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We are pleased to present you the proceedings of the 16th International Benchmark Workshop 

on Numerical Analysis of Dams, held in Ljubljana on April 5th and 6th, 2022. Organised by 
Slovenian national committee on large dams (SLOCOLD), under the auspices of the International 
Commission on Large Dams' Technical Committee on Computational Aspects of Analysis and 
Design of Dams, this workshop brought together experts and practitioners from around the globe 
to exchange insights, innovative approaches and best practices in the numerical analysis of dams. 

ICOLD has long been at the forefront of progress of the dam engineering science and has 
contributed greatly to the development and advance of dam design, safety, and performance 
evaluation. In this spirit, the Benchmark Workshops serve as vital platforms for fostering 
collaboration, refining methodologies, and addressing emerging challenges in the field, as well as 
a reference for the global dam community, offering valuable insights and benchmarks for 
engineers, researchers, and stakeholders alike. They are particularly valuable for young 
engineers, providing them with essential resources and challenges as they contribute to the 
critical task of ensuring dam safety and resilience in the face of evolving environmental and 
societal demands. 

The benchmarking activities of the Technical Committee on Computational Aspects of Analysis 
and Design of Dams have attracted significant participation from technicians operating in the dam 
sector, with attendance consistently reaching up to 190 participants in recent workshops. Despite 
the fact that 16th benchmark workshop was only held online, due to the uncertain situation 
triggered by the COVID-19 pandemic, it attracted a participation of significant number of 
contributors and gained the attendance of over 100 participants from all over the world. For the 
first time, we tackled topics such as Dam behaviour prediction and fitting to actual 
measurements, modelling of AAR affected dams and Behaviour of the embankment dam, right 
after the rehabilitation works. 

The proceedings herein encapsulate the collective knowledge and expertise shared during the 
16th International Benchmark Workshop, by formulators, contributors and participants. From 
innovative modelling approaches to practical application, these papers offer valuable insights and 
perspectives for researchers, engineers, and stakeholders involved in dam design, surveillance 
and management.  

We extend our gratitude to all the contributors, presenters, and attendees whose dedication 
and enthusiasm have made this workshop a resounding success. It is our hope that these 
proceedings will serve as a lasting resource for advancing the state-of-the-art in the numerical 
analysis of dams and contribute to the ongoing efforts to ensure the safety and resilience of dam 
infrastructure worldwide. 

 
Nina Humar, 
President of Slovene national committee on large dams SLOCOLD 
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1 INTRODUCTION 

Dam monitoring is an important part of the dam safety work to obtain a greater understanding 
of the dam and is essential to identify changes in its behavior that can occur during their service 
life. Proper assessment of the aging dams increases the knowledge of their current safety and 
allows for better planning of renovation and rebuilding investments. 

Prediction of measurements and interpretation of future dam behavior, based on the data 
gained with measurements, can therefore be considered as a common task for dam engineers 
nowadays. Previous research has shown that the behavior of concrete dams is, to a great extent, 
governed by the ambient variation in temperature and water level. Thereby, utilizing different 
type of behavior models that can account for these variations in ambient conditions has great 
potential to capture the expected response of a dam. 

Moreover, these behavior models are often a crucial part of dam safety systems. With the help 
of various prediction models, engineers can evaluate dams’ performance, estimate its response 
to actual load conditions and define warning levels. In recent years, a vast development has 
occurred in the field of prediction models, especially regarding data-based and machine learning 
approaches. In addition to data-based models, numerical models based on the finite element 
method (FEM), are widely used to estimate displacements, stresses, and strains of dams and 
therefore predict their response. These models are based on the physical laws that govern the 
processes. Due to the increased computer power, both data-based and numerical models gained 
in their level of detail and accuracy but also in their complexity. Both are used by dam specialists, 
and it is therefore important to study the capabilities of these methodologies for assessing the 
dam behavior and predict the expected future behavior of the dam. 

The Technical Committee A “Computational Aspects of Analysis and Design of Dams” within 
International Commission of Large Dams (ICOLD) has organized international Benchmark 
Workshops (BW) on the topic of numerical analysis of dams since 1990. The purpose of these is 
to share knowledge and experience regarding numerical modelling within the fields of dam 
safety, planning, design, construction as well as operation and maintenance of dams. In the 6th 
ICOLD BW in 2001, interpretation of the measurements at the Schlegeis dam was one theme at 
the workshop. Years later, in 2017, at the 14th ICOLD BW, a theme was focused on predicting the 
dam behavior, including cracking, caused by seasonal temperature variations. The aim of the 
current theme for the 2022 ICOLD BW is to build from the experience of past workshops and see 
how modern tools can be used in the prediction of dam behavior. 

 Focus of this benchmark problem 
In this benchmark problem, denoted as Theme A in the 2022 ICOLD BW, a double curvature 

arch dam, located in the south of France and owned by the EDF (Électricité de France) is used as 
a case study. The name of the dam remains undisclosed. The aim of the theme was to establish a 
prediction model for the dam. For this task, all types of models were welcome to use (statistical, 
hybrid, deterministic, machine learning, finite element modelling) from the simplest to the most 
complex ones. 

The geometry and material properties of the dam and foundation were delivered by the 
formulators. The participants were also given the monitoring data from the dam for the period 
2000-2012. The provided data has been pre-processed and so it could be directly used for the 
analysis, e.g. no further cleaning was necessary. Furthermore, the data was provided without any 
modification of the actual time series and is measured with different frequencies. The 
participants were asked to build a model, calibrate it, and use it for long-term and short-term 
predictions using the provided data and by making their assumptions and choose suitable 
approaches to solve the problem. 

Theme A consists of mandatory and optional tasks that are divided among three cases: 
calibration (Case A), short-term predictions (Case B), and long-term predictions (Case C). For the 
participants, it was mandatory to consider the radial displacement from two pendulums, evaluate 
them and provide results for all three cases. Other variables (crack opening, piezometric level, 
and seepage) are provided as well, while interpretation and prediction of them were optional. 
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 General basic assumptions 
The focus of the theme is on the following variables: 

• Radial displacement (two pendulums in the central block of the dam) 
• Crack opening displacement (sensor at the rock-concrete interface) 
• Piezometric levels (vibrating wire piezometers at the rock-concrete interface) 
• Seepage (weir at the downstream toe of the dam). 

 
The material properties that were considered in the design studies of the dam are provided by 

the formulators. The geometry of the dam is provided in different CAD formats. 

 Deliverables 
All participants were requested to deliver their solution to the defined problem including 

output data, description of modelling assumptions, used software, etc. For the mandatory tasks, 
the participants were asked to provide both predictions and warning levels for the monitored 
phenomenon. 

In addition to delivering the requested results, all participants were required to provide a paper 
describing the problem and the chosen solution methods.  The participants presented their 
results during the Workshop.  

2 FORMULATION OF THE THEME 

 Description of the dam 
The studied dam is owned by EDF (Électricité de France) and it is named ‘Dam_EDF’ in the 

following text. Dam_EDF was constructed between 1957 and 1960. It is a double curvature arch 
dam, which is asymmetric because of the shape of the valley. Dam_EDF is made of concrete with 
cement dosage at 300 kg/m3 and it consists of 13 blocks: 

• 1 block of 12 m wide on the right bank 
• 11 blocks of 12.5 m wide 
• 1 block of 17 m wide on the left bank 

In Figure 1 and Figure 2, illustrations of the dam are presented. The foundation of Dam_EDF 
consists of laminated metamorphic slate which have a high compressive strength. However, the 
anisotropy of foundation confers a higher deformability to the left bank. 

 
Figure 1. Downstream view of Dam_EDF. 
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Figure 2. View from the top. The crosses indicate the position of the pendulums. 
 

 Dam Geometry 
The main technical data are: 
• Dam height above foundation  45 m 
• Crest thickness       2 m 
• Base thickness        6 m 
• Crest radius         110 m (90°) 
• Crest length        166 m 
• Normal Water Level *     237 m 
• Crest Level *        239 m 

* In the following text, all altitudes refer to a common arbitrary reference point, which is not 
the sea level. Water levels in the reservoir, altitudes of pendulums and piezometric levels all refer 
to this point. The unit of altitude is meter [m]. It should be noted that the real altitude of the 
Dam_EDF is approximately 2000 m above sea level. 

 Material properties 
Dam_EDF is made of concrete with cement dosage at 300 kg/m3. The average value of 

compressive strength is 34 MPa (after 90 days) with values varying from 22 MPa to 45 MPa. 

 Measurements 

 Introduction 
Dam_EDF is equipped with a comprehensive monitoring system, including pendulums, crack 

opening displacement sensors, piezometers and seepage measurements. Only the valid 
measurements are stored in the database. Thus, the provided data in this benchmark is the 
reference and valid data for behavior analysis and does not need any further cleaning. 
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 Water level 
Time series of water levels were provided for the period 1995 to 2017. The time format is 

common to all time series given in this benchmark: day/month/year hour:minutes:seconds 
(dd/mm/yyyy hh:mm:ss). For water level in the reservoir, there is at least one value per day. The 
unit of water level is meter [m]. When the water level is lower than +196 m, the complete 
upstream surface is exposed the air. This can happen because Dam_EDF is located on the top of 
a glacial threshold. Hence, when water level is lower than +196 m, there is only water in a lake 
located below the upstream toe of Dam_EDF. 
  

Figure 3. Time series of water level in the reservoir. 

 Air temperature 
The air temperature is not measured at the location of the dam. However, two time series of 

daily air temperature are given: 
• T_a, which is a time series of measurements located in the area of the dam. Measurements 

are carried out according to the standard of WMO (World Meteorological Organization) and 
are located 50 km from the dam, at a different altitude. 

• T_b, which is a time series calculated by interpolation from several air temperature 
measuring stations. The interpolation takes into account the altitude of the dam and is 
calculated on a mesh of 1 square kilometer. 

Time series of air temperature were provided for the period 1995 to 2017 and the unit is °C 
(degree Celsius). 
  

Figure 4. Time series of air temperature T_a and T_b. 

 Rainfall 
Data from a rain gauge located about 5 km from Dam_EDF were provided. The daily cumulative 

precipitation time series was provided for the period 1995 to 2017. The unit of precipitation is 
mm. 
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Figure 5.  Time series of daily rainfall (mm). 

 Pendulums (downstream and upstream displacements between two points) 
The dam is equipped with several pendulums, as illustrated in Figure 6 below. 
 

Figure 6. Location of pendulums (downstream view). 
 
For this benchmark, only the measurements of pendulums on the Central Block (CB) were 

given. CB2 is the radial displacement between the altitudes 236m (just under the crest of 
Dam_EDF) and 196 m (toe of Dam_EDF). CB3 is the radial displacement in the foundation 
between the altitudes 195 m and 161 m. An increasing radial displacement indicates a movement 
of the highest point in the downstream direction. 
  

 



Salazar, Simon, Malm, Hellgren, Klun 
BEHAVIOUR PREDICTION OF A CONCRETE ARCH DAM – Description and Synthesis of Theme A 

 

14 
 

Figure 7. View of block CB and location of pendulums. 
 
The provided radial displacements measured using the pendulums is presented in Figure 8. An 

increasing radial displacement indicates a movement of the highest point in the downstream 
direction. The unit of displacements is mm. 

Figure 8. Time series of pendulums CB2 and CB3. 

 Crack opening displacements sensor 
A crack opening displacement sensor is located at the rock concrete interface of the Central 

Block (CB). The sensor measures the opening between C4 (in the foundation) and C5 (in the 
concrete, at the toe of the dam). The location of the sensor is illustrated on the Figure 9. An 
increasing value of C4-C5 means that the distance between C4 and C5 is increasing. 

 Figure 9.  Location of crack opening displacements sensor in the block CB. 
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The time series of the relative distance between C4-C5 is given in the Excel file. The data is 

given from 2000 to 2012 as seen in Figure 10. An increasing value of C4-C5 means that the 
distance between C4 and C5 is increasing. The unit of displacement is mm. 

 
Figure 10. Time-series of crack opening displacements. 

 

 Piezometers 
For this benchmark only piezometers located in the block CB were provided. Their locations in 

the block CB are indicated on the Figure 11 below. 
  

Figure 11. Location of piezometers in the block CB. 
 

 
PZCB4, PZCB5 and PZCB6 are embedded deeply in the foundation and will not be analyzed. 

PZBC1 is located at the upstream of the grout curtain and thus its levels are quite equal to the 
hydraulic head. Consequently, PZCB1 is not analyzed in this benchmark. 

Time series of piezometric levels PZCB2 and PZCB3 are given from 2000 to 2012. The unit of 
piezometric levels is meter (m). The reference for altitude is the same as for water level and 

elevations (see Figure 3). 



Salazar, Simon, Malm, Hellgren, Klun 
BEHAVIOUR PREDICTION OF A CONCRETE ARCH DAM – Description and Synthesis of Theme A 

 

16 
 

Time series of PZBC3 contains missing values from the 5th of February 2008 to the 10th of 
September 2008. A leakage in the standpipe of piezometer PZBC3 was observed during this 
period that is why measurements were removed. In September 2008, a cleaning of the drainage 
system was carried out. This has to be considered when analyzing the monitoring data. 
  

Figure 12.  Time series of piezometric levels. 

 Seepage 
The total seepage flowrate of Dam_EDF were also provided. The flowrate is measured using a 

weir located in the gallery at the downstream toe of Dam_EDF. The measured total seepage is 
the total amount of water originated from different locations such as the surrounding rock, 
moisture transport in concrete, potential leakages in concrete cracks and the drainage system. 
Times series of flowrate are given from 2000 to 2012 and the unit is L.min-1 (Liter per minute). 
  

Figure 13 – Time series of seepage. 
 

 Delivered data from the formulators 

 Data preparation 
Variables are measured with different and irregular frequency. One of the goals of this Theme 

is to compare criteria to handle the data preparation caused by issues that may appear in practice 
such as resampling, missing values, etc. Therefore, the dataset was provided without any 
modification of the actual time series. The main features of the data are summarized in Table 1. 
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Table 1. Summary of the main features of the provided data. 

Variable type [units] Variable name Period Average reading 
frequency 

# 
Measurements 

Water Level [m] Water Level 1995-2017 1 day 9736 
Air Temperature 

[ºC] 
T_a 1995-2017 1 day 8401 
T_b 1995-2017 1 day 8401 

Rainfall [mm] Rainfall 1995-2017 1 day 8401 
Radial displacement 

[mm] 
CB2_236_196 2000-2012 1.5 weeks 703 
CB3_195_161 2000-2012 1.5 weeks 698 

Crack opening [mm] C4-C5 2000-2012 1.5 weeks 676 
Piezometric level 

[m] 
PZCB2 2000-2012 1.5 weeks 705 
PZCB3 2000-2012 1.5 weeks 670 

Seepage [l/min] seepage 2000-2012 1.5 weeks 672 
 
The most appropriate format of the time series depends on the chosen model (either FEM or 

data-based) and the software tool used. The participants received the data in three different 
versions to facilitate the analysis: 

• An excel file with each variable in a different sheet (‘ThemeA_data_fmt01.xlsx’). It should 
be noted that the time vector differs among variables, due to the different reading 
frequency and reading period. 

• An excel file with all variables in one sheet (‘ThemeA_data_fmt02.xlsx’). The time vector 
encompasses all time stamps from all variables. Since this includes the hour, several rows 
appear for the same day in case more than one record was taken at different hours. 

• An excel file with all variables in one sheet with a common time vector in the format 
dd/mm/yyyy (‘ThemeA_data_fmt03.xlsx’). This is a transformation of the original dataset: 
if more than one record is available for some variable within one day, the mean value is 
taken. As a result, the number of records is lower than in the original dataset. 

In all versions, the cells in the forecasting period for the output variables were left blank. 
Participants were able to explore the provided data by loading either the second or the third 
versions into the free online app: https://cimnetest.shinyapps.io/PREDATOR/. The participants 
are free to use any version of the data for each part of the analysis. 

 Data-based models 
Participants were free to use their preferred software or algorithm to compute predictions and 

warning levels. The most popular data-based approach for dam monitoring analysis is the 
hydrostatic-seasonal-time (HST) model. It was first proposed by Willm and Beaujoint in 1967 [1] 
to predict displacements in concrete dams, and has been widely applied ever since. Other 
statistical methods have also been used for this purpose. Examples include neural networks [2], 
[3], support vector machines [4] and boosted regression trees [5], among others [4], [6]. 

 Numerical FE model 
The participants were free to perform the finite element analyses in any way that they find 

suitable. A geometrical model was developed by the formulators and was provided to the 
participants. The geometry consists of two separate parts; the concrete arch dam (including the 
abutment), and the rock foundation. In this geometry, the dam is described as a monolithic 
structure. 

2.3.3.1 Geometry files 
The geometry of the dam were provided in different CAD-based file formats that can be 

imported into most of the existing finite element codes 
• ACIS .sat 
• STEP .stp 
• IGES .igs 
 
 

https://cimnetest.shinyapps.io/PREDATOR/
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Figure 14. Illustration of the geometry of the arch dam and foundation used as a case-study for the theme. 

 

2.3.3.2 Mesh file 
An input-file in ASCII code (.inp) was provided with the raw data of the coordinates of all nodes 

and the topology of the elements in the FE-model. The dam has been meshed with 4-node linear 
tetrahedron elements (C3D4 in Abaqus), with a typical length of about 1.0 m. The concrete parts 
consist of 32195 nodes and 155780 elements. The rock foundation has been meshed with 4-node 
linear tetrahedron elements (c3D4 in Abaqus), with a typical length of about 1.0 m at the rock-
concrete interface and 20 m near its exterior surfaces. The rock parts consist of 7224 nodes and 
31073 elements. 

Defining a suitable mesh is an important part of numerical analyses, and the requirement of 
the mesh, regarding the size of the elements, depends on many factors, such as defined material 
behavior, type of loads considered etc. Therefore, even though the formulators provided one 
suggestion for mesh, the participants could define a mesh of their own that was suitable for their 
analyses. 

 
Figure 15. Illustration of the geometry of the arch dam and foundation used as a case-study for the theme. 

 Case studies and tasks 
The tasks are divided into three Cases, in accordance with the period of analysis. 
• Calibration (Case A): 2000-2012 
• Short term prediction (Case B): January 2013 - June 2013 
• Long term prediction (Case C): July 2013 - December 2017. 
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For all cases and each output variable (pendulums, crack opening displacements, piezometers, 
and seepage), the participants were requested to submit: 

• A vector of the predictions, with one value for each time stamp in the provided time series 
• Two vectors of lower and upper warning thresholds. 

 
The time series for both the input variables and the dam responses were provided for the 

period 2000-2012. They can be used to calibrate the parameters of the models: material 
properties, boundary conditions and other features of FEM, and training parameters for data-
based models. Records of rainfall, water level and air temperature are provided from 1995. 
Participants using FEM models may find this information useful for computing the thermal and 
stress field of the dam at the beginning of the calibration period. Predicted values should be the 
best estimate of the dam response in terms of each of the output variables. These predictions 
will be compared to the actual measurements by the formulators. Participants are free to define 
the warning thresholds with their own criterion.  

In addition to the predictive task, it was requested to perform one interpretive task. The 
interpretation task should be considered as a general analysis of the dam, measurements, data, 
and modelling in the context of dam safety. The participants were asked to explain how their 
analysis and results could teach us anything about the dam’s performance, if the model can 
provide support for the decision-making process, etc. This task was considered as very open 
where the participants could decide to perform risk analysis, assess maintenance needs, failure 
simulations, establish link between external load and monitored phenomenon, or any other 
approach based on their judgement, experience, and motivation. All tasks are summarized in 
Table 2. 

 
Table 2.  Summary of the mandatory and optional tasks. 

Interpretation Case A: calibration Case 2: Short term Case 3: Long term 
  Prediction Warning 

levels 
Prediction Warning 

levels 
Prediction Warning 

levels 
CB2_236_196 Mandatory Mandatory Mandatory Mandatory Mandatory Mandatory Mandatory 
CB3_195_161 Mandatory Mandatory Mandatory Mandatory Mandatory Mandatory Mandatory 

C4-C5  Optional Optional Optional Optional Optional Optional 
PZCB2  Optional Optional Optional Optional Optional Optional 
PZCB3  Optional Optional Optional Optional Optional Optional 

Leakage  Optional Optional Optional Optional Optional Optional 
 

In summary, six output variables and three different time periods were considered. All records 
corresponding to the Case A (calibration; 2000-2012) were available to the participants. 
Therefore, the results for this period are described and discussed in detail in each paper and only 
a general summary is included in this report. In contrast, the actual measurements for Case B 
(January-June 2013) and Case C (July 2013 – December 2017) were not provided before the 
benchmark. These results are considered as more relevant and will be analyzed in more depth in 
this synthesis. 

 Required output from the participants 
The participants delivered their results to the formulators of the theme via the provided excel 

template files. In these template files, the first section was used for participants to provide 
general information about their group, which will help with the synthesis of the results 
(experience, software used, consumption of time, etc.). 

For Cases A, B, and C, the spreadsheets contain time stamps for each variable, where the 
participants are asked to copy their prediction vectors, with one value for each time stamp, and 
two vectors for the lower and upper thresholds, respectively. Radial displacement results were 
mandatory, while other variables are optional. 

The formulators analyzed the data provided in the excel spreadsheets and the papers prepared 
by the participants in which the modelling assumptions, calibration process, pre-processing, etc. 
were explained. The participants were also asked to highlight the specific information regarding 
the lessons learned and specific steps to solve the tasks. 
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3 DESCRIPTION OF CONTRIBUTIONS 

 Statistics 
In total, 18 teams participated in theme A and provided 23 solutions to the formulators. The 

participants were from the following countries: Austria, Canada, China, France, Iran, Italy, North 
Macedonia, Portugal, Russian Federation, Spain, Switzerland, and United States of America. In 
average 3 authors collaborated in a team that provided a contribution. By composition, 11 groups 
were from consultancy or a dam owner, 5 groups from universities or research centers, and the 
authors of 2 groups were from combined affiliations.  

The participants were asked to submit the results and 6 tasks were marked as obligatory, while 
there were also 15 optional tasks that could be performed. The formulators received 18 full 
solutions of the obligatory tasks and 5 partials. Additionally, 3 groups provided also all the 
optional tasks, while the formulators also received 12 partial solutions for the optional tasks. Time 
spent by the participants varied substantially, from 3 days to 124 days, while the average time 
spent per solution was 30.5 days (see Figure 16). Majority of the solutions were provided using 2 
inputs for prediction of pendulums and joint opening (20 solutions), all of them used water level, 
while 16 used air temperature measured 50 km from the dam (Tb), 4 used interpolated air 
temperature (Ta), and 2 used precipitation time series, only 3 solutions were provided using 3 
input parameters. Similarly, for the optional results for the pores pressures and water seepage, 3 
solutions were provided using only water level, 5 solutions used water level and Tb, or Ta, or rain, 
and 3 solutions were provided using 3 or more input parameters. 

Figure 16. Number of tasks performed and time spent to provide solution. 
 
The motivation to participate and provide results were in 38% to expand and share expertise, 

in 29% to test new methods and compare results with others, in 19% to learn from others, and in 
14% the participants didn’t report on their motivation to participate. 7 groups have already 
participated in previous Benchmark workshops, while 11 groups participated for the first time. 
Participants were also asked to report on their confidence in the provided result in percentage, 
not all groups reported on their confidence, and for those who did, the lowest confidence level 
was 10%, and only one group was 100% confident in their results, while the average reported 
confidence level was at 60%.  

 Summary of methods used by the participants 
Table 3 shows a summary of the submissions received for all Cases and variables, classified by 

the approach used. Overall, 3 submissions were based on FEM, 8 on machine learning (one of 
which added an analytical formula), 6 employed an analytical approach and 5 a hybrid method, 
correcting the outcome of a FEM model with machine learning (1) or with an analytical model (4). 
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Table 3. Summary of methods used and variables considered by each participant.  

 
 
Participant 1 (France): analytical model with user-defined correlation functions. Simultaneous 

Perturbation Stochastic Approximation (SPSA) method for calibration (10 parameters). Threshold 
function added for joint opening. For piezometers, 14 parameters were used, four of which are 
included to model a change in behavior after August 2008. During Case A, the authors observed 
a decrease in accuracy in 2002 attributed to a rapid increase in water level, different from other 
years. The authors recommend to re-calibrate the model yearly to adjust to the time variation of 
the response (they observed a drop in piezometric levels for a given reservoir level). Accuracy for 
seepage in Case A is clearly lower than for other variables. The authors hypothesize that part of 
the seepage may come from runoff due to rainfall, and that the precipitation data taken 5 km far 
from the dam may represent the precipitation at the dam incorrectly. In conclusion, they state 
that the use of an analytical approach including correlation functions, defined based on 
engineering knowledge, allows for a better interpretation of dam behavior. However, such 
functions are complex and not easy to associate to physical phenomena, which, in turn, are 
complex and dependent. 

 
Participant 2 (Austria): FEM model including thermal and mechanical effects. The results are 

fed, together with the monitoring data, into a Long-Short Term Memory (LSTM) neural network. 
The data provided for the calibration period (Case A) is divided into a training set (95% initial 
period) and a test set (5% final records). They used Tensorfolw/Keras in the Python environment. 
Forecasts are submitted for displacements and joint openings. The authors noticed lower 
accuracy during unloading periods. 

 
Participant 3 (Iran): hybrid approach using moving averages and gradients of inputs as 

predictors. Radial displacements are predicted with a polynomial of fourth degree dependent on 
the reservoir level. The results are corrected with a Gradient Boosted Regression based on all 
inputs except level. The resulting approach is named Hydrostatic Machine Learning. The models 
are interpreted using word clouds and partial dependence plots. The process for computing 
variable importance is unclear, since inputs associated to reservoir level are considered 
differently (in a polynomial) to the others (which are fed into a GBR model). 

 
Participant 4 (China-USA): data-driven model. Inputs are taken from HST (polynomial of 4th 

degree for the hydrostatic load. The temperature effect is considered from average temperatures 

CB2 CB3 C4C5 PZCB2 PZCB3 Seep.
A01 AN 1.15 0.54 0.08 0.64 0.3 2.53 6
A02 HY-ML 1.67 0.34 0.16 3
A03 ML 1.05 0.41 2
A04 ML 1.43 0.29 2.56 3
A05 ML 1.32 0.19 2

A06_1 ML 1.77 0.23 2
A06_2 HY-AN 6.31 0.63 2

A07 AN 1.85 0.35 0.16 3
A08 HY-AN 2.29 0.69 0.25 0.73 0.8 2.27 6
A09 AN 2.39 0.75 0.23 0.36 4
A10 ML 1.15 0.35 0.1 0.45 0.29 3.04 6
A11 ML 1.78 0.35 0.18 0.3 0.16 2.72 6
A12 HY-AN 1.87 0.44 0.61 3
A13 HY-AN 3.65 0.59 2
A14 ML+AN 1.65 0.76 0.21 0.86 0.36 3.87 6

A15_1 AN 1.15 0.58 0.2 1.58 1.04 5
A15_2 AN 2.29 0.36 0.18 1.57 1.02 5
A15_3 FEM 3.37 1.63 2
A15_4 FEM 3.26 2.6 2

A16 AN 1.5 0.42 0.06 1.21 0.3 5
A17 FEM 3.82 3.01 1.51 5.19 1.19 4.98 6
A18 ML 1.8 0.25 2

# vars. 
Considered

Variables
ApproachParticipant

Method # Contributions
AN 6

FEM 3
HY-AN 4
HY-ML 1

ML 7
ML+AN 1
Total 22
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along a number of periods (e.g., last 2 days, previous week, previous month, etc.). The time effect 
is also included as a polynomial. The final model has 14 inputs. For the seepage, an additional 
term is added, depending on the rainfall, also over different time periods, adding 6 additional 
coefficients to the model. They used “Kernel Extreme learning machine”, described as a version 
of neural networks. In addition to the coefficients to be fit for the network, this approach requires 
adjusting the parameters related to a kernel. Particle Swarm Optimization (PSO) was used for 
calibration. The warning levels were defined assuming a normal distribution of residuals and a 
bandwidth corresponding to 99% of the samples, i.e., predictions plus/minus 2.58 times the 
standard deviation. The model interpretation was performed using a version of global sensitivity 
analysis, grouping the inputs by loads (hydrostatic, temperature, time, rainfall). Only 
displacements and seepage were considered. 

 
Participant 5 (Canada): Bayesian dynamic linear model (BDLM) coupled with Bayesian long-

short-term memory (LSTM) neural network. The authors claim that their method does not require 
re-training, which allows for detecting anomalies that evolve over years. Only displacements are 
considered. Moving averages of temperature, up to 54 days, are used for the BDLM, while the 
LSTM considers raw data for reservoir level and temperature. The authors developed the 
OpenBDLM library for BDLM. They concluded that a change in behavior occurred between 
February 2004 and 2007 for CB3, based on the visual exploration of the residuals of the model 
and on the plot of probability of switching regime. They introduced artificial anomalies on the raw 
data to verify their model’s detection capability. The effect of inputs is evaluated based on the 
BDLM, showing the hydrostatic load as the most important effect. 

 
Participant 6 (Russia): HST for CB3 and neural network (multilayer perceptron) for CB2 using 

Keras. They defined the warning intervals based on the predicted value +/- 3 times the standard 
deviation of the residuals, which encompasses 99.7 % of values in a perfect Gaussian distribution. 
The histogram of residuals is close to a normal distribution for CB2 (HST model), but that is not 
the case for CB3 (NN). The author also considered a FEM model using Simulia Abaqus. First, the 
thermal problem was solved with a time step of one day. Then, the resulting deformation was 
added to that obtained from the mechanical calculation resulting from the application of the 
hydrostatic load with a time increment of one week. The accuracy of the FEM model was reported 
to be lower for both outputs considered.   

 
Participant 7 (USA): First, a finite element model based on LS-DYNA software was developed, 

but not used for generating predictions. Displacements and crack opening were considered. Two-
week moving average of temperatures were taken as input. The time series of crack opening was 
taken to segment the data, as a function of the state of the crack, i.e., closed, moderately open 
(<1.85 mm) or wide open (>1.85 mm). The data were further subdivided according to the pool 
level. For each of the final sets, the effect of the temperature was seen to be close to linear. As a 
result of the approach used, the crack opening needs to be estimated before predicting 
displacements. This is done by means of curve fitting based on pool level and temperature. 
Warning levels were defined so that they contained around 90% of the data. 

 
Participant 8 (Portugal): finite element analysis with consideration of joints and solar radiation. 

Some assumptions were made for the thermal analysis: T_b was applied and the orientation of 
the dam was estimated. Different models with varying degrees of complexity were developed. 
The results of a thermal analysis in an elastic FE model are fed into an analytical model (Separation 
of Effects, SEM). The result resembles an HST in which the thermal effect is modelled by the FEM 
results (instead of the conventional term). The warning levels were defined based on the 
predictions +/- 3 times the standard deviation of the residuals. The authors mention 5 times the 
standard deviation as an additional warning (maybe alarm) threshold. For pendulums, using the 
FE instead of the regular HST resulted in an improvement in R2 from 0.93 to 0.95.   

 
Participant 9 (Italy): ensemble model, based on a weighted combination of a multi-linear 

regression model and a Seasonal Autoregressive Integrated Moving Average (SARIMA) model. 
Pendulums, crack opening and one piezometer were considered. The authors mention that Case 
C (5-year prediction) is a challenging task, not often considered in practice. The weights for each 
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model are defined based on engineering judgement. Warning levels are based on the 95% 
confidence intervals, i.e., 1.96 times the standard deviation of the residuals. The temperature 
records provided were not considered, because they were not taken at the dam site and thus the 
authors assumed that they would not represent the local peaks. Rainfall was also discarded, in 
view of the correlation matrix. The water level is modified, assuming a constant value equal to 
195 m when the actual record is lower (and thus below the dam toe). PZCB3 was not considered 
due to the reported change in behavior during the training period.  

 
Participant 10 (Spain): machine learning model based on boosted regression trees (BRT). 

Moving averages of different periods of water level and temperatures were considered as inputs. 
Predictions were provided for all proposed outputs. A preliminary variable selection process was 
followed, after which T_a was selected and T_b discarded; the modified water level (with a lower 
bound in 195 m) was taken instead of the original series; rainfall was neglected. Then, for each 
output, a calibration process was followed, which included 100 pseudo-random selections of 
inputs and 36 combinations of model parameters for each input set. The final models were 
selected in view of the accuracy on the training set (2000-2010) and on the test set (2011-2012) 
selected by the authors. The predictions for Case B and C were computed from these final models 
with a bias correction. The warning levels were defined on the basis of the corrected predictions 
and the 100% quantile range of the residuals. The models were interpreted to draw practical hints 
on dam behavior. 

 
Participant 11 (Spain): machine learning approach. Several ML algorithms were considered, 

namely random forest (RF), generalized linear regression, bayesian neural network, hydrostatic-
season-time (HST), neural networks (NN), support vector machines (SVM) and BRT. Synthetic 
variables were generated to be considered as inputs: moving averages, aggregates (sum of values 
along the period) and variation ratio. Variable selection was later performed on the basis of the 
importance computed from an SVM model. Model parameters were calibrated with cross 
validation. Year 2012 was considered for validation. The warning levels were defined as the 
predictions ±2 times the standard deviation of the residuals. As a result, 95% of the records are 
expected to be within the interval. Model interpretation suggests a long-term inertia of CB2 (180 
days). The authors analyzed the similarity among years in terms of load values. The final models 
used were based on SVM for pendulums, on BRT for piezometers and on NN for crack opening 
and seepage.  

 
Participant 12 (Switzerland): 3D numerical model. Joints among blocks and between dam and 

foundation were considered. T_b was used to account for the thermal effects in a transient 
analysis, assuming 1D thermal flow. The displacement due to hydrostatic load was computed 
from an analytical expression, i.e., a polynomial of 4th order of the reservoir level. The 
contribution of the thermal load was considered from the results of the numerical model. The 
material properties were calibrated with an in-house software. As a result, the final values used 
are slightly different to those mentioned in the formulation of the Theme. The warning levels are 
defined as the envelope of the maximum differences between predictions and observations for 
the calibration period.  

 
Participant 13 (Portugal): combination of an analytical approach (HTT) and a deterministic 

calculation (ANSYS software). The authors also mention “brief implementations” of gradient 
boosted trees and neural networks, with “promising” results. A sensitivity analysis on mesh size 
was performed, showing that coarser meshes result in stiffer models. Material properties were 
calibrated based on results for CB2. Predictions were computed ass the sum of the result obtained 
from the FEM, which account for hydrostatic and thermal loads, and those from the HTT model, 
to consider the time effect. In the thermal calculation, air temperature was assumed to be equal 
to T_b and a different value was considered for the wetted part of the upstream face. For the 
calibration period, the authors reported the highest differences between predictions and 
observations during periods of decreasing water level. Predictions for Case B and C were 
generated assuming constant time effect for CB2 and linear evolution for CB3. The warning levels 
were computed as predictions ±3 times the RMSE for each output. 
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Participant 14 (Portugal): combination of multi-linear regression and neural networks was used 
for displacements and crack opening. The hybrid approach includes predictions based on HST 
corrected by a NN model, which estimates the residuals. For other outputs, HST model was 
applied. An exploratory analysis was made to check the effect of the cleaning of the drainage 
system performed in 2008. Some data for PZCB3 were excluded from the training set because of 
some abnormal behavior identified. The authors noticed that some load combinations in the 
prediction period (Case B and C) were not presented during the calibration period, which may 
result in less accurate predictions. 

 
Participant 15 (France): two analytical models (HST and HSTT) model and two versions of a 

deterministic model based on FLAC3D software (with different conditions for the foundation) are 
used. For the analytical models, predictions are provided for all outputs except for seepage. As 
for the FEM model, only the displacements are considered. The time series of water level was 
modified, as other participants did, by bounding the lower limit to the bottom of the dam (195 
m). Warning levels are computed as predictions ±2.5 times the standard deviation of the 
corrected data (which are computed as the observations minus the hydrostatic and thermal 
effects). Since they are based on the corrected data, these results couldn’t be evaluated. The 
material properties of the concrete and foundation were calibrated to approximate the output of 
the HSTT model.  Both the vertical and the dam-foundation joints are reproduced with numerical 
shear keys, which allow opening but not sliding. A transient thermal analysis was carried out to 
reproduce the thermal load, with a time step of one day. The predictions of the deterministic 
model are in good agreement with those of the analytical approaches for CB2. As for CB3, results 
diverge, in particular for low water levels. The authors perform a safety analysis of the dam.  

 
Participant 16 (France): thermal HST for displacements; a non-linear version of HST for crack 

opening displacements; a physically based and non-linear version of HST for piezometers at the 
rock concrete interface; artificial neural networks for leakages. T_a is used instead of T_b. They 
use the “corrected measurements” concept, i.e., the result of subtracting the reversible effects 
from the raw measurements. They are useful for identifying trends. Some deviation from the 
overall trend is observed for CB2 in 2003 and 2012, which is attributed to the limitations of the 
HST model used. For crack opening, a non-linear term is added based on the observed behavior. 
Predictions for seepage are not provided. Warning levels are generated from 2 times the standard 
deviation of the residuals.  

 
Participant 17 (North Macedonia): deterministic model based on FEM (Sofistik software). The 

dam is considered monolithic. The model is calibrated by focusing on the maximum and minimum 
displacements along the training period (Case A). Results for CB3 are less accurate, though with 
a similar trend.  As for the crack opening, the authors considered a kinematic constraint, which 
resulted in lower variation than observed. They suggest that the behavior may be better captured 
with interface elements. Piezometric levels were computed with 2D hydraulic models. The 
permeability of the material was calibrated based on the observed values for the maximum water 
level. The grout curtain was considered in a simplified way, which is mentioned as a potential 
source of discrepancy between model predictions and observed values. The model also 
underestimated the seepage flow values recorded.  

 
Participant 18 (France): first, a simple HST model was applied; then, an HST-T model was used 

to better capture the thermal effects. Predictions for CB2 were improved, but those for CB3 (less 
affected by temperature), did not change. Also, ML algorithms were explored, namely SVM, LSTM 
and RF. The HST models were fit with a software developed by the authors, which includes a 
process for selecting the terms in the final model. No term associated with time was included. As 
for the ML models, 30% of the data in 2000-2010, taken at random, has been used for selecting 
model parameters via cross-validation. The final models were later evaluated by comparing 
predictions with observations for 2011-2012. Although the submitted predictions are based on 
LSTM, the authors use HST and HSTT as references. They focus on some specific load 
combinations and interpret all three models from an engineering perspective. Warning levels are 
based on 2.5 times the standard deviation of the residuals.  
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4 EVALUATION OF THE RESULTS FROM THE CONTRIBUTIONS 

 Tasks: 
During the discussion, we will mention the approach used by the contributors. In this regard, 

we grouped the methodologies as follows:  
• Pure machine learning, solely based on data (ML) 
• Pure analytical, similar to Hydrostatic-Season-Time (AN) 
• Finite element method (FEM) 
• Hybrid models, which combine two or more of the previous three methods (HY). 

 Predictions  

 Case B 
Load conditions during Case B are similar to those observed during the calibration phase in a 

number of years, with a decrease in water level followed by an increase at the end of the 
semester. The air temperature was also within the observed values for the first six months of the 
year. As a result, good prediction accuracy was expected from many models. 

Figure 17. Water level variation during prediction periods for Case B (red) and Case C (green). 

4.2.5.1 Radial displacements 
The radial displacement for the period follows a similar trend to that observed in previous 

years: the dam deforms towards the upstream side during the first 3 months in response to the 
decrease in reservoir level. In the second half of the period, the records are sensibly stable, 
because the increase in water level is compensated by the increase in air temperature —which 
has an opposite effect—. This applies to both variables considered of this kind (CB2 and CB3), 
though the range of variation is –obviously– much lower for the foundation (CB3). This behavior 
was captured by all participants, though with varying accuracy. 

For CB2, the median MAE is close to 2 mm, which is a useful value, since it represents around 
10% of the variation of the observations in the period. The more accurate results correspond to 
A03 (MAE 1.05 mm), with three more contributions with MAE below 1.2 mm (A01, A10, A15.1). 
Interestingly, these 4 contributions were generated with different approaches, namely ML (A03 
and A10), analytical (A01), and FEM+AN (A15.1). The lowest accuracy was registered for A06.2, 
based on ML, probably due to some degree of overfitting. However, relatively high errors were 
also obtained for a hybrid approach based on FEM and AN (A13), and strictly on FEM (A17).  
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Figure 18. Radial displacement at CB2. Top: Predictions (lines) versus observations (squares) Bottom: Mean 
Absolute Error (MAE) for predictions and median of all contributions (dashed line). 

 
As regards the displacements in the foundation (CB3), predictions are in general more 

accurate, with only three participants clearly off the observed series. In this case, the highest 
accuracy was obtained by A05 (MAE 0.19 mm), with a method based on ML. Nonetheless, similar 
accuracy was obtained by A06.1 using FEM and all predictions except the three mentioned can 
be considered as useful and accurate (median MAE was 0.43 mm). 

Figure 19. Radial displacement at the foundation (CB3). Predictions (lines) versus observations Mean 
Absolute Error (MAE) for predictions and median of all contributions (dashed line).  

 
 

Median 
MAE 
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Figure 20.  Mean Absolute Error (MAE) for predictions and median of all contributions (dashed line). 

4.2.5.2 Joint opening – C4_C5 
The evolution of joint opening for Case B is similar to that of the displacements previously 

discussed, with closing from January to mid-March and barely constant value from then on, 
except for the last record at the end of June. This trend was correctly captured by all submitted 
contributions (12 from 11 participants) but A12 (AN for joint opening1) and A17 (FEM). 

 

 
Figure 21. Predictions vs observations for Case B and C4-C5. 

Figure 22.  Accuracy of all contributors for C4-C5, Case B. 
 
The most accurate predictions were provided by A16 (ML; MAE 0.06 mm), with two other 

participants having a MAE in the environment of the accuracy of the device (0.1 mm): A01 (AN; 
MAE 0.08 mm) and A10 (ML, MAE 0.10 mm). It is worth mentioning that only one participant 
submitted predictions of joint opening using FEM (A17), and the results were less accurate than 
all other approaches, based on AN or ML. 
  

 
1 A12 used a hybrid approach for displacement, combining FEM (for thermal load) and AN (for hydrostatic load). 

Median 
MAE 

Median 
MAE 
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4.2.5.3 Piezometers 
Ten contributions were received for piezometers from nine participants. Again, only A17 was 

computed with FEM, which, as before, was the less accurate. The other predictions were 
computed with ML (A10, A11, A16) or AN (A01, A082, A09 and A15). Results are clearly different 
between the piezometers considered. While predictions are accurate in general for PZCB2 and 
capture the observed evolution, differences are higher among participants for PZCB3. It should 
be mentioned that the variation of the latter in the period considered is much lower. The best 
results for piezometers were obtained by A01 (AN), A10 (ML), and A11 (ML).  

 

Figure 23.  Predictions vs observations for Case B and PZCB2. 
 

Figure 24.  Accuracy of all contributors for PZCB2, Case B. 
 

Figure 25.  Predictions vs observations for Case B and PZCB3. 
 
 

 
2 A08 used a hybrid approach for displacements, adding the results of FEM to a HST model 
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MAE 
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Figure 26.  Accuracy of all contributors for PZCB3, Case B. 

4.2.5.4 Seepage 
The recorded time series for seepage is clearly noisier than all other variables considered in 

the benchmark. This can be derived from the observation of the records in the calibration period 
and was pointed out by all participants who considered this output. Such feature results in less 
accurate predictions in general, as can be seen in Figure 27. 

 

Figure 27.  Predictions vs observations for Case B and seepage flow. 
 
Only 7 contributions were received, generated with AN (A01, A08), ML (A04, A10, A11), a 

hybrid approach combining AN and ML (A14), and FEM (A17). All participants underestimated the 
seepage flows observed during the first two months of the period. This suggests that some 
important driver of seepage exists, which is not included among the input variables available.  

Figure 28.  Accuracy of all contributors for seepage flow, Case B. 

 Case C 
This task is more challenging than Case B, not only because the forecasting period is longer and 

further from the last available observed record, but also due to the irregular evolution of reservoir 
level for some years. While for 2013 and 2014 the loading conditions followed the more frequent 
trend, i.e., drawdown in the first quarter, followed by a fast filling and high levels during the 
second semester, there was a longer and greater emptying during 2015 and —not so important— 
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2016. As a result, prediction accuracy is expected to be lower in general. In addition to that, some 
of the output variables may undergo some change during such long prediction period, which 
would also negatively affect the forecasting accuracy. 

4.2.6.1 Radial displacements 
All participants submitted predictions for both displacements and Case C. As before, most of 

them were able to capture the evolution of the observed behavior. In this case, A09 (AN) resulted 
as the less accurate, in particular after mid-2015. Other models also failed to reproduce the 
behavior during the abnormal drawdown in early 2016, namely A11 (ML) and A16 (ML).  

 

Figure 29.  Predictions vs observations for Case C and CB2. Many participants captured the general trend, 
except A09. Some models failed to correctly predict the response during the abnormal emptying of the 
reservoir during the first semester of 2016 (A11, A16, both ML).  

 

Figure 30.  Accuracy of all contributors for CB2, Case C. 
 
As for CB3, all three the contributions based solely on FEM (A15.3, A15.4 and A17) provided 

results clearly off the observed behavior. The same applies to A04 (ML). Both A03 (ML), A11 (ML) 
and A16 (AN) provided highly accurate predictions until early 2016 and poor estimates from there 
on, with special problems to reproduce the response during the first semester of 2016.  

Figure 31.  Predictions vs observations for Case C and CB3. 
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 Figure 32.  Accuracy of all contributors for CB3, Case C. 
 
In general, accuracy decreased after January 2016. Not only during the abnormal emptying, 

but also —to a lesser extent— in the subsequent years. Even the predictions of the most accurate 
models (A02, A05, A06.1, and A12) depart from the observed trend after October 2016. 
Interestingly, they all predicted values higher than observations for such period, which may 
indicate a change in dam behavior. Figure 33 shows the observations and these predictions. 

 

 
Figure 33.  Best predictions (lines) for CB3, Case C, suddenly depart from observations (green dots) after 
October 2016. 

4.2.6.2 Joint opening 
As observed for Case B, observations for joint opening follow a similar trend to that for radial 

displacements. However, this only applies to the first period, before the mentioned drawdown in 
early 2016. This can be observed in Figure 34, which shows that joint opening remains almost 
constant from 2016 until the end of the period considered. 

 
Twelve participants submitted a total of 13 predictions for this output and period. A17 (FEM) 

failed to capture the observed evolution, while predictions by A09 (AN), A12 (HY) and A16 (ML) 
are close to observations only for the first six months. All other participants (A01, A02, A07, A08, 
A10, A11, A14, A15.1 and A15.2) basically capture the evolution before 2016 with varying 
accuracy. Nonetheless, even the more accurate predictions overestimate the response between 
October and November 2014. Again, this may indicate some change in dam behavior.  

Possible change in 
dam response after 

October 2016 
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Interestingly, the period of abnormal low water level is correctly predicted by A01, A02, A07, 
A10 and A11. Errors are higher after July 2017, when observations remain stable while all models 
predict some variations over the period. 

Figure 34.  Predictions vs observations for Case C and C4-C5.  
 

Figure 35.  Accuracy of all submitted contributions for C4-C5, Case C. 

 Piezometers 
Only 9 participants submitted a total of 10 forecasts for piezometers and Case C, though A15.1 

and A15.2 are almost identical in this case. As shown in Figure 36, predictions from A17 (FEM) are 
far from observations for most of the interval. A15.1, A15.2 and A16 captured the evolution until 
the end of 2015. Again, the exceptionally low water level negatively affects to their accuracy.  

The best models for PZCB2 were A01 (AN), A08 (HY), A09 (AN), A10 (ML), A11(ML) and A14 
(ML+AN). They reproduced qualitatively the observed records even during the first 6 months of 
2016. All of them also reproduced the evolution during the last period, except A01 and A14, which 
predictions were almost constant and thus did not follow the observed behavior in the last year. 

 
 

Figure 36.  Predictions vs observations for Case C and PZCB2. 
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Figure 37.  Accuracy of all submitted contributions for PZCB2, Case C. 
 
As for PZCB3, accuracies are in general lower. Although the median MAE is similar (around 1 

m), such error is more important for PZCB3, because the range of variation is lower (4 m, while 
the range for PZCB2 was 11 m). Even the more accurate models (A10 and A11, both ML) failed to 
correctly capture the observed evolution for some periods (January-July 2013, July 2014-February 
2015, May-September 2016). 

 

Figure 38.  Predictions vs observations for Case C and PZCB3.  

Figure 39.  Accuracy of all submitted contributions for PZCB3, Case C.  
 

4.2.7.1 Seepage 
 
As for Case B, forecasts for seepage flow were in general less accurate than for the other 

outputs. The median MAE for Case C is much lower than for Case B, which is due to the lower 
ratio of high flows observed. In particular, all records after mid-2016 are lower than 10 l/s, in 
accordance with the relatively low water levels occurred. It can be concluded that predictions are 
more accurate for low hydrostatic load. 
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None of the models were capable of capturing the higher flows observed in the period. Only 
A04 (ML) approached some high flows in early 2015, but its predictions were consistently lower 
than observations during 2016. Even A10 and A11 (both ML), which featured relatively low error 
(around 0.5 l/s), cannot be considered useful for detecting anomalies, since they fail to estimate 
the majority of records above 10 l/s.  

Results for Case C confirm that the inputs considered exclude some important information that 
has a clear influence on the observed seepage.  

Figure 40. Predictions vs observations for Case C and seepage flow  
 

Figure 41. Accuracy of all submitted contributions for Seepage flow, Case C. 

 Overall assessment of model accuracy 
Table 4 shows the summary of results in terms of model accuracy (MAE) for each task. Each 

column is colored in accordance with the corresponding MAE (from dark green for lowest error 
to dark red for highest MAE). 
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Table 4. Summary of submitted forecasts: participants, approaches used and MAE for each period and 
output. The colors of numerical columns correspond to the rank of each model within each output and 
Case. 

 
A strict quantitative comparison of model accuracy is neither feasible nor the objective of the 

benchmark. Accuracy is not the unique criterion for assessing models. Instead, robustness, 
flexibility, complexity, and interpretability must also be considered. In addition, the rank among 
models cannot be considered as the unique criterion for model assessment: a model with low 
ranking may be useful —in case many models provided highly accurate results— and vice versa, 
as is the case for seepage flows, for which all models were basically incapable of predicting high 
flows. It should also be remembered that MAE is measured in the same units as the output 
considered and, therefore, it cannot be compared between variables of different nature. 
Nonetheless, some conclusions can be drawn from the overall picture of accuracy for all tasks 
proposed: 

• For the problems in this theme, FEM was not the optimal approach for accurately 
estimating the behavior of the arch dam. Among the three contributions based on FEM, 
they ranked lower in terms of accuracy when compared to other models. Furthermore, 
only one of these FEM-based models provided predictions for outputs beyond radial 
displacements, and even those predictions lacked significant accuracy. Although FEM 
remains invaluable for other purposes, such as estimating the dam response under 
extraordinary loads, data-based approaches clearly demonstrated higher accuracy in 
predicting observed dam behavior for all problems in this theme. 

• FEM resulted to be very useful as part of hybrid models, which ranked among the top 
accurate models for some tasks (e.g., A02 for Case C and CB2, CB3 and C4-C5). 

• Only four teams submitted predictions for all outputs and periods proposed. Among them, 
A01 (AN) and A10 (ML) can be considered as the most accurate overall. They succeeded in 
modelling the results for all outputs during the exceptional load combination occurred in 
the final period for Case C. 

• Radial displacements are the most frequently controlled variables in dam safety. They are 
essential in identifying anomalies and can be estimated with FEM models. All participants 
submitted predictions for both variables of this kind. If only these outputs are considered, 
A01 and A10 are still among the more accurate, but other models provided similar results, 
namely A02 (HY-ML), A05 (ML) and A06.1 (ML). 

CB2 CB3 C4C5 PZCB2 PZCB3 Seep. CB2 CB3 C4C5 PZCB2 PZCB3 Seep.
A01 AN 1.15 0.54 0.08 0.64 0.3 2.53 2.06 0.66 0.14 1.03 0.7 2.62
A02 HY-ML 1.67 0.34 0.16 2.01 0.5 0.15
A03 ML 1.05 0.41 2.93 0.93
A04 ML 1.43 0.29 2.56 1.65 1.42 3.6
A05 ML 1.32 0.19 2.19 0.47

A06_1 ML 1.77 0.23 2.3 0.51
A06_2 HY-AN 6.31 0.63 4.15 0.58

A07 AN 1.85 0.35 0.16 2.61 0.65 0.16
A08 HY-AN 2.29 0.69 0.25 0.73 0.8 2.27 2.19 0.7 0.31 0.83 1.4 2.16
A09 AN 2.39 0.75 0.23 0.36 11.2 1.53 0.52 0.88
A10 ML 1.15 0.35 0.1 0.45 0.29 3.04 2.15 0.76 0.16 0.42 0.4 2.36
A11 ML 1.78 0.35 0.18 0.3 0.16 2.72 4.8 0.86 0.18 0.66 0.55 2.21
A12 HY-AN 1.87 0.44 0.61 2.07 0.53 0.47
A13 HY-AN 3.65 0.59 2.32 0.64
A14 ML+AN 1.65 0.76 0.21 0.86 0.36 3.87 2.33 1.18 0.35 1.07 1.02 3.37

A15_1 AN 1.15 0.58 0.2 1.58 1.04 2.27 0.75 0.22 2.3 1.43
A15_2 AN 2.29 0.36 0.18 1.57 1.02 3.15 0.78 0.22 2.31 1.43
A15_3 FEM 3.37 1.63 2.65 1.59
A15_4 FEM 3.26 2.6 3.49 3.25

A16 AN 1.5 0.42 0.06 1.21 0.3 6.01 0.93 0.41 2.31 0.94
A17 FEM 3.82 3.01 1.51 5.19 1.19 4.98 4.99 3.6 1.59 5.72 1.05 3.76
A18 ML 1.8 0.25 2.67 0.65

CASE C - LONG TERMCASE B - SHORT TERM
Participant Approach
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 Warning thresholds 
The participants were also asked to provide prediction intervals with the aim of being used to 

detect anomalies. This task was more open to interpretation than pure predictions, and, 
therefore, more difficult to evaluate. The submissions received included low and high thresholds 
for each output, obviously based on the previous predictions, for both Case B and Case C. In 
principle, we assumed that the corresponding contributor considers any observed record that 
does not lie within the thresholds as an anomaly. Also based on the information from the dam 
owner, the dam underwent no relevant safety issue. Therefore, all observations for all outputs 
and periods are considered as normal and should be within the warning thresholds. As a result, 
submissions are evaluated considering the number of observations out of the intervals as errors, 
i.e., the “perfect” prediction interval would include all the observations. Table 5 show the 
summary of all contributions received. 

 
Table 5. Summary of submitted warning levels: participants, approaches used, outputs considered and 
criterion for defining the warning thresholds.  

 
More precisely, we excluded isolated errors, i.e., if some record falls out of the prediction 

interval but the subsequent value returns and is thus considered as normal, it was not counted 
for the final sum. In addition, we also considered the width of the submitted ranges. This is a 
relevant issue from a practical viewpoint: since the final goal is detecting anomalies, a method 
which results in a very wide interval would success in including all observations, but would also 
be less useful for detecting anomalies, because these would also lie inside the interval and would 
thus be taken as normal values. 

The width of the interval is considered in relative terms, i.e., as the ratio between the average 
width and the range of variation of each variable in the period. This allows for comparing 
approaches and variables of different kind. In the next subsections, the results are presented two 
ways: first, observations are plotted along with the upper and lower thresholds from all 
participants, to show a general view of the submissions; then, the number of observed values 
outside of the prediction interval is shown for each participant —with a dashed line indicating the 
95%—, together with the relative width of the intervals —with a dashed line highlighting the 
median width for each case and output—. 

CB2 CB3 C4C5 PZCB2 PZCB3 Seep.
A01 AN 1.15 0.54 0.08 0.64 0.3 2.53 99% percentile
A02 HY-ML 1.67 0.34 0.16 99% percentile
A03 ML 1.05 0.41 2 std dev.
A04 ML 1.43 0.29 2.56 2.58 std dev.
A05 ML 1.32 0.19 2 std dev.

A06_1 ML 1.77 0.23 3 std dev.
A06_2 HY-AN 6.31 0.63 3 std dev.

A07 AN 1.85 0.35 0.16 90% percentile
A08 HY-AN 2.29 0.69 0.25 0.73 0.8 2.27 3 std dev.
A09 AN 2.39 0.75 0.23 0.36 95% percentile
A10 ML 1.15 0.35 0.1 0.45 0.29 3.04 100% percentile
A11 ML 1.78 0.35 0.18 0.3 0.16 2.72 2 std dev.
A12 HY-AN 1.87 0.44 0.61 100% percentile
A13 HY-AN 3.65 0.59 3 std dev.
A14 ML+AN 1.65 0.76 0.21 0.86 0.36 3.87 3 std dev.

A15_1 AN 1.15 0.58 0.2 1.58 1.04 2.5 std dev.
A15_2 AN 2.29 0.36 0.18 1.57 1.02 2.5 std dev.
A15_3 FEM 3.37 1.63 2.5 std dev.
A15_4 FEM 3.26 2.6 2.5 std dev.

A16 AN 1.5 0.42 0.06 1.21 0.3 2 std dev.
A17 FEM NA
A18 ML 1.8 0.25 2.5 std dev.

Variables Criterion 
Warning levels

Participant Approach
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 Case B 

4.3.1.1 Radial displacements 
All contributors but 15.1 and 15.2 (both AN) submitted intervals following the observed 

evolution of CB2, as expected from the predictions previously analyzed. 12 out of the 22 total 
submissions succeeded in having all observations within the prediction interval. They are based 
on different approaches. None of the intervals generated with FEM resulted as valid (i.e., having 
more than 95% of observed values in range). Indeed, both of them (15.3 and 15.4) used narrow 
intervals and were not among the more accurate contributions, which explains the outcome. 

Submissions A01 (AN) and A16 (ML) can be considered as the more useful, since they provided 
the narrowest intervals among those having all observations between the upper and lower 
thresholds. On the other hand, contribution A06.2, though having all observed values inside the 
range, used an interval width greater than the range of variation of the output, which reduces 
the capability for anomaly detection. Very similar results were obtained for CB3, with the same 
amount of solutions with all observations in range and similar interval widths. 

Figure 42.  Prediction intervals and observations for Case B, CB2 
 

Figure 43.  Percentage of observations inside prediction interval for Case B, CB2, along with the 
corresponding interval width. 
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Figure 44.  Prediction intervals and observations for Case B, CB3. 
 

Figure 45.  Percentage of observations inside prediction interval for Case B, CB3, along with the 
corresponding interval width. 

 

4.3.1.2 Joint opening – C4_C5 
Eight out of the 10 submitted contributions for joint opening encompassed all observations for 

Case B, as shown in figure 47. Only A16 (AN) and A07 (AN) provided predictions intervals 
considered as invalid with the criterion applied. In both cases, the width is clearly below the 
median value. However, while for A16 this is the reason of the poor result, A07 provided values 
clearly off the observations, therefore, the outcome would have been similar with a wider 
interval.  
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A12 stands out for using the greater width among all contributions, which helps in avoiding 
false anomalies at the cost of lower potential for detecting anomalies. For this output, A11 
provided the narrowest interval among all participants with all observations in range. 

Figure 46.  Prediction intervals and observations for Case B, C4-C5 
 
 

Figure 47.  Percentage of observations inside prediction interval for Case B, C4-C5, along with the 
corresponding interval width. 

 

4.3.1.3 Piezometers 
Only 9 submissions were received for piezometers, 4 of which are considered as valid, i.e., free 

of false detected anomalies. As before, A15.1 and A15.2 are clearly off the observed values. The 
high number of observations out of range for A14 (ML+AN) is due to the use of a narrow interval, 
much smaller than all other participants. A11 (ML) can be considered as the best model for 
piezometers, since all observations lied within the prediction interval for both PZCB2 and PZCB3, 
being the width lower than other submissions. The result for A10 is similar (except for a slightly 
wider interval for PZCB3), while A12 again avoided false positives by using a very wide interval. 
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Figure 48.  Prediction intervals and observations for Case B, PZCB2 

Figure 49.  Percentage of observations inside prediction interval for Case B, PZCB2, along with the 
corresponding interval width. 

 

Figure 50.  Prediction intervals and observations for Case B, PZCB3 
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Figure 51.  Percentage of observations inside prediction interval for Case B, PZCB3, along with the 
corresponding interval width. 

 

4.3.1.4 Seepage 
All participants observed high variability in seepage flow and poor prediction accuracy, which 

led to the use of relatively wide prediction intervals. Four out of the 6 submitted contributions 
were based on intervals wider than the range of variation of the output in the period, even though 
most of them limited the lower threshold to avoid negative values (in accordance with the 
physical meaning of the data). This results in less useful models. In this sense, it is worth 
mentioning A04 (ML), which was capable of having more than 80% of the observations in range 
despite using a very narrow interval. In turn, A14 again failed to capture the observations because 
of the narrow interval. 

 

Figure 52.  Prediction intervals and observations for Case B, Seepage. 
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Figure 53. Percentage of observations inside prediction interval for Case B, Seepage, along with the 
corresponding interval width. 

 Case C 
This task is more difficult than Case B, not only because of the longer time period (with more 

observations), but also because predictions are made based on information taken as far as 5 years 
before. In addition, we already verified that the abnormal emptying of the reservoir at the 
beginning of 2016 resulted in poor predictions for some participants. Finally, there is higher 
probability that some indicators underwent some change in behavior over the long period 
considered. In this regard, the comparative analysis among participants is more interesting. 

4.3.2.1 Radial displacements 
For CB2, only 7 out of the 22 submissions succeeded in having more than 95% of the 

observations inside the prediction interval. Four of them are based on hybrid approaches, two on 
ML and one on an analytical model. It is worth mentioning that all of them except A01 (AN) used 
an interval wider than the median of all contributions. Nonetheless, they can be considered as 
useful: although they are above the median width, they range between 0.3 and 0.5 times the 
range of variation of the output.  

Figure 54.  Prediction intervals and observations for Case C, CB2 
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Figure 55.  Percentage of observations inside prediction interval for Case C, CB2, along with the 
corresponding interval width. 

 
As for CB3, only 5 contributions are considered valid, again with relatively wide intervals if 

compared with other participants. Still, also as for CB2, the relative width of the ranges is around 
0.3-0.5. These results are closely related to those for prediction: again, A15.1 and A15.2 are far 
off the observations, and many of the problems appear during and after the anomalous period 
early in 2016. However, the observed behavior in the last period, which was considered as 
potentially anomalous in view of the predictions of the best models (Figure 33), is now considered 
as normal: the recorded values fall inside the intervals, though close to the lower threshold. 

Figure 56.  Prediction intervals and observations for Case C, CB3. 
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Figure 57.  Percentage of observations inside prediction interval for Case C, CB3, along with the 
corresponding interval width. 

4.3.2.2 Joint opening – C4_C5 
As before, results for C4-C5 from A08 and A12 (both AN) are valid but based on wide intervals. 

In this case, two contributions based on ML (A10 and A11), as well as A02 (HY-ML), succeeded in 
capturing the observations with a relative width below 0.3, clearly narrower. Likewise, A01 (AN) 
identified near 95% of the observations, also with a narrow interval. 

Figure 58. Prediction intervals and observations for Case C, C4-C5 
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Figure 59.  Percentage of observations inside prediction interval for Case C, C4-C5, along with the 
corresponding interval width. 

 

4.3.2.3 Piezometers 
Only 7 participants considered these outputs for Case C. For PZCB2, four of them approached 

the 95% threshold: two based on ML with narrow intervals (A10 and A11), one based on AN (A09) 
and, as before, A12 (HY-AN) with a very wide prediction interval. All these four models can be 
considered as useful. Predictions from A15.1 and A15.2 are barely constant and far from the 
observed values, as for other outputs. Upper and lower limits from A16 (ML) are reasonable 
except for the first semester of 2016.  Figure 60.  Prediction intervals and observations for Case 
C, PZCB2. 

Figure 60.  Prediction intervals and observations for Case C, PZCB2. 
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Figure 61.  Percentage of observations inside prediction interval for Case C, PZCB2, along with the 
corresponding interval width. 

 
Results are poorer for PZCB3. Only A08 was capable of taking all observations in range, at the 

cost of a very wide interval, within the same order of magnitude of the range of variation of the 
output. Interestingly, both A10 and A11 considered observations in July-August 2016 as out of 
range, while both A11 and A01 took also the first observations in 2015 as anomalous.  

Figure 62.  Prediction intervals and observations for Case C, PZCB3. 
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Figure 63.  Percentage of observations inside prediction interval for Case C, PZCB3, along with the 
corresponding interval width. 

4.3.2.4 Seepage 
As for Case B, seepage was difficult to predict and thus also to generate useful warning 

thresholds. Still, 4 contributions were capable of considering all observed values inside the 
warning thresholds, with interval widths of around 0.5 times the range of variation of the seepage 
in the period. In this case, all valid models (A01, A08, A10, and A11) used similar widths. 
Interestingly, as for other outputs, different approaches were used for the best models.  

 

Figure 64.  Prediction intervals and observations for Case C, Seepage 
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Figure 65.  Percentage of observations inside prediction interval for Case C, Seepage, along with the 
corresponding interval width. 

 

 General comments on warning thresholds 
As mentioned before, the main criterion for evaluating the warning thresholds is the 

percentage of observed records that fall within the prediction interval, i.e., between the upper 
and lower threshold. The dam owner reported that no anomalous behavior has been verified 
neither in period B nor in period C. Hence, all records should be considered as normal by a good 
model, i.e., inside the normal range. 

Nonetheless, such outcome is easier to achieve by a model using a wide prediction interval, 
which, at the same time, is less useful for detecting anomalies. As a result, we also analyzed the 
width of the interval for those models with high percentage of values inside the range: for a 
similar result in terms of correct classification of records, narrow intervals are more useful. 

Table 6 includes the summary of the percentage of correct classification for each participant, 
period and variable. As before, the colors depict the order for each task. In this case, green is used 
for 100 % of correct records and red for low percentages. It can be seen that A08 is the only 
contribution that succeeded in considering over 95% of records as normal for all scenarios. 
Results are better in general for Case B, for which A10 also provided perfect classification. In 
addition, A05, A06.1, A06.2, A09, A12, and A18 achieved similar results, although neither of them 
considered all outputs. For Case C, the percentage of correct classification is lower in general, 
although A05, A06.2 and A12 correctly classified over 95% of records from the outputs analyzed 
(which exclude piezometers and seepage). 
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Table 6. Summary of results for prediction intervals: participants, approaches used and percentage of 
records correctly considered as normal. The colors of numerical columns correspond to the rank of each 
model within each output and Case. 

 
A more detailed analysis has been made considering the interval width. The contributions with 

over 95% of correct classifications were ordered as a function the interval width. Table 7 shows 
the results for Case B, with some contributors highlighted.  

 
Table 7. Ranking of contributor for Case B, considering the percentage of correct classification and the 
width of the prediction interval. 

CB2 CB3 C4C5 PZCB2 PZCB3 Seep. CB2 CB3 C4C5 PZCB2 PZCB3 Seep.
A01 AN 100 100 100 83 100 100 96 78 94 59 79 98
A02 HY-ML 89 100 100 81 76 98
A03 ML 89 33 66 38
A04 ML 89 83 89 87 17 44
A05 ML 100 100 97 99

A06_1 ML 100 100 90 100
A06_2 HY-AN 100 100 97 97

A07 AN 72 72 67 52 58 52
A08 HY-AN 100 100 100 100 100 100 100 96 100 100 97 99
A09 AN 100 100 100 100 31 54 85 90
A10 ML 100 100 100 100 100 100 93 63 97 95 85 98
A11 ML 89 100 100 100 100 78 64 77 96 90 67 94
A12 HY-AN 100 100 100 100 100 100
A13 HY-AN 100 89 99 93
A14 ML+AN 100 89 100 44 11 11 91 43 72 34 0 37

A15_1 AN 0 0 0 0 11 0 0 0 0 28
A15_2 AN 0 0 0 0 11 0 0 0 0 29
A15_3 FEM 11 6 41 16
A15_4 FEM 6 0 30 0

A16 AN 100 100 89 100 100 79 76 18 45 71
A17 FEM
A18 ML 100 100 94 89

Participant Approach
CASE B - SHORT TERM CASE C - LONG TERM
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Both A08 (HY-AN, green) and A10 (ML, light blue) achieved perfect classification for all outputs, 

the latter having the narrower interval. A01 (AN, orange) obtained perfect classification for 5 out 
of the 6 variables with an interval width similar to that from A10, while A11 (ML, yellow) correctly 
classified all observations for 4 out of the 6 outputs, always with the narrowest interval.  

The same result is shown for Case C in Table 8. As before, A08 (HY-AN, green) achieved perfect 
results with wide intervals. In this case, A10 (ML, light blue) was only valid for 3 out of the 6 
outputs, with intervals much narrower (around half of those from A08) except for seepage 
(similar widths). 

 
Table 8. Ranking of contributors for Case C, considering the percentage of correct classification and the 
width of the prediction interval 

 
Piezometers, and specially PZCB3, were the variables more difficult to control for Case C. Only 

one participant sent intervals including all records, and the interval used was as wide as the range 
of variation of the output. In addition, even for this model, the time series could be interpreted 
as anomalous, as see in Figure 66. 

 

Figure 66.  PZCB3. Observations (dots) and warning thresholds (lines) from the only valid model (A08, lines). 
Although more than 95% of the records fall within the normal interval, they are close to the upper 
threshold, occasionally above, which could be considered as anomalous. 

 
This might indicate some change in behavior of the piezometric level. However, results from 

other models differ, with observations far from the upper threshold and different periods of 
records out of prediction interval. We consider the results for Case B as more relevant, since 
predictive models —as well as warning thresholds— are typically updated over time. The 
frequency with which this is done may vary, but once a year can be a reasonable value. As a result, 
usefulness in practice of any model is better evaluated from the results for Case B (six months’ 
prediction period) than for Case C (four and a half years). For such period, a number of models 
provided what can be considered as good warning thresholds for variables free from anomalies, 
with reasonably narrow intervals and over 95% of observations included. Some examples are 
shown below. 
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Figure 67.  Warning thresholds provided by A01 (AN) for Case B, CB2. 
 
 

Figure 68.  Warning thresholds provided by A11 (ML) for Case B, C4-C5. 
 
Although results are poorer for Case C, still some models also offered reasonable predictions, 

as shown in the examples below. 
 

