR) model is one of the
statistical techniques used to a great extent. An MLR model is a statistical technique for
investigating and modeling the relationship between variables and their correlation. MLR models
have a long-standing history in dam engineering and were otherwise known as quantitative
analysis models. The regression equation is only a reasonable approximation to the actual
relationship between the variables in almost all applications of regression [1]. Researchers are
frequently innovating techniques to improve the HST results. For instance, Bonelli and Radzicki
[14] used an impulse-response function to predict the dam body pore pressure. Li et al. [11]
proposed a method based on cointegration theory to improve HST. Having tested the stationarity
of the monitoring data series, they fitted a multi-linear regression (MLR) model [3].

Both MLR and Neural network (NN) approaches are of great potential for assessing the
behavior of the control variables that support the safety assessment of the concrete dam. One
obvious disadvantage of linear regression that causes inadequacy is that it cannot reproduce
nonlinear relationships between variables. To overcome this inadequacy, introducing higher-
order terms of the covariates must be applied [3]. NN is a constructive alternative for this issue
whose flexibility and capability to adapt to highly complex interactions have made them popular
in several fields of engineering, including dam monitoring [1], [15]-[17]. Some worth-mentioning
research studies related to NN, such as Perner et al. [18], Gomes and Awruch [19], Fedele et al.
[20], Z. Wu et al. [21], Bakhary et al. [22], Wang and He [23], Wen et al. [24], Liu et al. [25],
Joghataie and Dizaji [26], and Yi et al. [27]. However, NN has some drawbacks [3]:

e The results depend on how well the weights are initialized.

e The best network architecture, number of hidden layers and neurons in each layer, is not

known in advance.

e The model is subjected to being over-fitted.

e The training process is prone to reach a local minimum of the error function.

Several techniques have been developed to overcome these shortcomings, and there is no
way to bear the increase in the computational cost [28]. Despite this, NN stands out as the most
popular ML tool in dam engineering, and the results are encouraging [15]. ANFIS models [29],
principal component analysis [30], NARX (nonlinear autoregressive with exogenous input)
models [31], or K-nearest neighbors [32] have also been applied to dam monitoring. However,
such mentioned tools are rarely used in practice, where HST still prevails. Moreover, most
previous studies are limited to one single variable of specific dams [1], [17]. Therefore, the
results are not generally applicable. A further singularity of dams is that the early years of
operation often gears to a transient state, which is not representative of the quasi-stationary
response afterward [33]. In such a case, eliminating those years for training a predictive model
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would be advisable. It might lead to questioning the optimal size of the training set in achieving
the best accuracy [3]. De Sortis [4] carried out sensitivity analysis and maintained that at least
10 years were needed to acceptable predictions come true. However, his study was limited to
the radial displacement predictions in one particular location of a specific dam by using HST.
Similar work was run by Chouinard and Roy [34]. In recent years, some tools that can perform
cognitive tasks such as pattern recognition and function approximation have been introduced
in Artificial Intelligence [1].

1.2 Objectives

The study aims to assess the prediction accuracy of some ML algorithms, most of which have
been used in dam engineering. Specifically, the algorithms selected are: gradient boosted
regression (GBR), Extreme Gradient Boosting (XGBoost), support vector machines (SVM),
Hydrostatic GBR and Hydrostatic NN. With the help of these prediction models, we can evaluate
the dam's performance, estimate the response of the dam for its actual load conditions and
define warning levels. The aim of using current algorithms for the considered dam is to build a
model from the past year's data to see how modern tools can be used in the prediction of dam
behavior.

2 CASE STUDY AND VARIABLE SELECTION

A double curvature arch dam located in the south of France is used as a case study in this study.
Theme A of the 16th International Benchmark Workshop on Numerical Analysis of Dams has
introduced this dam [35]. The theme aims to establish a prediction model for the dam. Table 1
shows some statistics of the target variables. The location of each monitoring device is depicted
in Fig. 1. The monitoring data for the dam has been presented from 2000 to 2012. This paper uses
the data from 2000 to 2009 to train the considered models. The remaining data has been used
for testing models.

Table 1. Summary of the main features of the provided data.

Variable Type units Variable Name Period Frequency
Water Level m Water Level 1995-2017 1 day
Air Temperature oC Ta 1995-2017 1 day
Air Temperature oC Tb 1995-2017 1 day
Rainfall mm Rainfall 1995-2017 1 day
Radial displacement mm CB2_236-196 2000-2012 1.5 weeks
Radial displacement mm CB3_195-161 2000-2012 1.5 weeks
Crack Opening mm C4-C5 2000-2012 1.5 weeks
Piezometric level m PzCB2 2000-2012 1.5 weeks
Piezometric level m PzCB3 2000-2012 1.5 weeks
Seepage |/min Seepage 2000-2012 1.5 weeks

The main focus of this paper is to build the predictive models for the pendulums located in the
central block of the dam shown in Fig. 1 (b): CB2 and CB3. In addition, three raw environmental
variables measured at the dam site have been depicted in Fig. 2. It is obvious in Fig. 2 (a) that the
reservoir's surface has gone beneath Dam Bottom (level 195) a few times. The water levels below
the Dam Bottom are replaced with 195 since water levels less than this, due to the topography
of the reservoir, do not affect the structure's displacements or movements in for creating
predictive models in this paper.
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Figure 1. Location of pendulums: a) Downstream view and b) View of block CB and pendulums.

The predictor variables have been selected based on dam engineering performance [3]. Both
displacements and leakage strongly depend on the hydrostatic load. Air temperature is well
known to affect displacements in the form of delayed action. Other contributing factors are
moving averages of reservoir level and its fluctuation velocity over different periods. The year and
number of days from the first impounding are considered for the irreversible displacement of the
structure. Table 2 summarizes the 21 considered predictor variables.

Table 2. Predictor variables.

Code Group Type Period (days)
Level Hydrostatic load Original -
Lev014 Hydrostatic load Moving average 14
Lev030 30
Lev060 60
Lev090 90
Tair Air temperature Moving average 1
Tair014 14
Tair030 30
Tair060 60
Tair090 90
Rain Rainfall Accumulated 1
Rain030 30
Rain060 60
Rain090 90
Rain180 180
NDay Time Original -
Year -
Month Season Original -
n010 Hydrostatic load Rate of variation 10
n020 20
n030 30
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Figure 2. Time series of environmental variables at the dam site. From top to bottom: water level (a), air
temperature (b), and daily rainfall (c). The vertical dashed line marks the division between training and test
periods.

3 METHODS

In this section, the algorithms chosen to create the prediction models are briefly described.
Although the detailed mathematical description is beyond the purpose of the paper, a short
description, the most relevant features, and some key references are included. All the models
have been built by using Python programming environment and some of its packages.

3.1 HST Model
A conventional HST model was fitted for comparison purposes:
Y=F(ths)=Y,+Y, +Y,

=ag + a;h + azh? + azh® + a,h* + age™t + agt + a; cos(s) + -+ 1)
ag sin(s) + aqgsin?(s) + a,, sin(s) cos(s)

where:

d
365.25

where d is the number of days since 1 January, t is the elapsed time (years), h is the reservoir
level, and ag, a4, ..., and a4 are the coefficients to fit.

2

S =21
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3.2 Gradient Boosted Regression (GBR)

Gradient boosting is a model that learns the boosting algorithm by ensemble learning for the
decision tree. Although other models focus on it to boost performance, in this model, the gradient
divulges the weaknesses of the model that have been learned so far. One advantage of gradient
boosting is that the other loss functions can be used as much as possible. The character of the
loss function is automatically reflected in learning through the gradient [5]. The main steps of the
original boosting algorithm for regression trees and the squared error loss function can be found
in Ref. [36].

3.3 XGBoost Model

With the rapid growth of opportunities in the advancement of computer technology, an
advanced supervised machine learning algorithm named "extreme gradient boosting (XGBoost)"
is developed by Chen and Guestrin [37]. The XGBoost is a novel extended version of the
commonly used gradient tree boosting, which has been widely used in machine learning and data
mining competitions due to its advantages of high efficiency and sufficient flexibility.

34 SVR

Support vector machine (SVM) is a new technique for solving pattern classification and
regression in many areas [38]. Support vector regression (SVR) has been used for dam behavior
identification [9]. The SVR goal is to find an optimal function f(x), which represents the nonlinear
mapping relationship between the dependent variable y € R and the independent variables x €
R™, such as dam displacement variable and corresponding influence variables, from a given
training sample data set {(x1,¥1), . . ., (Xn, Yn)}, Wwhere m and n represent the number of
independent variables and the number of sample data, respectively.

3.5 Hydrostatic Machine Learning Model

A hybrid model has been proposed in this paper to separate the effects of water pressure from
the other contributory factors on the displacement of the dam body. In this model by inspiration
of HST model, first, the radial displacement is predicted using five variables related to the
reservoir head by ag + a;h + a,h? + azh® + a,h*. The coefficients a, to a, are defined by
using a regression technique. Next, a machine learning tool such as GBR or NN, is utilized to learn
the residual displacement in an ensemble manner. The predictor of the ML tool has 20 variables.
The reservoir water level is excluded from the input because the hydrostatic polynomial has
considered its effect in the previous step.

4 VARIABLE IMPORTANCE

Variable importance refers to a class of techniques for assigning scores to input variables
(features) of a predictive model that indicates the relative importance of each variable when
making a prediction. Variable importance scores can be calculated for problems that involve
predicting a numerical value, called regression, and those problems that include predicting a class
label, called classification. Variable importance scores play an essential role in dimensionality
reduction and feature selection that can improve the efficiency and effectiveness of a predictive
model. Fig. 3 depicts the relative influence of the predictors for each radial displacement of the
central block of the considered dam. Tairl4 and Tair030 are the most relevant thermal input for
CB2 and CBS3, respectively. As we can see, the hydrostatic loads (reservoir level and average
velocity of reservoir level) are more influential than Daily rainfall in both CB2 and CB3
measurements.
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Figure 3. Word clouds for the radial displacements analyzed, using for Hyd GBR algorithm.

5 PARTIAL DEPENDENCE

In the conventional HST model, each external load's contribution can be associated with the
value of the coefficient in the calibrated model. Fig. 4 displays the partial dependence plots for
both radial displacements CB2 and CB3. The effect of the hydrostatic load illustrates that high
levels imply more significant load and displacement towards downstream and vice-versa.
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Figure 4. Partial dependence plot for the contribution of the environmental variables from an HST model for
a radial displacement. Left: CB2, Right: CB3
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Figure 5. Measured data (circles) versus the Hyd GBR model (lines) for the test period. From top to bottom:
CB2 and CB3.

6 MEASURES OF ACCURACY

Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) are metrics used to evaluate
a prediction model. These metrics demonstrate our predictions' accuracy and the deviation from
the actual values. Here, errors are the differences between predicted and actual values. It is

calculated as follows:

N —_— .
MAE = Zi:1|YiN F(x)| (3)

where N is the size of the training (or test) set, y; are the observed outputs and F(x;) the
predicted values. In this paper, several predictive models have been used to predict the dam
body's radial displacements. Tables 3 and 4 compare these methods' performance in training and

test. The Hyd GBR clearly outweighs the others in test data. Fig. 5 compares the predictions of
the Hyd GBR model with the measured data that does not take part in the training.

Table 3. MAE for each output and model, fitted on the whole training set (10 years). The minimum MAE
are also underlined.

Target HST Hyd GBR Hyd NN GBR  XGboost SVR
CB2 1.88 0.90 0.95 0.71 0.38 0.59
CB3 0.39 0.11 0.10 0.09 0.14 0.25

90



Mojtaba, Moradabbasi, Kolaee
HYDROSTATIC MACHINE LEARNING MODEL FOR PREDICTION OF CONCRETE DAM BEHAVIOUR

Table 4. MAE for each output and model, fitted on the test set (3 years). The minimum MAE are also
underlined.

Target HST Hyd GBR Hyd NN GBR XGboost SVR
CB2 2.40 1.63 2.35 2.15 2.11 1.88
CB3 0.49 0.30 0.54 0.47 0.43 0.48

7 INTERVAL PREDICTION

A prediction interval is a quantification of the uncertainty on a prediction. It provides
probabilistic upper and lower bounds on estimating an outcome variable. The main practical
utility of Prediction intervals is the early detection of anomalies. It is necessary to compare the
predictions with measured data and verify whether they fall within a predefined range. A
prediction interval is calculated based on the variance of the predictive model residuals. For
example, Kao and Loh [39] presented the 99% prediction intervals for models based on NN. Jung
et al. [40] tested 1, 2, and 3 standard deviations of the residuals as the width of the prediction
interval. The prediction interval in this work was set to [u - 20, u + 20], being u and o the mean
and the standard deviation of residuals, respectively. Fig. 6 shows that the test data for the case
study of this paper is more or less in the range of the prediction intervals of the predictive model.

Hyd GBR
. data(test)
Prediction Interval

Radial Displacement (CB2)
|
n

2010-01 2010-05 2010-09 2011-01 2011-05 2011.09 2012-01 2012-05 2012-09 2013-01
Time elapced

Hyd GBR
3 - data(test)
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Time elapced

Figure 6. Typical output plot, with the test data (circles), the predictions (black line), and the prediction
interval (shaded area).

8 NOVELTY DETECTION

One-Class SVM [41] is employed to conduct novelty detection in dam loading to prove our
predictions fulfill the dam's behavior. For this purpose, the upstream reservoir level and the 14-
day average air temperatures from 2000 to 2009 have been considered as input features for
training. As shown in Fig. 7a, the trained one-class SVM covers most of the training data. Fig. 7b
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shows a few novelties of the test data from 2010 to 2013. Thus, it shows that the test data is in
the range of the training data, and the prediction should be in accordance with the measured
data unless the current state of the dam differs from its state during the period between 2000
and 2009.
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Figure 7. Novelty detection by utilizing One-Class SVM classification for training (a) and test (b) dataset
proves the functionality of prediction.

9 SUMMARY AND CONCLUSIONS

In this study, different regression models were adopted and compared to predict the behavior
of a double curvature arch dam. The dam is located in the south of France. Its data was presented
in Theme A of the 16th International Benchmark Workshop on Numerical Analysis of Dams. It
turned out that the machine learning techniques such as GBR, XGBoot, and SVR performed better
than the conventional HST model for predicting the radial displacements of the central block of
the dam. The authors proposed a hybrid model called the Hydrostatic Machine Learning (HML)
model to have the advantages of the HST model and the machine learning techniques together.
In this new model, the effect of the hydrostatic loads on the displacements is determined by a
polynomial equation, and the impacts of the other contributory factors such as temperature,
time, rainfall, etc., learned by a machine learning technique. In this study, Hyd. GBR and Hyd. NN
models were utilized, and their results indicate that the Hyd. GBR can outperform the others in
predicting the radial displacements of the dam body. Variable importance analysis showed that
the most effective load with ignoring the hydrostatic load's effect is the dam's temperature. The
novelty detection analysis revealed that the dam loads in the prediction period were in the range
of the loads for which the predictive models had been trained. Thus, the measured displacements
were expected to be in the prediction interval of the predictors.
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ABSTRACT: This paper presents a kernel extreme learning machine (KELM)-based nonlinear data-
driven model for the dam behavior (i.e., radial displacement and seepage) prediction, where the
model hyperparameters are determined using particle swarm algorithm (PSO) and internal cross-
validation to overcome overfitting. The model inputs are composed of the reservoir water height,
measured temperature, and rainfall variables. The global sensitivity analysis coupled with the
KELM model is proposed for the model interpretation. The warning thresholds of the arch dam
radial displacement and seepage are determined via the confidence interval method based on
the fitting results.

95


mailto:chen.siyu@hhu.edu.cn

Lin, Chen, Hariri Ardebili
INTERPRETABLE KELM DATA DRIVEN MODEL FOR THE PREDICTION AND MONITORING OF ARCH DAM BEHAVIOUR

1 INTRODUCTION

Concrete dams play important roles in the social and economic fields by flood control, power
generation, water supply, and irrigation. During the service period, dams are subjected to a
variety of operational and environmental loads and occasionally encounter some unconventional
events or extreme loads (such as excessive flooding, droughts, earthquakes, etc.). Moreover, the
overall performance of the concrete structures may decrease over time due to age-related
deterioration, hydraulic erosion, and other factors. If a dam is not well managed and maintained,
failures may occur, leading to economic and life losses in reservoir regions.

The displacement and seepage are two critical indicators that can intuitively reflect the
operational status of a dam. With the rapid development of artificial intelligence (Al) since the
end of the past century, there has been growing interest in adopting machine learning (ML)
methods in dam engineering. Many ML methods have been adopted for dam behavior prediction
and monitoring, such as auto-associative neural networks (Kao et al., 2013), support vector
regression (Rankovic et al., 2014), boosted regression trees (Salazar et al., 2015), random forest
(Belmokre et al., 2019; X. Li et al., 2019), Gaussian process regression (Lin et al., 2019), and long
short-term memory network (Liu et al., 2020).

This study establishes a kernel extreme learning machine (KELM)-based nonlinear data-driven
model to predict the dam displacement and seepage. The model hyperparameters are optimized
using a particle swarm algorithm (PSO) and cross-validation. To mine the influencing factors of
model inputs and provide support for decision-making, the global sensitivity analysis coupled with
the KELM model is implemented for the model interpretation. The warning thresholds of the dam
radial displacement and seepage are determined using the confidence interval method.

The rest of the paper is summarized as follows: Section 17 describes the statistical model of
dam behavior and inputs. The theory of the KELM prediction model, warning thresholds of dam
behavior, and model interpretation method are then introduced in Section 3. Results and
discussion are presented in Section 4. Finally, Section 5 summarizes the findings.

2 STATISTICAL MODEL OF DAM BEHAVIOR

2.1 Statistical model of dam displacement

Displacement (denoted by §) is a key indicator for evaluation of the dam behavior. In general,
the displacements of the arch dam are assumed to be dependent on hydrostatic load,
temperature, and time, which can be quantitatively interpreted and approximated as:

5=0,+08,+56, (1)

where &,, 6,, and &, represents the hydrostatic component, temperature component and
time component, respectively.

Under the action of water pressure, hydrostatic component &, can be described by a
polynomial function consisting of reservoir water height # and coefficients «, (i=0~ 4) (Mata,
2011):

o, =a,+aH+a,H" +a,H +a,H" (2)

Temperature component 6§, describes the displacement caused by the temperature changes
in bedrock and dam concrete. The temperature variation of the dam is mainly influenced by
changes of air temperature. Meanwhile, there is a hysteresis effect between the air temperature
and the dam internal temperature. Therefore, if the air temperatures are available and
continuous, the temperature component &, can be quantitatively represented by a polynomial
function consisting of segmented air temperature T, , (Kang et al., 2019), as:

o = Z":biTA—B (3)

where T, , denotes the average ambient temperatures 4 to B days before the day of
observation, b, (i=1~6) are coefficients. In this paper, T,, T,, T.,, T, e, and T, , are
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selected as the temperature factors. It is noted that 7, represents the temperature of the
observation day.

Time component §, reflects the irreversible deformation of the dam body or dam foundation
toward a certain direction over time. According to the previous research (Lin et al., 2019; Y. Q.
Shi et al., 2018), different and strictly monotone functions can be used for modelling the time
component ¢,, as:

S, =c0+c,n0+c,(1-e’)+c,(0/0+1) 4)

where 6=¢/100, and + denotes number of days since the beginning of the analysis, ¢, ¢,, and
¢, are coefficients.
Thus, the expression of statistical model for arch dam displacement analysis is as follows:

o=a,+aH+ asz + ‘Z3H3 + a4H4 +bTy+ byT, +bT ; +b,T; s BTy + 5T, g +
cO+c,nf+c(1-e?)+c,(0/6+1)

)

2.2 Statistical model of dam seepage

Excluding the hydrostatic load, temperature and time effects, the seepage (denoted by §) of
the arch dam is also dependent on the rainfall effect, and the seepage response can be
quantitatively interpreted and approximated by the following equation:

S=8,+S8,+S,+5, (6)

where S, , S,, and S, represent the hydrostatic component, temperature component, and
time component, respectively, sharing the same form as shown in Equation (2)~(4). S, denotes
the rainfall component. Considering the lag effect between the rainfall and the external seepage
changes, a polynomial function consisting of segmented rainfall factors R, , are utilized to
simulate the rainfall component:

Sy=SdR,, (7)
i=1

where R, , denotes the average rainfall 4 to B days before the response day of the
observation. In this paper, R,, R_,, R,,, R, s, R, and R, ., are selected as the segmented
rainfall factors, where R, denotes the rainfall of the observation day.

Thus, the expression of statistical model for arch dam seepage analysis is as follows:

S=a,+aH+ azHZ + a3H3 + a4H4 +bT,+ b1, +bT , +bT; s b o + 5T g +
Ry+ R, +R, ,+R s *R 1+ Ry o +c0+c,In0+c,(1-e)+¢,(0/0+1)

®)

3 METHODOLOGY OF DAM BEHAVIOR PREDICTION AND WARNING

3.1 Optimized kernel extreme learning machine

Extreme learning machine (ELM) is an extension algorithm of the single layer feedforward
network (SLFN) that can be used for regression, classification, and clustering (Huang et al., 2006).
As opposed to the traditional artificial neural network based on gradient descent learning
algorithm, ELM has a stochastic nature. It randomly assigns the input weights and the hidden
layer biases, and then keep them fixed without iteratively tuning. In recent years, a novel variant
of ELM called kernel extreme learning machine (KELM) has been proposed by (Huang et al., 2012),
which integrates the advantages of ELM and kernel trick. The KELM was shown to achieve a better
prediction performance and stability than prototype ELM with less computational cost (Ding et
al., 2013).
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The output of the ELM for generalized SLFNs can be written as

F, :Zﬁ,h(a,.-x/.+b[)j,j=1,...,N )
i=1
where a, denotes the weight vector linking ith hidden node and the input nodes; B, presents
the weight vector connecting j th hidden node and the output nodes; b, is the threshold of ith
hidden node. h refers to the activation functions.
The training goal is to find the best output weight g, which can be computed by the least
square method:

B=H'T (10)

where H' denotes the Moore-Penrose (MP) generalized inverse of the hidden layer output,
and T=[t.t,,...t,]" presents the target vector.

For complex prediction task, hidden layer feature mapping is typically unknown. Thus, the
kernel function is introduced to replace the feature mapping function. On the basis of the
orthogonal projection method, the MP generalized inverse matrix H' can be calculated by
H :HT(HHT)_I, and the output weight g can be computed by adding a positive constant, 1/C .
Therefore, the output function of KELM can be briefly described given by

L [Keo ] .
F(x):hﬁ:h(x)H*[é+HH*j T= M (%uzmj T (11)
K(xy,x)

where K (x,x) is the kernel function and should satisfy the Mercer condition. In this study,
Gaussian kernel & (x,x)=exp(-|x, — x|’ /2y*)and linear kernel K(x,x)=x'-x+yare used in KELM
modelling. Therefore, the main parameters of KELM herein are regularization parameter C, and
kernel parameters .

The performance of the KELM model is controlled by hyperparameters ¢ and » . To make sure
the model brings good generalization and robust performance, particle swarm optimizer (PSO)
(Y. H. Shi et al.,, 1998) was combined with 3-fold cross-validation to determine the optimal
parameters. In 3-fold cross-validation, the training data is divided into an internal validation set
and an internal training set. For the PSO algorithm, the population size is set to 20, and the
maximal iteration is set to 20 as the stopping criteria. In each iteration, P is the dimensions of
the hyperparameters to be optimized, the position vector X,.=[x},xf,...,xf] and the velocity
vector v, =[v/v/.....v" | are updated once by the following equations:

vl =vl +c -randf -(pbestP —x,.P)+c2 -rand} -(nbestip —xI.P)

(12)

P P, P
X, =X +V[.

where ¢ and ¢, are two acceleration coefficients with the values are set as 2.0. rand! and
rand? denote the two random numbers generated independently within [0, 1]. pbest” denotes
the position with the best-known fitness of the , th particle, and nbest” represents the best global
position in pbest” .

In each iteration, the error function of PSO is evaluated by mean squared error of prediction (
MSEP,,, ), as shown in Equation (13):

MSEP

D ACE; (13)

k=1 i=1

where , represents the number of samples, x represents the number of folds. j, is the
predicted value of the internal validation samples, y is the measured value of the internal
validation samples.

3.2 Warning thresholds of dam behavior

The confidence interval method (B. Li et al., 2019) is used for dam behavior monitoring and
determine the warning thresholds. If the measured value falls within the interval range, it is
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regarded as a safe value. Otherwise, it is regarded as anomalous and may raise alarm. The
expression of the confidence interval ( CI ) is given in Equation (14):

(14)

Cl=[()-ao),(p+ao)]; o=

where j represents the fitted or predicted value of dam behavior, , is the standard deviation,
N, represents the number of the training samples. e, =(y, - ), where z is the mean value of e,
y, is the measured value of dam behavior, and j, is the fitted value of dam behavior.

It is noted that abnormal values may not be identified if the confidence interval is relatively
wide. In contrast, if the range is too narrow, many values may be deemed as abnormal mistakenly
(Wu, 2003), thereby resulting in many false positives. In general, the effectiveness of confidence
interval is influenced by the input selection, performance of the KELM model, and
hyperparameters tuning, which need to be determined with caution. Considering the dam status
and risk level, the extreme case scenario is considered, the significance level is set as 1%, and
therefore, a=~2.58 .