Figure 69.  Warning thresholds provided by A10 (ML) for Case B, PZCB2. 
 
All predictions and warning thresholds received can be explored in the interactive plots 

provided in the supplementary material. Overall, none of the contributors prevailed over the rest 
for all periods and outputs. There is neither a clear result as for the best approach, which suggests 
that various methods can be equally useful, provided that they are correctly applied. This also 
confirms that neither model of any nature shall be applied without the contribution of 
experienced engineers, with deep knowledge on dam engineering and in particular on the specific 
features of the dam under consideration. Models are powerful tools, which should always be 
used by high-skilled engineers. 
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 Interpretation 

 Introduction 
The task of interpretation was not formally described in the formulation document. It was 

simply asked to demonstrate how the analyses and the results could teach us elements on the 
functioning of the dam, its evolution over the time, its safety margins, etc. Thus, for example in 
the formulation document, when using the classical HST model, the contribution of each load can 
be interpreted to better understand the functioning of the structure. This type of analysis can 
also be reproduced with all types of complex analyses used by participants. However, this kind of 
analysis was not compulsory for the benchmark. 

This section compares the interpretations given by the participants as precisely as possible, 
given the fact that it is not possible to carry out a comparison by quantitative estimators. In order 
to organize the restitution, it is proposed to focus initially on the identification of the explanatory 
variables. This step is crucial because it determines the sequence of possible interpretations. 
Then, the different sensitivity studies proposed by the participants will be discussed. Finite 
element analyzes occupy a special place in the interpretation, so that a paragraph will be devoted 
to them. Finally, and since the comparison of interpretations is a complex task, the last subsection 
includes some interpretations that may be interesting to share within the framework of this 
synthesis. 

 Identification of explanatory variables 
For the analysis of monitoring measurements, the selection of the explanatory variables is 

among the most important steps, which greatly impacts the results of the model and the 
interpretation. First, the choice of the nature of the physical phenomena which accounts for the 
explanatory processes: should we take into account the rain, the effect of the temperature, the 
effect of the aging of the materials? 

Secondly, the transformation of the measurement of the physical phenomenon into an 
explanatory variable can take different forms: the measurement can be integrated directly into 
the model (water level for example) or be transformed with the aim of better showing certain 
effects such as a threshold. We could also create a variable that incorporates a historical effect 
with the technique of moving averages, etc. The trickiest explanatory variable transformation is 
the one concerning the delayed effects, for phenomena such as temperature or water diffusion. 

It is not possible to directly compare the techniques and the transformations of the explanatory 
variables used by the different participants. Different tests and statistical criteria can be used to 
select the explanatory variables and it is not possible to compare them directly with each other. 
But it is interesting to share the visual means that make it possible to select the explanatory 
variables. Regarding the choice of explanatory variables, there is no fixed criterion adopted by 
the profession, we must do the best and demonstrate pragmatism. The following figures show 
different visualization techniques provided by the participants. 

 
Figure 70. Example of selection of most important variables. In this case, the number of explanatory 
variables is high. 
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Some participants built numerous explanatory variables, such as moving averages (several 
values tested) or threshold effects. The next challenge is to find a statistical criterion that specifies 
from what threshold we can keep an explanatory variable in the final model. Defining this 
threshold is not obvious and often involves user experience. 

 

Figure 71.  Selection of explanatory variables. On this example, the choice of the most influential variables is 
obvious. 

 
In some cases, the most influential variables are easy to rank, and it follows an easy selection 

of the most significant variables. 

Figure 72.  Synoptic diagram of the most influential variables 
 
With the aim of facilitating the identification of the most significant explanatory variables, 

synoptic diagrams can be very useful to quickly understand which are the explanatory variables 
that most influence what is measured at different positions in the dam (see Figure 72).  
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 Sensitivity studies 
Sensitivity studies make it possible to study the specific effect of an explanatory variable on the 

monitoring measurement. These studies are calibrated on monitoring measurements. 
Consequently, their modeling reproduces exactly the real effects undergone by the structure 
within the uncertainty of the model. Sensitivity studies are therefore of great importance for 
interpretation. Care must be taken to remain within the range of validity of the calculated effects 
and to explain the sensitivities in relation to the physics of the phenomenon being monitored. It 
may also be interesting to ensure that these effects do not change over time. 

 
Figure 73.  Example of the effect of the 15-day moving average water level on the displacements. The 
display of monitoring measurements and the uncertainty of the model are precious to interpret the graph. 

 

Figure 74.  When several parameters influence the monitoring measurements, it may be of interest to use a 
3D-vizualisation. In this case the 14-day moving average of the air temperature and the modified (with a 
threshold) water level influence the monitoring measurement. 
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Figure 75.  Seasonal effect which depends on the water level to better explain the crack opening 
displacement. 

 

 Finite element Analysis 
Three contributions performed finite element analysis. The prediction from these models were 

less accurate than the models based on the data, but they allow easier access to interpretable 
physical quantities. For example, while a model based on the data only reproduces the 
displacement, a finite element analysis provides the calculation of the stresses in the concrete. 
These stress values are much easier to interpret by a dam engineer and can be compared to a 
safety criterion. Nevertheless, the calibration of a finite element model is a complex task which 
integrate many uncertainties. This issue is the subject of numerous ICOLD bulletins whose analysis 
goes beyond the scope of this benchmark. 

 
 

 
Figure 76.  Example of crack opening displacement at the rock-concrete interface at normal water level. The 
use of finite element analysis provides spatial information between measuring devices and simultaneously 
considers the information of several sensors. 
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 Focus on some interpretations 
Regarding the thermal effects, many participants checked that the value of thermal diffusion 

calibrated on the monitoring data is consistent with the dam thickness and the physical properties 
of the dam. For participant A11 the short-term average temperature is correlated with CB2 and 
the long-term average is correlated with CB2. This result is somehow surprising because the 
thickness of concrete (and thus the thermal inertia) is greater in the displacement measured 
around CB3. 

To interpret the irreversible effects, some participants (A15, A16) used the “corrected” or 
“compensated” measurements. These terms refer to raw data which are removed from reversible 
effects. 

 
Regarding the structural behavior, some analyses are interesting to share: 
• Participant A12: the behavior of CB2 could be explained with an opening of the vertical 

contraction joints in wintertime with a low water level. In this case, the arch effect is 
reduced, and the structure is more deformable than the monolithic one. With higher water 
level, joints are closing, and the full stiffness of the monolithic structure is restored. 

• Numerical models confirm the crack opening at the upstream toe of the dam, and 
consequently the propagation of uplift pressure in the crack. 

• Thanks to the use of finite element analysis, participant A15 was able to carry out a 
comparison of different dam / foundation shear parameters, as regard to the French 
guideline and then proposed a discussion about the sliding of the dam. This discussion 
covers topics such as keying of the dam and seasonal and drawdown cycles. 

• For participant A12, Dam_EDF seems more rigid for higher water levels and less rigid for 
lower water levels. 

 
Some participants could provide a combined interpretation i.e., an interpretation which 

combined two different kinds of monitored phenomenon: 
• Participant A07 noted the correlation between displacements and crack opening 

displacements. 
• Participant A09 highlighted that the crack opening is strongly correlated with piezometric 

levels (PZCB2 and PZCB3) which is a good indication of the response of the rock mass. 
 
Participant A12 carried out a detailed analysis of the rock modulus obtained from the 

calibration process. This rock modulus is quite low. The dam behavior is basically reversible, 
without any drift or irreversible displacements. Only a modest delay between models and 
measurements is visible for CB3, indicating that the rock mass behavior is affected by some 
viscous effect. Numerical model also estimates the maximum compressive stress in the arch, 
which is far below the compressive maximum strength of concrete. 

Regarding the piezometric levels PZCB3, participant A10 detected a change in 2008 (given in 
the description of the theme and detected by other participants), but also in 2012. This change 
in 2012 is also confirmed in the dam’s owner safety report without confirming whether the cause 
is the sensor or the end of the benefit of the drainage refection operated in 2008. 

Leakages are difficult to model as they are subjected to non-linearities which are described by 
the law of Poiseuille, thresholds and cross effects (participant A15). Several attempts of models 
were made by considering the rainfall, but without any success (participant A08). Participant A10 
noted that the accuracy is low in high leakage flows essentially due to low reading frequency. Two 
outliers were detected (> 25 L/min) in the period Dec-2008/Mar 2009. Participant A17 also 
mentioned that the calculated values of seepage are lower than measured, which is an indication 
for additional leakage occurrence that affects the seepage process. 

 Overall remarks 
The analysis of the comments provided by the participants on the conclusions drawn from the 

models on the dam behavior was of great interest. There was a great variety of interpretations, 
both regarding which outputs were assessed and on the insights mentioned. 
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All kinds of approaches were allowed for interpreting the response of the dam. In this regard, 
FEM has greater capabilities, since it allows for simulating extreme scenarios. Nonetheless, 
participants using data-driven approaches also provided reasonable interpretations regarding 
possible changes in behavior and relations between loads and responses. Some tools are also 
available for these models, from conventional sensitivity analysis to more complex measures of 
importance of inputs. In this regard, it is worth to mention that all conclusions were made also 
making use of the knowledge on dam behavior, the physical phenomena involved in arch dams, 
etc. This confirms the impression that engineering knowledge is the key asset when performing 
this kind of analysis. In other words, different approaches can be useful, but a skilled engineering 
team is always necessary. 

5 SUMMARY AND CONCLUSIONS 

In this Theme, tasks have been proposed to predict the behavior of a double curvature arch 
dam in terms of displacements, crack opening, piezometric levels and seepage, in two different 
time horizons, i.e., 6 months and 4.5 years. 

Some participants have noted that behavior models are usually updated on an annual basis, 
which implies that long-term prediction does not correspond to usual practice. This is true, but in 
the context of the benchmark, the aim was to pose a difficult problem, to assess the limits of the 
predictive capabilities of the different approaches. 

Although the behavior of the dam, according to the information provided by the owner, has 
not undergone relevant changes in the period considered, the loads did register exceptional 
values, with an extraordinary draw-down of the reservoir, which has been a problem for some 
participants.  

Thus, although machine learning (ML) models have a higher risk of overfitting, which can result 
in erroneous predictions in the face of new input data, the results of the analysis show that, in 
general, the predictions are good and the used calibration processes have succeeded in avoiding 
this problem. No relevant difference is observed in this sense between these models and other 
approaches —which, in principle, are less sensitive to overfitting—. Up to 4 teams that have used 
ML have only considered displacements. In principle, once the data is prepared and an ML model 
selected, the effort required to consider other outputs should be small. Participants may not have 
been very confident in the prediction of piezometric levels and seepage. 

A wide variety of approaches have been used. As for ML-based solutions, different algorithms 
have been employed: boosted regression trees, two versions of long-short-term memory neural 
networks, kernel extreme learning machine, random forests, and support vector machines; and 
two programming languages, R and Python. Regarding those based on FEM, different software 
tools have been used, namely: Sofistik, Ansys, Abaqus, LS-DYNA, FLAC-3D, and an in-house 
developed code (Parmac3D-PAVK). In this sense, a great advance is observed with respect to the 
last benchmark problem that can be considered similar, which was proposed in 2003. This reflects 
the advance in available technologies that has occurred in recent years, and that these new 
techniques are already entering the professional practice of dam engineering. 

If we order the participants from highest to lowest prediction accuracy, taking into account 
only the displacements —the mandatory task that all have answered— Table 9 is obtained, which 
shows the low precision for the three FE-models. The 5 approaches with the lowest average error 
are based on ML, except for the second, which uses a hybrid approach (also with ML). 
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Table 9. Ranking of contributions by accuracy for displacements. 

 
This shows the high capability of data-driven models once a long enough period of records is 

available. As mentioned before, FEM models have other advantages and are essential during the 
design stage and for other purposes. The results confirm the greater flexibility of data-based 
models, and in particular those of ML, to consider variables of different types: of the 18 
participating teams, only 6 have submitted solutions for all tasks, only one of which was based 
solely on FEM The FE-model had lower accuracy in general. This can be seen in Table 10 that 
presents the ranking of all teams that have offered solutions for all the variables. 

 
Table 10. Ranking of participants which sent solutions for all outputs, based on prediction accuracy. 

 
Regarding the definition of warning thresholds, the proposed approaches can be considered 

conventional, based on prediction error statistics for the calibration phase. Specifically, between 
2 and 3 times the standard deviation of said error, or according to some percentile of the 
residuals. Perhaps the formulation of the topic was oriented towards the use of this conventional 
approach. The design of the task may also be considered less realistic than that for prediction, 
since decisions in dam safety are usually made in real time, i.e., in view of some potentially 
anomalous record, instead of by looking at a long period. 

The evaluation of the contributions was made based on the number of observations captured 
within the warning thresholds, conditioned to the width of the interval. The results were related 

CB2 CB3 C4C5 PZCB2 PZCB3 Seep. CB2 CB3 C4C5 PZCB2 PZCB3 Seep.
A01 AN 1 3 1 3 3 2 1 1 1 4 3 4 2.3 2
A08 HY-AN 5 4 5 4 5 1 3 2 4 3 6 1 3.6 4
A10 ML 1 1 2 2 2 4 2 3 2 1 1 3 2.0 1
A11 ML 4 1 3 1 1 3 5 4 3 2 2 2 2.6 3
A14 ML+AN 3 5 4 5 4 5 4 5 5 5 4 5 4.5 5
A17 FEM 6 6 6 6 6 6 6 6 6 6 5 6 5.9 6

CASE C - LONG TERM
Average 
ranking

Overall 
ranking

Ranking

Participant Approach
CASE B - SHORT TERM

CB2 CB3 CB2 CB3
A01 AN 2 13 3 9 6.8 5
A02 HY-ML 9 5 2 2 4.5 2
A03 ML 1 10 15 15 10.3 11
A04 ML 6 4 1 18 7.3 6
A05 ML 5 1 6 1 3.3 1

A06_1 ML 10 2 9 3 6.0 3
A06_2 HY-AN 22 16 18 5 15.3 18

A07 AN 13 6 12 7 9.5 10
A08 HY-AN 15 17 6 10 12.0 12
A09 AN 17 18 22 19 19.0 20
A10 ML 2 6 5 12 6.3 4
A11 ML 11 6 19 14 12.5 13
A12 HY-AN 14 12 4 4 8.5 7
A13 HY-AN 20 15 10 6 12.8 14
A14 ML+AN 8 19 11 17 13.8 17

A15_1 AN 2 14 8 11 8.8 8
A15_2 AN 15 9 16 13 13.3 15
A15_3 FEM 19 20 13 20 18.0 19
A15_4 FEM 18 21 17 21 19.3 21

A16 AN 7 11 21 15 13.5 16
A17 FEM 21 22 20 22 21.3 22
A18 ML 12 3 14 7 9.0 9

CASE C 
Average 
ranking

Overall 
ranking

Ranking
CASE B Participant Approach
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to the prediction accuracy, with some influence of the approach used for the warning thresholds. 
In particular, A08 was the only solution that captured over 95% of the records inside the 
thresholds, despite not being among the more accurate models, due to the use of a wide interval 
(3 times the standard deviation of the residuals). 

Among the future lines of research, which have not been considered by any of the participating 
teams, it is worth mentioning the possibility of jointly considering several outputs. This can apply 
to the prediction task (multivariate prediction approaches are available), but also to the definition 
of anomalies. Likewise, additional criteria can be considered to detect abnormal values or 
behavior changes, such as the observation of trends. For instance, a set of consecutive records 
out of the interval may be more relevant than a set —of the same size— of isolated anomalies. 
This was partially considered during the synthesis (isolated errors were discarded). Another 
option would be to visually explore the observations in reference to the warning thresholds: some 
trend could be identified, which may reveal some change in behavior, before any value falls out 
of the interval. This applies in particular when wide intervals are used. Overall, this task was more 
difficult to evaluate. A specific Theme could be designed to specifically address this topic in some 
future benchmark. 

The main conclusion that can be drawn from the analysis of the submitted solutions is that 
none of the techniques clearly stands out as the best in all the evaluated aspects: prediction 
accuracy, flexibility to consider different results and ability to adapt to different scenarios of load 
combination. As expected, the experience of the modelers and their ability to make appropriate 
decisions during modeling and calibration are very important to obtain useful results. 

The need for engineering knowledge was further verified by the analysis of the interpretation 
of the models. All participants who answered this question provided reasonable, sophisticated 
explanations on the possible origin of the observed behavior and of the analysis of their predictive 
models. This was clearly driven by the participation of high-skilled professionals teaming up with 
experts in modeling. 

A limitation of these results is that they correspond to a given typology and a well-instrumented 
dam. In addition, the past related Theme posed in 2003 was based on a dam of the same type. 
Future endeavors of the Committee might be oriented towards posing some similar themes 
based for different type of dams, possibly with more issues regarding the monitoring records.  
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DATA-BASED STATISTICAL MODEL WITH PHYSICALLY  
SOUND ANALYSIS AND CORRELATION FUNCTIONS 

Moez Jellouli 
ISL Ingénirie, Paris, France 

Frédéric Dufour 
ISL Ingénierie, Lyon, France 

ABSTRACT: Dam safety assessment is a key societal issue to keep the risk as low as possible. To 
this end, several measurements are performed on site (displacement, piezometric head and 
seepage are the most common ones). Based on these data, an efficient model must be 
constructed to analyze the time evolution of the dam behavior and detect as early as possible 
some irreversible effects. For this purpose, in this contribution, we propose an original analytical 
model halfway between pure statistical model and pure physical FE model. Based on expert 
judgements, some physically sound correlation functions are proposed in the view of minimizing 
the total number of parameters. These functions link the data of interest with several 
environmental phenomena such as the water level in the reservoir, the air and water 
temperatures, the rainfall. Of course, except for the water level, which is perfectly known, those 
data bring some uncertainties in the statistical process since they are not usually directly 
measured on site. Indeed, both temperatures are estimated by means of a model. Some thermal 
phenomena such as convection and radiation are disregarded or roughly approximated which 
may further affect the estimation of the dam temperature. Those functions are calibrated for 
each time series of measured data to provide predictive estimation. Except for the seepage data, 
the coefficient of determination is very good, and the physical statistically calibrated parameters 
are in the expected range. Both checking gives us good confidence for the model prediction.   
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1 INTRODUCTION 

Safety is a very important issue for dam management. On one hand, the structural vulnerability 
may increase with the dam ageing (for instance due to creep, swelling or cracking), and on the 
other hand, due to the climate change the environmental loading may increase (for instance, 
temperature increase, higher frequency of exceptional floods, heat wave). Those phenomena 
may increase the failure risk and highlight the need for the monitoring of dams to ensure their 
safety over the long term. Dam surveillance mainly consists of analyzing gathered data to verify 
that the dam is functioning as expected, to detect any possible anomalies, and to warn of any 
change which could endanger its safety. Displacements, internal pressures, and seepages are 
classical measures. A precise enough and efficient model is needed to compare its prediction with 
the measures to detect any change in the dam behavior. This model can be either based on 
physics (for instance, Finite Element Model - FEM) or on data (for instance, digital twin). 

In a FEM, the geometry of the dam and its foundation, the boundary conditions, the loads, and 
the material behavior must be described explicitly for all thermal and mechanical phenomena 
(Leger and Leclerc, 2007; Leger et al., 1993). This numerical model must be calibrated on the data 
to improve its predictability. However, due to the number of parameters, the associated 
uncertainties, the spatial and time variabilities, the mesh size needed to capture short term 
thermal effects, some hypotheses are made. Therefore, although the model construction is 
rather expensive, the results are not fully satisfactory. 

A digital twin construction, such as the worldwide known HST (Hydrostatic, Season, Time) 
method from Ferry and Willm (1958), Willm and Beaujoint (1967), and Lugiez et al. (1970), and 
its derivatives (see for instance, Tatin et al. 2015 and 2018 who added the water temperature 
effect) is based on correlation functions between data and external loads, and a statistical 
calibration process of the parameters. For instance, a polynomial of order 4 is generally proposed 
for the hydrostatic effect on the displacement. Once the twin model and its parameters have 
been calibrated during the learning period, it can easily predict some estimation at nearly no cost. 
Besides, the construction itself of the twin model is much cheaper than a physically based model. 

To the authors’ viewpoint, a FEM model is required in two conditions; (a) the period to predict 
the dam behavior contains some loading conditions which have never been met in the past and 
(b) the safety margin is addressed in terms of stress state. These conditions are not met in the 
present ICOLD benchmark. We thus have chosen to provide predictions solely based on data 
analysis. After some mathematical tools, the physical-based functions are introduced, and the 
results of the calibration process are analyzed. 

2 ORIGINAL FUNCTIONS AND CALIBRATION METHODOLOGY 

 Convolution product 
Most of the phenomena for very large structures such as dams highlight a response to a load 

which is not instantaneous. Therefore, a time convolution product is introduced as:  

[𝑓𝑓⊗ 𝑔𝑔](𝑡𝑡) = ∑ 𝑔𝑔(𝑡𝑡 − 𝑢𝑢)𝑓𝑓(𝑢𝑢)𝑡𝑡
𝑢𝑢=𝑡𝑡−𝑡𝑡0  (1) 

Where g is the convolution function, f the time series and the parameter to be calibrated t0 is 
the time duration of the effect, usually few hundreds of days for dam analysis. 

 Convolution function g1 without time delay 
In practice, the convolution function g1 without a time delay is introduced to convolute a time 

series so that the effect is diffused in time. For instance, it may be used to compute the mean 
concrete temperature in the bulk with respect to the boundary values. 

𝑔𝑔1𝑡𝑡𝑡𝑡1(𝑡𝑡) =  𝐴𝐴
𝑡𝑡𝑐𝑐1
∑ exp �− (1+2𝑛𝑛)² . 𝑡𝑡

𝑡𝑡𝑐𝑐1
�3

𝑛𝑛=1  (2) 

Where tc1 is the characteristic time of the phenomenon, and A is added so that the integral of 
g1 is unit (see Figure 1(a)). 
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 Convolution function g2 with time delay 
Compared to the previous function g1, the function g2 (see Figure 1(b)) is built to introduce a 

time delay in some physical phenomena. For instance, for diffusion problem, such as the 
piezometric pressure as a function of the water level in the reservoir, or the temperature at some 
points in the dam as a function of the air temperature, a time shift tc2 is introduced as follows: 

𝑔𝑔2𝑡𝑡𝑡𝑡2(𝑡𝑡) = 𝑔𝑔1𝑡𝑡𝑡𝑡1(𝑡𝑡). 𝑒𝑒𝑒𝑒𝑓𝑓𝑒𝑒 � 𝑡𝑡
𝑡𝑡𝑐𝑐2
� (3) 

 
 

 
(a) (b) 

Figure 1.  Typical convolution functions, (a) without time delay and a characteristic time length of tc1 = 40 
days, and (b) with a time delay of tc2 = 10 days. 

 Threshold function 
A threshold effect is observed in some phenomena. For instance, in the present benchmark, 

although the water height in the reservoir is always measured, it applies a hydrostatic pressure 
only down to the level 196 m NGF. Thus, to build the correlation between the water height and 
the horizontal displacement, one needs to introduce a cut-off effect in the time series. In the 
present work, it is done by means of the following function: 

 𝑓𝑓(𝑣𝑣) = 𝑙𝑙𝑙𝑙�1 + 𝑒𝑒𝑒𝑒𝑒𝑒(𝑣𝑣)� (4) 

It has the property to be nearly null below -2 and to value the identity above 2 (see Figure 2). 
 

 
Figure 2.  Activation function with a threshold. 

 Calibration methodology 
All the model parameters are calibrated simultaneously. Although it does not prevent 

compensation between different effects, it avoids giving an emphasis to one of the phenomena. 
The numerical algorithm is based on Simultaneous Perturbation Stochastic Approximation 

(SPSA) method developed by Spall (1992). The main ingredient is a minimizing cost process based 
on gradients. It is capable to find a global minimum from an initial guess. 
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3 PHYSICAL ANALYSIS 

 Hydrostatic effect 
The dependency of a data on the hydrostatic pressure is introduced by means of a single 

monomial, in contrary to HST method which uses a 4th order polynomial. This minimizes the 
number of parameters to be calibrated while keeping the physical meaning. 

 Thermal effect 

 Air temperature 
The external air temperature is computed based on the provided raw data Tb which are 

extrapolated and corrected from a weather station at 50 km away. Although an altitude 
correction is performed, the absence of recorded air temperature on site introduces some 
uncertainties. This is particularly true in the alpine context where temperature may vary daily 
from one valley to another and depending on the hillslope orientation. According to Tatin (2014), 
the solar radiation may play a significant role in the concrete temperature. Thus, an arbitrary 
increase of 2°C in winter and 8°C in summer at t=ts is added to the air temperature as follows: 

𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑇𝑇𝑏𝑏 + �5 + 3 𝑒𝑒𝑐𝑐𝑐𝑐 �2𝜋𝜋(𝑡𝑡−𝑡𝑡𝑠𝑠)
365

�� (5) 

After calibration, ts has been fixed to the 10th of July with a low sensitivity to the results. 

 Water temperature 
According to Tatin et al. (2015), the mean water temperature Tw is accounted for. It is 

estimated as the mean between the top surface temperature and the bottom one. The latter has 
been chosen as 4°C which is the temperature of maximum density at a depth P0 of 100 m. This 
depth was initially part of the learning process and has been finally fixed to a value close to the 
optimal one. 

The top temperature varies during the season following where the temperature parameters 
(5°C and 6°C) have been calibrated once for all before hand: 

𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑚𝑚𝑚𝑚𝑒𝑒 �0;  5 + 6 𝑒𝑒𝑐𝑐𝑐𝑐 �2𝜋𝜋(𝑡𝑡−𝑡𝑡𝑠𝑠)
365

�� (6) 

 Concrete temperature 
For a given day, the mean concrete temperature Tc of the arc dam is the convolution without 

time delay of a linear weighted function of both the air and the water temperatures: 

𝑇𝑇𝑚𝑚𝑡𝑡 = [𝛼𝛼.𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 + (1 − 𝛼𝛼)𝑇𝑇𝑤𝑤]⨂𝑔𝑔1 (7) 

The weighting coefficient α depends on the water level of the reservoir to account for the 
coupling between the water level and the temperature distribution. If the reservoir is empty, then 
𝛼𝛼 = 1, otherwise 0 < 𝛼𝛼 < 1. In details, α is computed according to the relation: 

𝛼𝛼 = 1 − 𝑃𝑃1.𝑍𝑍𝑃𝑃2  (8) 

Where Z is the relative water level varying from 0 for an empty reservoir and 1 for the 
maximum absolute water level, and P1 and P2 two parameters to calibrate. One example of such 
a function is provided in Figure 3. 

 
 
 
 
 
 
 

Figure 3.  Weighting coefficient α as a function of the water level in the reservoir. 

 

 
 

WL (m) 

α 
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Since we have chosen here the convolution without the time delay, only the characteristic time 
tc is to be calibrated for each sensor. For the diffusion thermal problem, the initial guess for tc 
can be taken as 𝐿𝐿2 𝜋𝜋2.𝐷𝐷⁄  where D is the concrete thermal diffusivity taken approximatively as 
0.08 m²/day, and L is the mean dam thickness. 

4 RESULTS AND ANALYSIS 

 Pendulum displacement 
The pendulum displacement is computed as the sum of 4 effects detailed in the following table. 
 

Table 1. The correlation functions for the displacement and the parameters to be calibrated. 
_________________________________________________________________________________ 

Effects      Mathematical relation   Parameters to be calibrated  _________________________________________________________________________________ 

Hydrostatic pressure 𝐶𝐶1 + 𝐶𝐶2. (𝑊𝑊𝐿𝐿 − 𝑍𝑍𝑚𝑚𝑎𝑎𝑛𝑛)𝐶𝐶3  C1, C2, C3, Zmin 
Mean dilation    𝐶𝐶4.𝑇𝑇𝑚𝑚𝑡𝑡        C4, P1, P2, tc 
Thermal gradient   𝐶𝐶5.𝑍𝑍. (𝑇𝑇𝑤𝑤 − 𝑇𝑇𝑚𝑚𝑡𝑡)    C5 
Time       𝐶𝐶6. (𝑡𝑡 − 𝑡𝑡0)       C6 _________________________________________________________________________________ 

 
Where t-t0 is the time duration since the beginning of the provided time series and WL is the 

absolute water level floored to Zmin. 

 Calibration and prediction for the pendulum CB2 
The calibration process yields the following parameter values. 
 

Table 2. Calibrated parameters for the pendulum CB2. 
__________________________________________________________________________________________________________ 

Parameter C1   C2    C3   C4    C5   C6    P1   P2   Zmin   tc __________________________________________________________________________________________________________ 

Value   -13.33 0.008137 2.2382 -1.4768  1.508  0.03   21.5  0.2356 194.15  14.8 
Unit   mm  mm   (-)   mm/°C  mm/°C mm/year %   (-)   m NGF  days __________________________________________________________________________________________________________ 
 

Remark: According to the rough estimation of the characteristic diffusion time, 14.8 days 
corresponds to a width of 3.4 m which agrees with the dam thickness of 2 m at the crest and 6 m 
at bottom. 

This set of parameters yields the following time series. 
 

  
(a) (b) 

 

Figure 4.  Learning process on the pendulum CB2; (a) raw time series with dots for the on-site measures and 
thick line for the digital twin, and (b) the time series of the difference between the model and the data. 

 
The coefficient of determination is R²=0.964 and the standard deviation is 1.78 mm. The 

confidence intervals are [−2.9;  3.0] and [−4.5;  3.9] in mm for 95% and 99% respectively. 
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Due to the sake of conciseness, only the model for CB2 is analyzed in detail. However, since all 
the calibrated parameters are provided, the interested reader can easily construct the 
corresponding functions. 

 

(a)  (b)  

(c)  (d)  
 

Figure 5.  For each physical phenomenon which affects the pendulum CB2 displacement, comparison 
between the calibrated function and the data: (a) hydrostatic, (b) mean temperature, (c) thermal gradient, 
and (d) irreversible. 

 Calibration and prediction for the pendulum CB3 
The calibration process yields the following parameter values. 
 

Table 3. Calibrated parameters for the pendulum CB3. 
__________________________________________________________________________________________________________ 

Parameter C1   C2    C3   C4    C5   C6    P1   P2   Zmin   tc  __________________________________________________________________________________________________________ 

Value   -3.68  0.00423  2.0594 -0.1798  -0.107 0.035   8.5  0.056  194.95  65  
Unit   mm  mm   (-)   mm/°C  mm/°C mm/year %   (-)   m NGF  days __________________________________________________________________________________________________________ 

 
This set of parameters yields the following time series. 
 

  
(a) (b) 

 

Figure 6.  Learning process on the CB3 pendulum; (a) raw time series with dots for the on-site measures and 
thick line for the digital twin, and (b) the time series of the difference between the model and the data. 
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The coefficient of determination is R²=0.966 and the standard deviation is 0.498 mm. The 
confidence intervals are [−0.76;  0.78] and [−1.0;  1.3] in mm for 95% and 99% respectively. 

 Calibration and prediction of the joint openings 
The joint opening is computed as the pendulum displacement since it is also a kinematic 

variable. Two differences are included: 
• a delay on hydrostatic pressure term with convolution function g1tc2 to consider 

delayed elastic behavior of the structure, 
• a threshold effect to account for the closing effect with a minimum value dxmin.  

Thus, the joint opening dx reads: 

𝑑𝑑𝑒𝑒 = 𝑑𝑑𝑒𝑒𝑚𝑚𝑎𝑎𝑛𝑛 + 𝑙𝑙𝑙𝑙�1 + 𝑒𝑒𝑒𝑒𝑒𝑒(𝑣𝑣)� (10) 

where v here stands for: 

𝐶𝐶1 + 𝐶𝐶2. �𝑊𝑊𝐿𝐿⨂𝑔𝑔1𝑡𝑡𝑒𝑒2 − 𝑍𝑍𝑚𝑚𝑚𝑚𝑙𝑙�
𝐶𝐶3  + 𝐶𝐶4.𝑇𝑇𝑚𝑚𝑒𝑒 + 𝐶𝐶5.𝑍𝑍. (𝑇𝑇𝑤𝑤 − 𝑇𝑇𝑚𝑚𝑒𝑒) + 𝐶𝐶6. (𝑡𝑡 − 𝑡𝑡0) (11) 

 
Table 4. Calibrated parameters for the joint openings. 
_________________________________________________________________________________________________________ 

Parameter C1  C2   C3   C4   C5   C6    P1  P2   Zmin  tc  tc2  dxmin  _________________________________________________________________________________________________________ 

Value     -1.05 499.10-5 1.982  -0.128 0.047  0.050   49.1 0.23  197.25 172 6.5 -2.67 
Unit   mm mm  (-)   mm/°C mm/°C mm/year %  (-)   m NGF days days mm _________________________________________________________________________________________________________ 

 
This set of parameters yields the following time series. 
 

  
(a) (b) 

Figure 7.  Learning process on the joint opening; (a) raw time series with dots for the on-site measures and 
thick line for the digital twin, and (b) the time series of the difference between the model and the data. 

 

The coefficient of determination is R²=0.984 and the standard deviation is 0.200 mm. The 
confidence intervals are [−0.31;  0.31] and [−0.51;  0.56] in mm for 95% and 99% respectively. 

 Piezometric head 
For the piezometric head, the first tries have shown a change in the behavior from August 

2008. Thus, a head decrease has been modelled from this date. The piezometric head is 
computed as the sum of 6 effects detailed in the following table. 

 
Table 5. The correlation functions for the piezometric head and the parameters to be calibrated. 
________________________________________________________________________________________________________ 

Effect          Mathematical relation       Parameters to be calibrated  ________________________________________________________________________________________________________ 

Hydrostatic pressure     𝐶𝐶1 + 𝐶𝐶2. (𝑊𝑊𝐿𝐿⨂𝑔𝑔2𝑡𝑡𝑡𝑡1 − 𝑍𝑍𝑚𝑚𝑎𝑎𝑛𝑛)𝐶𝐶3    C1, C2, C3, tc1, Zmin 
Drainage         𝐶𝐶4. (𝑊𝑊𝐿𝐿⨂𝑔𝑔2𝑡𝑡𝑡𝑡2 − 𝑍𝑍𝑚𝑚𝑎𝑎𝑛𝑛)𝐶𝐶5      C4, C5, tc2 
Seasonal due to air temperature 𝐶𝐶6.𝑇𝑇𝑏𝑏⨂𝑔𝑔2𝑡𝑡𝑡𝑡3           C6, tc3 
Rainfall          𝐶𝐶7.𝑅𝑅𝑅𝑅⨂𝑔𝑔2𝑡𝑡𝑡𝑡4           C7, tc4 
Time           𝐶𝐶8. (𝑡𝑡 − 𝑡𝑡0)            C8 

Behavior change from 08/08  𝐶𝐶9. (1 − 𝑒𝑒𝑒𝑒𝑒𝑒�𝐶𝐶10. (𝑡𝑡08 − 𝑡𝑡)�).𝑚𝑚𝑚𝑚𝑒𝑒[𝐶𝐶11 𝐶𝐶9⁄ ;  𝑊𝑊𝐿𝐿𝐶𝐶3]  C9, C10, C11 _______________________________________________________________________________________________________ 
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Where 𝑡𝑡 − 𝑡𝑡0 and 𝑡𝑡08 − 𝑡𝑡 are the time durations since the beginning of the provided time 

series and the start of the piezometric head decrease respectively. 
The threshold effect to account for dry piezometer with a minimum value PZmin is added at the 

end. Thus, the piezometric head PZ reads: 

𝑃𝑃𝑍𝑍 = 𝑃𝑃𝑍𝑍𝑚𝑚𝑎𝑎𝑛𝑛 + 𝑙𝑙𝑙𝑙�1 + 𝑒𝑒𝑒𝑒𝑒𝑒(𝑣𝑣)� (12) 

where v here stands for: 

𝐶𝐶1 + 𝐶𝐶2. (𝑊𝑊𝐿𝐿⨂𝑔𝑔2𝑡𝑡𝑡𝑡1 − 𝑍𝑍𝑚𝑚𝑎𝑎𝑛𝑛)𝐶𝐶3  + 𝐶𝐶4. (𝑊𝑊𝐿𝐿⨂𝑔𝑔2𝑡𝑡𝑡𝑡2 − 𝑍𝑍𝑚𝑚𝑎𝑎𝑛𝑛)𝐶𝐶5 +  𝐶𝐶6.𝑇𝑇𝑏𝑏⨂𝑔𝑔2𝑡𝑡𝑡𝑡3 +
𝐶𝐶7.𝑅𝑅𝑅𝑅⨂𝑔𝑔2𝑡𝑡𝑡𝑡4 + 𝐶𝐶8. (𝑡𝑡 − 𝑡𝑡0) + 𝐶𝐶9. (1 − 𝑒𝑒𝑒𝑒𝑒𝑒�𝐶𝐶10. (𝑡𝑡08 − 𝑡𝑡)�). max �𝐶𝐶11

𝐶𝐶7
;  𝑊𝑊𝐿𝐿𝐶𝐶3� (13) 

 Calibration and prediction of the piezometer PZCB2 
 
Table 6. Calibrated parameters for the piezometric head PZCB2. 
 
_______________________________________________________________________________________________________ 

Parameter C1   C2   C3   C4    C5   C6   C7   C8   C9   C10  C11  _______________________________________________________________________________________________________ 

Value   1.182  0.0115 1.94  -0.011  0.863 -0.08  0   0.100  -5.04  -0.527 -4.79 
Unit   m   (-)   (-)   (-)    (-)   m/°C  m/mm m/year m   (-)/year m _______________________________________________________________________________________________________ 

Parameter Zmin  tc1   tc2   tc3   tc4       PZmin  ___________________________________________________________________________ 

Value   195.7  0.75  36   28   0 (no correlation) 195 
Unit   m NGF days  days  days  days      m NGF ___________________________________________________________________________ 

 
This set of parameters yields the following time series. 
 

 

 
(a) (b) 

  
Figure 8.  Learning process on the piezometer PZBC2; (a) raw time series with dots for the on-site measures 
and thick line for the digital twin, and (b) the time series of the difference between the model and the data. 

 
The coefficient of determination is R²=0.988 and the standard deviation is 0.511 m. The 

confidence intervals are [−0.85;  0.77] and [−1.3;  1.09] in m for 95% and 99% respectively. The 
large discrepancy in 2002 is due to a fast water level increase in the reservoir. This is typical of an 
exceptional event for which statistical models only provide a rough estimate due to the lack of 
similar data during the learning process. One can notice that drainage and rainfall terms 
(downstream effects) are almost null for this piezometer. At the end, after few weeks, the model 
is back to good quality for the prediction. Indeed, after august 2008, the measures dropped 
significantly. Until the last measure in 2012, the model still detects a decrease of the piezometric 
level. It is not easy to extrapolate the measure until 2017 since the drop is not yet stabilized. From 
a practical viewpoint, it is recommended to calibrate the model yearly until the drop begins to 
stabilize. 
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 Calibration and prediction of the piezometer PZCB3 
For PZCB3, the first calibration tries showed that the drop initiated in august 2008 is stopped 

or extremely faded in the last months of provided data. We took the hypothesis of stopping the 
drop term starting from July 2012. 
 
Table 7. Calibrated parameters for the piezometric head PZCB3. 
_______________________________________________________________________________________________________ 

Parameter C1   C2   C3   C4    C5   C6   C7   C8   C9   C10  C11  _______________________________________________________________________________________________________ 

Value   1.382  0.2154 0.956  -0.475 0.460  -0.0246 0.029  -0.0436 -2.14  -1344 -1.34 
Unit   m   (-)   (-)   (-)   (-)   m/°C  m/mm m/year m   (-)/year m _______________________________________________________________________________________________________ 

Parameter Zmin  tc1   tc2   tc3   tc4   PZmin  ________________________________________________________________________ 

Value   203.8  0.75  56   8   26   196  
Unit   m NGF days  days  days  days  m NGF ________________________________________________________________________ 

 
This set of parameters yields the following time series. 
 

 

 
(a) (b) 

Figure 9.  Learning process on the piezometer PZBC3; (a) raw time series with dots for the on-site measures 
and thick line for the digital twin, and (b) the time series of the difference between the model and the data. 

 
The coefficient of determination is R²=0.972 and the standard deviation is 0.265 m. The 

confidence intervals are [−0.40;  0.41] and [−0.71;  0.77] in m for 95% and 99% respectively. 
Compared to PZCB2, the drainage and rainfall terms are not null. Their amplitudes are 
respectively 2.0 m and 0.3 m. 

 Calibration and prediction of the seepage 
For the seepage predictive model, we use the same set of functions as for the piezometric 

head. Unfortunately, so far, the results are not that good. The seepage prediction is much more 
complex. Indeed, if part of the seepage comes from the runoff along the hillslopes, this may 
introduce several characteristic times depending for instance on the ground hydric state. 
Furthermore, the rainfall data provided are measured 5 km away from the dam. As for the air 
temperature, in alpine regions, 5 km may change a lot the water quantities thus inducing 
uncertainties in the input data. 

Nevertheless, a statistical model has been calibrated.  
 

Table 8. Calibrated parameters for the seepage. 
 
_____________________________________________________________________________________________ 

Parameter C1   C2   C3  C4    C5    C6    C7   C8   C9  _____________________________________________________________________________________________ 

Value   2.50  0.0399 1.70 -0.18   0.43   ∼0    0.95  -285  ∼0     
Unit   l/min  (-)   (-)  l/min/°C  l/min/mm l/min/year l/min  (-)/year l/min _____________________________________________________________________________________________ 

Parameter Zmin  tc1   tc2  tc3  PZmin  _______________________________________________ 

Value   208.5  ∼0   16  22  0  
Unit   m NGF days  days days l/min _______________________________________________ 
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This set of parameters yields the following time series. 
 

 

 
(a) (b) 

 

Figure 10.  Learning process on the seepage; (a) raw time series with dots for the on-site measures and thick 
line for the digital twin, and (b) the time series of the difference between the model and the data. 

 
The coefficient of determination is R²=0.567 and the standard deviation is 2.88 l/min. The 

confidence intervals are [−3.37;  4.80] and [−5.8;  9.8] in l/min for 95% and 99% respectively. 

5 CONCLUSION 

In this contribution, we have proposed a statistical data-based model which is supported by 
physically sound functions. Some phenomena have been accounted for based on expert 
judgement yielding some specific correlation functions. They are different from the bibliography, 
and we do believe that their physical meaning is stronger. In contrary to neural network, for 
instance, the physical meaning can be evaluated a posteriori, after the calibration process, to 
eventually propose improvements. For instance, the characteristic times calibrated are 
systematically analyzed in view of the physics to check their coherency with the diffusivity of the 
concrete and the characteristic size of the dam. Besides, we have restricted ourselves to the 
minimum number of parameters required by the physics. Further parameters may be added to 
statistically improved the model at the risk of losing the physical meaning and introducing cross 
correlation between parameters. Except for the seepage, the coefficients of determination are 
above 0.95 which shows the very good quality of our approach. 

On the other hand, this work, although innovative, has taken 3 days of work in total including 
the definition of the correlation functions, their calibrations, and the validation of the results. This 
is by far less than a FE model for a result we believe of the same quality. 

In the next future, this innovative approach should be used on several other dams to determine 
some reference correlation functions depending on the dam typology and the type of sensors. 
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ABSTRACT: Prediction and interpretation of deformation measurements based on data 
obtained from previous monitoring is one of the most common tasks for dam engineers to 
assess dam safety today. Deterministic and statistical approaches are used to solve these tasks. 
Finite element models offer the possibility to study the behavior of dams in great detail when 
mechanical parameters as well as geotechnical and geological information is available. 
However, compared to statistical models, they often lack predictive accuracy due to rheological 
time-dependent behavior and the lack of information on the geological conditions. This is 
especially the case when limited data is available to calibrate material models and body 
interactions, e.g., between individual blocks or to the foundation. Hybrid modeling combines 
the advantages of both approaches. The ICOLD Technical Committee on Computational Aspects 
of Analysis and Design of Dams called for a workshop on the behavior and predictive analysis 
of a double-curvature arch dam. For the given task, a finite element model is created and 
calibrated using available monitoring data. A recurrent neural network is then trained using the 
same data and the results of the finite element analysis to compensate for its lack of predictive 
accuracy. It is shown that this procedure not only improves the quality of modeling but also 
reveals deficiencies of the mechanical model alone. Furthermore, prediction intervals are 
derived from quantile regression neural networks to define warning levels and identify 
anomalies in the monitoring data. 
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1 INTRODUCTION 

Prediction and interpretation of monitoring data is one of the most important tasks of a dam 
engineer today. This is done either by data-driven models or deterministic models such as finite 
element analysis (FEA). It is also possible to combine both approaches by performing a hybrid 
analysis. The knowledge gained from these analyses is critical for estimating the current safety 
condition of the dam, monitoring time-dependent changes over the years and coping with ageing. 
While FEA is best suited to provide insight into the behavior of the dam, statistical models are 
usually better at predicting it. These predictions can be used to detect anomalies in the measured 
data. Based on these detections, the responsible dam engineer must decide whether 
countermeasures must be taken. One method that can be used for this time series prediction is 
Long-Short-Term-Memory (LSTM) presented by Hochreiter & Schmidhuber (1997). 

LSTMs are a further development of Recurrent Neural Networks (RNN), which were originally 
developed to represent the temporal relationship within data sequences. However, they have 
one major drawback. During the training process, weights are updated at each iteration based on 
the gradient of the error function. Sometimes this gradient can become so small that the weights 
no longer change or even the entire network can no longer be trained. One advantage of LSTMs 
is that they do not suffer from this vanishing gradient problem.  

However, prediction of monitoring data alone is not sufficient. Suitable warning levels must be 
derived to detect abnormal behavior. One possibility is to derive them from alarm levels based 
on failure analysis of the monitored structure. Another approach is to derive them purely from 
measured data. In this case, the prediction intervals must be determined based on the underlying 
statistical model. For time series, this usually requires dealing with inhomogeneous variances. 
One method to achieve this is Quantile Regression (QR). QR does not assume identical, 
independent, and normally distributed individual values, as is the case with ordinary least squares 
models. The use of this method in neural networks leads to the Quantile Regression Neural 
Network (QRNN), as proposed by Taylor (2000).  

This paper is a contribution to Theme A of the 16th International Benchmark Workshop on 
Numerical Analysis of Dams, organized by ICOLD in Ljubljana. The aim of this workshop is to 
interpret and predict measured data collected over a period of 13 years of a double-curvature 
arch dam. The prediction itself is to be performed for two cases. First, a short-term period from 
January to June 2013 will be predicted. Second, a prediction is needed for a long-term period 
from July 2013 to December 2018. In this paper, a combination of deterministic and statistical 
approaches is presented to achieve the most accurate predictions possible. 

Firstly, a thermal-structural FEA is conducted to interpret the dam’s behavior. Then a LSTM 
network is used to improve the predictive capability of the FEA. Finally, QRNNs are used to derive 
appropriate warning levels for monitoring.  

2 METHODS 

 Finite Element Analysis 
The FEA is performed with Ansys Mechanical Workbench (2020). The dam body is separated 

into 11 blocks (Fig. 1), which are connected by contact interfaces. Therefore, a bounded contact 
setting – no separation, no sliding – and a multi-point constraint formulation are used. Frictional 
contacts are used for the base joint, except for the embankment blocks. There, bonded contacts 
with a multi-point constraint are used.  

 A mesh with a total number of 10353 elements and 22656 nodes is used. The mesh of the dam 
body consists of quadratic hexahedral elements in both thermal and structural analysis. The 
foundation was discretized by quadratic tetrahedral elements. Displacement boundary 
conditions are applied to the edges of the foundation block. The lowest element quality – ratio of 
smallest to largest element axis – is 0.31 and is located within the rock mass. The same mesh is 
used for thermal and structural analysis.  

According to the description in the assignment sheet, the rock foundation is divided into three 
parts: Left slope, middle slope, and right slope (Fig. 2). The left embankment’s slope is used as 
the rock joint orientation since no other information about the rock joints is available. An 
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orthotropic linear elastic material model is used. The material properties normal and parallel to 
the assumed joints were taken from the task sheet. 

 The results of the analysis are extracted from the nodes at the central block at an elevation of 
236 m for CB2 and 195 m for CB3. Deformations C4-C5 are extracted from the upstream base 
joint opening (Fig. 1-2).  

 

  
Figure 1.  Dam body mesh with investigated nodes at the central block. 

 

  
Figure 2.  Mesh of the rock foundation with the dam body (left) and cross section showing positions of 
monitoring devices at the central block (right). 

 Thermal Modelling 
The thermal load is considered by convection on all free surfaces of discretized domain. The 

necessary parameters for convection between media and thermal properties such as conductivity 
and specific heat capacity are taken from the task sheet. Since no information is available on the 
orientation of the dam, radiation is considered only on the downstream side of the dam. A typical 
emission factor for concrete of 0.91 is used. The ambient air temperature is varied over time 
according to the reference temperature 𝑇𝑇𝑏𝑏,𝑎𝑎𝑎𝑎𝑎𝑎. The ambient temperature and the conductivity of 
the water-contacting surfaces are updated at each time step as a function of the current water 
level in the reservoir. For simplicity, the water temperature 𝑇𝑇𝑤𝑤 results from a functional relation 
of the air temperature 𝑇𝑇𝑏𝑏,𝑎𝑎𝑎𝑎𝑎𝑎: 

 𝑇𝑇𝑤𝑤𝑎𝑎𝑡𝑡𝑤𝑤𝑎𝑎 = 𝑚𝑚𝑚𝑚𝑒𝑒 �
0

 0.7 ∙ 𝑇𝑇𝑏𝑏,𝑎𝑎𝑎𝑎𝑎𝑎
                        (1) 

The transient thermal analysis is performed with a constant time step of 1 day. The results are 
then used as input for a subsequent structural analysis. 
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 Structural Modelling 
This analysis is divided into four steps. In the first step, the dam body alone is loaded by gravity, 

with only the base joint contacts being active. In the second step, the block joint contacts are 
activated. In the third step, the thermal load is applied and simulated for the period from 1995 
to 2000. In the last step, the hydrostatic load is applied to the upstream side of the dam and the 
upstream valley. The hydrostatic pressure head and temperature distribution within the dam 
body are updated at each time step. The hydrostatic pressure acting within the block and bottom 
joints is not considered. The static analysis is performed with a constant time step of 7 days.  

The concrete material parameters Young’s modulus and the coefficient of thermal expansion 
(Tab. 1) are optimized to minimize the sum of squared errors from the calculated deformation in 
CB2 and the reference. Further material properties were taken from the task sheet. 

 
Table 1. Optimized concrete material parameters. 
______________________________________________________________ 

 Coefficient of Thermal Expansion   Young’ Modulus              
          m/m°C           GPa ______________________________________________________________ 

                 1.15e-5          24.0 ______________________________________________________________ 

 Long-Short-Term Memory 
LSTMs were introduced by Hochreiter & Schmidhuber (1997) as further development of RNNs. 

RNNs were developed to represent the temporal relationship within data sequences. They have 
the ability to pass information from one time step to the next. According to the representation in 
Figure 3, the output from the previous time step ℎ𝑡𝑡−1 and the input of the current time step 
𝑋𝑋𝑡𝑡  are combined via an activation function, e.g. tanh, to create the new output ℎ𝑡𝑡, which is also 
passed on to the next time step.  

  
Figure 3.  Unrolled RNN containing a single layer, depiction by Colah (2015). 
 

During the training process, the weights are updated at each iteration based on the gradient 
of the error or loss function. Sometimes this gradient can become so small that the weights no 
longer change or even the entire network can no longer be trained. 

LSTMs were introduced to solve the vanishing gradient problem. Each LSTM unit is composed 
of a cell that stores values over a period of time and three gates which regulate the flow of 
information to and from this cell. According to the representation in Figure 4, the first gate 
decides, based on the previous output ℎ𝑡𝑡−1 and the current input 𝑋𝑋𝑡𝑡, which parts of the passed 
cell state 𝐶𝐶𝑡𝑡−1 should to be forgotten and which parts should be remembered. To do this, it uses 
multiplication with a sigmoid function. The next gate updates the cell state by adding new 
information. The third gate produces the actual output of the current time step ℎ𝑡𝑡. This output 
and the new cell state 𝐶𝐶𝑡𝑡  are again passed on to the next time step. 

  
Figure 4.  LSTM contains four interacting layers, depiction by Colah (2015). 
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 Quantile Regression 
QR models the relationship between a set of predictor variables and specific percentiles of a 

target value. In contrast to ordinary least squares, QR does not depend on assumptions about the 
distribution of the target value and also tends to resist the influence of outliers, Koenker et al. 
(1978).  

In machine learning, QR is often used to create prediction intervals, e.g., for predicting 
upcoming demand or price changes on the stock exchange. Following Taylor (2000), the 
corresponding minimization problem can be stated as: 

𝑚𝑚𝑚𝑚𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒 �max�𝜃𝜃(𝑦𝑦𝑎𝑎 − 𝑦𝑦𝚤𝚤�), (𝜃𝜃 − 1)(𝑦𝑦𝑎𝑎 − 𝑦𝑦𝚤𝚤�)��                 (2) 

Where the 𝜃𝜃-th quantile is derived from 𝑦𝑦𝑎𝑎  and 𝑦𝑦𝚤𝚤�  is the predicted value. Setting 𝜃𝜃 = 0.5 leads 
to the prediction of the median.  

To use this approach in neural networks, the function presented has to be defined as a user-
defined loss function. In this work, the 97.5% quantile is used as the upper bound and the 2.5% 
quantile as the lower bound of the prediction interval.  

 Data Preparation and Training 
The provided data for the pendulums and the extensometer were previously cleaned and have 

a temporal resolution of 1.5 weeks. FEA provides results at weekly intervals. These time series 
are resampled by linear interpolation to daily resolution to account for the frequency of water 
level, precipitation and air temperature measurements. Prediction is also done on a daily basis. 

Figure 5 shows a flowchart of the hybrid model process. After resampling, the data is scaled to 
the same magnitudes. Temperature and the FEA data are standardized, i.e. zero mean and unit 
variance. Water level and precipitation data are normalized between zero and one while 
maintaining the original scale of the structural response measurements. 

After scaling the data, a training set is created ranging from January 1, 2000 to May 10, 2012 
(95.0% of the data) and a validation set is created ranging from May 11, 2012 to December 31, 
2012 (5.0% of the data). Initially, the model is trained on the training data only. The 
hyperparameters, i.e. network depth, number of neurons per layer, dropout rate and activation 
functions, are adjusted based on the determined losses in the training and evaluation set. After 
the adjustment process is performed and the final model is selected, training continues with the 
validation set. Finally, the obtained model is used to predict the monitoring values and their 
warning levels. 

  
Figure 5.  Flowchart for hybrid modelling. 

 
During the training process, the weights and bias of the neural network are updated by 

backpropagation depending on the gradient of the loss function. There are several optimization 
methods for this process. In this work, a stochastic gradient descent method that is based on an 
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adaptive estimation of first and second order momentums called “Adam” is used, Kingma et al. 
(2015). In addition, a learning rate scheduler with exponential decay is defined. 

A total of 9 models are trained – three for each measured value – using the Tensorflow/Keras 
framework within Python provided by Chollet (2015). 

3 RESULTS 

 Interpretation of FE Results 
The thermal field is extracted from the transient thermal analysis. Figure 6 clearly shows the 

difference in surface temperature between water-contacted and air-contacted faces. Moreover, 
the downstream surface of the dam has slightly higher temperatures than the upstream surface 
due to the applied radiation. 

       
Figure 6.  Temperature distributions in °C within central block for on 29th of August 2010 (left: during 
summer with high water level) and 11th of February 2010 (right: during winter with low water level).  

 
Deformation and stress distributions provide further important information on the behavior of 

the dam. The maximum downstream displacement of the central block was measured on July 30, 
2006, when summer temperatures were high and the reservoir was full (Fig. 7). The stress 
distribution at this time shows that tensile hoop stresses develop in the lower part of the block 
(Fig. 9). This is due to the unfavorable rock conditions in the center of the valley, resulting in the 
downstream deformations recorded by pendulum CB3.  

Figure 8 shows the maximum upstream deformation occurring on December 31, 2007, 
during winter and when the reservoir was almost empty. The stress distribution in the central 
block (Fig. 9) shows that almost the entire cross section is under compression.  

  

Figure 7.  Deformation on time maximum downstream deformation – high temperature, high water level on 
July 30, 2006. Positive values indicate movement in downstream direction. 
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Figure 8.  Deformation on time maximum upstream deformation – low temperature, low water level on 31, 
2007. Positive values indicate movement in downstream direction. 

   
Figure 9.  Vertical and hoop stresses in the central block for high temperature, high water level on July 30, 
2006 (left) and low temperature, low water level on of December 31, 2007 (right). 

 Predictions and Warning Levels 
In Figure 10, the FE results for CB2 show a delayed response to decreasing hydrostatic 

pressure, while loading periods are quite well captured. The largest errors are observed during 
the first quartiles of 2002 to 2004 and in 2012, when the water level in the reservoir reached its 
lowest level. 

The median prediction using of the LSTM model reduces the mean absolute error from the FE 
calculation by 42.1% to 1.50 mm during the calibration period. The evaluation of anomalies in this 
period shows slight differences between the desired quantiles (2.5% - 97.5%) and the quantiles 
estimated by the models (2.7% - 97.7%). Similar results are obtained for CB3 and C4-C5 as well.  
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Figure 10.  Calibration period with 10% evaluation split showing results from FEA and predictions of LSTM 
with their error compared to measurements. 
 

The accuracy of the prediction can be significantly improved by additional use of the LSTM 
model. As the scatter plots in Figure 11 show, the total variance due to the non-linear behavior 
of CB2 can be decreased compared to the pure FE-results.  

 

Figure 11.  Scatter plots of reference measurements vs. LSTM predictions and initial FE results for CB2 (left). 
 
Figure 12 shows anomalies identified from the 95% prediction interval. 205 anomalies were 

detected during the training process from 2000 to 2011, while 33 anomalies were detected in the 
testing process during the year 2012. Figure 13 and 14 show the final prediction with warning 
levels for pendulum measurements CB2 and CB3. The presented results for the short-term (case 
B) and long-term prediction periods (case C) have be evaluated and compared with participants 
during the benchmark workshop.  
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Figure 12.  Identified anomalies from the 95% prediction interval for pendulum motion CB2 in the training 
and 10% test set (case A). 

 

  

Figure 13.  CB2 predictions including warning levels (95% prediction intervals) for all cases B and C compared 
with FE results and reference measurements. 

  

Figure 14.  CB3 predictions including warning levels (95% prediction intervals) for all cases B and C compared 
with FE results and reference measurements. 

4 CONCLUSION 

In summary, hybrid analysis combines the advantages of the deterministic approach to 
describe mechanical behavior with FEA and those of the statistical approach to account for 
uncaptured time-dependent effects. 

 Finite element modelling provides important information about the behavior of the dam. In 
this case, the model is calibrated using measurements on one block only. Therefore, additional 
measurements are crucial to verify the deformations calculated by the FEA. Some essential 
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information to allow a more advanced numerical modelling is not given by the formulator - or 
unfortunately in general not available. Especially information on the geotechnical aspects such as 
joint orientation and spacing is necessary to further improve FE results. Lack of data on the 
thermal field within the dam body further complicates calibration, as additional assumptions 
must be made. The largest error is found during unloading periods, indicating a delayed response 
of the rheology of the surrounding rock that is not captured by the FE model. Similar deviations 
were found by Zenz (2003) when investigating the Zillergründl arch dam. 

The LSTM model improves the prediction quality of the FE results. It is also capable to provide 
predictions intervals without making assumption about the parameter distributions in the FE 
analysis, such as Young’s modulus or density. The latter requires data that is often scarce, 
especially for dams built decades ago. In the presented work, the linear material behavior and 
base joint interactions are captured in the FEA, while the LSTM model considers nonlinearities 
and time depending behavioral changes such as creep and rheological effects that are not 
captured.  
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ABSTRACT: Health monitoring of dams is based on measuring significant quantities that 
characterize their behavior (like Crack opening displacement, radial displacements, etc.) and on 
visualization inspections of the structures. Predictive models are essential in dam safety 
assessment. They have been conventionally based on simple statistical tools such as the 
hydrostatic-seasonal-time (HST) model. In recent years, examples of machine learning and 
related techniques are becoming more frequent as alternatives to HST. In this work, the most 
popular machine learning techniques such as gradient boosting regression, support vector 
machines, neural networks are utilized to predict radial displacements of a double curvature arch 
dam. The possibilities of model explanation are explored: the relative influence of each predictor 
is computed, and a new combination method is constructed based on HST and machine learning 
algorithms and called the Hydrostatic Machine Learning (HML) model. This study shows a 
comparison between HML and other machine learning tools for the description of dam behavior 
under environmental loads. This study indicates that HML models can be a powerful tool that can 
efficiently identify concrete dam behavior performance changes with higher flexibility and 
reliability than simple regression models.  
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1 INTRODUCTION 

Dam monitoring is essential to ensure the satisfactory operation and long-term safety. In terms 
of safety, the aim of controlling a concrete dam is to guarantee the functions for which it was 
built by maintaining its functionality and structural integrity. Monitoring activities and model 
analysis are tools by which safety control is being carried out [1]. One of the main tasks to be 
performed is to compare the expected responses registered by the monitoring system, 
understand the dam behavior, and detect potential anomalies [2]. The actual responses of dams 
are compared with the prediction models aiming to detect anomalies and prevent failures. Such 
predictive methods can be classified into four scopes: Deterministic, Statistic, Hybrid, and Mixed 
Models [3]. Deterministic models such as FE models based on mechanical principles are often 
challenging to construct. Although numerical models based on the FEM provide a proper 
estimation of  dam displacements and stresses, this method faces a significant  degree of 
uncertainty in the characterization of the materials, especially concerning the dam foundation 
[3]. Such numerical tools are of great essentiality during the initial stages of the  structure's life 
cycle unless there are enough data available to build data-based predictive models. However, 
their results are often not accurate enough for a precise dam safety assessment [3]. 

There are still quite a few dams with slightly observed data. However, there is a consistent 
trend towards the installation of a larger number of devices with higher data collection frequency. 
Data that is driven by tools allows for building predictive models based on monitoring data 
without explicitly considering the physical properties of the dam and the foundation. Many in-
operation dams have quite a few monitoring and recording devices. Various indicators are 
acquired, such as displacement, the temperature in multiple levels, water temperature, leakage 
flow, and pore water pressure. This being the case, an increasing amount of information is 
available on the dam performance, which makes it interesting to study the ability of machine 
learning (ML) tools to process them, build and predict behavior models, and extract useful 
information. 

 Statistical models 

 HST 
The hydrostatic-seasonal-time (HST) model is the most widely applied and generally accepted 

by practitioners in which three effects are taken into account: 1) A reversible effect of the 
hydrostatic loads, 2) A reversible seasonal thermal influence of the temperature, and 3) An 
irreversible term due to the evolution of the dam response over time [3]. The coherence of these 
assumptions is evident in the observed behavior of many concrete dams in terms of 
displacements [3]. De Sortis and Paoliani [4] and Léger and Leclerc [5] successfully obtained 
structural identification techniques using a very complex procedure. The main disadvantages of 
HST and other methods based on linear regression are as follows [1], [3]: 

• The functions have to be defined in advance and thus may not represent the actual 
behavior of the structure. 

• Some of the governing variables have been proven to be correlated. However, they are 
seemingly independent. 

• They are not well-suited to model non-linear interactions between input variables. 
HST also characterizes conceptual limitations that impact the prediction accuracy and may lead 

to misinterpretation of the results since the hydrostatic load and the temperature are considered 
to be independent, while these variables are coupled in reality. The thermal field in the dam 
structure, especially in the vicinity of the water surface, heavily relies on the temperature of the 
water in the upstream face [2]. In turn, the thermal load influences the stress and displacement 
fields. Various modifications to the original HST model have been proposed to tackle its 
drawbacks. They focus on improving the consideration of the thermal load by taking into account 
the actual air temperature instead of the historical mean [2] or how the water temperature 
affects the upstream face [6], [7]. 
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 HTT: 
HTT (hydrostatic, temperature, time) [5] is another statistical model which interprets concrete 

dam-recorded pendulum displacements. In the HTT model, the thermal loads are arbitrary and 
contain temperature drift or unusual temperature conditions to analyze recorded concrete dam 
displacements. The HTT model uses thermometric data to compute effective linear temperature 
differences across dam sections and their effects on dam displacements.  

 Multiple linear regression and Multilayer Perceptron: 
In recent years, non-parametric techniques have appeared as an alternative to HST data-based 

behavior models [8]. Support vector machines (SVM) [9], neural networks (NN) [1], adaptive 
neuro-fuzzy systems (ANFIS) [10] can be pointed out. In general, these tools are perfectly proper 
for non-linear cause-effect relations modeling and interacting among external variables, as 
previously mentioned between hydrostatic load and temperature. On the contrary, they are 
typically more difficult to interpret, leading them to be called black box models. Most of the 
published work focused on the accuracy of such predictive models, which was generally higher 
than what was offered by HST [1], [3], [11].  Although the HST model is simple, many exceptions 
were made by Santillán et al.[12], Mata [1], and Cheng and Zheng [13]. Therefore, a dilemma is 
posed to engineers. The HST model is perfectly known, used, and easily interpretable; however, 
it is based on some incorrect assumptions, and its accuracy can be increased. On the other hand, 
more flexible and accurate models are available, but they have difficulties in implementation and 
analysis.  

For analyzing multifactor effects, the multi-linear regression (MLR) model is one of the 
statistical techniques used to a great extent. An MLR model is a statistical technique for 
investigating and modeling the relationship between variables and their correlation. MLR models 
have a long-standing history in dam engineering and were otherwise known as quantitative 
analysis models. The regression equation is only a reasonable approximation to the actual 
relationship between the variables in almost all applications of regression [1]. Researchers are 
frequently innovating techniques to improve the HST results. For instance, Bonelli and Radzicki 
[14] used an impulse-response function to predict the dam body pore pressure. Li et al. [11] 
proposed a method based on cointegration theory to improve HST. Having tested the stationarity 
of the monitoring data series, they fitted a multi-linear regression (MLR) model [3].  

Both MLR and Neural network (NN) approaches are of great potential for assessing the 
behavior of the control variables that support the safety assessment of the concrete dam. One 
obvious disadvantage of linear regression that causes inadequacy is that it cannot reproduce 
nonlinear relationships between variables. To overcome this inadequacy, introducing higher-
order terms of the covariates must be applied [3]. NN is a constructive alternative for this issue 
whose flexibility and capability to adapt to highly complex interactions have made them popular 
in several fields of engineering, including dam monitoring [1], [15]–[17]. Some worth-mentioning 
research studies related to NN, such as Perner et al. [18], Gomes and Awruch [19], Fedele et al. 
[20], Z. Wu et al. [21], Bakhary et al. [22], Wang and He [23], Wen et al. [24], Liu et al. [25], 
Joghataie and Dizaji [26], and Yi et al. [27]. However,  NN has some drawbacks [3]: 

• The results depend on how well the weights are initialized. 
• The best network architecture, number of hidden layers and neurons in each layer, is not 

known in advance. 
• The model is subjected to being over-fitted.  
• The training process is prone to reach a local minimum of the error function. 

Several techniques have been developed to overcome these shortcomings, and there is no 
way to bear the increase in the computational cost [28].  Despite this, NN stands out as the most 
popular ML tool in dam engineering, and the results are encouraging [15]. ANFIS models [29], 
principal component analysis [30], NARX (nonlinear autoregressive with exogenous input) 
models [31], or K-nearest neighbors [32] have also been applied to dam monitoring. However, 
such mentioned tools are rarely used in practice, where HST still prevails. Moreover, most 
previous studies are limited to one single variable of specific dams [1], [17]. Therefore, the 
results are not generally applicable.  A further singularity of dams is that the early years of 
operation often gears to a transient state, which is not representative of the quasi-stationary 
response afterward [33].  In such a case, eliminating those years for training a predictive model 
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would be advisable. It might lead to questioning the optimal size of the training set in achieving 
the best accuracy [3]. De Sortis [4] carried out sensitivity analysis and maintained that at least 
10 years were needed to acceptable predictions come true. However, his study was limited to 
the radial displacement predictions in one particular location of a specific dam by using HST. 
Similar work was run by Chouinard and Roy [34]. In recent years, some tools that can perform 
cognitive tasks such as pattern recognition and function approximation have been introduced 
in Artificial Intelligence [1]. 

 Objectives 
The study aims to assess the prediction accuracy of some ML algorithms, most of which have 

been used in dam engineering. Specifically, the algorithms selected are: gradient boosted 
regression (GBR), Extreme Gradient Boosting (XGBoost), support vector machines (SVM), 
Hydrostatic GBR and Hydrostatic NN. With the help of these prediction models, we can evaluate 
the dam's performance, estimate the response of the dam for its actual load conditions and 
define warning levels. The aim of using current algorithms for the considered dam is to build a 
model from the past year's data to see how modern tools can be used in the prediction of dam 
behavior.  

2 CASE STUDY AND VARIABLE SELECTION 

A double curvature arch dam located in the south of France is used as a case study in this study. 
Theme A of the 16th International Benchmark Workshop on Numerical Analysis of Dams has 
introduced this dam [35]. The theme aims to establish a prediction model for the dam. Table 1 
shows some statistics of the target variables. The location of each monitoring device is depicted 
in Fig. 1. The monitoring data for the dam has been presented from 2000 to 2012. This paper uses 
the data from 2000 to 2009 to train the considered models. The remaining data has been used 
for testing models.  

 
Table 1. Summary of the main features of the provided data. 

Variable Type units Variable Name Period Frequency 
Water Level m Water Level 1995-2017 1 day 

Air Temperature ºC Ta 1995-2017 1 day 
Air Temperature ºC Tb 1995-2017 1 day 

Rainfall mm Rainfall 1995-2017 1 day 
Radial displacement mm CB2_236-196 2000-2012 1.5 weeks 
Radial displacement mm CB3_195-161 2000-2012 1.5 weeks 

Crack Opening mm C4-C5 2000-2012 1.5 weeks 
Piezometric level m PZCB2 2000-2012 1.5 weeks 
Piezometric level m PZCB3 2000-2012 1.5 weeks 

Seepage l/min Seepage 2000-2012 1.5 weeks 
 

The main focus of this paper is to build the predictive models for the pendulums located in the 
central block of the dam shown in Fig. 1 (b): CB2 and CB3. In addition, three raw environmental 
variables measured at the dam site have been depicted in Fig. 2. It is obvious in Fig. 2 (a) that the 
reservoir's surface has gone beneath Dam Bottom (level 195) a few times. The water levels below 
the Dam Bottom are replaced with 195 since water levels less than this, due to the topography 
of the reservoir, do not affect the structure's displacements or movements in for creating 
predictive models in this paper.  
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Figure 1.  Location of pendulums: a) Downstream view and b) View of block CB and pendulums. 
 

The predictor variables have been selected based on dam engineering performance [3]. Both 
displacements and leakage strongly depend on the hydrostatic load. Air temperature is well 
known to affect displacements in the form of delayed action. Other contributing factors are 
moving averages of reservoir level and its fluctuation velocity over different periods. The year and 
number of days from the first impounding are considered for the irreversible displacement of the 
structure. Table 2 summarizes the 21 considered predictor variables. 

 
Table 2. Predictor variables. 

Code Group Type Period (days) 
Level Hydrostatic load Original – 

Lev014 Hydrostatic load Moving average 14 
Lev030   30 
Lev060   60 
Lev090   90 

Tair Air temperature Moving average 1 
Tair014   14 
Tair030   30 
Tair060   60 
Tair090   90 

Rain Rainfall Accumulated 1 
Rain030   30 
Rain060   60 
Rain090   90 
Rain180   180 

NDay Time Original – 
Year   – 

Month Season Original – 
n010 Hydrostatic load Rate of variation 10 
n020   20 
n030   30 
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Figure 2.  Time series of environmental variables at the dam site. From top to bottom: water level (a), air 
temperature (b), and daily rainfall (c). The vertical dashed line marks the division between training and test 
periods. 

3 METHODS 

In this section, the algorithms chosen to create the prediction models are briefly described. 
Although the detailed mathematical description is beyond the purpose of the paper, a short 
description, the most relevant features, and some key references are included. All the models 
have been built by using Python programming environment and some of its packages. 

  HST Model 
A conventional HST model was fitted for comparison purposes: 

𝑌𝑌� = 𝑅𝑅(𝑡𝑡, ℎ, 𝑐𝑐) = 𝑌𝑌ℎ + 𝑌𝑌𝑡𝑡 + 𝑌𝑌𝑠𝑠
= 𝑚𝑚0 + 𝑚𝑚1ℎ + 𝑚𝑚2ℎ2 + 𝑚𝑚3ℎ3 + 𝑚𝑚4ℎ4 + 𝑚𝑚5𝑒𝑒−𝑡𝑡 + 𝑚𝑚6𝑡𝑡 + 𝑚𝑚7 𝑒𝑒𝑐𝑐𝑐𝑐(𝑐𝑐) + ⋯

𝑚𝑚8 𝑐𝑐𝑚𝑚𝑙𝑙(𝑐𝑐) + 𝑚𝑚9𝑐𝑐𝑚𝑚𝑙𝑙2(𝑐𝑐) + 𝑚𝑚10 𝑐𝑐𝑚𝑚𝑙𝑙(𝑐𝑐) 𝑒𝑒𝑐𝑐𝑐𝑐(𝑐𝑐)  
(1) 

where: 

𝑐𝑐 = 2𝜋𝜋
𝑑𝑑

365.25
 (2) 

where d is the number of days since 1 January, t is the elapsed time (years), h is the reservoir 
level, and 𝑚𝑚0, 𝑚𝑚1, …, and 𝑚𝑚10 are the coefficients to fit. 

 

b 
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 Gradient Boosted Regression (GBR) 
Gradient boosting is a model that learns the boosting algorithm by ensemble learning for the 

decision tree. Although other models focus on it to boost performance, in this model, the gradient 
divulges the weaknesses of the model that have been learned so far.  One advantage of gradient 
boosting is that the other loss functions can be used as much as possible. The character of the 
loss function is automatically reflected in learning through the gradient [5]. The main steps of the 
original boosting algorithm for regression trees and the squared error loss function can be found 
in Ref. [36]. 

 XGBoost Model 
With the rapid growth of opportunities in the advancement of computer technology, an 

advanced supervised machine learning algorithm named "extreme gradient boosting (XGBoost)" 
is developed by Chen and Guestrin [37]. The XGBoost is a novel extended version of the 
commonly used gradient tree boosting, which has been widely used in machine learning and data 
mining competitions due to its advantages of high efficiency and sufficient flexibility.  

 SVR 
Support vector machine (SVM) is a new technique for solving pattern classification and 

regression in many areas [38]. Support vector regression (SVR) has been used for dam behavior 
identification [9]. The SVR goal is to find an optimal function 𝑓𝑓(𝑒𝑒), which represents the nonlinear 
mapping relationship between the dependent variable 𝑦𝑦 ⊂ 𝑅𝑅 and the independent variables 𝑒𝑒 ∈
𝑅𝑅𝑚𝑚, such as dam displacement variable and corresponding influence variables, from a given 
training sample data set {(𝑒𝑒1,𝑦𝑦1), . . ., (𝑒𝑒𝑛𝑛 ,𝑦𝑦𝑛𝑛)}, where 𝑚𝑚 and 𝑙𝑙 represent the number of 
independent variables and the number of sample data, respectively. 

 Hydrostatic Machine Learning Model  
A hybrid model has been proposed in this paper to separate the effects of water pressure from 

the other contributory factors on the displacement of the dam body. In this model by inspiration 
of HST model, first, the radial displacement is predicted using five variables related to the 
reservoir head by 𝑚𝑚0 + 𝑚𝑚1ℎ + 𝑚𝑚2ℎ2 + 𝑚𝑚3ℎ3 + 𝑚𝑚4ℎ4. The coefficients 𝑚𝑚0 to 𝑚𝑚4 are defined by 
using a regression technique. Next, a machine learning tool such as GBR or NN, is utilized to learn 
the residual displacement in an ensemble manner. The predictor of the ML tool has 20 variables. 
The reservoir water level is excluded from the input because the hydrostatic polynomial has 
considered its effect in the previous step.  

4 VARIABLE IMPORTANCE 

Variable importance refers to a class of techniques for assigning scores to input variables 
(features) of a predictive model that indicates the relative importance of each variable when 
making a prediction. Variable importance scores can be calculated for problems that involve 
predicting a numerical value, called regression, and those problems that include predicting a class 
label, called classification. Variable importance scores play an essential role in dimensionality 
reduction and feature selection that can improve the efficiency and effectiveness of a predictive 
model. Fig. 3 depicts the relative influence of the predictors for each radial displacement of the 
central block of the considered dam. Tair14 and Tair030 are the most relevant thermal input for 
CB2 and CB3, respectively. As we can see, the hydrostatic loads (reservoir level and average 
velocity of reservoir level) are more influential than Daily rainfall in both CB2 and CB3 
measurements. 

 
 

https://machinelearningmastery.com/dimensionality-reduction-for-machine-learning/
https://machinelearningmastery.com/dimensionality-reduction-for-machine-learning/
https://machinelearningmastery.com/rfe-feature-selection-in-python/
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Figure 3.  Word clouds for the radial displacements analyzed, using for Hyd GBR algorithm. 

5 PARTIAL DEPENDENCE 

In the conventional HST model, each external load's contribution can be associated with the 
value of the coefficient in the calibrated model. Fig. 4 displays the partial dependence plots for 
both radial displacements CB2 and CB3. The effect of the hydrostatic load illustrates that high 
levels imply more significant load and displacement towards downstream and vice-versa. 

 

Figure 4.  Partial dependence plot for the contribution of the environmental variables from an HST model for 
a radial displacement. Left: CB2, Right: CB3  
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Figure 5.  Measured data (circles) versus the Hyd GBR model (lines) for the test period. From top to bottom: 
CB2 and CB3. 

6 MEASURES OF ACCURACY 

Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) are metrics used to evaluate 
a prediction model. These metrics demonstrate our predictions' accuracy and the deviation from 
the actual values. Here, errors are the differences between predicted and actual values. It is 
calculated as follows: 
 

𝑀𝑀𝑀𝑀𝑀𝑀 =
∑𝑎𝑎=1𝑁𝑁  |𝑦𝑦𝑎𝑎 − 𝑅𝑅(𝑒𝑒𝑎𝑎)|

𝑁𝑁  (3) 

 
where 𝑁𝑁 is the size of the training (or test) set, 𝑦𝑦𝑎𝑎  are the observed outputs and 𝑅𝑅(𝑒𝑒𝑎𝑎) the 

predicted values. In this paper, several predictive models have been used to predict the dam 
body's radial displacements. Tables 3 and 4 compare these methods' performance in training and 
test. The Hyd GBR clearly outweighs the others in test data. Fig. 5 compares the predictions of 
the Hyd GBR model with the measured data that does not take part in the training. 
 
Table 3. MAE for each output and model, fitted on the whole training set (10 years). The minimum MAE 
are also underlined. 

Target HST Hyd GBR Hyd NN GBR XGboost SVR 
CB2 1.88 0.90 0.95 0.71 0.38 0.59 
CB3 0.39 0.11 0.10 0.09 0.14 0.25 
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Table 4. MAE for each output and model, fitted on the test set (3 years). The minimum MAE are also 
underlined. 

Target HST Hyd GBR Hyd NN GBR XGboost SVR 
CB2 2.40 1.63 2.35 2.15 2.11 1.88 
CB3 0.49 0.30 0.54 0.47 0.43 0.48 

7 INTERVAL PREDICTION 

A prediction interval is a quantification of the uncertainty on a prediction. It provides 
probabilistic upper and lower bounds on estimating an outcome variable. The main practical 
utility of Prediction intervals is the early detection of anomalies. It is necessary to compare the 
predictions with measured data and verify whether they fall within a predefined range. A 
prediction interval is calculated based on the variance of the predictive model residuals.  For 
example, Kao  and Loh [39] presented the 99% prediction intervals for models based on NN. Jung 
et al. [40]  tested 1, 2, and 3 standard deviations of the residuals as the width of the prediction 
interval. The prediction interval in this work was set to [𝜇𝜇 − 2σ, 𝜇𝜇 + 2σ], being 𝜇𝜇 and σ the mean 
and the standard deviation of residuals, respectively. Fig. 6 shows that the test data for the case 
study of this paper is more or less in the range of the prediction intervals of the predictive model.  
 

 
 

 
 
 
 

 
 
 
 
  
  
  
 

 

 

 

 

 

 

 
Figure 6.  Typical output plot, with the test data (circles), the predictions (black line), and the prediction 
interval (shaded area). 

8 NOVELTY DETECTION 

One-Class SVM [41] is employed to conduct novelty detection in dam loading to prove our 
predictions fulfill the dam's behavior. For this purpose, the upstream reservoir level and the 14-
day average air temperatures from 2000 to 2009 have been considered as input features for 
training. As shown in Fig. 7a, the trained one-class SVM covers most of the training data. Fig. 7b 
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shows a few novelties of the test data from 2010 to 2013. Thus, it shows that the test data is in 
the range of the training data, and the prediction should be in accordance with the measured 
data unless the current state of the dam differs from its state during the period between 2000 
and 2009. 
 

  
Figure 7.  Novelty detection by utilizing One-Class SVM classification for training (a) and test (b) dataset 
proves the functionality of prediction. 

9 SUMMARY AND CONCLUSIONS 

In this study, different regression models were adopted and compared to predict the behavior 
of a double curvature arch dam. The dam is located in the south of France. Its data was presented 
in Theme A of the 16th International Benchmark Workshop on Numerical Analysis of Dams. It 
turned out that the machine learning techniques such as GBR, XGBoot, and SVR  performed better 
than the conventional HST model for predicting the radial displacements of the central block of 
the dam. The authors proposed a hybrid model called the Hydrostatic Machine Learning (HML) 
model to have the advantages of the HST model and the machine learning techniques together. 
In this new model, the effect of the hydrostatic loads on the displacements is determined by a 
polynomial equation, and the impacts of the other contributory factors such as temperature, 
time, rainfall, etc., learned by a machine learning technique. In this study, Hyd. GBR and Hyd. NN 
models were utilized, and their results indicate that the Hyd. GBR can outperform the others in 
predicting the radial displacements of the dam body. Variable importance analysis showed that 
the most effective load with ignoring the hydrostatic load's effect is the dam's temperature. The 
novelty detection analysis revealed that the dam loads in the prediction period were in the range 
of the loads for which the predictive models had been trained. Thus, the measured displacements 
were expected to be in the prediction interval of the predictors.      

REFERENCES 

[1] J. Mata, "Interpretation of concrete dam behaviour with artificial neural network and multiple linear 
regression models," Eng. Struct., vol. 33, no. 3, pp. 903–910, 2011, doi: 
10.1016/j.engstruct.2010.12.011. 

[2] F. Salazar, M. T. Toledo, E. Oñate, and B. Suárez, "Interpretation of dam deformation and leakage with 
boosted regression trees," Eng. Struct., vol. 119, pp. 230–251, 2016, doi: 
10.1016/j.engstruct.2016.04.012. 

[3] F. Salazar, M. A. Toledo, E. Oñate, and R. Morán, "An empirical comparison of machine learning 
techniques for dam behaviour modelling," Struct. Saf., vol. 56, pp. 9–17, 2015, doi: 
10.1016/j.strusafe.2015.05.001. 

[4] A. De Sortis and P. Paoliani, "Statistical analysis and structural identification in concrete dam 
monitoring," Eng. Struct., vol. 29, no. 1, pp. 110–120, 2007, doi: 10.1016/j.engstruct.2006.04.022. 

[5] P. Léger and M. Leclerc, “Hydrostatic, Temperature, Time-Displacement Model for Concrete Dams,” 
J. Eng. Mech., vol. 133, no. 3, pp. 267–277, 2007, doi: 10.1061/(asce)0733-9399(2007)133:3(267). 

a b 



Mojtaba, Moradabbasi, Kolaee 
HYDROSTATIC MACHINE LEARNING MODEL FOR PREDICTION OF CONCRETE DAM BEHAVIOUR 

93 
 

[6] M. Tatin, M. Briffaut, F. Dufour, A. Simon, and J. P. Fabre, "Thermal displacements of concrete dams: 
Accounting for water temperature in statistical models," Eng. Struct., vol. 91, pp. 26–39, 2015, doi: 
10.1016/j.engstruct.2015.01.047. 

[7] F. Salazar and M. Toledo, "Discussion on 'Thermal displacements of concrete dams: Accounting for 
water temperature in statistical models,’” Eng. Struct., vol. 171, pp. 1071–1072, 2018, doi: 
10.1016/j.engstruct.2015.08.001. 

[8] F. Salazar, R. Morán, M. Toledo, and E. Oñate, “Data-Based Models for the Prediction of Dam 
Behaviour: A Review and Some Methodological Considerations,” Arch. Comput. Methods Eng., vol. 24, 
no. 1, pp. 1–21, 2017, doi: 10.1007/s11831-015-9157-9. 

[9] V. Ranković, N. Grujović, D. Divac, and N. Milivojević, “Development of support vector regression 
identification model for prediction of dam structural behaviour,” Struct. Saf., vol. 48, pp. 33–39, 2014, 
doi: 10.1016/j.strusafe.2014.02.004. 

[10] M. T. Cihan, “Comparison of artificial intelligence methods for predicting compressive strength of 
concrete,” Gradjevinar, vol. 73, no. 6, pp. 617–632, 2021, doi: 10.14256/JCE.3066.2020. 

[11] F. Li, Z. Wang, and G. Liu, “Towards an Error Correction Model for dam monitoring data analysis based 
on Cointegration Theory,” Struct. Saf., vol. 43, pp. 12–20, 2013, doi: 10.1016/j.strusafe.2013.02.005. 

[12] D. Santillán, J. F. Miguel, and Á. Toledo, “Predicción de lecturas de aforos de filtraciones de presas 
bóveda mediante redes neuronales artificiales,” Tecnol. y ciencias del agua, vol. 5, no. 3, pp. 81–96, 
2014. 

[13] L. Cheng and D. Zheng, “Two online dam safety monitoring models based on the process of extracting 
environmental effect,” Adv. Eng. Softw., vol. 57, pp. 48–56, 2013, doi: 
10.1016/j.advengsoft.2012.11.015. 

[14] S. Bonelli and K. Radzicki, “Impulse response function analysis of pore pressures in earthdams,” Eur. 
J. Environ. Civ. Eng., vol. 12, no. 3, pp. 243–262, 2008. 

[15] A. Simon, M. Royer, F. Mauris, and J. Fabre, “Analysis and interpretation of dam measurements using 
artificial neural networks,” 2013. 

[16] F. Riquelme, J. Fraile, D. Santillán, R. Morán, and M. Toledo, “Application of artificial neural network 
models to determine movements in an arch dam,” in Proceedings of the 2nd international congress 
on dam maintenance and rehabilitation. Zaragoza, Spain, 2011, pp. 117–123. 

[17] D. Santillán, J. Fraile-Ardanuy, and M. Á. Toledo, “Prediction of gauge readings of filtration in arch 
dams using artificial neural networks,” Tecnol. y ciencias del agua, vol. 5, no. 3, pp. 81–96, 2014. 

[18] F. Perner, W. Koehler, and P. Obernhuber, “Interpretation of Schlegeis dam crest displacements,” in 
Proceedings of the 6th International Benchmark Workshop on Numerical Analysis of Dams. Salzburg, 
Austria, 2001, pp. 17–19. 

[19] H. M. Gomes and A. M. Awruch, “Comparison of response surface and neural network with other 
methods for structural reliability analysis,” Struct. Saf., vol. 26, no. 1, pp. 49–67, 2004. 

[20] R. Fedele, G. Maier, and B. Miller, “Health assessment of concrete dams by overall inverse analyses 
and neural networks,” Int. J. Fract., vol. 137, no. 1–4, pp. 151–172, 2006. 

[21] Z. Wu and M. Abe, Structural Health Monitoring and Intelligent Infrastructure: Proceedings of the First 
International Conference on Structural Health Monitoring and Intelligent Infrastructure, 13-15 
November 2003, Tokyo, Japan, vol. 1. Taylor & Francis, 2003. 

[22] N. Bakhary, H. Hao, and A. J. Deeks, “Damage detection using artificial neural network with 
consideration of uncertainties,” Eng. Struct., vol. 29, no. 11, pp. 2806–2815, 2007. 

[23] B. S. Wang and Z. C. He, “Crack detection of arch dam using statistical neural network based on the 
reductions of natural frequencies,” J. Sound Vib., vol. 302, no. 4–5, pp. 1037–1047, 2007. 

[24] C. M. Wen, S.-L. Hung, C.-S. Huang, and J. C. Jan, “Unsupervised fuzzy neural networks for damage 
detection of structures,” Struct. Control Heal. Monit. Off. J. Int. Assoc. Struct. Control Monit. Eur. Assoc. 
Control Struct., vol. 14, no. 1, pp. 144–161, 2007. 

[25] J. Liu, G. Wang, and Y. Chen, “Research and application of GA neural network model on dam 
displacement forecasting,” in Earth & Space 2008: Engineering, Science, Construction, and Operations 
in Challenging Environments, 2008, pp. 1–9. 

[26] A. Joghataie and M. S. Dizaji, “Nonlinear analysis of concrete gravity dams by neural networks,” in 
Proceedings of the World Congress on Engineering, 2009, vol. 2. 

[27] X. D. Yi, F. Xu, and C. K. Jiang, “Research on dam deformation forecast model based on genetic 
algorithm neural network,” in ISTM/2009: 8th international symposium on test and measurement, 
2009, pp. 1536–1539. 

[28] C. M. Bishop, “Neural networks: a pattern recognition perspective,” 1996. 
[29] V. Ranković, N. Grujović, D. Divac, N. Milivojević, and A. Novaković, “Modelling of dam behaviour 

based on neuro-fuzzy identification,” Eng. Struct., vol. 35, pp. 107–113, 2012. 
[30] F. Restelli, “Systemic evaluation of the response of large dams instrumentation,” ICOLD Proceeding, 

2013. 



Mojtaba, Moradabbasi, Kolaee 
HYDROSTATIC MACHINE LEARNING MODEL FOR PREDICTION OF CONCRETE DAM BEHAVIOUR 

94 
 

[31] L. Piroddi and W. Spinelli, “Long-range nonlinear prediction: a case study,” in 42nd IEEE International 
Conference on Decision and Control (IEEE Cat. No. 03CH37475), 2003, vol. 4, pp. 3984–3989. 

[32] V. Saouma, E. Hansen, and B. Rajagopalan, “Statistical and 3d nonlinear finite element analysis of 
Schlegeis dam,” in Proceedings of the sixth ICOLD benchmark workshop on numerical analysis of dams, 
2001, pp. 17–19. 

[33] G. Lombardi, “Advanced data interpretation for diagnosis of concrete dams,” CISM Udine, Italy, 2004. 
[34] L. Chouinard and V. Roy, “Performance of statistical models for dam monitoring data,” in Joint 

international conference on computing and decision making in civil and building engineering, 
Montreal, 2006, pp. 14–16. 

[35] R. Malm, R. Hellgren, M. Klun, A. Simonm, and F. Salazar, “Theme A: Behaviour prediction of a 
concrete arch dam,” 16th International Benchmark Workshop on Numerical Analysis of Dams, 2021. 

[36] H. Rao et al., “Feature selection based on artificial bee colony and gradient boosting decision tree,” 
Appl. Soft Comput. J., vol. 74, pp. 634–642, Jan. 2019, doi: 10.1016/j.asoc.2018.10.036. 

[37] T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System,” Proc. 22nd ACM SIGKDD Int. 
Conf. Knowl. Discov. Data Min., doi: 10.1145/2939672. 

[38] A. Widodo et al., “Fault diagnosis of low speed bearing based on relevance vector machine and 
support vector machine,” Expert Syst. Appl., vol. 36, no. 3, pp. 7252–7261, Apr. 2009, doi: 
10.1016/J.ESWA.2008.09.033. 

[39] C. Y. Kao and C. H. Loh, “Monitoring of long-term static deformation data of Fei-Tsui arch dam using 
artificial neural network-based approaches,” Struct. Control Heal. Monit., vol. 20, no. 3, pp. 282–303, 
Mar. 2013, doi: 10.1002/STC.492. 

[40] I. S. Jung, M. Berges, J. H. Garrett, and B. Poczos, “Exploration and evaluation of AR, MPCA and KL 
anomaly detection techniques to embankment dam piezometer data,” Adv. Eng. Informatics, vol. 29, 
no. 4, pp. 902–917, Oct. 2015, doi: 10.1016/J.AEI.2015.10.002. 

[41] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson, “Estimating the support of 
a high-dimensional distribution,” Neural Comput., vol. 13, no. 7, pp. 1443–1471, 2001. 

 
  



Lin, Chen, Hariri Ardebili 
INTERPRETABLE KELM DATA DRIVEN MODEL FOR THE PREDICTION AND MONITORING OF ARCH DAM BEHAVIOUR 

 

95 
 

INTERPRETABLE KELM DATA-DRIVEN MODEL  
FOR THE PREDICTION AND MONITORING  
OF ARCH DAM BEHAVIOUR 

Chaoning Lin 
College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing, Jiangsu, China 
College of Civil and Transportation Engineering, Hohai University, Nanjing, Jiangsu, China 

Siyu Chen 
Nanjing Hydraulic Research Institute, Nanjing, Jiangsu, China 
College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing, Jiangsu, China 

chen.siyu@hhu.edu.cn 

Mohammad Amin Hariri-Ardebili 
University of Colorado, Boulder, CO, USA 
University of Maryland College Park, MD, USA 

ABSTRACT: This paper presents a kernel extreme learning machine (KELM)-based nonlinear data-
driven model for the dam behavior (i.e., radial displacement and seepage) prediction, where the 
model hyperparameters are determined using particle swarm algorithm (PSO) and internal cross-
validation to overcome overfitting. The model inputs are composed of the reservoir water height, 
measured temperature, and rainfall variables. The global sensitivity analysis coupled with the 
KELM model is proposed for the model interpretation. The warning thresholds of the arch dam 
radial displacement and seepage are determined via the confidence interval method based on 
the fitting results.  
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1 INTRODUCTION 

Concrete dams play important roles in the social and economic fields by flood control, power 
generation, water supply, and irrigation. During the service period, dams are subjected to a 
variety of operational and environmental loads and occasionally encounter some unconventional 
events or extreme loads (such as excessive flooding, droughts, earthquakes, etc.). Moreover, the 
overall performance of the concrete structures may decrease over time due to age-related 
deterioration, hydraulic erosion, and other factors. If a dam is not well managed and maintained, 
failures may occur, leading to economic and life losses in reservoir regions. 

The displacement and seepage are two critical indicators that can intuitively reflect the 
operational status of a dam. With the rapid development of artificial intelligence (AI) since the 
end of the past century, there has been growing interest in adopting machine learning (ML) 
methods in dam engineering. Many ML methods have been adopted for dam behavior prediction 
and monitoring, such as auto-associative neural networks (Kao et al., 2013), support vector 
regression (Rankovic et al., 2014), boosted regression trees (Salazar et al., 2015), random forest 
(Belmokre et al., 2019; X. Li et al., 2019), Gaussian process regression (Lin et al., 2019), and long 
short-term memory network (Liu et al., 2020). 

This study establishes a kernel extreme learning machine (KELM)-based nonlinear data-driven 
model to predict the dam displacement and seepage. The model hyperparameters are optimized 
using a particle swarm algorithm (PSO) and cross-validation. To mine the influencing factors of 
model inputs and provide support for decision-making, the global sensitivity analysis coupled with 
the KELM model is implemented for the model interpretation. The warning thresholds of the dam 
radial displacement and seepage are determined using the confidence interval method. 

The rest of the paper is summarized as follows: Section 17 describes the statistical model of 
dam behavior and inputs. The theory of the KELM prediction model, warning thresholds of dam 
behavior, and model interpretation method are then introduced in Section 3. Results and 
discussion are presented in Section 4. Finally, Section 5 summarizes the findings. 

2 STATISTICAL MODEL OF DAM BEHAVIOR  

 Statistical model of dam displacement 
Displacement (denoted by δ ) is a key indicator for evaluation of the dam behavior. In general, 

the displacements of the arch dam are assumed to be dependent on hydrostatic load, 
temperature, and time, which can be quantitatively interpreted and approximated as: 

H T θδ δ δ δ= + +   (1) 

where Hδ , Tδ , and θδ  represents the hydrostatic component, temperature component and 
time component, respectively. 

Under the action of water pressure, hydrostatic component Hδ  can be described by a 
polynomial function consisting of reservoir water height H  and coefficients  ( 0 ~ 4)ia i = (Mata, 
2011): 

2 3 4
0 1 2 3 4H H H Ha a a a Haδ = + + + +   (2) 

Temperature component Tδ  describes the displacement caused by the temperature changes 
in bedrock and dam concrete. The temperature variation of the dam is mainly influenced by 
changes of air temperature. Meanwhile, there is a hysteresis effect between the air temperature 
and the dam internal temperature. Therefore, if the air temperatures are available and 
continuous, the temperature component Tδ  can be quantitatively represented by a polynomial 
function consisting of segmented air temperature A BT − (Kang et al., 2019), as: 

1

n

T i A B
i

bTδ −
=

= ∑   (3) 

where A BT −  denotes the average ambient temperatures A  to B  days before the day of 
observation,  ( 1 ~ 6)ib i =  are coefficients. In this paper, 0T , 1 2T − , 3 7T − , 8 15T − , 16 30T − , and 31 60T −  are 
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selected as the temperature factors. It is noted that 0T  represents the temperature of the 
observation day. 

Time component θδ  reflects the irreversible deformation of the dam body or dam foundation 
toward a certain direction over time. According to the previous research (Lin et al., 2019; Y. Q. 
Shi et al., 2018), different and strictly monotone functions can be used for modelling the time 
component θδ , as: 

1 2 3 4ln (1 ) ( )1c c c e cθ
θδ θ θ θθ −= − + ++ +   (4) 

where 100tθ = , and t  denotes number of days since the beginning of the analysis, 1c , 2c , and 
3c  are coefficients. 

Thus, the expression of statistical model for arch dam displacement analysis is as follows: 

1 0 2 1 2 3 3 7 4 8 15 5 16 30 6 31 60

1 2

2 3 4
0

4

1 2 3 4

3

  +

      ln (1 ) ( )1

a a a a a T T T T T TH H H H b b b b b b

c c c e cθ

δ

θ θ θθ
− − − − −

−

++

+

+ += + + + +

+

+

+ +

+

−
 (5) 

 Statistical model of dam seepage 
Excluding the hydrostatic load, temperature and time effects, the seepage (denoted by S ) of 

the arch dam is also dependent on the rainfall effect, and the seepage response can be 
quantitatively interpreted and approximated by the following equation: 

H T RS S S S Sθ= + + +   (6) 

where HS , TS , and Sθ  represent the hydrostatic component, temperature component, and 
time component, respectively, sharing the same form as shown in Equation (2)~(4). RS  denotes 
the rainfall component. Considering the lag effect between the rainfall and the external seepage 
changes, a polynomial function consisting of segmented rainfall factors A BR −  are utilized to 
simulate the rainfall component: 

1
i A B

m

i
RS d R −

=

= ∑   (7) 

where A BR −  denotes the average rainfall A  to B  days before the response day of the 
observation. In this paper, 0R , 1 2R − , 3 7R − , 8 15R − , 16 30R − , and 31 60R −  are selected as the segmented 
rainfall factors, where 0R  denotes the rainfall of the observation day. 

Thus, the expression of statistical model for arch dam seepage analysis is as follows: 

1 0 2 1 2 3 3 7 4 8 15 5 16 30 6 31 60

1

2 3 4
1

0 2 3 7 8 15 16 30 31 60 1 2 3

0 2 3 4

4

  +

        + ln (1 ) ( 1)

S a a a a a T T T

c

H H H H b b b b b b

cR cR e

T T T

R R R cR θθ θ θ θ
− − − − −

−
− − − − −

= + + + + + +

+ + + + + −

+ + +

+ +

+

++
 (8) 

3 METHODOLOGY OF DAM BEHAVIOR PREDICTION AND WARNING   

 Optimized kernel extreme learning machine 
Extreme learning machine (ELM) is an extension algorithm of the single layer feedforward 

network (SLFN) that can be used for regression, classification, and clustering (Huang et al., 2006). 
As opposed to the traditional artificial neural network based on gradient descent learning 
algorithm, ELM has a stochastic nature. It randomly assigns the input weights and the hidden 
layer biases, and then keep them fixed without iteratively tuning. In recent years, a novel variant 
of ELM called kernel extreme learning machine (KELM) has been proposed by (Huang et al., 2012), 
which integrates the advantages of ELM and kernel trick. The KELM was shown to achieve a better 
prediction performance and stability than prototype ELM with less computational cost (Ding et 
al., 2013). 
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The output of the ELM for generalized SLFNs can be written as 

( )
1

, 1, ,
N

t i i j i j
i

F a x b j N
=

= ⋅ + = …∑β h   (9) 

where ia  denotes the weight vector linking i th hidden node and the input nodes; iβ  presents 
the weight vector connecting j th hidden node and the output nodes; ib  is the threshold of i th 
hidden node. h  refers to the activation functions. 

The training goal is to find the best output weight β , which can be computed by the least 
square method: 

†=β H T   (10) 

where †H  denotes the Moore-Penrose (MP) generalized inverse of the hidden layer output, 
and 1 2[ , ,..., ]T

Nt t t=T  presents the target vector. 
For complex prediction task, hidden layer feature mapping is typically unknown. Thus, the 

kernel function is introduced to replace the feature mapping function. On the basis of the 
orthogonal projection method, the MP generalized inverse matrix †H  can be calculated by 

( ) 1† T T −
=H H HH , and the output weight β  can be computed by adding a positive constant, 1 / C . 

Therefore, the output function of KELM can be briefly described given by 

1 11
† †

( , )
( ) ( )

( , )

T

ELM

N

K x x
IF x x T
C C

K x x

− − 
    = = + = + Ω         

Ihβ h H HH T M  (11) 

where ( ),iK x x  is the kernel function and should satisfy the Mercer condition. In this study, 
Gaussian kernel ( ) 2 2, exp( / 2 )i iK x x x x γ= − − and linear kernel ( ), +T

i iK x x x x γ⋅= are used in KELM 
modelling. Therefore, the main parameters of KELM herein are regularization parameter C , and 
kernel parameters γ . 

The performance of the KELM model is controlled by hyperparameters C  and γ . To make sure 
the model brings good generalization and robust performance, particle swarm optimizer (PSO) 
(Y. H. Shi et al., 1998) was combined with 3-fold cross-validation to determine the optimal 
parameters. In 3-fold cross-validation, the training data is divided into an internal validation set 
and an internal training set. For the PSO algorithm, the population size is set to 20, and the 
maximal iteration is set to 20 as the stopping criteria. In each iteration, P  is the dimensions of 
the hyperparameters to be optimized, the position vector 1 2, , , P

i i i ix x x = … X  and the velocity 
vector 1 2, , , P

i i i iv v v = … V  are updated once by the following equations: 

( ) ( )1 1 2 2
P P P P P P P P
i i i i i

P P P
i i i

v v c rand pbest x c rand nbest x

x x v

= + ⋅ ⋅ − + ⋅ ⋅ −

= +
 (12) 

where 1c  and 2c  are two acceleration coefficients with the values are set as 2.0. 1
Prand  and 

2
Prand  denote the two random numbers generated independently within [0, 1]. P

ipbest denotes 
the position with the best-known fitness of the i th particle, and Pnbest  represents the best global 
position in P

ipbest .  
In each iteration, the error function of PSO is evaluated by mean squared error of prediction (

cv,kMSEP ), as shown in Equation (13): 

( )2
cv,k

1 1

1 ˆ
K n

i i
k i

MSEP y y
n = =

= −∑∑   (13) 

where n  represents the number of samples, K  represents the number of folds. ˆiy  is the 
predicted value of the internal validation samples, iy  is the measured value of the internal 
validation samples.  

 Warning thresholds of dam behavior 
The confidence interval method (B. Li et al., 2019) is used for dam behavior monitoring and 

determine the warning thresholds. If the measured value falls within the interval range, it is 
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regarded as a safe value. Otherwise, it is regarded as anomalous and may raise alarm. The 
expression of the confidence interval ( CI ) is given in Equation (14): 

[ ] ( )2

1

ˆ ˆ( ),( ) ; 1
t

i t
i

N

CI y Ny e eασ ασ σ
=

= − + = − −∑  (14) 

where ŷ  represents the fitted or predicted value of dam behavior, σ  is the standard deviation, 
tN  represents the number of the training samples. ˆ( )i i ie y y−= , where e  is the mean value of ie , 

iy  is the measured value of dam behavior, and ˆiy  is the fitted value of dam behavior.  
It is noted that abnormal values may not be identified if the confidence interval is relatively 

wide. In contrast, if the range is too narrow, many values may be deemed as abnormal mistakenly 
(Wu, 2003), thereby resulting in many false positives. In general, the effectiveness of confidence 
interval is influenced by the input selection, performance of the KELM model, and 
hyperparameters tuning, which need to be determined with caution. Considering the dam status 
and risk level, the extreme case scenario is considered, the significance level is set as 1%, and 
therefore, 2.58α ≈ . 

 Global sensitivity analysis for model interpretation 
KELM predictive model contains the disadvantages of black box characteristics, and the trained 

date-driven model is typically difficult to be understood. Inspired by (Chen et al., 2020; Cortez et 
al., 2013) pioneer work, we combined global sensitivity analysis (GSA) with the PSO-KELM to 
interpretate the dam behavior prediction model. This method allows us to compute the relative 
importance of input variables or any group combination of them. The main idea of the GSA is to 
hold all input variables at given value except the specific variable to be computed, and then 
calculate the output weight of the corresponding input by the available formula. The detailed 
procedure of the GSA is described in Table 5, where m  and n  are the number of input attributes 
and samples, respectively. M  is the number of subgroups (each subgroup contains at least one 
input attribute). ( )kX  is the generated meta-inputs by holding all input variables at their mean 
values except k th attributes, and k ≤ M . ( )ˆ ky  represents the obtained output via inputting the ( )kX  
to the trained model, and y% denotes the median value of the measured leakage ( 1)n×Y . In principle, 
the proposed GSA can be applied to any supervised machine learning algorithm for regression 
tasks. 
 
Table 5. Global sensitivity analysis for model interpretation. 
___________________________________________________________________________________________   

Inputs: Training samples ( ) ( 1),n m n× ×X Y  
Outputs: Relative importance RI   ___________________________________________________________________________________________ 

Divide X  into k  groups of attributes, [1, ]k ∈ M  
for 1, ,k = … M   

Build ( )kX  by holding each input variables at their mean values except k th attributes 
( ) ( )ˆ ( )k kf=y X  

( )
1

ˆ / ( 1)n k
k ii

z y y n
=

= − −∑ %  
end for 
for 1, ,k = … M  

1
/ 100%k k kk

RI z z
=

= ×∑M  
end for ___________________________________________________________________________________________ 

4 RESULTS AND DISCUSSION 

 Case study 

 Brief introduction of dam project 
The case study of the benchmark is a double curvature arch dam called Dam_EDF, which is 

located in the south of France. The dam was constructed between 1957 and 1960. The maximum 
dam height above the foundation is about 45m, with the crest length being 166 m. To monitor 
the dam service status, the dam is equipped with a comprehensive monitoring system and 
instruments. Figure 1 presents the illustrations of the dam project.  
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Figure 1.  Downstream view of Dam_EDF. 

 Data collection 
In this benchmark, the radial dam displacement and seepage are used for analysis. For the 

radial dam displacement (unit is mm), the measurements of pendulums on the Central Block (CB) 
are provided for analysis, where CB2 is the radial displacement between the altitudes 236 m (dam 
crest) and 196 m (dam toe), while CB3 is the radial displacement in the foundation between the altitudes 
195 m and 161 m. For the seepage (unit is L.min-1), the flowrate is measured using a weir located in the 
gallery at the downstream dam toe. The time series of dam behavior data are provided from 2000 
to 2012. 

The corresponding ambient data includes the water level, temperature, and rainfall (see Figure 
2 ~Figure 4). The water level of the reservoir is collected per day. Since Dam_EDF is located on 
the top of a glacial threshold, the reservoir water height is 0 once the water level is lower than 
+196 m. The air temperature is not measured at the dam location, therefore, the provided 
calculated temperature called ‘T_b’ is used herein for temperature factors generation. ‘T_b’ is 
calculated by interpolation from several air temperature measuring stations. The interpolation 
takes into account the altitude of the dam and is calculated on a mesh of 1 square kilometer. 
Daily rainfall precipitation is collected from a rain gauge located about 5 km from Dam_EDF. The 
time series of the ambient data is provided from 1995 to 2017. It is noted that the provided data 
of the benchmark is automatically checked, and there is no need for any further cleaning.  

 

 
Figure 2.  Time series of the reservoir water height. 
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Figure 3. Time series of the T_b air temperature. 
 

 
Figure 4.  Time series of the daily rainfall. 

 Model calibration and prediction 
Considering the fact that the dam construction was finished in 1960, and the initial modelling 

year is 2000, time component variables are not chosen for model inputs in this study. According 
to the relevant contents summarized in Section 96, the model input variables of dam 
displacement δx  and seepage Sx  are shown as follows: 

{ }0 1 2 3 7 8 15 16 30 3
3 4

1 60
2 , ,  , , , , ,, , ,H H T T T T T TH Hδ − − − − −=x  (15) 

{ }0 1 2 3 7 8 15 16 30 31 60 0 1 2 3 7 8 15 16 30 0
2 3

3
4

1 6, ,  , , , , , ,  , ,  ,, , ,,S T T T T T TH R RH H H R R R R− − − − − − − − − −=x  (16) 

where the time component factors are generated.  
Prior to model implementation, all the inputs should be normalized within the range of [0,1] 

by Equation (17), where ix  is i th individual variable in input matrix x . 

( ) min( )
max( ) min( )

i
i

xm x −
=

−
x

x x
  (17) 

The measured radial displacement and seepage from 2000-01-19 to 2012-12-31 are utilized 
for model training and calibration, and the rest measured radial displacement from 2013-01-01 
to 2017-12-31 are utilized for validation of prediction performance. By implementing the model    
introduced in Section 1.25, the hyperparameters C  and γ  are tuned within the range of (0,1000] 
and (0,10], respectively. The obtained hyperparameters for KELM prediction model are listed in 
Table 6. The calibration and prediction results of CB2 displacement, CB3 displacement, and 
seepage are shown in Figure 5 ~ Figure 7, respectively.  
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Table 6. The hyperparameters of PSO-KELM data-driven models. 
 
_____________________________________________________________________________ 

Hyperparameters  CB2 displacement   CB3 displacement Seepage _____________________________________________________________________________ 

C         970.04      692.26     246.36 
γ         7.61       0.64      9.09 
_____________________________________________________________________________ 

 

 
Figure 5.  Performance of the PSO-KELM model for CB2 displacement simulation. (Linear kernel is used in 
KELM) 
 
 

 
Figure 6.  Performance of the PSO-KELM model for CB3 displacement simulation. (Linear kernel is used in 
KELM) 

 
Figure 7.  Performance of the PSO-KELM model for seepage simulation. (Gaussian kernel is used in KELM) 
 

The calibration results of displacement and seepage are validated in terms of the mean 
absolute error and normalized root mean squared error (NRMSE), see Table 7. 
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1

1MAE
N

i i
i

Y P
N =

= −∑   (18) 

( )2

1

max min

NRMSE

N

i i
i

Y P N

Y Y
=

−
=

−

∑   (19) 

where N  is the number of time stamps in the corresponding period, maxY  and minY are maximum 
and minimum measured value of dam behavior in the corresponding period, iY  denotes the 
measured value of dam behavior, and iP  denotes the simulated value of dam behavior. 

From the obtained results shown above, the PSO-KELM model provides satisfactory fitting 
performance of dam behavior. Most of the measured values are within the interval range except 
the very few measurements at the peak value. 

 
Table 7. The metrics of calibration results. 
_____________________________________________________________________________ 

Metrics   CB2 displacement   CB3 displacement  Seepage _____________________________________________________________________________ 

MAE    1.470       0.432       1.710 
NRMSE   0.044       0.045       0.095    _____________________________________________________________________________ 

 Model interpretation 
The relative importance of input factors via PSO-KELM coupled with GSA method is depicted 

in Figure 8, where the relative importance of two top dominated input variables in each kind of 
component is shown by the bar plot. It is found that the hydrostatic component plays a crucial 
role in the state of dam displacement and seepage, followed by the temperature component. 
However, the seepage of the dam is not sensitive to the rainfall variables, indicating that the 
rainfall component of the dam seepage is negligible. It must be explained with great caution that 
the obtained results herein are not able to quantitatively assess each input contributes for dam 
behaviors, but only the relative sensitivity degree of the dam behavior to each input variable. 

 

  
(a)              (b)                                 (c) 

Figure 8. Relative importance of input factors via PSO-KELM model coupled with GSA method: (a) CB2 
displacement, (b) CB3 displacement, (c) Seepage 

5 CONCLUSIONS 

In this paper, we proposed an interpretable PSO-KELM data-driven model for the prediction and 
monitoring of arch dam behavior (i.e., displacement and seepage). The effects of the reservoir 
water height, daily temperature, daily rainfall, and time were considered for inputs factors 
generation. By combining the PSO and 3-folds cross-validation with KELM, the hyperparameters 
were adaptively determined to guarantee the model generalization. Benefitting from the powerful 
nonlinear mapping and interpretable capability, the model provided satisfactory simulation 
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performance and reasonable interpretations. It could be learned from the results that the 
hydrostatic component accounts most for the dam displacement and seepage, while the 
temperature component came second. The rainfall component of seepage was negligible. 
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ABSTRACT: In this paper, we present our submission to the ICOLD benchmark for the two 
pendulum datasets (CB2 & CB3). Our approach relies on the ensembling of a Bayesian dynamic 
linear model (BDLM) along with Bayesian long short-term memory (LSTM) neural networks that 
use the tractable approximate Gaussian inference method (TAGI) for learning its parameters. We 
provide through our probabilistic ensembling method, the explainability of BDLMs as well as the 
accuracy and ease of use of Bayesian LSTM. Although the benchmark focusses on prediction 
accuracy and threshold value definition for the purpose of anomaly detection, one should keep 
in mind that this way of envisioning anomaly detection is only one approach among many others. 
We show in this paper that with our probabilistic regime switching method we expect to be able 
to detect anomalies of 0.5mm for CB2 and 0.15mm for CB3, where both cases, anomalies can 
develop over the span of years.  

 
1 equal contribution 

2 equal contribution 
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1 INTRODUCTION 

Sensor-based structural health monitoring (SHM) is an established tool for informing dam 
owners and managers about the occurrence of abnormal events as well as the general condition 
of the structure. Although it is a routine task to measure structural responses such as 
displacements, inclinations, pressure, or flow rates using commercial technologies, it is much 
harder to extract information and knowledge from data. In the context of dam monitoring, the 
hydrostatic-seasonal-time (HST) method (Salazar et al., 2017) is the most common approach to 
model the dependency between structural responses and water level, seasonal components and 
time. The HST method has passed the test of time, nevertheless, it has several limitations; (1) it 
has a limited forecasting capacity when the relationship between the explanatory variables or 
their components are non-linear, or affected by a phase shift; (2) it is an offline method, i.e., the 
model is built using a training set so that it requires periodic retraining in order to adapt to new 
conditions not covered during training. This affects the capacity to detect anomalies that are 
building up over years as model re-training will capture a part of the anomaly in the model itself. 
The research community is still figuring out what are the options to overcome these limitations. 
In this context, the ICOLD workshop on dam behaviour prediction aims at comparing various 
methods with respect to their predictive capacity, anomaly detection capacity and 
interpretability.   

In this paper, we present our submission to the ICOLD benchmark for the two pendulum 
datasets (CB2 \& CB3). Our approach relies on the ensembling of a Bayesian dynamic linear model 
(BDLM) (Gaudot et al., 2019) along with Bayesian long short-term memory (LSTM) neural 
networks (Goodfellow et al., 2016) that rely on the tractable approximate Gaussian inference 
method (TAGI) (Goulet et al., 2021) for learning its parameters. BDLMs enables non-linear 
dependencies between model sub-components, is an online method capable of updating itself as 
new data comes in, is inherently probabilistic so that it can handle epistemic and aleatory 
uncertainties, and it allows explaining the dependencies within the model. LSTMs excel at 
forecasting without requiring feature engineering regarding the interactions between structural 
responses, explanatory variables and other latent variables and its coupling with the TAGI method 
makes it inherently probabilistic as well. Ensembling (Sagi & Rokach, 2018) is a common approach 
in order to aggregate the predictions from several models with the objective of improving the 
accuracy through the cancellation of the model errors in the case they are statistically 
independent.   

The paper is organized as follow: Section 2 presents the dataset employed as well as the pre-
processing steps we applied on the data. Section 3 presents the methodologies behind the BDLM, 
LSTM, and ensembling methods. Section 4 presents the results regarding validation, forecasting, 
and model interpretation where we also investigate anomaly detectability.  

2 DATASETS AND PREPROCESSING 

In this paper, we are building models for the pendulum time-series CB2 and CB3, measuring 
the dam's radial displacement [mm] from the bottom to crest, and foundation to bottom, 
respectively. To model these time series, we rely on the reservoir water level [m] as well as the 
temperature data TB [oC]. The data acquisition for the displacements CB2/3 has been made with 
an average frequency of 1.5 week, whereas the average frequency of the reservoir water level as 
well as the temperature TB is daily. We use daily data in our models both in training and 
forecasting which means that there are many missing data points in the CB2/CB3 displacement 
datasets. 

    For BDLM models, the water level data below 196m have been truncated to that value to 
account for the physical constrain associated with the bottom of the dam. In addition, instead of 
using the raw data itself, we account for the thermal inertia of the dam by using a {1,7,14} (CB2) 
& {14,28,54} (CB3) days moving averages for the residual of temperature TB where the yearly 
periodic pattern has been removed. Here, for each sensor, we selected the moving average 
periods which led to significant contribution for the displacement predictions among the set 
{1,7,14,28,54}. Note that the one day moving average is equivalent to the raw data. 
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For LSTM models, we use the raw data of the reservoir water level and the temperature TB. 
This is because the corrected pattern introduced by the truncation of the water level is 
detrimental to the accuracy of the LSTMs prediction. Furthermore, LSTM models can take into 
account the lagging effect of the temperature on the dam's displacement automatically by using 
a lookback period larger than one. Figure 1 presents the data that is employed as input to build 
the BDLM and TAGI-LSTM models.  

  

Figure 1.  CB2/3 displacements, water level, and examples of moving averages fot the temperature TB. 

3 METHODOLOGY 

This section presents the theoretical foundations behind Bayesian dynamic linear models, the 
coupling between tractable approximate Gaussian inference and LSTMs, as well as the Gaussian 
mixture method for aggregating the predictions from multiple models. 

 Bayesian Dynamic Linear Models (BDLM) 
Linear regression and neural networks are categorized as parametric methods because the 

relationships within the model are controlled by the estimation of parameters. On the other hand, 
BDLMs fall in the non-parametric category as the relationships within the model are learnt 
probabilistically through constraints describing the transition of hidden state variables through 
time, as well as their observability. For example in order to model the position xt in time t of an 
object in free-fall, rather than trying to adjust the parameters of a function in order to fit through 
observations of the tuples (time, position), i.e. a parametric approach, BDLM would model the 
dependency through time ℎ(𝒙𝒙𝑡𝑡|𝒙𝒙𝑡𝑡−1) using the classic kinematic equations for the hidden states 
𝒙𝒙 = [𝑒𝑒, �̇�𝑒, �̈�𝑒]𝑇𝑇; the position x, speed �̇�𝑒 and acceleration �̈�𝑒, and their observability by defining that 
only the position is observable, i.e. 𝑦𝑦𝑡𝑡 = 𝑒𝑒𝑡𝑡 . From these constraints on the transition and 
observability, we can then employ the Kalman filter (Kalman, 1960) (i.e., the Gaussian conditional 
equations) to infer the posterior probability density function𝑓𝑓(𝑒𝑒1|𝑦𝑦1,𝑦𝑦2, . . . , 𝑦𝑦𝑡𝑡) of the hidden 
states given the data.  

 As stated in introduction, the main advantage of such an approach is that it allows updating 
the model online as the data become available, without needing to re-learn the model 
parameters. In practice, one can rely on a collection of predefined sub-components, each 
modelling a specific behaviour present in a time series, and which can be assembled in order to 
create powerful, yet simple, models. Another key aspect of BDLMs is their capacity to handle 
regime switches over time, where models describing different regimes (e.g., a constant regime 
versus a linearly changing one) can compete against each other and are ranked according to their 
prior probability, the probability to switch from one regime to another, and the likelihood of each 
at explaining the data. This regime switching algorithm is the backbone of anomaly detection in 
the context of BDLMs (Nguyen & Goulet, 2018a; Khazaeli et al., 2021) whereas a switch between 
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regimes can be used as a proxy indicating the presence anomalies. The complete details regarding 
the BDLM theory can be found in (Goulet, 2020) examples of its application to SHM datasets can 
be found in (Nguyen et al., 2019; Goulet & Koo, 2018; Nguyen & Goulet, 2018b; Goulet, 2017; 
Nguyen & Goulet, 2017), and the OpenBDLM library (Gaudot et al., 2019) can be found on GitHub 
(https://github.com/CivML-PolyMtl/OpenBDLM).  

     For this submission, the architecture of our model can be subdivided according to each time 
series, i.e., displacement, water level and temperature moving average. The selection of the 
model’s components and their dependencies were defined iteratively to remove any 
distinguishable pattern from the model residual term. The water level uses a local level to model 
the average value, a local trend to extract the long-term non-periodic tendency (≈ 5 years), and 
an autoregressive process to capture the short-term (≈ 1 year) non-periodic changes in water 
level. The temperature is modelled using a local level to model the average value, a Fourrier-form 
periodic component to extract the long-term stationary pattern and an a white-noise process to 
capture the non-periodic changes in temperature. The displacement time series CB2/3 are 
modelled using a local level to represent the average value, two state-based non-linear 
dependencies on the water level (1) mean-centered values and (2) its long-term pattern, a linear 
dependency over the non-periodic changes in temperature, and an autoregressive process to 
capture the time-dependent model errors. The mathematical formulation for the matrices 
defining the transition and observation models are presented in Appendix A and the BDLM code 
for reproducing the results presented in this paper has been made available on GitHub 
(https://github.com/CivML-PolyMtl/OpenBDLM/tree/ICOLD_benchmark). 

 TAGI-Long Short-Term Memory neural networks (TAGI-LSTM) 
LSTM is the classic neural network architecture for modelling time-series data. It models the 

dependency between explanatory variables and target outputs using a cell state enabling to 
consider long-term dependencies, layers of hidden variables defining the neural networks and 
gates (i.e., forget, input and output) enabling the combination of the information coming from 
the hidden and cell states. A key advantage of LSTM over BDLM or HST methods is that it does 
not require a specific architecture setup for defining the possible dependencies with respect to 
explanatory variables, thus enabling it to be quickly applied to many time series. 

The parameters of LSTMs are typically learnt deterministically using gradient-based 
optimization. The drawback of such an approach is that it disregards the epistemic uncertainty 
associated with parameter estimation. To overcome this limitation, we rely on the tractable 
approximate Gaussian inference method (TAGI) (Goulet et al., 2021) in order to perform Bayesian 
estimation for the LSTM network parameters. The specific network architecture and the 
hyperparameters employed in this submission are presented in Appendix B.  

Like other neural network architectures, LSTM networks are sensitive to the values employed 
to initialize model parameters before their estimation. Given the ease to evaluate multiple 
models having different initial model parameters, we choose to combine ten models in order to 
further improve the prediction accuracy. The ensembling method to combine these ten models 
along with the BDLM one is presented in the next subsection. 

 Gaussian Mixture Ensembling 
The ensembling method we use in this submission relies on the moment matching Gaussian 

mixture of models (Runnalls, 2007). Here, we want to aggregate the BDLM and ten LSTM models 
where each has a Gaussian output as characterized by their respective expected value 𝜇𝜇𝑎𝑎 and 
variance 𝜎𝜎𝑎𝑎2, making them natively suited for the Gaussian mixture (GM). A GM combines several 
Gaussian probability density functions according to the probability associated with each model. 
In the case of the moment matching GM, we approximate the resulting mixture distribution by a 
Gaussian random variable whose moments ( 𝜇𝜇𝐆𝐆𝐆𝐆,𝜎𝜎𝐆𝐆𝐆𝐆2 ) matching those of the true mixture 
distribution and which can be computed using the relations 

𝜇𝜇𝐆𝐆𝐆𝐆  =  � 𝑤𝑤𝑚𝑚𝜇𝜇𝑚𝑚
N

𝑚𝑚=1
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𝜎𝜎𝐆𝐆𝐆𝐆
2  =  � 𝑤𝑤𝑚𝑚 �𝜎𝜎𝑚𝑚2 + �𝜇𝜇𝑚𝑚 − 𝜇𝜇𝐆𝐆𝐆𝐆�

2� ,
N

𝑚𝑚=1
 

 
where for N models, the GM expected value is the weighted sum of the individual 𝜇𝜇𝑎𝑎 and the 

GM variance is the weighted sum of the variance 𝜎𝜎𝑎𝑎2 plus a term to account for the discrepancy 
between each model's expected value. 

In a Bayesian context, the weights should be computed according to their posterior probability 
𝑤𝑤𝑎𝑎 = 𝑒𝑒(𝑚𝑚𝑎𝑎|𝒟𝒟) as defined by 

𝑒𝑒(𝑚𝑚𝑎𝑎|𝒟𝒟) =
𝑒𝑒(𝒟𝒟|𝑚𝑚𝑎𝑎).𝑒𝑒(𝑚𝑚𝑎𝑎)
∑ 𝑒𝑒(𝒟𝒟|𝑚𝑚𝑎𝑎).𝑒𝑒(𝑚𝑚𝑎𝑎)𝑎𝑎

 

Here, we rely on the simplifying assumption that  𝑒𝑒(𝒟𝒟|𝑚𝑚𝑎𝑎) = 𝑙𝑙𝑙𝑙ℒ(𝑚𝑚𝑎𝑎)−1is equal to the inverse 
log-likelihood of each model measured between 2012-2013, whose values are reported in 
Appendix C. The prior probability 𝑒𝑒(𝑚𝑚𝑎𝑎) for the BDLM model is equal to 0.5, and to 0.05 for each 
of the TAGI-LSTM models making their aggregated prior probability also equal to 0.5. 

4 RESULTS 

We divided the presentation of the results into three parts; first, we present the relative 
performance of each individual model, i.e., BDLM vs TAGI-LSTM by training each of them on a 
subset of the training data available, and then predicting the last three years of data available; 
second, we present the forecasted data aggregating the prediction of one BDLM and 10 TAGI-
LSTM models; third, we present the model interpretation where we identify the sources and 
nature of the dependencies between time series. Finally, we present how the regime switching 
capacity of BDLM is better at detecting anomalies than threshold-based alarm triggers. 

 Validation 

Figure 2.  Comparative performance of BDLM, 10 instances of TAGI-LSTM, and the Gaussian mixture from 
BDLM and 10 instances ({µ1, µ2, …, µ1}) of TAGI-lstm for both the CB2-3 sensors. 
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Figure 2 compares the predictions for the last three years of the training data available, obtained 

for each model and for the Gaussian mixture of all models. These results show that both methods 
offer a comparable performance with a slight edge for the BDLM method. In terms of computational 
time, both methods are comparable with a total training time in the order of an hour. Once trained, 
both models can be used to predict with a computational time in the order of a minute. 

 Forecasting 

Figure 3.  Forecast for the Gaussian mixture made form BDLM forecasts and 10 instances of TAGI-LSTM for 
both the CB2-3 sensors. 

 
Figure 3 presents the forecasts for the period 2013--2018 obtained from the Gaussian mixture 

of the BDLM and ten TAGI-LSTM models. 

 Model interpretation 
The model interpretation is made using the BDLM model only, as LSTM networks offer little 

help in understanding the nature of the dependencies between time series.  

 Dependencies and interaction between time-series 
Figures 4 & 5 summarize the information that can be extracted from the BDLM model; (a) 

presents the relative importance of each component measured by the relative variance of each sub-
component; (b) plot the non-linear relationships between the dam's response and the mean-
centered water level as well as its long-term pattern as depicted in (d) with corresponding colors; 
(c) presents the periodic pattern extracted from the CB sensors that can include part of the 
temperature and water level effects; (d) presents the mean-centered water level as well as the long-
term pattern extracted from it by BDLM; (e) presents the model residuals (𝑒𝑒𝐀𝐀𝐀𝐀) i.e., the remaining 
part of the observation not attributed to observation errors not explained by the other components. 

For the sensor CB2, we note in Figure 4a, the dominant relative importance of the mean-
centered water level through the non-linear dependency 𝑔𝑔(𝑒𝑒WL) depicted in Figure 4b (WL-NL), 
and secondly of the periodic pattern 𝑒𝑒𝐊𝐊𝐀𝐀 depicted in Figure 4c (CB-KR). The third most important 
contributor is the autoregressive component 𝑒𝑒𝐀𝐀𝐀𝐀 depicted in Figure 4e (CB-AR), which represents 
what cannot be explained by the model. Although the relative importance of other components 
is less than the residual term, they still matter because we are interested in detecting anomalies 
having small magnitudes. For example, an anomaly with a magnitude of 0.5 mm would still have 
a relative importance comparable to the one day moving average presented in Figure 4a (TB-
MA1). Note for instance that the relative importance of the long-term pattern (see Figure 4d) 
within the water level through the non-linear dependency 𝑔𝑔�𝑒𝑒WL

𝐋𝐋𝐋𝐋 � depicted in Figure 4b (WLLT-NL) 
is key in order to enable the detection of small anomalies as further detailed in Section 4.3.2. 
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Figure 4.  Graphs illustrating the interpretation of the CB2 dataset that can be made from the BDLM 
components. 

Figure 5.  Graph illustrating the interpretation of the CB2 dataset that can be made from the BDLM 
components. 

 
For the sensor CB3, the contribution of the water level through the non-linear dependency 

𝑔𝑔(𝑒𝑒WL) depicted in Figure 5b is even more dominant than in the case of CB2. One particularity for 
CB3 is that the residual term corresponding to the autoregressive component in Figure 5d 
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presents a non-stationary pattern between February 2004 and 2007 as outlined in magenta. The 
presence of such a pattern indicates that the current components considered in our model for 
CB3 are missing a part of the dam's behavior. The next section will further investigate this non-
stationarity by showing how using a regime-switching analysis would have been able to detect 
such anomalous occurrence in real time. 

 Anomaly detection using regime switching 
As mentioned in Section 3.1, one key strength of BDLM, is its capacity to detect regime switches 

(Nguyen & Goulet, 2018a; Khazaeli et al., 2021). We performed such an analysis on the CB2/3 
datasets while a first normal regime is modelled with a constant baseline through time, and a 
second abnormal regime is modelled with a constant-speed regime through time.  

For the CB2 sensor, the black curve in Figure 6b presents the probability of anomaly identified 
using the switching Kalman filter (SKF). This probability close to zero across the dataset indicates 
that the dam's behaviour is stationary. We further confirm this conclusion by adding to the 
original data synthetic anomalies of magnitude 𝑚𝑚𝑚𝑚 = 0.5,1,2mm building up over a duration of 
magnitude 𝑚𝑚𝑑𝑑 = 4 years, as depicted in Figure 6a. The probability of anomaly identified by the 
SKF rises in all three cases where synthetic anomalies are added, thus correctly indicating their 
presence. In comparison, if we use an alarm-triggering threshold of 1 mm on the absolute 
difference between the predicted and measured values for the validation set presented in Figure 
2a, we would on average, trigger more than 10 false alarms per year while no alarm should have 
been triggered. Figure 6c presents the result of this exercise repeated for alarm-triggering 
thresholds ranging from 0.5 up to 6 mm. Note that these anomaly magnitudes are all smaller than 
the amplitude of the residual term presented in Figure 4e. This shows that detecting anomalies 
based on the exceedance of threshold values is prone to false alarms and offers a poor anomaly 
detectability in comparison with the regime switching approach of Bayesian dynamic linear 
models. If one chooses a more robust criterion involving multiple successive crossings, the false 
alarm rate will indeed drop; Nevertheless, this strategy remains poorly suited for the detection 
of anomalies developing over the span of several years, as parametric models (e.g. HST, LSTM, 
SVM, etc.) will need to be retrained periodically in order to avoid drift, thus incorporating the 
changes due to the presence of an anomaly in the updated models. 

Figure 6.  Comparison of the regime switching approach with a threshold-based one of the purpose of 
detecting anomalies while avoiding false alarms. 

 
Figure 7b presents the same exercise applied to the CB3 sensor. In this case, the SKF 

detects a regime switch shortly before 2006 as indicated by the jump in the black curve. This 
regime change can be confirmed by looking at the residual term presented in Figure 5d, 
where a non-stationary pattern is visually observable between 2004 and 2007. As this pattern 
disappears after 2007 while the probability of regime switch return to 0 after 2006, we 
speculate that events other than those considered in our model have taken place during that 
period. We tested our capacity to detect anomalies on CB3 by adding synthetic anomalies as 
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depicted in Figure 7a, with magnitudes 𝑚𝑚𝑚𝑚 = 0.15,0.25,0.5mm which are building up over a 
duration of  𝑚𝑚𝑑𝑑 = 4 years. Note that the anomaly has been shifted after 2006 in order not to 
interfere with the actual anomaly present in the data. We can see in Figure 7b that synthetic 
anomalies with a magnitude low as 0.15 mm are detectable for this sensor. 

Figure 7.  Regime switching analysis applied to the CB3 sensor for the raw data as well as additional 
synthetic anomalies. 

5 DISCUSSION 

The presence of a non-linear residual term for the sensor CB3 lead us to think that, in the 
context of this benchmark, the long-term predictive capacity for that sensor will be limited. In 
order to improve the model, it would be worth further investigating (1) the relationship between 
the anomaly detected on the sensor CB3 and the seepage and piezometric levels measured, (2) 
the possibility that the long-term effects of the water level on the sensors CB2/3 (see Figure 4d) 
may be related to creep/creep-relief effects (Bažant & Wu, 1974), and (3) following the results of 
this forecasting competition, if other submissions have identified features explaining the dam's 
behavior that were not considered here, these could be included in our BDLM model in order to 
further improve its forecasting accuracy and anomaly detectability. 

Despite these limitations, as mentioned in Sections 3.1 & 4.3.2 the key aspect of our method 
is to enable the detection of anomalies based upon the probability of regime switch rather than 
on threshold crossing. This has enabled in Section 4.3.2 the detection of anomalies that are 
smaller than the residual terms for the CB2 and CB3 sensors. This shows that the anomaly 
detectability of our method can be decoupled from its long-term prediction capacity. 

6 CONCLUSION 

This paper presents the results of our submission to the ICOLD's dam prediction benchmark. 
We provide through our probabilistic ensembling method the explainability of BDLMs as well as 
the accuracy and ease of use of Bayesian LSTM. Although the benchmark focusses on prediction 
accuracy and threshold value definition for the purpose of anomaly detection, one should keep 
in mind that this way of envisioning anomaly detection is only one approach among many others. 
We showed in this paper that with our probabilistic regime switching method we expect to be 
able to detect anomalies of 0.5 mm for CB2 and 0.15 mm for CB3, where both can develop over 
the span of years. 
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APPENDIX 

A    BDLM MODEL STRUCTURE 
The BDLM components used for modeling the independent patterns for CB2/3 are local level 

(LL), kernel regression (KR) and autoregressive (AR). The mean-centered water-level and its 
long-term pattern (Figure 4d) are modeled using an AR and a local trend (LT) component 
respectively. The two nonlinear patterns for CB2/3 that are nonlinearly dependent on these two 
time series are each modeled using a state-regression (SR) component. The moving averages of 
the temperature (TB) are modeled using AR components. The transition matrices for LL, LT, KR, 
and AR components (Goulet, 2020, 2017) are as follow: 

𝐀𝐀𝐭𝐭
𝐋𝐋𝐋𝐋 = 1,𝐀𝐀𝐭𝐭

𝐋𝐋𝐋𝐋 = �1 ∆𝑡𝑡
0 1

� ,𝐀𝐀𝐭𝐭
𝐊𝐊𝐀𝐀 = � 0 𝑘𝑘𝐊𝐊𝐀𝐀� (𝑡𝑡, 𝒕𝒕𝐊𝐊𝐀𝐀)

𝟎𝟎𝒏𝒏×𝟏𝟏 𝑰𝑰𝒏𝒏
� ,𝐀𝐀𝐭𝐭

𝐀𝐀𝐀𝐀 = 𝜙𝜙𝐀𝐀𝐀𝐀                    (1) 

where n represents the number of control points for kernel regression and ∆t = 1day. The 
observation matrices for these components are given by 

𝐂𝐂𝐭𝐭
𝐋𝐋𝐋𝐋 = 1, 𝐂𝐂𝐭𝐭

𝐋𝐋𝐋𝐋 = [1  0], 𝐂𝐂𝐭𝐭
𝐊𝐊𝐀𝐀 = [1 0𝑙𝑙×1], 𝐂𝐂𝐭𝐭

𝐀𝐀𝐀𝐀 = 1                  (2) 

The process noise 𝐐𝐐𝐭𝐭 covariance matrices are 

𝐐𝐐𝐭𝐭
𝐋𝐋𝐋𝐋 = (𝜎𝜎𝑤𝑤𝐋𝐋𝐋𝐋)2,𝐐𝐐𝐭𝐭

𝐋𝐋𝐋𝐋 = (σw
𝐋𝐋𝐋𝐋)2 �

Δ𝑡𝑡4

4

Δ𝑡𝑡3

2
Δ𝑡𝑡3

2
Δ𝑡𝑡2
� ,𝐐𝐐𝐭𝐭

𝐊𝐊𝐀𝐀 = �
(σ0

𝐊𝐊𝐀𝐀)2 𝟎𝟎
𝟎𝟎 (𝜎𝜎1

𝐊𝐊𝐀𝐀)2 ⋅ 𝐈𝐈𝒏𝒏
� , Qt

𝐀𝐀𝐀𝐀 = (σw
𝐀𝐀𝐀𝐀)2,   (3) 

The SR component includes 𝑙𝑙 =  20 hidden states for the kernel values, 𝑒𝑒SK =
�𝑒𝑒1SK 𝑒𝑒2SK  … 𝑒𝑒𝑛𝑛SK�

⊺; 𝑙𝑙 + 1 hidden states for the regression coefficient that includes 𝑙𝑙 hidden 

states of control-points, 𝑒𝑒ϕR = �𝑒𝑒1
ϕR  𝑒𝑒2

ϕR  … 𝑒𝑒𝑛𝑛
ϕR�

⊺
  and 𝑒𝑒0

ϕRwhich is the hidden state of the 

predicted regression coefficient; hidden state for the nonlinear pattern for displacement, 𝑒𝑒S,D =
�𝑒𝑒0

ϕR ⋅ 𝑒𝑒S,T� where 𝑒𝑒S,T represents the covariate for modeling the nonlinear dependency, and 𝑙𝑙 

product terms, 𝑒𝑒SKR = �𝑒𝑒SKR,1 𝑒𝑒SKR,2  … 𝑒𝑒SKR,𝑛𝑛�⊺, where, 𝑒𝑒SKR,𝑎𝑎 = �𝑒𝑒𝑎𝑎SK ⋅ 𝑒𝑒𝑎𝑎
ϕR� ;∀𝑚𝑚 = 1:𝑙𝑙. 