3.3 Global sensitivity analysis for model interpretation

KELM predictive model contains the disadvantages of black box characteristics, and the trained
date-driven model is typically difficult to be understood. Inspired by (Chen et al., 2020; Cortez et
al., 2013) pioneer work, we combined global sensitivity analysis (GSA) with the PSO-KELM to
interpretate the dam behavior prediction model. This method allows us to compute the relative
importance of input variables or any group combination of them. The main idea of the GSA is to
hold all input variables at given value except the specific variable to be computed, and then
calculate the output weight of the corresponding input by the available formula. The detailed
procedure of the GSA is described in Table 5, where , and , are the number of input attributes
and samples, respectively. M is the number of subgroups (each subgroup contains at least one
input attribute). X” is the generated meta-inputs by holding all input variables at their mean
values except k th attributes, and k<M . §* represents the obtained output via inputting the X"
to the trained model, and $tdenotes the median value of the measured leakage Y™ . In principle,
the proposed GSA can be applied to any supervised machine learning algorithm for regression
tasks.

Table 5. Global sensitivity analysis for model interpretation.

Inputs: Training samples X" 'y
Outputs: Relative importance rx

Divide x into k groups of attributes, ke[I,M ]

for k=1,..,M
Build X" by holding each input variables at their mean values except k th attributes
§9 = r(x®)

2= |30 -/ (n—D)
end for
for k=1,..,M

RI, =z, /3" z, x100%
end for

4 RESULTS AND DISCUSSION
4.1 Case study

4.1.1 Brief introduction of dam project

The case study of the benchmark is a double curvature arch dam called Dam_EDF, which is
located in the south of France. The dam was constructed between 1957 and 1960. The maximum
dam height above the foundation is about 45m, with the crest length being 166 m. To monitor
the dam service status, the dam is equipped with a comprehensive monitoring system and
instruments. Figure 1 presents the illustrations of the dam project.
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Figure 1. Downstream view of Dam_EDF.

4.1.2 Data collection

In this benchmark, the radial dam displacement and seepage are used for analysis. For the
radial dam displacement (unit is mm), the measurements of pendulums on the Central Block (CB)
are provided for analysis, where CB2 is the radial displacement between the altitudes 236 m (dam
crest) and 196 m (dam toe), while CB3 is the radial displacement in the foundation between the altitudes
195 m and 161 m. For the seepage (unit is L.min™?), the flowrate is measured using a weir located in the
gallery at the downstream dam toe. The time series of dam behavior data are provided from 2000
to 2012.

The corresponding ambient data includes the water level, temperature, and rainfall (see Figure
2 ~Figure 4). The water level of the reservoir is collected per day. Since Dam_EDF is located on
the top of a glacial threshold, the reservoir water height is 0 once the water level is lower than
+196 m. The air temperature is not measured at the dam location, therefore, the provided
calculated temperature called ‘T_b’ is used herein for temperature factors generation. ‘T_b’ is
calculated by interpolation from several air temperature measuring stations. The interpolation
takes into account the altitude of the dam and is calculated on a mesh of 1 square kilometer.
Daily rainfall precipitation is collected from a rain gauge located about 5 km from Dam_EDF. The
time series of the ambient data is provided from 1995 to 2017. It is noted that the provided data
of the benchmark is automatically checked, and there is no need for any further cleaning.
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Figure 2. Time series of the reservoir water height.
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Figure 3. Time series of the T_b air temperature.
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Figure 4. Time series of the daily rainfall.

4.2 Model calibration and prediction

Considering the fact that the dam construction was finished in 1960, and the initial modelling
year is 2000, time component variables are not chosen for model inputs in this study. According
to the relevant contents summarized in Section 96, the model input variables of dam
displacement x; and seepage x, are shown as follows:

X = {H’H2’H3’H4»Toa Tl—zaTs—WTS—ls=T16-30aT31—60a} (15)

XS = {H’H27H3’H4’T(‘)’ Tl—2’T3—7’];3—15’716—30’7131—60’R0’ R1—25R3—7’RX—15 ’R16—307R31—60} (16)

where the time component factors are generated.
Prior to model implementation, all the inputs should be normalized within the range of [0,1]
by Equation (17), where x, is ; th individual variable in input matrix x.

X, —min(x)

m(x,.) - max(x) — min(x) (7
The measured radial displacement and seepage from 2000-01-19 to 2012-12-31 are utilized
for model training and calibration, and the rest measured radial displacement from 2013-01-01
to 2017-12-31 are utilized for validation of prediction performance. By implementing the model
introduced in Section 1.25, the hyperparameters C and , are tuned within the range of (0,1000]
and (0,10], respectively. The obtained hyperparameters for KELM prediction model are listed in
Table 6. The calibration and prediction results of CB2 displacement, CB3 displacement, and

seepage are shown in Figure 5 ~ Figure 7, respectively.
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Table 6. The hyperparameters of PSO-KELM data-driven models.

Hyperparameters CB2 displacement CB3 displacement Seepage
C 970.04 692.26 246.36
y 7.61 0.64 9.09
o (B2 Measured ——CB2 Simulated
20

Radial displacement (mm)
s

-40
2000 2001 2004 2005 2008 2010 2012 2014 2016 2018
Date

Figure 5. Performance of the PSO-KELM model for CB2 displacement simulation. (Linear kernel is used in
KELM)

o (B3 Measured —— (B3 Simulated

Radial displacement (mm)

2000 2001 2004 2005 2008 2010 2012 2014 2016 2018
Date

Figure 6. Performance of the PSO-KELM model for CB3 displacement simulation. (Linear kernel is used in
KELM)

o Seepage Measured Seepage Simulated

Seepage(L/m)

2000 2001 2004 2005 2008 2010 2012 2014 2016 2018
Date

Figure 7. Performance of the PSO-KELM model for seepage simulation. (Gaussian kernel is used in KELM)

The calibration results of displacement and seepage are validated in terms of the mean
absolute error and normalized root mean squared error (NRMSE), see Table 7.
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MAE =3 -7 (18)
[ -py N
NRMSE:“_/ (19)

max Ymin

where N is the number of time stamps in the corresponding period, ¥, and Y, are maximum
and minimum measured value of dam behavior in the corresponding period, ¥ denotes the
measured value of dam behavior, and P denotes the simulated value of dam behavior.

From the obtained results shown above, the PSO-KELM model provides satisfactory fitting
performance of dam behavior. Most of the measured values are within the interval range except

the very few measurements at the peak value.

Table 7. The metrics of calibration results.

Metrics CB2 displacement CB3 displacement Seepage
MAE 1.470 0.432 1.710
NRMSE 0.044 0.045 0.095

4.3 Model interpretation

The relative importance of input factors via PSO-KELM coupled with GSA method is depicted
in Figure 8, where the relative importance of two top dominated input variables in each kind of
component is shown by the bar plot. It is found that the hydrostatic component plays a crucial
role in the state of dam displacement and seepage, followed by the temperature component.
However, the seepage of the dam is not sensitive to the rainfall variables, indicating that the
rainfall component of the dam seepage is negligible. It must be explained with great caution that
the obtained results herein are not able to quantitatively assess each input contributes for dam
behaviors, but only the relative sensitivity degree of the dam behavior to each input variable.
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Figure 8. Relative importance of input factors via PSO-KELM model coupled with GSA method: (a) CB2
displacement, (b) CB3 displacement, (c) Seepage

5 CONCLUSIONS

In this paper, we proposed an interpretable PSO-KELM data-driven model for the prediction and
monitoring of arch dam behavior (i.e., displacement and seepage). The effects of the reservoir
water height, daily temperature, daily rainfall, and time were considered for inputs factors
generation. By combining the PSO and 3-folds cross-validation with KELM, the hyperparameters
were adaptively determined to guarantee the model generalization. Benefitting from the powerful
nonlinear mapping and interpretable capability, the model provided satisfactory simulation
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performance and reasonable interpretations. It could be learned from the results that the
hydrostatic component accounts most for the dam displacement and seepage, while the
temperature component came second. The rainfall component of seepage was negligible.
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ABSTRACT: In this paper, we present our submission to the ICOLD benchmark for the two
pendulum datasets (CB2 & CB3). Our approach relies on the ensembling of a Bayesian dynamic
linear model (BDLM) along with Bayesian long short-term memory (LSTM) neural networks that
use the tractable approximate Gaussian inference method (TAGI) for learning its parameters. We
provide through our probabilistic ensembling method, the explainability of BDLMs as well as the
accuracy and ease of use of Bayesian LSTM. Although the benchmark focusses on prediction
accuracy and threshold value definition for the purpose of anomaly detection, one should keep
in mind that this way of envisioning anomaly detection is only one approach among many others.
We show in this paper that with our probabilistic regime switching method we expect to be able
to detect anomalies of 0.5mm for CB2 and 0.15mm for CB3, where both cases, anomalies can
develop over the span of years.

! equal contribution

2 equal contribution
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1 INTRODUCTION

Sensor-based structural health monitoring (SHM) is an established tool for informing dam
owners and managers about the occurrence of abnormal events as well as the general condition
of the structure. Although it is a routine task to measure structural responses such as
displacements, inclinations, pressure, or flow rates using commercial technologies, it is much
harder to extract information and knowledge from data. In the context of dam monitoring, the
hydrostatic-seasonal-time (HST) method (Salazar et al., 2017) is the most common approach to
model the dependency between structural responses and water level, seasonal components and
time. The HST method has passed the test of time, nevertheless, it has several limitations; (1) it
has a limited forecasting capacity when the relationship between the explanatory variables or
their components are non-linear, or affected by a phase shift; (2) it is an offline method, i.e., the
model is built using a training set so that it requires periodic retraining in order to adapt to new
conditions not covered during training. This affects the capacity to detect anomalies that are
building up over years as model re-training will capture a part of the anomaly in the model itself.
The research community is still figuring out what are the options to overcome these limitations.
In this context, the ICOLD workshop on dam behaviour prediction aims at comparing various
methods with respect to their predictive capacity, anomaly detection capacity and
interpretability.

In this paper, we present our submission to the ICOLD benchmark for the two pendulum
datasets (CB2 \& CB3). Our approach relies on the ensembling of a Bayesian dynamic linear model
(BDLM) (Gaudot et al.,, 2019) along with Bayesian long short-term memory (LSTM) neural
networks (Goodfellow et al., 2016) that rely on the tractable approximate Gaussian inference
method (TAGI) (Goulet et al., 2021) for learning its parameters. BDLMs enables non-linear
dependencies between model sub-components, is an online method capable of updating itself as
new data comes in, is inherently probabilistic so that it can handle epistemic and aleatory
uncertainties, and it allows explaining the dependencies within the model. LSTMs excel at
forecasting without requiring feature engineering regarding the interactions between structural
responses, explanatory variables and other latent variables and its coupling with the TAGI method
makes it inherently probabilistic as well. Ensembling (Sagi & Rokach, 2018) is a common approach
in order to aggregate the predictions from several models with the objective of improving the
accuracy through the cancellation of the model errors in the case they are statistically
independent.

The paper is organized as follow: Section 2 presents the dataset employed as well as the pre-
processing steps we applied on the data. Section 3 presents the methodologies behind the BDLM,
LSTM, and ensembling methods. Section 4 presents the results regarding validation, forecasting,
and model interpretation where we also investigate anomaly detectability.

2 DATASETS AND PREPROCESSING

In this paper, we are building models for the pendulum time-series CB2 and CB3, measuring
the dam's radial displacement [mm] from the bottom to crest, and foundation to bottom,
respectively. To model these time series, we rely on the reservoir water level [m] as well as the
temperature data TB [°C]. The data acquisition for the displacements CB2/3 has been made with
an average frequency of 1.5 week, whereas the average frequency of the reservoir water level as
well as the temperature TB is daily. We use daily data in our models both in training and
forecasting which means that there are many missing data points in the CB2/CB3 displacement
datasets.

For BDLM models, the water level data below 196m have been truncated to that value to
account for the physical constrain associated with the bottom of the dam. In addition, instead of
using the raw data itself, we account for the thermal inertia of the dam by using a {1,7,14} (CB2)
& {14,28,54} (CB3) days moving averages for the residual of temperature TB where the yearly
periodic pattern has been removed. Here, for each sensor, we selected the moving average
periods which led to significant contribution for the displacement predictions among the set
{1,7,14,28,54}. Note that the one day moving average is equivalent to the raw data.
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For LSTM models, we use the raw data of the reservoir water level and the temperature TB.
This is because the corrected pattern introduced by the truncation of the water level is
detrimental to the accuracy of the LSTMs prediction. Furthermore, LSTM models can take into
account the lagging effect of the temperature on the dam's displacement automatically by using
a lookback period larger than one. Figure 1 presents the data that is employed as input to build
the BDLM and TAGI-LSTM models.
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Figure 1. CB2/3 displacements, water level, and examples of moving averages fot the temperature TB.

3 METHODOLOGY

This section presents the theoretical foundations behind Bayesian dynamic linear models, the
coupling between tractable approximate Gaussian inference and LSTMs, as well as the Gaussian
mixture method for aggregating the predictions from multiple models.

3.1 Bayesian Dynamic Linear Models (BDLM)

Linear regression and neural networks are categorized as parametric methods because the
relationships within the model are controlled by the estimation of parameters. On the other hand,
BDLMs fall in the non-parametric category as the relationships within the model are learnt
probabilistically through constraints describing the transition of hidden state variables through
time, as well as their observability. For example in order to model the position x; in time t of an
object in free-fall, rather than trying to adjust the parameters of a function in order to fit through
observations of the tuples (time, position), i.e. a parametric approach, BDLM would model the
dependency through time h(x;|x;_;) using the classic kinematic equations for the hidden states
x = [x, %, %]7; the position x, speed x and acceleration ¥, and their observability by defining that
only the position is observable, i.e. y; = x; . From these constraints on the transition and
observability, we can then employ the Kalman filter (Kalman, 1960) (i.e., the Gaussian conditional
equations) to infer the posterior probability density functionf (xq|y1, ¥z, ..., ¥¢) of the hidden
states given the data.

As stated in introduction, the main advantage of such an approach is that it allows updating
the model online as the data become available, without needing to re-learn the model
parameters. In practice, one can rely on a collection of predefined sub-components, each
modelling a specific behaviour present in a time series, and which can be assembled in order to
create powerful, yet simple, models. Another key aspect of BDLMs is their capacity to handle
regime switches over time, where models describing different regimes (e.g., a constant regime
versus a linearly changing one) can compete against each other and are ranked according to their
prior probability, the probability to switch from one regime to another, and the likelihood of each
at explaining the data. This regime switching algorithm is the backbone of anomaly detection in
the context of BDLMs (Nguyen & Goulet, 2018a; Khazaeli et al., 2021) whereas a switch between
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regimes can be used as a proxy indicating the presence anomalies. The complete details regarding
the BDLM theory can be found in (Goulet, 2020) examples of its application to SHM datasets can
be found in (Nguyen et al., 2019; Goulet & Koo, 2018; Nguyen & Goulet, 2018b; Goulet, 2017;
Nguyen & Goulet, 2017), and the OpenBDLM library (Gaudot et al., 2019) can be found on GitHub
(https://github.com/CivML-PolyMtl/OpenBDLM).

For this submission, the architecture of our model can be subdivided according to each time
series, i.e., displacement, water level and temperature moving average. The selection of the
model’'s components and their dependencies were defined iteratively to remove any
distinguishable pattern from the model residual term. The water level uses a local level to model
the average value, a local trend to extract the long-term non-periodic tendency (= 5 years), and
an autoregressive process to capture the short-term (= 1 year) non-periodic changes in water
level. The temperature is modelled using a local level to model the average value, a Fourrier-form
periodic component to extract the long-term stationary pattern and an a white-noise process to
capture the non-periodic changes in temperature. The displacement time series CB2/3 are
modelled using a local level to represent the average value, two state-based non-linear
dependencies on the water level (1) mean-centered values and (2) its long-term pattern, a linear
dependency over the non-periodic changes in temperature, and an autoregressive process to
capture the time-dependent model errors. The mathematical formulation for the matrices
defining the transition and observation models are presented in Appendix A and the BDLM code
for reproducing the results presented in this paper has been made available on GitHub
(https://github.com/CivML-PolyMtl/OpenBDLM/tree/ICOLD_benchmark).

3.2 TAGI-Long Short-Term Memory neural networks (TAGI-LSTM)

LSTM is the classic neural network architecture for modelling time-series data. It models the
dependency between explanatory variables and target outputs using a cell state enabling to
consider long-term dependencies, layers of hidden variables defining the neural networks and
gates (i.e., forget, input and output) enabling the combination of the information coming from
the hidden and cell states. A key advantage of LSTM over BDLM or HST methods is that it does
not require a specific architecture setup for defining the possible dependencies with respect to
explanatory variables, thus enabling it to be quickly applied to many time series.

The parameters of LSTMs are typically learnt deterministically using gradient-based
optimization. The drawback of such an approach is that it disregards the epistemic uncertainty
associated with parameter estimation. To overcome this limitation, we rely on the tractable
approximate Gaussian inference method (TAGI) (Goulet et al., 2021) in order to perform Bayesian
estimation for the LSTM network parameters. The specific network architecture and the
hyperparameters employed in this submission are presented in Appendix B.

Like other neural network architectures, LSTM networks are sensitive to the values employed
to initialize model parameters before their estimation. Given the ease to evaluate multiple
models having different initial model parameters, we choose to combine ten models in order to
further improve the prediction accuracy. The ensembling method to combine these ten models
along with the BDLM one is presented in the next subsection.

3.3 Gaussian Mixture Ensembling

The ensembling method we use in this submission relies on the moment matching Gaussian
mixture of models (Runnalls, 2007). Here, we want to aggregate the BDLM and ten LSTM models
where each has a Gaussian output as characterized by their respective expected value y; and
variance aiz, making them natively suited for the Gaussian mixture (GM). A GM combines several
Gaussian probability density functions according to the probability associated with each model.
In the case of the moment matching GM, we approximate the resulting mixture distribution by a
Gaussian random variable whose moments (pugm, 0éy) Matching those of the true mixture
distribution and which can be computed using the relations
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N
2 2 2
oem = Z w; [ai + (ui —,uGM) )

i=1

where for N models, the GM expected value is the weighted sum of the individual y; and the
GM variance is the weighted sum of the variance al-z plus a term to account for the discrepancy
between each model's expected value.

In a Bayesian context, the weights should be computed according to their posterior probability
w; = p(m;|D) as defined by

p(D|my).p(m;)
2ip(D|my).p(m;)

p(m;|D) =

Here, we rely on the simplifying assumption that p(D|m;) = InL(m;) tis equal to the inverse
log-likelihood of each model measured between 2012-2013, whose values are reported in
Appendix C. The prior probability p(m;) for the BDLM model is equal to 0.5, and to 0.05 for each
of the TAGI-LSTM models making their aggregated prior probability also equal to 0.5.

4 RESULTS

We divided the presentation of the results into three parts; first, we present the relative
performance of each individual model, i.e., BDLM vs TAGI-LSTM by training each of them on a
subset of the training data available, and then predicting the last three years of data available;
second, we present the forecasted data aggregating the prediction of one BDLM and 10 TAGI-
LSTM models; third, we present the model interpretation where we identify the sources and
nature of the dependencies between time series. Finally, we present how the regime switching
capacity of BDLM is better at detecting anomalies than threshold-based alarm triggers.

4.1 Validation
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Figure 2. Comparative performance of BDLM, 10 instances of TAGI-LSTM, and the Gaussian mixture from
BDLM and 10 instances ({u1, Wz, -, H1}) of TAGI-Istm for both the CB2-3 sensors.
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Figure 2 compares the predictions for the last three years of the training data available, obtained
for each model and for the Gaussian mixture of all models. These results show that both methods
offer acomparable performance with a slight edge for the BDLM method. In terms of computational
time, both methods are comparable with a total training time in the order of an hour. Once trained,
both models can be used to predict with a computational time in the order of a minute.

4.2 Forecasting

2000 2|l3 2|l4 ZIIS 2*6 2*7 ZIIB
(d BDLM \ 10TAGI-LSTM inslances [CB2

B 203 204 205 ZN6 N7 28
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Figure 3. Forecast for the Gaussian mixture made form BDLM forecasts and 10 instances of TAGI-LSTM for
both the CB2-3 sensors.

Figure 3 presents the forecasts for the period 2013--2018 obtained from the Gaussian mixture
of the BDLM and ten TAGI-LSTM models.

4.3 Model interpretation

The model interpretation is made using the BDLM model only, as LSTM networks offer little
help in understanding the nature of the dependencies between time series.

4.3.1 Dependencies and interaction between time-series

Figures 4 & 5 summarize the information that can be extracted from the BDLM model; (a)
presents the relative importance of each component measured by the relative variance of each sub-
component; (b) plot the non-linear relationships between the dam's response and the mean-
centered water level as well as its long-term pattern as depicted in (d) with corresponding colors;
(c) presents the periodic pattern extracted from the CB sensors that can include part of the
temperature and water level effects; (d) presents the mean-centered water level as well as the long-
term pattern extracted from it by BDLM; (e) presents the model residuals (xAR) i.e., the remaining
part of the observation not attributed to observation errors not explained by the other components.

For the sensor CB2, we note in Figure 4a, the dominant relative importance of the mean-
centered water level through the non-linear dependency g(xwy,) depicted in Figure 4b (WL-NL),
and secondly of the periodic pattern xXR depicted in Figure 4c (CB-KR). The third most important
contributor is the autoregressive component xAR depicted in Figure 4e (CB-AR), which represents
what cannot be explained by the model. Although the relative importance of other components
is less than the residual term, they still matter because we are interested in detecting anomalies
having small magnitudes. For example, an anomaly with a magnitude of 0.5 mm would still have
a relative importance comparable to the one day moving average presented in Figure 4a (TB-
MA1). Note for instance that the relative importance of the long-term pattern (see Figure 4d)
within the water level through the non-linear dependency g(x4h.) depicted in Figure 4b (WL-NL)
is key in order to enable the detection of small anomalies as further detailed in Section 4.3.2.
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Figure 4. Graphs illustrating the interpretation of the CB2 dataset that can be made from the BDLM
components.
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Figure 5. Graph illustrating the interpretation of the CB2 dataset that can be made from the BDLM
components.

For the sensor CB3, the contribution of the water level through the non-linear dependency
g(xw) depicted in Figure 5b is even more dominant than in the case of CB2. One particularity for
CB3 is that the residual term corresponding to the autoregressive component in Figure 5d
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presents a non-stationary pattern between February 2004 and 2007 as outlined in magenta. The
presence of such a pattern indicates that the current components considered in our model for
CB3 are missing a part of the dam's behavior. The next section will further investigate this non-
stationarity by showing how using a regime-switching analysis would have been able to detect
such anomalous occurrence in real time.

4.3.2 Anomaly detection using regime switching

As mentioned in Section 3.1, one key strength of BDLM, is its capacity to detect regime switches
(Nguyen & Goulet, 2018a; Khazaeli et al., 2021). We performed such an analysis on the CB2/3
datasets while a first normal regime is modelled with a constant baseline through time, and a
second abnormal regime is modelled with a constant-speed regime through time.

For the CB2 sensor, the black curve in Figure 6b presents the probability of anomaly identified
using the switching Kalman filter (SKF). This probability close to zero across the dataset indicates
that the dam's behaviour is stationary. We further confirm this conclusion by adding to the
original data synthetic anomalies of magnitude a,, = 0.5,1,2mm building up over a duration of
magnitude a, = 4 years, as depicted in Figure 6a. The probability of anomaly identified by the
SKF rises in all three cases where synthetic anomalies are added, thus correctly indicating their
presence. In comparison, if we use an alarm-triggering threshold of 1 mm on the absolute
difference between the predicted and measured values for the validation set presented in Figure
2a, we would on average, trigger more than 10 false alarms per year while no alarm should have
been triggered. Figure 6¢ presents the result of this exercise repeated for alarm-triggering
thresholds ranging from 0.5 up to 6 mm. Note that these anomaly magnitudes are all smaller than
the amplitude of the residual term presented in Figure 4e. This shows that detecting anomalies
based on the exceedance of threshold values is prone to false alarms and offers a poor anomaly
detectability in comparison with the regime switching approach of Bayesian dynamic linear
models. If one chooses a more robust criterion involving multiple successive crossings, the false
alarm rate will indeed drop; Nevertheless, this strategy remains poorly suited for the detection
of anomalies developing over the span of several years, as parametric models (e.g. HST, LSTM,
SVM, etc.) will need to be retrained periodically in order to avoid drift, thus incorporating the
changes due to the presence of an anomaly in the updated models.
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data to quantify anomaly detectability taken as a proxy for Pr(anomaly) the number of false alarms

Figure 6. Comparison of the regime switching approach with a threshold-based one of the purpose of
detecting anomalies while avoiding false alarms.

Figure 7b presents the same exercise applied to the CB3 sensor. In this case, the SKF
detects a regime switch shortly before 2006 as indicated by the jump in the black curve. This
regime change can be confirmed by looking at the residual term presented in Figure 5d,
where a non-stationary pattern is visually observable between 2004 and 2007. As this pattern
disappears after 2007 while the probability of regime switch return to O after 2006, we
speculate that events other than those considered in our model have taken place during that
period. We tested our capacity to detect anomalies on CB3 by adding synthetic anomalies as
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depicted in Figure 7a, with magnitudes a,;, = 0.15,0.25,0.5mm which are building up over a
duration of a; = 4 years. Note that the anomaly has been shifted after 2006 in order not to
interfere with the actual anomaly present in the data. We can see in Figure 7b that synthetic
anomalies with a magnitude low as 0.15 mm are detectable for this sensor.
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(a) Schematic representation of (b) Probability of switching from a stationary to a non-stationary
synthetic anomalies added on the raw regime taken as a proxy for Pr(anomaly)

data to quantity anomaly detectability

Figure 7. Regime switching analysis applied to the CB3 sensor for the raw data as well as additional
synthetic anomalies.