The hidden states for the component can be grouped together as 

𝑒𝑒𝐒𝐒𝐀𝐀 = �(𝑒𝑒𝐒𝐒𝐊𝐊)⊺ �𝑒𝑒𝛟𝛟𝑹𝑹�
⊺
 𝑒𝑒0
𝛟𝛟𝑹𝑹  𝑒𝑒𝐒𝐒,𝐃𝐃 (𝑒𝑒𝐒𝐒𝐊𝐊𝐀𝐀)⊺�

⊺
                 

The transition matrix for the SR component of size 3𝑙𝑙 + 2 is formulated as 

𝐀𝐀𝐭𝐭
𝐒𝐒𝐀𝐀 =  

⎣
⎢
⎢
⎢
⎡

0𝑙𝑙 01×𝑙𝑙 0 0 01×𝑙𝑙
⋮ 𝐼𝐼𝑙𝑙 0 0 01×𝑙𝑙
⋮ … 0 0 11×𝑙𝑙
⋮ … … 0 01×𝑙𝑙

𝑐𝑐𝑦𝑦𝑚𝑚. ⋯ ⋯ ⋯ 0𝑙𝑙 ⎦
⎥
⎥
⎥
⎤
                     (4) 

The observation matrix CtSR is given by 

𝐂𝐂𝐭𝐭
𝐒𝐒𝐀𝐀 = [0𝑙𝑙×1

⊺  0𝑙𝑙×1
⊺   0  1  0𝑙𝑙×1

⊺ ].                       (5) 

No process noise is considered for the SR component and is given by 𝐐𝐐𝐭𝐭𝐒𝐒𝐀𝐀 = 𝟎𝟎𝟑𝟑𝒏𝒏+𝟐𝟐. 
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Using equations 1 & 4, the global transition matrix 𝐀𝐀𝑡𝑡  is obtained by arranging the transition 
matrices block diagonally shown by 

𝐀𝐀𝑡𝑡 = blockdiag��𝐀𝐀𝑡𝑡𝐋𝐋𝐋𝐋,  𝐀𝐀𝑡𝑡𝐊𝐊𝐀𝐀,  𝐀𝐀𝑡𝑡𝐀𝐀𝐀𝐀�
�����������

CB2/3

, �𝐀𝐀𝑡𝑡𝐋𝐋𝐋𝐋,  𝐀𝐀𝑡𝑡
𝐒𝐒𝐀𝐀𝟏𝟏��������

WL1

, �𝐀𝐀𝑡𝑡𝐀𝐀𝐀𝐀,  𝐀𝐀𝑡𝑡
𝐒𝐒𝐀𝐀𝟐𝟐����������

WL2

, �𝐀𝐀𝑡𝑡𝐀𝐀𝐀𝐀�
���
T-MA1

, �𝐀𝐀𝑡𝑡𝐀𝐀𝐀𝐀�
���
T-MA7

, �𝐀𝐀𝑡𝑡𝐀𝐀𝐀𝐀�
���
T-MA14

, �𝐀𝐀𝑡𝑡𝐀𝐀𝐀𝐀�
���
T-MA28

, �𝐀𝐀𝑡𝑡𝐀𝐀𝐀𝐀�
���
T-MA54

�    (6) 

where WL1 and WL2 refers to the long-term pattern and the mean-centered raw water level, 
and the nonlinear dependencies are modeled using the SR1 and SR2 components. Using 
equations 2 & 5, the global observation matrix Ct is given by 

𝐂𝐂𝑡𝑡 = blockdiag��𝐂𝐂𝑡𝑡𝐋𝐋𝐋𝐋,  𝐂𝐂𝑡𝑡𝐊𝐊𝐀𝐀,  𝐂𝐂𝑡𝑡𝐀𝐀𝐀𝐀�
�����������

CB2/3

, �𝐂𝐂𝑡𝑡𝐋𝐋𝐋𝐋,  𝐂𝐂𝑡𝑡
𝐒𝐒𝐀𝐀𝟏𝟏��������

WL1

, �𝐂𝐂𝑡𝑡𝐀𝐀𝐀𝐀,  𝐂𝐂𝑡𝑡
𝐒𝐒𝐀𝐀𝟐𝟐��������

WL2

, �𝐂𝐂𝑡𝑡𝐀𝐀𝐀𝐀�
���
T-MA1

, �𝐂𝐂𝑡𝑡𝐀𝐀𝐀𝐀�
���
T-MA7

, �𝐂𝐂𝑡𝑡𝐀𝐀𝐀𝐀�
���
T-MA14

, �𝐂𝐂𝑡𝑡𝐀𝐀𝐀𝐀�
���
T-MA28

, �𝐂𝐂𝑡𝑡𝐀𝐀𝐀𝐀�
���
T-MA54

�            (7) 

The 𝐐𝐐𝑡𝑡  and the 𝐀𝐀𝑡𝑡 matrices are 

𝐐𝐐𝑡𝑡 = blockdiag��𝐐𝐐𝑡𝑡𝐋𝐋𝐋𝐋,  𝐐𝐐𝑡𝑡𝐊𝐊𝐀𝐀,  𝐐𝐐𝑡𝑡𝐀𝐀𝐀𝐀�
�����������

CB2/3

, �𝐐𝐐t𝐋𝐋𝐋𝐋,  𝐐𝐐t
𝐒𝐒𝐀𝐀𝟏𝟏����������

WL1

, �𝐐𝐐𝑡𝑡𝐀𝐀𝐀𝐀,  𝐐𝐐𝑡𝑡
𝐒𝐒𝐀𝐀𝟐𝟐����������

WL2

, �𝐐𝐐𝑡𝑡𝐀𝐀𝐀𝐀�
���
T-MA1

, �𝐐𝐐𝑡𝑡𝐀𝐀𝐀𝐀�
���
T-MA7

, �𝐐𝐐𝑡𝑡𝐀𝐀𝐀𝐀�
���
T-MA14

, �𝐐𝐐𝑡𝑡𝐀𝐀𝐀𝐀�
���
T-MA28

, �𝐐𝐐𝑡𝑡𝐀𝐀𝐀𝐀�
���
T-MA54

�        (8) 

𝐀𝐀𝑡𝑡 = blockdiag��σ𝑣𝑣1�
2���

CB2/3

, �σ𝑣𝑣2�
2���

WL1

�σ𝑣𝑣3�
2���

WL2

, �σ𝑣𝑣4�
2���

T-MA1

, �σ𝑣𝑣5�
2���

T-MA7

, �σ𝑣𝑣6�
2���

T-MA14

, �σ𝑣𝑣7�
2���

T-MA28

, �σ𝑣𝑣8�
2���

T-MA54

�                     (9) 

where σ𝑣𝑣𝑖𝑖 ,  ∀𝑚𝑚 = 1: 8 refers to the standard deviation of the observation noise for each of the 
time series. 

B   LSTM MODEL STRUCTURE 
We use two separate models which have the same architecture, but do not share the 

parameters to predict the displacements CB2 and CB3. The common network’s architecture 
consists of one LSTM layer of 50 hidden units, and a dense layer with no activation function to 
combine the output of the LSTM layer. In order to take into account the lagging effect that the 
temperature and the reservoir’s level may have on the displacement, we use a sequence of length 
M of covariates as inputs for the LSTM instead of using only the covariates at time t as  

𝒉𝒉𝒕𝒕 = 𝑔𝑔(𝒉𝒉𝒕𝒕−𝟏𝟏,𝑦𝑦𝑡𝑡−𝐿𝐿:𝑡𝑡−1,𝒙𝒙𝒕𝒕−𝑴𝑴+𝟏𝟏:𝒕𝒕), 

where g(·) is the function implemented by the LSTM, 𝒉𝒉 are the hidden states, 𝑦𝑦 is the 
displacement observation, 𝒙𝒙 are covariates which are the reservoir’s level and temperature TB, 
and L is the lookback period. During training when the data is missing, and during prediction when 
the data is not available, we replace 𝑦𝑦 by the network’s prediction, and 𝒙𝒙 by 𝟎𝟎. When using TAGI 
to perform Bayesian estimation for the LSTM network parameters, it is required to define an 
observation noise for each time series (Goulet et al., 2021). The standard deviation for this 
observation noise is a hyper-parameter which needs to be learnt from data. We perform a grid-
search to find the best hyper-parameter values for each model as presented in Table 1. For each 
candidate value in the grids, we train our models with early-stopping on a subset of training data 
from 2000 to end of 2009 and report the log-likelihood for the validation period from 2010 to 
end of 2012. The values which maximize the log-likelihood of the validation set are chosen as the 
final hyper-parameter values.  
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Table 8: LSTM hyper-parameters. 

Hyper-parameters CB2 CB3 Grid 
Observation noise’s standard deviation 0.05 0.01 {0.01, 0.05, 0.1, 0.15} 
L 35 14 {14, 35, 56, 70} 
M 21 21 {7, 21, 35, 49, 70} 

C    LOG-LIKELIHOOD AND WEIGHT  
Table 9: Log-likelihood measured between 2012-2013 and weight by each model.  

Model 
             CB2         CB3 

Log-likelihood    𝑤𝑤_𝑚𝑚 Log-likelihood      𝑤𝑤_𝑚𝑚 
BDLM -63.89 0.506 -12.06 0.659 

LSTM #1 -66.48 0.049 -46.96 0.017 
LSTM #2 -66.53 0.049 -48.66 0.016 
LSTM #3 -64.74 0.050 -11.64 0.068 
LSTM #4 -64.98 0.050 -45.52 0.017 
LSTM #5 -73.79 0.044 -35.36 0.022 
LSTM #6 -65.14 0.050 -37.59 0.021 
LSTM #7 -66.12 0.049 -24.71 0.032 
LSTM #8 -62.40 0.052 -33.49 0.023 
LSTM #9 -63.18 0.051 -28.68 0.028 

LSTM #10 -62.51 0.052 -8.37 0.095 

D    MEAN ABSOLUTE ERROR (MAE) 
Table 3: MAE for the validation period between 2010-2013. 

Model CB2 CB3 
Mixture 1.366 0.253 
BDLM 1.312 0.248 

LSTM #1 1.574 0.490 
LSTM #2 2.109 0.537 
LSTM #3 1.910 0.486 
LSTM #4 2.008 0.534 
LSTM #5 1.945 0.610 
LSTM #6 1.833 0.566 
LSTM #7 1.836 0.393 
LSTM #8 1.705 0.524 
LSTM #9 1.796 0.452 

LSTM #10 1.869 0.462 
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DAM BEHAVIOUR PREDICTION USING LINEAR 
REGRESSION, NEURAL NETWORKS, AND FE MODELLING 

Evgeniy Vitokhin 
Vedeneev VNIIG, JSC, Saint Petersburg, Russia 

Pavel Ivanov 
Vedeneev VNIIG, JSC, Saint Petersburg, Russia 

ABSTRACT: The paper presents statistical and finite-element prediction models for predicting CB2 
and CB3 sensors data of an EDF arch concrete dam. Linear regression and neural networks were 
used to build the statistical models. The finite-element prediction model was built using Simulia 
Abaqus. Warning levels for the prediction was found and provided. 
  



Vitokhin, Ivanov 
DAM BEHAVIOUR PREDICTION USING LINEAR REGRESSION, NEURAL NETWORKS, AND FE MODELLING 

 

119 
 

1 INTRODUCTION 

In this paper we use statistical and calibrated finite element models to predict CB2 and CB3 
sensors measurements of EDF dam. 

2 STATISTICAL METHODS 

 Theory 
First, we divide the entire dataset into training and test sets. The training set is used to define 

coefficients or weights of model. The test set is used to evaluate the accuracy of the model. In 
this paper, field data from 2000 to 2010 years used for training and data from 2011 to 2013 years 
used as test set. 

For estimation of the model accuracy, we use mean absolute error MAE and NRMSE:  

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛
∑ |𝑦𝑦𝑎𝑎 − 𝑦𝑦�𝑎𝑎|𝑛𝑛−1
𝑎𝑎=0 = 1

𝑛𝑛
∑ |𝜀𝜀|𝑛𝑛−1
𝑎𝑎=0 ,      𝑁𝑁𝑅𝑅𝑀𝑀𝑁𝑁𝑀𝑀 =

�1
𝑛𝑛
∑ |𝑦𝑦𝑖𝑖−𝑦𝑦�𝑖𝑖|2𝑛𝑛−1
𝑖𝑖=0

𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚−𝑦𝑦𝑚𝑚𝑖𝑖𝑛𝑛
, (1) 

 
where 𝑦𝑦𝑎𝑎  is the prediction, 𝑦𝑦�𝑎𝑎  – measured data. 
Confidence intervals are calculated using the standard deviation: 
 

𝜎𝜎 = 1
𝑛𝑛
∑ (𝜀𝜀𝑎𝑎 − 𝜀𝜀)̅2𝑛𝑛−1
𝑎𝑎=0 ,       𝜀𝜀̅ = 1

𝑛𝑛
∑ 𝜀𝜀𝑎𝑎𝑛𝑛−1
𝑎𝑎=0 , (2) 

 
where 𝜀𝜀𝑎𝑎 – prediction error, 𝜀𝜀 ̅– mean error. 
The models considered in this paper use linear regression and a multilayer perceptron. 

 Linear regression 
Linear regression is a model that assumes a linear dependence of the dependent variable on 

other (independent) variables or factors. This is a basic machine learning model that is widely 
applied in all fields of science. 

With 𝑙𝑙 observations, the dependent variable vector {𝑦𝑦} is written as follows: 
 

{𝑦𝑦}𝑇𝑇 = {𝑦𝑦1, 𝑦𝑦2 …𝑦𝑦𝑛𝑛}.  (3) 

If dependence on 𝑒𝑒 factors is considered, then the matrix of independent variables [𝑋𝑋] is 
written as a rectangular matrix 𝑙𝑙 ×  𝑒𝑒 +  1: 

 

[𝑋𝑋] =

⎣
⎢
⎢
⎡{𝑒𝑒}1𝑇𝑇

{𝑒𝑒}2𝑇𝑇
⋮

{𝑒𝑒}𝑛𝑛𝑇𝑇⎦
⎥
⎥
⎤

=

⎣
⎢
⎢
⎡
1 𝑒𝑒11 … 𝑒𝑒1𝑡𝑡
1 𝑒𝑒21 … 𝑒𝑒2𝑡𝑡
⋮ ⋮ ⋱ ⋮
1 𝑒𝑒𝑛𝑛1 … 𝑒𝑒𝑛𝑛𝑡𝑡⎦

⎥
⎥
⎤
. (4) 

 
Each value of the dependent variable 𝑦𝑦𝑎𝑎  corresponds to the vector of independent 

variables{𝑒𝑒𝑎𝑎}𝑇𝑇  . The first column is filled with ones, as the constant is considered a separate 
factor. 

In the matrix form linear regression could be written as follows: 
 

{𝑦𝑦} = [𝑋𝑋]{𝛽𝛽} + {𝜀𝜀},  

{𝛽𝛽} = �

𝛽𝛽1
𝛽𝛽2
⋮
𝛽𝛽𝑛𝑛

� , {𝜀𝜀} = �

𝜀𝜀1
𝜀𝜀2
⋮
𝜀𝜀𝑛𝑛

�,  (5) 

 
where {𝛽𝛽} is vector of the coefficients, {𝜀𝜀} is vector of model random errors (residuals between 

the calculated and observed parameters). 
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To make successful predictions we must obtain such coefficients {𝛽𝛽}, which yield minimal error 
values {𝜀𝜀}. The error is usually minimized by least squares or gradient descent. When using the 
least squares method, the optimal coefficients {𝛽𝛽} are determined as follows: 

 
��̂�𝛽� = ([𝑋𝑋]𝑇𝑇[𝑋𝑋])−1[𝑋𝑋]𝑇𝑇{𝑦𝑦}. (6) 

With a known optimal vector of coefficients ��̂�𝛽�, the predictive model takes the form: 
 

{𝑦𝑦�} = [𝑋𝑋]��̂�𝛽�, (7) 

where {𝑦𝑦�} is the prediction with known independent variables [𝑋𝑋]. The prediction error is 
respectively defined as: 

 
{𝜀𝜀} = {𝑦𝑦} − {𝑦𝑦�}. (8) 

One of the well-known disadvantages of linear regression is a large error in extrapolation. 
When the values of the independent variables are out of range in the training dataset, the 
predicted values often deviate significantly from the true (observed) values. 

One approach to improve the ability of a linear model to generalize is to introduce 
regularization. Tikhonov's regularization method (ridge regression) introduces the parameter 𝛼𝛼 
into the formula for determining the optimal vector of coefficients ��̂�𝛽�. 

 
��̂�𝛽𝑎𝑎𝑎𝑎𝑑𝑑𝑟𝑟𝑤𝑤� = �[𝑋𝑋]𝑇𝑇[𝑋𝑋] + 𝛼𝛼�𝐼𝐼𝑡𝑡��

−1[𝑋𝑋]𝑇𝑇{𝑦𝑦}, (9) 
 
where �𝐼𝐼𝑡𝑡� is the identity matrix with dimension 𝑒𝑒. 
Introducing parameter 𝛼𝛼 leads to the fact that smaller values of the coefficients are 

encouraged. It leads to a smaller extrapolation error. Parameter 𝛼𝛼 is a hyperparameter of the 
model, i.e. such a parameter that is not a factor, but directly affects the prediction. The selection 
of the best values of hyperparameters is carried out during cross-validation. 

In this paper, we used linear regression using Tikhonov regularization and determining the 
values of the hyperparameter 𝛼𝛼 using sliding cross-validation. An implementation by scikit-learn 
library Pedregosa, 2011 was used. 

 Hydrostatic-seasonal (HS) model 
We use this model to predict CB3 sensor data. This model is the linear regression model, that 

takes to account upstream level, seasonality and time: 
 

𝑦𝑦� = 𝛽𝛽0 + 𝑓𝑓1(ℎ) + 𝑓𝑓2(𝑐𝑐), (10) 
 
where 𝛽𝛽0 is the free coefficient, 𝑓𝑓1(ℎ) is the influence of the upstream level, 𝑓𝑓2(𝑐𝑐) is the 

influence of seasonality. 
In the original formulation, the influence of the upstream level was considered by a polynomial 

of the fourth degree: 
 

𝑓𝑓1 = 𝛽𝛽1ℎ + 𝛽𝛽2ℎ2 + 𝛽𝛽3ℎ3 + 𝛽𝛽4ℎ4. (11) 

The influence of seasonality was considered by the sum of trigonometric functions with a 
period of one year: 

 
𝑓𝑓2 = 𝛽𝛽5(sin(𝑐𝑐))2 + 𝛽𝛽6 sin(𝑐𝑐) + 𝛽𝛽7 cos(𝑐𝑐) + 𝛽𝛽8 sin(𝑐𝑐) cos(𝑐𝑐), (12) 

 
where 𝑐𝑐 is calculated as the ratio of the number of the day in the year to the number of days 

in the year: 
 

𝑐𝑐 = 2𝜋𝜋 𝑛𝑛𝑢𝑢𝑚𝑚𝑏𝑏𝑤𝑤𝑎𝑎 𝑡𝑡𝑜𝑜 𝑡𝑡ℎ𝑤𝑤 𝑑𝑑𝑎𝑎𝑦𝑦
𝑛𝑛𝑢𝑢𝑚𝑚𝑏𝑏𝑤𝑤𝑎𝑎 𝑡𝑡𝑜𝑜 𝑑𝑑𝑎𝑎𝑦𝑦𝑠𝑠

≈ 2𝜋𝜋 𝑛𝑛𝑢𝑢𝑚𝑚𝑏𝑏𝑤𝑤𝑎𝑎 𝑡𝑡𝑜𝑜 𝑡𝑡ℎ𝑤𝑤 𝑑𝑑𝑎𝑎𝑦𝑦
365.25

. (13) 
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The HS model assumes that the main contribution to the displacements of the dam is made by 
the upstream level. The second factor is temperature, the first harmonic of which is modeled 
using trigonometric functions 𝑓𝑓2 with one year period. That is, one of the assumptions is the 
dependance of the concrete temperature to harmonic oscillations. 

The simplicity of the formulation and the absence of a direct temperature factor make it 
possible to widely use the HS model on objects where the temperature is not measured, or where 
the temperature have a harmonic law. At the same time, with a sharp change in temperature, 
the accuracy of the forecast is significantly reduced. 

Another advantage of this model is its ease of interpretation. However, if the upstream level 
strongly correlates with seasonality, then the model's ability to interpret data is significantly 
reduced, which at the same time does not affect the accuracy of the prediction. 

 Multilayer perceptron  
This model was used for CB2 sensor data prediction. Multilayer Perceptron (MLP) is an artificial 

neural network architecture consisting of several layers with nodes (neurons). Each layer node is 
an activation function 𝜑𝜑, which takes the value +1, and a vector of values obtained at the nodes 
of the previous layer: 

 

{𝑒𝑒} = �

𝑒𝑒0
𝑒𝑒1
⋮
𝑒𝑒𝑛𝑛

� = �

+1
𝑒𝑒1
⋮
𝑒𝑒𝑛𝑛

�, (14) 

 
and weight vector: 
 

{𝑤𝑤𝑘𝑘} = �

𝑤𝑤𝑘𝑘0
𝑤𝑤𝑘𝑘1
⋮

𝑤𝑤𝑘𝑘𝑛𝑛

� = �

𝑏𝑏𝑘𝑘
𝑤𝑤𝑘𝑘1
⋮

𝑤𝑤𝑘𝑘𝑛𝑛

�,  (15) 

 
where 𝑏𝑏𝑘𝑘 is a free coefficient, weight of the constant is +1. The value received by the node is 

calculated as follows: 
 

𝑦𝑦𝑘𝑘 = 𝜑𝜑(𝑣𝑣𝑘𝑘),𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑣𝑣𝑘𝑘 = {𝑒𝑒}{𝑤𝑤𝑘𝑘}𝑇𝑇 = ∑ 𝑤𝑤𝑎𝑎𝑒𝑒𝑎𝑎𝑛𝑛
𝑎𝑎=1 . (16) 

Figure 1.  Scheme of neural network node 
 
The weight values for each node are determined during minimizing the residual function using 

the backpropagation method. Adam optimization is used with gradient descent rate 𝜆𝜆 = 0.001. 
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The first or input layer accepts pre-normalized field observation data with an identical mapping 
as an activation function. The next layers will use the Leaky ReLu function as an activation 
function: 

𝐿𝐿𝑒𝑒𝑚𝑚𝑘𝑘𝑦𝑦𝑅𝑅𝑒𝑒𝐿𝐿𝑢𝑢(𝑣𝑣) = max(0, 𝑣𝑣) + 𝑚𝑚min(0, 𝑣𝑣) = �
𝑣𝑣 𝑚𝑚𝑓𝑓 𝑣𝑣 > 0
𝑚𝑚𝑣𝑣 𝑚𝑚𝑓𝑓 𝑣𝑣 ≤ 0. (17) 

In this paper the Keras Chollet, 2015 library was used to implement multilayer perceptron. 

 Transforming field data 
To build accurate predictive models, we need a large amount of input data. The more input 

data, the more accurate the predictive model. Therefore, we increase the number of input data 
available for training by using linear interpolation. 

The air temperature and CB2 sensor data have a period of change of one year. To account for 
seasonality, we added trigonometric functions with a period of one year: 

 
sin(𝑐𝑐)и cos(𝑐𝑐) , где 𝑐𝑐 = 2𝜋𝜋 𝑛𝑛𝑢𝑢𝑚𝑚𝑏𝑏𝑤𝑤𝑎𝑎 𝑡𝑡𝑜𝑜 𝑡𝑡ℎ𝑤𝑤 𝑑𝑑𝑎𝑎𝑦𝑦

𝑛𝑛𝑢𝑢𝑚𝑚𝑏𝑏𝑤𝑤𝑎𝑎 𝑡𝑡𝑜𝑜 𝑑𝑑𝑎𝑎𝑦𝑦𝑠𝑠
≈ 2𝜋𝜋 𝑛𝑛𝑢𝑢𝑚𝑚𝑏𝑏𝑤𝑤𝑎𝑎 𝑡𝑡𝑜𝑜 𝑡𝑡ℎ𝑤𝑤 𝑑𝑑𝑎𝑎𝑦𝑦

365.25
. (18) 

The air temperature sensor data has rapid changes of temperature from day to day. To improve 
predictions accuracy temperature time series was smoothed by moving average sum with 
window of 19 days. 

From the measurements of the upstream level, it is evident that the reservoir is periodically 
completely empty. That is, values of the upstream level are less than 195 m, below the dam base 
elevation. These values do not affect the CB2 sensor data. We convert the upstream data to 
exclude data below the reservoir bottom at the upstream face of the dam: 

 

𝑈𝑈𝑒𝑒𝑐𝑐𝑡𝑡𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝐿𝐿𝑒𝑒𝑣𝑣𝑒𝑒𝑙𝑙 = �ℎ 𝑚𝑚𝑓𝑓 ℎ > 195
0 𝑚𝑚𝑓𝑓 ℎ ≤ 195, (19) 

where ℎ is initial upstream level. 

 

Figure 2.  Correlation matrix 
 

Highly correlated data cannot be used together in linear regression. Analysis of the correlation 
matrix (see Fig. 2) shows that the input data used are not too strongly correlated, so they can be 
used for linear regression. At the same time, a sufficiently high degree of correlation of air 
temperature and upstream level with the sine and cosine functions confirms the assumption of 
harmonic variation of these values with a period of a year. 

All input features are normalized by removing the mean and scaling to unit variance derived 
from training set. 
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 Results 
Hydrostatic-seasonal (HS) model, used for CB3 sensor data prediction, is implemented as 

follows: 
 

𝑦𝑦� = 𝛽𝛽0 + 𝛽𝛽1𝑈𝑈𝐿𝐿 + 𝛽𝛽2𝑈𝑈𝐿𝐿2 + 𝛽𝛽3𝑈𝑈𝐿𝐿3 + 𝛽𝛽4𝑈𝑈𝐿𝐿4 + 𝛽𝛽5(sin(𝑐𝑐))2 + 𝛽𝛽6 sin(𝑐𝑐) + 𝛽𝛽7 cos(𝑐𝑐) +
𝛽𝛽8 sin(𝑐𝑐) cos(𝑐𝑐), (19) 

 
where 𝑈𝑈𝐿𝐿 is upstream level according to (18). 
This model yielded the best results for CB3. The model contains nine coefficients, which, when 

trained on the training dataset, take the values given in Table 1. The optimal value of the 
hyperparameter 𝛼𝛼 ≈ 4.72796. The model prediction is shown in Figures 3 and 4. The distribution of 
errors is provided in Figure 5. For evaluating warning levels, we use ±3𝜎𝜎 intervals according to (2). 
 
Table 1. Coefficients of HS model 

Coefficient Value 
𝛽𝛽0 -0.7563380357142856 
𝛽𝛽1 0.35890753 
𝛽𝛽2 1.84110614 
𝛽𝛽3 1.1469593 
𝛽𝛽4 -0.42977392 
𝛽𝛽5 0.06657618 
𝛽𝛽6 0.82528701 
𝛽𝛽7 0.6129237 
𝛽𝛽8 0.04377772 

 

Figure 3. СB3 sensor data prediction 

Figure 4.  СB3 sensor data prediction in a train range with warning levels 
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Figure 5.  CB3 prediction error distribution in a train data set 

 
The multilayer perceptron in this paper has the following architecture: four nodes in the input 

layer; two hidden layers with Leaky ReLu activation function and using batch normalization and 
dropout (factor 0.15) of 250 nodes each; output layer with one node and L1 regularization with 
factor 0.005. The model prediction is shown in Figures 6 and 7. The error distribution is provided 
in Figure 8. 

Figure 6.  СB2 sensor data prediction 

Figure 7.  СB2 sensor data prediction in a train range with warning levels 
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Figure 8.  CB2 prediction error distribution in a train data set 

3 FINITE-ELEMENT MODELING 

 
Figure 9.  Finite-element model 

 
We use CAD model delivered by the formulators to create the finite-element model (see Fig. 

9). The model was created using Simulia Abaqus 2021. The model of the dam remained 
unchanged, and the foundation model was modified so that the end surfaces were perpendicular 
to the lower semicircular surface (see Fig. 9). In addition, the base was divided into three parts to 
simulate the left and right bank, as well as the bottom part of the rock foundation. The properties 
of these areas were specified as transversal-isotropic, according to the case formulation. First-
order C3D4 tetrahedrons were used to model the foundation (see Table 2). The dam was modeled 
as a linear-elastic isotropic body using second order C3D10 tetrahedrons. Total number of nodes 
are 261952, total number of elements are 215859.  

 
Table 2. Finite-element mesh data 

Region Element type Elements Nodes 

DAM C3D10 168934 251428 
ROCK C3D4 46925 10524 
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Contact interaction between the dam bottom and the foundation was considered using tie-
contact. The problem was solved in two stages. First, we solved the thermal conductivity problem 
with a variable upstream level, which was accounted by the user subroutine. The temperature 
field was found in increments of one day. Then the thermoelasticity problem was solved using 
the found temperature field. The hydrostatic pressure of the reservoir on the upstream face of 
the dam and the back pressure on the bottom of the dam were also considered using the user 
subroutine. The calculation was performed in one-week increments, and then the intermediate 
values were linearly interpolated for prediction. Calculated using finite-element model CB3 
sensor data was modified: 

 
𝑈𝑈�𝐶𝐶𝐶𝐶3_195_161 = 𝑈𝑈𝐶𝐶𝐶𝐶3_195_161 ⋅ 4.5 − 3. (20) 

 
Calculated CB2 sensor data has no modification. Calculated CB2 and CB3 sensor data with 

warning intervals demonstrated on Figure 10 and 11 respectively. 

Figure 10.  Calculated СB2 sensor data prediction with warning levels 

Figure 11.  Calculated СB3 sensor data prediction with warning levels 
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4 CONCLUSION  

In this paper we presented two types of prediction models: statistical and finite-element. In 
statistical models, the prediction of CB2 sensor data was built using a multilayer perceptron 
neural network. For prediction of CB3 sensor data linear regression was used. The finite-element 
model prediction was based on a calibrated linear-elastic model with a transversal-isotropic 
foundation. The accuracy of the prediction obtained with statistical models significantly exceeded 
the accuracy of the finite-element prediction. 
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ABSTRACT: The 2022 ICOLD Benchmarking Workshop involves prediction of arch dam behavior 
based on recorded reservoir elevation, temperature, and rainfall. The US Army Corps of Engineers 
team utilized a simple correlation-based data analytics approach to develop predictions of the 
dam displacement. Dam displacement and cracking at the base of the dam were found to be 
strongly correlated with the reservoir elevation and air temperature. Displacement of the dam 
was also affected by cracking at the base, leading the team to utilize a two-stage correlation. The 
data analytics approach and finite element model led the team to conclude that there may be 
cracking of the dam or other issues associated with extreme drawdown of the reservoir. 



Corbett, Lyvers, Dominic 
CORRELATION BASED PREDICTIONS OF ARCH DAM DISPLACEMENTS 

 

129 
 

1 INTRODUCTION 

The goal of the benchmarking problem is to predict the short- and long-term behavior of the 
subject concrete arch dam based on relevant environmental data. The behavior of the dam is 
characterized by multiple sets of measured data including pendulum displacements, a crack 
opening displacement sensor, piezometers, and weirs to measure seepage flow rates. The 
problem formulation specifies that it is mandatory for participants to provide displacements 
during the calibration period (Case A) and provide both short-term (Case B) and long-term (Case 
C) displacement predictions. Performing predictions of all other data is optional. The two 
locations for the displacement measurements are for the central block and are shown in Figure 1 
with the red circle. The location of the crack opening meter is shown in Figure 2. The team 
analyzed and predicted data for these three data sets only (both required data sets and one 
optional set). Measurements on the datasets was provided at 1.5-week intervals between 2000 
and 2013 which are to be used as a calibration period. Both short term and long-term predictions 
are required for 6-months of 2013 and 2013-2017 respectively. For all predicted values, it is also 
requested that low and high warning levels be identified. These warning levels indicate that there 
may be a dam safety concern if the measured values fall outside of the warning level range. 

Figure 1.  Displacement Measurement Locations 
 

Figure 2.  Crack Gauge Location 
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2 DATA USED FOR CORRELATION 

The environmental data provided consist of reservoir elevation, air temperature, and rainfall. 
All of the environmental data was provided at approximately daily measurement intervals for the 
full period of record including the prediction time periods (i.e. 2000-2017). Two ambient air 
temperature measurements were provided, referred to as T_a and T_b. T_a is recorded air 
temperatures from a nearby weather station 50 km from the dam at a different altitude than the 
dam. T_b is interpolated between weather stations to correspond to the dam site, including the 
altitude. Rainfall would be expected to effect seepage but has only a tangential effect on 
displacements and is therefore not used as a prediction variable. The displacement behavior of 
the dam is expected to be heavily dependent on reservoir level and temperature. While on first 
glance T_b would be expected to be superior to T_a, there is a closer correlation between T_a 
and displacement, possibly due to errors in the interpolation approach. Therefore T_a and water 
elevation are used to predict the displacement response. 

3 EVALUATION OF FINITE ELEMENT MODEL 

A finite element model of the dam was supplied with the data package. The USACE team is 
currently using LS-DYNA for finite element analysis. The provided model is built completely with 
tetrahedral elements, which gives poor results in LS-DYNA. A test model was run without a 
reservoir and there are substantial stress concentrations along the foundation contact due to the 
element type. The LS-DYNA model is therefore not used to make the final predictions. However, 
it was noticed that without a reservoir, the dam will tend to tilt upstream, putting the dam and 
abutments in tension. We should therefore expect crack opening displacements when the 
reservoir is very low. 

4 DATA ANALYSIS APPROACH 

A data analysis approach is used to perform the required predictions. The team used a 
simplistic method utilizing the correlation between water level and temperature to the 
displacement of the dam. The data is first sorted and processed to be most indicative of the 
performance. The data was subdivided and processed using the following approach: 
1. The daily variations in air temperature do not immediately affect the displacement of the dam.  

It takes time to warm/cool enough of the dam mass to have a measurable effect on the 
structural response. Therefore, a two-week running average of the daily temperature is used, 
which provides the best fit to the data. 

2. The effect of the water level on the dam displacement is based on the force that the water 
applies to the face of the dam. The water level is therefore converted to a pseudo force 
(referred to here as the head) by subtracting the empty water level elevation of 154 m from 
the measured water level at any given time and squaring the difference. Unlike temperature, 
the water level is expected to have a near immediate effect on the displacement, so daily 
measures values were used. 

3. The crack opening gauge at the base of the dam indicates that the crack opens during high 
pools. The dam displacement response to head and temperature is different when the crack 
is closed, open a small amount, or open a large amount. To capture this effect, the data was 
subdivided into three subsets: Crack displacements of less than zero (i.e. the crack is in 
compression), crack displacements between zero and 1.85 mm and crack displacements 
greater than 1.85 mm. Based on the available data, using 1.85 mm as the crack displacement 
threshold value to discretize the data was found to return the highest correlation between 
displacement and temperature/water level. 

4. Within each crack opening subset, the data was further divided into numerous discrete pool 
ranges, where the size of each pool range was set to be as fine as possible, while still leaving 
a reasonable number of data points across a range of temperatures. The minimum number of 
data points was in the highest pool range with 12 points spanning 8 to 21°C. 
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5. Within each sub dataset, the effect of crack opening and pool elevation are therefore held 
approximately constant, and the data is plotted against temperature. The displacement data 
was found to be approximately linearly related to temperature. 

 Displacement correlation 
Based on the data processing approach presented above, the relationship between 

temperature and crest displacement for two arbitrarily chosen example pool ranges is shown in 
Figure 3. While the dam displacements vary in time, once the effects of temperature and reservoir 
level were removed, no strong pattern in time was detectable. Therefore, the prediction proceeds 
using only reservoir level and temperature. 

 

Figure 3.  Crest displacement relationship to temperature with reservoir level held relatively constant 
 
As the pool increases, both the slope and intercept of the temperature-displacement 

relationship also increase. The slope and intercept can be plotted, and a curve fit to these 
parameters as shown in Figure 4. This process is repeated for the three crack opening datasets. 
This results in a relationship between head on the dam and ambient temperature with 
displacement given in Equation (4). This process is repeated for both pendulum displacement 
(CB2 and CB3) gauges to determine the set of empirical constants for each. The empirical 
constants vary for the three crack opening ranges, therefore the crack opening must be predicted 
prior to using (4). 

 

 
Figure 4.  Slope and intercept of lines from Figure 3 as a function of head 

 
∆= (𝑒𝑒1𝐻𝐻2 + 𝑒𝑒2𝐻𝐻 + 𝑒𝑒3)𝑇𝑇 + 𝑒𝑒4𝐻𝐻 + 𝑒𝑒5 

 
(4) 

Where c1-5 = empirical constants 
Δ = Displacement (mm) 
H = Head (m2) = (pool elevation- reservoir bottom)2 
T = temperature (°C) 
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 Crack opening correlation 
The crack opening is primarily driven by the head on the dam, with some influence from the 

temperature. A curve is fit to the data for low (<7° C) and high (>20° C) temperatures, and 
intermediate curves are interpolated between these two temperature extremes as shown in 
Figure 5.  

Figure 5.  Head vs. crack opening relationship 

 Crack opening prediction 
Using the relationship in Figure 5, the crack opening can be approximated for the full study 

period as shown in Figure 6 as the blue “Predicted” line. Also plotted are the measured values for 
comparison. The warning levels are also plotted. The warning levels for the crack opening are set 
such that approximately 90% of the data falls within the warning levels. The rationale for using 
the variability of the measured data is if the measured crack opening is outside of the historic 
expected variability, then there may be an issue with the dam. To more clearly see the three 
datasets, Figure 7 shows a close-up of Figure 6 spanning a portion of the calibration period and 
the prediction period. The predictions do not go below a value of -2.34 mm as this appears to be 
the limit of the gauge. This means there is also a warning level at -2.34 mm as this may indicate a 
problem with the dam and/or the gauge. 

 

Figure 6.  Crack opening prediction (CB 4-5) 
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Figure 7.  Closeup of Figure 6 

 Displacement prediction 
Utilizing the calculated crack opening, the pendulum displacements can be calculated with 

Equation (4). The predicted, measured, and warning level displacements are shown in Figure 8 
and Figure 10 The warning levels here are calculated similarly to the crack opening warning levels 
based on the expected variability at a given temperature/pool combination. However, there is a 
second consideration in the displacement warning levels based on the observation that at low 
pools the dam may go into tension. At extreme low pools the warning levels are shifted such that 
the predicted values fall outside of the warning level. This is identified in the data as the point 
where the measured displacements are least affected by temperature (i.e. pools where the 
temperature-displacement slope approaches zero). This can be seen for displacement at the crest 
in Figure 8 and Figure 9 during the extreme drawdown at the beginning of 2016. Through most 
of the record, the predicted (blue) line is between the upper and lower warning levels. However, 
at the beginning of 2016 the predicted values are below the lower warning limit, indicating there 
may be an issue with the dam at this time. The same effect can be seen for displacement at the 
base in Figure 10 and Figure 11. 

 

 

 
Figure 8.  Top: reservoir elevation, bottom: displacement at crest (CB2) 
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Figure 9.  Closeup of bottom of Figure 8. 
 

 
Figure 10.  Displacement at base (CB3) 
 

 
Figure 11.  Closeup of Figure 10 
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5 CONCLUSIONS AND INTERPRETATION 

The predicted displacements are considered reasonably close to the measured values given 
the simplicity of the model with only two predictor variables: water level and temperature. A 
closer prediction may have been obtained with additional data, however with additional 
dimensions a more complex data analysis approach may have been necessary. Furthermore, 
temperature data measured at the dam (rather than interpolated) would have likely resulted in 
a closer prediction. 

In general, this type of model can be used to identify anomalous measurements which then 
must be investigated by other means. It is difficult to utilize this type of model to evaluate the 
dam behavior for loadings that have not been experienced at any time in the calibration period. 
The finite element model was used in a limited capacity to identify a potential issue that may 
result during periods of deep drawdowns. There are two periods in the past where the reservoir 
was low enough to cause concern during the calibration period: 2003 and 2006. Additional 
information from these events could be used to inform later drawdowns, such as in 2016. Without 
any further analysis, this model would predict cracking of the dam during the 2016 low water, but 
it is difficult to ascertain the degree of damage. Since the 2016 low water is lower than has 
previously been experienced, the predictions at this time may be worse than at higher pools, 
particularly if damage to the dam occurred, which could affect future response. 
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ABSTRACT: The double curvature arch dam, located in the south of France, proposed for the 
16th International Benchmark Workshop on Numerical Analysis (theme A) was numerically 
studied using computational modules based on finite element method developed by the 
authors for dam analysis. The dam behavior was also assessed with regression based separation 
of effects models (SEM), following a hydrostatic-seasonal-temperature approach, taking also 
into consideration the predictions obtained with the finite element analysis that was carried 
out. Given that the developed numerical modules adopt preferentially 2nd order 20 node brick 
elements, a new numerical model of the dam and its foundation was built from the geometry 
files given by the organizing committee. The developed finite element model considered the 
contraction joints and the dam/foundation interface. A thermal analysis was initially carried 
out, using a transient analysis model, followed by several mechanical analyses including the 
gravity load, the hydrostatic pressure and the temperature variations resulting from the 
thermal analysis. Different nonlinear models were considered at the dam/foundation interface 
and at the contraction joints, and two different contact interface approaches were adopted, 
hard and soft contact approach. Results of the sequentially coupled thermal/mechanical 
numerical analyses are presented and discussed. Finally, the results of the regression based 
SEM predictions models are also compared, and the relevance of using the finite element model 
inputs in the SEM is discussed.  
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1 INTRODUCTION 

The double curvature arch dam, located in the south of France, was numerically studied using 
computational modules based on finite element (FE) method developed by the authors for 
concrete dam analysis. The dam behavior was also assessed with regression based separation of 
effects prediction models (SEM) following a hydrostatic-seasonal-temperature approach, Wilm 
and Beaujoint (1967). In the adopted displacement prediction model, the results obtained with 
the finite element analysis that was carried out were incorporated in the SEM, Silva Gomes and 
Silva Matos (1985) and Rodrigues et al. (2021). 

The thermal numerical analysis was carried out with the numerical module PAT, Schclar Leitão 
(2011) and Castilho et al. (2018) which adopts a transient analysis, including Dirichlet boundary 
conditions (concrete/water and foundation/water) and Robin boundary conditions (concrete/air 
and rock/air interfaces). The mechanical analysis was carried out with two different numerical 
models, the finite element module Parmac3D, Azevedo & Câmara (2015) which uses an explicit 
solution algorithm based on the central difference method and a dynamic relaxation algorithm 
for static convergence, and adopts a soft contact approach for the interface finite element models 
and a FE module, PAVK, Schclar Leitão (2021), that adopts a global matrix static solution approach 
using a Newton-Raphson algorithm for nonlinear analysis, following a hard contact approach with 
a high penalty stiffness value for the interface finite element elements.  

Given that both mechanical numerical codes, PAVK and Parmac3D, use preferably 20-node 2nd 
order brick elements, a new finite element model of the dam and its foundation was built from 
the geometry files given by the organizing committee. The contraction joints and the 
dam/foundation interface were included in the developed model. Firstly, a thermal transient 
analysis was carried followed by the mechanical analysis, using sequential coupling. In the 
mechanical module PAVK a zero tensile strength behavior was adopted for both the contraction 
joints and for the dam-foundation interface. In the mechanical module Parmac3D a Mohr-
Coulomb constitutive model with zero tensile strength and zero cohesion was assigned to the 
interface elements representing the contraction joints. For the dam-foundation interface a brittle 
Mohr-Coulomb model with a non-zero tensile and cohesion stress value was adopted. The 
authors have also developed computational models for the hydromechanical model of dam 
foundations, Farinha et al. (2022), but due to time constraints it was decided not to perform an 
analysis of this type for the prediction of piezometric heads and seepage flowrates.  

Results of the coupled thermal/mechanical numerical analyses are presented and discussed. 
Finally, the results of the regression-based SEM models are also presented, and the relevance of 
using the FE model inputs in the adopted SEM is discussed. 

2 FINITE ELEMENT MODEL 

 Model description 
Figure 1 shows the numerical model that was used for both thermal and mechanical analyses. 

The dam is simulated by a group of finite element elastic blocks separated by joints, which 
represent vertical contraction joints. For the mechanical analysis, the arch dam was divided into 
13 blocks separated by radial vertical contraction joints. 

The dam body is discretized with 606 2nd order hexahedral finite elements, with 264 2nd order 
8x8 node zero thickness interface elements to model the contraction joints, corresponding to a 
total of 6241 nodal points. The foundation is divided into three zones, left bank (Z1), bottom of 
the valley (Z2) and right bank (Z3), corresponding to a total of 1936 2nd order hexahedral finite 
elements and 12563 nodal points. The dam/foundation interface is discretized with 132 2nd 
order 8x8 node zero thickness interface elements. As shown in Figure 1, The dam comprises three 
layers of 20 node solid elements through its thickness. 
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Figure 1.  Numerical model for thermal and mechanical finite element analysis. 
 

 Material properties and boundary conditions 
The material properties considered for both the thermal and the mechanical analyses follow 

closely the reference values defined in the benchmark. A thermal expansion of 1.0x10-5/Cº was 
adopted for concrete, which is the usual value adopted in Portugal for dam concrete, Schclar 
Leitão (2021). Several mechanical parametric studies were carried out using different Young 
modulus for the concrete dam and for the foundation, but it was decided to present only the 
results that adopted mechanical values close to the adopted in previous dam assessments, 
according to the benchmark organizers. In our point of view in order carry out a comprehensive 
numerical study it would be necessary to know the observed displacement field in more locations 
and to have more details regarding the dam concrete and its foundation. A linear elastic isotropic 
model was adopted for the foundation, given that the adopted mechanical modules do not have 
the ability to model an orthotropic material.  

9+
5.

6 
m

a) 2nd order 20 node brick 
isoparametric elements 
representing the dam and its 
foundation (Z1 – Left bank, Z2 – 
Valley bottom and Z3 – Right bank) 

 

b) 2nd order 8x8 node zero thickness 
interface finite elements 
representing the dam/foundation 
interface and the contraction joints. 

 

c) Observation points – Pendulum 
CB2 and CB3, including the adopted 
radial direction and foundation 
extensometer C4-C5. 
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Table 1 and Table 2 present, respectively, the adopted material properties for the volume finite 
elements and for the interface finite elements, module Parmac3D. In the mechanical module 
PAVK, a hard contact approach was adopted with a high penalty value of 2200 GPa/m for the joint 
interface normal and shear stiffness. 

In the mechanical module (Parmac3D) a Mohr-Coulomb constitutive model with zero tensile 
strength and zero cohesion with a friction angle of 45º was assigned to the interface elements 
representing the contraction joints. For the dam-foundation interface a brittle Mohr-Coulomb 
model with a non-zero tensile stress (2.0 MPa) and a nonzero cohesion stress (6.0 MPa) with a 
friction angle of 45º value was adopted. 
 
Table 1. Material properties of the volume elements. 

Material Young’s modulus Poisson´s ratio Density 
 E (GPa) ν (-) ρ (kg/m3) 

Concrete 22.0 0.20 2400 
Foundation - left bank (Z1) 1.0 0.20 2700 
Foundation - Valley bottom (Z2) 1.0 0.20 2700 
Foundation - right bank (Z3) 10.0 0.20 2700 

 
Table 2. Material properties of the joint elements – Module Parmac3D. 

Interface Normal stiffness Shear stiffness 
 kn (GPa/m) ks (GPa/m) 
Concrete/Concrete 220.0 88.0 
Concrete/Foundation (Z1) 10.0 4.0 
Concrete/Foundation (Z2) 10.0 4.0 
Concrete/Foundation (Z3) 100.0 40.0 

 
In the mechanical analysis the nodal displacements at lateral boundaries of the foundation and 

at the base of the foundation were prevented in module Parmac3D simulations and in the PAVK 
simulations only the node displacements at the base of the foundation were prevented. 

In the thermal analysis, all air-exposed boundaries were subjected to convection heat transfer 
boundary conditions, and, in the case of dam surfaces, solar radiation flux absorption boundary 
conditions were also applied. Specified water temperature boundary conditions were applied at 
the upstream nodes below the water. Adiabatic boundary conditions were applied at the lateral 
boundary of the rock mass foundation. Bottom nodes of the foundation were prescribed with a 
temperature of 4 °C. 

In the convection boundary condition, the air temperature T_b was introduced as a table of 
discrete values and the given convection coefficient of 13 W/(m2 K) was used.  

In the solar radiation boundary condition, the radiative model reported by Kumar et al (1997) 
was applied. To this aim, it was considered that the downstream face of the dam faces South 
West with its axes forming an angle of 37° with the South, a geographical location of 42.58ºN, 
1.895ºE and an absorption coefficient of 0.65. Since the Kumar’s model is a clear sky model, that 
is, under cloudless sky conditions, the beam irradiance was reduced by a factor of 0.30 each time 
that the rainfall was greater than 10 mm. 

For the definition of the water temperature boundary, that is, the elements above or below 
the water, a discretization of the level of the reservoir in bands compatible with the mesh was 
adopted. 

 Numerical analysis sequence 
The thermal analysis started in 1995 and a fully implicit solution procedure was used with a 

one hour time step. The thermal analysis allowed the definition of the thermal field in the 
concrete dam and foundation every forthnight from the 1st of January of 2000 to the 31st of 
December of 2017. 

In the mechanical analyses that were carried out the gravity loading, the hydrostatic pressure 
and the thermal field were applied at each loading stage that represent a 15 days behaviour. In 
the nonlinear analysis, a dynamic relaxation algorithm using an explicit central difference scheme 
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was adopted at each load step in the Parmac3D module and a Newton Raphson algorithm was 
adopted in the PAVK computational module that adopts a global stiffness matrix static solution. 

3 MODEL OF SEPARATION OF EFFECTS 

 Model description 
A Separation of Effects Model (SEM) based on a hydrostatic-seasonal-time (HST) model, Wilm 

and Beaujoint (1967), was adopted for the prediction of the observed data (pendulum and 
foundation displacements, piezometric head and total seepage flowrate). As mentioned before, 
in the prediction of the displacement fields, the results obtained with the finite element analysis 
that was carried out were incorporated, Silva Gomes and Silva Matos (1985) and Rodrigues et al. 
(2021), namely the numerical displacement predicted at the points of observation due to the 
imposed temperature field assuming an elastic behaviour. The adoption of the FE elastic 
prediction due to the temperature field was found to lead to a better agreement between the 
SEM model prediction and the observed data. The incorporation of the FE predictions within a 
SEM model requires that a FE model is available and that the numerical results are constantly 
updated with the new water level and temperature values. The adopted SEM was based on the 
following functions: 
 

 (1) 

 
The same SEM model was adopted for the long-term and for the short-term predictions using 

the provided data, namely the water level (h), and the monitored data throughout 13 years of 
observation (2000-2012).  

 Warning levels 
The safety margin reference values were chosen according to the team members experience, 

mostly for pendulum displacements interpretation. The warning levels were chosen given the 
standard deviation of the difference between the predicted values, adopting a SEM model, versus 
the monitored data that was supplied by the benchmark organizers. An interval of +- 3 times the 
standard deviation was adopted in all sensors.  

Observed values with a difference from the prediction values higher than 5 times the standard 
deviation should be immediately analyzed. It is important to assess the reason behind this 
difference, which can be due to equipment failure or due to a change in structural behavior that 
was not being included in the prediction model (damage due to swelling) or it can be an 
acceptable behaviour not represented by the model prediction. 

In the analysis that was made for this dam and for the data that was received, it was found that 
a value of +- 3 times the standard deviation significantly reduces the days with warning levels 
along the 2000-2012 monitoring period. It was assumed that the monitored behaviour between 
2000 to 2012 was a normal behaviour. To point out that an interval of +- 3 times the standard 
deviation is meaningful when the SEM predictions are in excellent agreement with the observed 
data, which as is later shown does not occur when analysing the seepage observed data, 
nevertheless a similar value was adopted.   

4 MAIN RESULTS 

 Finite element predictions 
Figure 2 compares the displacement field FE predictions from the 1st of January 2000 to the 

31st of December 2012 with the pendulum observed data. It is shown that the PAVK elastic 
mechanical model predicts a response in close agreement with the Parmac3D mechanicals 
models (elastic and nonlinear). From the obtained numerical results it is clear that the different 
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support conditions adopted in each mechanical model do not have a meaningful influence on the 
predicted response. Nevertheless, the nonlinear response predicted with the PAVK module does 
lead to a slightly different response, which was expected as the nonlinear behaviour adopted in 
the dam/foundation interface is much more brittle (no tensile strength or cohesion for positive 
gap) than the model adopted in the PARMAC3D nonlinear mechanical model (maximum tensile 
strength and cohesion values up to failure).  

The predicted pendulum numerical responses have a reasonable agreement with the observed 
data. Given the time constraints it was decided not to perform a parametric study in order to find 
the mechanical parameters that lead to a better agreement with the observed data. For this type 
of analysis, it is important to have more than one pendulum lines observations in order to proper 
calibrate the dam and the foundation elastic properties. 

Regarding the foundation displacement sensor C4-C5, Figure 3, it is possible to observe that 
the Parmaca3D mechanical models, elastic and nonlinear, predict a numerical response closer to 
the observed data than the response predicted with the PAVK mechanical models. This is due to 
the fact that in the Parmac3D mechanical module a soft contact approach is adopted, and the 
dam/foundation interface has a much higher deformability, when compared to the PAVK module. 
A similar result would have been obtained with the PAVK module if a more discretized foundation 
was adopted closer to the dam/foundation interface with a lower Young’s modulus. A soft contact 
approach is from the physical point of view less rigorous, but it has the advantage of allowing the 
interface to contribute to the overall displacement field, which sometimes can lead to a better 
numerical prediction with a less refined discretization when compared with mechanical modules 
that adopt a hard contact approach.  

 

  
a) Pendulum CB2 

  
b) Pendulum CB3 
Figure 2.  Observed versus numerical pendulum displacement field time series – 1st of January 2000 to 31st 
of December 2012. 
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Figure 3.  Observed versus numerical displacement field time series – Foundation displacement sensor 
C4-C5 – 1st of January 2000 to 31st of December 2012. 
 

Figure 4 shows the damage at the dam/foundation joint interface integration points predicted 
with the Parmac3D module. Given the adopted brittle interface model, the damage is either 1, 
cracked integration point, or 0, which means that the integration point is still under an elastic 
behaviour. It can be seen that the Parmac3D nonlinear model predicts an extensive cracking at 
the dam/foundation in the vicinity of the right bank (foundation zone Z3). To further understand 
if this really occurred it would be important to analyse data collected in monitoring equipment 
installed in this area. 

The presented finite element predictions clearly show that the thermal/mechanical coupled 
response in the linear regime can be performed with the available modules. Similar results have 
also been obtained within viscoelastic and damage regime. In our point of view the principal 
numerical focus should be in the development of models that also consider the hydromechanical 
response, Braga et al. (2022). 

  
Figure 4.  Damage distribution at the dam/foundation interface predicted with the mechanical module 
Parmac3D – Nonlinear model – 31st of December 2017. 

 Separation of effects predictions 
Figure 5 shows the pendulum displacement field SEM calibration period and the SEM 

predictions from the 1st of January 2012 to the 31st of December 2017, following the usual HST 
approach (SEM.HST) and a hybrid approach adopting the FE analysis radial displacement field 
associated to the temperature field as the function representing the temperature effect (f2 (t)). 
Figure 5 also shows the observed data from the 1st of January 2000 to the 31st of December 2012 
adopted to calibrate the SEM model through a regression analysis. With the introduction of the 
FE predicted radial displacement the correlation coefficient was slightly increased from 0,93 to 
0,95, as shown in Figure 5, where the SME.HST.FE slightly higher peaks are predicted when 
compared with the traditional SEM model. 
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Figure 5.  Observed versus SEM prediction pendulum CB2 displacement field time series – Calibration: 1st of 
January 2000 to 31st of December 2012 – Prediction: 1st of January 2013 to 31st of December 2017. 

 
Figure 6 shows the radial displacement at pendulum CB2 SEM function associated to the water 

level influence (f1 (h)) and the FE radial displacement predictions adopting the module Parmac3D 
for both a linear and a nonlinear model. It can be seen that with the introduction of the FE 
predicted radial displacement, the water level influence slightly changes, being the SEM.HSM.FE 
predicted curve stiffer for water levels higher than 15 m, when compared to the response 
predicted with SEM.HSM.  

Figure 6 also shows that the adopted FE model, linear and nonlinear, has a significant influence 
on the predicted response. The SEM water level prediction can be used to calibrate the FE 
material properties but a higher number of observed dam displacements and a better description 
of the dam foundation zoning and properties need to be made available in order to proper 
calibrate the FE model. with SEM.HSM. 
 

  
Figure 6.  Pendulum CB2 radial displacement evolution with water level - SEM predictions versus FE 
predictions. 
 

Figure 7 shows the total seepage flowrate SEM calibration period and the SEM predictions from 
the 1st of January 2012 to the 31st of December 2017, following the usual HST approach. For this 
type of data the lowest correlation coefficient of 0,50 showing that the adopted SEM model does 
not satisfactory explain the observed behaviour. Note that in the several attempts that were made 
the rainfall data and the derivative of the water level, Desideri (1985) were adopted in the SEM 
models but it was not possible to obtain a better correlation with the observed data. There is no 
perfect match between the rainfall peaks or 1st derivative peaks with the observed seepage values. 
Nevertheless, a similar SEM model has been shown to give a good agreement for seepage data, 
Farinha (2010), nevertheless for this better agreement it was important to separate the seepage 
values into two more than a zone and also to address the seepage origin. The difficulties in carrying 
out a successful SEM prediction show that the current SEM models for the interpretation of the 
hydraulic response need to be further improved in order to have better predictions. 
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Figure 7.  Observed versus SEM prediction total seepage flow rate time series – Calibration: 1st of January 
2000 to 31st of December 2012 – Prediction: 1st of January 2013 to 31st of December 2017 – Including 
warning levels 

5 CONCLUSIONS 

The double curvature arch dam, located in the south of France, was numerically studied with 
thermal and mechanical computer codes purposely developed by the authors for dam analysis. 
The predicted displacement field numerical responses have a reasonable agreement with the 
monitored data. Due to time constraints, it was decided not to perform parametric studies in 
order to obtain an even better agreement. In previous studies where the research team has been 
involved it was found to be important to perform the parametric studies for more than one 
location of pendulum lines.  

The difference between a soft contact approach and a hard contact approach for the interface 
elements was discussed. It was shown that even if a soft contact approach is not as physically 
correct as the hard contact approach, it can lead to a better overall agreement. Nevertheless, the 
results show that in the vicinity of the dam/foundation interface a more refined discretization 
with lower Young’s modulus should be adopted in order to have a better agreement with the 
observed response at the dam foundation. 

The presented finite element predictions clearly show that the thermal/mechanical coupled 
response in the linear regime can be performed with the available modules. Similar results have 
also been obtained within the viscoelastic and damage regime. In our point of view the principal 
numerical focus should be in the development of models that also consider the hydromechanical 
response. 

The dam behavior was also assessed with separation of effects regression based prediction 
models following a hydrostatic-seasonal-temperature approach. During the displacement 
analysis it was found to be relevant to adopt in the SEM model the results obtained with the finite 
element analysis, namely the response obtained with an elastic model for the imposed 
temperature field. The prediction analysis that was performed also shows that the current SEM 
models for the interpretation of the hydraulic response need to be improved in order to have 
better predictions.  
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ABSTRACT: The paper presents a study carried out to predict the response of some parameters 
measured on a concrete arch dam through statistical model, proposed as theme A in the frame 
of the 16th International Benchmark Workshop on Numerical Analysis of Dams. The prediction has 
been carried out using an ensemble model combining a linear regression model and a SARIMA 
model. The prediction has been performed for the displacement of two pendulums located at 
different levels, the opening of a crack on the foundation and a piezometric level.   
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1 INTRODUCTION 

As part of the innovation and digitalization process of ENEL Green Power hydroelectric plants, 
the PresAGHO (Predictive System and Analytics for Global Hydro Operation) project was launched 
in September 2018, aimed at developing a predictive diagnostic process integrated into the 
maintenance process. In this context, starting from 2020 the project was extended to civil works, 
and the platform called "Dam Behavior" was developed with the aim of making available an 
integrated system for data quality analysis and structural measures processing for large dams, 
allowing predictive analysis and anomalies detection in the time series of the parameters. The 
algorithms used in “Dam Behavior” at the moment considers two models, one based on a 
multivariate analysis through a linear regression model, whereas the second is a SARIMA model. 
The two models are considered with different weights depending on the type of parameter 
analyzed, and its correlation with the cause parameters. The aims of the of the “Dam Behavior” 
platform is to perform anomaly detection using models which do not require a significant effort 
by the user in terms of model definition. For such reason, the models used consider a limited 
number of cause parameters and the required input are minimized. Consequently, this may result 
in a little less accurate model, nevertheless simple and reliable, that can be applied to a wide 
range of different parameters. To perform this “model generalization” in linear regression model, 
when the cause-and-effect parameters are not strongly correlated, it is necessary to preprocess 
the data applying a procedure of de-seasoning, which will be described in the section 3, to 
account for the seasonal effects.  

To apply the procedure developed in the Enel “Dam Behavior” platform, to the prediction of 
the response of the double curvature arch dam proposed in the Theme A for the 2022 ICOLD 
International Benchmark Workshop on Numerical Analysis of Dams, an ensemble model will be 
defined combining, using a weighted average, the SARIMA and linear regression model. The 
weights are defined based on engineering judgement depending on the parameter considered. 
The algorithms have been implemented in Python environment. The typical interval of period 
considered in the “Dam Behavior” platform is of a yearly seasonal cycle, backwards or forward 
with respect to the day of analysis depending if the interest is on anomaly detection, by 
comparing model and measures, or a true prediction if the interest is on the definition of 
threshold of the measures accounting for seasonal contribution (i.e., dynamic threshold). It is 
worth notice that a “true prediction” implies that the cause parameters (e.g., water level, 
temperature, etc.) are unknown, in this case the use of a univariate model, such SARIMA, may 
help to reduce the epistemic uncertainty.  

The characteristics of the dam, the monitoring system and the available measurements are 
included in the paper of the formulator and will not be repeated in this paper for sake of brevity. 
The prediction has been performed for the radial displacement of two pendulums located at crest 
and foundation levels in the central block of the dam, the opening of a crack on the foundation 
and a piezometric level. 

2 DESCRIPTION OF THE STATISTICAL MODEL  

The prediction of the response of the arch dam parameters is performed through an ensemble 
model, obtained combining a linear regression model with a time series forecasting method using 
SARIMA algorithm. The two models are combined through a weighted average, whose weights 
are defined based on engineering judgement depending on the parameter considered as 
described below. 

One of the algorithms used for the prediction of the dam parameters is the regression analysis, 
which represents a statistical approach to predict the values of one or more dependent variables 
Y (i.e., defined predicted or estimated, corresponding to the effect parameters) from a set of 
independent variables X (i.e., defined predictive, corresponding to the cause parameters). Linear 
regression is one of the basic algorithms of supervised machine learning techniques. A linear 
regression with multiple variables was used (i.e., multivariate linear regression). The estimated 
value (𝑌𝑌�) through a multivariate linear regression can be expressed by the relation: 

𝑌𝑌� = 𝛽𝛽𝑡𝑡 + ∑ 𝑋𝑋𝑗𝑗 ∙ 𝛽𝛽𝑗𝑗
𝑡𝑡
𝑗𝑗=1  (1) 
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The term linear refers to the sum of the model parameters (βj), each of which is multiplied by 
a single predictive variable (Xj). By including the unit constant among the predictive variables 
(i.e., 𝑋𝑋 = �1, 𝑋𝑋1,  𝑋𝑋2, … ,𝑋𝑋𝑡𝑡�), equation (1) can be rewritten in matrix form: 

𝑌𝑌� = 𝑋𝑋 ∙ 𝛽𝛽   (2) 

The unknowns of the problem are constituted by the vector of the coefficients of the model 
(𝛽𝛽𝑇𝑇 = �𝛽𝛽𝑡𝑡 , 𝛽𝛽1,  𝛽𝛽2, … ,𝛽𝛽𝑡𝑡�). There are different methods for the evaluation of the model parameters, 
the "fitting" of linear models is usually carried out by choosing the coefficients β that minimize 
the sum of the squared residuals (least squares method): 

𝑅𝑅𝑁𝑁𝑁𝑁(𝛽𝛽) = ∑ �𝑦𝑦𝑎𝑎 − 𝑒𝑒𝑎𝑎 ∙ 𝛽𝛽�
2𝑁𝑁

𝑎𝑎=1   (3) 

One of the predictive parameters is the time, which is considered linearly and is properly 
normalized so that in the training period of the model it varies in an interval between 0 and 1. 
The predictive parameter always considered in the regression is the water level, moreover 
depending on the available data other parameters can be eventually considered, as discussed in 
the in § 1.51. In order to improve the predictive capabilities of the model, additional 
characteristics are considered by means of suitable polynomial expansions. For example, if X1 
represents one of the predictive variables, the additional variables 𝑋𝑋2 = 𝑋𝑋12, 𝑋𝑋3 = 𝑋𝑋13, etc. can 
be considered. 

The time series representing the dam response typically include seasonal effects characterized 
by annual cycles (however, for the most temperature-sensitive parameters, cycles of a shorter 
period, even daily, may also be present). The seasonal component can be conveniently 
represented by a harmonic model through a Fourier series: 

𝑐𝑐𝑡𝑡(𝑡𝑡) = ∑ �𝑚𝑚𝑛𝑛 ∙ 𝑒𝑒𝑐𝑐𝑐𝑐 �
2𝜋𝜋∙𝑛𝑛∙𝑡𝑡
𝑃𝑃

� + 𝑏𝑏𝑛𝑛 ∙ 𝑐𝑐𝑚𝑚𝑙𝑙 �
2𝜋𝜋∙𝑛𝑛∙𝑡𝑡
𝑃𝑃

��𝑁𝑁
𝑛𝑛=1   (4) 

In which P is the period of the series, which for an annual seasonality is equal to 365.25 days, 
while N is the degree of the Fourier series. Expression (4) is a linear function of the coefficients an 
and bn, the resulting linear system can be inverted to derive the coefficients of the Fourier series 
able to describe the seasonal contribution of the analysed time series. As part of the analysis of 
time series characterized by annual seasonal cycles, a value of N equal to 6 is to be considered 
sufficiently precise and furthermore allows no risk of "overfitting". 

The quantification of the seasonal contribution can be used to perform an operation of "de-
seasoning" of the considered time series, which is obtained by subtracting the seasonal 
contribution, obtained from the Fourier series described above, from the time series of the 
considered parameter. Linear regression is performed on the time series after de-seasoning, with 
the advantage of limiting the predictive variables to the normalized time and the basin level, 
including the required polynomial expansion, but excluding the temperature. After the 
regression, the seasonal contribution is added to the effect parameter to obtain the complete 
model. The operation of de-seasoning is typically required when the correlation between the 
effect parameter considered and the basin level is not very high, let say less than 0.85÷0.9.  This 
procedure was developed and tested specifically within the “Dam Behavior” platform. Figure 1 
shows as example the seasonal contribution of the water level. 

 
 
 
 
 
 
 
 
 
 

Figure 1.  Seasonal contribution of the water level 
 
The second algorithms used for the prediction is a Seasonal Autoregressive Integrated Moving 

Average (SARIMA) model, which is well known algorithm developed for univariate time series 
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forecasting with a seasonal component. For the mathematical details, the interested readers may 
refers to the wide technical literature on this topic. The SARIMA model tool is implemented in the 
statsmodels module of Python. Seasonal ARIMA models are usually denoted as 
ARIMA(p,d,q)(P,D,Q)m, where p is the order (number of time lags) of the autoregressive model 
(AR), d is the degree of differencing (the number of times the data have had past values 
subtracted) (I), and q is the order of the moving-average model (MA), m refers to the number of 
periods in each season, and the uppercase P,D,Q refer to the autoregressive, differencing, and 
moving average terms for the seasonal part of the ARIMA model (Hyndman & Athanasopoulos, 
2018). SARIMA requires a set of data with constant frequency, for such reason the time series has 
been resample considering a weekly periodicity, furthermore to obtain the values in the desired 
timestamp a liner interpolation has been carried out.  

The order of the SARIMA model has been set to (1,1,1) (0,1,1) with 52 periods in each season, 
the order has been maintained equal for each parameter analysed. They are selected based on 
an extensive analysis on the ENEL “Dam Behavior” platform because represents a good 
compromise between simplicity of the model and accuracy of the results. For the set of 
parameters considering in this work, the “autoarima” function has been used to obtain the best 
order of the SARIMA model, however the improvement of the fitting in negligible.  

 Despite the fact that the SARIMA is a univariate model, under particular conditions the use of 
SARIMA model provides a reliable alternative to the linear regression model and it is able to 
reduce the epistemic uncertainty. In order to identify the weight of the SARIMA algorithm in the 
ensemble model, two aspects are to be taken into account: the dependence of the water level 
and the duration of the period of prediction. Particularly, the use of SARIMA is more reliable when 
the effect parameters considered has Pearson correlation with basin level less than 0.85. Under 
such conditions, the response of the dam is affected by thermal effects, and it is characterized by 
a strong seasonal contribution, which can be properly captured by the SARIMA algorithm. This 
could be the case of the crest radial displacement of a concrete arch dam. Moreover, the use of 
SARIMA should be limited to the prediction not exceeding the yearly seasonal cycle, also in 
relation of the autoregressive nature of the algorithm which is more conditioned by the last part 
of the training period. It is worth notice that the limitation of the prediction period to not more 
than 20% of the length in the training period represents in general a good role for any kind of 
model, for such reason the 5-year prediction for the case C of this benchmark represents a 
challenging task. 

Based on the previous consideration, the weights of the linear regression and SARIMA model 
used to define the ensemble model are defined based on engineering judgement. Particularly, 
when the effect parameters considered has Pearson correlation with basin level higher than 0.85, 
the weight of the SARIMA model is limited to less than 10%, in other conditions the weight of the 
SARIMA model can be larger. Such weight can be eventually differentiated under short- and long-
term conditions, with lower weight in the last case. The selected weights will be discussed in § 38 
in relation to the effect parameter considered.  

The warning levels are evaluated considering 95% confidence intervals of the ensemble model. 
In relation to the Gaussian distribution of the residual, the 95% band of confidence are 
constructed considering 1.96 standard deviations of the mean. This choice can be considered a 
good balance, because avoid narrow thresholds, which may result in false anomalies, as well as 
wide ranges, which are not able of a prompt detection of unexpected behaviour, malfunctioning 
sensors, etc.  

 Analysis of the available measurement and modelling assumptions 
The data used for the analysis are included in the excel file named ‘ThemeA_data_fmt03.xlsx’ 

pre-processed by the formulators, which includes all variables in one sheet with a common time 
vector in the format dd/mm/yyyy. 

The first step to identify the key parameters to be included in the statistical model was the 
analysis of the correlation among the available parameters. Figure 2 shows the correlation matrix 
which allows to clearly identify that there is a set of parameters, such as the piezometric levels 
and the crack opening displacement that are strongly correlated with the water level, moreover 
also the radial displacement of the pendulum at the foundation has a high correlation with water 
level.  
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Figure 2.  Correlation matrix between the available measures 
 

The behaviour of a concrete arch dams is mainly governed by the ambient variation in temperature 
and water level. This can be inferred also by observing the moderate correlation between the radial 
displacement of the pendulum at the crest and water level. If the water level can be included in a 
statistical model directly in an easy way, accounting for the effects of the temperature is more 
complex, due also to the inertial characteristics of the dam. The thermal effects strongly affect the 
seasonal contribution of the response, especially for thermal sensitive parameters of a concrete dam, 
e.g. the crest radial displacement.  For the Theme A of the benchmark two temperature time series 
has been provided (namely T_a and T_b). T_a measurements are carried out according to the 
standard of WMO (World Meteorological Organisation) and are located 50 km from the dam, 
however at a different altitude. T_b is calculated by interpolation from several air temperature 
measuring stations. The interpolation takes into account the altitude of the dam and is calculated on 
a mesh of 1 square kilometre. Both T_a and T_b are not measured at the location of the dam, for such 
reasons the statistical model considered for this work does not include the temperature as input 
parameter, because when required, the seasonal contribution is considered through the “de-
seasoning” procedure described in the previous section.  

Among the available cause parameters, the rainfall does not show a high level of correlation with 
any parameters and after a check to exclude specific influence on the interested parameters, it will 
not be considered in the analysis. Moreover, the measures came from a rain gauge located about 5 
km from Dam, it is not able to capture local phenomenon which may eventually affect the response 
of the dam. For such reason is not used in the statistical model. 

Summarizing, the cause parameters considered in all the effects parameters for linear regression is 
only the water level, and consequently the related input parameter considered is the degree of the 
polynomial expansion. Moreover, in the cases in which there is moderate correlation between the 
effect parameter considered and water level (i.e. Pearson correlation less than 0.85÷0.90), the linear 
regression is preceded by a “de-seasoning” procedure to account indirectly of the thermal effects 
induced by the seasonal cycle. Under such conditions the degree of the Fourier series is required. 

The time series of the water level in the prediction period shows some interval in which the water 
level is below the toe of the dam, this aspect needs to be taken into account in the model for two 
reasons. The former of mathematical nature, it is related to the fact that only in few situations in the 
training period the water level goes below the foundation level, consequently the statistical model is 
not well constrained below that value. This means that using a polynomial expansion for the water 
level, in the prediction period below some level, the polynomial contribution is outside the calibration 
interval, that means extrapolation of the data which can lead to unrealistic results. Moreover, there is 
a physical aspect related to the fact that the dam is located on the top of a glacial threshold, and 
therefore when the water level is lower than 196 m, the whole upstream surface is exposed to 
ambient air temperature. Under such condition, the water level must not affect the response of the 
dam. To account for this aspect in the statistical model a modified water level is considered, which is 
obtained from the measured values but considering a constant value below a limit water level. This 
limit has been selected equal to 195 m, and it is considered the same for each parameter analysed. 
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The selected value corresponds to the position of some instruments such as the top of pendulum CB3, 
the head of the crack opening displacement sensor as well as of the piezometer PZCB2. 

The period of calibration of the model may affect the goodness of fit in the training period and 
consequently is considered an input parameter of the model and it will be selected depending on the 
parameter considered. 

The statistical models have been developed for the two radial displacements of the pendulums, at 
crest and foundation level, for the crack opening displacement named C4_C5, and for the piezometric 
level PZCB2. Conversely, the prediction model is not performed for the piezometric level PZBC3, 
because a leakage in the standpipe of piezometer was found in the past, and a cleaning of the drainage 
system was carried out. For such reason, the time series of piezometric level PZBC3 contains missing 
values in a certain interval of time and a change in the trend. Moreover, also the prediction model of 
the seepage is not performed. 

3 MODELLING RESULTS 

The Theme A is organised into three Cases, in accordance with the period of analysis: 
• Calibration (Case A): 2000-2012. 
• Short term prediction (Case B): January 2013 - June 2013 
• Long term prediction (Case C): July 2013 - December 2017 

The following sections describes the results of the statistical models for the parameters 
considered for the three cases listed above. 

 Pendulum displacement - CB2_236_196 
The instrument named CB2_236_196 represents the radial displacement of the pendulum in 

the central block (CB) of the dam, between the altitudes 236 m (just under the crest Dam) and 
196 m (toe of Dam). The unit of radial displacement is mm, and an increasing of the value 
indicates a movement of the highest point in the downstream direction. 

The Pearson correlation between the radial displacement of the pendulum at the crest and the 
water level is equal to 0.62, as expected the correlation is not very high because the radial 
displacement of the crest of an arch dam is governed by the combination of both hydrostatic and 
thermal effects. For such reason, the linear regression is performed after the operation of the de-
seasoning of the radial displacement and water level time series. The degree of the Fourier series 
of seasonal contribution is equal to 6, Figure 3 shows the yearly seasonal component obtained 
through equation (4), as well all the box plot with quartiles, whiskers bar with the 5÷95 percentiles 
and outliers. The prediction is performed separately for the short and long period, in the short 
period, the weight of SARIMA contribution in the ensemble model is assumed equal to 0.4 and 
the degree of polynomial expansion of the water level in the linear regression is equal to 3. 
Conversely for the long period the weight of SARIMA contribution in the ensemble model is 
limited to 0.1 and the degree of polynomial expansion of the water level in the linear regression 
is equal to 2. The training period considers 12 years of measures.  

Figure 3.  Seasonality of radial displacement of pendulum CB2_236_196 - High: Box plot with quartiles, 
whiskers bar with 5÷95 percentiles and outliers; Low: Yearly seasonal component obtained through Fourier 
series. 
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Table 1 summarizes the input data of the ensemble model as well as the goodness of fit 
parameters in the training period in terms of coefficient of determination (r2) and normalized 
root mean square error (NRMSE). Figure 4 shows the calibration of the pendulum crest radial 
displacement model (Case A) with the comparison between model and measure, as well as the 
corresponding residual distribution. Figure 5 shows the water level and radial displacement of 
pendulum (CB2_236_196) in the short- and long-term prediction period (Case B and Case C).  
 

Figure 4.  Case A – Calibration: radial displacement of pendulum CB2_236_196, comparison between model 
and measure and corresponding residual distribution. 
 
Table 1. Parameter CB2_236_196: input data of the model and goodness of fit parameters in the training 
period. 

Prediction Training 
per. (year) 

weights De-seasoning / 
Fourier deg. 

Pol. exp. 
deg. r2 NRMSE 

period Lin. Regr. SARIMA 
Short 12 0.6 0.4 Yes / 6 3 0.926 0.059 
Long 12 0.9 0.1 Yes / 6 2 0.880 0.075 

Figure 5.  Case B and Case C, short- and long-term prediction: water level and radial displacement of 
pendulum CB2_236_196. 

 Pendulum displacement - CB3_195_161 
The instrument named CB3_195_161 represents the radial displacement of the pendulum in the 
central block (CB) of the dam, between the altitudes 195 m (in the foundation) and 161 m. The 
unit of radial displacement is mm, and an increasing of the value indicates a movement of the 
highest point in the downstream direction. 
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The Pearson correlation between the radial displacement of the pendulum at the foundation 
and the water level is equal to 0.9, the correlation is rather high indication of the fact that the 
bottom part of the dam is not affected by the arch behavior of the dam as in the upper part, and 
the hydrostatic component are the predominant effects. For such reason it is not necessary to 
perform the operation of the de-seasoning. The linear regression is performed considering as 
only cause parameter the water level, with a degree of polynomial expansion equal to 3, the 
training period considers 10 years of measures. The ensemble model is obtained considering a 
weight equal to 0.9 for the linear regression model, whereas a weight of 0.1 is assumed for 
SARIMA contribution, the two weights are unchanged in short- and long-term prediction. 

Table 2 summarizes the input data of the ensemble model as well as the goodness of fit 
parameters in the training period in terms of coefficient of determination (r2) and normalized 
root mean square error (NRMSE). Figure 6 shows the calibration of the pendulum foundation 
radial displacement model (Case A) with the comparison between model and measure, as well as 
the corresponding residual distribution. Figure 7 shows the water level and radial displacement 
of pendulum (CB3_195_161) in the short- and long-term prediction period (Case B and Case C). 

Figure 6.  Case A – Calibration: radial displacement of pendulum CB3_195_161, comparison between model 
and measure and corresponding residual distribution. 
 
Table 2. Parameter CB3_195_161: input data of the model and goodness of fit parameters in the training 
period. 

 Training 
per. (year) 

weights De-seasoning 
/ Fourier deg. 

Pol. exp. 
deg. r2 NRMSE 

Parameter Lin. Regr. SARIMA 
CB3_195_161 10 0.9 0.1 No / - 3 0.889 0.090 

Figure 7.  Case B and Case C, short- and long-term prediction: water level and radial displacement of 
pendulum CB3_195_161 
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 Crack opening - C4-C5 
The instrument named C4_C5 represents crack opening displacement at the rock-concrete 

interface, the sensor located in the central block (CB) of the dam measures the opening between 
C4 (in the foundation) and C5 (in the concrete, at the toe of the dam). The unit of crack opening 
displacement is mm, an increasing value of C4_C5 means that the distance between C4 and C5 is 
increasing, and therefore indicates a movement in the downstream direction. 

The Pearson correlation between crack opening displacement at the rock-concrete interface and 
the water level is equal to 0.87, the correlation is rather high for such reason it is not necessary to 
perform the operation of the de-seasoning. The linear regression is performed considering as only 
cause parameter the water level, with a degree of polynomial expansion equal to 3, the training 
period considers 10 years of measures. The ensemble model is obtained considering a weight equal 
to 0.95 for the linear regression model, whereas a weight of 0.05 is assumed for SARIMA 
contribution, the two weights are unchanged in short- and long-term prediction. 

Table 3 summarizes the input data of the ensemble model as well as the goodness of fit 
parameters in the training period in terms of coefficient of determination (r2) and normalized root 
mean square error (NRMSE). Figure 8 shows the calibration of the crack opening displacement 
model (Case A) with the comparison between model and measure, as well as the corresponding 
residual distribution. Figure 9 shows the water level and crack opening displacement (C4_C5) in the 
short- and long-term prediction period (Case B and Case C). 

Table 3. Parameter C4_C5: input data of the model and goodness of fit parameters in the training period. 

 Training 
per. (year) 

weights De-seasoning 
/ Fourier deg. 

Pol. exp. 
deg. r2 NRMSE 

Parameter Lin. Regr. SARIMA 
C4_C5 10 0.95 0.05 No / - 3 0.920 0.089 

Figure 8.  Case A – Calibration: crack opening C4_C5, comparison between model and measure and 
corresponding residual distribution. 

Figure 9.  Case B and Case C, short- and long-term prediction: water level and crack opening C4_C5. 
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It is worth notice that the crack opening C4_C5 is strongly correlated with both the piezometric 
level PZCB2, as well as to the radial displacement of the pendulum at the foundation (CB3_195_161). 
The crack opening represents a good indication of the response of the rock mass at the foundation in 
terms of both deformability and hydraulic conductivity. For such reasons could be a good proxy to 
improve the statistical model the piezometric level PZCB2 and radial displacement of the pendulum 
at the foundation (CB3_195_161), unfortunately it is not available in the prediction period, otherwise 
it can be eventually used as additional cause parameter. 

 Piezometric level - PZCB2 
The instrument named PZCB2 represents the piezometric level measured through a vibrating wire 

piezometer at the rock-concrete interface in the central block of the dam. The unit of piezometric levels is 
meter (m). 

The Pearson correlation between the piezometric level PZCB2 and the water level is equal to 0.92, the 
correlation is rather high for such reason it is not necessary to perform the operation of the de-seasoning. 
The linear regression is performed considering as only cause parameter the water level, with a degree of 
polynomial expansion equal to 2, the training period considers 13 years of measures. The ensemble model 
is obtained considering a weight equal to 0.9 for the linear regression model, whereas a weight of 0.1 is 
assumed for SARIMA contribution, the two weights are unchanged in short- and long-term prediction. 

Table 4 summarizes the input data of the ensemble model as well as the goodness of fit parameters in 
the training period in terms of coefficient of determination (r2) and normalized root mean square error 
(NRMSE). Figure 10 shows the calibration of the piezometric level model (Case A) with the comparison 
between model and measure, as well as the corresponding residual distribution. Figure 11 shows the water 
level and piezometric level (PZCB2) in the short- and long-term prediction period (Case B and Case C). 

Table 4. Parameter PZCB2: input data of the model and goodness of fit parameters in the training period. 

 Training 
per. (year) 

weights De-seasoning 
/ Fourier deg. 

Pol. exp. 
deg. r2 NRMSE 

Parameter Lin. Regr. SARIMA 
PZCB2 13 0.90 0.1 No / - 2 0.957 0.061 

Figure 10.  Case A – Calibration: Piezometric level PZCB2, comparison between model and measure and 
corresponding residual distribution. 

Figure 11.  Case B and Case C, short- and long-term prediction: water level and Piezometric level PZCB2 
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ABSTRACT: Predictive models based on boosted regression trees were fitted for computing the 
response of an arch dam in terms of radial displacements, joint opening, piezometric levels and 
seepage as a function of time series of external variables: water level, air temperature, rainfall 
and time. A generic procedure was followed for all outputs, supported by two software tools 
developed by the authors. Warning levels were generated based on the residuals. The analysis of 
the models showed the effect of the main loads, the thermal inertia for radial displacements, and 
changes over time for piezometric levels due to the cleaning of the drainage system performed 
in 2008. 
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1 INTRODUCTION 

This document describes the process followed in response to Theme A proposed in the frame 
of the 16th International Benchmark Workshop on Numerical Analysis of Dams organized by the 
International Commission on Large Dams (ICOLD). The text focuses on the methods and tools 
used. Details about the proposed problem can be consulted in the description of the Theme and 
are therefore omitted here. Both the predictions and the interpretation were generated by 
means of two software tools previously developed by the authors for data visualization and 
preprocess1 and for fitting models based on machine learning (ML)2.  

2 METHODS 

 Preprocessing 
Among the three versions of the starting data, we chose the file “ThemeA_data_fmt03.xlsx”, 

which includes a common time vector for all variables and one record for each day in the period. 
For those variables with more than one value per day, the data set includes the mean. We 
checked such operation and the completeness of the time series. All preprocessing operations 
were performed using the free online tool “PREDATOR” developed by the authors 0.  

We identified some missing values in the time series of water level, which were filled by linear 
interpolation (Figure 1). We verified that linear interpolation was reasonable, since the missing 
values were isolated. Time series for rainfall and temperatures featured no missing values. Since 
the entire upstream face of the dam is exposed for all values of water level below 196 m.a.s.l., 
we created a modified variable, in which all water levels lower than 196 are replaced by 196. It 
was called “modWL”. Our approach includes generating derived variables: 

• Moving averages of 7, 14, 30, 60 and 90 days for Water Level, modWL, T_a and T_b 
• Cumulative sum of 7, 14, 30 and 60 days for rainfall. 

This strategy allows for capturing delayed effects, such as the thermal inertia of concrete dams, 
as verified in previous works 0. Two additional variables are automatically created by PREDATOR: 
“Year” and “month”. Only the first was used, to account for the time effect. 

Figure 1.  Some of the missing values in the time series of Water_Level. They were all filled by linear 
interpolation with PREDATOR. 

 
Since the records for the period 2013-2017 are not available for the output variables, the 

training data set includes the period 1/1/2000-31/12/12. We saved a data file with that period 
and a separated one to generate the predictions, which only includes the input variables. 
  

 
1 PREDATOR. https://cimnetest.shinyapps.io/PREDATOR/  
2 SOLDIER. https://cimnetest.shinyapps.io/SOLDIER/  

https://cimnetest.shinyapps.io/PREDATOR/
https://cimnetest.shinyapps.io/SOLDIER/
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 Model fitting 

  General approach 
Our predictive models make use of the algorithm “Boosted Regression Trees” (BRT from now 

on). It is an ensemble method, widely applied in different fields, whose theoretical fundamentals 
can be found in the literature (e.g. 0). We chose this algorithm on the basis of the conclusions of 
a previous comparative study among some of the most powerful ML algorithms 0, which were 
evaluated in terms of their accuracy for predicting dam behavior and their easiness of calibration 
and implementation. Further analysis showed its capability for identifying the effect of the loads 
on the response of the dam 0 and for detecting anomalies 0. The algorithm is implemented in a 
free online application for fitting models for dam prediction called SOLDIER 0. 

BRT models are highly flexible, i.e., they deduce the underlying relation between inputs and 
response from the training data without the need for a detailed selection of input variables or 
parameter calibration. This implies that a common process can be followed for generating models 
for predicting outputs of different nature, as is the case (displacements, joint opening, 
piezometric levels and seepage). The addition of irrelevant inputs has a minor effect on the 
predictions of the model. Nonetheless, for this particular case, we included variable selection in 
the process, as described below. 

The application used allows for easily modifying the training and test periods, the input 
variables and the BRT parameters: bag fraction, interaction depth, number of trees and shrinkage. 
Although their effect on the predictive model is moderate, we followed a calibration process for 
each output. 

In addition to the prediction of dam behavior, the organizers also asked for warning thresholds. 
We chose to define them as a function of the model accuracy, as recommended by ICOLD 0. 
Therefore, a reliable estimate of the predictive accuracy is necessary for each model. BRTs always 
overfit to some extent, so computing model accuracy can be tricky. We chose fitting models using 
the period 2000-2010 and evaluating their accuracy on data for the most recent period (2011-
2012). We verified that water level fluctuated along a relevant range in those last two years, 
which implies that the performance of the models for that period is sufficiently representative of 
their general prediction accuracy. 

Fitting a BRT model for the size of the data sets used in the BW typically requires some seconds. 
However, the amount of possible combinations of input variables and model parameters is very 
high. The preprocessed input data includes 32 variables (original and derived variables), which 
means that the amount of possible combinations of inputs is 232-1=4.29x109. If each model took 
10 seconds for training, considering one model for each set of inputs would require 1.98x105 
days. Such process is therefore unfeasible. Instead, we followed a process for variable selection 
and model calibration that includes the following steps: 
1. Interactively try options for each output using SOLDIER and visualize results. The options 

include both the input variables and the BRT parameters. In view of the results, make decisions 
to reduce the amount of possible combinations of inputs and model parameters to analyze. 

2. Select a feasible set of combinations and perform random search model calibration. 
3. Visually verify the candidate models –those with lower predictive error– back with SOLDIER 

 Preliminary interactive exploration 
The first stage involved the following steps: 

1. Fit a model with default training parameters, the period 1/1/2000-31/12/11 and all inputs: 
rainfall, temperature, water level –and their corresponding derived variables– and Year. 

2. Interactively evaluate the effect of the model parameters: interaction depth, shrinkage and 
number of trees. The goodness of fit is evaluated by means of the mean absolute error (MAE). 

3. Check the effect of the input variables with the relative influence and the partial dependence 
plots. 

4. Check the residual distribution and evolution with time. 
Figure 2 shows an example screenshot of the interface showing the mentioned information. 
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Figure 2.  Interface of SOLDIER during model fitting. Target and input variable selection (top left), training 
period and model parameters (bottom left), accuracy measures for training and test (top right) and 
graphical representation of predictions, observations and residuals (bottom right) 
 

As a result of this process, the overall options were narrowed and the following decisions were 
made: 

• T_a and its derived variables were discarded, since T_b systematically resulted in higher 
relevance, i.e., stronger association with the responses. 

• modWL and its moving averages were chosen instead of the raw Water_Level. In this case, 
the difference was moderate. 

• Rainfall was neglected, since had negligible effect in all cases. 
 

 Random search calibration 
This step was performed by means of ad-hoc scripts written in the R programming language. 

For each output, the same process was followed: 
1. 100 combination of inputs were considered with the following criteria: 
2. Time was taken as input in half of the models, and excluded in the others. 
3. modWL and T_b_14 were always taken as inputs.  
4. A random subset of the remaining inputs was taken to complete the input set. 
5. For each set of inputs, all possible combinations of model parameters included in Table 1 were 

used, i.e., 36 versions of the model 
6. As before, models were fitted over the period 2000-2010 and their performance was assessed 

for 2011-2012. MAE was computed both for the training and the test sets. 
7. The models were evaluated on the basis of a score computed with Equation (1), and that with 

lower value was selected. With this criterion, when several models were obtained with similar 
precision in the test set, the one with the highest train error and therefore the lowest risk of 
overfitting was favored. 
 

𝑁𝑁𝑒𝑒𝑐𝑐𝑒𝑒𝑒𝑒 =  𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑤𝑤𝑠𝑠𝑡𝑡 + (𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑤𝑤𝑠𝑠𝑡𝑡  −𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛) (1) 

 
Table 1. BRT Model parameters considered for each combination of inputs 

Parameter Values 
Number of trees 1000, 2000, 3000 

Shrinkage 0.01, 0.005, 0.002 
Interaction depth 2, 3, 4, 5 
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 Final model selection 
The models selected in the previous step, i.e., those with lower score for every output, were 

again loaded in SOLDIER and verified: the accuracy for training and testing, the residual 
distribution and its evolution in time, and the importance of the variables.  

In addition to the visual verification of model accuracy, this step allowed for checking that no 
spurious effects of any input variable were considered. We put special attention on the effect of 
time, which encompasses the information not recorded by the input variables available, and 
which is the input most prone to overfit. In particular, when the best model excluded time as 
input, the final check involved comparing the results with those obtained with a modified model 
adding “Year” to the input set. 

Figure 3.  Interface of SOLDIER for model interpretation. Classification of inputs as a function of their 
relevance on the response (left) and partial effect of the most important inputs (right). 

 
The final models were loaded back in R with another specific script, together with the test data 

for generating predictions. The density functions of the residuals were generated for years 2011 
and 2012 to check normality. The main statistics of the residuals were computed: mean, median, 
standard deviation and quantiles for 0% and 100%. They were all plotted over the histograms of 
residuals. Although residuals followed distributions close to normal for many outputs, this was 
not the case for seepage. We finally decided to take the quantiles for computing the prediction 
intervals. 

We also corrected the bias in predictions by adding the median of the residuals. As a result, 
predictions and warning thresholds were generated as described in Equations (2), (3) and (4). 

 
𝑅𝑅𝑒𝑒𝑐𝑐 = 𝑂𝑂𝑏𝑏𝑐𝑐 − 𝑃𝑃𝑒𝑒𝑒𝑒𝑑𝑑 → 𝑂𝑂𝑏𝑏𝑐𝑐 = 𝑃𝑃𝑒𝑒𝑒𝑒𝑑𝑑 + 𝑅𝑅𝑒𝑒𝑐𝑐 → 𝑃𝑃𝑒𝑒𝑒𝑒𝑑𝑑𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎 = 𝑃𝑃𝑒𝑒𝑒𝑒𝑑𝑑 + 𝑚𝑚𝑒𝑒𝑑𝑑𝑚𝑚𝑚𝑚𝑙𝑙(𝑅𝑅𝑒𝑒𝑐𝑐) (2) 

𝑈𝑈𝑒𝑒𝑒𝑒 =  𝑃𝑃𝑒𝑒𝑒𝑒𝑑𝑑 + 𝑅𝑅𝑒𝑒𝑐𝑐𝑞𝑞100 (3) 

𝐿𝐿𝑐𝑐𝑤𝑤 =  𝑃𝑃𝑒𝑒𝑒𝑒𝑑𝑑 + 𝑅𝑅𝑒𝑒𝑐𝑐𝑞𝑞0 (4) 
 
Where Res = residuals; Obs = Observations; Pred = Predictions; Predcorr = corrected predictions; 

Upp = upper warning threshold; Low = lower warning threshold; Resq100 = Quantile 100 of 
residuals; Resq0 = Quantile 0 of residuals. 
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3 RESULTS AND DISCUSSION 

Since the predictions are the main outcome of the analysis, and they will be evaluated by the 
organizers, only the most relevant aspects of model interpretation are described in this section 
for each output. 

 Displacements 

 CB2_236_196 
The calibrated model included only three inputs: modWL, T_b_01 and T_b_14. The effect of 

the inputs on the displacement agrees with engineering knowledge, i.e., high water level and low 
temperature are associated with higher deformation in the downstream direction, and vice versa. 
The moving average of 14 days or air temperature has more influence than the daily temperature, 
which shows the thermal inertia of the dam. 

 
Figure 4.  Left: relative influence of the selected inputs. Right: combined partial effect of hydrostatic load 
(modWL) and air temperature (T_b_14) on CB2_236_196 

 CB3_195_161 
The final model for the displacement in the foundation is also based on three inputs, but 

T_b_60 is taken instead of T_b_01. Nonetheless, the effect of air temperature is much lower than 
before, as can be expected, since the foundation is less exposed to the variations in ambient 
temperature. As before, adding time as input resulted in similar accuracy.  

 
Figure 5.  Left: relative influence of the selected inputs. Right: partial dependence of the displacements at 
the foundation on the water level (modWL) and air temperature (Tb_60). 
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 Joint opening 
The final set of inputs for joint opening includes several moving averages of both main loads. 

In particular, modWL, modWL60, modWL90, TB_07, TB_14, TB_30, TB_90. In this case, adding 
time as inputs led to lower accuracy for the test set (2011-2012), which means that induced 
overfitting. 

 
Figure 6.  Left: relative influence of the selected inputs on joint opening. Instantaneous water level is by far 
the most important load. As for the air temperature, the effect increases with the period of the moving 
average. Right: combined effect of modWL and Tb_90 shows that the influence of air temperature is more 
important for high water level. 

 Piezometric levels 

  PZCB2 
The calibration process resulted in a model including time as input for PZCB2. This implies that 

the algorithm identified an evolution on the dam response, i.e., for a given combination of water 
level and temperature, the piezometric level changed over time (Figure 7).  

 
Figure 7.  Left: relative influence of the selected inputs on PZCB2. Time (Year) has a relevant effect. Right: 
partial dependence on modWL and time. The algorithm identified a sharp decrease in PZCB2 on 2010 and 
stabilization in 2012. 
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This can be verified by exploring the time series of the measured data, included in Figure 11 in 
the Theme A description, as well as in the scatterplot in Figure 8. 

Figure 8.  Scatterplot of PZCB2 as a function of water level, colored by time. Recent values are lower for a 
given hydrostatic load. 

 
The final model included both modWL and modWL_07, being the latter even more influential. 

This may suggest some inertia in PZCB2 in response to changes in water level. However, we 
verified that changes in predictions were negligible after removing modWL_07. Therefore, the 
higher influence may be a spurious result due to the high similarity between both inputs. 

 PZCB3 
The description of the Theme mentioned a change on PZCB3 in 2008, as well as a period with 

missing data. This change along time was also identified by the algorithm and “Year” was included 
in the input set resulting from the calibration process. The flexibility of BRTs allowed for using the 
same fitting process for this target, for which a clear change was known in advance. Indeed, the 
interpretation of the model (Figure 9 right) shows the mentioned change in 2008. Nonetheless, 
the algorithm also found another change in the last year of the period provided (2012), which is 
also observed in the exploratory plots (Figure 10). 

Figure 9.  Left: relative influence of the selected inputs on PZCB3. Water level is the most important input, 
and its moving averages feature decreasing influence as the period increases. Time (Year) is considered as 
highly relevant. Right: partial dependence on the most relevant inputs. The effect of time shows the known 
change in 2008, but also a shift in 2012.  
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Figure 10.  Verification of the abnormal records of PZCB3 in 2012 by exploration of the period 2010-2012. 
Left: scatterplot. Right: time series. 

 Seepage 
Predictions of seepage were less accurate than those for the remaining targets. Although the 

MAE can be considered acceptable (around 2 l/sec), large errors occurred for high flows (Figure 
11). Water level is clearly the more influential input. However, adding T_b consistently results in 
higher prediction accuracy. This may be due to some effect of temperature in joint opening and 
subsequently in higher leakage flows, but any conclusion is unreliable due to the low reading 
frequency. 

Figure 11.  Scatterplot of Seepage as a function of water level, colored by residual (prediction error). Large 
errors are observed for some high flows. 

 
Although the time series of seepage is noisier than the others, the formulators mentioned no 

anomalies for this variable. As a result, no record was discarded even though some look like 
outliers. For instance, in the period Dec/2008-Mar/2009, seepage gently decreases, apparently 
following the evolution of water level. However, two values higher than 25 l/sec are registered, 
clearly out of the overall trend (Figure 12). 

Figure 12.  Time series of seepage (red dots) and water level (green line) from Dec/2008 to Mar/2009. Two 
records of seepage seem to be out of the general trend. 



Salazar, Irazábal, Vicente 
PREDICTION AND INTERPRETATION OF DAM RESPONSE WITH BOOSTED REGRESSION TREES 

 

166 
 

4 CONCLUSIONS 

Predictive models based on ML (BRTs) for response variables of different nature were 
generated and analyzed with a general process supported by two software tools. The flexibility of 
BRT models allowed for performing all posed tasks with minor changes. For piezometric levels, 
the entire available period was used without the need to include any modification to account for 
the known change in behavior in 2008 due to the cleaning performed on the drainage system. On 
the contrary, it was automatically identified by the model. 

The interpretation of the models showed the effect of the main loads generally in accordance 
with engineering knowledge: high hydrostatic loads are associated to displacement in the 
downstream direction, high seepage, joint opening and piezometric levels; time effect and 
thermal inertia were identified for CB2_236_196. 

We generated warning levels based on the quantiles of the residuals for the period 2011-2012. 
Although water level followed a similar pattern in those years to that observed in 2000-2009, 
such levels may not be useful for the entire prediction period because: a) water level was 
abnormally low in 2016 and 2017; b) we recommend updating the models every year to include 
additional information and possible changes in dam response. In any case, a record above the 
upper limit –or below the lower– should be taken as a warning for additional actions to make 
before issuing an alarm. These may include verification of related targets, increase of reading 
frequency and follow up of the evolution of the abnormal variable. 
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ABSTRACT: Prediction of dam behavior plays an important role in the field of dam safety as it can 
be used to establish warning levels and detect dam failure. Recently, Machine Learning 
techniques have been increasingly applied in this field due to their success in other areas. Our 
methodology is based on such techniques to predict different measurements of and arch dam’s 
behavior and analyze the influence of external conditions. An initial exploratory analysis and the 
selection of the most important variables for prediction were made to reduce the dimension of 
the problem. Then, measurement of the degree of similarity between external factors in the 
available years was performed for classifying the years and detecting annual differences that may 
affect the training or prediction results. Several ML models were trained for each target variable 
and the most accurate was selected to make short- and long-term predictions and determine 
warning levels. The results reveal the main influence of water level in the behavior shown by most 
of the analyzed sensors. This influence is found stronger for different moving averages of this 
external variable, being specially surprising the long period of integration found for the prediction 
of the radial displacement in direct pendulum. Three groups of years in external conditions were 
also observed, with special differentiation for years 2016 and 2017 of the evaluation period. SVM, 
NN, and BRT turned out to be the most accurate methods and their errors were used to 
determine the warning levels.  
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1 INTRODUCTION 

The practical problem to be solved in this research was denoted as Theme A and its main 
objective was to predict the behavior of a double curvature arch dam. The approach made was 
to use Machine Learning techniques to configure predictive models and perform the relevant 
analysis. 

The application of these algorithms was carried out through the web App developed by ACIS2in 
specifically for the use of IA in dam safety.  

Most of the algorithms used for this Workshop Benchmark were previously developed by 
ACSI2in in previous research projects and professional work. 

The analysis of the external conditions that affect the dam and the training of Machine Learning 
models to make the short- and long-term predictions required were performed as well as the 
interpretation of the results obtained. 

2 METHODOLOGY 

 Exploratory analysis 
The research carried out in this workshop began with an exploratory analysis of the external 

factors and target variables. Their series and distributions were studied to understand their 
individual behavior, as well as the relationships between them. 

To perform the individual analysis of the variables, time series, density, and boxplots grouped 
by the available years in the data set were plotted. The latter two were used to observe their 
mean, dispersion, and range. It was observed the difference between the behavior of the 
variables in each of the years through these graphs. The emphasis was placed on the study of 
water level, which, as discussed in the results section, has a crucial role in the prediction of the 
target variables.  

Correlation and scatterplot graphs were used to analyze the relationship between target 
variables and external factors. The former shows values between -1 and 1 indicating the degree 
of linear relationship between them, while the latter shows the type of relationship they hold 
(linear, nonlinear, etc.). 

 Synthetic variables 
The next step was to calculate synthetic variables related to the past of external factors. These 

variables play an important role in the training process, since the effect of external factors does 
not immediately affect the dam, but rather there is a delayed effect that will depend on the way 
these external factors evolve over time. 

Three types of variables of different orders were calculated: moving averages (MM), 
aggregates (AG), and variation ratio (VEL). 

Assuming we have a time series of variable 𝑋𝑋 ∈  (1 x 𝑚𝑚) , where 𝑡𝑡 is the instance index at time 
𝑡𝑡 of variable 𝑋𝑋, the synthetic variables are computed as follows:  

X_MM𝑡𝑡,𝑘𝑘 =  1
𝑘𝑘

 ∑ 𝑒𝑒𝑡𝑡−𝑎𝑎𝑘𝑘
𝑎𝑎 = 1 ;  (1) 

X_AG𝑡𝑡,𝑘𝑘 = ∑ 𝑒𝑒𝑡𝑡−𝑎𝑎𝑘𝑘
𝑎𝑎 = 1 ;  (2) 

X_VEL𝑡𝑡,𝑘𝑘 = 𝑥𝑥𝑡𝑡−𝑥𝑥𝑡𝑡−𝑘𝑘
𝑘𝑘

;  (3) 

where 𝑘𝑘 is the order of the synthetic variable. 
Short- and long-term synthetic variables of orders 7, 15, 30, 30, 60, 90, 180, and 365 days were 

calculated regardless of the nature of each external factor and their expected influence on the 
target variables. This approach was selected with the goal of allowing ML algorithms to tell what 
is important to them in order to predict the behavior of the target variables. Among these 
variables, those of greatest importance in the prediction of the target variables were selected 
using our variable selection algorithm explained below. 
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 Variable Selection 
Variable selection arises due to the need to reduce the dimensions of the large data set 

generated after calculating the synthetic variables. Logically, all these variables are closely related 
to each other. Therefore, it is important to select only those that provide relevant information to 
the model to improve accuracy and reduce computational cost. 

The outline of the selection algorithm is as follows: 
1. Calculation of the degree of importance through Support Vector Machine (SVM). 
2. Sort variables by importance degree in descending order. 
3. Selection of certain numbers of variables: 10%, 20%, 30%, 50%, 60% and 80%. 
4. Execute an SVM for each quantity in Step 3. 
5. Selection of the variables that generate the most accurate model. 

First, a simple model was trained using SVM to calculate the degree of importance of each 
variable. In our experience in other research, SVM takes less time to run and often gives the same 
results as other variable selection methods, such as ensembles of decision trees. 

The next question to be answered was how many variables should be used to optimize the 
accuracy of the final model. The most accurate selection methods, such as leave-one-out, may 
become computationally expensive if the dimensions of the training set are large. Therefore, in 
our algorithm, different percentages of variables are selected in descending order of importance, 
and a simple model is trained with SVM for each of these quantities. Finally, the quantity that 
gives the smallest error is selected. 

The variables resulting from this last step were used to train the final model to predict the 
target variable, where a grid search for the optimal hyperparameters and an estimation of the 
error was performed through cross-validation. 

 Training and evaluation of models 
The model training stage consisted of the selection and training of models of different nature. 

Methods that are potentially accurate based on previous research experience were selected: 
• Boosted Regression Trees (BRT). 
• Random Forest (RF). 
• Support Vector Machine (SVM). 
• Neural Network (NN). 
• Generalized Linear Regression (LM). 
• Bayesian Neural Network (RRBB). 
• Hydrostatic-Season-Time (HST). 

Cross-validation was used to evaluate the models and estimate the optimal hyperparameters 
for each case. In this research, the folds match the years available in the dataset, which 
correspond to the dam cycles.  

Therefore, the error measures used in this methodology are the RMSE of the CV (𝑅𝑅𝑀𝑀𝑁𝑁𝑀𝑀𝑡𝑡𝑣𝑣) and 
the RMSE of validation (𝑅𝑅𝑀𝑀𝑁𝑁𝑀𝑀𝑣𝑣𝑎𝑎𝑣𝑣). The mathematical form of the RMSE is as follows: 

𝑅𝑅𝑀𝑀𝑁𝑁𝑀𝑀 =  �∑ (𝑦𝑦�𝑖𝑖−𝑦𝑦𝑖𝑖)2

𝑚𝑚
𝑚𝑚
𝑎𝑎=1 ; (12) 

where m is the total number of records in the data set, 𝑦𝑦� the predicted values and 𝑦𝑦 the actual 
values. 

Considering that 𝑘𝑘 years are available, we have an RMSE for each 𝑘𝑘 years: 

𝑅𝑅𝑀𝑀𝑁𝑁𝑀𝑀𝑡𝑡𝑣𝑣 =  1
𝑘𝑘
∑ 𝑅𝑅𝑀𝑀𝑁𝑁𝑀𝑀𝑗𝑗𝑘𝑘
𝑗𝑗=1 ;  (13) 

The measure 𝑅𝑅𝑀𝑀𝑁𝑁𝑀𝑀𝑣𝑣𝑎𝑎𝑣𝑣 is simply the RMSE over the validation year, 2012 in this case. 
The estimated error by averaging the error across folds (𝑅𝑅𝑀𝑀𝑁𝑁𝑀𝑀𝑡𝑡𝑣𝑣) is more robust than the 

RMSE over the validation set (year 2012) since the latest correspond to the error for one 
particular year and the former averages the errors of the different years in the training set. 

The optimal hyperparameters of each model were selected by searching the combination that 
gives the lowest error on average. For each combination, a model was created for each fold; then 
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the average RMSE committed across the folds was calculated and the combination with the 
lowest error was selected. 

Accordingly, we obtained an estimated error for each of the seven trained models. The last 
step of this stage was to select the optimal model, which was the one with the lowest value of 
𝑅𝑅𝑀𝑀𝑁𝑁𝑀𝑀𝑡𝑡𝑣𝑣. 

 Warning levels 
Once the optimal models were selected for each target variable, the warning levels were 

generated.  
The warning levels are defined as bands within which it is expected to find the measurements 

obtained from the monitoring system, so that outside of them the data are potentially anomalous 
and a more in-depth review of the situation must be carried out. 

The boundaries of these bands were determined based on the estimated error of the 
prediction model for each component and application segment. 

The formula used for establishing the warning levels is as follows: 

𝑈𝑈± =  𝑦𝑦� ± 𝑒𝑒𝜎𝜎𝑤𝑤;  (14) 

where 𝑦𝑦� is the predicted value, 𝑒𝑒 is a confidence coefficient and 𝜎𝜎𝑤𝑤  the standard deviation of 
the error. 

 

 
Figure 1.  Example of error density with the mean and coefficient points multiplied by the error variance. 

 
The selection of the value of the c coefficient should be done from a safe and practical O&M 

perspective. On the one hand, high values ofc will provide a more relaxed warning levels that 
could miss relevant issues in the behavior. On the other hand, very low values of this coefficient 
will cause numerous warnings in non-anomalous situations.   

The coefficient selected to establish the warning level was 2, since this interval approximately 
holds 95% of the real values. 

3 RESULTS AND DISCUSSION 

This chapter presents and discusses the results obtained by applying the methods previously 
presented. The subdivisions of the Methodology section are similarly implemented in this chapter 
for ease of understanding and to present the results in an orderly way. 

 Exploratory analysis 
An exploratory analysis of external factors was carried out to determine their behavior and 

relationship with the target variables. 
Figure 2 shows a cyclical behavior of the water level series. What is striking here is the 

pronounced water level drops observed in 2003, 2006, 2016 and 2017. After the decrease in 
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water level in 2006, its average in the following years is higher due to higher minimum values. 
They progressively decrease in average until the drop of 2016, which makes it an unusual year 
compared to the past. 

 

 
Figure 2.  Water Level series over time 
 

 
Figure 3.  Boxplots (a) and density plots (b) of Water Level by years. 

 
The plot (a) in Figure 3 shows what appears to be different behaviors of the water level 

according to the amplitude and the median value of the boxes: from 1995 to 2005, where the 
minimum values of water level are low; from 2007 to 2015, where these values are higher; and 
the atypical periods such as 2006, 2016 and 2017. The amplitudes of years from the first period 
mentioned are similar, although the values of the water level vary, especially those belonging to 
2003, where a larger decrease is observed. This event makes the lower whisker longer and, 
accordingly, outliers appear. Year 2006 is significantly different from the years of the training set. 
The amplitude of its box is smaller compared with the preceding years, implying that the water 
level lays within a narrower range. From 2006 on, there is an increase in the water level, where 
we find higher medians and values that progressively decrease. Undoubtedly, the most atypical 
period is 2016-17, where the lowest values and medians are found. 

These remarks are also seen in the density graph (Figure 3, b), where several averages are 
observed due to cyclical rises and drops in the water level. Most of the years have similar means, 
except 1996, 2003,2006, 2016 and 2017, which have lower mean of minimum values than the 
others. The most unique year also in this type of graph is 2016, where a particularly steeper water 
level drawdown is observed. 

This behavior contrasts with the scarce temporal variation of temperatures, whose series show 
the usual cyclical behavior, and very similar means and medians over the years were observed. 

Regarding the pendulum series, some changes can be identified, which might be related to the 
previously mentioned water level drops. 

The variable most linearly correlated with both pendulums is the water level, with values 0.62 
(CB_236_196) and 0.9 (CB3_195_161). Temperature, on the other hand, has a smaller linear 
relationship with both pendulums, finding its maximum at |-0.37| (CB_236_196).  
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 Synthetic variables 
Once the exploratory analysis was performed, the synthetic variables of the external factors were 
calculated to be used as inputs in the modeling training. 

 

 
Figure 4.  Correlation plot of Water Level moving averages and pendulums. 

 
The correlation plot (Figure 4) shows that some of the moving averages of the water level are 

more correlated with both pendulums than the original variable. 
The short-term moving averages of the reservoir level (MM15, MM30, etc.) are more 

correlated with CB3_195_161 than with the original variable, while, for CB_236_196, surprisingly, 
the most correlated variables are the very long-term averages (MM180, MM90, etc.). 

The following images show the series of these variables and their relationship to the 
pendulums (Figure 5 and Figure 6). 

 

 
Figure 5.  Series of Water Level 15 and 180 order moving averages. 
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Figure 6.  Scatterplot of the relationship between pendulums and moving averages 15 and 180 of the 
reservoir level by years: (a) CB_236_196 and (b) CB3_195_161. 

 
Figure 6 shows a high degree of linear relationship between dam displacement of the dam and 

water level moving averages. Generally, points corresponding to the most current years, in gray, 
are concentrated in the upper right part of the graph, where the values of water level and 
displacement are higher. Those belonging to 2000 and 2001, in dark red, have lower values, 
whereas the rest are more dispersed. Given the greater dispersion in the upper pendulum 
compared to the water level, it would appear that it has a greater dependence on other variables 
than the lower pendulum in which this dispersion is smaller. 

 Most important variables 
As mentioned in the Methodology section, the selection of the most important variables for each 

pendulum is important to increase predictive power and reduce the dimensions of the data set. 
Logically, variables that have a high linear relationship will be important for the prediction of 

the target variable because many models tend to prefer this type of relationship for ease of 
modeling. This is the case with our variable selection algorithm that employs an SVM for the 
calculation of the importance degree. 

 

 
Figure 7.  Most important variables of the model and their degree of importance (%). 
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The variables that top the list of importance for the CB_236_196 pendulum are the long-term 
synthetic variables (Figure 7). In contrast, in the case of CB3_195_161 the water level short-term 
variables occupy this position. Temperatures are not as important for the model, and time (T) and 
seasonality (S) are only ranked as important variables in the first pendulum.  

It seems rare that the displacement of the direct pendulum due to water level depends more 
on longer term synthetic variables. Also, temperature-related part of the displacement, that it’s 
supposed to be an important component in the physical sense, doesn’t seem to have that 
relevance for the model.  

On the other hand, it can be observed that direct correlation between direct pendulum radial 
movement and 180 days moving average of water level is greater than the direct correlation with 
other variables that should be more important from a dam behavior perspective. It would seem 
that the ML models used prefer more correlated variables for creating the prediction rules. Then, 
the question to be answered is if the importance of the variables obtained by traditional ML 
techniques provides a direct interpretation of the most relevant actions for the dam behavior 
explanation as it’s commonly considered or if it requires further interpretation. If a direct 
interpretation could be considered, the only and uncertain interpretation found, considering our 
limited knowledge of this particular dam, is the existence of an upstream foundation deformation 
due to slow changes in pore pressure motivated by the variation in water level. The verisimilitude 
of this hypothesis should be subjected to further investigations. 

 Similarity between years 
Since the training of the predictive models was to be made by yearly folds, the possibility of 

existence of groups of years depending on their external variables (including synthetic ones) was 
analyzed. The goal behind this approach is that, in the case that these groups could be found, 
more accurate prediction models may be trained over each one of them. This way, for new yearly 
data, a previous classification step would be to select the most similar group and then use the 
corresponding predictive model for improving the accuracy.  

A dimension reduction of the most important variables of both pendulums was performed by 
Principal Components Analysis. Each pendulum has its own most important variables (Figure 7) 
and, therefore, their Principal Components will be different. This leads on differences in values or 
groupings from one pendulum to the other.  The similarity measure used is summarized by 
calculating the Euclidean distance of the instances belonging to the test Fold to the centroids of 
the Principal Components of the training years. 

The clusters resulting from running the kmeans algorithm (Figure 8) seem to coincide with the 
clusters that could apparently be formed by looking at the water level graphs (Figure 3). The rarest 
external conditions are found in 2016 and 2017, which form cluster 3. 

The same groups are found for both pendulums, except for year 2002. It should be noted that 
the groups were made considering the centroids of 5 principal components, but to facilitate the 
explanation, they are represented in 2 dimensions. Hence, the actual cluster may not match what 
appears to be according to the graph (Figure 8).  

 

 
Figure 8.  Centroids of the Principal Components of the years available in the dataset grouped by clusters 
generated through the kmeans algorithm. 
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Figure 8 only provides an idea of the years that are most similar to each other. To go into detail, 
the sum of the Euclidean distances from each observation in the data set to the centroids of the 
training years is shown in Figure 9.  

Both series presented in Figure 9are very similar. The period of time from 2007 to 2011, 
approximately, stands out due to its smaller range of values. The explanation for this fact is that 
the Water Level variable, which has great importance for the models of both pendulums, takes 
values within a less disperse range. For this reason, the distance is smaller since there are more 
points within this range of values (Figure 2). 

On the other hand, the largest distances are found in 2016 and 2017, which are the farthest 
periods from the rest of the centroids in the graph Figure 8. 

 

 
Figure 9.  Series of the degree of representation, calculated as the Euclidean distance of the points of the 
different years to the centroids of the years used for training the models. 
 

Figure 10 shows that, on average, the external conditions of 2016 and 2017 are the most 
different compared to other years. This is due to their low water level values. They are followed 
by the years 2006, 2003, and 2014, for both devices. 

Figure 10.  Mean Euclidean distance from the points of each year to the centroids of the training years. 
 
Prediction models were trained for each cluster following the same yearly based CV process. 

Errors obtained in training and in the prediction of the validation year, once classified in the 
corresponding cluster, didn’t show a sound improvement. It was finally decided to not use the 
clustered approach. 

On the other hand, the results of this section indicate that the differences between the most 
important external conditions of each pendulum are related to low water levels and steep 
drawdowns. Given that 2016 and 2017 are revealed to be odd and since Machine Learning 
predictive models learn from data,  a higher prediction error can be expected for those years. 
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 Models 
Among the results obtained when training the different models shown in Table 1, differences 

were found depending on the type of device. The SVM model was found to be the optimal model 
to predict the series of both pendulums; for the pore pressure measuring device, the best model 
was BRT, while for leakage and joint opening, the most accurate was NN. 
 
Table 1. Results of the models for each device. RMSECV is the estimated error during the Cross Validation 
process. RMSEval is the error made on the validation set (year 2012). 

 Displacement (pendulums) Joint opening Pore pressure          Leakage 

Device: CB2_236_196  CB3_195_161 C4_C5 PZCB2 PZCB3 Seepage 

Model RMSECV RMSEval RMSECV RMSEval RMSECV RMSEval RMSECV RMSEval RMSECV RMSEval RMSECV RMSEval 

SVM 1.794 1.771 0.409 0.334 0.25 0.232 0.759 0.485 0.479 0.633 3.106 2.609 

BRT 2.334 2.562 0.554 0.395 0.277 0.215 0.56 0.609 0.349 0.586 3.143 3.231 

NN 4.165 7.136 0.893 0.441 0.189 0.107 1.102 0.907 0.926 2.114 3.054 2.821 

RF 2.747 3.103 0.62 0.641 0.333 0.312 0.763 1.43 0.479 0.514 3.235 3.092 

HST 2.869 4.099 0.594 0.622 0.305 0.353 1.029 1.526 0.724 1.291 3.113 2.632 

RRBB 3.74 3.029 0.803 0.428 0.653 0.359 1.91 2.314 0.853 1.565 3.635 2.908 

LM 3.642 2.862 0.686 0.465 0.623 0.354 1.853 2.288 0.77 1.255 3.514 2.727 

 
It can be noticed that, in some cases, the validation error is lower with other models than those 

mentioned in the previous paragraph, as in the case of pore pressure and leakage devices. 
However, as explained in the Methodology section, the RMSECV is a more robust estimator of the 
error because it uses more years in its calculation.  

Figure 11 and Figure 12 show the results of the calibrated predictions during the CV and over 
the validation set of both pendulums. The series are significantly close to the actual values of the 
series. SVM seems to make a larger error in the high and low peaks of the years 2002, 2003, 2004 
and 2005 in the case of the CB3_195_161 pendulum (Figure 11). 

 The short- and long-term predictions of both pendulums are also shown in these figures. The 
series corresponding to the CB3_195_161 pendulum appears to have a decreasing trend from 
approximately 2008 onwards, probably due to the trend of the water level during those years. 
From 2014 onward, the trend seems to disappear. The predictions for 2017 are within a narrower 
range than usual due to the large drop in the 2016 water level discussed in the exploratory 
analysis section that causes the 2017 water level to have low values (Figure 2). The same trend is 
observed in the series of predictions of the CB2_236_196 pendulum. 

 

 
Figure 11.  Series of real values of the CB3_195_161 pendulum and the predictions generated with the SVM 
model. The red dashed line separates the dates used to train the model and the validation set. 
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Figure 12.  Series of real values of the CB2_236_196 pendulum and the predictions generated with the SVM 
model. The red dashed line separates the dates used to train the model and the validation set. 
 

The outlier behavior of the water level in 2016 and 2017 makes it possible for the accuracy of 
the model to drop in those periods because that behavior has never been seen and the 
relationships between external conditions might not match those that the model has identified 
and configured. 

 Warning Levels 
This section presents the results of the warning levels obtained by applying the formula 

explained in the Methodology chapter for each device. 
 

Table 2. Table with the relevant information for the calculation of the warning levels of each target 
variable. Pto = c*σe. 

 Displacement (pendulums) Joint opening Pore pressure         Leakage 
Device: CB2_236_196 CB3_195_161 C4_C5 PZCB2 PZCB3 Seepage 

c σe Pto σe Pto σe Pto σe Pto σe Pto σe Pto 

1.5 

1.851 

2.777 

0.454 

0.681 

0.198 

0.296 

0.582 

0.873 

0.357 

0.535 

3.096 

4.645 

2 3.703 0.909 0.395 1.163 0.713 6.193 

3 5.554 1.363 0.593 1.745 1.070 9.289 

4 7.405 1.817 0.790 2.327 1.427 12.385 
 
The coefficient selected to determine the warning levels is 2, so the band of each instance will 

be its predicted value plus 2 times the standard deviation of the error. 
 

 
Figure 13.  Warning levels of the pendulum CB3_195_161 calculated with c = 2. 
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Figure 14.  Warning levels of the pendulum CB2_236_196 calculated with c = 2. 
 

4 CONCLUSSIONS 

A ML approach has been made for developing predictive models to evaluate the monitoring 
data based on the external variables behavior. Relying on error estimates made through Blocked 
Cross-Validation, where each block was a different year, significantly accurate models have been 
achieved. Depending on the target variable, the most accurate algorithms have been SVM for 
dam displacements, NN in the case of leakage and joint opening, and BRT for pore pressure. 

These models have been used for creating confidence bands, or warning levels, based on their 
predictions and the variance of the prediction error. The width of the band was established in 
two times this variance. 

Taking into account that ML algorithms learn from the data used for their training, their 
predicting capabilities will depend on the similarity of the situations to be evaluated to those 
shown to the models during their learning process. The accuracy of a pure data-based model out 
of its training features space its hardly evaluable. Any data based (non-deterministic) model will 
have the same problem if it’s fed with same training data. That is why an initial exploratory 
analysis of the features space was made. 

This analysis revealed evident differences in the explanatory variables in 2016 and 2017 
compared to the training period features space. Hence, the accuracy of the predictions made on 
this period will be probably lower than the one obtained for other periods with a more similar 
features space. 

Considering the delay in the response of the dam to the variations of loads, synthetic variables 
were created based on the external conditions by temporal integration. These synthetic variables 
provide an accuracy improvement in predictions and an exploratory tool for dam behavior 
interpretation. 

Regarding this interpretation of the dam behavior, the approach made was to let the models 
tell what they have found important to predict every particular variable and then make an 
interpretation of this information. For this purpose, a wide range of temporal integration of 
external variables were used for synthetic variables creation in order to ensure that relevant 
delayed effects were represented. Integration periods from 2 days to 365 days were used. 

Short-term moving averages of water level seem to be the most relevant variables for inverted 
pendulum radial movements. This makes sense since thermal effect has usually less influence in 
the base of arch dams. 

The most important variables obtained for the direct pendulum radial movements are, 
surprisingly, the very long-term moving averages of water level. It would have been expected to 
find thermal variables in the upper part of the ranking for this behavior. Trying to provide a 
physical interpretation, the only potential explanation found was an upstream foundation 
deformation motivated by slow changes in pore pressure due to variations in water level, but the 
verisimilitude of this hypothesis should be further studied. 
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BEHAVIOUR PREDICTION OF A CONCRETE ARCH DAM 
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ABSTRACT: The paper presents a 3D numerical model that was conceived to predict the behaviour 
of a double curvature concrete arch dam. The model had the objective of reproducing the 
effective response of the dam to the hydrostatic load and to temperature loads. The calibration 
was performed on the base of monitoring data. The calibrated model was finally used to predict 
the short-term and long-term behaviour of the dam. This calculation exercise was proposed in 
the frame of the 16th International Benchmark Workshop on Numerical Analysis of Dams. 
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1 INTRODUCTION 

The Theme A of the 16th International Benchmark Workshop on Numerical Analysis of Dams 
concerns the preparation of a behaviour model for a concrete arch dam. With the help of such 
models, engineers can evaluate the dam’s performance, estimate the response of the dam for its 
actual loading conditions and define warning levels. The calibration and the prediction provided 
in the paper concerns the measurements of the pendulums and the crack opening. 

A constitutive approach, preparing a 3D numerical model for reproducing the dam behaviour, 
is adopted at first. Also, the results that were obtained fitting the available monitoring data 
following a data-based approach are presented and commented in the light of comparison with 
the results that were obtained following the constitutive approach. 

The dam is owned by Electricité de France (EDF) and it is located in the south of France at an 
altitude of approximately 2000 m asl. The name of the dam was kept undisclosed. The height of 
the dam is 45 m, the crest and base thickness is 2 m and 6 m, respectively. The crest has a radius 
of 110 m and a length of 166 m.  

The dam is equipped with a comprehensive monitoring system, including pendulums, crack 
opening, displacement sensors, piezometers and seepage measurements. Monitoring data have 
regularly been acquired since the first impoundment. The monitoring data made available by the 
formulators are shown in Appendix, referring to the period from 1995 to 2017. The monitoring 
data to be predicted with the model refer to the period 2000-2012. As highlighted in the provided 
documents, all altitudes refer to a common value which is an arbitrary value, and not the sea 
level. It should be noted that when water level is lower than 196 m asl, there is only water in a 
lake located upstream and below the heel of the dam. 

The air temperature is not measured at the location of the dam, and, as far as the authors 
know, the dam is not equipped with thermometers. Two time series of daily air temperature were 
available: T_a, which is a time series of measurements located in the area of the dam, carried out 
according to the standard of WMO (World Meteorological Organisation) and located 50 km from 
the dam, however at a different altitude; T_b, which is calculated by interpolation from several 
air temperature measuring stations, taking into account the altitude of the dam and is calculated 
on a mesh of 1 square kilometre. Some comment on this information and how these 
temperatures are used to compute thermal loads for the dam are given in Section 3.2.1. 

The dam is equipped with several pendulums, as illustrated in Figure 1. Only the measurements 
of pendulums on the Central Block (labelled CB2 and CB3) were made available by the 
formulators. CB2 is the radial displacement between the altitudes 236 m (just under the crest of 
the dam) and 196 m asl (toe of the dam). CB3 is the radial displacement in the foundation 
between the altitudes 195 m asl and 161 m asl.  

A crack opening displacement sensor is located at the rock-concrete interface of the Central 
Block (CB). The sensor measures the opening between C4 (in the foundation) and C5 (in the 
concrete, at the toe of the dam). The location of the crack opening sensor and of the piezometers 
is illustrated in Figure 1. 

 

  
 
Figure 1.  Monitoring equipment – pendulums and crack opening displacement sensor. 
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2 DATA TREATMENT AND COMMENTS 

In Figure 2 pendulum and crack opening measurements are plotted as a function of the water 
level. It can be seen how the displacements vary over large ranges for each given water level, 
especially for the pendulum measurement CB2 and the crack opening. This must be related to 
the effect of the temperature on the displacements, which apparently has a strong influence on 
the dam response. A crack opening of about 4mm is measured for the highest water levels.  
 

  
Figure 2.  Pendulum and crack opening measurements as a function of the water level. 
 

3 THE NUMERICAL MODEL 

 The geometry 
The numerical model that was prepared is based on a three-dimensional explicit finite 

difference scheme. Material behaviour is simulated according to an elastic constitutive 
stress/strain law in response to the applied forces or boundary restraints. The software FLAC3D 
(Itasca Consulting Group, Inc., 2016) was employed for the simulations.  

The geometry provided by the formulators has been processed to build a mesh that was 
suitable for the finite-difference model (FDM) that was prepared, as shown in Figure 3. The only 
significant difference with the mesh that was provided is that the dam is described as made of 
concrete blocks rather than a monolithic structure. This was done to properly simulate the dam 
construction considering the blocks as independent and not interacting between each other, thus 
fully neglecting the arch effect in this phase.  

 
Figure 3.  3D view of the numerical FD model. Dam geometry described as made of concrete blocks. The 
rock foundation is described by three zones (left/right banks, valley floor) characterized by different 
mechanical properties (see Section 4.2). 
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No information was given on the construction phasing of the dam. The authors believed that 

given the age of the dam and the material of construction (traditional concrete), simulating the 
dam construction assuming independent blocks leads to a stress state close to the actual one. 
Having or not a realistic stress state at the end of construction does not impact in any way the 
elastic dam response to the loads. However, if one is interested in the stress state of the dam, to 
evaluate for example the possibility of onset of cracks, then having a consistent state of stress at 
the end of the construction phase is indispensable.  

 Hydrostatic and thermal loads 
It was assumed that two effects have a dominant role on determining the behaviour of the 

dam: the effect of the hydrostatic load and the one of the thermal loads. Therefore, these two 
loadings only have been considered in the numerical model. 

The hydrostatic load depends exclusively on the water level in the reservoir, and it was 
simulated by applying a mechanical normal stress to the dam upstream face. In this study the 
dam-foundation response is computed for five water levels in the reservoir, as represented in 
Figure 4, considering non-linear interfaces at the dam base and in correspondence of the vertical 
construction joints. 

 

  
 
Figure 4.  Thermal and hydrostatic loads. 

 
Conversely, the dam response to the thermal loads is assumed to be elastic. The computation 

of thermal effects is therefore based on the superposition principle. The numerical model 
response to the thermal loads is computed for unit loads defined at various levels. Usually, the 
levels at which the unit loads are defined are related to the location of the dam thermometers. 
In the lack of such equipment, three different unit load patterns have been defined, as 
represented in Figure 4. Thermal loads are assumed to be constant towards the left/right 
abutments direction. 
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 Definition of thermal loads 
The thermal state within an arch dam is of primary importance for predicting its behaviour. In 

fact, the displacements of an arch dam are influenced also by the thermal elongation caused by 
temperature variations.  

Although in most of the cases the temperature effects can be approximated by a seasonal 
effect which is repeated the same every year, in certain conditions (i.e., full and prolonged 
drawdown) the direct measurement of the concrete temperature by means of thermometers is 
necessary for correctly interpreting the dam behaviour. An extreme example is the case of the 
250-300’000 m3 snow avalanche occurred in 1999 at the 67 m high Ferden arch dam 
(Switzerland), covering 35 m of the downstream face (Bianchi, 2000). In that case, the 
temperature measured by the thermometers installed in the dam body allowed to confirm the 
normal behaviour of the dam under such exceptional loading conditions, which had instead been 
questioned by the statistical interpretative model (Amberg, 2009). 

Unfortunately, the examined dam is not equipped with thermometers in the dam body and 
the formulators provided only two time series of the air temperature (Ta, Tb). A comparison 
between the monthly averages of the two time series shows that Ta and Tb reproduce basically 
the same temperatures but with an offset of 8-9°C. Since Tb indicates temperatures which seems 
to be more compatible with the elevation of the dam (approximately 2000 m asl, according to 
the formulators), Tb is considered in the following for the definition of the thermal state. 

The thermal state within the dam is evaluated by means of a transient thermal analysis. The 
thermal calculation is performed assuming 1D heat flow along the dam thickness. The thermal 
properties of the concrete are the following: conductivity: 2.0 W/mK, specific heat: 900 J/kgK, 
density: 2400 kg/m3. Three calculation sections are considered at three different elevations: 
205.8 m asl, 217.2 m asl, 228.6 m asl. Each section is characterised by a different concrete 
thickness: 5.2 m, 4.5m and 3.4 m, respectively.  

The dam thickness is divided into 11 elements and the calculation procedure is based on a 
finite difference explicit method (see Amberg, 2003 for more details). Heat flow is assumed to 
occur by radiation and convection at the faces of the dam and by conduction within the dam. 

The temperature boundary conditions at the upstream face depends on the upstream water 
level (see Figure 5): water temperature is considered in the case the water level is above the 
calculation section, air temperature is considered otherwise. In the first case a convective heat 
coefficient of 13 W/m2K (concrete-air) is adopted, together with a surface emissivity equal to 0.7, 
while in the latter case a convective heat coefficient of 500 W/m2K (concrete-water) is adopted, 
while the surface emissivity is assumed to be none. 

The water temperature (Tw) is not directly measured, but it was derived from the air 
temperature by applying the following simplified approach suggested by the formulators: 

 

𝑇𝑇𝑤𝑤 = �0.7 ∙ 𝑇𝑇𝑏𝑏
0       𝑚𝑚𝑓𝑓 𝑇𝑇𝑏𝑏 > 0°𝐶𝐶

𝑐𝑐𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑤𝑤𝑚𝑚𝑐𝑐𝑒𝑒
 (1) 

 
For the downstream face, being always exposed to air, the air temperature is considered as a 

boundary condition. The thermal calculation starts in 1995 and ends in 2017. 
The results of the thermal calculation are shown in Figure 6in terms of average temperature 

along the dam thickness for the three considered elevations. 

 
Figure 5.  Air and water temperatures assumed in the thermal calculation (monthly averages). 
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Figure 6.  Concrete average temperature at the three elevations assumed in the thermal calculation. 

4 MODEL CALIBRATION 

 Procedure for model calibration 
A polynomial interpolation (4th degree) is performed on the displacements that are computed 

by the numerical model for each of the water levels that are represented in Figure 4. Computation 
of displacements for any water level is then possible.  

The displacement 𝛿𝛿𝑊𝑊,𝑎𝑎 induced by the hydrostatic load Q, at the measurement point i (i.e. 
measurement poinst of the pendulums), can be computed using the following expression: 

 

𝛿𝛿𝑊𝑊,𝑎𝑎 = 𝑚𝑚𝑎𝑎 ⋅ 𝑒𝑒 + 𝑏𝑏𝑎𝑎 ⋅ 𝑒𝑒2 + 𝑒𝑒𝑎𝑎 ⋅ 𝑒𝑒3 + 𝑑𝑑𝑎𝑎 ⋅ 𝑒𝑒4 (2) 
 
where: 

• 𝑒𝑒 =  𝑄𝑄−𝑄𝑄𝑚𝑚𝑖𝑖𝑛𝑛
𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚−𝑄𝑄𝑚𝑚𝑖𝑖𝑛𝑛

 is the normalized level in the reservoir, with 𝑄𝑄𝑚𝑚𝑎𝑎𝑛𝑛 = 160 m asl and 

𝑄𝑄𝑚𝑚𝑎𝑎𝑥𝑥 = 237 m asl. 
• 𝑚𝑚𝑎𝑎 ,𝑏𝑏𝑎𝑎 , 𝑒𝑒𝑎𝑎 ,𝑑𝑑𝑎𝑎 are the coefficients of interpolation for the measurement point i (obtained 

from the results of the numerical model). 
 
The displacement 𝛿𝛿𝑇𝑇,𝑎𝑎 induced by thermal loads, at the measurement point i  (i.e., 

measurement points of pendulums), can be computed using the following expression: 
 

𝛿𝛿𝑇𝑇,𝑎𝑎 = �𝑚𝑚𝑎𝑎𝑗𝑗Δ𝑇𝑇𝑗𝑗  (3) 
 
where: 

• 𝑚𝑚𝑎𝑎𝑗𝑗  is the displacement at the measurement point i for a unit load at level j (result of the 
numerical model); 

• Δ𝑇𝑇𝑗𝑗  is the average concrete temperature at level j. 
 
The procedure for model calibration consists in testing several scenarios in terms of material 

properties of the simulated materials, to reproduce at the best possible the observed behaviour 
of the dam (monitoring data). The effectiveness of the calibration is evaluated on the base of the 
difference between measurements and model predictions, expressed by the following equation: 

 

𝛿𝛿𝐶𝐶,𝑎𝑎 = 𝛿𝛿𝑀𝑀,𝑎𝑎 − 𝛿𝛿𝑊𝑊,𝑎𝑎 − 𝛿𝛿𝑇𝑇,𝑎𝑎  (4) 
 
Where: 

• 𝛿𝛿𝐶𝐶,𝑎𝑎 is the difference between the measured displacement at the measurement point i and 
the model prediction for the measurement point i; 

• 𝛿𝛿𝑀𝑀,𝑎𝑎 is the measured displacement at the measurement point i. 
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Equation 4 is calculated for each date in which the measurement 𝛿𝛿𝑀𝑀,𝑎𝑎, the water load Q and 
the average concrete temperatures Δ𝑇𝑇𝑗𝑗  are available. 

 
The internal software P0863 developed by Lombardi is used as a tool for model calibration. 

The software helps the user in the definition of a new numerical scenario in terms of material 
properties (concrete and rock stiffness, thermal expansion coefficient) that could better 
reproduce the effective dam behaviour. 

 Material properties 
In the benchmark formulation, the following information were made available: 
• The dam is made of concrete with cement dosage at 300 kg/m3. The average value of 

compressive strength is 34 MPa (after 90 days) with values varying from 22 MPa to 45 MPa; 
• The foundation consists of laminated metamorphic slate with a high compressive strength. 

However, the anisotropy of foundation confers a higher deformability to the left bank.  
 
The mechanical properties that were recommended by the formulators for the concrete and 

the rock foundation are summarized, the initial estimate for the numerical analyses and the result 
of the calibration are summarized in Table 1. 

 
Table 1. Mechanical parameters of the modelled materials proposed in benchmark formulation, initial 
estimate for the numerical analyses and result of the calibration. 

 Young’s Modulus [GPa] 

 Formulator 
proposal 

Initial estimate Result of 
calibration 

Concrete of the dam 22 22 24 

Foundation right bank Parallel: 15 
Perpendicular: 10 

12.5 3.5 

Foundation 
(approximately bottom of 

the valley) 

Parallel: 5 
Perpendicular: 1 

3 0.5 

Foundation left bank Parallel: 10 
Perpendicular: 1 

5 1.4 

 
Some preliminary comment can be formulated on the proposed material properties, in the 

light of the information that was available from monitoring data. In this study, pendulums 
information is quietly poor, since only one measurement of dam displacements and one 
measurement of foundation displacements are provided. This information is given for the central 
block of the dam (see Figure 1). No other information was given about foundation behaviour (e. 
g. from extensometers). In this context, the introduction of an anisotropic behaviour for the rock 
foundation has been considered too complex without having enough information to verify the 
effectiveness of the adopted material properties. For this reason, average isotropic moduli have 
been defined for the rock foundation. Different values for left and right banks, and for the 
foundation at the bottom of the valley, are maintained, even though information from other 
pendulums located towards the left and the right abutment would have helped the interpretation 
of dam-foundation response to the loads.  

The calibration process leads to a slightly increase of the concrete modulus to 24 GPa and a 
general decrease of the modulus of the rockmass (0.5 GPa at the bottom of the valley, 3.5 GPa at 
the right bank and 1.4 GPa at the left bank). Regarding the coefficient of thermal expansion, the 
obtained value is 1.4e-5 °C-1, which is increased with respect to the value proposed by the 
formulators (0.7e-5 °C-1). 
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 Results of the numerical FDM model 
The results of the numerical FDM model are shown in Figure 7, by comparing the predicted 

and measured dam displacement due to the hydrostatic loads. The measured value is obtained 
by removing from the measurement the displacement due to the thermal loads. 

Two observations can be made. First, the dispersion of the measurement, although reduced, 
remains quite high. This means that the thermal state within the dam is not reproduced with 
accuracy. The lack of concrete temperature measurements has a negative impact on the 
reliability of the simulation of thermal behaviour of the dam.  

Second, the behaviour predicted by the model does not fully match with the actual one, 
especially for the pendulum CB2: the dam seems to be more rigid for higher water levels and less 
rigid for lower water levels, with respect to the numerical model. 

Figure 7.  Pendulums – comparison of measurements and model results (note: the thermal effect is 
removed from the measurements). 

 
Regarding the crack opening, Figure 8 shows a good agreement between the model and the 

measurements. 

Figure 8.  Crack opening – comparison of measurements and model results. 
 
The behaviour of the pendulum CB2 could be explained with an opening of the vertical 

contraction joints in wintertime with a low reservoir level. Under these conditions the arch effect 
is reduced resulting in a more deformable structure than the monolithic one. With higher water 
levels, the joints are closing, restoring the full stiffness of the monolithic structure. This behaviour 
has been recognized in the past by the authors in other arch dams. 

Because of the lack of information regarding the behaviour of the joints, hypothesis on the 
joint opening cannot be verified. Therefore, it was decided to reproduce the response of the dam 
to the hydrostatic loads by interpolating the measurements shown in Figure 7 with a polynomial 
function of 4th order. 
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In Figure 9 a comparison between the numerical model and the statistic interpolation is shown 
for the pendulums CB2 and CB3. It is evident that the polynomial interpolation better reproduce 
the actual behaviour of the dam. 