5 DISCUSSION

The presence of a non-linear residual term for the sensor CB3 lead us to think that, in the
context of this benchmark, the long-term predictive capacity for that sensor will be limited. In
order to improve the model, it would be worth further investigating (1) the relationship between
the anomaly detected on the sensor CB3 and the seepage and piezometric levels measured, (2)
the possibility that the long-term effects of the water level on the sensors CB2/3 (see Figure 4d)
may be related to creep/creep-relief effects (Bazant & Wu, 1974), and (3) following the results of
this forecasting competition, if other submissions have identified features explaining the dam's
behavior that were not considered here, these could be included in our BDLM model in order to
further improve its forecasting accuracy and anomaly detectability.

Despite these limitations, as mentioned in Sections 3.1 & 4.3.2 the key aspect of our method
is to enable the detection of anomalies based upon the probability of regime switch rather than
on threshold crossing. This has enabled in Section 4.3.2 the detection of anomalies that are
smaller than the residual terms for the CB2 and CB3 sensors. This shows that the anomaly
detectability of our method can be decoupled from its long-term prediction capacity.

6 CONCLUSION

This paper presents the results of our submission to the ICOLD's dam prediction benchmark.
We provide through our probabilistic ensembling method the explainability of BDLMs as well as
the accuracy and ease of use of Bayesian LSTM. Although the benchmark focusses on prediction
accuracy and threshold value definition for the purpose of anomaly detection, one should keep
in mind that this way of envisioning anomaly detection is only one approach among many others.
We showed in this paper that with our probabilistic regime switching method we expect to be
able to detect anomalies of 0.5 mm for CB2 and 0.15 mm for CB3, where both can develop over
the span of years.
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APPENDIX

A BDLM MODEL STRUCTURE

The BDLM components used for modeling the independent patterns for CB2/3 are local level
(LL), kernel regression (KR) and autoregressive (AR). The mean-centered water-level and its
long-term pattern (Figure 4d) are modeled using an AR and a local trend (LT) component
respectively. The two nonlinear patterns for CB2/3 that are nonlinearly dependent on these two
time series are each modeled using a state-regression (SR) component. The moving averages of
the temperature (TB) are modeled using AR components. The transition matrices for LL, LT, KR,
and AR components (Goulet, 2020, 2017) are as follow:

1 At (KR (¢ (KR
AH=1,A£T=[ ],A{“‘:[OO RG] par _ gar (1)

0 1

nx1 In

where n represents the number of control points for kernel regression and At = 1day. The
observation matrices for these components are given by

¢t =1,¢"=[10],c®=[10,,],C"=1 (2)

The process noise Q; covariance matrices are

woa (o
o
Q:.L = (Ullva)z,QfT - (O.\I;VT)Z ;3 22 ’Q:(R [ o o KR)Z ] QAR (O_AR)Z
— At

The SR component includes n = 20 hidden states for the kernel values, x5K =
[fo x5K ...x,S{K]T; n + 1 hidden states for the regression coefficient that includes n hidden
R 4R rR7T R
[ ¢ d) ,? ] and xg) which is the hidden state of the

predicted regression coefficient; hidden state for the nonlinear pattern for displacement, x>P =

states of control-points, xq’

R
(xg) . xs'T) where x>T represents the covariate for modeling the nonlinear dependency, and n

T , R .
product terms, xSKR = [xSKR'1 xSKR.2 ...xSKR'”] , Where, xSKRI — (xiSK . xid) );Vl =1:n.

The hidden states for the component can be grouped together as

R _ [(xSK)T (x¢R)T ng 5D (xSKR)T]T

The transition matrix for the SR component of size 3n + 2 is formulated as

On 01><n 0 0 01><n
; I, 0 0 0,

Af“ = : 0 0 14y, (4)
: w0 0y,

The observation matrix Cf‘R is given by
CSR [OTxl 0 nx1 01 Onxl] (5)

No process noise is considered for the SR component and is given by QSR = 03,,.5.
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Using equations 1 & 4, the global transition matrix A; is obtained by arranging the transition
matrices block diagonally shown by

CB2/3 WL1 WL2 T-MA1 T-MA7 T-MA14 T-MA28 T-MA54
A, = blockdiag([AlgL, AKR, AR] [ALT, ATR], [ARR, A3R?], [ASR], [ASR], [A2R], [A2R], [A?R]> (6)

where WL1 and WL2 refers to the long-term pattern and the mean-centered raw water level,
and the nonlinear dependencies are modeled using the SRy and SRy components. Using
equations 2 & 5, the global observation matrix C;is given by

—_— —— —— —— ——

CB2/3 WL1 WL2 T-MA1 T-MA7 T-MA14 T-MA28 T-MA54
C, = blockdiag([CtLL, CKR, CAR], [CT, C™1],[CAR, ¢7®2],[CAR], [CAR], [cAR], [cAR], [c;“‘]> 7

The Q¢ and the Ry matrices are

CB2/3 WL1 WL2 T-MA1 T-MA7 T-MA14 T-MA28 T-MAS54
(8)

Qt=blockdiag<[ oo o] [t ] [t @] (@] [, [et*]. "], [@t]

CB2/3 WL1  WL2 T-MA1 T-MA7 T-MA14 T-MA28 T-MA54
. 2 2 2 2 2 2 2 2
Rt = blOdelag (0771) 4 (0772) (0173) 4 (0174) 4 (Gvs) ’ (Gvs) 4 (6777) 4 (Gvs) (9)

where 0, Vi = 1:8 refers to the standard deviation of the observation noise for each of the
time series.

B LSTM MODEL STRUCTURE

We use two separate models which have the same architecture, but do not share the
parameters to predict the displacements CB2 and CB3. The common network’s architecture
consists of one LSTM layer of 50 hidden units, and a dense layer with no activation function to
combine the output of the LSTM layer. In order to take into account the lagging effect that the
temperature and the reservoir’s level may have on the displacement, we use a sequence of length
M of covariates as inputs for the LSTM instead of using only the covariates at time t as

he = g(he_1, Ve 1:6-1) Xe—m+1:6)

where g(:) is the function implemented by the LSTM, h are the hidden states, y is the
displacement observation, x are covariates which are the reservoir’s level and temperature TB,
and Lis the lookback period. During training when the data is missing, and during prediction when
the data is not available, we replace y by the network’s prediction, and x by 0. When using TAGI
to perform Bayesian estimation for the LSTM network parameters, it is required to define an
observation noise for each time series (Goulet et al., 2021). The standard deviation for this
observation noise is a hyper-parameter which needs to be learnt from data. We perform a grid-
search to find the best hyper-parameter values for each model as presented in Table 1. For each
candidate value in the grids, we train our models with early-stopping on a subset of training data
from 2000 to end of 2009 and report the log-likelihood for the validation period from 2010 to
end of 2012. The values which maximize the log-likelihood of the validation set are chosen as the
final hyper-parameter values.
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Table 8: LSTM hyper-parameters.

Hyper-parameters CB2 CB3 Grid

Observation noise’s standard deviation  0.05 0.01 {0.01, 0.05, 0.1, 0.15}
L 35 14 {14, 35, 56, 70}

M 21 21 {7, 21, 35, 49, 70}

C LOG-LIKELIHOOD AND WEIGHT
Table 9: Log-likelihood measured between 2012-2013 and weight by each model.

Model CB2 CB3
oae Log-likelihood w_i Log-likelihood w_i

BDLM -63.89 0.506 -12.06 0.659
LSTM #1 -66.48 0.049 -46.96 0.017
LSTM #2 -66.53 0.049 -48.66 0.016
LSTM #3 -64.74 0.050 -11.64 0.068
LSTM #4 -64.98 0.050 -45.52 0.017
LSTM #5 -73.79 0.044 -35.36 0.022
LSTM #6 -65.14 0.050 -37.59 0.021
LSTM #7 -66.12 0.049 -24.71 0.032
LSTM #8 -62.40 0.052 -33.49 0.023
LSTM #9 -63.18 0.051 -28.68 0.028
LSTM #10 -62.51 0.052 -8.37 0.095

D MEAN ABSOLUTE ERROR (MAE)
Table 3: MAE for the validation period between 2010-2013.

Model CB2 CB3
Mixture 1.366 0.253

BDLM 1.312 0.248
LSTM #1 1.574 0.490
LSTM #2 2.109 0.537
LSTM #3 1.910 0.486
LSTM #4 2.008 0.534
LSTM #5 1.945 0.610
LSTM #6 1.833 0.566
LSTM #7 1.836 0.393
LSTM #8 1.705 0.524
LSTM #9 1.796 0.452
LSTM #10 1.869 0.462

117



DAM BEHAVIOUR PREDICTION USING LINEAR
REGRESSION, NEURAL NETWORKS, AND FE MODELLING

Evgeniy Vitokhin
Vedeneev VNIIG, JSC, Saint Petersburg, Russia

Pavel lvanov
Vedeneev VNIIG, JSC, Saint Petersburg, Russia

ABSTRACT: The paper presents statistical and finite-element prediction models for predicting CB2
and CB3 sensors data of an EDF arch concrete dam. Linear regression and neural networks were
used to build the statistical models. The finite-element prediction model was built using Simulia
Abaqus. Warning levels for the prediction was found and provided.
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1 INTRODUCTION

In this paper we use statistical and calibrated finite element models to predict CB2 and CB3
sensors measurements of EDF dam.

2 STATISTICAL METHODS

2.1 Theory

First, we divide the entire dataset into training and test sets. The training set is used to define
coefficients or weights of model. The test set is used to evaluate the accuracy of the model. In
this paper, field data from 2000 to 2010 years used for training and data from 2011 to 2013 years
used as test set.

For estimation of the model accuracy, we use mean absolute error MAE and NRMSE:

SISyl
= Iy~ 9l = B _ Ao
MAE_nZiZO lyl yll_nZizolgl; NRMSE =

Ymax—Ymin

, (1)

where y; is the prediction, y; — measured data.
Confidence intervals are calculated using the standard deviation:

1 — s _ 1 -
o=-Y (-8 £=-3lje (2)

where ¢; — prediction error, € — mean error.
The models considered in this paper use linear regression and a multilayer perceptron.

2.1.3 Linear regression

Linear regression is a model that assumes a linear dependence of the dependent variable on
other (independent) variables or factors. This is a basic machine learning model that is widely
applied in all fields of science.

With n observations, the dependent variable vector {y} is written as follows:

WY =L y2 k- (3)

If dependence on p factors is considered, then the matrix of independent variables [X] is
written as a rectangular matrixn X p + 1:

{x}{ 1 x11 o Xqgp
[X] = {x}? _ 1 X310 o Xy . (4)
{x} 1 Xpg o Xpp

Each value of the dependent variable y; corresponds to the vector of independent
variables{x;}T . The first column is filled with ones, as the constant is considered a separate
factor.

In the matrix form linear regression could be written as follows:

v} = [X1{B} + {e},

B &1
®=1"4 =170 5
ﬁn €n

where {f} is vector of the coefficients, {€} is vector of model random errors (residuals between
the calculated and observed parameters).
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To make successful predictions we must obtain such coefficients {§}, which yield minimal error
values {€}. The error is usually minimized by least squares or gradient descent. When using the
least squares method, the optimal coefficients {§} are determined as follows:

{8} = (IXI"IXD X" {y}. (6)

With a known optimal vector of coefficients {,[?}, the predictive model takes the form:

= [x1{B}, (7)

where {#} is the prediction with known independent variables [X]. The prediction error is
respectively defined as:

{ed=0}-0k (8)

One of the well-known disadvantages of linear regression is a large error in extrapolation.
When the values of the independent variables are out of range in the training dataset, the
predicted values often deviate significantly from the true (observed) values.

One approach to improve the ability of a linear model to generalize is to introduce
regularization. Tikhonov's regularization method (ridge regression) introduces the parameter a
into the formula for determining the optimal vector of coefficients {[3}

{Briage} = ((XI7IX] + a[L,]) T X170}, (9)

where [Ip] is the identity matrix with dimension p.

Introducing parameter a leads to the fact that smaller values of the coefficients are
encouraged. It leads to a smaller extrapolation error. Parameter a is a hyperparameter of the
model, i.e. such a parameter that is not a factor, but directly affects the prediction. The selection
of the best values of hyperparameters is carried out during cross-validation.

In this paper, we used linear regression using Tikhonov regularization and determining the
values of the hyperparameter a using sliding cross-validation. An implementation by scikit-learn
library Pedregosa, 2011 was used.

2.1.4 Hydrostatic-seasonal (HS) model

We use this model to predict CB3 sensor data. This model is the linear regression model, that
takes to account upstream level, seasonality and time:

Y =Bo+ fi(h) + f2(s), (10)

where B, is the free coefficient, f;(h) is the influence of the upstream level, f,(s) is the
influence of seasonality.

In the original formulation, the influence of the upstream level was considered by a polynomial
of the fourth degree:

fi = Bih + Boh?* + B3h® + Byh*. (11)

The influence of seasonality was considered by the sum of trigonometric functions with a
period of one year:

fo = Bs(sin(s))? + B¢ sin(s) + B; cos(s) + Bg sin(s) cos(s), (12)

where s is calculated as the ratio of the number of the day in the year to the number of days
in the year:

number of the da, number of the da
s=27m ! Y ~ 21 / Y, (13)
number of days 365.25
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The HS model assumes that the main contribution to the displacements of the dam is made by
the upstream level. The second factor is temperature, the first harmonic of which is modeled
using trigonometric functions f, with one year period. That is, one of the assumptions is the
dependance of the concrete temperature to harmonic oscillations.

The simplicity of the formulation and the absence of a direct temperature factor make it
possible to widely use the HS model on objects where the temperature is not measured, or where
the temperature have a harmonic law. At the same time, with a sharp change in temperature,
the accuracy of the forecast is significantly reduced.

Another advantage of this model is its ease of interpretation. However, if the upstream level
strongly correlates with seasonality, then the model's ability to interpret data is significantly
reduced, which at the same time does not affect the accuracy of the prediction.

2.1.1 Multilayer perceptron

This model was used for CB2 sensor data prediction. Multilayer Perceptron (MLP) is an artificial
neural network architecture consisting of several layers with nodes (neurons). Each layer node is
an activation function ¢, which takes the value +1, and a vector of values obtained at the nodes
of the previous layer:

Xo +1
Xl X

=" =" ¢ (14)
Xn Xn

and weight vector:

Wko bk
Wk1 w

wid=4" =9 "p (15)
Wkn Wkn

where by, is a free coefficient, weight of the constant is +1. The value received by the node is
calculated as follows:

Vi = @), where vy, = {x}{w, 3" = XL wix;. (16)

ID:+1

Figure 1. Scheme of neural network node

The weight values for each node are determined during minimizing the residual function using
the backpropagation method. Adam optimization is used with gradient descent rate 4 = 0.001.
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The first or input layer accepts pre-normalized field observation data with an identical mapping
as an activation function. The next layers will use the Leaky Relu function as an activation
function:

v ifv>0
LeakyReLu(v) = max(0,v) + amin(0,v) = { !

av ifv <0 (17)

In this paper the Keras Chollet, 2015 library was used to implement multilayer perceptron.

2.2 Transforming field data

To build accurate predictive models, we need a large amount of input data. The more input
data, the more accurate the predictive model. Therefore, we increase the number of input data
available for training by using linear interpolation.

The air temperature and CB2 sensor data have a period of change of one year. To account for
seasonality, we added trigonometric functions with a period of one year:

. number of the da number of the da
sin(s)ucos(s),rpes = 2n ! Y ~ 21 / Y, (18)
number of days 365.25

The air temperature sensor data has rapid changes of temperature from day to day. To improve
predictions accuracy temperature time series was smoothed by moving average sum with
window of 19 days.

From the measurements of the upstream level, it is evident that the reservoir is periodically
completely empty. That is, values of the upstream level are less than 195 m, below the dam base
elevation. These values do not affect the CB2 sensor data. We convert the upstream data to
exclude data below the reservoir bottom at the upstream face of the dam:

h if h> 195

0 if h<195 (19)

UpstreamlLevel = {
where h is initial upstream level.
1.00

Water Level [0.75
0.50

-0.25

Air Temperature -
-0.00

- -0.25
- —-0.50

sin

cos - -0.75

-1.00

sin -
cos

Water Level -
Air Temperature

Figure 2. Correlation matrix

Highly correlated data cannot be used together in linear regression. Analysis of the correlation
matrix (see Fig. 2) shows that the input data used are not too strongly correlated, so they can be
used for linear regression. At the same time, a sufficiently high degree of correlation of air
temperature and upstream level with the sine and cosine functions confirms the assumption of
harmonic variation of these values with a period of a year.

All input features are normalized by removing the mean and scaling to unit variance derived
from training set.
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2.3 Results
Hydrostatic-seasonal (HS) model, used for CB3 sensor data prediction, is implemented as

follows:
9 = Bo + BLUL + BoUL? + B3UL3 + B,UL* + Bs(sin(s))? + B sin(s) + 5, cos(s) +
Bg sin(s) cos(s), (19)

where UL is upstream level according to (18).
This model yielded the best results for CB3. The model contains nine coefficients, which, when

trained on the training dataset, take the values given in Table 1. The optimal value of the
hyperparameter @ = 4.72796. The model prediction is shown in Figures 3 and 4. The distribution of
errors is provided in Figure 5. For evaluating warning levels, we use +30 intervals according to (2).

Table 1. Coefficients of HS model

Coefficient Value
Bo -0.7563380357142856
B 0.35890753
B 1.84110614
B3 1.1469593
Ba -0.42977392
Bs 0.06657618
Be 0.82528701
B 0.6129237
Be 0.04377772

}l —— Measurement === Forecast
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Figure 3. CB3 sensor data prediction

44 .
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Figure 4. CB3 sensor data prediction in a train range with warning levels
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Figure 5. CB3 prediction error distribution in a train data set

The multilayer perceptron in this paper has the following architecture: four nodes in the input
layer; two hidden layers with Leaky ReLu activation function and using batch normalization and
dropout (factor 0.15) of 250 nodes each; output layer with one node and L1 regularization with
factor 0.005. The model prediction is shown in Figures 6 and 7. The error distribution is provided

in Figure 8.
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Figure 6. CB2 sensor data prediction
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Figure 8. CB2 prediction error distribution in a train data set

3 FINITE-ELEMENT MODELING

Figure 9. Finite-element model

We use CAD model delivered by the formulators to create the finite-element model (see Fig.
9). The model was created using Simulia Abaqus 2021. The model of the dam remained
unchanged, and the foundation model was modified so that the end surfaces were perpendicular
to the lower semicircular surface (see Fig. 9). In addition, the base was divided into three parts to
simulate the left and right bank, as well as the bottom part of the rock foundation. The properties
of these areas were specified as transversal-isotropic, according to the case formulation. First-
order C3D4 tetrahedrons were used to model the foundation (see Table 2). The dam was modeled
as a linear-elastic isotropic body using second order C3D10 tetrahedrons. Total number of nodes

are 261952, total number of elements are 215859.

Table 2. Finite-element mesh data

Region Elementtype Elements  Nodes
DAM C3D10 168934 251428
ROCK C3D4 46925 10524
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Contact interaction between the dam bottom and the foundation was considered using tie-
contact. The problem was solved in two stages. First, we solved the thermal conductivity problem
with a variable upstream level, which was accounted by the user subroutine. The temperature
field was found in increments of one day. Then the thermoelasticity problem was solved using
the found temperature field. The hydrostatic pressure of the reservoir on the upstream face of
the dam and the back pressure on the bottom of the dam were also considered using the user
subroutine. The calculation was performed in one-week increments, and then the intermediate
values were linearly interpolated for prediction. Calculated using finite-element model CB3
sensor data was modified:

Ucps 195.161 = Ucps 195 161 - 4.5 — 3. (20)

Calculated CB2 sensor data has no modification. Calculated CB2 and CB3 sensor data with
warning intervals demonstrated on Figure 10 and 11 respectively.
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Figure 10. Calculated CB2 sensor data prediction with warning levels
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Figure 11. Calculated CB3 sensor data prediction with warning levels
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4 CONCLUSION

In this paper we presented two types of prediction models: statistical and finite-element. In
statistical models, the prediction of CB2 sensor data was built using a multilayer perceptron
neural network. For prediction of CB3 sensor data linear regression was used. The finite-element
model prediction was based on a calibrated linear-elastic model with a transversal-isotropic
foundation. The accuracy of the prediction obtained with statistical models significantly exceeded
the accuracy of the finite-element prediction.
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ABSTRACT: The 2022 ICOLD Benchmarking Workshop involves prediction of arch dam behavior
based on recorded reservoir elevation, temperature, and rainfall. The US Army Corps of Engineers
team utilized a simple correlation-based data analytics approach to develop predictions of the
dam displacement. Dam displacement and cracking at the base of the dam were found to be
strongly correlated with the reservoir elevation and air temperature. Displacement of the dam
was also affected by cracking at the base, leading the team to utilize a two-stage correlation. The
data analytics approach and finite element model led the team to conclude that there may be
cracking of the dam or other issues associated with extreme drawdown of the reservoir.
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1 INTRODUCTION

The goal of the benchmarking problem is to predict the short- and long-term behavior of the
subject concrete arch dam based on relevant environmental data. The behavior of the dam is
characterized by multiple sets of measured data including pendulum displacements, a crack
opening displacement sensor, piezometers, and weirs to measure seepage flow rates. The
problem formulation specifies that it is mandatory for participants to provide displacements
during the calibration period (Case A) and provide both short-term (Case B) and long-term (Case
C) displacement predictions. Performing predictions of all other data is optional. The two
locations for the displacement measurements are for the central block and are shown in Figure 1
with the red circle. The location of the crack opening meter is shown in Figure 2. The team
analyzed and predicted data for these three data sets only (both required data sets and one
optional set). Measurements on the datasets was provided at 1.5-week intervals between 2000
and 2013 which are to be used as a calibration period. Both short term and long-term predictions
are required for 6-months of 2013 and 2013-2017 respectively. For all predicted values, it is also
requested that low and high warning levels be identified. These warning levels indicate that there
may be a dam safety concern if the measured values fall outside of the warning level range.
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Figure 1. Displacement Measurement Locations
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Figure 2. Crack Gauge Location
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2 DATA USED FOR CORRELATION

The environmental data provided consist of reservoir elevation, air temperature, and rainfall.
All of the environmental data was provided at approximately daily measurement intervals for the
full period of record including the prediction time periods (i.e. 2000-2017). Two ambient air
temperature measurements were provided, referred to as T_a and T_b. T_a is recorded air
temperatures from a nearby weather station 50 km from the dam at a different altitude than the
dam. T_bis interpolated between weather stations to correspond to the dam site, including the
altitude. Rainfall would be expected to effect seepage but has only a tangential effect on
displacements and is therefore not used as a prediction variable. The displacement behavior of
the dam is expected to be heavily dependent on reservoir level and temperature. While on first
glance T_b would be expected to be superior to T_a, there is a closer correlation between T_a
and displacement, possibly due to errors in the interpolation approach. Therefore T_a and water
elevation are used to predict the displacement response.

3 EVALUATION OF FINITE ELEMENT MODEL

A finite element model of the dam was supplied with the data package. The USACE team is
currently using LS-DYNA for finite element analysis. The provided model is built completely with
tetrahedral elements, which gives poor results in LS-DYNA. A test model was run without a
reservoir and there are substantial stress concentrations along the foundation contact due to the
element type. The LS-DYNA model is therefore not used to make the final predictions. However,
it was noticed that without a reservoir, the dam will tend to tilt upstream, putting the dam and
abutments in tension. We should therefore expect crack opening displacements when the
reservoir is very low.

4 DATA ANALYSIS APPROACH

A data analysis approach is used to perform the required predictions. The team used a
simplistic method utilizing the correlation between water level and temperature to the
displacement of the dam. The data is first sorted and processed to be most indicative of the
performance. The data was subdivided and processed using the following approach:

1. The daily variations in air temperature do not immediately affect the displacement of the dam.
It takes time to warm/cool enough of the dam mass to have a measurable effect on the
structural response. Therefore, a two-week running average of the daily temperature is used,
which provides the best fit to the data.

2. The effect of the water level on the dam displacement is based on the force that the water
applies to the face of the dam. The water level is therefore converted to a pseudo force
(referred to here as the head) by subtracting the empty water level elevation of 154 m from
the measured water level at any given time and squaring the difference. Unlike temperature,
the water level is expected to have a near immediate effect on the displacement, so daily
measures values were used.

3. The crack opening gauge at the base of the dam indicates that the crack opens during high
pools. The dam displacement response to head and temperature is different when the crack
is closed, open a small amount, or open a large amount. To capture this effect, the data was
subdivided into three subsets: Crack displacements of less than zero (i.e. the crack is in
compression), crack displacements between zero and 1.85 mm and crack displacements
greater than 1.85 mm. Based on the available data, using 1.85 mm as the crack displacement
threshold value to discretize the data was found to return the highest correlation between
displacement and temperature/water level.

4. Within each crack opening subset, the data was further divided into numerous discrete pool
ranges, where the size of each pool range was set to be as fine as possible, while still leaving
a reasonable number of data points across a range of temperatures. The minimum number of
data points was in the highest pool range with 12 points spanning 8 to 21°C.
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5. Within each sub dataset, the effect of crack opening and pool elevation are therefore held
approximately constant, and the data is plotted against temperature. The displacement data
was found to be approximately linearly related to temperature.

4.1 Displacement correlation

Based on the data processing approach presented above, the relationship between
temperature and crest displacement for two arbitrarily chosen example pool ranges is shown in
Figure 3. While the dam displacements vary in time, once the effects of temperature and reservoir
level were removed, no strong pattern in time was detectable. Therefore, the prediction proceeds
using only reservoir level and temperature.
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Figure 3. Crest displacement relationship to temperature with reservoir level held relatively constant

As the pool increases, both the slope and intercept of the temperature-displacement
relationship also increase. The slope and intercept can be plotted, and a curve fit to these
parameters as shown in Figure 4. This process is repeated for the three crack opening datasets.
This results in a relationship between head on the dam and ambient temperature with
displacement given in Equation (4). This process is repeated for both pendulum displacement
(CB2 and CB3) gauges to determine the set of empirical constants for each. The empirical
constants vary for the three crack opening ranges, therefore the crack opening must be predicted
prior to using (4).
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Figure 4. Slope and intercept of lines from Figure 3 as a function of head
A= (c;H? + cyH + ¢3)T + c4H + cs 4)

Where ci1.5 = empirical constants

A = Displacement (mm)

H = Head (m?) = (pool elevation- reservoir bottom)?
T = temperature (°C)

131



Corbett, Lyvers, Dominic
CORRELATION BASED PREDICTIONS OF ARCH DAM DISPLACEMENTS

4.2 Crack opening correlation

The crack opening is primarily driven by the head on the dam, with some influence from the
temperature. A curve is fit to the data for low (<7° C) and high (>20° C) temperatures, and
intermediate curves are interpolated between these two temperature extremes as shown in
Figure 5.
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Figure 5. Head vs. crack opening relationship

4.3 Crack opening prediction

Using the relationship in Figure 5, the crack opening can be approximated for the full study
period as shown in Figure 6 as the blue “Predicted” line. Also plotted are the measured values for
comparison. The warning levels are also plotted. The warning levels for the crack opening are set
such that approximately 90% of the data falls within the warning levels. The rationale for using
the variability of the measured data is if the measured crack opening is outside of the historic
expected variability, then there may be an issue with the dam. To more clearly see the three
datasets, Figure 7 shows a close-up of Figure 6 spanning a portion of the calibration period and
the prediction period. The predictions do not go below a value of -2.34 mm as this appears to be
the limit of the gauge. This means there is also a warning level at -2.34 mm as this may indicate a
problem with the dam and/or the gauge.
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Figure 6. Crack opening prediction (CB 4-5)
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Figure 7. Closeup of Figure 6

4.4 Displacement prediction

Utilizing the calculated crack opening, the pendulum displacements can be calculated with
Equation (4). The predicted, measured, and warning level displacements are shown in Figure 8
and Figure 10 The warning levels here are calculated similarly to the crack opening warning levels
based on the expected variability at a given temperature/pool combination. However, there is a
second consideration in the displacement warning levels based on the observation that at low
pools the dam may go into tension. At extreme low pools the warning levels are shifted such that
the predicted values fall outside of the warning level. This is identified in the data as the point
where the measured displacements are least affected by temperature (i.e. pools where the
temperature-displacement slope approaches zero). This can be seen for displacement at the crest
in Figure 8 and Figure 9 during the extreme drawdown at the beginning of 2016. Through most
of the record, the predicted (blue) line is between the upper and lower warning levels. However,
at the beginning of 2016 the predicted values are below the lower warning limit, indicating there
may be an issue with the dam at this time. The same effect can be seen for displacement at the
base in Figure 10 and Figure 11.
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Figure 8. Top: reservoir elevation, bottom: displacement at crest (CB2)
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Figure 9. Closeup of bottom of Figure 8.
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Figure 10. Displacement at base (CB3)
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5 CONCLUSIONS AND INTERPRETATION

The predicted displacements are considered reasonably close to the measured values given
the simplicity of the model with only two predictor variables: water level and temperature. A
closer prediction may have been obtained with additional data, however with additional
dimensions a more complex data analysis approach may have been necessary. Furthermore,
temperature data measured at the dam (rather than interpolated) would have likely resulted in
a closer prediction.

In general, this type of model can be used to identify anomalous measurements which then
must be investigated by other means. It is difficult to utilize this type of model to evaluate the
dam behavior for loadings that have not been experienced at any time in the calibration period.
The finite element model was used in a limited capacity to identify a potential issue that may
result during periods of deep drawdowns. There are two periods in the past where the reservoir
was low enough to cause concern during the calibration period: 2003 and 2006. Additional
information from these events could be used to inform later drawdowns, such as in 2016. Without
any further analysis, this model would predict cracking of the dam during the 2016 low water, but
it is difficult to ascertain the degree of damage. Since the 2016 low water is lower than has
previously been experienced, the predictions at this time may be worse than at higher pools,
particularly if damage to the dam occurred, which could affect future response.
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ABSTRACT: The double curvature arch dam, located in the south of France, proposed for the
16" International Benchmark Workshop on Numerical Analysis (theme A) was numerically
studied using computational modules based on finite element method developed by the
authors for dam analysis. The dam behavior was also assessed with regression based separation
of effects models (SEM), following a hydrostatic-seasonal-temperature approach, taking also
into consideration the predictions obtained with the finite element analysis that was carried
out. Given that the developed numerical modules adopt preferentially 2" order 20 node brick
elements, a new numerical model of the dam and its foundation was built from the geometry
files given by the organizing committee. The developed finite element model considered the
contraction joints and the dam/foundation interface. A thermal analysis was initially carried
out, using a transient analysis model, followed by several mechanical analyses including the
gravity load, the hydrostatic pressure and the temperature variations resulting from the
thermal analysis. Different nonlinear models were considered at the dam/foundation interface
and at the contraction joints, and two different contact interface approaches were adopted,
hard and soft contact approach. Results of the sequentially coupled thermal/mechanical
numerical analyses are presented and discussed. Finally, the results of the regression based
SEM predictions models are also compared, and the relevance of using the finite element model
inputs in the SEM is discussed.
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1 INTRODUCTION

The double curvature arch dam, located in the south of France, was numerically studied using
computational modules based on finite element (FE) method developed by the authors for
concrete dam analysis. The dam behavior was also assessed with regression based separation of
effects prediction models (SEM) following a hydrostatic-seasonal-temperature approach, Wilm
and Beaujoint (1967). In the adopted displacement prediction model, the results obtained with
the finite element analysis that was carried out were incorporated in the SEM, Silva Gomes and
Silva Matos (1985) and Rodrigues et al. (2021).

The thermal numerical analysis was carried out with the numerical module PAT, Schclar Leitdo
(2011) and Castilho et al. (2018) which adopts a transient analysis, including Dirichlet boundary
conditions (concrete/water and foundation/water) and Robin boundary conditions (concrete/air
and rock/air interfaces). The mechanical analysis was carried out with two different numerical
models, the finite element module Parmac3D, Azevedo & Camara (2015) which uses an explicit
solution algorithm based on the central difference method and a dynamic relaxation algorithm
for static convergence, and adopts a soft contact approach for the interface finite element models
and a FE module, PAVK, Schclar Leitdo (2021), that adopts a global matrix static solution approach
using a Newton-Raphson algorithm for nonlinear analysis, following a hard contact approach with
a high penalty stiffness value for the interface finite element elements.

Given that both mechanical numerical codes, PAVK and Parmac3D, use preferably 20-node 2"
order brick elements, a new finite element model of the dam and its foundation was built from
the geometry files given by the organizing committee. The contraction joints and the
dam/foundation interface were included in the developed model. Firstly, a thermal transient
analysis was carried followed by the mechanical analysis, using sequential coupling. In the
mechanical module PAVK a zero tensile strength behavior was adopted for both the contraction
joints and for the dam-foundation interface. In the mechanical module Parmac3D a Mohr-
Coulomb constitutive model with zero tensile strength and zero cohesion was assigned to the
interface elements representing the contraction joints. For the dam-foundation interface a brittle
Mohr-Coulomb model with a non-zero tensile and cohesion stress value was adopted. The
authors have also developed computational models for the hydromechanical model of dam
foundations, Farinha et al. (2022), but due to time constraints it was decided not to perform an
analysis of this type for the prediction of piezometric heads and seepage flowrates.

Results of the coupled thermal/mechanical numerical analyses are presented and discussed.
Finally, the results of the regression-based SEM models are also presented, and the relevance of
using the FE model inputs in the adopted SEM is discussed.

2 FINITE ELEMENT MODEL

2.1 Model description

Figure 1 shows the numerical model that was used for both thermal and mechanical analyses.
The dam is simulated by a group of finite element elastic blocks separated by joints, which
represent vertical contraction joints. For the mechanical analysis, the arch dam was divided into
13 blocks separated by radial vertical contraction joints.

The dam body is discretized with 606 2nd order hexahedral finite elements, with 264 2nd order
8x8 node zero thickness interface elements to model the contraction joints, corresponding to a
total of 6241 nodal points. The foundation is divided into three zones, left bank (Z1), bottom of
the valley (Z2) and right bank (Z3), corresponding to a total of 1936 2nd order hexahedral finite
elements and 12563 nodal points. The dam/foundation interface is discretized with 132 2nd
order 8x8 node zero thickness interface elements. As shown in Figure 1, The dam comprises three
layers of 20 node solid elements through its thickness.
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Z]

a) 2" order 20 node brick
isoparametric elements
representing the dam and its
foundation (Z1 — Left bank, 22 —
Valley bottom and Z3 — Right bank)

b) 2" order 8x8 node zero thickness
interface finite elements
representing the dam/foundation
interface and the contraction joints.

c) Observation points — Pendulum
CB2 and CB3, including the adopted
radial direction and foundation
extensometer C4-C5.

Figure 1. Numerical model for thermal and mechanical finite element analysis.

2.2 Material properties and boundary conditions

The material properties considered for both the thermal and the mechanical analyses follow
closely the reference values defined in the benchmark. A thermal expansion of 1.0x10°/C2 was
adopted for concrete, which is the usual value adopted in Portugal for dam concrete, Schclar
Leitdo (2021). Several mechanical parametric studies were carried out using different Young
modulus for the concrete dam and for the foundation, but it was decided to present only the
results that adopted mechanical values close to the adopted in previous dam assessments,
according to the benchmark organizers. In our point of view in order carry out a comprehensive
numerical study it would be necessary to know the observed displacement field in more locations
and to have more details regarding the dam concrete and its foundation. A linear elastic isotropic
model was adopted for the foundation, given that the adopted mechanical modules do not have
the ability to model an orthotropic material.
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Table 1 and Table 2 present, respectively, the adopted material properties for the volume finite
elements and for the interface finite elements, module Parmac3D. In the mechanical module
PAVK, a hard contact approach was adopted with a high penalty value of 2200 GPa/m for the joint
interface normal and shear stiffness.

In the mechanical module (Parmac3D) a Mohr-Coulomb constitutive model with zero tensile
strength and zero cohesion with a friction angle of 452 was assigned to the interface elements
representing the contraction joints. For the dam-foundation interface a brittle Mohr-Coulomb
model with a non-zero tensile stress (2.0 MPa) and a nonzero cohesion stress (6.0 MPa) with a
friction angle of 452 value was adopted.

Table 1. Material properties of the volume elements.

Material Young’s modulus Poisson’s ratio  Density

E (GPa) 1 %4 -) O (kg/m3)
Concrete 22.0 0.20 2400
Foundation - left bank (Z1) 1.0 0.20 2700
Foundation - Valley bottom (Z2) 1.0 0.20 2700
Foundation - right bank (Z3) 10.0 0.20 2700

Table 2. Material properties of the joint elements — Module Parmac3D.

Interface Normal stiffness  Shear stiffness
kn (GPa/m) ks (GPa/m)
Concrete/Concrete 220.0 88.0
Concrete/Foundation (Z1) 10.0 4.0
Concrete/Foundation (Z2) 10.0 4.0
Concrete/Foundation (Z3) 100.0 40.0

In the mechanical analysis the nodal displacements at lateral boundaries of the foundation and
at the base of the foundation were prevented in module Parmac3D simulations and in the PAVK
simulations only the node displacements at the base of the foundation were prevented.

In the thermal analysis, all air-exposed boundaries were subjected to convection heat transfer
boundary conditions, and, in the case of dam surfaces, solar radiation flux absorption boundary
conditions were also applied. Specified water temperature boundary conditions were applied at
the upstream nodes below the water. Adiabatic boundary conditions were applied at the lateral
boundary of the rock mass foundation. Bottom nodes of the foundation were prescribed with a
temperature of 4 °C.

In the convection boundary condition, the air temperature T_b was introduced as a table of
discrete values and the given convection coefficient of 13 W/(m2 K) was used.

In the solar radiation boundary condition, the radiative model reported by Kumar et al (1997)
was applied. To this aim, it was considered that the downstream face of the dam faces South
West with its axes forming an angle of 37° with the South, a geographical location of 42.582N,
1.8959E and an absorption coefficient of 0.65. Since the Kumar’s model is a clear sky model, that
is, under cloudless sky conditions, the beam irradiance was reduced by a factor of 0.30 each time
that the rainfall was greater than 10 mm.

For the definition of the water temperature boundary, that is, the elements above or below
the water, a discretization of the level of the reservoir in bands compatible with the mesh was
adopted.

2.3 Numerical analysis sequence

The thermal analysis started in 1995 and a fully implicit solution procedure was used with a
one hour time step. The thermal analysis allowed the definition of the thermal field in the
concrete dam and foundation every forthnight from the 1st of January of 2000 to the 31st of
December of 2017.

In the mechanical analyses that were carried out the gravity loading, the hydrostatic pressure
and the thermal field were applied at each loading stage that represent a 15 days behaviour. In
the nonlinear analysis, a dynamic relaxation algorithm using an explicit central difference scheme
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was adopted at each load step in the Parmac3D module and a Newton Raphson algorithm was
adopted in the PAVK computational module that adopts a global stiffness matrix static solution.

3 MODEL OF SEPARATION OF EFFECTS

3.1 Model description

A Separation of Effects Model (SEM) based on a hydrostatic-seasonal-time (HST) model, Wilm
and Beaujoint (1967), was adopted for the prediction of the observed data (pendulum and
foundation displacements, piezometric head and total seepage flowrate). As mentioned before,
in the prediction of the displacement fields, the results obtained with the finite element analysis
that was carried out were incorporated, Silva Gomes and Silva Matos (1985) and Rodrigues et al.
(2021), namely the numerical displacement predicted at the points of observation due to the
imposed temperature field assuming an elastic behaviour. The adoption of the FE elastic
prediction due to the temperature field was found to lead to a better agreement between the
SEM model prediction and the observed data. The incorporation of the FE predictions within a
SEM model requires that a FE model is available and that the numerical results are constantly
updated with the new water level and temperature values. The adopted SEM was based on the
following functions:

Prediction (h,T,t)= ét(ﬂ}]l]) + Dfﬁgii) + th(ﬁ) +k
) ( )

ah+ayh® +ash® +agh* +ash®  ag cos(s)+ay sin(s)+ag sin® (s)+ay cos(s)sin(s) @ log(1+£/300 ( 1)
or

a5 FE . jiction (T)

The same SEM model was adopted for the long-term and for the short-term predictions using
the provided data, namely the water level (h), and the monitored data throughout 13 years of
observation (2000-2012).

3.2 Warning levels

The safety margin reference values were chosen according to the team members experience,
mostly for pendulum displacements interpretation. The warning levels were chosen given the
standard deviation of the difference between the predicted values, adopting a SEM model, versus
the monitored data that was supplied by the benchmark organizers. An interval of +- 3 times the
standard deviation was adopted in all sensors.

Observed values with a difference from the prediction values higher than 5 times the standard
deviation should be immediately analyzed. It is important to assess the reason behind this
difference, which can be due to equipment failure or due to a change in structural behavior that
was not being included in the prediction model (damage due to swelling) or it can be an
acceptable behaviour not represented by the model prediction.

In the analysis that was made for this dam and for the data that was received, it was found that
a value of +- 3 times the standard deviation significantly reduces the days with warning levels
along the 2000-2012 monitoring period. It was assumed that the monitored behaviour between
2000 to 2012 was a normal behaviour. To point out that an interval of +- 3 times the standard
deviation is meaningful when the SEM predictions are in excellent agreement with the observed
data, which as is later shown does not occur when analysing the seepage observed data,
nevertheless a similar value was adopted.

4 MAIN RESULTS

4.1 Finite element predictions

Figure 2 compares the displacement field FE predictions from the 1st of January 2000 to the
31st of December 2012 with the pendulum observed data. It is shown that the PAVK elastic
mechanical model predicts a response in close agreement with the Parmac3D mechanicals
models (elastic and nonlinear). From the obtained numerical results it is clear that the different
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support conditions adopted in each mechanical model do not have a meaningful influence on the
predicted response. Nevertheless, the nonlinear response predicted with the PAVK module does
lead to a slightly different response, which was expected as the nonlinear behaviour adopted in
the dam/foundation interface is much more brittle (no tensile strength or cohesion for positive
gap) than the model adopted in the PARMAC3D nonlinear mechanical model (maximum tensile
strength and cohesion values up to failure).

The predicted pendulum numerical responses have a reasonable agreement with the observed
data. Given the time constraints it was decided not to perform a parametric study in order to find
the mechanical parameters that lead to a better agreement with the observed data. For this type
of analysis, it is important to have more than one pendulum lines observations in order to proper
calibrate the dam and the foundation elastic properties.

Regarding the foundation displacement sensor C4-C5, Figure 3, it is possible to observe that
the Parmaca3D mechanical models, elastic and nonlinear, predict a numerical response closer to
the observed data than the response predicted with the PAVK mechanical models. This is due to
the fact that in the Parmac3D mechanical module a soft contact approach is adopted, and the
dam/foundation interface has a much higher deformability, when compared to the PAVK module.
A similar result would have been obtained with the PAVK module if a more discretized foundation
was adopted closer to the dam/foundation interface with a lower Young’s modulus. A soft contact
approach is from the physical point of view less rigorous, but it has the advantage of allowing the
interface to contribute to the overall displacement field, which sometimes can lead to a better
numerical prediction with a less refined discretization when compared with mechanical modules
that adopt a hard contact approach.
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Figure 2. Observed versus numerical pendulum displacement field time series — 1% of January 2000 to 31
of December 2012.
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Figure 3. Observed versus numerical displacement field time series — Foundation displacement sensor
C4-C5 — 1% of January 2000 to 31° of December 2012.

Figure 4 shows the damage at the dam/foundation joint interface integration points predicted
with the Parmac3D module. Given the adopted brittle interface model, the damage is either 1,
cracked integration point, or 0, which means that the integration point is still under an elastic
behaviour. It can be seen that the Parmac3D nonlinear model predicts an extensive cracking at
the dam/foundation in the vicinity of the right bank (foundation zone Z3). To further understand
if this really occurred it would be important to analyse data collected in monitoring equipment
installed in this area.

The presented finite element predictions clearly show that the thermal/mechanical coupled
response in the linear regime can be performed with the available modules. Similar results have
also been obtained within viscoelastic and damage regime. In our point of view the principal
numerical focus should be in the development of models that also consider the hydromechanical
response, Braga et al. (2022).

I 0.9
0.

a.2
a.1
0.0

Figure 4. Damage distribution at the dam/foundation interface predicted with the mechanical module
Parmac3D — Nonlinear model — 315 of December 2017.

4.2 Separation of effects predictions

Figure 5 shows the pendulum displacement field SEM calibration period and the SEM
predictions from the 1st of January 2012 to the 31st of December 2017, following the usual HST
approach (SEM.HST) and a hybrid approach adopting the FE analysis radial displacement field
associated to the temperature field as the function representing the temperature effect (f; (t)).
Figure 5 also shows the observed data from the 1st of January 2000 to the 31st of December 2012
adopted to calibrate the SEM model through a regression analysis. With the introduction of the
FE predicted radial displacement the correlation coefficient was slightly increased from 0,93 to
0,95, as shown in Figure 5, where the SME.HST.FE slightly higher peaks are predicted when
compared with the traditional SEM model.
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Figure 5. Observed versus SEM prediction pendulum CB2 displacement field time series — Calibration: 1% of
January 2000 to 31 of December 2012 — Prediction: 1°t of January 2013 to 31 of December 2017.

Figure 6 shows the radial displacement at pendulum CB2 SEM function associated to the water
level influence (f1 (h)) and the FE radial displacement predictions adopting the module Parmac3D
for both a linear and a nonlinear model. It can be seen that with the introduction of the FE
predicted radial displacement, the water level influence slightly changes, being the SEM.HSM.FE
predicted curve stiffer for water levels higher than 15 m, when compared to the response
predicted with SEM.HSM.

Figure 6 also shows that the adopted FE model, linear and nonlinear, has a significant influence
on the predicted response. The SEM water level prediction can be used to calibrate the FE
material properties but a higher number of observed dam displacements and a better description
of the dam foundation zoning and properties need to be made available in order to proper
calibrate the FE model. with SEM.HSM.
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Figure 6. Pendulum CB2 radial displacement evolution with water level - SEM predictions versus FE
predictions.

Figure 7 shows the total seepage flowrate SEM calibration period and the SEM predictions from
the 1st of January 2012 to the 31st of December 2017, following the usual HST approach. For this
type of data the lowest correlation coefficient of 0,50 showing that the adopted SEM model does
not satisfactory explain the observed behaviour. Note that in the several attempts that were made
the rainfall data and the derivative of the water level, Desideri (1985) were adopted in the SEM
models but it was not possible to obtain a better correlation with the observed data. There is no
perfect match between the rainfall peaks or 1% derivative peaks with the observed seepage values.
Nevertheless, a similar SEM model has been shown to give a good agreement for seepage data,
Farinha (2010), nevertheless for this better agreement it was important to separate the seepage
values into two more than a zone and also to address the seepage origin. The difficulties in carrying
out a successful SEM prediction show that the current SEM models for the interpretation of the
hydraulic response need to be further improved in order to have better predictions.
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Figure 7. Observed versus SEM prediction total seepage flow rate time series — Calibration: 1% of January
2000 to 31° of December 2012 — Prediction: 1% of January 2013 to 31 of December 2017 — Including
warning levels

5 CONCLUSIONS

The double curvature arch dam, located in the south of France, was numerically studied with
thermal and mechanical computer codes purposely developed by the authors for dam analysis.
The predicted displacement field numerical responses have a reasonable agreement with the
monitored data. Due to time constraints, it was decided not to perform parametric studies in
order to obtain an even better agreement. In previous studies where the research team has been
involved it was found to be important to perform the parametric studies for more than one
location of pendulum lines.

The difference between a soft contact approach and a hard contact approach for the interface
elements was discussed. It was shown that even if a soft contact approach is not as physically
correct as the hard contact approach, it can lead to a better overall agreement. Nevertheless, the
results show that in the vicinity of the dam/foundation interface a more refined discretization
with lower Young’s modulus should be adopted in order to have a better agreement with the
observed response at the dam foundation.

The presented finite element predictions clearly show that the thermal/mechanical coupled
response in the linear regime can be performed with the available modules. Similar results have
also been obtained within the viscoelastic and damage regime. In our point of view the principal
numerical focus should be in the development of models that also consider the hydromechanical
response.

The dam behavior was also assessed with separation of effects regression based prediction
models following a hydrostatic-seasonal-temperature approach. During the displacement
analysis it was found to be relevant to adopt in the SEM model the results obtained with the finite
element analysis, namely the response obtained with an elastic model for the imposed
temperature field. The prediction analysis that was performed also shows that the current SEM
models for the interpretation of the hydraulic response need to be improved in order to have
better predictions.
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ABSTRACT: The paper presents a study carried out to predict the response of some parameters
measured on a concrete arch dam through statistical model, proposed as theme A in the frame
of the 16" International Benchmark Workshop on Numerical Analysis of Dams. The prediction has
been carried out using an ensemble model combining a linear regression model and a SARIMA
model. The prediction has been performed for the displacement of two pendulums located at
different levels, the opening of a crack on the foundation and a piezometric level.
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1 INTRODUCTION

As part of the innovation and digitalization process of ENEL Green Power hydroelectric plants,
the PresAGHO (Predictive System and Analytics for Global Hydro Operation) project was launched
in September 2018, aimed at developing a predictive diagnostic process integrated into the
maintenance process. In this context, starting from 2020 the project was extended to civil works,
and the platform called "Dam Behavior" was developed with the aim of making available an
integrated system for data quality analysis and structural measures processing for large dams,
allowing predictive analysis and anomalies detection in the time series of the parameters. The
algorithms used in “Dam Behavior” at the moment considers two models, one based on a
multivariate analysis through a linear regression model, whereas the second is a SARIMA model.
The two models are considered with different weights depending on the type of parameter
analyzed, and its correlation with the cause parameters. The aims of the of the “Dam Behavior”
platform is to perform anomaly detection using models which do not require a significant effort
by the user in terms of model definition. For such reason, the models used consider a limited
number of cause parameters and the required input are minimized. Consequently, this may result
in a little less accurate model, nevertheless simple and reliable, that can be applied to a wide
range of different parameters. To perform this “model generalization” in linear regression model,
when the cause-and-effect parameters are not strongly correlated, it is necessary to preprocess
the data applying a procedure of de-seasoning, which will be described in the section 3, to
account for the seasonal effects.