Figure 9.  Pendulums CB2 and CB3 – comparison of measurements and the results of the polynomial 
interpolation and the numerical model (note: the thermal effect is removed from the measurements). 

 Interpretative model 
Based on the considerations presented above, the final model used for the prediction 

presented in the following is based on a hybrid model composed by: 
• A constitutive model, i.e., based on the numerical model, for the prediction of the dam 

response to thermal loads and for the prediction of the crack opening; 
• A data-based model, i.e., based on the polynomial interpolation, for the prediction of the 

dam response to hydrostatic loads. 
 
The equations of the model used for the prediction of the behavior of the dam are listed 

hereafter. The set of equations 5 represents the model for the pendulum CB2, while the set of 
equations 6 is for the pendulum CB3 and the set of equations 7 is for the crack opening. In the 
equations, 𝛿𝛿𝐶𝐶𝐴𝐴𝐿𝐿,𝑎𝑎 is the predicted displacement of the pendulum i (i = 2 for CB2, i = 3 for CB3) and 
the predicted crack opening (i = 4). The constants that appear in the equations minimize the 
average difference between measured displacements and calculated ones. 

 

𝛿𝛿𝑊𝑊,2 = 15.655 ∙ 𝑒𝑒 − 98.312 ∙ 𝑒𝑒2 + 158.751 ∙ 𝑒𝑒3 − 45.256 ∙ 𝑒𝑒4 

𝛿𝛿𝑇𝑇,2 = −1.413 ∙ ∆𝑇𝑇228 − 0.343 ∙ ∆𝑇𝑇217 + 0.284 ∙ ∆𝑇𝑇205 

𝛿𝛿𝐶𝐶𝐴𝐴𝐿𝐿,2 = 𝛿𝛿𝑊𝑊,2 + 𝛿𝛿𝑇𝑇,2 − 14.993 

(5) 

𝛿𝛿𝑊𝑊,3 = 3.028 ∙ 𝑒𝑒 − 18.824 ∙ 𝑒𝑒2 + 28.033 ∙ 𝑒𝑒3 − 2.097 ∙ 𝑒𝑒4 

𝛿𝛿𝑇𝑇,3 = 0.031 ∙ ∆𝑇𝑇228 − 0.039 ∙ ∆𝑇𝑇217 − 0.162 ∙ ∆𝑇𝑇205 

𝛿𝛿𝐶𝐶𝐴𝐴𝐿𝐿,3 = 𝛿𝛿𝑊𝑊,3 + 𝛿𝛿𝑇𝑇,3 − 4.428 

(6) 

𝛿𝛿𝑊𝑊,4 = 1.225 ∙ 𝑒𝑒 − 7.088 ∙ 𝑒𝑒2 + 8.097 ∙ 𝑒𝑒3 + 3.421 ∙ 𝑒𝑒4 

𝛿𝛿𝐶𝐶𝐴𝐴𝐿𝐿,4 = 𝛿𝛿𝑊𝑊,4 − 3.172 
(7) 

 
The measured and calculated displacements are shown in Figure 10, while their difference 

between is shown in Figure 11. 
The correspondence between the measured and calculated displacements is considered 

satisfactory, given the available information. The standard deviation of the difference between 
the measured and calculated displacement is 2.3 mm for the pendulum CB2, 0.6 mm for the 
pendulum CB3 and 0.6 mm for the crack opening. 
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 Warning levels, short-term and long-term predictions 
The warning levels should be defined to identify anomalies in the dam behaviour. Assuming 

that the dam behaviour is regular in the calibration period, an excessive deviation from the model 
prediction should be considered as an anomaly. In the definition of what one should consider 
“excessive” the precision of the model in the calibration period must be accounted.  

 
Therefore, it is proposed to define the warning levels as the envelope of the maximum 

differences between the measurements and the model predictions in the calibration period 
(2000-2012): 

• for the pendulum CB2: ±6 mm with respect to the model prediction; 
• for the pendulum CB3: ±3 mm with respect to the model prediction; 

for the crack opening: ±2 mm with respect to the model prediction. 

Figure 10.  Pendulums and crack opening – comparison of measurements and model prediction. 
 
An excessive deviation from the expected behaviour should not be necessarily interpreted as 

a safety concern for the dam. The warning levels, as defined on the next page, has the scope to 
highlight as soon as possible any anomaly in the dam behaviour or in the measurement 
instrumentation, in order to promptly analyse it and, if necessary, implement the appropriate 
corrective measures. 

The figures on the next page also show the predictions of the model for the period 2013-2017, 
which is one of the tasks of the Benchmark. It worth mention that the period 2016-2017 is 
characterised by a low water level and the displacements of the pendulum CB3 are quite 
completely caused by the thermal loads. 
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Figure 11.  Pendulums and crack opening – difference between the measurements and the model. 
 

5 INTERPRETATION 

The information gained from the monitoring measures, together with the results of the 
numerical model allow to point out some important aspects regarding the behaviour of the 
analysed dam. 

The rock modulus obtained from the calibration process are quite low, in the order of 0.5-3.5 
GPa, and significantly lower than those proposed by the formulators (1-15 GPa). Although the 
obtained moduli allow to reproduce the displacements measured by the pendulum with a good 
agreement, drawing some conclusions regarding the actual stiffness of the rock mass is 
questionable. The reliability of the estimate is higher for the modulus of the central part of the 
valley (0.5 GPa), due to the presence of the pendulum CB3 which measure the response of the 
rock to the forces transmitted by the dam. However, the lack of information regarding the rock 
mass deformations in the left and right banks, makes the estimate less reliable. 

The measurements of the pendulum CB2 has a high dispersion when plotted as a function of 
the water level (Figure 2). In fact, the range of variation of the displacement for a certain water 
level is of the same order of magnitude as the variation of the displacement due to the full 
reservoir. In this context, the lack of direct information regarding the thermal state within the 
dam (e.g., thermometers), leads to a reduced precision of the prediction of the model. The 
thermal analysis conducted to overcome this issue leads to a reduction of the measurement 
dispersion (Figure 7), which however remain quite high affecting the precision of the model. 

The comparison between the measurements and the model shows that the dam behaviour is 
basically reversible, without any drift or irreversible displacements. Only a very modest delay 
between the measurements and the model is visible for the pendulum CB3, possibly indicating 
that the rock mass behaviour is affected by some viscous effect. Regarding the pendulum CB2, 
the numerical model results highlighted that the actual behaviour of the dam could be influenced 



Catalano, Stucchi 
BEHAVIOUR PREDICTION OF A CONCRETE ARCH DAM 

190 
 

by an opening of the vertical contraction joints in wintertime with a low reservoir level, leading 
to a progressive activation of the arch effect as a function of the water level. 

The numerical model is used also for estimating the maximum compressive stress in the arch 
for the load combination of maximum water level in summertime. It is remarked that the 
summertime condition is simulated in a simplified way by considering a temperature increase of 
10°C for the whole dam. This value derives from assuming a reference temperature of 5°C and 
considering the maximum temperatures shown in Figure 7. The horizontal stresses in the 
direction of the arches are shown in Figure 12, while the vertical stresses are shown in Figure 13. 
The maximum compressive stresses are horizontal and located at the upstream face in the middle 
of the dam and reach 4 MPa, which is far below the compressive strength of the concrete (34 
MPa as provided by the formulators). 

Figure 12.  Horizontal stress in the direction of the arch for the condition of full water level and summer 
temperatures. 

 
Figure 13.  Vertical stress for the condition of full water level and summer temperatures. 
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6 CONCLUSIONS 

The Theme A of the 16th International Benchmark Workshop on Numerical Analysis of Dams 
concerned the preparation of a behaviour model for a concrete arch dam.  

The numerical model that was prepared is based on a three-dimensional explicit finite 
difference scheme. Material behaviour is simulated according to an elastic constitutive 
stress/strain law in response to the applied forces or boundary restraints.  

The model had been calibrated to fit as best possible the measurements coming from 
monitoring equipment. However, some problems were encountered.  

On one hand, the model was not able to capture properly the dam response to thermal loads. 
The reason for that could probably be related the poor available information on the thermal state 
of the dam over the calibration period.  

On the other hand, measurements of dam displacements for low water levels indicate a 
deformability of the structure that the model was not able to capture. Dam response to the 
highest water levels is better reproduced by the model. Crack opening measurement from 
sensors near the base of the dam were also well reproduced. Some hypotheses have been 
formulated on this deviation between the measurements and the model results, such as the 
opening of vertical contraction joints in wintertime with low reservoir level. No information on 
joint opening was available, so this hypothesis could not be verified.  

Finally, a data-based approach has been followed to interpolate the dam response to the 
hydrostatic load. The deterministic (constitutive numerical) approach was maintained in making 
predictions on thermal behaviour and crack opening. The result of the model can be considered 
satisfactory. 

As engineers often involved in similar situations, we had a new opportunity to observe that 
following a constitutive approach when preparing dam behaviour models allows going in a deeper 
detail while interpretating dam’s response. Calibrating a constitutive numerical model often 
brings to a better knowledge of dam’s behaviour and of the characteristics of the materials. The 
data-based statistical approach is inherently valid as long as the usual conditions that characterize 
dam life are met again in the future (which is highly probable, though!). In case of unusual 
conditions, for which the information given by a model regarding dam safety are most valuable, 
the reliability of a statistical model could be lower. 
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APPENDIX – AVAILABLE MONITORING DATA 
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ABSTRACT: The concrete arch dam proposed for the 16th International Benchmark Workshop on 
Numerical Analysis, theme A (Behaviour prediction of a concrete arch dam), was numerically 
analyzed with an HTT-FEM hybrid model using ANSYS software and computer codes purposely 
developed by the authors for arch dam analysis. A hydrostatic-thermal-time (HTT) model was 
used to determine the contribution of the hydrostatic load, the temperature variation and the 
time effect, to the observed measures. The predefined geometry delivered to the participants 
was directly imported in ANSYS and the mesh was developed using internal software capabilities. 
A sensitivity test was performed to obtain an adequate mesh discretization for the analysis. 
Structural analyses were performed for different water levels of the reservoir and for the thermal 
field in the observation dates, which was obtained by a transient thermal analysis. The computed 
displacements in this hybrid approach are the sum of the results obtained through the 
deterministic model for the hydrostatic pressure and the thermal action, with the time effect 
contribution obtained from the HTT model. The radial displacement prediction for both plumb 
lines is presented as well as their warning levels. 
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1 INTRODUCTION 

This paper presents the methodology adopted for the analysis of “Theme A: Behaviour 
prediction of a concrete arch dam” proposed by the organization of the 16th ICOLD Benchmark 
workshop on numerical analysis. 

After an exploratory data analysis phase, a conventional engineering approach was used, with 
the combination of an HTT and FEM models, allowing a more direct physical interpretation of the 
behaviour of the dam. 

The concrete dam was numerically studied using ANSYS software and computer codes 
purposely developed by the authors for arch dam analysis, which have been used in the 
assessment of the behaviour of several operating arch dams. 

This analysis methodology allowed the submission of the calibration and prediction results for 
the plumb lines displacements. 

2 EXPLORATORY DATA ANALYSIS 

The data exploration begun with a statistical synthesis, after visual inspection of the time 
series. 

Table 1 presents the values of the parameters of the sinusoidal approximation, with an annual 
period, of the 2 daily air temperature series T (t) provided, Ta(t) and Tb(t), which were obtained 
by the least squares method 
 

𝑇𝑇(𝑡𝑡) = 𝑇𝑇𝑀𝑀 − 𝑇𝑇𝐴𝐴 .  cos⌈2.𝜋𝜋. (𝑡𝑡 − 𝑡𝑡0)/365⌉ 
 
Table 1. Sinusoidal approximation parameters. 

 Ta Tb 
Root mean square error (RMSE) [°C] 
Greatest difference [°C] 
Correlation coefficient 

3.0 
7.6 
0.86 

3.2 
8.0 
0.84 

TM=mean value [°C] 
TA=annual half-amplitude [°C] 
T0=initial phase [days] 

12.7 
7.4 
22 

4.8 
7.1 
27 

 
The temperature series Tb has a larger number of negative values compared to Ta, and 

according to the formulators approach for the water temperature, the negative values will be 
deemed zero for the water temperature in the reservoir.  

Afterwards, each behaviour data series ( U(t) ) was analyzed by a measured air temperature-
based hydrostatic-thermal-time (HTT) model, which assumes that the elastic effects at time t of 
the variation of the hydrostatic load ( Uh(h(t) ) and of the biweekly mean air temperature, with a 
time shift tT ( UT(T(t-tT)) ), as well as the irreversible time effect ( Ut(t) ), are monotonic polynomials 
(4th degree for Uh and Ut, 3rd degree for UT). 
 

𝑈𝑈(ℎ,𝑇𝑇, 𝑡𝑡) = 𝑈𝑈ℎ (ℎ(𝑡𝑡)) + 𝑈𝑈𝑇𝑇 (𝑇𝑇(𝑡𝑡 − 𝑡𝑡𝑇𝑇)) +  𝑈𝑈𝑡𝑡(𝑡𝑡) + 𝑘𝑘  
 

The statistical measures obtained were slightly better when assuming the daily air 
temperature series Tb(t). 

The most relevant time-dependent evolution was detected on piezometer PZCB2, with an 
effect of -3.3 m/decade. 

 
The HTT model results are summarized in Table 2. 
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Table 2. HTT results. 
  CB3_195_161 CB2_236_196 C4_C5 PZCB2 PZCB3 Seepage 
 Number of records 

% discarded records 
tT [biweekly] 

698 
1 
2 

703 
1 
0 

675 
2 
2 

705 
2 
4 

670 
3 
6 

672 
4 
3 

Statistical 
measures 

RMSE 
Greatest difference 

Correlation coefficient 

0.5 
1.5 

0.98 

2.6 
7.3 

0.96 

0.3 
0.8 

0.99 

0.5 
1.5 

0.99 

0.5 
1.3 

0.96 

2.2 
6.3 

0.81 

effects 
Uh(h=235)-Uh(h=196) 
Annual seasonal effect 

Ut [decade] 

8.2 
-1.9 
0.4 

27.6 
-18.8 
1.3 

4.5 
-0.9 
0.4 

15.0 
-1.3 
-3.3 

5.0 
-0.4 
-1.9 

9.7 
-2.5 
-0.5 

 
Subsequently, a brief implementation of Machine Learning algorithm, namely Gradient 

Boosting Regression and neural networks, was performed. The machine learning algorithms 
showed promising results regarding the interpretation of the hydraulic behaviour of the dam’s 
foundation observation results: piezometers and seepage, which usually are of a harder approach 
with FEM models. 

3 NUMERICAL MODEL 

 Geometry and Mesh 
The geometry delivered to the participants (whole_dam.sat and whole_Rock.sat) was directly 

imported into ANSYS and the mesh was developed using internal software capabilities. A 
sensitivity test was performed by comparing the radial displacements on CB2, considering the 
water level in the reservoir at elevation 235.10 m, obtained in the finite element model (FEM) 
with four different mesh sizes. Table 3 shows the constitution of the different meshes considered. 

 
Table 3. Mesh sensitivity test. 

  MESH 00 MESH 01 MESH 02 MESH 03 

DAM 
Element Size (m) 1.5 3.0 6.0 10.0 
N.° Elements 55 233 7 575 1 394 654 
N.° Nodes 86 013 13 485 2 997 1 488 

FOUNDATION 
Element Size (m) 5 10 20 30 
N.° Elements 129 799 18 276 3 382 1 775 
N.° Nodes 185 808 27 997 5 212 3 153 

 
The variation of the radial displacement on CB2 for the considered mesh sizes with reference 

to the radial displacement obtained with MESH 00 (Figure 1) shows that by adopting a less refined 
mesh the structure becomes stiffer, therefore, the downstream radial displacement is larger in 
more refined meshes. In this case, the refined Mesh 00 model (271 821 nodes) has a radial 
displacement of 19.18 mm, while MESH02 (8209 nodes) has a radial displacement of 18.49 mm. 
Taking into account the significant difference of the number of nodes between the two models, 
MESH 02 has 3% of the number of nodes of MESH 00, and the 0.69 mm difference between the 
displacements of the two models, MESH 02 was adopted in the analysis. 

Figure1.  Mesh sensibility analysis. 
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The finite element model adopted for both thermal and mechanical analyses was developed 

in ANSYS, using tetrahedral 10 node elements, Solid 187 for structural analysis and Solid 87 for 
thermal analysis. The model has 4776 elements, 1394 representing the dam body and 3382 
representing the foundation. The adopted mesh and the coordinates reference is represented in 
Figure 2: the vertical axis z (+ descending w.r.t. the crest), the horizontal axis x is positive towards 
the left bank and the y axis is positive in the downstream direction. 

Each nodal point has three degrees of freedom, in accordance with the displacement vector, 
and all the displacements were prevented in the lower face of the foundation block. 

 
Figure 2.  Numerical model. 
 

To consider the different foundation materials three zones were adopted, separated by vertical 
planes parallel to XZ, allowing to differentiate the right and left banks and the center valley (Figure 2). 

 FEM Analysis  
The dam structure and the foundation were assimilated as continuous and isotropic and a 

structural linear elastic behaviour was adopted.  
Initially, the adopted materials properties were the ones presented by the organization that 

were updated by means of a calibration by comparison with the HTT model, namely by comparing 
the radial displacements obtained for the hydrostatic pressure applied to the upstream face of 
the dam on the FEM, with the same results obtained by the HTT. Figure 3 shows the comparison 
between the radial displacements results of the HTT (in red) and the FEM, considering three 
different values for the Young’s Modulus of the dam and foundation materials.  

Figure 8.  Calibration. FEM and HTT for hydrostatic pressure 
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Has it can be seen, the radial displacements closer to the crest of the dam have good 
agreement between models, however for lower elevations significant differences were obtained. 
The black full line plotted shows the best agreement between both models and the corresponding 
material properties are presented in Table 4. 
 
Table 4. Material properties 

 
E 

(Gpa) 
K 

W/(m · °C) 
C 

J/(kg · °C) 
α 

(°C-1) 
v 
 

R 
(kg/m3) 

Concrete 18.0 2 900 

0.7 E-5 0.2 

2400 
Left Bank 5.0 

3 850 0 Center Valey 2.5 
Right Bank 7.5 

 Analysis procedure 
A hybrid approach was implemented considering the displacements as a sum of the results 

obtained through the deterministic FEM model for the hydrostatic pressure and the seasonal 
temperature variation, with the time effect results obtained from the HTT model. 

• The hydrostatic effect on the structure was estimated by applying the water pressure on 
the upstream face of the dam for 25 levels of the reservoir. For each observation date the 
hydrostatic effect was evaluated by interpolation along the results previously referred for 
the water level in that date. 

• The thermal effect for each observation date was evaluated with the thermal field on the 
referred date. This field was previously evaluated by a transient thermal analysis with an 
incremental time of 1 day, between 01-01-1999 and 31-12-2017, assuming the air 
temperature series Tb for the air exposed dam surfaces and the water temperature on the 
submerged upstream face on that date, as proposed by the benchmark formulators. 

• For the time effect in the period between 2000 and 2012 the HTT results were adopted 
(Figure 6). 

 Calibration 
To obtain the best agreement between the computed and observed values a factor applied to 

the FEM response to the hydrostatic pressure (CH) and another applied to the FEM response to 
the thermal action (CT) were determined by minimizing the RMSE, in the period 2000 – 2012. In 
Table 5 are also presented the values of the concrete Young modulus and the coefficient of 
thermal expansion obtained by applying these factors to the initial values mentioned in 3.2. An 
alternative approach regarding the CT coefficient would be to scale the values assumed for the 
air and water temperatures, as well as considering the solar radiation. 
 
Table 5. Calibration factors 

 CH CT RMSE (mm) E (GPa) α (°C-1) 

CB2 236-196 1.1 1.3 2.7 17 0.9 

CB3 195-161 2.5 3.1 0.5 7 2.2 

 
The values obtained for CB2 are plausible; the values for CB3 may be affected by relevant local 

phenomena, such as the opening of the dam-foundation contact, which weren´t introduced in 
the developed FEM model. 

Figure 4 and Figure 5 show the comparison between the radial displacements measured on 
the plumb lines CB2 and CB3, respectively, and the radial displacement obtained through the 
calibrated hybrid model. 
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Figure 4.  Radial displacement (+ downstream) CB2. Measured data and computed results. 
 

 
Figure 5.  Radial displacement (+ downstream) CB3. Measured data and computed results. 
 

Both figures show good fit. The results obtained for CB2 show small differences except for the water 
level decreasing events, namely in the beginning of 2005 when occurred the maximum difference of 
13.3 mm. In this epoch also occurred the maximum difference for CB3 which is -1.6 mm. 
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 Predictions 
Following the calibration procedure, a prediction (for the period 2013 – 2017) of the radial 

displacements on both plumb lines was determined, using the same methodology, where the 
time effect for CB2 was assumed constant and equal to the value obtained at the end of 2012, 
and for CB3 it was assumed a linear evolution with time with the mean rate obtained between 
2008 and 2012 (Figure 6). 

 

 
 

 
Figure 6.  HTT time effect for CB2 (top) and CB3 (bottom). 
 

The results plotted in Figure 7 show the radial displacements computed in the dates presented 
on the worksheets CB2_236_196 and CB3_195_161 of the file ThemeA_data_fmt01.xlsx delivered 
by the formulators, which were submitted as requested for scoring. 

 
Figure 7.  Radial displacement. Prediction 2013-2017. 

4 WARNING LEVELS 

The warning levels were defined by adding and subtracting the constant value of 3 * RMSE to 
the predicted values: ±7.5 mm and ±1.5 mm for CB2 and CB3, respectively. 

5 CONCLUSION 

The adopted methodology led to a reasonable fit between the computed and the measured 
results. Further developments could grant better results considering a more realistic time 
evolution of the temperature along the reservoir height. Furthermore, it should be relevant to 
consider the solar radiation and the joint opening of the dam/foundation contact. The structural 
analysis for the evolutionary thermal action could be fastened by a methodology where the 
computed thermal field would be approximated by interpolating a reduced number of key points, 
so that a unique structural analysis for each key point would be performed. 
  

b) CB2 a) CB3 
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ABSTRACT: The main purpose of assessment of dam condition, through the use of the information 
provided by the monitoring system, is achieved by having up-to-date knowledge of the dam. Early 
anomalous behaviour detection is expected in order to allow appropriate intervention to correct 
the situation or to avoid serious consequences. Once a dam is in its operation phase, the 
assessment of the dam's condition and the interpretation of the dam's behaviour are supported 
by data-based models, among others, in which the main goal is to predict the actual structural 
dam behaviour in order to detect a possible deviation from a considered normal pattern. 
Within the scope of the 16th International Benchmark Workshop on Numerical Analysis of Dams, 
this paper presents a methodology for the prediction of different measurements based on the 
combination of the results from multiple linear regression and neural network models. The work 
discusses the advantages and applicability of the methodology to each type of dataset and the 
importance of engineering expertise and on site knowledge when using data-based models. 
The obtained results show a good model performance for the training period being a valid option 
for dam engineering activities. 
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1 INTRODUCTION 

For each concrete dam, different models can be used according to the purpose of the analysis, 
the existing knowledge about the actual structural behaviour and the quality of information 
available for the structural behaviour characterization. The selection of the conceptual model to 
represent the idealized dam behaviour must take into account: i) the purpose of the analysis 
(safety assessment, prediction of the structural response, interpretation of the recorded data 
from the monitoring system, or analysis of an accident or abnormal behaviour), ii) the ability to 
identify the key factors of the reservoir-dam-foundation system, and iii) the type, age and degree 
of deterioration of the dam and the available geological and geotechnical information, among 
others. 

Dams are made of, and founded on, materials whose properties change with time. The 
establishment of the relation between causes and effects leading to the degradation of structural 
properties of the dam and appurtenant structures is key for the identification and 
characterization of the deterioration. During the dam's lifetime phases, the models are updated 
to take into account the observed dam behaviour through the monitoring systems. This is the 
case of traditional HST (hydrostatic, seasonal, time) and HTT (hydrostatic, temperature, time) 
models, whose parameters can be updated based on the measured dam response over time. In 
summary, the core of dam safety control is the establishment of multiple validations of the 
models, the measurements and the parameters which, by characterizing the structural 
behaviour, are able to elaborate and justify a judgment about structural safety. The main concern 
is to predict the actual structural dam behaviour in order to detect a possible anomaly. 

Statistical models used to predict structural response are based on relationships between the 
loads and the structural response (SCD, 2003). These statistical models are based on the 
establishment of Multiple Linear Regression (MLR) models of monitoring data collected during 
the past history of the dam. In recent years, new data-based models based on Machine Learning 
(ML) methods have been adopted as a guaranty in redundancy to the traditional adopted models 
to describe the observed behaviour or, in some cases, to study a particular aspect of the dam 
behaviour (Perner & Obernhuber, 2010; Mata, 2011; Kao & Loh., 2011; Simon et al., 2013; 
Rancovic et al., 2014; Rico et al., 2014; Salazar et al., 2015, 2016; Li & Wang, 2019; Mata et al., 
2021). 

As referred to in the cited publications, the growing use of ML models is mainly restricted to 
scientific publications and academic examples. For this reason, this BW is an important milestone 
to disseminate the use of ML models by dam engineers. In general, model performance is 
important for model acceptance, but it is only the first step of the process. However, it is 
important to emphasize that model verification and validation, through engineering expertise, 
are a relevant part of the entire model development, since it establishes a relationship between 
the mathematical/numerical model and the structural behaviour. This topic is further discussed 
by Mata et al. (Mata et al., 2021). 

The aim of Theme A in the 2022 ICOLD BW is to establish a prediction model for a dam. A 
double curvature arch dam is used as a case study. The participants are asked to build a model, 
calibrate it, and use it for long-term and short-term predictions using the provided data and by 
making their assumptions and choosing suitable approaches to solve the problem. The focus of 
the theme is on the following variables: radial displacement (two pendulums in the central block 
of the dam); crack opening displacement (sensor at the rock-concrete interface); piezometric 
levels (vibrating wire piezometers at the rock-concrete interface); and seepage (weir at the 
downstream toe of the dam).  

For this BW, a methodology based on the combination of the results from multiple linear 
regression (MLR) and neural network (NN) models is presented for the prediction of the 
displacements observed, taking advantage of each of the methods. Care should be taken 
regarding model validity for the prediction period because the domain of the variables in the 
training period may not be the same as the ones observed in the predicted period. For the uplift 
pressures and for the seepage, a traditional HST approach based on multiple linear regression 
was adopted due to the drainage cleaning resulting in a short time training period (for potential 
ML models). 
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2 THE CASE STUDY 

 Brief dam description 
In this benchmark problem, denoted as Theme A in the 2022 ICOLD BW, a double curvature 

arch dam, located in the south of France and owned by the EDF is used as a case study. The aim 
of the theme is to establish a prediction model for the dam for the following quantities: radial 
displacement, crack opening displacement, piezometric levels, and seepage. 

The dam is located in the south of France. It is owned by EDF and was constructed between 
1957 and 1960. It is a double curvature arch dam, which is asymmetric due to the shape of the 
valley. The dam consists of 13. The maximum dam height is 45 m and the total crest length is 
166 m. The normal water level is 237 m and the crest level is 239 m. 

The geometry, material properties, and loads have been defined and are delivered by the 
formulators. The monitoring data available is from 2000 to 2012, being the predicted set from 
2013 to 2017. It was referred that the provided data has been pre-processed and can be directly 
used for the analysis, e.g. no further cleaning is necessary. 

Furthermore, the data is provided without any modification of the actual time series and is 
measured with different frequencies. The main targets that should be predicted, including some 
relevant information (see also Figure 1), are the following: i) the radial displacement, CB2, 
between the altitudes 236 m (just under the crest) and 196 m (toe of the dam). The radial 
displacement, CB3, in the foundation between the altitudes 195 m and 161 m; ii) a crack opening 
displacement sensor is located at the rock-concrete interface of the Central Block (CB). The sensor 
measures the opening between C4 (in the foundation) and C5 (in the concrete, at the toe of the 
dam); iii) the piezometric levels PZCB2 and PZCB3, are located in block CB. In September 2008, 
cleaning of the drainage system was carried out; and iv) the flowrate was measured using a weir 
located in the gallery at the downstream toe of the dam. The measured total seepage is the total 
amount of water originating from different locations such as the surrounding rock, moisture 
transport in concrete, potential leakages in concrete cracks, and the drainage system. 

 

 

 

 
(a) View of block CB and 

pendulums 
(b) Location of crack opening 
displacements sensor in the 

block CB. 

(c) Location of piezometers in 
the central block CB. 

Figure 1.  Main aspects of the monitoring system of the dam. 

 Data characterization 
The data analysed corresponds to a period between January 2000 and December 2017. The 

data between January 2000 and December 2012 was considered as the training period. Thus, the 
data obtained during the period between January 2013 and December 2017 was adopted as a 
predicted period. The evolution of the reservoir water level, radial displacements in the referred 
CB3 195-161 m and CB2 236-196 m, the opening displacements in C4-C5, the uplift pressure 
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measured in PZCB2 and PZCB3, and the seepage are presented in Figure 2, in which the black and 
blue dots represent, respectively, the measurements before and after cleaning the drainage 
system. Figures 3 and 4 present some examples of visual representation of the data as a function 
of the day of the year and the water level, respectively. The statistical characterization of the 
quantities is presented in Table 1. 

 
 

Figure 2.  Time series evolution of the main quantities under study. 
 

 
Figure 3.  Main visual characterization of the water level variation and the water height above the 
reference level 196.0m during the training period (before and after cleaning the drainage system) and for 
the predicted period. 
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Figure 4.  Main variation of the observed dam behaviour due to the water level variation. 
 

Table 1. Statistical parameters of the main quantities under study. 

Quantity 
Training period Predicted period 

Numb. obs. Mean Min Max σ Numb. obs. Mean Min Max σ 
Water level  (m) 4726 220.5 181.9 235.2 11.5 1826 210.5 164.0 232.6 16.3 
h=h_196 (m) 4726 24.7 0.0 39.1 11.0 1826 17.0 0.0 36.6 11.1 
Air temp. (tb) (ºC) 4726 4.6 -15.5 20.5 6.3 1826 4.7 -12.0 19.4 6.1 
Air temp. (2 week 
mov. aver.) (ºC) 4726 4.6 -11.6 16.9 5.7 1826 4.7 -6.6 16.4 5.5 

Air temp. (4 week 
mov. aver.) (ºC) 

4726 4.6 -8.4 15.6 5.4 1826 4.7 -5.1 15.6 5.3 

CB3-195-161m (mm) 681 -0.3 -5.0 3.9 2.7 - - - - - 
CB2-236-196m (mm) 688 -6.8 -27.5 16.0 9.5 - - - - - 
C4-C5 (mm) 662 -0.6 -2.4 2.2 1.6 - - - - - 
PZCB2 (m) 171(*) 202.9 195.0 208.6 3.3 - - - - - 
PZCB3 (m) 134(**) 197.9 196.3 198.8 0.7 - - - - - 
Seepage (l/min) 143(*) 7.3 0.5 26.5 5.2 - - - - - 

Note: (*) Data after the cleaning of the drainage system. (**) Data before 2012 and after the cleaning of the drainage system. 
 
From the previous information (based on charts and descriptive statistics), it is possible to state 

that: i) there are some months, in the predicted period, where the values of the water levels were 
never observed before. This can mean that there is the possibility that a new combination of loads 
(temperature and water level) may lead to a new structural response; and ii) the cleaning of the 
drainage system leads to a change in the hydro-mechanic pattern observed in the PZCB3, PZCB2 
and (but not so clear as expected) in the seepage. 

3 METHODOLOGY 

The main purpose of this BW challenge is to predict, as near as possible, the structural response 
for the training period and for the prediction period. This is a good exercise to test or validate 
new methods and disseminate new approaches. However, it is important to refer that this is not 
the ultimate goal that should motivate the development of any forecasting model. The knowledge 
and confidence on measurements, the capability of interpreting (by the end-users) the predicted 
values and correlating it with the main loads (or warning thresholds related to dam incidents or 
accidents scenarios) are some of additional aspects that must be taken into account, from the 
structural safety point of view. 
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Structural response of concrete dams in normal operation present good correlation with the 
main loads, a similar structural response being expected when subjected to the same set of loads 
(so, there is a pattern in the dam behaviour that is considered normal and that relates to an 
expected structural behaviour). However, when a time effect (that are irreversible and may be 
related to ageing or to some deterioration process) is observed in measurements, this time effect 
pattern should be characterized using some “rule” in order to be able to predict the influence of 
the time effect in the future observed behaviour. 

The methodology proposed for this BW challenge is based on the combination of artificial 
neural network and multiple linear regression models for the construction of the (short-term and 
long-term) predictions, as presented in Figure 5.  

 

Figure 5.  Proposed methodology based on combining NN and MLR models for short-term and long-term 
prediction. 

 
The main steps of the proposed methodology can be described as follow: 
Inputs (measurements): 

• Organize air temperature, water level, structural response (observations). The rainfall was not 
directly considered in this study. 

Step 0: 
• Perform a descriptive statistical analysis. Paying special attention to the main domain of variables 

variation, potential outliers, possible patterns in quantity variations. 
Step 1:  

• Perform moving average of air temperature (4 and/or 2 weeks were adopted of time window 
for average); 

• Perform linear regression to characterize the sinusoidal function (𝑌𝑌𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑤𝑤𝑚𝑚𝑡𝑡, 
𝑚𝑚𝑡𝑡𝑣𝑣.  𝑎𝑎𝑣𝑣. ) with one year 

period and the corresponding phase (∅𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑤𝑤𝑚𝑚𝑡𝑡.
𝑚𝑚𝑡𝑡𝑣𝑣.𝑎𝑎𝑣𝑣. ) of the air temp. moving average; 

Step 2: 
• Perform HST approach through the adoption of multiple liner regression, as usual: 

𝑀𝑀𝐻𝐻𝐻𝐻𝑇𝑇,𝑀𝑀𝐿𝐿𝑀𝑀(𝐻𝐻, 𝑁𝑁, 𝑡𝑡)=𝑀𝑀𝐻𝐻𝐻𝐻𝑇𝑇,𝑀𝑀𝐿𝐿𝑀𝑀(𝐻𝐻) + 𝑀𝑀𝐻𝐻𝐻𝐻𝑇𝑇,𝑀𝑀𝐿𝐿𝑀𝑀(𝑁𝑁) + 𝑀𝑀𝐻𝐻𝐻𝐻𝑇𝑇,𝑀𝑀𝐿𝐿𝑀𝑀(𝑡𝑡) 
• Define the suitable functions to represent the time effect, 𝑀𝑀𝐻𝐻𝐻𝐻𝑇𝑇,𝑀𝑀𝐿𝐿𝑀𝑀(𝑡𝑡), based on the dam 

engineer experience and the parameters indicators (such as p-value). In this study, due to the 
lack of historical context and on site inspections records, a simple linear function was used to 
represent time effect; 

• Identify the phase of the structural wave of one year period (∅𝐸𝐸𝐻𝐻𝐻𝐻𝐻𝐻,𝑀𝑀𝑀𝑀𝑀𝑀 (𝐻𝐻)) that represent the 
effect annual temperature variation; 

  

Moving average of 
air temperature,

Sinusoidal function 
with one year period

Target 
(observations), 
HST approach 
based on MLR 

model

Target without time 
effect, Neural 

Network model 

Target without  
time effect

Air temperature  
shifted

Prediction

= 

=
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Step 3: 
• Shift the air temperature moving average values in order to present the same phase of the 

structural response, ∆∅𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑤𝑤𝑚𝑚𝑡𝑡.
𝑚𝑚𝑡𝑡𝑣𝑣.𝑎𝑎𝑣𝑣.  = ∅𝐸𝐸𝐻𝐻𝐻𝐻𝐻𝐻,𝑀𝑀𝑀𝑀𝑀𝑀(𝐻𝐻) − ∅𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑤𝑤𝑚𝑚𝑡𝑡.

𝑚𝑚𝑡𝑡𝑣𝑣.𝑎𝑎𝑣𝑣.  
Step 4: 

• Remove the time effect to the target value, obtaining 𝑇𝑇𝑡𝑡𝑏𝑏𝑠𝑠∗ = 𝑇𝑇𝑡𝑡𝑏𝑏𝑠𝑠 − 𝑀𝑀𝐻𝐻𝐻𝐻𝑇𝑇,𝑀𝑀𝐿𝐿𝑀𝑀 (𝑡𝑡); 
Step 5: 

• Perform NN model training and value prediction, 𝑌𝑌𝑇𝑇𝑜𝑜𝑜𝑜𝑠𝑠∗
𝑁𝑁𝑁𝑁 , to estimate 𝑇𝑇𝑡𝑡𝑏𝑏𝑠𝑠∗ , considering as inputs 

terms to represent the water level variation (selected from h4, h3, h2, h) and the temperature 
effect (sinusoidal function and shifted air temperature moving average were adopted). 

Step 6: 
• Calculation of the predicted value, 𝑌𝑌𝑡𝑡𝑏𝑏𝑠𝑠

𝑁𝑁𝑁𝑁+𝐻𝐻𝐻𝐻𝑇𝑇,𝑀𝑀𝐿𝐿𝑀𝑀 as the sum of the predicted value obtained from 
the artificial neural network model added with the value of the time effect rule adopted, 
𝑌𝑌𝑡𝑡𝑏𝑏𝑠𝑠
𝑁𝑁𝑁𝑁+𝐻𝐻𝐻𝐻𝑇𝑇,𝑀𝑀𝐿𝐿𝑀𝑀 = 𝑌𝑌𝑡𝑡𝑏𝑏𝑠𝑠𝑁𝑁𝑁𝑁 + 𝑀𝑀𝐻𝐻𝐻𝐻𝑇𝑇,𝑀𝑀𝐿𝐿𝑀𝑀 (𝑡𝑡). 

The main advantages of the proposed methodology (combining NN and MLR methods) are that 
make use of the learning capability of the NN models (through a possible better characterization 
of the water level and temperature effects) and take advantage of the “fixed” term of the time 
effect adopted through the MLR model (being the expert on dam engineering able to “fix” the 
rate of evolution, for the time effect, that is expected (or accepted) – being able to identify early 
as possible deviations in the dam behaviour). The use of shifted values of the moving average (of 
2 and/or 4 weeks) of the air temperature is expected to have a better prediction if the 
temperature effect is not well represented through a sinusoidal wave (which is often the case). 
However, one should be aware that the variations observed in the air temperatures 
measurements may lead to “noise” added to the model and may not compensate for the gains. 
The main disadvantage of the proposed methodology is that requires more effort than traditional 
HST models based on MLR method only and it is more sensible to the lack of data. It is important 
to refer that, as in any area of specialization, it is important that the development of data-based 
models for dam behaviour prediction should be performed by experts with a broad knowledge of 
dam engineering coupled with machine learning expertise. 

One main condition for adopting the proposed data-based methodology is the need of data 
(both loads and response) representative of the dam behaviour, being the proposed 
methodology applied to the prediction of the horizontal displacements (CB3-195-161m and CB2-
236-196m) and opening displacements in C4-C5 only. Due to the cleaning of the drainage system, 
the numbers of records available to characterize PZCB3, PZCB2 and seepage is limited. The 
authors opted to perform a traditional HST model for obtaining the predicted values. This option 
was also supported by the strong correlation observed in PZCB2 and PZCB3 with the water level 
(Figure 4). For seepage this option was adopted because it seems that there is not enough 
available data to reasonably characterize the complete pattern in the observed behaviour. 

4 RESULTS AND DISCUSSION  

 Prediction of the horizontal displacements and opening movements using the 
proposed methodology 

The proposed methodology, described previously, was adopted for the prediction of the horizontal 
displacements measured in the CB3-195-161m and the CB2-236-196m, and the opening movements 
measured in the C4-C5. The main results are summarized in Figures 6 to 11, and Table 2.  

Figure 6.  CB3-195_161m – Measurements of the training period and predicted values along time 
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Figure 7.  CB3-195_161m + Measurements of the training period and predicted values related to the water 
level variation and to the day of the year (associated to the temperature variation) 

Figure 8.  CB2-236-196m – Measurements of the training period and predicted values along time. 

Figure 9.  CB2-236-196m – Measurements of the training period and predicted values related to the water 
level variation and to the day of the year (associated to the temperature variation). 
 

Figure 10.  C4-C5 – Measurements of the training period and predicted values along time. 

Figure 11.  C4-C5 – Measurements of the training period and predicted values related to the water level 
variation and to the day of the year (associated to the temperature variation). 
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Table 2. Statistical parameters of the main model prediction related to the horizontal displacements and 
opening movements. 
 Training Period Predicted period (2013-2017) 
 Model prediction Residuals Model prediction 
 Mean Min Max σ MAE NRME σ Mean Min Max σ 
CB3-195-161m  
(mm) 

-0.3 -4.9 3.9 2.7 0.3 0.0 0.4 -1.9 -4.5 3.0 1.9 

CB2-236-196m  
(mm) 

-6.7 -26.6 15.2 9.4 1.3 0.0 1.6 -13.5 -25.9 10.4 7.4 

C4-C5  
(mm) -0.6 -2.9 2.4 1.6 0.1 0.0 0.2 -1.4 -2.6 1.4 0.9 

 Prediction of the uplift and seepage using the traditional HST approach with MLR 
methods 

As previously described, for PZCB2, PZCB3, and seepage a traditional HST was adopted. This 
option was based due to the limited number of measurements (and corresponding time period) 
available and for PZCB2 and PZCB3 due to the fact that the expected behaviour seems to be well 
represented through the water level effect. Regarding the PZCB3, some kind of novelty in the 
behaviour pattern at the end of the training set was identified and these values were not 
considered for training. The main purpose is to identify early as possible potential novelties in the 
prediction set even though a worse performance of the model is expected.  For seepage there 
are some uncertainties in the characterization of its pattern because there are some singular (or 
combination of) effect that may affect his pattern, depending on the exact placement of the drain 
(for example, rainfall). However, due to the limited number of measurements, a further analysis 
was not performed. The main results are summarized in Figures 13 to 18, and Table 3.  

Figure 12.  PZCB2 – Measurements of the training period and predicted values along time. 

Figure 13.  PZCB2 – Measurements of the training period and predicted values related to the water level 
variation and to the day of the year (associated to the temperature variation).  

Figure 14.  PZCB3 – Measurements of the training period and predicted values along time 
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Figure 15.  PZCB3 – Measurements of the training period and predicted values related to the water level 
variation and to the day of the year (associated to the temperature variation). 

 
Figure 16.  Seepage – Measurements of the training period and predicted values along time 

Figure 17.  Seepage – Measurements of the training period and predicted values related to the water level 
variation and to the day of the year (associated to the temperature variation) 
 
Table 3. Statistical parameters of the main model prediction related to the uplift pressures and seepage. 

 Training Period Predicted period (2013-2017) 
 Model prediction Residuals Model prediction 
 Mean Min Max σ MAE NRME σ Mean Min Max σ 
PZCB2 
(m) 202.6 194.6 208.4 3.3 0.6 0.0 0.8 197.1 194.5 205.5 3.2 

PZCB3 
(m) 197.7 196.1 198.8 0.7 0.2 0.0 0.3 196.7 195.9 198.5 0.7 

Seepage  
(l/min) 

7.4 0.0 13.2 3.4 2.8 0.0 4.0 2.9 0.0 10.4 3.0 

5 FINAL CONSIDERATIONS 

Once a dam is its operation phase, the assessment of the dam's condition and the 
interpretation of the dam's behaviour are also supported through the use of data-based models. 
However, the suitability and limitations of the models, the uncertainties or the incomplete 
knowledge about the loads, the dam's foundation, the material properties and geometrical 
definition of the dam are the reasons why (in normal operating scenarios) the real or measured 
dam behaviour may not match the expected behaviour. The development of new methodologies 
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based on ML can improve dam behaviour predictions and this BW is an important milestone to 
disseminate the use of ML models by dam engineers. 

The authors propose a new methodology based on the combination of the results from 
multiple linear regression and neural network models in this Benchmark for the prediction of the 
horizontal displacements measured in pendulums and opening movements in crackmeters. The 
models presented good performance for the training period being a valid option for dam 
engineering activities. However, it is important to refer that additional care should be taken 
regarding model validity because the domain of the main loads within the training period may 
not be the same observed in the predicted period. A model may be valid for one set of 
experimental conditions and invalid for another. For the uplift pressure and for the seepage, a 
traditional HST approach based on multiple linear regression was adopted due to the short time 
training period, as a consequence of the drainage cleaning. Finally, the previous analysis of the 
main loads during the training set and the prediction set allows identifying that in the prediction 
set are a combinations of loads (temperature and water level) that never happened before. So, a 
decrease in the model performance is expected in order to identify these novelties in the dam 
behaviour. 
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ABSTRACT: Monitoring is a major part of dam safety and surveillance provisions. Monitoring is a 
decision-making tool which allows a relatively detailed understanding of the behavior of the dam 
at a weekly timescale or even more frequently when required. In France, it is usual practice to 
calibrate the numerical model used for the stability analysis of arch dams by means of data from 
the monitoring system and use the mentioned numerical model for prediction of behavior and 
safety assessment. The aim of this paper is to present the results of different methods and 
assumptions used to process dam monitoring data for explaining the current behavior of an arch 
dam and predicting its future behavior. Two different methods are used: statistical analysis and 
numerical modelling. The monitoring data are used to set up HST (Hydrostatic, Season, and Time) 
and Thermal HST (HSTT) statistical models. Then a numerical thermo-hydro-mechanical model is 
performed to predict the arch dam’s future behavior after being calibrated by means of the 
monitoring data.  Then, a preliminary safety analysis of the dam with the numerical model is 
carried out by determining a few strength parameters allowing the dam to fulfill the current 
French Guidelines on stability analysis of arch dams. 
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1 INTRODUCTION 

The aim of this paper is mainly to detail the used methods for filling up the excel files for 
reporting the results. The used assumptions are described, and some interpretations of the 
different analyses is made. 

Two approaches are carried out: statistical methods and numerical models. Concerning 
statistical models, the three cases (calibration, short and long term predictions, and 
interpretation) have been carried out for all devices except for leakage device. 

Warning levels are defined for each device based on usual practice. 
Three different approaches are used in the current case study. The participants are requested 

to rank the ability of each of them in terms of best guess of the future behavior of the dam. In 
the point of view of the authors, the statistical models seem to be more accurate in predicting 
the future behavior of the current arch dam. Firstly, they are useful tools that allow complex 
phenomena involved in the raw data to be explained with a rather good confidence. Secondly, as 
long as the expected loadings (in a separate way) have already been submitted to the dam, 
statistical approaches are believed to be also of good accuracy to predict the future behavior 
under a specific load combination. On the other hand, numerical models must consider all the 
involved physical phenomena and related parameters in order to accurately simulate the 
behaviour of the real structure. In the current case, several assumptions are made for the missing 
data. Consequently, as only a few relevant data for the numerical analysis are available, the 
results are ranked at the third place. Regarding the statistical models, the HSTT method is judged 
better in this specific case. As the HSTT method has one more parameter to explain raw data and 
as the case study is a relatively thin arch, HSTT model is judged more accurate in this case where 
the concrete temperature can rapidly vary across the thickness of the dam. And finally, the data 
covers several years of dam operation, enhancing the ability of the statistical model to explain 
and predict the behavior. Therefore, HSTT models is ranked at the first place. 

A reminder of the excel files content is given below 
 

Table 1. Reminder of analysed data  

Method Device Case A Case B Case C 

HST models 

CB2 Yes Yes Yes 
CB3 Yes Yes Yes 
C4_C5 Yes Yes Yes 
PZCB2 Yes Yes Yes 
PZCB3 Yes Yes Yes 
Leakage No No No 

HSTT models 

CB2 Yes Yes Yes 
CB3 Yes Yes Yes 
C4_C5 Yes Yes Yes 
PZCB2 Yes Yes Yes 
PZCB3 Yes Yes Yes 
Leakage No No No 

Numerical models 

CB2 No Yes Yes 
CB3 No Yes Yes 
C4_C5 No No No 
PZCB2 No No No 
PZCB3 No No No 
Leakage No No No 
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2 DATA BASED MODELS 

 HST method 

 Description 
HST Method is statistical model developed by EDF (Willm et al., 1967). The aim of this method 

is to explain dam monitoring data with three independent and additive effects. The first effect is 
the hydrostatic effect induced by the hydrostatic pressure of the water level in the reservoir. The 
second is the seasonal effect, it reflects such as a periodic behaviour of the dam regarding the 
period of the year. The last one is the time effect, which model the ageing behaviour of the dam 
or of a monitoring device over time. The hydrostatic and seasonal effect are supposed to be 
reversible whereas the time effect is considered as irreversible. These three effects are defined 
as follows: 

𝑓𝑓ℎ𝑦𝑦𝑑𝑑𝑎𝑎𝑡𝑡𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡𝑎𝑎𝑡𝑡(𝑍𝑍) = 𝑚𝑚1𝑍𝑍 + 𝑚𝑚2𝑍𝑍2 + 𝑚𝑚3𝑍𝑍3 + 𝑚𝑚4𝑍𝑍4 (1) 

𝑓𝑓𝑠𝑠𝑤𝑤𝑎𝑎𝑠𝑠𝑡𝑡𝑛𝑛(𝑁𝑁) = 𝑚𝑚5(1 − cos(𝑁𝑁)) + 𝑚𝑚6 sin(𝑁𝑁) + 𝑚𝑚7 sin ²(𝑁𝑁) + 𝑚𝑚8 sin(𝑁𝑁) cos(𝑁𝑁) (2) 

𝑓𝑓𝑎𝑎𝑟𝑟𝑎𝑎𝑛𝑛𝑟𝑟(𝜏𝜏) = 𝑚𝑚9𝜏𝜏 + 𝑚𝑚10𝜏𝜏2 + 𝑚𝑚11𝑒𝑒−𝜏𝜏 (3) 

Z is the dimensionless water level in the reservoir defined by 𝑍𝑍 = (𝑍𝑍_𝑃𝑃𝐻𝐻𝑀𝑀 − ℎ)/𝐻𝐻_𝑏𝑏𝑒𝑒 . In this 
equation 𝑍𝑍𝑃𝑃𝐻𝐻𝐸𝐸  is the maximum water height in the reservoir (corresponding to the design flood), 
h is the current water level, and 𝐻𝐻𝑏𝑏𝑎𝑎  is the dam’s height above its foundation. 

S is a radiant angle between 0 rad on the 1st January and 2𝜋𝜋 on the 31st December, 
S=2𝜋𝜋(𝑑𝑑/365.25 − ⌊𝑑𝑑/365.25⌋) with d the date of the day. 
𝜏𝜏 = 𝑡𝑡/𝑇𝑇_𝑏𝑏𝑡𝑡   where t is the time of measurement expressed in years from a reference date, 

𝑇𝑇𝑏𝑏𝑡𝑡  a constant expressed in years. 
Coefficients (𝑚𝑚𝑎𝑎)𝑎𝑎∈⟦0;11⟧ are computed by least-square minimisation. Let Y be series of raw data 

and Ŷ be modelled data. The HST method models raw measurements and modelled data with 
 

𝑌𝑌 = 𝑚𝑚0 + 𝑓𝑓ℎ𝑦𝑦𝑑𝑑𝑎𝑎𝑡𝑡𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡𝑎𝑎𝑡𝑡(𝑍𝑍) + 𝑓𝑓𝑠𝑠𝑤𝑤𝑎𝑎𝑠𝑠𝑡𝑡𝑛𝑛(𝑁𝑁) + 𝑓𝑓𝑎𝑎𝑟𝑟𝑎𝑎𝑛𝑛𝑟𝑟(𝜏𝜏) + 𝜀𝜀 (4) 

Ŷ = Y − ε = 𝑚𝑚0 + 𝑓𝑓ℎ𝑦𝑦𝑑𝑑𝑎𝑎𝑡𝑡𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡𝑎𝑎𝑡𝑡(𝑍𝑍) + 𝑓𝑓𝑠𝑠𝑤𝑤𝑎𝑎𝑠𝑠𝑡𝑡𝑛𝑛(𝑁𝑁) + 𝑓𝑓𝑎𝑎𝑟𝑟𝑎𝑎𝑛𝑛𝑟𝑟(𝜏𝜏) (5) 

𝑚𝑚0 and 𝜀𝜀 are the constant and the residual error due to the linear regression. 
 

An HST model is evaluated with the correlation coefficient R²=∑
(𝑦𝑦�𝑖𝑖−𝑦𝑦�)2

∑(𝑦𝑦𝑖𝑖−𝑦𝑦�)2 ∈ [0; 1] and with the 

adjusted coefficient correlation (𝑅𝑅𝑎𝑎)2 = 1 − �𝑛𝑛−1
𝑛𝑛−𝑡𝑡

� (1 − 𝑅𝑅2) . 𝑦𝑦 is the mean of the sample Y, n 

is number of data and p the number explanatory variables. The clothier to 1  𝑅𝑅𝑎𝑎2 is, the better 
statistical model is adjusted. 

 Application to the case study 
The same calibration period is used for pendulums CB2 and CB3 and crack opening C4_C5. 

They are calibrated between 19/01/2000 and 31/12/2012. Regarding piezometers, calibration 
periods are not identical. For both piezometers, the calibration considers the cleaning of the 
drainage system in February 2008. Consequently, the piezometer PZCB2 is calibrated between 
20/09/2008 and 31/12/2012. Piezometer PZCB3 is calibrated between 01/01/2000 and 
31/12/2012, but a drop in data is assumed to model the cleaning of the drainage system and to 
take into account the lack of data in early 2008. This drop is modelled on 10/09/2008.  

Regarding the case C (long term predictions), a long period where the water level was below 
the lowest level experienced during the calibration period is noticed. In order not to misevaluate 
the hydrostatic function of HST method, the raw data are modified so as not to include any water 
level below that minimum value experienced during the calibration period, i.e., El. 185. When the 
water level values are lower than this elevation, this value is used as a replacement. 
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Finally, there isn’t any successfully calibrated model for leakage. The best correlation 
coefficient reached about R²=0,5. This range of value is not high enough to result in an accurate 
HST model and to perform realistic monitoring analysis.  Actually, leakage behavior is difficult to 
model with basic HST model. Indeed, leakage is subjected to strong non-linearities which is 
basically described by the law of Poiseuille, some threshold and/or cross-effects between 
thermal, mechanical and hydraulic effects (de Bigaut de Granrut, 2019). 

The correlation factors of statistic models are given below. 
 

Table 2. HST models correlation coefficients 
     𝑅𝑅2      𝑅𝑅𝑎𝑎2  
Pendulum CB2 0.9135 0.9130 
Pendulum CB3 0.9646 0.9642 
Crack opening C4_C5 0.9749 0.9747 
Piezometer PZCB2 0.9925 0.9921 
Piezometer PZCB3 0.9331 0.9326 

 

 Thermal HST method (HSTT) 

 Description 
Thermal HSTmethod (HSTT) is an improvement of the classical HST method described in §2.1.1. 

It was developed by EDF after a heatwave in 2003 (Penot et al., 2009).  HSTT considers one 
supplementary explanatory variable: air temperature. This new variable aims to explain raw data 
in which a high-frequency change in temperature occurs. Actually, the seasonal effect of the HST 
method explains only the low-frequency temperature changes, i.e., annual temperature changes. 
HSTT method allows the daily temperature changes to be considered.  

This new variable called 𝑀𝑀𝑀𝑀  and is added to the seasonal effect. The other effects of the HST 
method stay identical (eq. (1) and (3)). Thus, the seasonal effect from HSTT method is defined as 
follows: 

 
𝑓𝑓𝑠𝑠𝑤𝑤𝑎𝑎𝑠𝑠𝑡𝑡𝑛𝑛(𝑁𝑁) = 𝑚𝑚5(1 − cos(𝑁𝑁)) + 𝑚𝑚6 sin(𝑁𝑁) + 𝑚𝑚7 sin ²(𝑁𝑁) + 𝑚𝑚8 sin(𝑁𝑁) cos(𝑁𝑁) + 𝑏𝑏1𝑀𝑀𝑀𝑀 (6) 

Coefficients (𝑚𝑚𝑎𝑎)𝑎𝑎∈⟦0;11⟧ and 𝑏𝑏1 are computed by least-square minimisation. 
 
Theoretically 𝑀𝑀𝑀𝑀  is the impulse response to the unidirectional conduction equation 

𝜕𝜕𝜃𝜃
𝜕𝜕𝑡𝑡

=
𝜆𝜆𝜆𝜆
𝑒𝑒
𝜕𝜕2𝜃𝜃
𝜕𝜕𝑒𝑒2

 

where the arch dam is assumed to be a finite medium of width L and only submitted to a 
temperature E at its extremities. (Penot et al., 2009)   

In the modelling  𝑀𝑀𝑀𝑀  is computed by 

𝑀𝑀𝑀𝑀(𝑡𝑡 + 𝑑𝑑𝑡𝑡) = 𝑀𝑀(𝑡𝑡 + 𝑑𝑑𝑡𝑡) �1 − exp �−
𝑑𝑑𝑡𝑡
𝑇𝑇0

 �� + exp �−
𝑑𝑑𝑡𝑡
𝑇𝑇0

 �𝑀𝑀𝑀𝑀(𝑡𝑡) (7) 

𝑇𝑇0 is the thermal response time of the dam and E represents deviations from the average 
temperature. It only represents deviations from the average temperature as the behaviour of the 
dam against the average temperature is modelled by the HST seasonal effect. 

 
The average temperature is calculated from temperature data with linear regression. Let be 𝜃𝜃𝑎𝑎 

the average temperature, modelled by 
 

𝜃𝜃𝑎𝑎 = 𝑒𝑒1 cos(𝑁𝑁) + 𝑒𝑒2 sin(𝑁𝑁) + 𝑒𝑒3 cos(2𝑁𝑁) + 𝑒𝑒4 sin(2𝑁𝑁) (8) 
and thus, E is defined by   𝑀𝑀 = 𝜃𝜃 − 𝜃𝜃𝑎𝑎  , 𝜃𝜃 is air temperature. 
For each device, the thermal response time is calibrated with statistical optimisation but the 

value of  𝑇𝑇0 is checked to ensure the physical consistency of this parameter which is supposed to 
represent the response time of the instrument to a thermal variation. 
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 Application to the case study 
The Hypotheses for HSTT method are the same as that of HST method. The same period of 

calibration between January 2000 and December 2012 is also used. PZCB2 is calibrated between 
20/09/2008 and 31/12/2012 and PZCB3 is calibrated between 01/01/2012 and 31/12/2012 with 
a drop in the data on 10/09/2008. Regarding case C, the same hypothesis regarding minimum 
water level is made in order not to misevaluate hydrostatic effect. 

The correlation factors of statistic models are given below which highlight the better 
correlation compared to the HST model. 

 
Table 3. HSTT models correlation coefficients 

      R²     𝑅𝑅𝑎𝑎2   𝑇𝑇0  
 [days] 

Pendulum CB2 0.9681 0.9677 5 
Pendulum CB3 0.9690 0.9687 14 
Crack opening C4_C5 0.9752 0.9749 10 
Piezometer PZCB2 0.9936 0.9932 9 
Piezometer PZCB3 0.9340 0.9334 9 

 Warning levels 
Warning levels are defined on the corrected data from the calibration period. Corrected data 

are computed by subtracting reversible effects to the raw data.  
 

𝑌𝑌𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑤𝑤𝑡𝑡𝑡𝑡𝑤𝑤𝑑𝑑 = 𝑌𝑌𝑎𝑎𝑎𝑎𝑤𝑤 − 𝑓𝑓ℎ𝑦𝑦𝑑𝑑𝑎𝑎𝑡𝑡𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡𝑎𝑎𝑡𝑡(𝑍𝑍) − 𝑓𝑓𝑠𝑠𝑤𝑤𝑎𝑎𝑠𝑠𝑡𝑡𝑛𝑛𝑛𝑛𝑎𝑎𝑣𝑣(𝑁𝑁;𝑀𝑀𝑎𝑎) (9) 
 
Corrected data allows the dispersion of the data to be reduced and the analysis of the dam 

behaviour or monitoring devices to be facilitated. Warning levels are set to be equal to ±2.5 ∙ 𝜎𝜎𝐶𝐶  
in addition to the irreversible data modelled by HST/HSTT models. 𝜎𝜎𝐶𝐶  is the standard deviation of 
the corrected data during the calibration period and irreversible data are defined by 

  
𝑌𝑌𝑎𝑎𝑎𝑎𝑎𝑎𝑤𝑤𝑣𝑣𝑤𝑤𝑎𝑎𝑠𝑠𝑎𝑎𝑏𝑏𝑣𝑣𝑤𝑤 = 𝑌𝑌𝑚𝑚𝑡𝑡𝑑𝑑𝑤𝑤𝑣𝑣𝑣𝑣𝑤𝑤𝑑𝑑 − 𝑓𝑓ℎ𝑦𝑦𝑑𝑑𝑎𝑎𝑡𝑡𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡𝑎𝑎𝑡𝑡(𝑍𝑍) − 𝑓𝑓𝑠𝑠𝑤𝑤𝑎𝑎𝑠𝑠𝑡𝑡𝑛𝑛𝑛𝑛𝑎𝑎𝑣𝑣(𝑁𝑁;𝑀𝑀𝑎𝑎) = 𝑚𝑚0 + 𝑓𝑓𝑎𝑎𝑟𝑟𝑎𝑎𝑛𝑛𝑟𝑟(𝜏𝜏) (10) 

Thus, warning levels are defined by 
 

𝑈𝑈𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑊𝑊𝑚𝑚𝑒𝑒𝑙𝑙𝑚𝑚𝑙𝑙𝑔𝑔 𝑙𝑙𝑒𝑒𝑣𝑣𝑒𝑒𝑙𝑙 = 2.5 ∙ 𝜎𝜎𝐶𝐶 + 𝑌𝑌𝑎𝑎𝑎𝑎𝑎𝑎𝑤𝑤𝑣𝑣𝑤𝑤𝑎𝑎𝑠𝑠𝑎𝑎𝑏𝑏𝑣𝑣𝑤𝑤 = 2.5 ∙ 𝜎𝜎𝐶𝐶 + 𝑚𝑚0 + 𝑓𝑓𝑎𝑎𝑟𝑟𝑎𝑎𝑛𝑛𝑟𝑟(𝜏𝜏) (11) 

𝐿𝐿𝑐𝑐𝑤𝑤𝑒𝑒𝑒𝑒 𝑊𝑊𝑚𝑚𝑒𝑒𝑙𝑙𝑚𝑚𝑙𝑙𝑔𝑔 𝑙𝑙𝑒𝑒𝑣𝑣𝑒𝑒𝑙𝑙 = −2.5 ∙ 𝜎𝜎𝐶𝐶 + 𝑌𝑌𝑎𝑎𝑎𝑎𝑎𝑎𝑤𝑤𝑣𝑣𝑤𝑤𝑎𝑎𝑠𝑠𝑎𝑎𝑏𝑏𝑣𝑣𝑤𝑤 = −2.5 ∙ 𝜎𝜎𝐶𝐶 + 𝑚𝑚0 + 𝑓𝑓𝑎𝑎𝑟𝑟𝑎𝑎𝑛𝑛𝑟𝑟(𝜏𝜏) (12) 

The value of 2.5∙ 𝜎𝜎𝐶𝐶  is based on ARTELIA’s feedback in dam monitoring engineering. Based on 
experience, this value allows to not have too wide margins and not to have to narrow margins 
and to have significant alerts. Still, this is a preliminary initial value that may required to be 
gradually adjusted based on the corrected data after several years of monitoring analysis. 
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Figure 1.  Examples of corrected data and warning levels 

 
Warning levels help in distinguishing erroneous measurements from a rather unusual dam 

behaviour. Typically, in case of erroneous measurements, one device is usually out of its warning 
levels whereas in case of unusual dam behaviour, several devices usually exceed the thresholds. 
Still, the dam operator shall ensure that the only device with a peculiar measurement does not 
relate a local unusual behavior of the dam. Sometimes, when a device is regularly out of warning 
levels, this may require the warning levels to be adjusted. 

In the case of the current case study, for examples between February and March 2005 three 
devices were out their warning levels (Figure 1). This may be explained the 2004/2005 winter 
which was colder than the mean winter, -15.5°C at 26/01/2005, combined with a high water level 
in the reservoir, at El. 230 m at the end of 2004. 

3 NUMERICAL MODEL 

For this benchmark workshop, the used numerical model is calibrated from statistical models 
and not directly from raw data. 

 Geometry and meshing 
The numerical model is carried out with FLAC3D, an explicit finite difference calculation code. 

The used model involves a new meshing layout after slight changes in the provided geometry. 
The mentioned changes include the consideration of the vertical joints between the cantilevers 

as based on ARTELIA’s experience, such approach results in a more realistic modelling for arch 
dams (Mouy et al., 2019). The width and the position of the cantilevers are assessed from the few 
sketches from the formulation document but also from the original geometry files. 

Moreover, the keying of the dam toe is deleted for geometrical convenience. On the other 
side, the dam / foundation interface is provided with numerical Shear keys so as to simulate the 
effect of the aforementioned keying. 
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The numerical model is made of 56000 linear elements distributed as follows: 
• 16000 elements in the dam, mainly hexahedral. There are 6 elements across the thickness 

of the arch in order to accurately simulate bending and achieve a satisfactory resolution of 
analysis at the dam / foundation interface; 

• 40000 elements in the foundation, mainly tetrahedral. 

 
Figure 2.  Case study dam's block modelling 

 Mechanical properties 

 Foundation 
As suggested in the formulation document, the foundation is divided into 3 different parts: left 

bank, right bank and bottom of valley. The Young’s modulus of the bottom valley is calibrated 
using the pendulum CB3’s HSTT model. The Young’s modulus is determined from the simulation 
of hydrostatic effect and the thermal expansion coefficient from the simulation of seasonal effect.   

The final model parameters are the results of many attempts of model calibration conducted 
considering both isotropic and anisotropic bedrock foundation. The best fitting is reached with 
the anisotropic plane presented in Figure 3. 

The normal vector to the anisotropic plane is 𝑙𝑙���⃗ = (1.25,1,0). The calibration is made by varying 
the reservoir level between 221.5 m and 237 m. The synthesis of calibration is given in the following 
table and shows a model base which is still slightly stiff with regards to hydrostatic effect: 

 
Table 4. Young modulus of foundation Calibration 

 Numerical anisotropic model HSTT model 
Radial 
displacement 
pendulum CB3 
[mm] 

Computed 
hydrostatic effect 
[mm] 

Computed seasonal 
effect 
[mm] 

Target hydrostatic 
effect 
[mm] 

Target seasonal 
effect 
[mm] 

4.34 2.52 5.88 2.52 
 

 
Figure 3.  The best fitting anisotropic plane for the foundation 
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The following table shows the selected material parameters in which the thermal conductivity 
and the specific heat capacity are usual values which are not assessed from the calibration 
process. One may notice the rather low Young’s modulus normal to the anisotropic planes 

 
Table 5. Foundation mechanical properties 

 Left bank Bottom of valley Right bank 
Young modulus in anisotropic plane 𝑀𝑀∥ [GPa] 10.00 5.00 15.0 
Young modulus normal to anisotropic plane 𝑀𝑀⊥ [GPa] 0.300 0.300 3.00  
Poisson ration  0.30 0.30 0.30 
Density [kg/m3] 2700 2700 2700 
Thermal conductivity  [W/(m.K)] 3.00 3.00 3.00 
Specific heat capacity [J/(kg.K)] 850 850 850 
Coefficient of thermal expansion [K-1] 3.00 ∙ 10−6  3.00 ∙ 10−6  3.00 ∙ 10−6  

 

 Concrete 
To calibrate concrete’s Young’s modulus, the same approach as the foundation’s calibration is 

carried out. Hydrostatic effect from pendulum CB2’s HSTT model is used to calibrate concrete 
Young’s modulus. Seasonal effect from this HSTT model is also used to calibrate the coefficient of 
thermal expansion of the concrete.  

The synthesis of calibration is given below: 
 

Table 6. Young modulus and thermal coefficient of concrete Calibration 

 Numerical anisotropic model  HSTT model 
Radial 
displacement 
pendulum CB2 
[mm] 

Computed 
hydrostatic effect 
[mm] 

Computed seasonal 
effect 
[mm] 

Target hydrostatic 
effect 
[mm] 

Target seasonal 
effect 
[mm] 

22.89 23.50 22.34 20.97 
 

The following table shows the selected material parameters in which the thermal conductivity 
and the specific heat capacity are again usual values which are not assessed from the calibration 
process: 

 
Table 7. Concrete's mechanical properties 

Young modulus [GPa] 35 
Poisson ration 0.2 
Density [kg/m3] 2400 
Thermal conductivity [W/(m.K)] 2 
Specific heat capacity [J/(kg.K)] 900 
Coefficient  
of thermal expansion [K-1] 8.5 ∙ 10−6  

 Interfaces and joints 
The vertical joints of the dam are modelled and provided with numerical shear keys allowing 

the opening but not the sliding even under opened state. 
To model the keying at the dam toe, the same numerical feature is also used. Note that because 

of this shear key and because of the elastic constitutive law, time effects cannot be considered in 
the prediction model. 

 Loads 
Thermo-mechanical simulations have been carried out for prediction periods, thermal and 

mechanical loadings were updated for each days of predictions. The calculations involve the use 
of a thermo-hydro-mechanical simulation for which the features are described in the following. 
The calculation timestep (update in thermal and in mechanical loadings) is 1 day. As the 
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calibration is performed in a separate way, this stage consists only in predicting the future 
behavior. 

 Pore pressure, uplift and hydrostatic loading  
The simulations are carried out in effective stress state: pore pressure acts as calculation 

variables in the same way as geotechnical analyses and influences total and effective mechanical 
stresses (without any backward coupling) with a Biot’s coefficient which equals 1. Several pore 
pressure distributions are computed with flow calculation (Darcy’s approach) for several water 
levels in reservoir. The foundation is assumed to be isotropic in terms of flow and neither the 
drainage system nor the grout curtain is considered. The calculated pore pressure contour 
matches with good accuracy to PZCB3, but not so much with PZCB2.  

During the prediction calculations, the pore pressure distribution chosen for each day 
corresponds to the one that has the closest water level among the previously calculated 
distributions. 

The full uplift propagates as external force in any opened region of the dam / foundation 
interface with an opening higher to 0.2mm as long as the region is in contact with the reservoir. 

If the water level in the reservoir is very low (i.e., under dam’s toe elevation), the pore pressure 
is set at the lowest level computed: 193.5 m. 