To apply the procedure developed in the Enel “Dam Behavior” platform, to the prediction of
the response of the double curvature arch dam proposed in the Theme A for the 2022 ICOLD
International Benchmark Workshop on Numerical Analysis of Dams, an ensemble model will be
defined combining, using a weighted average, the SARIMA and linear regression model. The
weights are defined based on engineering judgement depending on the parameter considered.
The algorithms have been implemented in Python environment. The typical interval of period
considered in the “Dam Behavior” platform is of a yearly seasonal cycle, backwards or forward
with respect to the day of analysis depending if the interest is on anomaly detection, by
comparing model and measures, or a true prediction if the interest is on the definition of
threshold of the measures accounting for seasonal contribution (i.e., dynamic threshold). It is
worth notice that a “true prediction” implies that the cause parameters (e.g., water level,
temperature, etc.) are unknown, in this case the use of a univariate model, such SARIMA, may
help to reduce the epistemic uncertainty.

The characteristics of the dam, the monitoring system and the available measurements are
included in the paper of the formulator and will not be repeated in this paper for sake of brevity.
The prediction has been performed for the radial displacement of two pendulums located at crest
and foundation levels in the central block of the dam, the opening of a crack on the foundation
and a piezometric level.

2 DESCRIPTION OF THE STATISTICAL MODEL

The prediction of the response of the arch dam parameters is performed through an ensemble
model, obtained combining a linear regression model with a time series forecasting method using
SARIMA algorithm. The two models are combined through a weighted average, whose weights
are defined based on engineering judgement depending on the parameter considered as
described below.

One of the algorithms used for the prediction of the dam parameters is the regression analysis,
which represents a statistical approach to predict the values of one or more dependent variables
Y (i.e., defined predicted or estimated, corresponding to the effect parameters) from a set of
independent variables X (i.e., defined predictive, corresponding to the cause parameters). Linear
regression is one of the basic algorithms of supervised machine learning techniques. A linear
regression with multiple variables was used (i.e., multivariate linear regression). The estimated
value (7) through a multivariate linear regression can be expressed by the relation:

?=30+Z?=1Xj'ﬁj (1)
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The term linear refers to the sum of the model parameters (B;), each of which is multiplied by
a single predictive variable (Xj). By including the unit constant among the predictive variables
(i.e., X =[1, Xy, X2, ..., X,]), equation (1) can be rewritten in matrix form:
Y=x -B (2)
The unknowns of the problem are constituted by the vector of the coefficients of the model
(BT = [Bor B Bas -, Bp)). There are different methods for the evaluation of the model parameters,
the "fitting" of linear models is usually carried out by choosing the coefficients B that minimize
the sum of the squared residuals (least squares method):

RSS(B) =S\ (yi —x; )’ 3)

One of the predictive parameters is the time, which is considered linearly and is properly
normalized so that in the training period of the model it varies in an interval between 0 and 1.
The predictive parameter always considered in the regression is the water level, moreover
depending on the available data other parameters can be eventually considered, as discussed in
the in § 1.51. In order to improve the predictive capabilities of the model, additional
characteristics are considered by means of suitable polynomial expansions. For example, if X3
represents one of the predictive variables, the additional variables X, = X2, X3 = X3, etc. can
be considered.

The time series representing the dam response typically include seasonal effects characterized
by annual cycles (however, for the most temperature-sensitive parameters, cycles of a shorter
period, even daily, may also be present). The seasonal component can be conveniently
represented by a harmonic model through a Fourier series:

s¢(t) = Xh= [an " cos (Zn;llt) + by - sin (2”1'3"'5)] “

In which P is the period of the series, which for an annual seasonality is equal to 365.25 days,
while N is the degree of the Fourier series. Expression (4) is a linear function of the coefficients a,
and by, the resulting linear system can be inverted to derive the coefficients of the Fourier series
able to describe the seasonal contribution of the analysed time series. As part of the analysis of
time series characterized by annual seasonal cycles, a value of N equal to 6 is to be considered
sufficiently precise and furthermore allows no risk of "overfitting".

The quantification of the seasonal contribution can be used to perform an operation of "de-
seasoning" of the considered time series, which is obtained by subtracting the seasonal
contribution, obtained from the Fourier series described above, from the time series of the
considered parameter. Linear regression is performed on the time series after de-seasoning, with
the advantage of limiting the predictive variables to the normalized time and the basin level,
including the required polynomial expansion, but excluding the temperature. After the
regression, the seasonal contribution is added to the effect parameter to obtain the complete
model. The operation of de-seasoning is typically required when the correlation between the
effect parameter considered and the basin level is not very high, let say less than 0.85+0.9. This
procedure was developed and tested specifically within the “Dam Behavior” platform. Figure 1
shows as example the seasonal contribution of the water level.
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Figure 1. Seasonal contribution of the water level

The second algorithms used for the prediction is a Seasonal Autoregressive Integrated Moving
Average (SARIMA) model, which is well known algorithm developed for univariate time series
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forecasting with a seasonal component. For the mathematical details, the interested readers may
refers to the wide technical literature on this topic. The SARIMA model tool is implemented in the
statsmodels module of Python. Seasonal ARIMA models are usually denoted as
ARIMA(p,d,q)(P,D,Q)m, where p is the order (number of time lags) of the autoregressive model
(AR), d is the degree of differencing (the number of times the data have had past values
subtracted) (1), and q is the order of the moving-average model (MA), m refers to the number of
periods in each season, and the uppercase P,D,Q refer to the autoregressive, differencing, and
moving average terms for the seasonal part of the ARIMA model (Hyndman & Athanasopoulos,
2018). SARIMA requires a set of data with constant frequency, for such reason the time series has
been resample considering a weekly periodicity, furthermore to obtain the values in the desired
timestamp a liner interpolation has been carried out.

The order of the SARIMA model has been set to (1,1,1) (0,1,1) with 52 periods in each season,
the order has been maintained equal for each parameter analysed. They are selected based on
an extensive analysis on the ENEL “Dam Behavior” platform because represents a good
compromise between simplicity of the model and accuracy of the results. For the set of
parameters considering in this work, the “autoarima” function has been used to obtain the best
order of the SARIMA model, however the improvement of the fitting in negligible.

Despite the fact that the SARIMA is a univariate model, under particular conditions the use of
SARIMA model provides a reliable alternative to the linear regression model and it is able to
reduce the epistemic uncertainty. In order to identify the weight of the SARIMA algorithm in the
ensemble model, two aspects are to be taken into account: the dependence of the water level
and the duration of the period of prediction. Particularly, the use of SARIMA is more reliable when
the effect parameters considered has Pearson correlation with basin level less than 0.85. Under
such conditions, the response of the dam is affected by thermal effects, and it is characterized by
a strong seasonal contribution, which can be properly captured by the SARIMA algorithm. This
could be the case of the crest radial displacement of a concrete arch dam. Moreover, the use of
SARIMA should be limited to the prediction not exceeding the yearly seasonal cycle, also in
relation of the autoregressive nature of the algorithm which is more conditioned by the last part
of the training period. It is worth notice that the limitation of the prediction period to not more
than 20% of the length in the training period represents in general a good role for any kind of
model, for such reason the 5-year prediction for the case C of this benchmark represents a
challenging task.

Based on the previous consideration, the weights of the linear regression and SARIMA model
used to define the ensemble model are defined based on engineering judgement. Particularly,
when the effect parameters considered has Pearson correlation with basin level higher than 0.85,
the weight of the SARIMA model is limited to less than 10%, in other conditions the weight of the
SARIMA model can be larger. Such weight can be eventually differentiated under short- and long-
term conditions, with lower weight in the last case. The selected weights will be discussed in § 38
in relation to the effect parameter considered.

The warning levels are evaluated considering 95% confidence intervals of the ensemble model.
In relation to the Gaussian distribution of the residual, the 95% band of confidence are
constructed considering 1.96 standard deviations of the mean. This choice can be considered a
good balance, because avoid narrow thresholds, which may result in false anomalies, as well as
wide ranges, which are not able of a prompt detection of unexpected behaviour, malfunctioning
sensors, etc.

2.1 Analysis of the available measurement and modelling assumptions

The data used for the analysis are included in the excel file named ‘ThemeA_data_fmt03.xlsx’
pre-processed by the formulators, which includes all variables in one sheet with a common time
vector in the format dd/mm/yyyy.

The first step to identify the key parameters to be included in the statistical model was the
analysis of the correlation among the available parameters. Figure 2 shows the correlation matrix
which allows to clearly identify that there is a set of parameters, such as the piezometric levels
and the crack opening displacement that are strongly correlated with the water level, moreover
also the radial displacement of the pendulum at the foundation has a high correlation with water
level.
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Figure 2. Correlation matrix between the available measures

The behaviour of a concrete arch dams is mainly governed by the ambient variation in temperature
and water level. This can be inferred also by observing the moderate correlation between the radial
displacement of the pendulum at the crest and water level. If the water level can be included in a
statistical model directly in an easy way, accounting for the effects of the temperature is more
complex, due also to the inertial characteristics of the dam. The thermal effects strongly affect the
seasonal contribution of the response, especially for thermal sensitive parameters of a concrete dam,
e.g. the crest radial displacement. For the Theme A of the benchmark two temperature time series
has been provided (namely T_a and T_b). T_a measurements are carried out according to the
standard of WMO (World Meteorological Organisation) and are located 50 km from the dam,
however at a different altitude. T_b is calculated by interpolation from several air temperature
measuring stations. The interpolation takes into account the altitude of the dam and is calculated on
amesh of 1 square kilometre. Both T_aand T_b are not measured at the location of the dam, for such
reasons the statistical model considered for this work does not include the temperature as input
parameter, because when required, the seasonal contribution is considered through the “de-
seasoning” procedure described in the previous section.

Among the available cause parameters, the rainfall does not show a high level of correlation with
any parameters and after a check to exclude specific influence on the interested parameters, it will
not be considered in the analysis. Moreover, the measures came from a rain gauge located about 5
km from Dam, it is not able to capture local phenomenon which may eventually affect the response
of the dam. For such reason is not used in the statistical model.

Summarizing, the cause parameters considered in all the effects parameters for linear regression is
only the water level, and consequently the related input parameter considered is the degree of the
polynomial expansion. Moreover, in the cases in which there is moderate correlation between the
effect parameter considered and water level (i.e. Pearson correlation less than 0.85+0.90), the linear
regression is preceded by a “de-seasoning” procedure to account indirectly of the thermal effects
induced by the seasonal cycle. Under such conditions the degree of the Fourier series is required.

The time series of the water level in the prediction period shows some interval in which the water
level is below the toe of the dam, this aspect needs to be taken into account in the model for two
reasons. The former of mathematical nature, it is related to the fact that only in few situations in the
training period the water level goes below the foundation level, consequently the statistical model is
not well constrained below that value. This means that using a polynomial expansion for the water
level, in the prediction period below some level, the polynomial contribution is outside the calibration
interval, that means extrapolation of the data which can lead to unrealistic results. Moreover, there is
a physical aspect related to the fact that the dam is located on the top of a glacial threshold, and
therefore when the water level is lower than 196 m, the whole upstream surface is exposed to
ambient air temperature. Under such condition, the water level must not affect the response of the
dam. To account for this aspect in the statistical model a modified water level is considered, which is
obtained from the measured values but considering a constant value below a limit water level. This
limit has been selected equal to 195 m, and it is considered the same for each parameter analysed.
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The selected value corresponds to the position of some instruments such as the top of pendulum CB3,
the head of the crack opening displacement sensor as well as of the piezometer PZCB2.

The period of calibration of the model may affect the goodness of fit in the training period and
consequently is considered an input parameter of the model and it will be selected depending on the
parameter considered.

The statistical models have been developed for the two radial displacements of the pendulums, at
crest and foundation level, for the crack opening displacement named C4_C5, and for the piezometric
level PZCB2. Conversely, the prediction model is not performed for the piezometric level PZBC3,
because a leakage in the standpipe of piezometer was found in the past, and a cleaning of the drainage
system was carried out. For such reason, the time series of piezometric level PZBC3 contains missing
values in a certain interval of time and a change in the trend. Moreover, also the prediction model of
the seepage is not performed.

3 MODELLING RESULTS

The Theme A is organised into three Cases, in accordance with the period of analysis:

e (Calibration (Case A): 2000-2012.

e Short term prediction (Case B): January 2013 - June 2013

e |ongterm prediction (Case C): July 2013 - December 2017

The following sections describes the results of the statistical models for the parameters
considered for the three cases listed above.

3.1 Pendulum displacement - CB2_236_196

The instrument named CB2_236_196 represents the radial displacement of the pendulum in
the central block (CB) of the dam, between the altitudes 236 m (just under the crest Dam) and
196 m (toe of Dam). The unit of radial displacement is mm, and an increasing of the value
indicates a movement of the highest point in the downstream direction.

The Pearson correlation between the radial displacement of the pendulum at the crest and the
water level is equal to 0.62, as expected the correlation is not very high because the radial
displacement of the crest of an arch dam is governed by the combination of both hydrostatic and
thermal effects. For such reason, the linear regression is performed after the operation of the de-
seasoning of the radial displacement and water level time series. The degree of the Fourier series
of seasonal contribution is equal to 6, Figure 3 shows the yearly seasonal component obtained
through equation (4), as well all the box plot with quartiles, whiskers bar with the 5+95 percentiles
and outliers. The prediction is performed separately for the short and long period, in the short
period, the weight of SARIMA contribution in the ensemble model is assumed equal to 0.4 and
the degree of polynomial expansion of the water level in the linear regression is equal to 3.
Conversely for the long period the weight of SARIMA contribution in the ensemble model is
limited to 0.1 and the degree of polynomial expansion of the water level in the linear regression
is equal to 2. The training period considers 12 years of measures.
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Figure 3. Seasonality of radial displacement of pendulum CB2_236_196 - High: Box plot with quartiles,
whiskers bar with 5+95 percentiles and outliers; Low: Yearly seasonal component obtained through Fourier
series.
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Table 1 summarizes the input data of the ensemble model as well as the goodness of fit
parameters in the training period in terms of coefficient of determination (r?) and normalized
root mean square error (NRMSE). Figure 4 shows the calibration of the pendulum crest radial
displacement model (Case A) with the comparison between model and measure, as well as the
corresponding residual distribution. Figure 5 shows the water level and radial displacement of
pendulum (CB2_236_196) in the short- and long-term prediction period (Case B and Case C).
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Figure 4. Case A — Calibration: radial displacement of pendulum CB2_236_196, comparison between model
and measure and corresponding residual distribution.

Table 1. Parameter CB2_236_196: input data of the model and goodness of fit parameters in the training
period.

Prediction Training weights De-seasoning/  Pol. exp. )
) ) . r NRMSE
period per. (year)  Lin.Regr.  SARIMA Fourier deg. deg.
Short 12 0.6 0.4 Yes/ 6 3 0.926 0.059
Long 12 0.9 0.1 Yes /6 2 0.880 0.075
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Figure 5. Case B and Case C, short- and long-term prediction: water level and radial displacement of
pendulum CB2_236_196.

3.2 Pendulum displacement - CB3_195_161

The instrument named CB3_195_ 161 represents the radial displacement of the pendulum in the
central block (CB) of the dam, between the altitudes 195 m (in the foundation) and 161 m. The
unit of radial displacement is mm, and an increasing of the value indicates a movement of the
highest point in the downstream direction.
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The Pearson correlation between the radial displacement of the pendulum at the foundation
and the water level is equal to 0.9, the correlation is rather high indication of the fact that the
bottom part of the dam is not affected by the arch behavior of the dam as in the upper part, and
the hydrostatic component are the predominant effects. For such reason it is not necessary to
perform the operation of the de-seasoning. The linear regression is performed considering as
only cause parameter the water level, with a degree of polynomial expansion equal to 3, the
training period considers 10 years of measures. The ensemble model is obtained considering a
weight equal to 0.9 for the linear regression model, whereas a weight of 0.1 is assumed for
SARIMA contribution, the two weights are unchanged in short- and long-term prediction.

Table 2 summarizes the input data of the ensemble model as well as the goodness of fit
parameters in the training period in terms of coefficient of determination (r?) and normalized
root mean square error (NRMSE). Figure 6 shows the calibration of the pendulum foundation
radial displacement model (Case A) with the comparison between model and measure, as well as
the corresponding residual distribution. Figure 7 shows the water level and radial displacement
of pendulum (CB3_195 161) in the short- and long-term prediction period (Case B and Case C).
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Figure 6. Case A — Calibration: radial displacement of pendulum CB3_195_161, comparison between model
and measure and corresponding residual distribution.

Table 2. Parameter CB3_195_161: input data of the model and goodness of fit parameters in the training
period.

Training weights De-seasoning Pol. exp. 2

. NRMSE
Parameter per. (year) Lin.Regr. SARIMA  /Fourier deg. deg.
CB3_195 161 10 0.9 0.1 No /- 3 0.889  0.090
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Figure 7. Case B and Case C, short- and long-term prediction: water level and radial displacement of
pendulum CB3_195 161
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3.3 Crack opening - C4-C5

The instrument named C4_C5 represents crack opening displacement at the rock-concrete
interface, the sensor located in the central block (CB) of the dam measures the opening between
C4 (in the foundation) and C5 (in the concrete, at the toe of the dam). The unit of crack opening
displacement is mm, an increasing value of C4_C5 means that the distance between C4 and C5 is
increasing, and therefore indicates a movement in the downstream direction.

The Pearson correlation between crack opening displacement at the rock-concrete interface and
the water level is equal to 0.87, the correlation is rather high for such reason it is not necessary to
perform the operation of the de-seasoning. The linear regression is performed considering as only
cause parameter the water level, with a degree of polynomial expansion equal to 3, the training
period considers 10 years of measures. The ensemble model is obtained considering a weight equal
to 0.95 for the linear regression model, whereas a weight of 0.05 is assumed for SARIMA
contribution, the two weights are unchanged in short- and long-term prediction.

Table 3 summarizes the input data of the ensemble model as well as the goodness of fit
parameters in the training period in terms of coefficient of determination (r?) and normalized root
mean square error (NRMSE). Figure 8 shows the calibration of the crack opening displacement
model (Case A) with the comparison between model and measure, as well as the corresponding
residual distribution. Figure 9 shows the water level and crack opening displacement (C4_C5) in the
short- and long-term prediction period (Case B and Case C).

Table 3. Parameter C4_C5: input data of the model and goodness of fit parameters in the training period.

Training weights De-seasoning Pol. exp.
Parameter per. (year) Lin. Regr. SARIMA / Fourier deg. deg.
C4_C5 10 0.95 0.05 No /- 3 0.920 0.089
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Figure 8. Case A— Calibration: crack opening C4_C5, comparison between model and measure and
corresponding residual distribution.
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Figure 9. Case B and Case C, short- and long-term prediction: water level and crack opening C4_C5.
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It is worth notice that the crack opening C4_C5 is strongly correlated with both the piezometric
level PZCB2, as well as to the radial displacement of the pendulum at the foundation (CB3_195 161).
The crack opening represents a good indication of the response of the rock mass at the foundation in
terms of both deformability and hydraulic conductivity. For such reasons could be a good proxy to
improve the statistical model the piezometric level PZCB2 and radial displacement of the pendulum
at the foundation (CB3_195_161), unfortunately it is not available in the prediction period, otherwise
it can be eventually used as additional cause parameter.

3.4 Piezometric level - PZCB2

The instrument named PZCB2 represents the piezometric level measured through a vibrating wire
piezometer at the rock-concrete interface in the central block of the dam. The unit of piezometric levels is
meter (m).

The Pearson correlation between the piezometric level PZCB2 and the water level is equal to 0.92, the
correlation is rather high for such reason it is not necessary to perform the operation of the de-seasoning.
The linear regression is performed considering as only cause parameter the water level, with a degree of
polynomial expansion equal to 2, the training period considers 13 years of measures. The ensemble model
is obtained considering a weight equal to 0.9 for the linear regression model, whereas a weight of 0.1 is
assumed for SARIMA contribution, the two weights are unchanged in short- and long-term prediction.

Table 4 summarizes the input data of the ensemble model as well as the goodness of fit parameters in
the training period in terms of coefficient of determination (r?) and normalized root mean square error
(NRMSE). Figure 10 shows the calibration of the piezometric level model (Case A) with the comparison
between model and measure, as well as the corresponding residual distribution. Figure 11 shows the water
level and piezometric level (PZCB2) in the short- and long-term prediction period (Case B and Case C).

Table 4. Parameter PZCB2: input data of the model and goodness of fit parameters in the training period.

Training weights De-seasoning Pol. exp. 2
Parameter per. (year) Lin. Regr. SARIMA / Fourier deg. deg.
PZCB2 13 0.90 0.1 No /- 2 0.957 0.061
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Figure 10. Case A — Calibration: Piezometric level PZCB2, comparison between model and measure and
corresponding residual distribution.
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Figure 11. Case B and Case C, short- and long-term prediction: water level and Piezometric level PZCB2
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ABSTRACT: Predictive models based on boosted regression trees were fitted for computing the
response of an arch dam in terms of radial displacements, joint opening, piezometric levels and
seepage as a function of time series of external variables: water level, air temperature, rainfall
and time. A generic procedure was followed for all outputs, supported by two software tools
developed by the authors. Warning levels were generated based on the residuals. The analysis of
the models showed the effect of the main loads, the thermal inertia for radial displacements, and
changes over time for piezometric levels due to the cleaning of the drainage system performed
in 2008.
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1 INTRODUCTION

This document describes the process followed in response to Theme A proposed in the frame
of the 16™ International Benchmark Workshop on Numerical Analysis of Dams organized by the
International Commission on Large Dams (ICOLD). The text focuses on the methods and tools
used. Details about the proposed problem can be consulted in the description of the Theme and
are therefore omitted here. Both the predictions and the interpretation were generated by
means of two software tools previously developed by the authors for data visualization and
preprocess?® and for fitting models based on machine learning (ML)?.

2 METHODS

2.1 Preprocessing

Among the three versions of the starting data, we chose the file “ThemeA_data_fmt03.xlsx”,
which includes a common time vector for all variables and one record for each day in the period.
For those variables with more than one value per day, the data set includes the mean. We
checked such operation and the completeness of the time series. All preprocessing operations
were performed using the free online tool “PREDATOR” developed by the authors 0.

We identified some missing values in the time series of water level, which were filled by linear
interpolation (Figure 1). We verified that linear interpolation was reasonable, since the missing
values were isolated. Time series for rainfall and temperatures featured no missing values. Since
the entire upstream face of the dam is exposed for all values of water level below 196 m.a.s.l.,
we created a modified variable, in which all water levels lower than 196 are replaced by 196. It
was called “modWL”. Our approach includes generating derived variables:

e Moving averages of 7, 14, 30, 60 and 90 days for Water Level, modWL, T_aandT_b
e Cumulative sum of 7, 14, 30 and 60 days for rainfall.

This strategy allows for capturing delayed effects, such as the thermal inertia of concrete dams,
as verified in previous works 0. Two additional variables are automatically created by PREDATOR:
“Year” and “month”. Only the first was used, to account for the time effect.
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Figure 1. Some of the missing values in the time series of Water_Level. They were all filled by linear
interpolation with PREDATOR.

Since the records for the period 2013-2017 are not available for the output variables, the
training data set includes the period 1/1/2000-31/12/12. We saved a data file with that period
and a separated one to generate the predictions, which only includes the input variables.

1 PREDATOR. https://cimnetest.shinyapps.io/PREDATOR/
2 SOLDIER. https://cimnetest.shinyapps.io/SOLDIER/
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2.2 Model fitting

2.2.1 General approach

Our predictive models make use of the algorithm “Boosted Regression Trees” (BRT from now
on). Itis an ensemble method, widely applied in different fields, whose theoretical fundamentals
can be found in the literature (e.g. 0). We chose this algorithm on the basis of the conclusions of
a previous comparative study among some of the most powerful ML algorithms 0, which were
evaluated in terms of their accuracy for predicting dam behavior and their easiness of calibration
and implementation. Further analysis showed its capability for identifying the effect of the loads
on the response of the dam 0 and for detecting anomalies 0. The algorithm is implemented in a
free online application for fitting models for dam prediction called SOLDIER 0.

BRT models are highly flexible, i.e., they deduce the underlying relation between inputs and
response from the training data without the need for a detailed selection of input variables or
parameter calibration. This implies that a common process can be followed for generating models
for predicting outputs of different nature, as is the case (displacements, joint opening,
piezometric levels and seepage). The addition of irrelevant inputs has a minor effect on the
predictions of the model. Nonetheless, for this particular case, we included variable selection in
the process, as described below.

The application used allows for easily modifying the training and test periods, the input
variables and the BRT parameters: bag fraction, interaction depth, number of trees and shrinkage.
Although their effect on the predictive model is moderate, we followed a calibration process for
each output.

In addition to the prediction of dam behavior, the organizers also asked for warning thresholds.
We chose to define them as a function of the model accuracy, as recommended by ICOLD O.
Therefore, a reliable estimate of the predictive accuracy is necessary for each model. BRTs always
overfit to some extent, so computing model accuracy can be tricky. We chose fitting models using
the period 2000-2010 and evaluating their accuracy on data for the most recent period (2011-
2012). We verified that water level fluctuated along a relevant range in those last two years,
which implies that the performance of the models for that period is sufficiently representative of
their general prediction accuracy.

Fitting a BRT model for the size of the data sets used in the BW typically requires some seconds.
However, the amount of possible combinations of input variables and model parameters is very
high. The preprocessed input data includes 32 variables (original and derived variables), which
means that the amount of possible combinations of inputs is 232-1=4.29x10°. If each model took
10 seconds for training, considering one model for each set of inputs would require 1.98x10°
days. Such process is therefore unfeasible. Instead, we followed a process for variable selection
and model calibration that includes the following steps:

1. Interactively try options for each output using SOLDIER and visualize results. The options
include both the input variables and the BRT parameters. In view of the results, make decisions
to reduce the amount of possible combinations of inputs and model parameters to analyze.

2. Select a feasible set of combinations and perform random search model calibration.

3. Visually verify the candidate models —those with lower predictive error— back with SOLDIER

2.2.2 Preliminary interactive exploration

The first stage involved the following steps:

1. Fit a model with default training parameters, the period 1/1/2000-31/12/11 and all inputs:
rainfall, temperature, water level —and their corresponding derived variables—and Year.

2. Interactively evaluate the effect of the model parameters: interaction depth, shrinkage and
number of trees. The goodness of fit is evaluated by means of the mean absolute error (MAE).

3. Check the effect of the input variables with the relative influence and the partial dependence
plots.

4. Check the residual distribution and evolution with time.
Figure 2 shows an example screenshot of the interface showing the mentioned information.
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Figure 2. Interface of SOLDIER during model fitting. Target and input variable selection (top left), training
period and model parameters (bottom left), accuracy measures for training and test (top right) and
graphical representation of predictions, observations and residuals (bottom right)

As a result of this process, the overall options were narrowed and the following decisions were

made:

e T aand its derived variables were discarded, since T_b systematically resulted in higher
relevance, i.e., stronger association with the responses.

modWL and its moving averages were chosen instead of the raw Water_Level. In this case,
the difference was moderate.

Rainfall was neglected, since had negligible effect in all cases.

2.2.3 Random search calibration

This step was performed by means of ad-hoc scripts written in the R programming language.

For each output, the same process was followed:

A wN e

o

100 combination of inputs were considered with the following criteria:

Time was taken as input in half of the models, and excluded in the others.

modWL and T_b_14 were always taken as inputs.

A random subset of the remaining inputs was taken to complete the input set.

For each set of inputs, all possible combinations of model parameters included in Table 1 were
used, i.e., 36 versions of the model

As before, models were fitted over the period 2000-2010 and their performance was assessed
for 2011-2012. MAE was computed both for the training and the test sets.

. The models were evaluated on the basis of a score computed with Equation (1), and that with

lower value was selected. With this criterion, when several models were obtained with similar
precision in the test set, the one with the highest train error and therefore the lowest risk of
overfitting was favored.

Score = MAEys + (MAEese — MAE yqin) (1)

Table 1. BRT Model parameters considered for each combination of inputs

Parameter Values
Number of trees 1000, 2000, 3000
Shrinkage 0.01, 0.005, 0.002

Interaction depth

2,3,4,5
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2.2.4 Final model selection

The models selected in the previous step, i.e., those with lower score for every output, were
again loaded in SOLDIER and verified: the accuracy for training and testing, the residual
distribution and its evolution in time, and the importance of the variables.

In addition to the visual verification of model accuracy, this step allowed for checking that no
spurious effects of any input variable were considered. We put special attention on the effect of
time, which encompasses the information not recorded by the input variables available, and
which is the input most prone to overfit. In particular, when the best model excluded time as
input, the final check involved comparing the results with those obtained with a modified model
adding “Year” to the input set.
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N . . . Number of polnts: 0 B
Indhvidusl Group Help znd zave madiLo? modWL 30 |8
Ye Lnss  2Dsufsce  3Dsurface  Help
Tb_o
Tb.6 modWL
1 1 220
To_3 198
Tb 14
Tb_01
Ta
Ta 198
Ta_1
T " "
Ta

modWL0o7

E - = * modWL @ modWLo7
Relative Influence %

Figure 3. Interface of SOLDIER for model interpretation. Classification of inputs as a function of their
relevance on the response (left) and partial effect of the most important inputs (right).

The final models were loaded back in R with another specific script, together with the test data
for generating predictions. The density functions of the residuals were generated for years 2011
and 2012 to check normality. The main statistics of the residuals were computed: mean, median,
standard deviation and quantiles for 0% and 100%. They were all plotted over the histograms of
residuals. Although residuals followed distributions close to normal for many outputs, this was
not the case for seepage. We finally decided to take the quantiles for computing the prediction
intervals.

We also corrected the bias in predictions by adding the median of the residuals. As a result,
predictions and warning thresholds were generated as described in Equations (2), (3) and (4).

Res = Obs — Pred — Obs = Pred + Res — Pred . = Pred + median(Res) (2)
Upp = Pred + Resg109 (3)
Low = Pred + Resgq (4)

Where Res = residuals; Obs = Observations; Pred = Predictions; Pred..r = corrected predictions;
Upp = upper warning threshold; Low = lower warning threshold; Resgipo = Quantile 100 of
residuals; Resqo = Quantile 0 of residuals.
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3 RESULTS AND DISCUSSION

Since the predictions are the main outcome of the analysis, and they will be evaluated by the
organizers, only the most relevant aspects of model interpretation are described in this section
for each output.

3.1 Displacements

3.1.1 CB2_236_196

The calibrated model included only three inputs: modWL, T_b 01 and T_b_14. The effect of
the inputs on the displacement agrees with engineering knowledge, i.e., high water level and low
temperature are associated with higher deformation in the downstream direction, and vice versa.
The moving average of 14 days or air temperature has more influence than the daily temperature,
which shows the thermal inertia of the dam.
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Figure 4. Left: relative influence of the selected inputs. Right: combined partial effect of hydrostatic load
(modWL) and air temperature (T_b_14) on CB2_236_196

3.1.2CB3_195_161

The final model for the displacement in the foundation is also based on three inputs, but
T b _60istakeninstead of T_b_01. Nonetheless, the effect of air temperature is much lower than
before, as can be expected, since the foundation is less exposed to the variations in ambient
temperature. As before, adding time as input resulted in similar accuracy.

modWL
200 210 220 230

Th_60 2

To_14

modWL 5
Tb_60

* modWL @ Tb_60

0 25 50 75
Relative Influence %

Figure 5. Left: relative influence of the selected inputs. Right: partial dependence of the displacements at
the foundation on the water level (modWL) and air temperature (Tb_60).
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3.2 Joint opening

The final set of inputs for joint opening includes several moving averages of both main loads.
In particular, modWL, modWL60, modWL90, TB_07, TB_14, TB_30, TB_90. In this case, adding
time as inputs led to lower accuracy for the test set (2011-2012), which means that induced
overfitting.
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Figure 6. Left: relative influence of the selected inputs on joint opening. Instantaneous water level is by far
the most important load. As for the air temperature, the effect increases with the period of the moving
average. Right: combined effect of modWL and Tb_90 shows that the influence of air temperature is more
important for high water level.

3.3 Piezometric levels

3.3.1 PZCB2

The calibration process resulted in a model including time as input for PZCB2. This implies that
the algorithm identified an evolution on the dam response, i.e., for a given combination of water
level and temperature, the piezometric level changed over time (Figure 7).
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Figure 7. Left: relative influence of the selected inputs on PZCB2. Time (Year) has a relevant effect. Right:
partial dependence on modWL and time. The algorithm identified a sharp decrease in PZCB2 on 2010 and
stabilization in 2012.
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This can be verified by exploring the time series of the measured data, included in Figure 11 in
the Theme A description, as well as in the scatterplot in Figure 8.
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Figure 8. Scatterplot of PZCB2 as a function of water level, colored by time. Recent values are lower for a
given hydrostatic load.

The final model included both modWL and modWL_07, being the latter even more influential.
This may suggest some inertia in PZCB2 in response to changes in water level. However, we
verified that changes in predictions were negligible after removing modWL_07. Therefore, the
higher influence may be a spurious result due to the high similarity between both inputs.

3.3.2 PZCB3

The description of the Theme mentioned a change on PZCB3 in 2008, as well as a period with
missing data. This change along time was also identified by the algorithm and “Year” was included
in the input set resulting from the calibration process. The flexibility of BRTs allowed for using the
same fitting process for this target, for which a clear change was known in advance. Indeed, the
interpretation of the model (Figure 9 right) shows the mentioned change in 2008. Nonetheless,
the algorithm also found another change in the last year of the period provided (2012), which is
also observed in the exploratory plots (Figure 10).
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Figure 9. Left: relative influence of the selected inputs on PZCB3. Water level is the most important input,
and its moving averages feature decreasing influence as the period increases. Time (Year) is considered as
highly relevant. Right: partial dependence on the most relevant inputs. The effect of time shows the known
change in 2008, but also a shift in 2012.
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Figure 10. Verification of the abnormal records of PZCB3 in 2012 by exploration of the period 2010-2012.
Left: scatterplot. Right: time series.

PZCB3

3.4 Seepage

Predictions of seepage were less accurate than those for the remaining targets. Although the
MAE can be considered acceptable (around 2 I/sec), large errors occurred for high flows (Figure
11). Water level is clearly the more influential input. However, adding T_b consistently results in
higher prediction accuracy. This may be due to some effect of temperature in joint opening and
subsequently in higher leakage flows, but any conclusion is unreliable due to the low reading
frequency.
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Figure 11. Scatterplot of Seepage as a function of water level, colored by residual (prediction error). Large
errors are observed for some high flows.

Although the time series of seepage is noisier than the others, the formulators mentioned no
anomalies for this variable. As a result, no record was discarded even though some look like
outliers. For instance, in the period Dec/2008-Mar/2009, seepage gently decreases, apparently
following the evolution of water level. However, two values higher than 25 |/sec are registered,
clearly out of the overall trend (Figure 12).
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Figure 12. Time series of seepage (red dots) and water level (green line) from Dec/2008 to Mar/2009. Two
records of seepage seem to be out of the general trend.

165



Salazar, Irazabal, Vicente
PREDICTION AND INTERPRETATION OF DAM RESPONSE WITH BOOSTED REGRESSION TREES

4 CONCLUSIONS

Predictive models based on ML (BRTs) for response variables of different nature were
generated and analyzed with a general process supported by two software tools. The flexibility of
BRT models allowed for performing all posed tasks with minor changes. For piezometric levels,
the entire available period was used without the need to include any modification to account for
the known change in behavior in 2008 due to the cleaning performed on the drainage system. On
the contrary, it was automatically identified by the model.

The interpretation of the models showed the effect of the main loads generally in accordance
with engineering knowledge: high hydrostatic loads are associated to displacement in the
downstream direction, high seepage, joint opening and piezometric levels; time effect and
thermal inertia were identified for CB2_236_196.

We generated warning levels based on the quantiles of the residuals for the period 2011-2012.
Although water level followed a similar pattern in those years to that observed in 2000-2009,
such levels may not be useful for the entire prediction period because: a) water level was
abnormally low in 2016 and 2017; b) we recommend updating the models every year to include
additional information and possible changes in dam response. In any case, a record above the
upper limit —or below the lower— should be taken as a warning for additional actions to make
before issuing an alarm. These may include verification of related targets, increase of reading
frequency and follow up of the evolution of the abnormal variable.
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ABSTRACT: Prediction of dam behavior plays an important role in the field of dam safety as it can
be used to establish warning levels and detect dam failure. Recently, Machine Learning
techniques have been increasingly applied in this field due to their success in other areas. Our
methodology is based on such techniques to predict different measurements of and arch dam’s
behavior and analyze the influence of external conditions. An initial exploratory analysis and the
selection of the most important variables for prediction were made to reduce the dimension of
the problem. Then, measurement of the degree of similarity between external factors in the
available years was performed for classifying the years and detecting annual differences that may
affect the training or prediction results. Several ML models were trained for each target variable
and the most accurate was selected to make short- and long-term predictions and determine
warning levels. The results reveal the main influence of water level in the behavior shown by most
of the analyzed sensors. This influence is found stronger for different moving averages of this
external variable, being specially surprising the long period of integration found for the prediction
of the radial displacement in direct pendulum. Three groups of years in external conditions were
also observed, with special differentiation for years 2016 and 2017 of the evaluation period. SVM,
NN, and BRT turned out to be the most accurate methods and their errors were used to
determine the warning levels.
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1 INTRODUCTION

The practical problem to be solved in this research was denoted as Theme A and its main
objective was to predict the behavior of a double curvature arch dam. The approach made was
to use Machine Learning techniques to configure predictive models and perform the relevant
analysis.

The application of these algorithms was carried out through the web App developed by ACIS2in
specifically for the use of |A in dam safety.

Most of the algorithms used for this Workshop Benchmark were previously developed by
ACSI2in in previous research projects and professional work.

The analysis of the external conditions that affect the dam and the training of Machine Learning
models to make the short- and long-term predictions required were performed as well as the
interpretation of the results obtained.

2 METHODOLOGY

2.1 Exploratory analysis

The research carried out in this workshop began with an exploratory analysis of the external
factors and target variables. Their series and distributions were studied to understand their
individual behavior, as well as the relationships between them.

To perform the individual analysis of the variables, time series, density, and boxplots grouped
by the available years in the data set were plotted. The latter two were used to observe their
mean, dispersion, and range. It was observed the difference between the behavior of the
variables in each of the years through these graphs. The emphasis was placed on the study of
water level, which, as discussed in the results section, has a crucial role in the prediction of the
target variables.

Correlation and scatterplot graphs were used to analyze the relationship between target
variables and external factors. The former shows values between -1 and 1 indicating the degree
of linear relationship between them, while the latter shows the type of relationship they hold
(linear, nonlinear, etc.).

2.2 Synthetic variables

The next step was to calculate synthetic variables related to the past of external factors. These
variables play an important role in the training process, since the effect of external factors does
not immediately affect the dam, but rather there is a delayed effect that will depend on the way
these external factors evolve over time.

Three types of variables of different orders were calculated: moving averages (MM),
aggregates (AG), and variation ratio (VEL).

Assuming we have a time series of variable X € (1 xm), where t is the instance index at time
t of variable X, the synthetic variables are computed as follows:

1
X MMy = © B0y Xei (1)
X AGep = Xfo 1 %ei; (2)
X_VELg,, = ==, (3)

where k is the order of the synthetic variable.

Short- and long-term synthetic variables of orders 7, 15, 30, 30, 60, 90, 180, and 365 days were
calculated regardless of the nature of each external factor and their expected influence on the
target variables. This approach was selected with the goal of allowing ML algorithms to tell what
is important to them in order to predict the behavior of the target variables. Among these
variables, those of greatest importance in the prediction of the target variables were selected
using our variable selection algorithm explained below.
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2.3 Variable Selection

Variable selection arises due to the need to reduce the dimensions of the large data set
generated after calculating the synthetic variables. Logically, all these variables are closely related
to each other. Therefore, it is important to select only those that provide relevant information to
the model to improve accuracy and reduce computational cost.

The outline of the selection algorithm is as follows:

1. Calculation of the degree of importance through Support Vector Machine (SVM).
2. Sort variables by importance degree in descending order.

3. Selection of certain numbers of variables: 10%, 20%, 30%, 50%, 60% and 80%.

4. Execute an SVM for each quantity in Step 3.

5. Selection of the variables that generate the most accurate model.

First, a simple model was trained using SVM to calculate the degree of importance of each
variable. In our experience in other research, SVM takes less time to run and often gives the same
results as other variable selection methods, such as ensembles of decision trees.

The next question to be answered was how many variables should be used to optimize the
accuracy of the final model. The most accurate selection methods, such as leave-one-out, may
become computationally expensive if the dimensions of the training set are large. Therefore, in
our algorithm, different percentages of variables are selected in descending order of importance,
and a simple model is trained with SVM for each of these quantities. Finally, the quantity that
gives the smallest error is selected.

The variables resulting from this last step were used to train the final model to predict the
target variable, where a grid search for the optimal hyperparameters and an estimation of the
error was performed through cross-validation.

2.4 Training and evaluation of models

The model training stage consisted of the selection and training of models of different nature.
Methods that are potentially accurate based on previous research experience were selected:

e Boosted Regression Trees (BRT).

Random Forest (RF).

Support Vector Machine (SVM).
Neural Network (NN).

Generalized Linear Regression (LM).
Bayesian Neural Network (RRBB).
Hydrostatic-Season-Time (HST).

Cross-validation was used to evaluate the models and estimate the optimal hyperparameters
for each case. In this research, the folds match the years available in the dataset, which
correspond to the dam cycles.

Therefore, the error measures used in this methodology are the RMSE of the CV (RMSE,,) and
the RMSE of validation (RMSE,,;). The mathematical form of the RMSE is as follows:

RMSE =

where m is the total number of records in the data set, ¥ the predicted values and y the actual
values.
Considering that k years are available, we have an RMSE for each k years:

RMSE,, = %ZleRMSE-; (13)

The measure RMSE,; is simply the RMSE over the validation year, 2012 in this case.

The estimated error by averaging the error across folds (RMSE,) is more robust than the
RMSE over the validation set (year 2012) since the latest correspond to the error for one
particular year and the former averages the errors of the different years in the training set.

The optimal hyperparameters of each model were selected by searching the combination that
gives the lowest error on average. For each combination, a model was created for each fold; then
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the average RMSE committed across the folds was calculated and the combination with the
lowest error was selected.

Accordingly, we obtained an estimated error for each of the seven trained models. The last
step of this stage was to select the optimal model, which was the one with the lowest value of
RMSE,,,.

2.5 Warning levels

Once the optimal models were selected for each target variable, the warning levels were
generated.

The warning levels are defined as bands within which it is expected to find the measurements
obtained from the monitoring system, so that outside of them the data are potentially anomalous
and a more in-depth review of the situation must be carried out.

The boundaries of these bands were determined based on the estimated error of the
prediction model for each component and application segment.

The formula used for establishing the warning levels is as follows:

Ui =y xco,; (14)

where J is the predicted value, ¢ is a confidence coefficient and o, the standard deviation of
the error.

Density of error
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Figure 1. Example of error density with the mean and coefficient points multiplied by the error variance.

The selection of the value of the c coefficient should be done from a safe and practical O&M
perspective. On the one hand, high values ofc will provide a more relaxed warning levels that
could miss relevant issues in the behavior. On the other hand, very low values of this coefficient
will cause numerous warnings in non-anomalous situations.

The coefficient selected to establish the warning level was 2, since this interval approximately
holds 95% of the real values.

3 RESULTS AND DISCUSSION

This chapter presents and discusses the results obtained by applying the methods previously
presented. The subdivisions of the Methodology section are similarly implemented in this chapter
for ease of understanding and to present the results in an orderly way.

3.1 Exploratory analysis

An exploratory analysis of external factors was carried out to determine their behavior and
relationship with the target variables.

Figure 2 shows a cyclical behavior of the water level series. What is striking here is the
pronounced water level drops observed in 2003, 2006, 2016 and 2017. After the decrease in
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water level in 2006, its average in the following years is higher due to higher minimum values.
They progressively decrease in average until the drop of 2016, which makes it an unusual year
compared to the past.

External factors
Water_Level

2201

£ 200+

180

1995 2000 2005 2010 2015
Date

Figure 2. Water Level series over time

Water_Level's behavior
Boxplot by year Density by year

mmmmmmmmmmmmmmmmmmmmm
fffffffffffffffffffffff
ooooooooooooooooooooooo

Figure 3. Boxplots (a) and density plots (b) of Water Level by years.

The plot (a) in Figure 3 shows what appears to be different behaviors of the water level
according to the amplitude and the median value of the boxes: from 1995 to 2005, where the
minimum values of water level are low; from 2007 to 2015, where these values are higher; and
the atypical periods such as 2006, 2016 and 2017. The amplitudes of years from the first period
mentioned are similar, although the values of the water level vary, especially those belonging to
2003, where a larger decrease is observed. This event makes the lower whisker longer and,
accordingly, outliers appear. Year 2006 is significantly different from the years of the training set.
The amplitude of its box is smaller compared with the preceding years, implying that the water
level lays within a narrower range. From 2006 on, there is an increase in the water level, where
we find higher medians and values that progressively decrease. Undoubtedly, the most atypical
period is 2016-17, where the lowest values and medians are found.

These remarks are also seen in the density graph (Figure 3, b), where several averages are
observed due to cyclical rises and drops in the water level. Most of the years have similar means,
except 1996, 2003,2006, 2016 and 2017, which have lower mean of minimum values than the
others. The most unique year also in this type of graph is 2016, where a particularly steeper water
level drawdown is observed.

This behavior contrasts with the scarce temporal variation of temperatures, whose series show
the usual cyclical behavior, and very similar means and medians over the years were observed.

Regarding the pendulum series, some changes can be identified, which might be related to the
previously mentioned water level drops.

The variable most linearly correlated with both pendulums is the water level, with values 0.62
(CB_236_196) and 0.9 (CB3_195 161). Temperature, on the other hand, has a smaller linear
relationship with both pendulums, finding its maximum at |-0.37| (CB_236_196).
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3.2 Synthetic variables

Once the exploratory analysis was performed, the synthetic variables of the external factors were
calculated to be used as inputs in the modeling training.

Correlation
External factors and pendulums

CB2_236_196
Water_Level_MM180
Water_Level_MM365

Water_Level_MM15
Water_Level MM7
Water_Level
CB3_195_161
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Water_Level MM60
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Water_Level MM180

Figure 4. Correlation plot of Water Level moving averages and pendulums.

The correlation plot (Figure 4) shows that some of the moving averages of the water level are
more correlated with both pendulums than the original variable.

The short-term moving averages of the reservoir level (MM15, MM30, etc.) are more
correlated with CB3_195 161 than with the original variable, while, for CB_236_196, surprisingly,
the most correlated variables are the very long-term averages (MM180, MM90, etc.).

The following images show the series of these variables and their relationship to the
pendulums (Figure 5 and Figure 6).
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Figure 5. Series of Water Level 15 and 180 order moving averages.
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Figure 6. Scatterplot of the relationship between pendulums and moving averages 15 and 180 of the
reservoir level by years: (a) CB_236_196 and (b) CB3_195_161.

Figure 6 shows a high degree of linear relationship between dam displacement of the dam and
water level moving averages. Generally, points corresponding to the most current years, in gray,
are concentrated in the upper right part of the graph, where the values of water level and
displacement are higher. Those belonging to 2000 and 2001, in dark red, have lower values,
whereas the rest are more dispersed. Given the greater dispersion in the upper pendulum
compared to the water level, it would appear that it has a greater dependence on other variables
than the lower pendulum in which this dispersion is smaller.

3.3 Most important variables

As mentioned in the Methodology section, the selection of the most important variables for each
pendulum is important to increase predictive power and reduce the dimensions of the data set.

Logically, variables that have a high linear relationship will be important for the prediction of
the target variable because many models tend to prefer this type of relationship for ease of
modeling. This is the case with our variable selection algorithm that employs an SVM for the
calculation of the importance degree.
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Figure 7. Most important variables of the model and their degree of importance (%).

173



Fernandez-Centeno, Alocén, Toledo
PREDICTION OF DAM BEHAVIOUR BASED ON MACHINE LEARNING METHODS

The variables that top the list of importance for the CB_236_196 pendulum are the long-term
synthetic variables (Figure 7). In contrast, in the case of CB3_195_ 161 the water level short-term
variables occupy this position. Temperatures are not as important for the model, and time (T) and
seasonality (S) are only ranked as important variables in the first pendulum.

It seems rare that the displacement of the direct pendulum due to water level depends more
on longer term synthetic variables. Also, temperature-related part of the displacement, that it’s
supposed to be an important component in the physical sense, doesn’t seem to have that
relevance for the model.

On the other hand, it can be observed that direct correlation between direct pendulum radial
movement and 180 days moving average of water level is greater than the direct correlation with
other variables that should be more important from a dam behavior perspective. It would seem
that the ML models used prefer more correlated variables for creating the prediction rules. Then,
the question to be answered is if the importance of the variables obtained by traditional ML
techniques provides a direct interpretation of the most relevant actions for the dam behavior
explanation as it’'s commonly considered or if it requires further interpretation. If a direct
interpretation could be considered, the only and uncertain interpretation found, considering our
limited knowledge of this particular dam, is the existence of an upstream foundation deformation
due to slow changes in pore pressure motivated by the variation in water level. The verisimilitude
of this hypothesis should be subjected to further investigations.

3.4 Similarity between years

Since the training of the predictive models was to be made by yearly folds, the possibility of
existence of groups of years depending on their external variables (including synthetic ones) was
analyzed. The goal behind this approach is that, in the case that these groups could be found,
more accurate prediction models may be trained over each one of them. This way, for new yearly
data, a previous classification step would be to select the most similar group and then use the
corresponding predictive model for improving the accuracy.

A dimension reduction of the most important variables of both pendulums was performed by
Principal Components Analysis. Each pendulum has its own most important variables (Figure 7)
and, therefore, their Principal Components will be different. This leads on differences in values or
groupings from one pendulum to the other. The similarity measure used is summarized by
calculating the Euclidean distance of the instances belonging to the test Fold to the centroids of
the Principal Components of the training years.

The clusters resulting from running the kmeans algorithm (Figure 8) seem to coincide with the
clusters that could apparently be formed by looking at the water level graphs (Figure 3). The rarest
external conditions are found in 2016 and 2017, which form cluster 3.

The same groups are found for both pendulums, except for year 2002. It should be noted that
the groups were made considering the centroids of 5 principal components, but to facilitate the
explanation, they are represented in 2 dimensions. Hence, the actual cluster may not match what
appears to be according to the graph (Figure 8).