 
Table 8. Hydraulic properties 

 Permeability m/s 
Concrete  1 ∙ 10−8 
Foundation  1 ∙ 10−7 

 
 
Figure 4.  Pore pressure distribution (Pa) corresponding to water level at El. 237 m 

 Thermal loadings  
The temperature distribution in the dam and in the bedrock is determined from a transient 

thermal-only simulation with a timestep of 1 day and applied as thermal loading to the 
mechanical model. The thermal loadings are calculated from air and water temperature data with 
a few more assumptions based on ARTELIA’s experience.  

20 m under water surface, water temperature is assumed to be constant and equal to 4°C. 
Furthermore, across the 20 first meters under water surface, the temperature is assumed to vary 
linearly between 4°C and the air temperature. 

 The temperature of transverse joint grouting is considered to be the annual mean 
temperature between 2000 and 2012 and leads to 5°C. This uniform temperature distribution 
corresponds to zero thermal stress in the dam. The transient thermal analysis considers the 
variations of the water level in the reservoir. 

The following table gives the thermal parameters related to heat exchange with air and water.:  
Table 9. Thermal properties related to heat exchange with air and water 
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Convective heat coefficient air-concrete [W/(m²K)] 13 
Convective heat coefficient air-rock [W/(m²K)] 13 
Convective heat coefficient water-concrete [W/(m²K)] 500 
Convective heat coefficient water-rock [W/(m²K)] 500 

 Short and long term predictions 
The prediction simulations lead to the results presented in Figure 5 where also superimpose 

the HST and HSTT prediction curves. The numerical predictions for CB2 are in good agreement 
with that of HST and HSTT approaches except when the reservoir water level is below the 
modelled dam’s toe. This denotes some poroelastic behavior of the bedrock justifying the use of 
the pore pressure as state variable but here not very accurate due to the lack of calibration data. 
The numerical predictions for CB3 are of lesser accuracy due to the stiffer model base compared 
to reality with regards to hydrostatic effects. Based on the authors experience in arch dam 
modelling, this case study is one of the very unusual cases where the model base is stiffer than 
reality. It is suspected that the orthotropy plane is somewhat different that the one modelled. 
Otherwise, the Young’s modulus of the bedrock which would be able to simulate the real behavior 
of the dam would be too low to denote a bedrock suitable for constructing an arch dam. 
Moreover, the model is not able to consider the time effect which is rather low e in this case 
(0.03mm/year) and can then be neglected. 

 

 
 
Figure 5.  Pendulum predictions results – numerical, HST and HSTT approaches 

 

4 SAFETY ANALYSES 

The main advantage of numerical simulation compared to statistical approach is its ability to 
assess in a quantitative way the safety of the dam with regards to existing national or international 
guidelines. Consequently, it is considered less valuable to define warning levels based on the 
numerical simulation predictions. On the other hand, one can assess the safety margin of the dam 
for a defined load case with regards to a specific failure mode. The one analysed here as an 
example is the sliding along the dam / foundation interface. 

With a maximum base width of 6 m and a maximum height above the bedrock of about 45 m, the 
case study is thin arch dam. With a straight distance between the abutment of about 158 m, the dam 
is built on a wide valley (relative to its height). This type of dam usually exhibits extended crack opening 
(or foundation extension) at their upstream toe when being impounded with full uplift/pore pressure 
propagating toward the downstream part. Such behavior is exacerbated by winter thermal loading 
with the shear strength being strongly mobilized at the dam / foundation interface.  

The monitoring data confirm this crack opening and the uplift/pore pressure propagation 
toward downstream. In the numerical model, this opening is localized at the dam / foundation 
interface with a maximum magnitude of about 3 mm at NWL without thermal loadings. This 
opening may actually be distributed over several discontinuities within the bedrock. 
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Figure 6.  Cracks opening (m) at NWL 
 

A first analysis consists in assessing the mobilized cohesion at the dam / foundation interface 
when considering a friction angle of 45°. Such cohesion denotes the contact roughness: the 
cohesion is mobilized even when the dam / foundation interface is in an open state. The 
maximum mobilized cohesion at the scale of one cantilever is about 800 kPa at NWL under winter 
thermal loading (Figure 7). This is in the higher range of encountered values for several arch dams 
studied so far (Robbe et al. 2022). 

 

 
 
Figure 7.  Necessary cohesion to avoid the sliding of each block 
 

 

Figure 8.  Irreversible shear displacement (m) at rock concrete interface under normal conditions winter 
Upper interface’s properties are c=0 kPa 𝜑𝜑 = 45°, Lower interface’s properties are c=600 kPa and 𝜑𝜑 = 45° 
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Then a sensitivity analysis is carried out regarding the dam / foundation shear strength 
parameters. A first deterministic approach considers a friction angle of 45° without any cohesion 
(CFBR 2018, FERC 2018). With these assumptions generally used at design stage, a sliding up to 5 
cm is calculated, without any failure mechanism being triggered (Figure 8). Such behaviour is not 
in line with the current French guidelines, though not specifically edited for newly designed dams. 
A second calculation considering 600kPa cohesion leads to about 1 cm sliding, at the limit of 
allowable value as per the current French guidelines. One may envisage that such cohesion can 
actually be mobilized at the dam / foundation interface through roughness or also deeper in the 
rock mass if there is not any unique localized crack. Moreover, the keying of the dam in the 
bedrock is also another reassuring aspect for this case study. But finally, it is also deemed possible 
that the calculated sliding displacements have gradually developed during several seasonal and 
drawdown cycles of the dam without jeopardizing its safety (Andrian et al. 2018). 

5 CONCLUSIONS 

The statistical HST and HSTT models are very often used in French arch dam engineering 
because they are simple, efficient and robust approaches based on the real behaviour of the dam. 
They can provide with rational explanation to raw and intricate data. They can be directly handed 
over to the dam operators in order to perform a regular check on the periodic behaviour of the 
dam based on the continuously collected data.  On the other hand, the accuracy and the ability 
of the model to learn from the behaviour of the dam and to be able to explain or predict gradually 
increase with new data. However, based on the authors experience who are currently in charge 
of the monitoring analysis of more than 30 large dams, statistical approach is seldom used for 
predictions. Actually, they are not able to extrapolate data when the loadings are out of the range 
already experienced by the dam and hence unable to assess the safety of the dam in a clearly 
quantitative way.  

On the other hand, numerical modelling is a rather complex tool which cannot be easily handed 
over to dam operators. In the authors experience, such tool is usually applied in a deterministic 
way at design stage with regards to the material parameters which are not directly related to 
safety. At the beginning, the strength parameters can be determined through tests but also by 
means of empirical approaches. Then the numerical model can be gradually calibrated by means 
of the regularly collected monitoring data. In the case of numerical models, the more physical 
phenomena are known and well modelled, the closer is the numerical model behaviour from the 
real behaviour of the dam. Through years, the gradual adjustments of such numerical model can 
turn the model into an actual digital twin of the dam which can more and more confidently be 
used predict the dam behaviour and to assess with a higher accuracy its safety. 

The combination of statistical approaches on one hand and the gradually learning numerical 
model on the other hand is believed to become a higher range monitoring decision-making tool 
to be used by both the operator and the engineer in a tight collaboration.  
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BEHAVIOR PREDICTION OF A CONCRETE ARCH DAM: 
DATA-BASED MODELS USED BY THE FORMULATOR OF 
THE THEME A IN AN INDUSTRIAL CONTEXT 

Alexandre Simon 
EDF (Electricité de France) 

ABSTRACT: This paper presents the data-based models used by the formulator of the theme A in 
order to analyze the monitoring data. The models proposed by the formulator are the models of 
reference for EDF, i.e., they are used in an industrial context. It does not mean that they should 
be considered as the reference or the best model for this benchmark. 
The models applied for this benchmark are the following: 

• Thermal HST for displacements 
• A non-linear version of HST for crack opening displacements 
• A physically based and non-linear version of HST for piezometers at the rock concrete 

interface 
• Artificial Neural Networks for leakages 

 
Regarding the short-term and long-term predictions, and since this paper is written by the 
formulator of the theme A who owns all monitoring measurements, it is stipulated that predicted 
values are provided without any knowledge of measurements during the prediction period. 
Predictions are provided for displacements, crack opening displacements, piezometers but not 
for leakages as Artificial Neural Network is not appropriated when it comes to extrapolating. 
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1 INTRODUCTION 

Analyzing dam monitoring data (displacement, leaks, uplift, etc.) uses statistical analysis 
methods that have been developed to separate the different sources of variation in the measured 
phenomenon.  Among these statistical methods multiple linear regression analysis using the HST 
(Hydrostatic-Season-Time, Ferry et al 1958, Willm et al. 1967) model has proved to be powerful 
and is widely used within EDF. Its main advantages are its robustness and its ease of interpretation 
and application. HST enables hydrostatic (due to hydrostatic load) and seasonal (due to thermal 
effects, for example) effects to be determined and to simply deduce the irreversible behavior of 
the structure. 

Some limitations of HST have been identified: when explanatory variables (water level, season) 
are connected together, separating the effects is not accurate. In addition, the laws defining the 
explanatory functions (polynomials for water level) are given a priori and cannot always be 
modified to adapt to the real behavior of the dam (threshold effects among others). 

To improve the shortcomings of HST in classical analysis, many explanatory models have been 
developed within EDF. All of them are derived from the HST classical formulation. Some of them 
are applied to the time series of monitoring data of this benchmark.  

The models applied for this benchmark are the following: 
• Thermal HST for displacements 
• A non-linear version of HST for crack opening displacements 
• A physically based and non-linear version of HST for piezometers at the rock concrete 

interface 
• Artificial Neural Networks for leakages 

 
The HST method for data correction is EDF’s main method for analysing monitoring data 

(displacements, uplifts, leaks, etc.). The HST model assumes that raw measurements can be 
modelled by adding three states: 

• An irreversible change in the phenomenon over time t, which may tend to decay 
(adaptation or consolidation), to increase (degradation) or to remain constant. The law f1 
corresponding to this effect is as follows:  
 

f1(t) = 𝑏𝑏1𝑒𝑒-𝑡𝑡/t0+ b2.t+ b3.t2+ b4.t3+ b5.t4                                                (1) 
 
It consists of two terms (negative exponential with the characteristic time t0 representing the 

decay and a polynomial in time). Commonly the linear term is used.  
• A reversible effect corresponding to the effect of the hydrostatic load H. The corresponding 

law f2 is:  
f2(z) =𝑏𝑏6.z + 𝑏𝑏7.z2 + 𝑏𝑏8 .z3 + 𝑏𝑏9 .z4                                                   (2) 

Where 
     Z=(RN-H)/(RN-Rvide)                                                               (3) 

 
with H the water level on the day of measurement, RN the normal operating water level and 

Rvide the water level when empty (When the dam is full z = 0). 
A reversible seasonal influence including various cyclic phenomena (temperature, radiation, 

etc.). The seasonal law is a one-year periodic function. The season S is varying from an angle equal 
to 0° on 1 January and 360° on 31 December; then: 

 
f3(𝑁𝑁)= 𝑏𝑏10 .cos (𝑁𝑁) + 𝑏𝑏11.sin (𝑁𝑁) + 𝑏𝑏12. cos (2𝑁𝑁) +𝑏𝑏13. sin (2𝑁𝑁)                                (4) 

 
The coefficients bi (I varying from 0 to 13) are determined by minimizing the sum of square 

residues. The measurement Xi (displacement, uplift, etc.) at time ti, for a water level zi, at a season 
Si can be expressed as follows: 

 
Xj=f1(tj) + f2(zj) + f3(Sj) + b0 + 𝜺𝜺j                                                                                       (5) 
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The term εj is the residue of the model, including the measurement errors and model 
imperfections. b0 is the constant of linear regression. Thus, the measurements (M) "corrected" 
by the HST model are unaffected by the reversible effects (f2(z) and f3(S)). Therefore, we note: 

 
Corrected Measurement i = Xi – f2(zi) – f3(Si)                                            (6) 

 
The model makes a strong assumption: the reversible effects are independent (additive). The 

season (thermal effects) has the same effect on a full or an empty dam and vice versa. It is a 
shortcoming of HST.  

The model enables data to be compared under identical seasonal (average season f3(S)=0) and 
water level (full dam f2(z)=0) conditions. This correction of measurement enables to highlight slow 
temporal effects or anomalies. 

The article will briefly describe the method used to analyze each phenomenon and present 
main results and interpretation. Due to the brief size of this paper, a detailed description is only 
provided in the list of references. 

2 METHODS, RESULTS AND INTERPRETATION 

 Analysis of displacements 
Displacements are analyzed thanks to the Thermal HST model (Penot et al. 2009). This model 

is an improvement of HST by adding a term which accounts for the influence of the deviation 
from the season of air temperature. This term is also delayed from a characteristic time T0, which 
accounts for the thermal diffusivity of the dam (T0=8 days for pendulum CB2). Regarding the data 
of the benchmark, we use Ta for the air temperature as we observe from our own experience 
that using an air temperature according to the standard of WMO (World Meteorological 
Organization) is always better than using a temperature calculated by interpolation from several 
air temperature measuring stations. But this point needs to be confirmed by the benchmark. The 
figure 1 below presents the corrected measurement i.e. measurements that are removed from 
the reversible effects. They enable to highlight the irreversible trend, which is negligible in this 
case, except for the last two years. This upstream displacement for the last two years is not clearly 
understood, but it is perhaps due to the fact that the Thermal HST model is not well appropriated 
when the water level is low during a long time. 

 

Figure 1.  Corrected displacements for pendulum CB2. 
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Another interesting graph provided by the Thermal HST model is given on figure 2. The thermal 

displacements (seasonal plus deviation from the season) enable the dam owner to visualize the 
effect of cold waves and heatwaves. 

Figure 2.  Thermal displacements (seasonal + deviation from the season) for pendulum CB2 
 
Other effects such as hydrostatic effects and irreversible may also be displayed to interpret the 

dam behavior. 

 Analysis of crack-opening displacements 
Time series of crack-opening displacements are characterized by a threshold which is obvious 

when observing the raw data. To overcome this issue, we build a non-linear version of HST model 
by using the hyperbolic tangent function. The general expression of this model is as follows: 

 
Xj= a0 + a1 tanh(a2+f1(tj) + f2(zj) + f3(Sj) + 𝜺𝜺j                                                                        (7) 

 
As this model is nonlinear, the multiple linear regression analysis cannot be used. To overcome 

this issue, we use the solver of Excel to determine the coefficient ai and bi. When interpreting the 
results of this model, one should keep in mind that the reversible effects are not unique and 
depend on the environmental conditions. 

 
For example, Figure 3 shows the seasonal effect at different water levels. When water levels 

are low, the amplitude of the seasonal function is low as the crack is closed. Reciprocally, when 
water levels are high, the crack is open and consequently the seasonal function has a higher 
amplitude. 

One other interesting thing to look at are the corrected measurements (see Figure 4). Times 
series exhibit a sudden irreversible increase in January 2008, which is probably caused by the 
historical value of crack opening displacement observed at the same date. 

Among the drawback of this model, it should be noticed that the coefficient of correlation of 
this model is a little lower than the coefficient of correlation of the simple HST when considering 
the predicted period. 
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Figure 3.  Seasonal effect for the crack opening displacement C4-C5 at different water level 
 

Figure 4.  Corrected measurements of crack opening displacements C4-C4 

 Analysis of pressure of water in the foundations 
When analyzing piezometric levels, we observe that the effects of the thermal and hydrostatic 

loads actually are interdependent. Indeed, for a given water level, the effect of the hydrostatic 
load differs from a thermal state to another. In winter, the low temperatures induce (for an arch 
dam) a thermal contraction of concrete which in turn induces a shifting of the arch in the 
downstream direction. This modifies the permeability at the interface by increasing it at the heel 
of the dam. The rock-concrete interface is said to be decompressed or open and allows the 
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hydrostatic load to propagate toward downstream. Uplift pressures in the rock-concrete 
interface thus increase. Reciprocally, in summer, the thermal expansion of concrete tends to close 
the interface and reduces its permeability, which limits the propagation of the hydrostatic load. 
Therefore, the effect of the hydrostatic load is modulated by the effect of the thermal state. 
Those two reversible effects are coupled. Some time-depending evolutions can also influence the 
permeability of the interface, such as clogging, or a loss of watertightness. From those reflections, 
one can infer that the effects of the different influencing loads (thermal state, hydrostatic load, 
time) are not merely additive, which invalidates the HST model. The model that is described in 
this article (De Granrut et al. 2019, De Granrut et al. 2018) aims at taking into consideration those 
couplings, by explicitly integrating them into a non-linear formulation. 

Figure 5.  Representation of the rock-concrete interface, definition of the quantities of interest  
 
Consider (fig. 5): 
• P(x) the piezometry measured by a piezometer situated at the contact, at a distance x from 

the upstream end of the heel. The notation is simplified to P; 
• Pdo the piezometry measured at the downstream end of the toe of the dam; 
• k(x) a dimensionless factor, written k; 
• 𝑯𝑯𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍= h – Pdo the hydrostatic load exerted by the water in the reservoir. 

P is modelled as the sum of the downstream piezometry and a fraction of the hydrostatic load (8). 

 𝑃𝑃 = 𝑃𝑃𝑑𝑑𝑡𝑡 +  𝑘𝑘 ∙ 𝐻𝐻𝑣𝑣𝑡𝑡𝑎𝑎𝑑𝑑   (8)  

k expresses the link between the head loss between the upstream end and the piezometer (as 
a fraction of 𝐻𝐻𝑣𝑣𝑡𝑡𝑎𝑎𝑑𝑑), and the measured piezometric level. If the permeability of the medium was 
homogeneous and isotropic, this link would be a proportional and constant link (Darcy law). 
However this is not the case, and the permeability of the foundation rock mass is actually 
influenced by the mechanical strains of the foundation, which are themselves a function of the 
mechanical stresses that affect the structure (dam plus foundation). 

First, the effects of those mechanical stresses on the structure are modelled linearly, as the 
sum of a hydrostatic function, a thermal function and a temporal function. This choice was 
conditioned by the following observation: the vertical displacements (VD) being an image of the 
mechanical strain of the structure (meca).  

 𝑉𝑉𝐷𝐷 ≈ 𝑚𝑚𝑒𝑒𝑒𝑒𝑚𝑚 =  𝑓𝑓1(𝑁𝑁) +  𝑓𝑓2(𝑍𝑍) +  𝑓𝑓3(𝑡𝑡) +  𝜀𝜀𝑎𝑎 (9)  

Where f1, f2 and f3 are the same functions as in the HST model and 𝜀𝜀𝑎𝑎 is the modelling error.  
Second, the effect of the global mechanical strains on the permeability, and thus on the 

piezometric levels, is not linear (10). 

 𝑘𝑘 =  𝑔𝑔𝑛𝑛𝑡𝑡𝑛𝑛 𝑣𝑣𝑎𝑎𝑛𝑛𝑤𝑤𝑎𝑎𝑎𝑎(𝑚𝑚𝑒𝑒𝑒𝑒𝑚𝑚) (10)  

Where g is a function to be determined. Since the measurements are distributed following a 
hyperbolic tangent type function, the function gnon linear was chosen as a hyperbolic tangent 
function.   

Considering the expression of the relative trough Z, Hload can be expressed as a function of the 
water level in the reservoir h (11) 

 𝐻𝐻𝑣𝑣𝑡𝑡𝑎𝑎𝑑𝑑 = ℎ𝑛𝑛𝑡𝑡𝑎𝑎𝑚𝑚 − 𝑍𝑍 ∙ �ℎ𝑛𝑛𝑡𝑡𝑎𝑎𝑚𝑚 − ℎ𝑤𝑤𝑚𝑚𝑡𝑡� − 𝑃𝑃𝑑𝑑𝑡𝑡 (11)  
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Finally, for a monitored piezometric time series 𝑃𝑃𝑎𝑎 Є {1;𝑁𝑁} containing N observations, the global 
model can be expressed as follows (12): 

 𝑃𝑃𝑎𝑎  = 𝑏𝑏0 + �𝑏𝑏1  +  𝑏𝑏2 ∙ 𝑡𝑡𝑚𝑚𝑙𝑙ℎ�𝑚𝑚0  +  𝑚𝑚1 ∙ 𝑒𝑒𝑐𝑐𝑐𝑐𝑁𝑁𝑎𝑎 +  𝑚𝑚2 ∙ 𝑐𝑐𝑚𝑚𝑙𝑙𝑁𝑁𝑎𝑎 +  𝑚𝑚3 ∙ 𝑒𝑒𝑐𝑐𝑐𝑐2𝑁𝑁𝑎𝑎 +  𝑚𝑚4 ∙ 𝑐𝑐𝑚𝑚𝑙𝑙2𝑁𝑁𝑎𝑎 + 𝑚𝑚5 ∙ 𝑍𝑍𝑎𝑎 + 𝑚𝑚6 ∙ 𝑍𝑍𝑎𝑎2 + 𝑚𝑚7 ∙
𝑍𝑍𝑎𝑎3  +  𝑚𝑚8 ∙ 𝑍𝑍𝑎𝑎4  +  𝑚𝑚9 ∙ 𝑡𝑡𝑎𝑎�� ∙ �ℎ𝑛𝑛𝑡𝑡𝑎𝑎𝑚𝑚 − 𝑍𝑍𝑎𝑎 ∙ �ℎ𝑛𝑛𝑡𝑡𝑎𝑎𝑚𝑚 − ℎ𝑤𝑤𝑚𝑚𝑡𝑡� − 𝑏𝑏0�  +  εi ;           i Є {1;N} (12)  

 This expression constitutes the regression model in which the coefficients b0, b1,…, a0,...,a9 are 
the regression coefficients. They are determined by nonlinear least squares fitting, using the 
Levenberg Marquardt algorithm, which iteratively minimizes the sum of squared residuals. 

Once the 13 coefficients are optimised, the reversible effects (hydrostatic and thermal effects) 
can be computed by simulating the piezometric levels having either Z or S vary on its range, and 
the remaining variables being fixed to well-chosen baseline values. 

 
The hydrostatic effect is interesting to plot as it reflects the aperture of the rock concrete 

interface (See Figure 6). In October, when the rock concrete interface is closed, the amplitude of 
the hydrostatic effect is low. Reciprocally, in April, when the entire dam is cold, the rock concrete 
interface is open and the amplitude of the irreversible effect is higher. 

Figure 6.  Hydrostatic effect for piezometric levels PZCB2 
 
Thanks to the accuracy of the NL HST model, it is easier to detect any change in behavior when 

looking at the corrected measurements (see Figure 7). Time series of corrected measurements 
clearly shows a decrease after 2008, probably caused by the cleaning of the drainage system 
carried out at that date. 

Figure 7.  Irreversible effect (corrected measurements) for piezometric levels PZCB2 
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 Analysis of leakages 
In this article leakage are analyzed with a model based on Artificial Neural Networks. The 

architecture of the neural networks is given on the Figure 8. The explanatory variables (water 
level, season and time) are the same as the ones in the HST model. First tries using rainfall as 
explanatory variables were not conclusive. 

The principle of Artificial Neural Networks and the main parameters used for that modelling 
are explained in Simon et al., 2013.  

The results show a coefficient of correlation of R²ANN=0.66 for the case A. This value is higher 
than the coefficient of correlation of the classical HST. R²HST=0.56. Since ANN has more 
parameters than the HST model, it is quite easy for ANN to improve the coefficient of correlation, 
especially when the initial coefficient we get with a multiple linear regression is low. However, 
when it comes to analyzing the reversible effects such as the hydrostatic and seasonal effect, it is 
not easy to interpret those sensitivity studies and understand why ANN has better performance 
than HST. 

Figure 9.  Prediction’s performance of the Artificial Neural Networks 
 
We did not try to carry out any short -term or long-term prediction with ANN as sensitivities 

studies did not reveal a high interpretability of the hydrostatic and seasonal effects. The modelling 
of leakages still remains a challenge for case B and C, and even for the calibration period A. 

 

 Warning level 
Warning levels were defined by adding  ± 2·σ ; σ is the standard deviation of the residuals of 

the models. This limit is commonly used in dam monitoring, and is rather restrictive, i.e. we 
assume we get a certain number of false alarms. If we use   ± 2·σ and if residuals follow a gaussian 
distribution, we know that 5% of measurements will trigger the alarm.     
  

Figure 8: architecture of neural 
networks 
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3 CONCLUSION 

The models proposed by the formulator are the models of reference for EDF, i.e., they are used 
in an industrial context. It does not mean that they should be considered as the reference or the 
best model for this benchmark. 

Thermal HST is used for displacements and its main advantage is that it has a high 
interpretability of the thermal effects and that it is a relevant tool when predicting future 
measurements. 

Crack opening displacements are analyzed with a nonlinear version of HST, which accounts for 
the threshold exhibited by measurements when crack is closed. This model calculates seasonal 
effects that are in accordance with the physical behavior, that is to say that the crack width does 
not evolve when it is closed at low water level. Reciprocally when the crack is open with high 
water level, the amplitude of the seasonal effect is at its maximum. 

Piezometric levels are influenced by the crack at the upstream toe of the dam, that is why the 
nonlinear version of HST which is proposed in this article tries to overcome that issue by 
integrating a term which accounts for the crack-opening. As the crack-opening does not evolve 
linearly with external loads, the appropriate function for modelling that effect should be 
nonlinear. By doing so, the calculated effects reflect a higher permeability and consequently 
higher piezometric levels when the crack is open. This model also clearly highlights the irreversible 
effect which is not monotonous in this case. 

Finally, leakages appear to be the most difficult phenomenon to model. Artificial Neural 
Networks give satisfactory numerical results, although hydrostatic and seasonal effects seem 
hardly interpretable. For this reason, we did not try to extrapolate for short-term (case B) and 
long-term (case C) predictions with that model. 
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ABSTRACT: The assessment of the structural stability and the behavior of the dam during 
construction and service period is of vital importance. In the paper are presented 
acknowledgments from the numerical analysis of concrete arch dam under static and hydraulic 
(seepage) action, by application of Finite Element models (code SOFiSTiK) and Neural Networks 
models (NeuralTools code). The aim of the task is to predict the dam behavior, that includes 
calibration (based on monitoring data) and prognosis stage (short-term and long-term) focusing 
on variables such as radial displacements, crack displacements, piezometric levels and seepage. 
Coupled thermo-mechanical analysis and seepage analysis in time domain were carried out the 
for calibration and prognosis stage of the specified variables, in case of FEM modelling. The 
conclusion from the both numerical experiments (FEM and Neural Networks) is that the dam 
behavior, with adopted geometry and material, is within the expected mode. 
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1 INTRODUCTION 

The dams, having in consideration their importance, dimensions, complexity of the problems 
that should be solved during the process of designing and construction along with the 
environmental impact are lined up in the most complex engineering structures (Tanchev, 2014; 
Novak & all., 2007). The assessment of the structural stability and the behavior of the dam during 
construction, at full reservoir and during the service period is of paramount importance for such 
structures. 

Static stability of concrete dams is confirmed with analysis (research) of the response of the 
structure (dam) under action of static loads (Mitovski & all, 2015, Mitovski & all, 2017a, Mitovski 
& all, 2017b]. In this paper are systemized acknowledgments from the linear and nonlinear static 
numerical analysis of concrete arch dam, obtained with application of Finite Element Method 
models (code SOFiSTiK) and Neural Networks models. Namely, here below will be illustrated 
output data from the numerical experiment for prediction behavior of the arch dam Dam EDF, 
located in France. The aim of the task is to predict the dam behavior, that includes calibration 
(based on monitoring data) and prognosis stage (short-term and long-term) focusing on variable 
such as radial displacements (two pendulums in central block of the dam), crack displacements 
(sensor at the rock-concrete interface), piezometric levels (vibrating wire piezometers at the rock-
concrete interface) and seepage (weir at the downstream of the dam).   

2 CASE STUDY 

The analyzed dam is located in southern France, constructed in period 1957-1960. It is a case 
of double curvature arch dam, with asymmetric shape due to the valley formation (Fig. 1). The 
dam foundation is laminated metamorphic slate with high compressive strength, with present 
anisotropy in the left bank. The dam height above the foundation si H=45 m, with crest thickness 
of 2 m and base thickness of 6 m.   

 
Figure 1.  Layout of the dam (left) and central block section with display of monitoring instruments (right). 

3 MODELLING OF THE DAM 

 Numerical model of the dam  
The numerical analysis of Dam EDF is carried out by application of program SOFiSTiK, produced 

in Munich, Germany. The program is based on finite element method and has possibilities for 
complex modeling of the structures and simulation of their behavior. It also has possibility in the 
analysis to include certain specific phenomena, important for realistic simulation of dam’s 
behavior, such as: discretization of the dam and foundation taking into account the irregular and 
complex geometry of the structure, simulation of stage construction, simulation of contact 
behavior by applying interface elements and etc. in order to assess the dam behavior and 
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evaluate its stability. The program SOFiSTiK in its library contains and various standards and 
constitutive laws (linear and non-linear) for structures analysis. 

The numerical experiment includes following steps, typical for this type of analysis: (1) choice 
of material properties and constitutive laws (concrete and rock); (2) discretization of the dam and 
the rock foundation and (3) simulation of the dam behavior for the typical loading states (as 
required in the topic formulation). 

 Material properties  
The linear material properties for the dam body (concrete) and the foundation (rock) are 

systematized in Table 1. The specified parameters are adopted according to Theme A formulation 
(Malm & all, 2021) as well and previous carried out analysis and reference literature (Desai & 
Gallagher, 1984, SOFiSTiK, 2022, EC 2, 1992, Mitovski, 2015, USBR, 1977).  

 
Table 1. Material parameters.  

Zone   dam body 
(concrete) 

rock  Comment  

γspec kN/m3 24.0 27.0 Unite weight 
k_s m/s 

 
2.0e-05 Permeability coefficient  

ν   0.350 0.450 Poisson coefficient 
Alpha 1/C° 7.0E-06 

 
Thermal expansion coefficient 

E  GPa 22 3 Young's modulus of elasticity 
 
Additionally, for carrying out of non-linear analysis of the dam in order to calibrate and predict 

the relative distance values at interface dam-foundation is applied non-linear constitutive law for 
concrete based on elasto-plastic material law Lade with non-associated flow rule from SOFiSTiK 
library of materials (Table 2). 

 
 Table 2. Non-linear material parameters for concrete.  

Zone   dam body 
(concrete) 

Comment  

γspec kN/m3 24.0 Unit weight 
ν   0.350 Poisson coefficient 
Alpha 1/C°  7.0e-06 Thermal expansion coefficient 
E  GPa 22 Young's modulus of elasticity 
P3 kN/m2 2900 Uniaxial tensile strength 
m  1 Parameter for curvature of the yield 

surface towards the hydrostatic axis 
η  88162 Yield function 
fcd kN/m2 33333 Compressive strength  
εtu ‰ 0.2 Tensile failure strength  

 Discretization of dam body and foundation by finite elements 
Numerical analysis of the arch dam is carried out by spatial (3D) model, where the dam body 

and the foundation are modeled with volume elements, by full reproduction of the finite element 
model formulation data. A powerful and reliable finite element should be applied in case where 
an analysis of structure with complex geometry and behavior is required, having in consideration 
that the correctly calculated deformations and stresses are of primary significance for assessment 
of the dam stability. In this case, for discretization of the dam body and the rock foundation are 
applied finite element type bric, by 4 nodes, identical to C3D4 element from ABAQUS and 
kinematic constraints at the interface dam-rock foundation. Namely, the model is composed of 
dam body and rock foundation with constraints at the interface dam-foundation. 

 The spatial (3D) model has geometrical boundaries, limited to horizontal and vertical plane. In 
these planes are defined the boundary condition of the model (Figure 2). The curvature  plane in 
the lowest zone of the model is adopted as non-deformable boundary condition (fixed 
displacements in XYZ direction), vertical planes perpendicular on X-axis are boundary condition 



Mitovski, G. Kokalanov, Petkovski, Panovska, V. Kokalanov 
BEHAVIOR PREDICTION OF A CONCRETE ARCH DAM 

 

237 
 

by applying fixed (zero) displacements in X-direction and vertical planes perpendicular on Y-axis 
are boundary condition by applying fixed (zero) displacements in Y-direction. The discretization is 
conveyed by including zones of various materials in the model – concrete and rock foundation. 
The dam is modeled as monolithic structure. 

Figure 2:  View of the numerical model, discretized with total of 186583 elements and 39419 nodes.  

 Dam loading scenarios for calibration and prognosis stage 
The dam loading is directly correlated with the calibration and prognosis stage for the dam 

behavior. The numerical analysis is carried out by coupled thermo-mechanical model and 
hydraulic (seepage) model for analysis of the dam behavior in the calibration and prediction stage. 
The thermal effect of the dam is simulated by applying temperature loading of the dam body 
according to air temperature time series as uniform distribution within the volume (bric) 
elements. The assumption is that the temperature loading in the dam body is uniformly 
distributed in the various time steps and approximately in range of the air temperature. The 
temperature effect is coupled with the hydrostatic loading in accordance with the specified water 
levels from the reservoir for the identical time steps. The hydrostatic loading is applied at 
upstream face of the dam as spatial load in accordance with the water levels in the reservoir. The 
calibration process is carried out by combined choice of extreme (highest) values for the air 
temperature Ta, water levels in the reservoir WL and measured values for the variables records 
within the monitoring process. The method of adoption of the extreme values per dates for time 
series of pendulums CB2 means that are chosen maximal and minimal values from the recorded 
data. Namely, in such a way, by analogy are adopted records for the water levels and 
temperature, thus obtaining a representative number of load cases in order to assess the dam 
behavior, that are being run within the model. 

Identical approach is applied and for the prognosis stage. Namely, for the short-term prognosis 
is carried out calculation of the dam response for all time steps from January-June, 2013 (total of 
184), while for the long-term prognosis is applied also combined choice of extreme values for 
period July, 2013-December, 2017, regarding the water levels in the reservoir and temperature 
Ta, thus obtaining total a representative number of load cases for the various variables with aim 
to predict the dam’s behavior, that are being run within the model. Static loading scenarios 
includes self-weight of the concrete arch dam and the rock foundation.  

 Neural networks modelling of the dam 
Artificial neural networks are typical example of a modern interdisciplinary subject that helps 

solving various different engineering problems which could not be solved by the traditional 
modelling and statistical methods (I. Flood K. N., 1994). Neural networks are capable of collecting, 
memorizing, analyzing and processing large number of data gained from some experiments or 
numerical analyses. They are an illustration of sophisticated modelling technique that can be used 
for solving many complex problems. The trained neural network serves as an analytical tool for 
qualified prognoses of the results, for any input data which were not included in the learning 
process of the network. Their operation is reasonably simple and easy, yet correct and precise. 
The artificial neural networks, together with the fuzzy logic and genetic algorithms, belong to the 
group of symbolic methods of intelligent calculations and data processing that operate according 
to the principles of soft computing. Neural networks are developed as a result of the positive 
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features of a few different research directions: data processing, neuro-biology and physics (I. 
Flood K. N., 1994). Researches around the world showed that neural networks have an excellent 
success in prediction of data series and that is why they can be used for creating prognostic 
models that could solve different problems and tasks (I. Flood K. N., 1994; I. Flood C. P., 1996). 
For practical application of artificial neural networks, it is not necessary to use complex neuron 
models. Therefore, the developed models for artificial neurons only remind us to the structure of 
the biological ones and they have no pretension to copy their real condition (Flood, 1990). The 
artificial neuron receives the input signals and generates the output signals. Every data from the 
surrounding or an output from other neurons can be used as an input signal. 

As follows, by applying Generalized Regression Neural Network (GRNN) specifically NeuralTools 
code from Palisade corporation, for data prediction in case of arch dam are shown. The data set 
used for training is basically values of the given measured data. In the training process, 70% of 
the data is used for training and 30% is used for validation. The variables are classified as 
independent or dependent, depending on their role in the prediction process. The dependent 
variable is the variable to be predicted. The independent variables are the “explanatory” variables 
used to predict the dependent variable. Cases where the dependent variable values are known 
are used to train and test a neural network.  

The modeling by application of GRNN is based on the following variables: (1) water level in 
piezometer PZCB2 as dependent numeric value and water level in the reservoir as independent 
numeric value, (2) water level in piezometer PZCB3 as dependent numeric value and water level 
in the reservoir as independent numeric value, (3) seepage flow beneath the dam as dependent 
numeric value and water level in the reservoir as independent numeric value, (4) displacement in 
pendulum CB2 as dependent numeric value and water level and ambient temperature as 
independent numeric value, (5) displacement in pendulum CB3 as dependent numeric value and 
water level and ambient temperature as independent numeric value, and (6) crack opening in 
C4_C5 as dependent numeric value and water level and ambient temperature as independent 
numeric value.  

4 CALIBRATION PROCESS OF THE DAM 

The calibration process includes analysis of variables such as radial displacements (pendulums 
CB2 and CB3 in the central block of the dam), crack opening displacement (sensor C4-C5 at rock 
foundation interface), piezometric levels (PZCB2 and PZCB3 at rock-foundation interface) and 
seepage (weir at the downstream toe of the dam). The required calculated data are derived for 
corresponding nodes within the numerical model. The calibration process is carried out by 
comparison of the measured and calculated radial displacements at corresponding nodes for 
various variables of the FEM model respectively.    

 Calibration of pendulums displacements time series 
By comparison of the radial displacements for pendulum CB2 by FEM analysis (Fig. 4) it can be 

noticed good matching of the data regarding the distribution and the values. The maximal 
measured values for pendulum CB2 range in interval from 15.95 mm to -27.48 mm, while the 
calculated values from 19.5 mm to -22.9 mm. The measured and calculated pendulums 
displacements time series are generally in correlation with the variation of the water level in the 
reservoir and air temperature. Namely, at higher water levels in the reservoir the displacements 
are in downstream direction (the hydrostatic pressure generates greater displacement then the 
temperature effect), while at lower water levels in the reservoir the displacements are in 
upstream direction, combined with the temperature effect that generates displacements in 
upstream direction.    

By comparison of the radial displacements for pendulum CB2 by Neural Networks (NN) analysis 
(Fig. 6) it can be noticed good matching of the data regarding the distribution and the values. In 
case of radial displacements for pendulum CB3 by Neural Networks analysis (Fig. 5) it can be 
noticed excellent matching of the data regarding the distribution and the values. The interval of 
variation of the measured and calculated data for the displacements of pendulum CB2 is (-
17.82÷19.41) mm, while the interval in case of pendulum CB3 is (-2.3÷2.3) mm. In analogy of the 
calculated data by FEM, and here the calculated displacements by Neural Networks models are 
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in correlation with the variation of the water level in the reservoir and air temperature (Fig. 6 and 
Fig. 7). Namely, at higher water levels in the reservoir the displacements are in downstream 
direction (the hydrostatic pressure generates greater displacement then the temperature effect), 
while at lower water levels in the reservoir the displacements are in upstream direction, by 
influence of the temperature effect that generates displacements in upstream direction.       

 

 
Figure 4.  Display of measured and calculated time series of CB2 pendulums displacements for 2000-2012.  

 

 
Figure 6.  Display of measured and calculated time series of CB2 pendulums displacements for 2000-2012.  

 

 
Figure 7.  Display of measured and calculated time series of CB3 pendulums displacements for 2000-2012.  

 Calibration of crack opening time series 
The calibration process for the crack opening displacements is carried out by numerical model 

with nonlinear constitutive law for concrete (Table 2). The calculated radial displacements as 
deduction of the radial displacements in the corresponding nodes are projected to sensor C4-C5 
direction in order to obtain the variation values for the relative distance. On Fig. 8 are displayed 
calculated and measured relative distance for displacements in direction of the sensor C4-C5. It 
can be noticed that in general there is a similar distribution of the values for the calibration period, 
however there is a less good matching of the calculated and measured values. Namely, the 
calculated relative distance values are mainly lower them the measured values. The reason for 
such lower degree of matching of the values can be the stiff coupling condition at interface dam-
foundation, modeled as kinematic constraint in the model. So a potential case to be investigated 
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is to model the contact dam-foundation by interface elements (with both linear and non-linear 
properties) combined with the variation of the stiffness properties of the rock (in central part and 
the banks) in order to improve the calibration process.  

The measured and calculated values are mainly in reverse correlation with the water level in 
the reservoir apropos in period when the water level is low there is increase of the relative 
distance (positive values) while in period of higher water levels there is a decrease (negative 
values). Regarding the temperature, the displacement manifest more variable behavior apropos 
the applied temperature effect has lower influence the water level in the reservoir. The maximal 
measured relative distance values range in interval (2.17 ÷ -2.43) mm, while the calculated values 
vary in range (0.56 ÷ -0.65) mm.    

 

 
Figure 8.  Display of calculated and measured time series of crack openings at sensor C4-C5 for 2000-2012.  

 
On Fig. 9 are displayed calculated and measured data for the relative distance for 

displacements in direction of the sensor C4-C5 by applying Neural Networks model. An excellent 
matching for the distribution and the calculated values is obtained. This can be confirmed by the 
interval of variation of the measured and calculated data for the relative crack displacements of 
sensor C4-C5, in interval of (-1.8÷2.4) mm. In opposite of the calculated data by FEM for sensor 
C4-C5, here the calculated relative crack displacements by Neural Networks models are in 
correlation with the variation of the water level in the reservoir and air temperature (Fig. 9). 
Namely, at higher water levels in the reservoir there is decrease of the relative crack 
displacements (negative values), while at low water levels there is increase of the relative crack 
displacements (positive values).  

 

 
Figure 9.  Display of calculated and measured time series of crack openings at sensor C4-C5 for 2000-2012.  

 Calibration of piezometric levels and seepage time series 
The calibration process is carried out by plane (2D) numerical model for seepage analysis by 

modelling the foundation medium below the central block of the dam including running of load 
cases for full timeline period 2000-2012, and subsequent comparison of the measured and 
calculated piezometric levels at corresponding nodes for piezometers PZBC2 and PZBC3. The 
calculated piezometric levels are obtained by the values of the equipotential lines (H).  

Numerical analysis of seepage flow in the foundation of the arch dam is carried out by plane 
(2D) model, where foundation with included grout curtain is modeled with plane elements. For 
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discretization of the dam body and the rock foundation is applied quadrilateral finite element, by 
4 nodes. Namely, the model is composed of the rock foundation with included zone of grout 
curtain. The plane (2D) model has geometrical boundaries, limited to horizontal and vertical plane 
(Fig. 3), adopted according to the specified data [Malm & all, 2021]. The discretization is conveyed 
by including zones of various hydraulic parameters in the model – rock foundation and grout 
curtain, approximately modelling the rock foundation per 75m upstream and downstream of the 
dam. 

However, the hydraulic properties for the material in the rock foundation were not available. 
So, the first step is to calibrate the value for the permeability coefficient k in accordance with the 
seepage values from the monitoring process for homogeneous rock foundation. The estimated 
permeability coefficient for laminated metamorphic slate ranges in interval k=(10-7÷10-9)m/s 
[Lianyang, 2016, Fell et all, 2015]. The permeability coefficient additionally is calibrated by the 
value of the full seepage flow directly below the dam, specified as measured values in weir at 
gallery located at the downstream toe of the dam. So, according to the available measuring data 
for water level at 232.0 m the average registered seepage flow is 8 l/min. From the registered 
reservoir water levels and seepage flow it can be noticed general correlation, however in some 
periods there is discrepancy in the measured values that could be indication that the seepage 
flow is caused by additional influences then the seepage process in the rock foundation. The 
seepage analysis was carried out for H=232.0 m as upstream boundary condition and H=0 m as 
downstream boundary condition, by applying Darcy flow rule adopting the rock foundation as 
heterogeneous flow medium, composed of rock material (laminated metamorphic slate) and two 
sections (vertical and inclined) of grout curtain, by assumed permeability coefficient in first 
iteration krf=1×10-7 m/s for the rock zone. 

By the initial calibration calculation of the permeability coefficient for homogeneous rock 
foundation was obtained value of k=2.89×10-8 m/s, applied in the calculation for the full 
calibration and prognosis analysis of the piezometric levels and seepage. Due to the grout curtain 
in the rock foundation (heterogeneous zone), additional calibration were carried out, in order to 
match the measured seepage flow Qm=8 l/min and thus obtaining value of permeability 
coefficient for the rock foundation krf=12.5×10-8 m/s and permeability coefficient for the grout 
curtain kgc=2.5×10-8 m/s, used as input parameters for the seepage calibration and prognosis 
stage.      

By comparison of the calculated and measure seepage values (Fig. 10) it can be noticed good 
matching of the registered and calculated seepage flow data regarding the distribution and the 
values. Also, there is good matching apropos correlation of the registered reservoir water levels 
and registered and calculated seepage flow. The measured peak values of the seepage flow occur 
are approximately at normal water level so this may be indication for additional leakage 
occurrences that affect the seepage process. The measured seepage flow varies in interval (0.01÷ 
26.5) l/min, while the calculated values in interval (0.001 ÷ 18) l/min. However, the occurred peak 
values of the seepage flow (especially in 2009) required additional explanation and research due 
to the very high values at approximately constant water level in the reservoir. Namely, they could 
occur due to another reason such as seepage zone in the dam or zones in the rock foundation 
that have higher permeability than the presumed. Additional calibration should include modelling 
of eventual more permeable zones in the rock foundation and more precise calibration of the 
permeability coefficient of the grout curtain. 

 

 
Figure 10.  Display of measured and calculated seepage flow time series for period 2000-2012 by FEM.   
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By comparison of the piezometric levels for piezometers PZCB2, calculated by NN model (Fig. 
11) it can be noticed excellent matching of the measured and calculated data regarding the 
distribution and the values. This can be confirmed by the interval of variation of the measured 
and calculated data for the piezometric levels for piezometer PZCB2, ranging in interval of (-
3.6÷2.9) masl. The calculated piezometric levels by NN model, in analogy of the calculated values 
from the FEM model for seepage analysis, are in correlation with the reservoir water level.    

By comparison of the measured and calculated seepage flow values, obtained by the NN model 
(Fig. 12), it can be noticed not so good matching of the data regarding the distribution and the 
values. The calculated values are in some period lower than the measured values while in some 
periods are higher. The maximal measured seepage flow varies in interval (0.01 ÷ 26.5) l/min, 
while the calculated values in interval (0.37 ÷ 11.9) l/min. The interval of variation of the 
measured and calculated data for the seepage flow is ranging in interval (-6.6÷21.6) l/min. 

 

 
 Figure 11.  Display of measured and calculated piezometric levels for PZCB2 for period 2000-2012 by NN.   

 

 
Figure 12.  Display of measured and calculated seepage flow time series for period 2000-2012 by NN.   

5 PREDICTION (PROGNOSIS) PROCESS OF THE DAM 

 Prognosis of pendulums displacements time series 
The prognosis stage consists of short-term and long-term prediction of the specified variables. 

Namely, the short-term prediction includes period January, 2013-June, 2013, while the long-term 
prediction captures period July, 2013-December, 2017. The prognosis process is carried out by 
numerical model including running of full time steps for the time series within the short-term   
period. The prognosis process for the long-term behavior is carried out by numerical model 
including running of appropriate representative load cases for the time series.  

 The calculated displacements for pendulum CB2 (Fig. 13), calculated by FEM model, for the 
short-term prognosis are mainly in upstream direction, maximal value of -16.3 mm, while the 
maximal displacement in the downstream direction is 1.75 mm. The calculated displacements for 
pendulum CB3 for short-term period are mainly in downstream direction, with maximal value of 
1.7 mm and maximal value of -0.3 mm in downstream direction. The calculated values for 
pendulum CB2 are in correlation with the water level apropos the lowering of the water level 
within the short-term period is dominant factor that enables modus for manifestation of the 
displacements in the upstream direction while the applied temperature effect has lower influence 
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on the displacements. In case of pendulum CB3 the lowered water level and temperature does 
not generate significant variation of the displacements values.   

The calculated displacements for pendulum CB2 (Fig. 13), calculated by FEM model, for the 
long-term prognosis are also mainly in upstream direction, maximal value of -24.6 mm, while the 
maximal displacement in the downstream direction is 10.5 mm. The calculated displacements for 
pendulum CB3 for the long-term period are mainly in downstream direction, with maximal value 
of 2 mm and maximal value of -0.55 mm in downstream direction. The calculated values for 
pendulum CB2 are mainly in correlation with the water level apropos the lowered water level 
within the long-term period is contributing factor that enables modus for manifestation of the 
displacements in the upstream direction while the applied temperature effect has lower influence 
on the displacements. In case of pendulum CB3 the lowered water level and temperature does 
not generate significant variation of the displacements values.   

The calculated displacements for pendulum CB3 (Fig. 14), calculated by NN, for the short-term 
prognosis are mainly in upstream direction, maximal value of -4.3 mm, while the maximal 
displacement in the downstream direction is 1.4 mm. The calculated values for pendulum CB3 
are mainly in correlation with the water level apropos the lowering of the water level within the 
short-term period is dominant factor that enables modus for manifestation of the displacements 
in the upstream direction while the applied temperature effect has lower influence on the 
displacements. The calculated displacements for pendulum CB3 (Fig. 14), by NN model, for the 
long-term prognosis are also mainly in upstream direction, maximal value of -4.5 mm, while the 
maximal displacement in the downstream direction is 1.6 mm. The calculated values for 
pendulum CB3 are mainly in correlation with the water level apropos the lowered water level 
within the long-term period is contributing factor that enables modus for manifestation of the 
displacements in the upstream direction while the applied temperature effect has lower influence 
on the displacements. In case of pendulum CB3 the lowered water level and temperature does 
not generate significant variation of the displacements values.   

 

 
Figure 13.  Display of calculated prognosis time series of pendulum CB2 and CB3 displacements for 2013-
2017 by FEM.   
    

 
Figure 14.  Display of calculated prognosis time series of pendulum CB3 displacements for period 2013-2017 
by FEM and NN.      
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 Prognosis of crack opening time series 
The prognosis process is carried out by numerical model including running of full time steps for 

the time series within the short-term period. The prognosis process for the long-term behavior is 
carried out by numerical model including running of appropriate representative load cases for 
the time series. The calculated relative distance for the short-term prognosis at sensor C4-C5 are 
varying from increase (positive values) to decrease (negative) values (Fig. 15). The maximal 
calculated values are -0.5 mm and 0.3 mm respectively. The calculated values are in correlation 
with the water level apropos at higher water level the crack displacements are increasing while 
at lowered water level they are decreasing. Very similar case is also with the applied temperature 
effect apropos lowering of the temperature in the short-term period lowers the crack 
displacements. The calculated relative distance for the long-term prognosis at sensor C4-C5 are 
less varying from increase (positive values) and decrease (negative) values apropos mainly 
manifest decrease of the crack openings. The maximal calculated values are -0.72 mm and 0.56 
mm respectively. The calculated values are in correlation with the water level apropos at longer 
period of higher water level the crack displacements are increasing while at lowered water level 
they are decreasing. Very similar case is also with the applied temperature effect apropos 
lowering of the temperature in the long-term period lowers the crack displacements.   

The prognosis process is carried also out by Neural Networks model for the time series within 
the short-term and the long-term. The calculated relative distance for the short-term prognosis 
at sensor C4-C5, calculated by NN model, are varying mainly to decrease (negative) values (Fig. 
16). The maximal calculated values are -2.5 mm and 0.1 mm respectively. The calculated values 
are in correlation with the water level apropos at higher water level the crack displacements are 
increasing while at lowered water level they are decreasing. Very similar case is also with the 
applied temperature effect apropos lowering of the temperature in the short-term period lowers 
the crack displacements. The calculated relative distance for the long-term prognosis at sensor 
C4-C5, by NN model, are also mainly decrease zone (negative) values apropos mainly manifest 
decrease of the crack openings. The maximal calculated values are -2.35 mm and 0.1 mm 
respectively. The calculated values are in correlation with the water level apropos at longer period 
of higher water level the crack displacements are increasing while at lowered water level they are 
decreasing. Very similar case is also with the applied temperature effect apropos lowering of the 
temperature in the long-term period lowers the crack displacements.   

 

 
Figure 15.  Prognosis calculated time series of C4-C5 relative distance for period 2013-2017 by FEM.  

 

 
Figure 16.  Prognosis calculated time series of C4-C5 relative distance for 2013-2017.  
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 Prognosis of piezometric levels time series 
The prognosis process for piezometric levels for PZCB2 is carried out by NN numerical model 

for seepage analysis. The calculated piezometric levels for piezometer PZCB2 for the short-term 
and long term prognosis, as expected, are varying in correlation with the water level in the 
reservoir (Fig. 17). The maximal and minimal calculated values for the piezometric levels are 
respectively 205.5 m and 195.5 m.    

 

 
Figure 17.  Prognosis calculated time series of piezometric levels for PZCB2 for 2013-2017 by NN model.  

 Prognosis of seepage time series 
The calculated seepage flows for the short-term and long term prognosis, calculated by FEM 

model, as expected, are varying in correlation with the water level in the reservoir (Fig. 18). The 
maximal and minimal calculated values for the seepage flow are respectively 3.34 l/min m and 
0.06 l/min. The calculated seepage flows for the short-term and long term prognosis, calculated 
by NN model, as expected, are varying in correlation with the water level in the reservoir (Fig. 19). 
The maximal and minimal calculated values for the seepage flow are respectively 11 l/min m and 
0.1 l/min.    

 

 
Figure 18.  Prognosis calculated time series of seepage flow for Jan,2013-Dec,2017 by FEM model.  

 

 
Figure 19.  Prognosis calculated time series of seepage flow for Jan,2013-Dec,2017 by NN model.  
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6 CONCLUSIONS 

The behavior of the dam during the service period for variation of the water levels in the 
reservoir and temperature effect was simulated by application of the Finite Element Method with 
spatial (3D) numerical model and Neural Networks model. The numerical analysis was carried out 
by taking in consideration the specified data for the numerical model (fully reproduced according 
to the formulation data) and variations of the water level in the reservoir and the air temperature, 
by applying coupled thermo-mechanical analysis of the dam in static conditions. The loading 
scenarios for calculation of the required variables were adopted according to the extreme values 
for the available monitoring records of the variables and records for reservoir water levels and air 
temperature by coupled thermo-mechanical analysis of the dam and hydraulic analysis of the 
seepage process.  

 The prediction of the behavior of the dam was analyzed in two stages – calibration and 
prognosis stage. From the carried out numerical experiment by FEM model for calibration and 
prediction of the behavior of the dam EDF, following conclusions and recommendations are 
derived: 
(1) The calibration process of the measured and calculated radial displacements for pendulum 

CB2 provided good matching of the data regarding the distribution and the values. In case 
of pendulum CB3 a good matching of the data regarding the distribution and some less good 
matching od the data regarding the values is obtained.    

(2) The calibration process for the relative distance C4-C5, in general, has a good matching of 
the distribution of the values, however there is a difference in the calculated and measured 
values (the calculated relative distance values are mainly lower them the measured). The 
measured and calculated values are mainly in reverse correlation with the water level in the 
reservoir apropos in period when the water level is low there is increase of the crack opening 
(positive values) while in period of higher water levels there is a decrease (negative values). 
Regarding the temperature, the displacements manifest less variable behavior apropos the 
applied temperature has lower influence on the displacements.  

(3) By comparison of the calculated and measured piezometric levels for piezometers PZCB2 
and PZCB3 as well and the seepage flow is obtained good matching of the records regarding 
the distribution and less good matching regarding the values.  

(4) The calculated displacements for pendulum CB2 prognosis period are mainly in upstream 
direction, while the calculated displacements for pendulum CB3 are mainly in downstream 
direction. The calculated values for pendulum CB2 are mainly in correlation with the water 
level apropos the lowered water level while the applied temperature effect has lower 
influence on the displacements. In case of pendulum CB3 the lowered water level and 
temperature does not generate significant variation of the displacements values.         

(5) The calculated relative distance for the prognosis period at sensor C4-C5 are varying from 
increase (positive values) to mainly decrease (negative) values. The calculated values are in 
correlation with the water level apropos at higher water level the crack displacements are 
increasing while at lowered water level they are decreasing. Very similar case is also with the 
applied temperature effect apropos lowering of the temperature in the short-term period 
lowers the relative distance C4-C5.   

(6) The calculated piezometric levels for piezometer PZCB2, PZCB3 and seepage flow data for 
short and long term prognosis stage, are varying in correlation with the reservoir water level.  

(7) Improved calibration should be carried out apropos the case to be analyzed is to model the 
contact dam-foundation by interface elements (by linear and non-linear properties) 
combined with the variation of the stiffness properties of the rock (in central part and the 
banks). 

 The prediction of the behavior of the dam was analyzed in two stages – calibration and 
prognosis stage. From the carried out numerical experiment by NN model for calibration and 
prediction of the behavior of the dam EDF, following conclusions and recommendations are 
derived: 
(1) The calibration process of the measured and calculated radial displacements for pendulum 

CB2 provided relatively good matching of the data regarding the distribution and the values. 
In case of pendulum CB3 a very good matching of the data regarding the distribution and 
the values was obtained.    
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(2) The calibration process for the relative distance C4-C5,in general provided excellent 
matching of the distribution and the values. The calculated values are in correlation with the 
reservoir water level and the temperature.  

(3) By comparison of the calculated and measured piezometric levels for piezometers PZCB2 
and PZCB3 is obtained very good matching of the records regarding the distribution and the 
values. In case of the seepage flow less good matching of the data regarding the distribution 
and the values was obtained. 

(4) The calculated displacements for pendulum CB2 and CB3 prognosis period are mainly in 
upstream direction. The calculated values for pendulum CB2 and CB3 are mainly in 
correlation with the water level apropos.          

(5) The calculated relative distance for the prognosis period at sensor C4-C5 are varying mainly 
to decrease (negative) values of crack openings.  

(6) The calculated piezometric levels for piezometer PZCB2 and PZCB3 and seepage flow for the 
short-term and long term prognosis, are varying in correlation with the water level in the 
reservoir.  

(7) The overall behavior of the concrete arch dam, taking in consideration the findings from the 
calibration and the prognosis stage, is within the expected mode for such structure.  

(8) According to the measured and calculated values for the variables by NN model, warning 
levels corridors are defined by applying criteria of 3×σ, where σ is standard deviation of 
absolute error, generated by the NeuralTools code.  

(9) General conclusion can be drawn out for the analysis task that Neural Network model 
provided improved matching of the calculated vs measured data for all variables compared 
with the FEM model.  

(10) The conclusion from the both numerical experiments (FEM and Neural Networks) is that the 
dam behavior, with adopted geometry and material, is within the expected mode.   
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DISPLACEMENTS PREDICTION OF AN ARCH DAM: LSTM 
VERSUS HST MODELS 

Nathalie Rosin-Corre 
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Tractebel Engineering, Lyon/Gennevilliers, France 

ABSTRACT: The readings of the upper and lower pendulums of the central block of an arch dam 
have been analysed for the 2000-2012 period in order to predict the deflections which occurred 
in the following years 2013-2017. Data-based models using Machine Learning methods have been 
preferred to structural analyses for this prediction because all conditions were optimal for their 
use (large experimental period, few non-cyclic delayed effects, no major non-linear behaviour 
expected).  
Preliminary models for both time series based on the Hydrostatic-Seasonal-Time (HST) statistical 
method were prepared with CONDOR-C software, developed by Tractebel. These models showed 
that the deflections readings had no time drift. Then the model for the deflections measured by 
the upper pendulum between the crest and the toe has been enhanced by taking into account 
the air temperature using the Hydrostatic-Seasonal-Time-Temperature (HST-T) statistical 
method. Logically the model for the deflections measured by the lower pendulum between the 
toe and the foundation was not significantly enhanced.  
Both time series have then been analyzed with models based on Machine Learning methods on 
a web platform developed by Tractebel. Whereas the models based on the Support Vector 
Regression and the Random Forest methods could not accurately follow the readings over the 
validation period, the models based on the Long Short-Term Memory method (Recurrent Neural 
Network) proved more efficient. They provided a prediction with an expected average accuracy 
of ± 2.5 mm for the readings of the upper pendulum and of ± 0.5 mm for the readings of the 
lower pendulum. The results compared well with HST/HSST models and were deemed more 
realistic when an extrapolation was needed. 
  



Rosin-Corre, Noret 
DISPLACEMENTS PREDICTION OF AN ARCH DAM: LSTM VERSUS HST MODELS 

 

249 
 

1 INTRODUCTION 

The objective of the present exercise is to predict the movements of an arch dam measured 
by pendulums CB2 and CB3 in the central block from 2013 to 2017, starting from observations 
accumulated during 2000-2012. For such purpose, two main methods are applicable: the 
structural, so-called 'deterministic' method, and the data-based one. Conditions prevailing for the 
subject are especially favourable to data-based analyses, since delayed effects are likely to be 
small. For this reason, the Authors decided to support their contribution upon data-based 
analyses. 

Preliminary models for both time series based on the Hydrostatic-Seasonal-Time (HST) 
statistical method were prepared with CONDOR-C software, developed by Tractebel. These 
models showed that the deflections readings had no time drift. Then the model for the deflections 
of the upper pendulum (measured between the crest and the toe) has been enhanced by 
considering the air temperature. The model has been prepared with the Hydrostatic-Seasonal-
Time-Temperature (HST-T) statistical method. Logically the model for the deflections measured 
by the lower pendulum (displacement between the toe and the foundation) was not significantly 
enhanced using the HST-T method.  

The time series have then been analyzed with models based on Machine Learning methods on 
a web platform developed by Tractebel based on Support Vector Regression methods, Random 
Forest methods and Recurrent Neural Network methods whose results have been compared with 
those of HST/HST-T models. 

2 PREPARATION OF THE DATA-BASED ANALYSIS 

 Preparation of Databases 
Two databases have been prepared:  
• One dedicated to Condor-C has been prepared including the main characteristics of the 

dam (crest level, height, date of impoundment) and with the readings extracted from the 
file ThemeA_data_fmt03.xlsx provided by the Formulator for the pendulums CB2 and CB3 
in the central block of the dam. 

• One dedicated to Tractebel Machine Learning Web Platform with the readings extracted 
from the file ThemeA_data_fmt03.xlsx provided by the Formulator with the special 
formatting required by the platform (cleaning of dates without water level or readings, 
time series for training and prediction on the last column of the Excel file). The 
characteristics of the dam have not been specified. 

 
Statistical models have then been prepared with Condor-C for temperatures and water levels.  
The attention has been called upon two special aspects which are discussed below. No 

abnormal reading or interpolated value (Tb temperatures) has been detected on these variables 
for the period 1995-2017. 

 Seasonal variations of the reservoir level 
The reservoir level follows rather well a cyclic yearly variation (Figure 1), however the coupling 

with the season is imperfect with an explanation coefficient of only 0.25. 
A rather good independence of hydrostatic ("H") and seasonal ("S") functions is therefore 

expected which is a favourable factor for the use of HST/HST-T models. 
From 1995 to 2012 the reservoir has been operated between the normal water level and the 

minimum operating level, i.e. within the range 237 m – 174 m in the reference system given by 
the Formulator, and more precisely between 235.145 m and 181.89 m. This range is still valid 
from 2000 to 2012, a period when the deflections of the dam are known. 

From 2013 to 2015 the reservoir levels have stayed within this range with yearly variations 
rather close to the ones known from 1995 to 2012. 

The reservoir levels have been quite different in 2016 and 2017 as the reservoir was totally 
emptied in the first quarter of 2016 (down to 164 m) and as the yearly maximum reservoir levels 
stayed below those known before the full drawdown. 
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Figure 1.  Yearly variations of reservoir level – 1995-2017. 

 Seasonal variations of temperature values and selection of temperature 
time series 

The Formulator provided two time series of daily air temperatures from 1995 to 2017: Ta 
measured within 50 km from the dam but at a different altitude and Tb interpolated from several 
stations and reflecting the altitude of the dam.  

Both time series show as expected similar seasonal variations with no time drift between them. 
The standard deviation is roughly the same for both time series (respectively 6.24°c and 6.14°C) 

but the median value is lower for Tb (4.45°C for Tb compared to 12.60°C for Ta) as well as the 
minimum value (-15.5°C for Tb compared to -8.3°C for Ta) and the maximum value (20.5°C for Ta 
compared to 29.55°C for Tb). Tb values have been assumed to be more representative of the air 
temperature at the dam location and thus more likely to influence the pendulums readings 
variations and particularly the upper one. 

 

 
Figure 2.  Variations of Air Temperature versus time – 1995-2017. 
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3 PREPARATION OF THE DATA-BASED MODELS 

 HST and HST-T Models 
The HST models, classically used for the analysis of the monitoring data of dams, are multiple 

linear regression models which assume that the response of the dam is a sum of the responses 
to hydrostatic (“H”) and thermal loadings (“S”) (reversible effects) and in addition to time (“T”) 
(irreversible effects). The HST method has been improved by considering the deviations of 
observed temperatures to seasonal variations with a time lag is called HST-T (Penot, 2009). 

 
Reading = constant + f(Z) + f(S) + f(T) + f(θ) + ε 

 
The coefficients of the functions of Z, S, T and θ are determined by multiple linear regression. 
 
Several models have been prepared successively for CB2 and CB3 readings, until reaching a 

prediction considered optimal. Results have been evaluated on the basis of the residual variation 
coefficient, which quantifies the average difference between the predicted values and the 
readings. All models are based on the observations available between 01/01/2000 and 
31/12/2012, that is 689 observations for CB2 and 682 observations for CB3. 

• For both CB2 and CB3 models the default model automatically calculated by the software 
has discarded insignificant functions and the time effect functions: time step function, 
time-drift function T and drift reduction function Exp.(-T).  

• For CB2 model the software has kept three “H” functions (Z, Z², Z3) and all four seasonal 
“S” functions (SinS, 1-CosS, Sin²S and SinS × CosS). The residual standard deviation is 2.5 
mm which corresponds to an explanation coefficient as high as 73.5 percent.  

• For CB3 model the software has kept three “H” functions (Z, Z3, Z4) and all four seasonal 
"S" functions (SinS, CosS, Sin²S and SinS × CosS). The residual standard deviation is 0.5 mm 
which corresponds to an explanation coefficient as high as 80.7 percent.  

• Since H functions are used to simulate the effect of hydrostatic pressure on the upstream 
face of the dam, we capped the water levels below the dam foundation to 194. 

 
A second model has been prepared for CB2 and CB3 with the influence of the air temperature 

Tb with a thermal inertia. The “H” and “S” functions are the same (and the “T” functions are still 
discarded). The CB2 model shows a better adjustment with a higher explanation coefficient (78.4 
percent). The influence of the hydrostatic effect is slightly lower and the seasonal effect is slightly 
higher. The CB3 model does not show any better adjustment as the displacements of the toe of 
the dam are not significantly influenced by the short-term variations of the air temperature. 

 
• The main features of the CB2 model with Tb influence and CB3 model without Tb influence 

are provided below and illustrated by Figure 3 and Figure 4: 
• The residual standard deviation is reduced to 2.0 mm for CB2 and is 0.5 mm for CB3, 
• The corresponding explanation coefficients are higher than 70 percent, which is a good 

result: 78.4 percent for CB2 and 80.7 percent for CB3 (determination coefficients are 
respectively 95.3 percent and 96.3 percent), 

• The influence of the seasonal effect is 20.7 mm for CB2, with the maximum at mid-August 
and the minimum at mid-January, and 2.6 mm for CB3, with the maximum at mid-August 
and the minimum at the end of February, 

• The thermal inertia towards the air temperature calculated by Condor-C for CB2 model is 
8.4 days, 

• The influence of the hydrostatic effect when the water level varies from el. 235 to el. 194 
(the correction function is no more valid below) is 27 mm for CB2 model and 9.1 mm for 
CB3 model. 

 
Any attempt to obtain better adjustment of the models on readings over the 2000-2012 period 

have failed, which means that the models described above are the optimal ones for their kind. It 
has therefore been selected to carry out the prediction for the 2012-2017 period as a basis for 
comparison with the models based on Machine Learning methods. 
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 CB2 CB3   

Prediction (mm) = +19.6777 +5.4456  Constant 

 - 76.0574 - 21.48961 *  Z Hydrostatic functions 
Z = (237-water level) / 45  +47.1672 +11.4479 *  Z² 

   *  Z3 

   *  Z4 

 - 8.4186 -0.7334 *  [1-Cos(S)] Seasonal functions 
S = 0 to 360 from 01/01 to 
31/12 
 

 + 5.4527 +1.0514 *  Sin(S) 

 - 1.0006 +0.2413 *  Sin²(S) 

 - 3.5081 +0.3117 *  Sin(S)*Cos(S) 

 +0.6493  *f(T°C) Thermal correction, thermal 
inertia = 8.4 days (defined 
by software) 

Figure 3.  Formulation of the statistical HST/HST-T models for CB2 and CB3 pendulums 
 

 

 
Figure 4.  Left: Seasonal effect function; Right: hydrostatic effect function for CB2 model (Top) and CB3 
model (Bottom) 
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 Models based on Machine Learning Models 
The Tractebel Machine Learning Web Platform has been developed to prepare and to run 

Support Vector Regression (SVR) models, Random Forest (RF) models and Recurrent Neural 
Networks (RNN) models. Scikit Learn, Tensor Flow, Keras and Plotly Python libraries have been 
used.  

SVR methods (Vapnik, 1995) derive from Support Vector Machine (SVM) methods used for 
classification problems. RF methods (Breiman, 2001) are based on decision trees and 
segmentation functions. The reader will find a description of SVR and RF methods in (Veylon, 
2021). 

The Recurrent Neural Network method implemented in the platform is the Long Short-Term 
Memory (LSTM) method well fitted for time series (Hochreiter, Schmidhuber, 1997). As the other 
RNNs, LSTM has a chain-like structure with repeating modules of neural network but the 
repeating module is more complex. The core idea is to control the memory with gates letting or 
no information through as illustrated by Figure 5. 

 

 
 

Figure 5. .Repeating module of LSTM (source: https://colah.github.io/posts/2015-08-Understanding-LSTMs) 
 
The values given to the hyperparameters of the models have been chosen in the ranges 

generally proposed in the literature with a view to avoid over-fitting for the training period and 
to fit as much as possible the readings for the validation period. These values were as follows: 

• SVR (Gaussian Kernel): C, regularization parameter penalizing the errors = 0.1; ε, tolerance 
margin on the regression error  = 10. 

• RF: number of trees = 100, number of variables randomly drawn at each branch = 2, 
• LSTM: number of epochs, iterations during training = 30; batch-size, number of samples 

from the training dataset to work through before updating the internal model = 30; 
dropout percentage to avoid over-fitting = 30%. It has been checked that the number of 
epochs was sufficient to reach convergence. 