CB2_236_196 CB3_195_161
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5
2008 5 2008
2007 2009
2011
2011 2008 5
2015
2010 P
2013
20052 2008 “otopniz
° 202 2004 0 2000 2008812 007
3
20887 200
o 3] 2004 2005
& 2000 20 a0 & 2014
2006 2008
21
* 2017 2017
2016 4 e
50 25 00 25 10 5 0
PCA PG1
(@ )

Figure 8. Centroids of the Principal Components of the years available in the dataset grouped by clusters
generated through the kmeans algorithm.
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Figure 8 only provides an idea of the years that are most similar to each other. To go into detail,
the sum of the Euclidean distances from each observation in the data set to the centroids of the
training years is shown in Figure 9.

Both series presented in Figure 9are very similar. The period of time from 2007 to 2011,
approximately, stands out due to its smaller range of values. The explanation for this fact is that
the Water Level variable, which has great importance for the models of both pendulums, takes
values within a less disperse range. For this reason, the distance is smaller since there are more
points within this range of values (Figure 2).

On the other hand, the largest distances are found in 2016 and 2017, which are the farthest
periods from the rest of the centroids in the graph Figure 8.

Representation degree of data in the training set
Pendulums

20 Device

M CB2_236_196
W CB3_195_161

Mean distance

2000 2005 2010 2015
Date

Figure 9. Series of the degree of representation, calculated as the Euclidean distance of the points of the
different years to the centroids of the years used for training the models.

Figure 10 shows that, on average, the external conditions of 2016 and 2017 are the most
different compared to other years. This is due to their low water level values. They are followed
by the years 2006, 2003, and 2014, for both devices.

Mean distance to train centroids
Pendulums

Device

| CB2_236_196

| CB3-195_161
| I
0 IIIIIIIIIIIIIIII

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
year

o

Figure 10. Mean Euclidean distance from the points of each year to the centroids of the training years.

Prediction models were trained for each cluster following the same yearly based CV process.
Errors obtained in training and in the prediction of the validation year, once classified in the
corresponding cluster, didn’t show a sound improvement. It was finally decided to not use the
clustered approach.

On the other hand, the results of this section indicate that the differences between the most
important external conditions of each pendulum are related to low water levels and steep
drawdowns. Given that 2016 and 2017 are revealed to be odd and since Machine Learning
predictive models learn from data, a higher prediction error can be expected for those years.
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3.5 Models

Among the results obtained when training the different models shown in Table 1, differences
were found depending on the type of device. The SVM model was found to be the optimal model
to predict the series of both pendulums; for the pore pressure measuring device, the best model
was BRT, while for leakage and joint opening, the most accurate was NN.

Table 1. Results of the models for each device. RMSEcy is the estimated error during the Cross Validation
process. RMSE,, is the error made on the validation set (year 2012).

Displacement (pendulums) Joint opening Pore pressure Leakage

Device: CB2_236_196 CB3_195_161 C4_C5 PZCB2 PZCB3 Seepage

Model RMSEcv  RMSEvai  RMSEcy  RMSEvai  RMSEcy RMSEvai  RMSEcy  RMSEvar  RMSEcy  RMSEva  RMSEcy  RMSEval

SVM 1.794 1.771 0.409 0.334 0.25 0.232 0.759 0.485 0.479 0.633 3.106 2.609
BRT 2.334 2.562 0.554 0.395 0.277 0.215 0.56 0.609 0.349 0.586 3.143 3.231
NN 4.165 7.136 0.893 0.441 0.189 0.107 1.102 0.907 0.926 2.114 3.054 2.821
RF 2.747 3.103 0.62 0.641 0.333 0.312 0.763 1.43 0.479 0.514 3.235 3.092
HST 2.869 4.099 0.594 0.622 0.305 0.353 1.029 1.526 0.724 1.291 3.113 2.632
RRBB 3.74 3.029 0.803 0.428 0.653 0.359 191 2.314 0.853 1.565 3.635 2.908
LM 3.642 2.862 0.686 0.465 0.623 0.354 1.853 2.288 0.77 1.255 3.514 2.727

It can be noticed that, in some cases, the validation error is lower with other models than those
mentioned in the previous paragraph, as in the case of pore pressure and leakage devices.
However, as explained in the Methodology section, the RMSEcy is a more robust estimator of the
error because it uses more years in its calculation.

Figure 11 and Figure 12 show the results of the calibrated predictions during the CV and over
the validation set of both pendulums. The series are significantly close to the actual values of the
series. SVM seems to make a larger error in the high and low peaks of the years 2002, 2003, 2004
and 2005 in the case of the CB3_195 161 pendulum (Figure 11).

The short- and long-term predictions of both pendulums are also shown in these figures. The
series corresponding to the CB3_195 161 pendulum appears to have a decreasing trend from
approximately 2008 onwards, probably due to the trend of the water level during those years.
From 2014 onward, the trend seems to disappear. The predictions for 2017 are within a narrower
range than usual due to the large drop in the 2016 water level discussed in the exploratory
analysis section that causes the 2017 water level to have low values (Figure 2). The same trend is
observed in the series of predictions of the CB2_236_196 pendulum.

CB3_195_161
Real vs. predicted values of SVYM

Serie

M Predictions
25 M Real Values

2000 2005 2010 - 2015
Date

Figure 11. Series of real values of the CB3_195 161 pendulum and the predictions generated with the SVM
model. The red dashed line separates the dates used to train the model and the validation set.
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CB2_236_196
Real vs. predicted values of SVM

Serie

10 B Predictions
B Real Values

Date

Figure 12. Series of real values of the CB2_236_196 pendulum and the predictions generated with the SVM
model. The red dashed line separates the dates used to train the model and the validation set.

The outlier behavior of the water level in 2016 and 2017 makes it possible for the accuracy of
the model to drop in those periods because that behavior has never been seen and the
relationships between external conditions might not match those that the model has identified
and configured.

3.6 Warning Levels
This section presents the results of the warning levels obtained by applying the formula
explained in the Methodology chapter for each device.

Table 2. Table with the relevant information for the calculation of the warning levels of each target
variable. Pto = c*ge.

Displacement (pendulums) Joint opening Pore pressure Leakage
Device: CB2_236_196 CB3_195_161 C4_C5 PZCB2 PZCB3 Seepage
c Ce Pto Oe Pto Ce Pto Oe Pto Oe Pto Oe Pto
1.5 2.777 0.681 0.296 0.873 0.535 4.645
3.703 0.909 0.395 1.163 0.713 6.193
1.851 0.454 0.198 0.582 0.357 3.096

5.554 1.363 0.593 1.745 1.070 9.289
4 7.405 1.817 0.790 2.327 1.427 12.385

The coefficient selected to determine the warning levels is 2, so the band of each instance will
be its predicted value plus 2 times the standard deviation of the error.

Predictions and warning levels of CB3_195_161
Coefficient: 2

_161 (mm)
<

CB3_195_161

2000 2005 2010 2015
Date

Figure 13. Warning levels of the pendulum CB3_195_ 161 calculated with c = 2.
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Predictions and warning levels of CB2_236_196
Coefficient: 2
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Figure 14. Warning levels of the pendulum CB2_236_196 calculated with c = 2.
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4 CONCLUSSIONS

A ML approach has been made for developing predictive models to evaluate the monitoring
data based on the external variables behavior. Relying on error estimates made through Blocked
Cross-Validation, where each block was a different year, significantly accurate models have been
achieved. Depending on the target variable, the most accurate algorithms have been SVM for
dam displacements, NN in the case of leakage and joint opening, and BRT for pore pressure.

These models have been used for creating confidence bands, or warning levels, based on their
predictions and the variance of the prediction error. The width of the band was established in
two times this variance.

Taking into account that ML algorithms learn from the data used for their training, their
predicting capabilities will depend on the similarity of the situations to be evaluated to those
shown to the models during their learning process. The accuracy of a pure data-based model out
of its training features space its hardly evaluable. Any data based (non-deterministic) model will
have the same problem if it’s fed with same training data. That is why an initial exploratory
analysis of the features space was made.

This analysis revealed evident differences in the explanatory variables in 2016 and 2017
compared to the training period features space. Hence, the accuracy of the predictions made on
this period will be probably lower than the one obtained for other periods with a more similar
features space.

Considering the delay in the response of the dam to the variations of loads, synthetic variables
were created based on the external conditions by temporal integration. These synthetic variables
provide an accuracy improvement in predictions and an exploratory tool for dam behavior
interpretation.

Regarding this interpretation of the dam behavior, the approach made was to let the models
tell what they have found important to predict every particular variable and then make an
interpretation of this information. For this purpose, a wide range of temporal integration of
external variables were used for synthetic variables creation in order to ensure that relevant
delayed effects were represented. Integration periods from 2 days to 365 days were used.

Short-term moving averages of water level seem to be the most relevant variables for inverted
pendulum radial movements. This makes sense since thermal effect has usually less influence in
the base of arch dams.

The most important variables obtained for the direct pendulum radial movements are,
surprisingly, the very long-term moving averages of water level. It would have been expected to
find thermal variables in the upper part of the ranking for this behavior. Trying to provide a
physical interpretation, the only potential explanation found was an upstream foundation
deformation motivated by slow changes in pore pressure due to variations in water level, but the
verisimilitude of this hypothesis should be further studied.
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ABSTRACT: The paper presents a 3D numerical model that was conceived to predict the behaviour
of a double curvature concrete arch dam. The model had the objective of reproducing the
effective response of the dam to the hydrostatic load and to temperature loads. The calibration
was performed on the base of monitoring data. The calibrated model was finally used to predict
the short-term and long-term behaviour of the dam. This calculation exercise was proposed in
the frame of the 16th International Benchmark Workshop on Numerical Analysis of Dams.
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1 INTRODUCTION

The Theme A of the 16" International Benchmark Workshop on Numerical Analysis of Dams
concerns the preparation of a behaviour model for a concrete arch dam. With the help of such
models, engineers can evaluate the dam’s performance, estimate the response of the dam for its
actual loading conditions and define warning levels. The calibration and the prediction provided
in the paper concerns the measurements of the pendulums and the crack opening.

A constitutive approach, preparing a 3D numerical model for reproducing the dam behaviour,
is adopted at first. Also, the results that were obtained fitting the available monitoring data
following a data-based approach are presented and commented in the light of comparison with
the results that were obtained following the constitutive approach.

The dam is owned by Electricité de France (EDF) and it is located in the south of France at an
altitude of approximately 2000 m asl. The name of the dam was kept undisclosed. The height of
the dam is 45 m, the crest and base thickness is 2 m and 6 m, respectively. The crest has a radius
of 110 m and a length of 166 m.

The dam is equipped with a comprehensive monitoring system, including pendulums, crack
opening, displacement sensors, piezometers and seepage measurements. Monitoring data have
regularly been acquired since the firstimpoundment. The monitoring data made available by the
formulators are shown in Appendix, referring to the period from 1995 to 2017. The monitoring
data to be predicted with the model refer to the period 2000-2012. As highlighted in the provided
documents, all altitudes refer to a common value which is an arbitrary value, and not the sea
level. It should be noted that when water level is lower than 196 m asl, there is only water in a
lake located upstream and below the heel of the dam.

The air temperature is not measured at the location of the dam, and, as far as the authors
know, the dam is not equipped with thermometers. Two time series of daily air temperature were
available: T_a, which is a time series of measurements located in the area of the dam, carried out
according to the standard of WMO (World Meteorological Organisation) and located 50 km from
the dam, however at a different altitude; T_b, which is calculated by interpolation from several
air temperature measuring stations, taking into account the altitude of the dam and is calculated
on a mesh of 1 square kilometre. Some comment on this information and how these
temperatures are used to compute thermal loads for the dam are given in Section 3.2.1.

The dam is equipped with several pendulumes, as illustrated in Figure 1. Only the measurements
of pendulums on the Central Block (labelled CB2 and CB3) were made available by the
formulators. CB2 is the radial displacement between the altitudes 236 m (just under the crest of
the dam) and 196 m asl (toe of the dam). CB3 is the radial displacement in the foundation
between the altitudes 195 m asl and 161 m asl.

A crack opening displacement sensor is located at the rock-concrete interface of the Central
Block (CB). The sensor measures the opening between C4 (in the foundation) and C5 (in the
concrete, at the toe of the dam). The location of the crack opening sensor and of the piezometers
is illustrated in Figure 1.

Pendulums Crack opening sensor

C

= | / Block CB
S ! ! 1 | S ! 4 e 220

CB2 | IHEs 207

Crest Level 239 ) B y |

Right bank

Central block CB

Figure 1. Monitoring equipment — pendulums and crack opening displacement sensor.
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2 DATA TREATMENT AND COMMENTS

In Figure 2 pendulum and crack opening measurements are plotted as a function of the water

level. It can be seen how the displacements vary over large ranges for each given water level,
especially for the pendulum measurement CB2 and the crack opening. This must be related to
the effect of the temperature on the displacements, which apparently has a strong influence on

the dam response. A crack opening of about 4mm is measured for the highest water levels.

|--- CBQ—EJémasl‘ <+ CB3-195masl | . Crﬂckupcning‘
240 T T T T 240 240
— B0+ : 4 B0+ -4 B0+
£ 220 20 | 1 2ot
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Figure 2. Pendulum and crack opening measurements as a function of the water level.

3 THE NUMERICAL MODEL

3.1 The geometry

The numerical model that was prepared is based on a three-dimensional explicit finite
difference scheme. Material behaviour is simulated according to an elastic constitutive
stress/strain law in response to the applied forces or boundary restraints. The software FLAC3D
(Itasca Consulting Group, Inc., 2016) was employed for the simulations.

The geometry provided by the formulators has been processed to build a mesh that was
suitable for the finite-difference model (FDM) that was prepared, as shown in Figure 3. The only
significant difference with the mesh that was provided is that the dam is described as made of
concrete blocks rather than a monolithic structure. This was done to properly simulate the dam
construction considering the blocks as independent and not interacting between each other, thus
fully neglecting the arch effect in this phase.

.

Figure 3. 3D view of the numerical FD model. Dam geometry described as made of concrete blocks. The
rock foundation is described by three zones (left/right banks, valley floor) characterized by different
mechanical properties (see Section 4.2).
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No information was given on the construction phasing of the dam. The authors believed that
given the age of the dam and the material of construction (traditional concrete), simulating the
dam construction assuming independent blocks leads to a stress state close to the actual one.
Having or not a realistic stress state at the end of construction does not impact in any way the
elastic dam response to the loads. However, if one is interested in the stress state of the dam, to
evaluate for example the possibility of onset of cracks, then having a consistent state of stress at
the end of the construction phase is indispensable.

3.2 Hydrostatic and thermal loads

It was assumed that two effects have a dominant role on determining the behaviour of the
dam: the effect of the hydrostatic load and the one of the thermal loads. Therefore, these two
loadings only have been considered in the numerical model.

The hydrostatic load depends exclusively on the water level in the reservoir, and it was
simulated by applying a mechanical normal stress to the dam upstream face. In this study the
dam-foundation response is computed for five water levels in the reservoir, as represented in
Figure 4, considering non-linear interfaces at the dam base and in correspondence of the vertical
construction joints.

THERMAL LOADS HYDROSTATIC LOADS
r240 m asl
;23? m asl
DT1
r230 m asl
-6masd + | 1 77—
v
¢ 20mesl
: 2172 m asl
DT2
F?‘IO m asl
r205.8 m asl
rZOO m asl

: 194.5 m asl

- .

UNIFORM TEMPERATURE =1°C

Figure 4. Thermal and hydrostatic loads.

Conversely, the dam response to the thermal loads is assumed to be elastic. The computation
of thermal effects is therefore based on the superposition principle. The numerical model
response to the thermal loads is computed for unit loads defined at various levels. Usually, the
levels at which the unit loads are defined are related to the location of the dam thermometers.
In the lack of such equipment, three different unit load patterns have been defined, as
represented in Figure 4. Thermal loads are assumed to be constant towards the left/right
abutments direction.
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3.2.1 Definition of thermal loads

The thermal state within an arch dam is of primary importance for predicting its behaviour. In
fact, the displacements of an arch dam are influenced also by the thermal elongation caused by
temperature variations.

Although in most of the cases the temperature effects can be approximated by a seasonal
effect which is repeated the same every year, in certain conditions (i.e., full and prolonged
drawdown) the direct measurement of the concrete temperature by means of thermometers is
necessary for correctly interpreting the dam behaviour. An extreme example is the case of the
250-300°000 m3 snow avalanche occurred in 1999 at the 67 m high Ferden arch dam
(Switzerland), covering 35 m of the downstream face (Bianchi, 2000). In that case, the
temperature measured by the thermometers installed in the dam body allowed to confirm the
normal behaviour of the dam under such exceptional loading conditions, which had instead been
questioned by the statistical interpretative model (Amberg, 2009).

Unfortunately, the examined dam is not equipped with thermometers in the dam body and
the formulators provided only two time series of the air temperature (T, Tp). A comparison
between the monthly averages of the two time series shows that T, and T, reproduce basically
the same temperatures but with an offset of 8-9°C. Since Ty indicates temperatures which seems
to be more compatible with the elevation of the dam (approximately 2000 m asl, according to
the formulators), Ty is considered in the following for the definition of the thermal state.

The thermal state within the dam is evaluated by means of a transient thermal analysis. The
thermal calculation is performed assuming 1D heat flow along the dam thickness. The thermal
properties of the concrete are the following: conductivity: 2.0 W/mK, specific heat: 900 J/kgkK,
density: 2400 kg/m?>. Three calculation sections are considered at three different elevations:
205.8 m asl, 217.2 m asl, 228.6 m asl. Each section is characterised by a different concrete
thickness: 5.2 m, 4.5m and 3.4 m, respectively.

The dam thickness is divided into 11 elements and the calculation procedure is based on a
finite difference explicit method (see Amberg, 2003 for more details). Heat flow is assumed to
occur by radiation and convection at the faces of the dam and by conduction within the dam.

The temperature boundary conditions at the upstream face depends on the upstream water
level (see Figure 5): water temperature is considered in the case the water level is above the
calculation section, air temperature is considered otherwise. In the first case a convective heat
coefficient of 13 W/m?K (concrete-air) is adopted, together with a surface emissivity equal to 0.7,
while in the latter case a convective heat coefficient of 500 W/m?K (concrete-water) is adopted,
while the surface emissivity is assumed to be none.

The water temperature (Ty) is not directly measured, but it was derived from the air
temperature by applying the following simplified approach suggested by the formulators:

T, = {0.7 Ty, if Ty > Q°C )
0 otherwise

For the downstream face, being always exposed to air, the air temperature is considered as a
boundary condition. The thermal calculation starts in 1995 and ends in 2017.

The results of the thermal calculation are shown in Figure 6in terms of average temperature
along the dam thickness for the three considered elevations.

—  Air temperature (T})

—  Water temperature

AT Y N TN N Y N B
95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

Figure 5. Air and water temperatures assumed in the thermal calculation (monthly averages).
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Figure 6. Concrete average temperature at the three elevations assumed in the thermal calculation.

4 MODEL CALIBRATION

4.1 Procedure for model calibration

A polynomial interpolation (4" degree) is performed on the displacements that are computed
by the numerical model for each of the water levels that are represented in Figure 4. Computation
of displacements for any water level is then possible.

The displacement &y, ; induced by the hydrostatic load Q, at the measurement point i (i.e.
measurement poinst of the pendulums), can be computed using the following expression:

Swi=a;-x+b-x*+c-x3+d;-x* 2)

where:

ox = —Z%min_jc the normalized level in the reservoir, with Qi = 160 m asl and

Qmax—Qmin

Qmax = 237 masl.
e a;, b;,c;, d; are the coefficients of interpolation for the measurement point i (obtained
from the results of the numerical model).

The displacement &7; induced by thermal loads, at the measurement point /i (i.e,
measurement points of pendulums), can be computed using the following expression:

5= ) myAT; 3

where:

em;; is the displacement at the measurement point i for a unit load at level j (result of the
numerical model);

e ATj is the average concrete temperature at level j.

The procedure for model calibration consists in testing several scenarios in terms of material
properties of the simulated materials, to reproduce at the best possible the observed behaviour
of the dam (monitoring data). The effectiveness of the calibration is evaluated on the base of the
difference between measurements and model predictions, expressed by the following equation:

5c,i = 5M,i - 5W,i - 5T,i “4)

Where:

e ¢, is the difference between the measured displacement at the measurement point i and
the model prediction for the measurement point i;

e 5 ; is the measured displacement at the measurement point i.
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Equation 4 is calculated for each date in which the measurement &), ;, the water load Q and
the average concrete temperatures AT; are available.

The internal software P0863 developed by Lombardi is used as a tool for model calibration.
The software helps the user in the definition of a new numerical scenario in terms of material
properties (concrete and rock stiffness, thermal expansion coefficient) that could better
reproduce the effective dam behaviour.

4.2 Material properties

In the benchmark formulation, the following information were made available:

e The dam is made of concrete with cement dosage at 300 kg/m3. The average value of
compressive strength is 34 MPa (after 90 days) with values varying from 22 MPa to 45 MPa;

e The foundation consists of laminated metamorphic slate with a high compressive strength.
However, the anisotropy of foundation confers a higher deformability to the left bank.

The mechanical properties that were recommended by the formulators for the concrete and
the rock foundation are summarized, the initial estimate for the numerical analyses and the result
of the calibration are summarized in Table 1.

Table 1. Mechanical parameters of the modelled materials proposed in benchmark formulation, initial
estimate for the numerical analyses and result of the calibration.

Young’s Modulus [GPa]

Formulator - . Result of
Initial estimate . .
proposal calibration
Concrete of the dam 22 22 24
. . Parallel: 15
Foundation right bank Perpendicular: 10 12.5 3.5
Foundation Parallel: 5
(approximately bottom of o 3 0.5
Perpendicular: 1
the valley)
Foundation left bank Parallel: 10 5 14

Perpendicular: 1

Some preliminary comment can be formulated on the proposed material properties, in the
light of the information that was available from monitoring data. In this study, pendulums
information is quietly poor, since only one measurement of dam displacements and one
measurement of foundation displacements are provided. This information is given for the central
block of the dam (see Figure 1). No other information was given about foundation behaviour (e.
g. from extensometers). In this context, the introduction of an anisotropic behaviour for the rock
foundation has been considered too complex without having enough information to verify the
effectiveness of the adopted material properties. For this reason, average isotropic moduli have
been defined for the rock foundation. Different values for left and right banks, and for the
foundation at the bottom of the valley, are maintained, even though information from other
pendulums located towards the left and the right abutment would have helped the interpretation
of dam-foundation response to the loads.

The calibration process leads to a slightly increase of the concrete modulus to 24 GPa and a
general decrease of the modulus of the rockmass (0.5 GPa at the bottom of the valley, 3.5 GPa at
the right bank and 1.4 GPa at the left bank). Regarding the coefficient of thermal expansion, the
obtained value is 1.4e-5 °C?, which is increased with respect to the value proposed by the
formulators (0.7e-5 °CY).
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4.3 Results of the numerical FDM model

The results of the numerical FDM model are shown in Figure 7, by comparing the predicted
and measured dam displacement due to the hydrostatic loads. The measured value is obtained
by removing from the measurement the displacement due to the thermal loads.

Two observations can be made. First, the dispersion of the measurement, although reduced,
remains quite high. This means that the thermal state within the dam is not reproduced with
accuracy. The lack of concrete temperature measurements has a negative impact on the
reliability of the simulation of thermal behaviour of the dam.

Second, the behaviour predicted by the model does not fully match with the actual one,
especially for the pendulum CB2: the dam seems to be more rigid for higher water levels and less
rigid for lower water levels, with respect to the numerical model.

H0 J J J ! H0 J J J J
g 70 L _ g 20 k. L : _
ER (1) SRR, 4 B aof : i
5200 |- “'y& U S 5 200 L U S S
= i — = —
= oo L RS I Model N7 o0 b Model i
o+ 1 |*°+ Measurements : + * «  Measurements
120 I I I I 120 I I I I
=20 =10 0 10 20 30 =20 =10 0 10 20 30
CB2 [mm] CB3 [mm]

Figure 7. Pendulums —comparison of measurements and model results (note: the thermal effect is
removed from the measurements).

Regarding the crack opening, Figure 8 shows a good agreement between the model and the
measurements.

H0 T ! T T T
o L

20 L.

Water level [m asl]

« =« DMeasurements
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-1 0 1 2 3 4 5

Crack opening [mm]

Figure 8. Crack opening —comparison of measurements and model results.

The behaviour of the pendulum CB2 could be explained with an opening of the vertical
contraction joints in wintertime with a low reservoir level. Under these conditions the arch effect
is reduced resulting in a more deformable structure than the monolithic one. With higher water
levels, the joints are closing, restoring the full stiffness of the monolithic structure. This behaviour
has been recognized in the past by the authors in other arch dams.

Because of the lack of information regarding the behaviour of the joints, hypothesis on the
joint opening cannot be verified. Therefore, it was decided to reproduce the response of the dam
to the hydrostatic loads by interpolating the measurements shown in Figure 7 with a polynomial
function of 4" order.
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In Figure 9 a comparison between the numerical model and the statistic interpolation is shown
for the pendulums CB2 and CB3. It is evident that the polynomial interpolation better reproduce
the actual behaviour of the dam.

240 . 240 T T T T
10 L - 10 L ; g i
e = -
B 200 | B 200 | |
% 200 - a. % 200 |- Polynomial interpolation H
= 190 L = 190 L MNumerical model |

: Measurements

180 I I I I 180 I T T T

=20 =10 0 10 20 30 =10 0 10 20 30 40
CB2 [mm] CB3 [mm]

Figure 9. Pendulums CB2 and CB3 — comparison of measurements and the results of the polynomial
interpolation and the numerical model (note: the thermal effect is removed from the measurements).

4.4 Interpretative model

Based on the considerations presented above, the final model used for the prediction
presented in the following is based on a hybrid model composed by:
e A constitutive model, i.e., based on the numerical model, for the prediction of the dam
response to thermal loads and for the prediction of the crack opening;
e A data-based model, i.e., based on the polynomial interpolation, for the prediction of the
dam response to hydrostatic loads.

The equations of the model used for the prediction of the behavior of the dam are listed
hereafter. The set of equations 5 represents the model for the pendulum CB2, while the set of
equations 6 is for the pendulum CB3 and the set of equations 7 is for the crack opening. In the
equations, 8¢ay,; is the predicted displacement of the pendulum i (i = 2 for CB2, i = 3 for CB3) and
the predicted crack opening (i=4). The constants that appear in the equations minimize the
average difference between measured displacements and calculated ones.

Sw2 = 15.655-x —98.312 - x* + 158.751 - x® — 45.256 - x*
6T,2 =—-1.413- AT228 —0.343 - AT217 +0.284 - ATZOS (5)
Scarz = Owa + 07, —14.993

Sws = 3.028 - x — 18.824 - x* + 28.033 - x> — 2.097 - x*
67"3 = 0031 * ATzzg - 0039 " AT217 - 0162 " ATZOS (6)
6CAL,3 = 6W,3 + 67’*‘3 - 4428

8w = 1.225-x —7.088 - x* + 8.097 - x> + 3.421 - x*

(7
6CAL,4- = 6W,4— - 3172

The measured and calculated displacements are shown in Figure 10, while their difference
between is shown in Figure 11.

The correspondence between the measured and calculated displacements is considered
satisfactory, given the available information. The standard deviation of the difference between
the measured and calculated displacement is 2.3 mm for the pendulum CB2, 0.6 mm for the
pendulum CB3 and 0.6 mm for the crack opening.
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4.5 Warning levels, short-term and long-term predictions

The warning levels should be defined to identify anomalies in the dam behaviour. Assuming
that the dam behaviour is regular in the calibration period, an excessive deviation from the model
prediction should be considered as an anomaly. In the definition of what one should consider
“excessive” the precision of the model in the calibration period must be accounted.

Therefore, it is proposed to define the warning levels as the envelope of the maximum
differences between the measurements and the model predictions in the calibration period
(2000-2012):

e for the pendulum CB2: +6 mm with respect to the model prediction;

e for the pendulum CB3: +3 mm with respect to the model prediction;
for the crack opening: +2 mm with respect to the model prediction.
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Figure 10. Pendulums and crack opening —comparison of measurements and model prediction.

An excessive deviation from the expected behaviour should not be necessarily interpreted as
a safety concern for the dam. The warning levels, as defined on the next page, has the scope to
highlight as soon as possible any anomaly in the dam behaviour or in the measurement
instrumentation, in order to promptly analyse it and, if necessary, implement the appropriate
corrective measures.

The figures on the next page also show the predictions of the model for the period 2013-2017,
which is one of the tasks of the Benchmark. It worth mention that the period 2016-2017 is
characterised by a low water level and the displacements of the pendulum CB3 are quite
completely caused by the thermal loads.
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Figure 11. Pendulums and crack opening — difference between the measurements and the model.

5 INTERPRETATION

The information gained from the monitoring measures, together with the results of the
numerical model allow to point out some important aspects regarding the behaviour of the
analysed dam.

The rock modulus obtained from the calibration process are quite low, in the order of 0.5-3.5
GPa, and significantly lower than those proposed by the formulators (1-15 GPa). Although the
obtained moduli allow to reproduce the displacements measured by the pendulum with a good
agreement, drawing some conclusions regarding the actual stiffness of the rock mass is
guestionable. The reliability of the estimate is higher for the modulus of the central part of the
valley (0.5 GPa), due to the presence of the pendulum CB3 which measure the response of the
rock to the forces transmitted by the dam. However, the lack of information regarding the rock
mass deformations in the left and right banks, makes the estimate less reliable.

The measurements of the pendulum CB2 has a high dispersion when plotted as a function of
the water level (Figure 2). In fact, the range of variation of the displacement for a certain water
level is of the same order of magnitude as the variation of the displacement due to the full
reservoir. In this context, the lack of direct information regarding the thermal state within the
dam (e.g., thermometers), leads to a reduced precision of the prediction of the model. The
thermal analysis conducted to overcome this issue leads to a reduction of the measurement
dispersion (Figure 7), which however remain quite high affecting the precision of the model.

The comparison between the measurements and the model shows that the dam behaviour is
basically reversible, without any drift or irreversible displacements. Only a very modest delay
between the measurements and the model is visible for the pendulum CB3, possibly indicating
that the rock mass behaviour is affected by some viscous effect. Regarding the pendulum CB2,
the numerical model results highlighted that the actual behaviour of the dam could be influenced
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by an opening of the vertical contraction joints in wintertime with a low reservoir level, leading
to a progressive activation of the arch effect as a function of the water level.

The numerical model is used also for estimating the maximum compressive stress in the arch
for the load combination of maximum water level in summertime. It is remarked that the
summertime condition is simulated in a simplified way by considering a temperature increase of
10°C for the whole dam. This value derives from assuming a reference temperature of 5°C and
considering the maximum temperatures shown in Figure 7. The horizontal stresses in the
direction of the arches are shown in Figure 12, while the vertical stresses are shown in Figure 13.
The maximum compressive stresses are horizontal and located at the upstream face in the middle
of the dam and reach 4 MPa, which is far below the compressive strength of the concrete (34
MPa as provided by the formulators).

Upstream Cenfral section
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Figure 12. Horizontal stress in the direction of the arch for the condition of full water level and summer
temperatures.
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Figure 13. Vertical stress for the condition of full water level and summer temperatures.
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6 CONCLUSIONS

The Theme A of the 16" International Benchmark Workshop on Numerical Analysis of Dams
concerned the preparation of a behaviour model for a concrete arch dam.

The numerical model that was prepared is based on a three-dimensional explicit finite
difference scheme. Material behaviour is simulated according to an elastic constitutive
stress/strain law in response to the applied forces or boundary restraints.

The model had been calibrated to fit as best possible the measurements coming from
monitoring equipment. However, some problems were encountered.

On one hand, the model was not able to capture properly the dam response to thermal loads.
The reason for that could probably be related the poor available information on the thermal state
of the dam over the calibration period.

On the other hand, measurements of dam displacements for low water levels indicate a
deformability of the structure that the model was not able to capture. Dam response to the
highest water levels is better reproduced by the model. Crack opening measurement from
sensors near the base of the dam were also well reproduced. Some hypotheses have been
formulated on this deviation between the measurements and the model results, such as the
opening of vertical contraction joints in wintertime with low reservoir level. No information on
joint opening was available, so this hypothesis could not be verified.

Finally, a data-based approach has been followed to interpolate the dam response to the
hydrostatic load. The deterministic (constitutive numerical) approach was maintained in making
predictions on thermal behaviour and crack opening. The result of the model can be considered
satisfactory.

As engineers often involved in similar situations, we had a new opportunity to observe that
following a constitutive approach when preparing dam behaviour models allows going in a deeper
detail while interpretating dam’s response. Calibrating a constitutive numerical model often
brings to a better knowledge of dam’s behaviour and of the characteristics of the materials. The
data-based statistical approach is inherently valid as long as the usual conditions that characterize
dam life are met again in the future (which is highly probable, though!). In case of unusual
conditions, for which the information given by a model regarding dam safety are most valuable,
the reliability of a statistical model could be lower.
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CB2 [mm] CB3 [mm] Air temperature [*C] Water level [m as]

Crack opening [mm]
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ABSTRACT: The concrete arch dam proposed for the 16th International Benchmark Workshop on
Numerical Analysis, theme A (Behaviour prediction of a concrete arch dam), was numerically
analyzed with an HTT-FEM hybrid model using ANSYS software and computer codes purposely
developed by the authors for arch dam analysis. A hydrostatic-thermal-time (HTT) model was
used to determine the contribution of the hydrostatic load, the temperature variation and the
time effect, to the observed measures. The predefined geometry delivered to the participants
was directly imported in ANSYS and the mesh was developed using internal software capabilities.
A sensitivity test was performed to obtain an adequate mesh discretization for the analysis.
Structural analyses were performed for different water levels of the reservoir and for the thermal
field in the observation dates, which was obtained by a transient thermal analysis. The computed
displacements in this hybrid approach are the sum of the results obtained through the
deterministic model for the hydrostatic pressure and the thermal action, with the time effect
contribution obtained from the HTT model. The radial displacement prediction for both plumb
lines is presented as well as their warning levels.
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1 INTRODUCTION

This paper presents the methodology adopted for the analysis of “Theme A: Behaviour
prediction of a concrete arch dam” proposed by the organization of the 16" ICOLD Benchmark
workshop on numerical analysis.

After an exploratory data analysis phase, a conventional engineering approach was used, with
the combination of an HTT and FEM models, allowing a more direct physical interpretation of the
behaviour of the dam.

The concrete dam was numerically studied using ANSYS software and computer codes
purposely developed by the authors for arch dam analysis, which have been used in the
assessment of the behaviour of several operating arch dams.

This analysis methodology allowed the submission of the calibration and prediction results for
the plumb lines displacements.

2 EXPLORATORY DATA ANALYSIS

The data exploration begun with a statistical synthesis, after visual inspection of the time
series.

Table 1 presents the values of the parameters of the sinusoidal approximation, with an annual
period, of the 2 daily air temperature series T (t) provided, Ta(t) and Ty(t), which were obtained
by the least squares method

T(t) =Ty —T,. cos[2.w.(t — ty)/365]

Table 1. Sinusoidal approximation parameters.

Ta Tb
Root mean square error (RMSE) [°C] 3.0 3.2
Greatest difference [°C] 7.6 8.0
Correlation coefficient 0.86 0.84
Tw=mean value [°C] 12.7 4.8
Ta=annual half-amplitude [°C] 7.4 7.1
To=initial phase [days] 22 27

The temperature series T, has a larger number of negative values compared to T, and
according to the formulators approach for the water temperature, the negative values will be
deemed zero for the water temperature in the reservoir.

Afterwards, each behaviour data series ( U(t) ) was analyzed by a measured air temperature-
based hydrostatic-thermal-time (HTT) model, which assumes that the elastic effects at time t of
the variation of the hydrostatic load ( Un(h(t) ) and of the biweekly mean air temperature, with a
time shift tr (Ut(T(t-tr)) ), as well as the irreversible time effect ( U¢(t) ), are monotonic polynomials
(4™ degree for Uy and Uy, 3™ degree for Us).

Uh,T,t) = U, (h(®)) + Uy (T(t —ty)) + Ut(t) +k
The statistical measures obtained were slightly better when assuming the daily air
temperature series Tp(t).
The most relevant time-dependent evolution was detected on piezometer PZCB2, with an

effect of -3.3 m/decade.

The HTT model results are summarized in Table 2.
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Table 2. HTT results.

CB3 195 161 CB2 236 196 C4 C5  PZCB2  PZCB3  Seepage

Number of records 698 703 675 705 670 672

% discarded records 1 1 2 2 3 4

tT [biweekly] 2 0 2 4 6 3

Statistical RMSE 0.5 2.6 0.3 0.5 0.5 2.2
Greatest difference 1.5 7.3 0.8 1.5 1.3 6.3

measures ; -

Correlation coefficient 0.98 0.96 0.99 0.99 0.96 0.81
Uh(h=235)-Uh(h=196) 8.2 27.6 4.5 15.0 5.0 9.7
effects Annual seasonal effect -1.9 -18.8 -0.9 -1.3 -0.4 -2.5
Ut [decade] 0.4 1.3 0.4 -3.3 -1.9 -0.5

Subsequently, a brief implementation of Machine Learning algorithm, namely Gradient
Boosting Regression and neural networks, was performed. The machine learning algorithms
showed promising results regarding the interpretation of the hydraulic behaviour of the dam’s
foundation observation results: piezometers and seepage, which usually are of a harder approach
with FEM models.

3 NUMERICAL MODEL

3.1 Geometry and Mesh

The geometry delivered to the participants (whole_dam.sat and whole_Rock.sat) was directly
imported into ANSYS and the mesh was developed using internal software capabilities. A
sensitivity test was performed by comparing the radial displacements on CB2, considering the
water level in the reservoir at elevation 235.10 m, obtained in the finite element model (FEM)
with four different mesh sizes. Table 3 shows the constitution of the different meshes considered.

Table 3. Mesh sensitivity test.

MESH 00 MESH 01 MESH 02 MESH 03
Element Size (m) 1.5 3.0 6.0 10.0
DAM N.° Elements 55233 7575 1394 654
N.° Nodes 86013 13 485 2 997 1488
Element Size (m) 5 10 20 30
FOUNDATION N.° Elements 129799 18 276 3382 1775
N.® Nodes 185 808 27997 5212 3153

The variation of the radial displacement on CB2 for the considered mesh sizes with reference
to the radial displacement obtained with MESH 00 (Figure 1) shows that by adopting a less refined
mesh the structure becomes stiffer, therefore, the downstream radial displacement is larger in
more refined meshes. In this case, the refined Mesh 00 model (271 821 nodes) has a radial
displacement of 19.18 mm, while MESHO2 (8209 nodes) has a radial displacement of 18.49 mm.
Taking into account the significant difference of the number of nodes between the two models,
MESH 02 has 3% of the number of nodes of MESH 00, and the 0.69 mm difference between the
displacements of the two models, MESH 02 was adopted in the analysis.
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Figurel. Mesh sensibility analysis.
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The finite element model adopted for both thermal and mechanical analyses was developed
in ANSYS, using tetrahedral 10 node elements, Solid 187 for structural analysis and Solid 87 for
thermal analysis. The model has 4776 elements, 1394 representing the dam body and 3382
representing the foundation. The adopted mesh and the coordinates reference is represented in
Figure 2: the vertical axis z (+ descending w.r.t. the crest), the horizontal axis x is positive towards
the left bank and the y axis is positive in the downstream direction.

Each nodal point has three degrees of freedom, in accordance with the displacement vector,
and all the displacements were prevented in the lower face of the foundation block.

0.00 50.00 100.00 (m)
I

25.00 75.00

Figure 2. Numerical model.

To consider the different foundation materials three zones were adopted, separated by vertical
planes parallel to XZ, allowing to differentiate the right and left banks and the center valley (Figure 2).

3.2 FEM Analysis

The dam structure and the foundation were assimilated as continuous and isotropic and a
structural linear elastic behaviour was adopted.

Initially, the adopted materials properties were the ones presented by the organization that
were updated by means of a calibration by comparison with the HTT model, namely by comparing
the radial displacements obtained for the hydrostatic pressure applied to the upstream face of
the dam on the FEM, with the same results obtained by the HTT. Figure 3 shows the comparison
between the radial displacements results of the HTT (in red) and the FEM, considering three
different values for the Young’s Modulus of the dam and foundation materials.
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Figure 8. Calibration. FEM and HTT for hydrostatic pressure
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Has it can be seen, the radial displacements closer to the crest of the dam have good
agreement between models, however for lower elevations significant differences were obtained.
The black full line plotted shows the best agreement between both models and the corresponding
material properties are presented in Table 4.

Table 4. Material properties

E K C a v R
(Gpa) W/(m-°C)  J/(kg-°C) (°ch (kg/m?)
Concrete 18.0 2 900 2400
Left Bank 5.0
0.7E-5 0.2
Center Valey 2.5 3 850 0
Right Bank 7.5

3.3 Analysis procedure

A hybrid approach was implemented considering the displacements as a sum of the results
obtained through the deterministic FEM model for the hydrostatic pressure and the seasonal
temperature variation, with the time effect results obtained from the HTT model.

e The hydrostatic effect on the structure was estimated by applying the water pressure on
the upstream face of the dam for 25 levels of the reservoir. For each observation date the
hydrostatic effect was evaluated by interpolation along the results previously referred for
the water level in that date.

e The thermal effect for each observation date was evaluated with the thermal field on the
referred date. This field was previously evaluated by a transient thermal analysis with an
incremental time of 1 day, between 01-01-1999 and 31-12-2017, assuming the air
temperature series Ty, for the air exposed dam surfaces and the water temperature on the
submerged upstream face on that date, as proposed by the benchmark formulators.

e For the time effect in the period between 2000 and 2012 the HTT results were adopted
(Figure 6).

3.4 Calibration

To obtain the best agreement between the computed and observed values a factor applied to
the FEM response to the hydrostatic pressure (Cy) and another applied to the FEM response to
the thermal action (Ct) were determined by minimizing the RMSE, in the period 2000 — 2012. In
Table 5 are also presented the values of the concrete Young modulus and the coefficient of
thermal expansion obtained by applying these factors to the initial values mentioned in 3.2. An
alternative approach regarding the Cy coefficient would be to scale the values assumed for the
air and water temperatures, as well as considering the solar radiation.

Table 5. Calibration factors

Ch Cr RMSE (mm) E (GPa) a (°C?Y)
CB2 236-196 1.1 1.3 2.7 17 0.9
CB3195-161 2.5 3.1 0.5 7 2.2

The values obtained for CB2 are plausible; the values for CB3 may be affected by relevant local
phenomena, such as the opening of the dam-foundation contact, which weren’t introduced in
the developed FEM model.

Figure 4 and Figure 5 show the comparison between the radial displacements measured on
the plumb lines CB2 and CB3, respectively, and the radial displacement obtained through the
calibrated hybrid model.
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Figure 4. Radial displacement (+ downstream) CB2. Measured data and computed results.
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Figure 5. Radial displacement (+ downstream) CB3. Measured data and computed results.

Both figures show good fit. The results obtained for CB2 show small differences except for the water
level decreasing events, namely in the beginning of 2005 when occurred the maximum difference of
13.3 mm. In this epoch also occurred the maximum difference for CB3 which is -1.6 mm.
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3.5 Predictions

Following the calibration procedure, a prediction (for the period 2013 — 2017) of the radial
displacements on both plumb lines was determined, using the same methodology, where the
time effect for CB2 was assumed constant and equal to the value obtained at the end of 2012,
and for CB3 it was assumed a linear evolution with time with the mean rate obtained between
2008 and 2012 (Figure 6).
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Figure 6. HTT time effect for CB2 (top) and CB3 (bottom).

The results plotted in Figure 7 show the radial displacements computed in the dates presented
on the worksheets CB2_236 196 and CB3_195 161 of the file ThemeA data_fmt01.xIsx delivered
by the formulators, which were submitted as requested for scoring.
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Figure 7. Radial displacement. Prediction 2013-2017.

4 WARNING LEVELS

The warning levels were defined by adding and subtracting the constant value of 3 * RMSE to
the predicted values: +7.5 mm and +1.5 mm for CB2 and CB3, respectively.

5 CONCLUSION

The adopted methodology led to a reasonable fit between the computed and the measured
results. Further developments could grant better results considering a more realistic time
evolution of the temperature along the reservoir height. Furthermore, it should be relevant to
consider the solar radiation and the joint opening of the dam/foundation contact. The structural
analysis for the evolutionary thermal action could be fastened by a methodology where the
computed thermal field would be approximated by interpolating a reduced number of key points,
so that a unique structural analysis for each key point would be performed.
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ABSTRACT: The main purpose of assessment of dam condition, through the use of the information
provided by the monitoring system, is achieved by having up-to-date knowledge of the dam. Early
anomalous behaviour detection is expected in order to allow appropriate intervention to correct
the situation or to avoid serious consequences. Once a dam is in its operation phase, the
assessment of the dam's condition and the interpretation of the dam's behaviour are supported
by data-based models, among others, in which the main goal is to predict the actual structural
dam behaviour in order to detect a possible deviation from a considered normal pattern.

Within the scope of the 16" International Benchmark Workshop on Numerical Analysis of Dams,
this paper presents a methodology for the prediction of different measurements based on the
combination of the results from multiple linear regression and neural network models. The work
discusses the advantages and applicability of the methodology to each type of dataset and the
importance of engineering expertise and on site knowledge when using data-based models.

The obtained results show a good model performance for the training period being a valid option
for dam engineering activities.
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1 INTRODUCTION

For each concrete dam, different models can be used according to the purpose of the analysis,
the existing knowledge about the actual structural behaviour and the quality of information
available for the structural behaviour characterization. The selection of the conceptual model to
represent the idealized dam behaviour must take into account: i) the purpose of the analysis
(safety assessment, prediction of the structural response, interpretation of the recorded data
from the monitoring system, or analysis of an accident or abnormal behaviour), ii) the ability to
identify the key factors of the reservoir-dam-foundation system, and iii) the type, age and degree
of deterioration of the dam and the available geological and geotechnical information, among
others.

Dams are made of, and founded on, materials whose properties change with time. The
establishment of the relation between causes and effects leading to the degradation of structural
properties of the dam and appurtenant structures is key for the identification and
characterization of the deterioration. During the dam's lifetime phases, the models are updated
to take into account the observed dam behaviour through the monitoring systems. This is the
case of traditional HST (hydrostatic, seasonal, time) and HTT (hydrostatic, temperature, time)
models, whose parameters can be updated based on the measured dam response over time. In
summary, the core of dam safety control is the establishment of multiple validations of the
models, the measurements and the parameters which, by characterizing the structural
behaviour, are able to elaborate and justify a judgment about structural safety. The main concern
is to predict the actual structural dam behaviour in order to detect a possible anomaly.

Statistical models used to predict structural response are based on relationships between the
loads and the structural response (SCD, 2003). These statistical models are based on the
establishment of Multiple Linear Regression (MLR) models of monitoring data collected during
the past history of the dam. In recent years, new data-based models based on Machine Learning
(ML) methods have been adopted as a guaranty in redundancy to the traditional adopted models
to describe the observed behaviour or, in some cases, to study a particular aspect of the dam
behaviour (Perner & Obernhuber, 2010; Mata, 2011; Kao & Loh., 2011; Simon et al., 2013;
Rancovic et al., 2014; Rico et al., 2014; Salazar et al., 2015, 2016; Li & Wang, 2019; Mata et al,,
2021).

As referred to in the cited publications, the growing use of ML models is mainly restricted to
scientific publications and academic examples. For this reason, this BW is an important milestone
to disseminate the use of ML models by dam engineers. In general, model performance is
important for model acceptance, but it is only the first step of the process. However, it is
important to emphasize that model verification and validation, through engineering expertise,
are a relevant part of the entire model development, since it establishes a relationship between
the mathematical/numerical model and the structural behaviour. This topic is further discussed
by Mata et al. (Mata et al., 2021).

The aim of Theme A in the 2022 ICOLD BW is to establish a prediction model for a dam. A
double curvature arch dam is used as a case study. The participants are asked to build a model,
calibrate it, and use it for long-term and short-term predictions using the provided data and by
making their assumptions and choosing suitable approaches to solve the problem. The focus of
the theme is on the following variables: radial displacement (two pendulums in the central block
of the dam); crack opening displacement (sensor at the rock-concrete interface); piezometric
levels (vibrating wire piezometers at the rock-concrete interface); and seepage (weir at the
downstream toe of the dam).

For this BW, a methodology based on the combination of the results from multiple linear
regression (MLR) and neural network (NN) models is presented for the prediction of the
displacements observed, taking advantage of each of the methods. Care should be taken
regarding model validity for the prediction period because the domain of the variables in the
training period may not be the same as the ones observed in the predicted period. For the uplift
pressures and for the seepage, a traditional HST approach based on multiple linear regression
was adopted due to the drainage cleaning resulting in a short time training period (for potential
ML models).
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2 THE CASE STUDY

2.1 Briefdam description

In this benchmark problem, denoted as Theme A in the 2022 ICOLD BW, a double curvature
arch dam, located in the south of France and owned by the EDF is used as a case study. The aim
of the theme is to establish a prediction model for the dam for the following quantities: radial
displacement, crack opening displacement, piezometric levels, and seepage.

The dam is located in the south of France. It is owned by EDF and was constructed between
1957 and 1960. It is a double curvature arch dam, which is asymmetric due to the shape of the
valley. The dam consists of 13. The maximum dam height is 45 m and the total crest length is
166 m. The normal water level is 237 m and the crest level is 239 m.

The geometry, material properties, and loads have been defined and are delivered by the
formulators. The monitoring data available is from 2000 to 2012, being the predicted set from
2013 to 2017. It was referred that the provided data has been pre-processed and can be directly
used for the analysis, e.g. no further cleaning is necessary.

Furthermore, the data is provided without any modification of the actual time series and is
measured with different frequencies. The main targets that should be predicted, including some
relevant information (see also Figure 1), are the following: i) the radial displacement, CB2,
between the altitudes 236 m (just under the crest) and 196 m (toe of the dam). The radial
displacement, CB3, in the foundation between the altitudes 195 m and 161 m; ii) a crack opening
displacement sensor is located at the rock-concrete interface of the Central Block (CB). The sensor
measures the opening between C4 (in the foundation) and C5 (in the concrete, at the toe of the
dam); iii) the piezometric levels PZCB2 and PZCB3, are located in block CB. In September 2008,
cleaning of the drainage system was carried out; and iv) the flowrate was measured using a weir
located in the gallery at the downstream toe of the dam. The measured total seepage is the total
amount of water originating from different locations such as the surrounding rock, moisture
transport in concrete, potential leakages in concrete cracks, and the drainage system.
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Figure 1. Main aspects of the monitoring system of the dam.

2.2 Data characterization

The data analysed corresponds to a period between January 2000 and December 2017. The
data between January 2000 and December 2012 was considered as the training period. Thus, the
data obtained during the period between January 2013 and December 2017 was adopted as a
predicted period. The evolution of the reservoir water level, radial displacements i