The input variables used by the models are globally the same as those used for Condor-C 
models: “Z” functions: Z, Z2, Z3, Z4; “S” functions: Cos S, SinS, Cos2S, Sin2S, 1-CosS; SinS, SinS × 
CosS; “T” functions: Exp(-T), T, T². As no time function has been used in the HST/HST-T models, 
some models including time functions have been tested but proved to be less fitted for the 
validation period than the models without time functions. The input variables used by the models 
have then been all the “Z” functions and all the “S” functions. 

For the training and the validation process, 70% of the readings of CB2 (respectively CB3) from 
2000 to 2010 are used for training. The 30% left are used for testing. The data are selected by 
random draw for each run of the model.  

As the values calculated by the model differ for each random draw, the model has been run 
ten times successively to give ten (independent) series of calculated values which have been 
averaged to reduce the variance of the predictions. 

The concept of correcting the data by subtracting the reversible hydrostatic and seasonal 
effects does not exist for these methods, contrary to the HST and HST-T methods, as the 
formulation is non-linear. The residual variation coefficients can thus not be assessed. The 
selection of the best-fitted model has been based on the determination coefficient on the 
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validation period. The data predicted from the model have been compared to the readings for 
the period 2011-2012, i.e. two full year of operation. 

The SVR and RF models were not well fitted to the readings of the validation period. The 
determination coefficients for the validation period were around 60 percent. The LSTM models 
proved to be better fitted with determination coefficients on average 93.8 percent for CB2 model 
and 97 percent for CB3 model for the test period (30% of the readings from 2000 to 2010) and 
82.9 percent for CB2 and 95.3 percent for CB3 for the validation period.  

Figure 6 and Figure 7 show the main results of LSTM models for CB2 and CB3. The sign 
convention is: positive for downstream displacements of the upper part of pendulum (dam crest 
for CB2 and dam toe for CB3), negative for upstream displacements.  

As LSTM models are not linear, the curves showing the influence of water level and season are 
drawn with the other parameters fixed at their median values (around 224 for reservoir level and 
July 1st for season). 

The general trends are those expected: upstream displacement with increasing temperature 
and decreasing reservoir level with higher thermal and hydrostatic influence for the upper 
pendulum.  

The influence of water level for and the influence of season has roughly the same shape for 
LSTM and HST/HST-T models for CB2 and CB3. The amplitude for seasonal influence is very similar 
for LSTM and HST/HST-T models. A smaller amplitude of the influence of water level is noted for 
LSTM models compared to HST/HST-T models: 21 mm compared to 27 mm for CB2 and 8.5 mm 
compared to 9.1 mm for CB3. The influence of the reservoir level for LSTM models is slightly 
smaller above 228.5 m for CB2 and 227.5 m for CB3 as shown by the small inflexion on the curves 
of Figure 6 and Figure 7.  

 

 

 
Figure 6.  CB2 LSTM model –Top: calculated values versus Time and Water Level; Bottom: hydrostatic and 
seasonal effect function (θ: season angle) 
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Figure 7.  CB3 LSTM model – Top: calculated values versus Time and Water Level; Bottom: hydrostatic and 
seasonal effect function (θ: season angle) 

4 RESULTS 

The results for the LSTM models are provided under the shape of the predictive values for the 
first half-year of 2013 (short term prediction) and from beginning of July 2013 to end of December 
2017 (long term prediction) as an Excel files provided to the Formulator for CB2 and CB3 LSTM 
models (average of 10 runs). The results for HST/HST-T models are provided for comparison. 

Based on the standard deviation of the difference between readings and calculated values 
2.35 mm for CB2 and 0.47 mm for CB3 the prediction with LSTM models is expected to have an 
average accuracy of ± 2.5 mm for CB2 and ± 0.5 mm for CB3. These values are very close to the 
values of the residual standard deviation obtained by HST/HST-T models: 2.05 mm for CB2 and 
0.52 mm for CB3. 

As shown on Figure 8 and Figure 9 the values predicted with LSTM models compare well to 
those predicted with HST/HST-T models from 2013 to 2015 when the reservoir level variations 
are within the range of 2000-2012 variations. This gives confidence in both models to provide 
good quality interpolation. 

The main differences are found from 2016 to 2017 that is a period when the models need to 
extrapolate: the reservoir level has reached its historical minimum and remained below the dam 
toe from January to April 2016 and the yearly maximum levels for 2016 and 2017 are below those 
known for the 2000-2012 period, respectively around – 10 m and – 5 m to the lowest yearly 
maximum level of 2000. 
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Figure 8.  CB2 calculated values versus Time and Water Level (2000-2017) 

 

 
Figure 9.  CB3 calculated values versus Time and Water Level (2000-2017) 

 
• When the reservoir level remains below the dam toe in 2016 (winter):  

• CB2 HST-T model foresees a millimetric reversible downstream displacement and a 
position some 2.5 mm downstream the one reached in 2003 and 2006 with drawdown 
below the dam toe whereas the LSTM model levels off with a position similar to those 
reached in 2003 and 2006 which is more in line with expected behaviour. 

• CB3 HST model foresees a 1 mm reversible downstream displacement from the position 
reached in 2003 and 2006 whereas the LSTM model foresees almost no displacement and 
a position slightly downstream the ones predicted in the past which is more in line with 
expected behaviour. 
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• When the reservoir level reaches its 2016 and 2017 yearly maximum (summer): 
• Both CB2 models foresee an upstream displacement consistent with the predominance of 

thermal effects over hydrostatic effects. The most upstream position is reached in 2016 
which seems rather consistent as the water level has been lower though the air 
temperature has been lower.  

• The position is the historical most upstream one with the HST-T model, more upstream 
than the one reached in 2006 with a reservoir 3 m higher with similar temperatures, 
whereas the LSTM model foresees an upstream position very similar to 2006 which is less 
realistic. 

• Both CB3 models foresee a 2016 downstream position below (upstream) the one reached 
in 2006 with lower reservoir level and a 2017 downstream position intermediate between 
the 2006 one and the 2000 one with higher reservoir level (+2 m) – which seems rather 
realistic. 

• When the reservoir level reaches its 2017 yearly minimum (winter), CB3 HST predictions 
level off before showing an upstream displacement and a position similar to the one 
reached in 2003 with roughly the similar reservoir and thermal conditions whereas CB3 
LSTM model foresees a smoother upstream displacement similar to the one calculated for 
2003 - which seems more realistic.  

 
The predictions for CB2 and CB3 pendulums displacements with LSTM models seem globally 

more realistic than those with HST/HST-T models for the 2016-2017 period where an 
extrapolation is required. 

Warning levels could be defined by analogy with the definition of warning levels of HST/HST-T 
models and assuming the readings follow a normal distribution as the calculated value ±2.5 x 
standard deviation of the difference between calculated values and readings for the period 2000-
2012. This corresponds to ±5.9 mm around CB2 calculated values and ±1,2 mm around CB3 
calculated values. These values compared well with the warning levels which could be defined for 
HST/HST-T models that is ±5.2 mm around CB2 calculated values and ±1.3 mm around CB3 
calculated values. 

In the opinion of the authors, these warning levels are not direct indicators of the safety of the 
dam. They only alert on the fact that the readings are out of a normality range. A reading 
exceeding the alert level should raise the attention of the person in charge of the monitoring data 
analysis. The reading should be repeated. If it is confirmed, following questions should be 
answered: is a change occurring in the behaviour of the dam? does this change affect the dam 
safety? 

5 CONCLUSION 

The exercise presented above showed that data-based models based on LSTM methods could 
be used for the prediction of monitoring data measurement. 

For the case studied – displacements of an arch dam mainly influenced by the hydrostatic 
loading and the seasonal thermal condition – the results obtained with less input variables are 
very similar to those obtained with HST and even HST-T models and seem more realistic when an 
extrapolation is needed. 

This conclusion needs however to be confirmed by the comparison of the prediction with the 
actual readings of 2013-2017 and by similar exercises with other time series. 

Next steps considered for the development of the Machine Learning Web Platform are focused 
on improving the selection of hyperparameters of the models and including temperature time 
series in the input variables. 

REFERENCES 

Breiman L. (2001). Random Forests. In: Mach. Learn. 45.1 (2001), pp. 5–32. DOI: 10.3390/rs10060911 
Hochreiter S, Schmidhuber J (1997). Long Short-Term Memory. In: Neural Computation, 1997 9(8):1735-

80 DOI:10.1162/neco.1997.9.8.1735 

http://dx.doi.org/10.1162/neco.1997.9.8.1735


Rosin-Corre, Noret 
DISPLACEMENTS PREDICTION OF AN ARCH DAM: LSTM VERSUS HST MODELS 

 

258 
 

Penot I. Fabre JP. and al. (2009). Analyse et modélisation du comportement des ouvrages de génie civil par 
la prise en compte des températures de l’air : Méthode H.S.T. Thermique, ICOLD 2009. Q. 91 – R. 60 

Veylon G., Rosin-Corre N. et al. (2021), Analysis of Dam Monitoring Data by Machine Learning Methods, 
ICOLD 2021 Q. 106 – D. 2 

 



259 
 

DATA-DRIVEN & MODEL-BASED STRUCTURAL 
BEHAVIOUR PREDICTION OF A CONCRETE ARCH DAM  

Irina Galliamova 
Gruner Stucky Ltd, Renens, SWITZERLAND 

irina.galliamova @gruner.ch 

Alban Kita 
Gruner Stucky Ltd, Renens, SWITZERLAND 

alban.kita @gruner.ch 

Anton Tzenkov 

Gruner Stucky Ltd, Renens, SWITZERLAND 

anton.tzenkov@gruner.ch 

ABSTRACT: This paper focuses on the benchmark problem Theme A ‘‘Behaviour prediction of a 
concrete arch dam’’ of the 16th International Benchmark Workshop on Numerical Analysis of 
Dams, Organized by ICOLD Committee on Computational Aspects of Analysis and Design of Dams. 
The calibration of the statistical regression HST model and the Finite Element model are 
presented, both capable to predict the behavior of the dam under examination in terms of radial 
displacements with respect to measurements of both pendulums. A training period of 13 years 
has been considered for the calibration, whereby temperature and water level data have been 
used as regressors. Two prediction periods have been considered for the prediction, namely 
short-term and long-term. On the one hand, a good agreement has been demonstrated between 
time series of measured and statistically estimated displacements, with very high determination 
coefficients. In particular, in the long-term period, the statistical model has been capable of 
estimating displacements which are compatible with the recent scenario of an exceptional drastic 
decrease of the measured water level. On the other hand, thermo-mechanical analyses have 
been carried out with FEM, whereby a staggered approach is adopted. In particular, the main 
steps include transient heat-flow analysis to define the dam-foundation system temperature 
states, and nonlinear structural analysis to determine displacements, strains, stresses, crack 
pattern, initiation and propagation. FEM has shown stress distribution and direction and zones 
subjected to cracks. These zones are mainly concentrated along the foundation of the dam, 
perpendicular to the rock surface. The observed crack pattern is rather typical and does not 
compromise the stability of the dam. While the statistical model demonstrates a higher accuracy 
for the predictions of radial displacements, the FE simulated opening of the joints in the upstream 
face of the dam potentially provides the reason of the exceptional lowering of the reservoir water 
level in the last two years of the monitoring period.  
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1 INTRODUCTION 

The current analyses are performed following the requirements and using the data provided 
within the benchmark problem of Theme A ‘‘Behaviour prediction of a concrete arch dam’’ of the 
16th International Benchmark Workshop on Numerical Analysis of Dams, Organized by ICOLD 
Committee on Computational Aspects of Analysis and Design of Dams. 

The investigation aims to calibrate and predict the behavior of the dam based on the provided 
measurements. Namely, the radial displacements measured by dam pendulums are used as the 
parameter that describes the behavior of the dam and reservoir water level and ambient 
temperature (daily and seasonal variations) are the parameters governing dam behavior.  

In order to achieve the objective, two approaches have been adopted:  
• Statistical prediction, later called data-driven prediction; 
• Finite element model, later mentioned as model-based prediction. 

 
The 1st approach is a quick strategy to analyze the response of a dam, i.e. the so-called 

dependent variable that can be of static (displacement, tilting, crack opening/closing, settlement, 
etc) and dynamic (natural frequencies, mode shapes) nature. Based on the independent variables 
(or predictors or regressors), such as temperature, reservoir water level, ground water level, etc, 
a statistical model is calibrated over a sufficient first period of time (training period), to be finally 
used for predicting further developments of the response of the dam. 

Among several predictive statistical models, whose scope is essentially to statistically 
reconstruct such measured data, the hydrostatic-seasonal-time (HST) model has been 
implemented in the present case. The HST model is the most used data-driven model for dams 0 
and is particularly advantageous because it allows the decomposition of response time series in 
separate components (irreversible effects, hydrostatic and thermal variations). 

The 2nd approach relies on finite element modeling for the prediction, which can be time-
consuming and less straightforward method. It involves the assumptions regarding material 
properties, modeling of the weak zones, etc., that could be crucial in decision making. Moreover, 
this method, while carefully implemented, provides more details and insights to the behavior of 
the entire dam and particular elements. This method uses the time history of the measurements 
to define the current state of the dam and is able to predict further evolution, based on the 
applied load and material properties.  

The obtained results have demonstrated that both models are capable to reproduce the 
provided measurements in the training period, and to predict in the prediction period. The HST 
statistical model has reached a smaller deviation from the measurements, while the numerical 
model requires more sophisticated adjustments in order to reach the same level of accuracy. 
Nevertheless, the results from the FEM have been exploited to further understand the behavior 
of the dam and suggest possible reasons for the observed operational sequences. 

The paper is organized as follows. Section 2 illustrates the proposed statistical model and its 
validation. Section 3 presents the model-based approach. Sections 4 and 5 describe the 
calibration of the FEM model and the first results. Section 6 reports the result prediction from 
both data-driven and model-based approaches. Finally, Section 7 summarizes the main 
conclusions of the work. 

2 DATA-DRIVEN STATISTICAL PREDICTION OF THE STATIC RESPONSE 

 Methodology  
The dam response is driven predominantly by hydrostatic load (i.e. water level) and 

temperature (daily and seasonal variations). Several predictive statistical models (based on the 
monitoring data measured over a certain sufficiently time span) have been presented in the 
literature to statistically reconstruct such measured data. Among the relevant and recent ones, 
the most used data-driven model for dams is the hydrostatic-seasonal-time (HST) model. The HST 
model is particularly useful because it allows the statistical reconstruction/estimation of response 
time series and their decomposition in separate components, such as irreversible effects f1(t), 
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hydrostatic f2(w) and thermal f3(s) variations. The adopted component’s equations can be 
reported as follows: 

𝑓𝑓1(𝑡𝑡) = 𝑚𝑚1  +  𝑚𝑚2 ∙ 𝑡𝑡 +  𝑚𝑚3 ∙ 𝑡𝑡2 

𝑓𝑓2(𝑤𝑤) = 𝑚𝑚4 ∙ 𝑤𝑤 +  𝑚𝑚5 ∙ (2 ∙ 𝑤𝑤2 − 1)  +  𝑚𝑚6 ∙ (4 ∙ 𝑤𝑤3 − 3 ∙ 𝑤𝑤)  +  𝑚𝑚7 ∙ (8 ∙ 𝑤𝑤4 − 8 ∙ 𝑤𝑤2 + 1) 

𝑓𝑓3(𝑐𝑐) = 𝑚𝑚8 ∙ sin (𝑐𝑐)  +  𝑚𝑚9 ∙ 𝑒𝑒𝑐𝑐𝑐𝑐(𝑐𝑐)  +  𝑚𝑚10 ∙ 𝑐𝑐𝑚𝑚𝑙𝑙(2𝑐𝑐)  +  𝑚𝑚11 ∙ 𝑒𝑒𝑐𝑐𝑐𝑐(2𝑐𝑐) 

Where t, w and s represent the normalized variables, computed as follows: 

𝑤𝑤 =
2 · 𝑊𝑊𝐿𝐿 –  𝑁𝑁𝑊𝑊𝐿𝐿 −𝑀𝑀𝑊𝑊𝐿𝐿

𝑁𝑁𝑊𝑊𝐿𝐿 −𝑀𝑀𝑊𝑊𝐿𝐿
       − 1 ≤ 𝑤𝑤 ≤ 1        

𝑐𝑐 = 𝑑𝑑𝑚𝑚𝑦𝑦 𝑐𝑐𝑓𝑓 𝑦𝑦𝑒𝑒𝑚𝑚𝑒𝑒 ·  
2𝜋𝜋

365.25
            0 ≤ 𝑐𝑐 ≤ 2𝜋𝜋  

𝑡𝑡 =
(𝑚𝑚𝑒𝑒𝑡𝑡𝑢𝑢𝑚𝑚𝑙𝑙 𝑑𝑑𝑚𝑚𝑡𝑡𝑒𝑒 − 𝑓𝑓𝑚𝑚𝑒𝑒𝑐𝑐𝑡𝑡 𝑑𝑑𝑚𝑚𝑡𝑡𝑒𝑒)

365.25
   0 ≤ 𝑡𝑡 ≤ 𝑡𝑡𝑐𝑐𝑡𝑡𝑚𝑚𝑙𝑙 𝑙𝑙𝑢𝑢𝑚𝑚𝑒𝑒𝑒𝑒 𝑐𝑐𝑓𝑓 𝑦𝑦𝑒𝑒𝑚𝑚𝑒𝑒𝑐𝑐 𝑐𝑐𝑚𝑚𝑙𝑙𝑒𝑒𝑒𝑒 1𝑐𝑐𝑡𝑡 𝑚𝑚𝑒𝑒𝑚𝑚𝑐𝑐𝑢𝑢𝑒𝑒𝑒𝑒 

WL refers to actual water level, NWL refers to normal water level and MWL refers to minimum 
water level. In the present case: NWL=237 m. and MWL=174 m. 

 Validation of the statistical model 
The statistical regression analysis has been carried out by the DamReg software 0. A typical 

representation of the results is shown in Figure 2-1. 

Figure 2-1.  View of results from the DamReg software: time series of measured and statistically estimated 
displacements (CB2_236_196) in 13 years time window (10 regressors). 

 

On the one hand, thirteen (13) years of water level and temperature time series have been 
exploited as input to the HST model defined within the software. On the other hand, data 
measured from both pendulums, CB2_236_196 and CB3_195_161, have been considered as the 
output variable. Ten (10) regressors have been defined according to the above equations (linear 
as well as polynomial powers, and sinusoidal/cosinusoidal). In particular, the 4th power of WL has 
been omitted because the regression coefficient is not significantly different from zero. Overall, 
the coefficient of determination resulted R2=0.93. Figure 1-81 illustrates the time series of 
measured and statistically estimated displacements (CB2_236_196 pendulum) from January 1st 
2000 to December 31st 2012.  
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Noteworthy to say, Figure 2-2 depicts an abnormal irreversible component (of the estimated 
displacements) both in trend and amplitude. In particular, it begins from zero, increases up to less 
than 2 mm, and returns to zero at the end of the period. On the basis of this consideration, the 
Authors conclude that introducing this component to the statistical model is irrelevant and not 
beneficial. Hence, for a more accurate prediction, it is omitted for the following validation. 

Figure 2-2.  Time series of measured and statistically estimated displacements (CB2_236_196) in 13 years 
time window (10 regressors). 
 

The statistical regression analysis has been carried out again by the software, this time by 
exploiting water level and temperature data only, for the same 13-year period. In this way, eight 
(8) regressors have been used (𝑚𝑚2 ∙ 𝑡𝑡 +  𝑚𝑚3 ∙ 𝑡𝑡2 terms are not considered). In analogy to Figure 
2-2, the time series of measured and statistically estimated displacements have been illustrated 
in Figure 2-3. The range spans from -30 mm to about 15 mm. Total values are presented in Figure 
2-3, while time histories of each separate component (see HST model) of estimated 
displacements are presented in Figure 2-3b. From a visual investigation of the graph, it can be 
observed that the two separate components are out of phase between them, e.g. during summer 
the hydrostatic component has the most downstream displacements (15-20 mm), while the 
thermal component presents the less downstream displacements (highest values towards 
upstream, equal to -10 mm). 

Overall, a good prediction can be visually observed in the case of the high pendulum 
CB2_236_196, whereas the coefficient of determination resulted R2=0.932. 
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Figure 2-3.  Time series of measured and statistically estimated displacements (CB2_236_196) in 13-years 
time window (8 regressors). 
 

In analogy to the CB2_236_196, the statistical regression prediction has been carried out also 
in the case of the CB3_195_161 pendulum. 

The same 13-year time series of measured water level and temperature data have been used 
as regressors (8) within the HST statistical model. Time series of measured and statistically 
estimated displacements have been comparatively illustrated in Figure 2-4 (January 1st 2000 to 
December 31st 2012). The range spans approximately from -6 mm to about 6 mm. The separate 
components (thermal and hydrostatic) of estimated displacements are presented in Figure 2-4b. 
On the one hand, a limited thermal component is observed (between – 2 and +2 mm). On the 
other hand, the higher amplitudes of the hydrostatic component with respect to the thermal one 
can be directly observed, demonstrating its predominant role for the low pendulum. This is 
because the top head of the low pendulum is located at the base of the dam, thus considering a 
much higher water head, and a region less subjected to high temperature variations. 

The out of phase nature of the two separate components is confirmed also for the low 
pendulum CB3_195_161: during summer maximum values of the hydrostatic component (5 mm) 
and minimum values of the thermal component (-2 mm). 

Overall, a good prediction can be visually observed in the case of the low pendulum 
CB3_195_161, whereas the coefficient of determination resulted R2=0.964. 
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Figure 2-4.  Time series of measured and statistically estimated displacements (CB3_195_161) in 13-years 
time window (8 regressors). 
 

To better emphasize the accuracy of predictions for both pendulums, measured and 
statistically estimated displacements are plotted against each other as depicted in Figure 2-5, 
where the positioning along/around the diagonal is clearly visible. 

Figure 2-5.  Measured versus statistically estimated displacements: (a) CB2_236_196, (b) CB3_195_161. 
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3 MODEL-BASED APPROACH  

 Methodology 
In order to assess the current state of the dam and predict its further behavior thermo-

mechanical analysis is adopted and includes self-weight, hydrostatic load due to reservoir water 
level and thermal load. The last two loads are time-dependent and based on the provided 
measurements.  

For the thermo-mechanical analysis, a staggered approach is adopted. First, temperature 
distribution, based on the applied boundary conditions is calculated. Second, these temperature 
fields are applied as an external loading in the following structural analysis. 

In particular, the staggered thermal-mechanical analysis performed consists of the following 
main steps: 

• Transient heat-flow analysis to define the dam-foundation system temperature states; 
• Nonlinear structural analysis to define the displacements, strains, stresses, crack initiation 

and propagation, crack pattern and crack width for a load combination involving the basic 
load cases (self-weight and hydrostatic pressure) and the temperature variations as 
defined in the previous analysis step. 

 Transient heat-flow analysis 
The transient heat-flow analysis is performed by applying the entire sequence of the available 

temperature measurements starting from 1995. An initial condition of a uniform temperature 
distribution of 3°C is assumed for the dam-foundation system. However, considering that the 
period of interest starts 5 years later in 2000, the initial temperature assumption does not play a 
significant role.  

Two analyses are performed with time-step equal to 2 days. Larger time step gives fair results 
for the temperature distribution, however, in order to improve the precision of the nonlinear 
structural analysis smaller time step is considered.  

 Nonlinear structural analysis 
The main source of the nonlinearity is the nonlinear constitutive model associated with the 

concrete material. 
The loading sequence on the dam-foundation system is numerically simulated in two main 

phases: self-weight; hydrostatic pressure; and temperature variations in time.  
Self-weight of the dam is obtained by the staged construction. Afterwards, the time dependent 

load that includes the hydrostatic load and the thermal load defined by means of the transient 
heat-flow analysis are applied in time-steps of 2 days. 

 Material parameters 
The following material parameters supplied by the formulators of Theme A are used: 
 

Table 1: Material parameters 
Material parameters Units Concrete 
Modulus of elasticity GPa 15.4 
Poisson’s ratio - 0.2 
Density kg/m3 2400 
Thermal expansion K-1 10-5 
Thermal conductivity W/(m*K) 2 
Specific heat capacity J/(kg*K) 900 
Compressive strength MPa 34 
Tensile strength MPa 2.0 

 
The additional material parameters that are adopted to describe the nonlinear behavior of the 

concrete and the arch dam–rock foundation interface are given in the following. 
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 Concrete 
The total strain rotating crack model with linear tension softening curve defined in DIANA 0 is 

used to investigate the nonlinear effects in concrete. This material model requires input for Mode 
I fracture energy 𝐺𝐺𝑜𝑜𝐼𝐼. It is emphasised that the value of fracture energy of mass concrete used in 
dams is significantly higher than that of structural concrete, since in the former the fracture takes 
place mostly due to failure of the aggregates 0. In the same study, it is mentioned that the value 
of fracture energy is assumed equal to 280 N/m is considered reasonable. The compressive 
fracture energy is taken 𝐺𝐺𝑡𝑡 = 50 000 N/m. 

 

 

Figure 3-1.  Total stain crack model  
 
As far as the stiffness of the concrete is concerned the “sustained” modulus approach is 

introduced 0. It allows taking into account long-term behavior of the concrete such as creep, and 
slow thermal load application. Under these conditions, the reduction of the Young Modulus could 
reach 50%. In the current analysis, the reduction of 30% is implemented.  

 Dam – rock foundation and joints interfaces 
A linear elastic interface is adopted in the dam-rock foundation connection. Based on the 

concrete and mass rock moduli of elasticity, interface linear stiffness moduli of 1.5𝑀𝑀 + 12 N/m³ 
and 1.5𝑀𝑀 + 9 N/m³ are specified for the normal and the tangential stiffness, respectively.  

The joints between blocks are modeled by means of the linear elastic interfaces with the 
reduced stiffness in normal direction that equals to 1.35𝑀𝑀 + 9 N/m³ and tangential stiffness 
remained equal to the stiffness of the concrete 1.54𝑀𝑀 + 9 N/m³.  

4 FEM MODEL AND BOUNDARY CONDITIONS 

 3D FEM model 
The layout of the concrete arch dam and its abutments and foundation is shown in Figure 4-1. 

Figure 4-1.  Illustration of the layout of the concrete arch dam and its abutments and foundation 
 
Based on the provided geometry a FEM model of the dam-foundation system is constructed in 

DIANA FEA0. Solid element types with linear interpolation are used for mesh discretization. 2D 
boundary elements are used to apply heat flow boundary conditions with the external 
temperature.  

Linear tension softening, fracture 
energy based 

Parabolic compressive behavior 
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The average element sizes of the dam and foundation are 3m and 40 m, respectively. The 
obtained model is presented in Figure 4-2.  

Figure 4-2.  Finite element mesh of the dam with foundation 

 Transient heat transfer analysis 
Time variable air temperature is applied as a boundary condition on the surface of the dam. It 

was considered that the time series Tb better approximates the ambient conditions.  
The operational conditions do not allow to distinguish typical temperature zones of the US 

face: permanently underwater, transition (variable water level) and air temperature. Instead, the 
reservoir water level varies such that the entire height of the dam is exposed to the air 
temperature. Therefore, the following approach is adopted for better temperature 
approximation: 

For the DS face, the air temperature is prescribed. 
US face is divided by 2m height intervals. For each interval, the corresponding temperature is 

assigned depending on the reservoir water level varying in time. Namely, if the water level for a 
certain time is above the elevation of the interval, water temperature is assigned, otherwise, air 
temperature is prescribed. The proposed formulation of water temperature approximation is 
adopted in the analysis: 

𝑇𝑇𝑤𝑤𝑎𝑎𝑡𝑡𝑤𝑤𝑎𝑎 = �0.7𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎       𝑚𝑚𝑓𝑓 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 > 0 𝐶𝐶
0                 𝑐𝑐𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑤𝑤𝑚𝑚𝑐𝑐𝑒𝑒

        

Zero flow condition is assumed for foundation surfaces.  

 Nonlinear structural analysis 
Translational supports in the respective normal direction are specified as structural boundary 

conditions on the bottom and on the side surfaces of the foundation model. 
Variational Water level load is considered on the US face of the dam and part of the foundation 

subjected to the hydrostatic load. The provided time series is employed in the analysis.  
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5 CALIBRATION OF FEM AND RESULTS 

The results of the calibration are given for August 2006 and January 2008 as it is demonstrated 
in Figure 5-1. The reason behind this choice is that according to the provided measurements at 
these periods peak displacements in US and DS directions were observed.  

 

Figure 5-1.  Radial displacements and reservoir Water Level measurements, the green line indicates time 
periods for data presentation 

 

As far as the cross-section distributions are concerned it is given along the surface that 
corresponds to the position of the pendulums CB2, CB3.  

The stress sign convention is such that a negative value means compression and positive one 
tension. For the displacements positive means movement in the downstream direction, negative 
towards upstream.  

 Transient heat transfer analysis 
The calculated temperature distributions for the selected cross-section and time periods are 

shown in Figure 5-2. Additionally, temperature variation plot at the selected points of the dam 
body is given in Figure 5-3. These points are selected in the middle of the dam at different 
elevations, mainly to represent top, middle and bottom parts of the dam.  

The plot shows that the biggest temperature amplitude is found in the top part of the dam and 
the lowest in the bottom, that corresponds to the expected behavior. Due to the fact, that the 
water in the reservoir isolates the dam from air temperature variations, in opposite, the top of 
the dam is not covered with the water and quickly reacts to the ambient changes. The average 
temperature amplitude inside the dam is found around 12 deg.  

 
Figure 5-2.  Temperature distributions for the considered periods of time 
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Figure 5-3 Temperature variation in the dam body at different elevations 

 Nonlinear structural analysis  
In this section, the results obtained from a non-linear structural analysis with non-linear 

material properties of concrete are presented. It should be noted that the foundation remains 
elastic. 

Radial displacements distribution is given in Figure 5-4 showing: 
• expansion during warm period, that causes the movement in the upstream direction;  
• shrinkage during cold period, creating deformation in the downstream direction. 

It is noted that the overall seasonal amplitude is higher in the upstream direction than in 
downstream direction. Insight of the radial displacements of the dam along the height is given in 
Figure 5-5 where initial case includes self-weight of the dam and seasonal variations consists of a 
temperature and hydrostatic loads of the dam. Water load was not included in the initial 
conditions since it is not permanent through the year and almost empty during cold season.  

 

Figure 5-4.  Radial displacements distribution during warm and cold periods 
 

Figure 5-5.  Radial displacements along the selected cross section 
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The obtained deformation pattern provokes certain stress distribution in the dam. Due to the 
low resistance to tension, the direction and intensity of maximum principal stress distribution is 
of interest while analyzing potential damages. Therefore, the stress distributions are given in 
Figure 5-6, Figure 5-7, followed by the observations: 

• The tension zone in the foundation of the dam on the right bank is presented permanently. 
This artefact is explained by significant stiffness difference for the rock in the valley and 
right bank, that prevents continuous dam deformations.  

• During warm period the tension zone is mainly concentrated in the dam foundation area 
due to the “pulling” effect of the expansion, eventually initiating the cracks perpendicular 
to foundation.  

• Cold period produces tensile stress in vertical direction in the middle of the dam due to the 
bending in the downstream direction. Depending on the tensile strength of the concrete 
that is a potential zone of the horizontal cracks development. In the current analysis tensile 
stress equal to 2MPa is adopted and did not produce cracks in the downstream face.  

• Cross section distributions show that the tensile stress remains rather superficial (around 
0.5m) in downstream face of the dam. 

• Upstream face of the dam remains under compression in vertical direction during the 
provided time.  

 
Figure 5-6.  Stress directions during warm and cold periods 
 

 
Figure 5-7.  Vertical stress distributions for the warm and cold periods 

 

 

DS face Aug - 2006 DS face Jan - 2008 

US face Aug - 2006 US face Jan - 2008 

Vertical stress, Aug - 2006 Vertical stress, Jan - 2008 
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Eventually, the cracks distribution is analyzed and given in Figure 5-8. The initial localization of 
the cracks applying self-weight and hydrostatic water pressure corresponding to WL 237 m is 
found in the connection of the dam with foundation.   

Crack distributions at the end of the calibration period (end of 2012) shows the development 
of the damage in the dam blocks next to the right abutment and along the dam foundation is 
observed with time. First one is explained by the shape of the dam, these blocks have thinner 
height, therefore behave in a more rigid way, that eventually, could cause damages. The second 
one is a rather typical observation in the dam behaviour which is a result of the hydrostatic and 
temperature loads.  

Figure 5-8.  Cracks distribution  

 Calibration from FEM 
FEM model results have been used to compare with the provided displacement measurements 

from two pendulums: bam body (CB_236_196) and dam foundation (CB_195_161) pendulums. 
The results for FEM are provided in Figure 5-9 and Figure 5-10 for the period of 13 years from 
2000 to 2013. 

FEM model is able to reproduce the displacement variations following the temperature and 
water level fluctuations. Similar to the provided measurements the dam tends to move in the 
upstream direction during warm season due to an expansion process. On the other side, the peak 
displacements towards downstream occur before the cold season when the reservoir water level 
reaches its maximum.  

As far as the crest radial displacements are concerned fair correspondence between the 
measurements and calculated data is found. On the other hand, the model underestimates the 
displacement of the dam foundation in upstream direction. Furthermore, the crack opening 
measurements (C4_C5) brings the evidence for the movement of the dam. Therefore, it is 
suggested that the tensile stresses obtained in dam foundation is in reality partially compensated 
by the opening of the crack.   

Figure 5-9.  Calibration of the dam body pendulum CB_236_196 
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Figure 5-10.  Calibration of the low pendulum CB_195_161 
 

6 PREDICTION FROM DATA-DRIVEN AND MODEL-BASED APPROACHES 

 Data-driven prediction 
The 13-year time window has been used as a validation period of the statistical models, as 

described in the previous Section. In other words, it refers as training period, e.g. a sufficiently 
long period to model the variations of response displacements as driven from predictors or 
regressors (water level and temperature, in the present case). Therefore, these data have been 
used as regressors in the prediction period (from January 1st 2013 onwards) to statistically 
reconstruct displacements.  

By a deep visual investigation of Figure 6-1 (CB2_236_196), observations can be derived about 
the two components of estimated displacements (due to water level and driven by temperature) 
during the training period (01/01/2000-31/12/2012) and the prediction period (01/01/2013-
31/12/2017). Constant reference is dedicated to the measured water level. 

During the training period: 
• The temperature component of estimated displacements presents a regular trend, with 

oscillation in the range of approximately [-10, 10] mm. It decreases from winter towards 
summer, meaning that movements of the dam towards upstream are induced. Indeed, 
upstream displacements are maximum in summer due to material expansion (during spring 
a major sun exposure also), resulting in a closure of cracks in concrete and an overall 
increase of the stiffness. 

• The water level component of estimated displacements has less regular trend if compared 
to the thermal one. The highest downstream displacements are observed in summer. 
Indeed, an increase of the water level (typically observed from spring to summer) produces 
movements of the dam towards downstream. In particular, during winter, a low water level 
(e.g. 31/12/2005) induces less downstream displacements (- 4 mm); a high water level (e.g. 
31/12/2007) induces higher downstream displacements (13 mm). 

 

160

180

200

220

240

260

-5

-3

-1

1

3

5

Jan-00 Dec-00 Dec-01 Dec-02 Dec-03 Dec-04 Dec-05 Dec-06 Dec-07 Dec-08 Dec-09 Dec-10 Dec-11 Dec-12

W
L,

 m

Di
sp

la
ce

m
en

t, 
m

m

Time, date
CB3_195_161 C4_C5 Nonlin Water_Level



Galliamova, Kita, Tzenkov 
DATA DRIVEN & MODEL-BASED STRUCTURAL BEHAVIOUR PREDICTION OF A CONCRETE ARCH DAM 

273 
 

Figure 6-1.  Statistical prediction of displacements (CB2_236_196) in the prediction period. 
 

During the short-term prediction period (01/01/2013-30/06/2013): 
• The same trend in terms of displacements during the training period can be essentially 

observed in the short-term prediction period. It has been noticed that measured maximum 
water level during summer in 2012 was lower (227 m) than during previous years (235 m), 
producing smaller amount of displacements towards downstream. Therefore, further 
reduction of the reservoir water level and changing to the warm season of 2013 mainly 
produce upstream movement and reaches its peak (-20mm) for the end of the short-term 
prediction period.   
 

During the long-term prediction period (01/07/2013-31/12/2017): 
• The regular trend of the temperature component is continuously confirmed. 
• The minimum water level measured in spring-summer transition of 2015 is equal to 213.11 

m (02/05/2015), lower with respect to previous similar periods.  
• Following, an exceptional drastic decrease of the measured minimum water level is 

observed from autumn 2015 until 26/01/2016, reaching value of 164 m, which is lower 
than the minimum operating level (174 m). This abnormal decrease can be directly 
observed through the statistically estimated displacements due to water level that are very 
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low. The estimated total values of upstream displacements are the lowest values of all 
estimations, reaching approximately -27 mm and -25 mm (summers 2016 and 2017, 
respectively).  

• On the other hand, after the drastic decrease abovementioned, the measured maximum 
water levels never went back to typical values about 230-235 m. Indeed, a decrease is 
observed in the summers of 2016 and 2017 (less than 215 m, if compared with typical 
levels of the training period, about 235), leading to less downstream estimated total 
displacements. 

• It can be stated that the temperature-driven component of estimated displacements is 
predominant with respect to the water level component. 

• Overall, in the long-term period, the statistical model has been capable to estimate 
displacements which are compatible with the abovementioned scenario, reaching very low 
values of -27 and – 25 mm, much smaller if compared to previous statistically estimated 
displacements. 
 

For the sake of accuracy, the following Table summarizes three examples of measured as well 
as estimated displacements in correspondence to instants with similar water levels (during the 
long-term prediction period with reference to the training period). 

 
Table 2. Comparatively investigation of measured and estimated displacements (CB2_236_196). 

Water level Measured Estimated Estimated 

 Training period Long-term prediction period 

212.5 m -6.9 mm (02/01/02) -5.9 mm (02/01/02) -6.0 mm (05/01/14) 

197.4 m -17.25 mm (17/04/03) -17.97 mm (17/04/03) -18.52 mm (20/04/13) 

185.5 m -15.84 mm (28/03/06) -16.51 mm (28/03/06) -16.05 mm (21/03/17) 
 
Statistically estimated displacements (total and separate components) during the training and 

prediction periods have been illustrated in Figure 6-2 for the low pendulum (CB3_195_161). 
Based in these results, similar observations can be stated for predictions of displacements. 

During the training period: 
• The temperature component of estimated displacements presents a regular trend, with 

oscillation in the range of approximately [-2, +2] mm. It decreases from winter towards 
summer, meaning that movements of the dam towards upstream are induced.  

• The water level component of estimated displacements has less regular trend if compared 
to the thermal one. The highest downstream displacements are observed in summer (5 
mm), induced by an increase of the measured water level. 

• The water level component is predominant if compared to the thermal one. 
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Figure 6-2.  Statistical prediction of displacements (CB3_195_161) in the prediction period.  

 
During the short-term prediction period (01/01/2013-30/06/2013): 
• The same trend in terms of displacements during the training period can be essentially 

observed in the short-term prediction period.  
 

During the long-term prediction period (01/07/2013-31/12/2017): 
• The regular trend of the temperature component is continuously confirmed. 
• The exceptional drastic decrease of the measured minimum water level (from autumn 

2015 until 26/01/2016) is directly mirrored through the statistically estimated 
displacements. The estimated total values of upstream displacements are the lowest 
values of all estimations, reaching approximately -6 mm and -5.5 mm (summers 2016 and 
2017, respectively).  

• With minimum water levels in the summers of 2016 and 2017, the temperature-driven 
component of estimated displacements is predominant with respect to the water level 
component. 

• Overall, in the long-term period, the statistical model has been capable to estimate 
displacements which are compatible with the abovementioned scenario. 

  



Galliamova, Kita, Tzenkov 
DATA DRIVEN & MODEL-BASED STRUCTURAL BEHAVIOUR PREDICTION OF A CONCRETE ARCH DAM 

276 
 

 Model-based prediction 
The model-based estimated displacements of both pendulums (obtained from the FE model) 

are presented in the present Section. 
Figure 6-3 and Figure 6-4 illustrate the displacements of the high and low pendulum, 

respectively. They are plotted comparatively with the statistically estimated displacements. 
Model-based predictions seem to be closer to statistical predictions in the 1st case, in trend and 
amplitude.  

Figure 6-3.  Data-driven and model-based predicted displacements (CB2_236_196). 

Figure 6-4.  Data-driven and model-based predicted displacements (CB3_195_161). 
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 Discussion  
By analyzing the provided measurements data, possible explanation for the abnormal 

operation during the last two years of the prediction period (2016, 2017) has been suggested.  
The typical seasonal operation cycle could be described as follows:  
• Winter: water level decreases typically from December to January, depending on the year 

and reaches its minimum by the end of the winter. 
• Spring: filling of the reservoir. 
• Summer: continue filling of the reservoir, eventually reaching the maximum water level. 
• Autumn: water level in the reservoir remains at its maximum level, either start to reduce 

approaching the beginning of the winter.  
 

During these cycles the radial displacements fluctuate from upstream to downstream direction 
producing tension zones in the dam body. Typically, the dam leans upstream during warm period 
and shrinks in downstream direction during cold period 0. Such a behavior holds for quasi- 
constant water level, while hydrostatic pressure itself acts in the downstream direction.  

As stated in the description document, the water level could drop below the heel of the dam 
leaving the upstream surface exposed to the ambient temperature and direct solar radiation. 
Already validated in the past 0, cracks are more likely to originate during cold season when the 
concrete contracts (shrinks), thus developing tensile stresses. On the one hand, horizontal cracks 
can potentially develop due to tensile stresses acting in the vertical direction. These cracks can 
be particularly dangerous for the operation, depending on their location, whether on the 
upstream or downstream zone of the dam. For instance, the development of cracks on the 
downstream face is considered less critical than damages of the upstream face. On the other 
hand, tensile stresses acting in the horizontal direction could be accommodated by the vertical 
contraction joints. 

FE analysis demonstrates that there is a development of the horizontal tensile stresses in the 
upstream face of the dam, while vertical component remains in compression state. On the other 
side, it could be the case that accumulated tension in the contraction joints develop damages 
there, and with time it propagates deeper towards downstream. In the adopted finite element 
model, joints are modelled elastically, therefore, the obtained results could be used rather 
quantitative than qualitative. FE model results shows the joints that are more likely subjected to 
opening in the middle of the dam during cold period as illustrated in Figure 6-5.  

 
Figure 6-5.  Indication of the contraction joints opening 

 
In this context, it is suggested that the opening of the joints in the upstream face could be a 

possible reason of the exceptional lowering of the reservoir water level. For better prediction of 
the joints opening and its influence on the stability of the dam, more sophisticated material model 
(e.g. nonlinear elastic model, friction material model) should be used.  

 
 

  

Aug - 2006 Jan - 2008 



Galliamova, Kita, Tzenkov 
DATA DRIVEN & MODEL-BASED STRUCTURAL BEHAVIOUR PREDICTION OF A CONCRETE ARCH DAM 

278 
 

7 CONCLUSIONS  

The present paper has focused on the benchmark problem Theme A ‘‘Behaviour prediction of 
a concrete arch dam’’ of the 16th International Benchmark Workshop on Numerical Analysis of 
Dams, Organized by ICOLD Committee on Computational Aspects of Analysis and Design of Dams. 

The paper aimed at the calibration of a statistical regression model and a Finite Element model 
both capable to predict the expected future behavior of the dam under examination.  

In particular, predictions have been provided for the radial displacements of both pendulums 
(CB_236_196, CB_195_161), by comparatively implementing both models. The obtained results 
have been investigated for the interpretation of dam’s behavior. 

A training period of 13 years (January 1st 2000 to December 31st 2012) has been considered 
for the calibration, whereby temperature and water level data have been used as regressors. Two 
prediction periods have been considered for the prediction, namely short-term (01/01/2013-
30/06/2013) and long-term (01/07/2013-31/12/2017) periods. 

 
The main results can be synthesized as follows. 
• The hydrostatic-seasonal-time statistical model have estimated the two separate 

components of displacements (due to water level and temperature), while the irreversible 
effects not relevant. The out of phase nature of the two separate components has been 
observed for both pendulums. 

• Overall, a good agreement has been demonstrated between time series of measured and 
statistically estimated displacements, with determination coefficients R2 equal to 0.932 
and 0.964 for high and low pendulum, respectively. 

• In the long-term period, the statistical model has been capable estimating displacements 
which are compatible with the recent scenario of exceptional drastic decrease of the 
measured water level. 

• FEM has shown stress distribution and direction and zones subjected to cracks. These 
zones are mainly concentrated along the foundation of the dam, perpendicular to the rock 
surface. The observed crack pattern is rather typical and does not compromise the stability 
of the dam.  

• On the one hand, vertical stresses assessment indicated the tension zone on the 
downstream face of the dam. However, no cracks have been originated during 
computations, probably due to assumption of the relatively high tensile strength (2MPa). 
On the other hand, the upstream face remains under compression in vertical direction, 
which is crucial to prevent the horizontal cracks development.  

• More detailed analysis revealed rather high horizontal tensile stresses on the upstream 
surface during cold periods of the year, when dam tends to shrink. Usually, these stresses 
are absorbed by contraction joints.  

• Considering the low reservoir water level for the significant part of the cold period, 
originated tensile stresses could have provoked damages of the joints. It was suggested 
that the propagation of the damages could have caused lowering of the reservoir water 
level.   

   
In can be concluded that, the opening of the joints in the upstream face of the dam could be a 

possible reason of the exceptional lowering of the reservoir water level in the last two years of 
the monitoring period.  

More advanced modeling strategies, e.g. sophisticated material model (nonlinear elastic 
model, friction material model), could provide better insights and a more accurate prediction of 
the joints opening and its influence on the stability of the dam. 
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1 INTRODUCTION 

 Background 
The alkali-aggregate reaction (AAR) can cause serious concerns about the integrity of concrete 

structures. Moreover, the operation of hydraulic structures such as dams, power plants and 
spillways affected by this reaction can be compromised. To assess the integrity usability of these 
structures and to predict the long-term performance and the scale of the investments required 
to keep the structures in safe conditions, it may be necessary to use numerical models. 

Due to the complexity of AAR, its multi-physical/multiscale nature and the constantly evolving 
research on this subject, there is currently no consensus on how to model AAR. The different 
modelling approaches were classified (Esposito & Hendriks, 2019) on the basis of their input 
parameters as: (1) models based on concrete expansion, (2) models based on internal pressure, 
(3) models based on the gel production and (4) models based on the ions diffusion-reaction 
mechanisms. Some of these approaches are limited to small-scale models whereas others can be 
extended to structural analyses. 

These later models are generally not accessible to the general public in commercial software. 
Therefore, implementation of the complex physical equations required to properly model the 
AAR process (damage, reinforcements, moisture transport, thermal effects, chemical reaction, 
uplift pressures, etc.) is required by the engineering team. 

From the dam owner point of view, it is not easy to take a decision involving a major investment 
on a structure whose sustainability may not be guaranteed by relying on numerical models whose 

verification and validation (V&V) process (Oberkampf & Roy, 2010) may not be carried out 
rigorously. 

In a numerical model, the fundamental physics is coded using proper discretization (e. g. finite 
volume, finite difference, finite element, etc.) to predict the behaviour of a physical model. These 

models are used to reduce the time, cost, and risk associated with full-scale testing of products. 
In model V&V, verification and validation can be defined as (Oberkampf & Roy, 2010): 

• Verification is the process of assessing software correctness and numerical accuracy of the 
solution to a given mathematical model 

• Validation is the process of assessing the physical accuracy of a mathematical model based 
on comparisons between computational results and experimental data. 

 
The validation process quantifies the credibility and predictive accuracy of a numerical model 

providing the decision maker with the information necessary for making high-consequence 
decisions. The fundamental elements that build credibility in computational results can be 
defined as (Oberkampf & Roy, 2010): 

• quality of the analysts conducting the work 
• quality of the physics modelling 
• verification and validation activities 
• uncertainty quantification and sensitivity analyses. 

 
Engineers seeking to develop credible predictive models critically need model V&V guidelines 

and procedures. Organizations such as Society for Computer Simulation (Terminology for model 
credibility, 1979), US Department of Defense (Department of Defense, 2018), American Institute 
of Aeronautics and Astronautics (American Institute of Aeronautics and Astronautics, 1998), 
American Society of Mechanical Engineers (American Society of Mechanical Engineers, 2006), Los 
Alamos National Lab (M.C. Anderson et al, 2004) have published guidelines on model V&V. 

To date, there were many difficulties to have a formal and systematic framework to validate 
numerical models able to model AAR-affected concrete structures. The assessment of numerical 
codes has been partially performed within the ICOLD International Benchmark Workshops on 
Numerical Analysis of Dams, where three benchmark cases were defined: 

• 2011 - Valencia, Spain (Molin & Noret, 2011) 
Case: Kariba dam (arch dam) 
Exercise: Determining adequate swelling law and parameters which allow the best 
identification with both horizontal and vertical movements of the dam vs time. 
Number of participants: 9 
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• 2005 - Wuhan, China (Masarati, Mazzà, & Meghella, 2005) 
Case: Poglia dam (hollow gravity dam) 
Exercise: Structural behaviour of a large hollow gravity dam, with special reference to 
the ultimate strength against the hydrostatic load 
Number of participants: 2 

• 2001 - Salzburg, Austria (Strutturale, 2001) 
Case: Pian Telessio dam (arch dam) 
Exercise: Forecast on stress-strain state generated by AAR 
Number of participants: - 

 
The European project Integrity Assessment of Large Concrete Dams (NW-IALAD) also 

conducted a series of cases to help AAR numerical model V&V process. More recently RILEM 
Technical Committee 259-ISR (Saouma, 2020) released two sets of problems (first set at the 
material scale concrete specimens and the second, at the structural scale) with the objective of 
creating the first step towards the development of a formal approach recognized by the 
profession to achieve the V&V process to assess AAR numerical models. 

This benchmark is proposed to enrich the database of validation cases at the structural scale. 
Due to the complexity of modelling such complex phenomena at a structural scale, it is our belief 
that dams affected by AAR for which rigorous monitoring and surveillance activities have been 
undertaken for many years should be used as validation benchmark to minimally confirm that a 
given model is able to estimate the observed behavior and damage. 

 Objectives of the benchmark 
The objective of this benchmark is to perform modelling of a concrete power plant affected by 

AAR. The data necessary for the calibration of the model are provided and a prediction phase is 
proposed. Divided into four tasks, a step-by-step method is proposed to integrate the physics 
affecting the chemical reaction. Participants are invited to provide the displacements at certain 
topographic points, the resultant forces on given interfaces and to provide certain plots to 
qualitatively describe the cracking computed. 

The phases of the studies are as follows: 
• Calibration and prediction (50%): The formulators of the benchmark provide information 

necessary to perform the time-history studies of the structure, including geometry, details 
and arrangement of the reinforcement, finite element model, material characteristics, 
boundary conditions (displacements, thermal and hygral), static loading (self-weight and 
hydrostatic pressure due to reservoir loads). The participants are expected to analyze the 
data provided and the required results. They may introduce additional data, and refine the 
finite element mesh provided if required for the purposes of the envisaged analysis. It is 
underlined that the current benchmark problem concerns only the concrete body and 
excludes those related to the dam foundation. 

• Results, evaluations and conclusions (30%): The expected results include the temporal 
displacements, the interface loads history and the structure stiffness change according to 
the progression of the alkali-aggregate reaction. A number of plots should be provided by 
the participants to identify the principal cracks. Cross sections are suggested to facilitate 
understanding and allow comparison with those of the other participants. It is also 
suggested that the participants comment and explain these results. It is recommended to 
define the possible failure mechanisms associated with the cracking computed. High 
emphasis should be given to the engineering interpretation and analysis of the obtained 
results in view of the dam’s safety. 

• A critical review of the numerical model (10%): A critical review of the numerical model 
employed within the context of the benchmark is requested. The participant may discuss 
the level of physics required to correctly predict the effect of the AAR. 

• Proposals for stability and functionality analysis (10%): Participants are asked to give ideas 
on methods that could be used to evaluate the stability and functionality of the power 
plant based on computed damage, displacements, etc. Proposals and recommendations 
for further consideration are requested. 

 



Roth, Miquel 
EVALUATION AND PREDICTION OF THE BEHAVIOUR OF THE BEAUHARNOIS DAM - Description and Synthesis of Theme B 

284 
 

 Brief dam description 
The Beauharnois dam is located about 50 km west of the city of Montreal. The power station, 

with a total length of 1397 m, turbines the waters of the St. Lawrence River and includes 37 
turbine-generator units, 36 of which are in service and two auxiliary units A and B out of service 
for a total installed power of 1903 MW. 

The Beauharnois development includes a spillway, left and right bank gravity dams and 
approximately 50 km of dikes on the left and right banks of the Beauharnois Canal. This canal was 
built between 1929-1932 on the south side of the St-Lawrence River measuring 24.5 kilometres 
in length, with a minimum depth of 8 metres and a width of 182 metres. The canal was built to 
take advantage of the 24 metres drop between Lake St-Francis and Lake St-Louis. The 
Beauharnois development is part of the Beauharnois-Les Cèdres hydroelectric complex displayed 
in Figure 1. 
 
 

Figure 9.  Beauharnois-Les Cèdres hydroelectric complex 
 

The construction of the Beauharnois power plant took place in three phases: 
• the first phase (phase I) where the concreting of the groups took place in the period 1930-

1932 with the commissioning of 14 groups (groups 1 to 14) between 1932 and 1948; 
• 12 more groups (from 15 to 26) were put into service between 1950 and 1953 for the 

second phase (phase II); 
• and finally during the third phase of construction (phase III), 10 groups (from 27 to 37) were 

put into service between 1959 and 1961. 
Within the framework of a numerical benchmark, it is not realistic to model the entire power 

station with a length of 1397 m. Therefore, a single power unit with its two neighbouring units 
will be considered. 



Roth, Miquel 
EVALUATION AND PREDICTION OF THE BEHAVIOUR OF THE BEAUHARNOIS DAM - Description and Synthesis of Theme B 

285 
 

 

Figure 10.  Beauharnois power plant 
 
The power unit #12 (illustrated in Figure 2) was selected because it is reasonable, in the 

reduced numerical model, to assume symmetric boundary conditions as it is located far from the 
gravity dams and spillway sections which influence longitudinal displacements. In addition, this 
power unit has a more sophisticated auscultation system than other power units. Note that the 
topographic auscultation system was implemented in 1973, therefore the first 40 years of data 
was not recorded. 

Several decades of investigations and interventions were made to mitigate the effect of AAR. 
These interventions have low effects on the displacements, therefore they will be ignored for this 
benchmark. 

 Problem statement 
The benchmark proposes to calibrate the numerical model of power units #11 to #13 on the 

basis of the recorded data and to predict the displacements, damage, loads of the next 50 years 
with different levels of physics affecting the chemical reaction. 

The formulators of the benchmark provide information necessary to perform the time-history 
studies of the structure, including geometry, details and arrangement of the reinforcement, finite 
element model, material characteristics, boundary conditions (displacements, thermal and 
hygral), static loading (self-weight and hydrostatic pressure due to reservoir loads). 

Divided into four tasks (one mandatory and three optional), the participants are invited to 
provide the displacements at certain topographic points, the resultant forces on given interfaces 
and to provide certain plots to qualitatively describe the cracking computed. 

 Deliverables 
The results provided by the participants will be both in paper format, but also the requested 

raw output data should be submitted to formulators by an Excel template file. 
The paper should present the chosen solution method. The AAR model shall be described along 

with the method used to couple the physics with the chemical model. The process for performing 
the V&V of the AAR model should be presented in the document. 

It is recommended to define and provide explanation for any additional parameters added to 
calibrate the model. 

The items discussed in the phases of the studies (section 1.2) should be included in the paper. 
This includes the results, evaluations and conclusions. A section on a critical review of the 
numerical model is highly recommended. Finally, proposals for stability and functionality analysis 
shall be discussed. 
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2 NUMERICAL MODEL 

 Coordinate system 
The coordinate system to be used by all participant is as follow: 
• X direction: bank direction; positive towards right bank; 
• Y direction: upstream/downstream direction; positive towards downstream; 
• Z direction: vertical direction; positive towards elevation. 

All information provided by this benchmark are in this coordinate system. 

 Geometry 
The power unit #12 is part of the first phase of construction of the Beauharnois power station 

commissioned in 1932. Figure 3 shows a typical cross section of the first phase of construction. 
The water intake part has a height of approximately 21.5 m and includes the penstocks, the 
upstream gates and the busbar. The power plant is approximately 24 m high and includes the 
generator unit, the scroll case, the draft tube, the tailrace and the downstream gates. A cold joint 
separates the water intake part from the power plant. 

 Mechanical boundary conditions 
The displacement boundary conditions applied to the model (displayed in Figure 4) are as 

follows: 
• on the base of the foundation, a zero displacement in the 3 directions X, Y, Z is applied (Ux 

= Uy = Uz = 0); 
• on the downstream part of the foundation, a zero displacement in Y is applied (Uy = 0); 
• on the right bank and left bank boundaries of the foundation and the dam, the 

displacement in direction X is blocked (Ux = 0). 
 

 
Figure 11.  Cross section of power unit #12 
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Figure 12 (a).  Downstream and foundation boundary conditions, (b) Lateral and foundation boundary 
conditions 
 

 Thermal boundary conditions 
Heat transfer analyzes are needed if the AAR kinetic model explicitly requires the temperature 

field. These allow to compute the temperature field within the dam. The temperature field can 
then be used as an input for mechanical analysis where the temperature of the concrete can 
greatly influence the kinetics of AAR. 

It is recommended to use the same numerical model for heat transfer and for mechanical 
analysis. Heat transfer analyzes can be carried out in a transient regime over a sufficiently long 
period (by experience, about 6 years are required considering an initial nodal temperature value 
corresponding to the average outside temperature) to allow convergence (repetition of 
temperature variations year after year). The computed sixth year can be used repeatedly for 
mechanical analysis. However, any other method can be used. 
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The boundary conditions are defined in Figure 5 and the corresponding annual temperature 
distribution (colour code) is displayed in Figure 6. The excel file provided in the Temperature.xls 
package gives the numerical values displayed in the figure. The convective coefficient associated 
with each annual temperature distribution is given in Table 1. 

No temperature must be applied at the concrete-rock interface, on the left and right banks, on 
the upstream, downstream and lower foundation limits ensuring free heat exchange. On the 
upper surface of the foundation located upstream and downstream of the power plant, the water 
temperature should be applied. 

 

Figure 13.  Thermal boundary conditions 
 
 
Table 10 Temperature boundary conditions 

Boundary name Convection coefficient ( 𝑾𝑾𝒎𝒎−𝟐𝟐 °𝑪𝑪−𝟏𝟏) 
Ambient 24.7 
Powerhouse/turbine floor 9.5 
Water 696.0 
Turbine pit 108.0 
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Figure 14.  Yearly temperature variation 

 Hygral boundary conditions 
In a concrete structure, the degree of initial saturation is close to 100% and is reduced by drying 

and desiccation. The drying modelling is generally based on a nonlinear diffusion equation 
governing the evolution of liquid water saturation. This equation is similar to a generalized 
Darcian flow in a transient state. The work of  (Bear & Bachmat, 1990), (Mainguy, Coussy, & 
Eymard, 1999), (van Genuchten, 1980) and (V. Baroghel-Bouny et al., 1999) allow us to solve this 
equation formulated as a function of capillary pressure. 

The boundary conditions are given in Figure 7 in terms of capillary pressure 𝑃𝑃𝑒𝑒 and relative  
The capillary pressures given are based on the average temperature recorded near the boundary. 

 

Figure 15.  Hygral boundary conditions 
 

-10

-5

0

5

10

15

20

25

30

35

40

Ambiant

Powerhouse

Water

Turbine pit



Roth, Miquel 
EVALUATION AND PREDICTION OF THE BEHAVIOUR OF THE BEAUHARNOIS DAM - Description and Synthesis of Theme B 

290 
 

 Concrete reinforcement 
Three different types of steel were used for the structural steel for the Beauharnois generating 

station: 
• type HG for “Hard Grade”; 
• type SG for “Structural Grade”; 
• type IG for “Intermediate Grade”. 

Table 2 presents the steel properties for each grade. 
 

Table 11. Reinforcement steel properties 

Property 
Tensile strength (Fy) 
(MPa) 

Ultimate strength (Fu) 
(MPa) 

Hard Grade 345 552 
Structural Grade 228 397 
Intermediate Grade 276 483 

 
For groups 11, 12 and 13, rebars of 0.75 inch (19 mm), 1 inch (25.4 mm), 1.25 inch (31.75 mm) 

and 1.5 inch (38 mm) were used with square or round sections (given in Figure 8). The steel elastic 
modulus is 200 GPa. The participants are free to model the reinforcements using embedded, 
smeared or discrete formulations. 

Figure 16.  Concrete reinforcement 
 

 Material properties 
The material properties used for the mechanical analyzes were determined in part using: 

empirical formulas from the literature, the characteristics of the concrete used during the 
different construction phases of the Beauharnois development and the multiple investigations 
and tests carried out over the years. Properties which could not be obtained from these sources 
were evaluated using sensitivity studies. The review of construction documentation, the concrete 
investigations and laboratory tests show that the same concrete was used in both intake and 
powerhouse structures. Therefore, participants should use identical chemical reaction properties 
for unconfined concrete at identical temperature and humidity in these two structures. Table 3 
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presents the material properties to be used for the numerical analysis while Table 4 gives the 
resistance parameters used for the material performance during nonlinear analyzes. 

 

Table 12. Material properties 

Property Concrete Foundation 
Density (kg/𝑚𝑚3) 2365 0 (mechanical analysis) 

2627 (thermal analysis) 
Poisson’s ratio (𝜈𝜈) 0.21 0.20 
Instant modulus (GPa) 26 - 
Deformation Modulus (GPa) - 30 
Specific heat (J/kg °C) 917 800 
Coefficient of thermal expansion (°𝐶𝐶−1)1 0 0 
Thermal conductivity (W/m °C) 2.9 4.3 
Reference temperature (°C) 10 4 

 
 

Table 13. Concrete strength properties 

Property Value 
Compressive strength (f’c) (MPa) 30 
Tensile strength (ft) (MPa) 3 
Fracture energy (GF) (N/m) 350 

 
 
The concrete hygral properties are defined in Table 5 and are related to the Mualem model for 

desorption. The foundation is considered fully saturated. 
 

Table 14. Concrete hygral properties 

Property Value 
Initial saturation 0.85 
Parameter 𝑚𝑚 (MPa) 18.6 
Parameter 𝑚𝑚 0.44 

Total porosity 𝜙𝜙 (𝑚𝑚
3

𝑚𝑚3) 0.14 

Absolute or intrinsic permeability 𝑘𝑘 (𝑚𝑚2) 5.49 × 10−12 

3 REQUESTED ANALYZES  

 Mechanical analyses 
The mechanical analyses are required to compute stresses and displacements in the dam. 

These time-dependent analyses may be performed as static or quasi-static depending on the 
preferences of the participant. The loads that should be considered in the analyses are: 

• gravity loads; 
• hydrostatic water pressure; 
• induced load caused by the chemical reaction. 

 
All mechanical analyzes are started on July 1, 1932 and the calibration period ends on January 

1, 2017. The data available to calibrate the model does not cover the entire period. Therefore, to 
calibrate the model, it is suggested to shift the data to match the total displacement computed 
on the first day of acquisition. Finally, participants are free to define the time step of their choice. 

 
1 To simplify the analysis, the thermo-mechanical effects are not considered. 
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The temperature distributions obtained from the thermal analysis should be used as input to 
the analysis only to consider its influence on the chemical reaction. It is required to neglect the 
thermo-mechanical effects by setting the coefficient of thermal expansion 𝛼𝛼 = 0 for all materials 
as previously defined in Table 3. 

 Gravity loads 
The gravity load for the concrete dam should be included in all analyses based on the densities 

given in Table 3. No gravity load or density should be considered for the foundation. 

 Hydrostatic water pressure 
Hydrostatic water pressure should be included in all analyses. The upstream water level should 

be 46.10 m and the downstream water level should be 21.4 m. The penstocks, scroll case, draft 
tube and tailrace pressure is considered to vary linearly between the upstream and downstream 
level. 

 Induced load caused by the chemical reaction 
All types of models, from the simplest to the most complex, can be used by the participants 

(thermal analogy, poroelasticity, multi-physics, chemo-mechanical, etc.). The considered model 
must be documented and presented in the paper. 

 Other considerations 
In addition, all participants also have the possibility to include other specific aspects or 

assumptions that is believed to improve the analysis. The participants can use unbound interfaces 
between the power units and between the water intake part and the power unit. The type of 
physical coupling (one-way or two-way coupling) depends on the preferences of the participant. 
These can be documented and presented in the paper. 

 Creep and relaxation 
The participants may choose to consider the effect of creep and relaxation in the analyses. 

Creep and relaxation have a significant influence on the state of stress due to induced AAR strains. 
A viscoelastic or viscoplastic rheological model can be introduced by the participants to convert 
swelling strain into realistic stress values. It is expected that the inclusion of creep and relaxation 
in the analyzes will reduce the damage, diffuse cracking, increase the crack openings and increase 
the displacements. 

In the absence of creep tests which last several months or even years in order to obtain an 
asymptotic strain curve, it is recommended to use a creep modulus of 0.5 times the initial elastic 
modulus of concrete. This value comes from tests carried out on an American dam (Pirtz, 1968) 
and on cores extracted from another Hydro-Quebec owned dam. 

 Linear task (mandatory) 
Prior to achieve the nonlinear tasks, the participants shall perform a static linear elastic 

analysis. Only the dead load and hydrostatic pressure shall be imposed. If the participants want 
to use unbound interfaces between the different power units and between the water intake part 
and the power unit, it is required to bound them for this analysis. In addition, no creep or 
relaxation shall be considered for this analysis. 
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Figure 17.  Tasks for theme B 

 Nonlinear tasks 
Four tasks are proposed for this theme, with one mandatory (A) and the other three considered 

as optional (B, C, D). Figure 9 gives the proposed path to achieve the tasks. The participant can 
bypass a task, however it is recommended to integrate the physics in the proposed order. For 
example, if a model does not consider the effects of the concrete saturation on the chemical 
reaction, participants can integrate the physics of tasks A and B without considering that of task 
C when task D is performed. The tasks are described in the next sections. 

 Task A: Baseline solution (mandatory) 
The baseline solution is considered to be the simplest of the four nonlinear tasks. The induced 

load caused by the chemical reaction is computed using a uniform and constant thermal field at 
10 °C and the concrete must be considered to be fully saturated. 

The calibration shall be carried out with the measured data and a prediction of 50 years up to 
January 1, 2067 is requested. Since the boundary conditions in the longitudinal direction (X 
component) is imposed and considered as zero, displacements in this direction shall not be 
compared to the measured data. 

The instrumentation data available to calibrate the model does not start at the end of the 
construction period. The total displacement is therefore unknown. Thus, as the real displacement 
at the start of the acquisition period is not zero, the measured data must be translated for 
calibration. This translation value will be a function of the latency time imposed by the swelling 
model, on the variation of the concrete stiffness, on the state of damage, etc. 

 Task B: Consideration of thermal effects (optional) 
The thermal effects are important on the latency time as well as on the rate of swelling. For a 

structure subject to a northern climate, areas exposed to ambient air should swell at rates lower 
than those found near power units. By carrying out a thermal study in transient mode (by a 
coupled or decoupled analysis), it is suggested to take the steps of the baseline analysis again, 
but by imposing the computed thermal field. Two methods can be used: (1) determine the mean 
nodal thermal field and impose it during the analysis (2) vary the thermal field as a function of 
time during the analysis. This analysis should be carried out by repeating the phases of calibration 
and prediction from rhe previous task. 

 Task C: Consideration of hygral effects (optional) 
By taking the steps of the previous tasks, a sensitivity analysis of the results according to the 

distribution of the degree of saturation of the concrete should be carried out. By carrying out a 
nonlinear transient diffusion (by a coupled or decoupled analysis), it is suggested to take the steps 
of the previous tasks again, but by imposing the computed hygral field. Similarly to task B, two 
methods can be used: (1) determine the steady hygral field and impose it during the analysis (2) 
vary the hygral field as a function of time during the analysis. This analysis should be carried out 
by repeating the phases of calibration and prediction and optionally by integrating the physics of 
the previous tasks. 
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 Task D: Consideration of reinforcement (optional) 
The confinement effects caused by the presence of reinforcement have an influence on the 

rate of swelling, diffusion of cracks, reduction in cracks openings, etc. Task D therefore consists 
of taking into account the presence of reinforcement. This analysis should be carried out by 
repeating the phases of calibration and prediction and optionally by integrating the physics of the 
previous tasks. 

 Summary of the tasks 
Table 6 gives a summary of the physic integration for each proposed tasks. The requested 

results are given in the next section. 
 

Table 15. Physic integration 
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Static Linear Initial X X - - - 

Time- 
History 

Non- 
Linear 

A X X - - - 
B X X X - - 
C X X O X - 
D X X O O X 

X: Mandatory 
O: Optional 

4 REQUESTED RESULTS  

 Topographic point location 
The location of the topographic point for model calibration and prediction period are 

illustrated in Figure 10 and located at these coordinates: 
• Crest : monitoring point identified as 1250D160 (901.9829, 1194.1149, 48.9311); 
• Turbine pit : monitoring point identified as 1295Q099 (893.4600, 1217.970000, 30.1341); 
• Turbine floor : monitoring point identified as 1250U097 (902.3079, 1230.1218, 29.3903). 

Figure 18.  Topographic point and pendulum location (highlighted in red) 
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 Displacements 
For the topographic points given in section 4.1 the participants shall record the 

upstream/downstream (Y component) and vertical (Z component) in a table similar to Table 7 in 
the provided file. 

 
Table 16. Results at topographic points 

Topographic point Y (mm) Z (mm) 
1250D160 X X 
1295Q099 NA X 
1250U097 X X 

 Displacements time histories 
The participants shall present the upstream/downstream (Y component) and vertical (Z 

component) time-history displacements for the entire result range (from July 1, 1932 up to 
January 1, 2067) in the provided file for the topographic points given in section 4.1. 

 Resultant forces at the interface 
Participants shall output the resultant forces at different interfaces of power unit #12. The 

interfaces are displayed in Figure 11 and the results should be recorded in a table similar to the 
Table 8 provided in the provided file. 

For comparison purposes, the resultant on one interface should ignore nodal forces located at 
the junction between two interfaces as follow: 

• Intake 11/12 & 12/13: all nodal forces on this interface except those located at bedrock 
and intake/unit interface; 

• Unit 11/12 & 12/13: all nodal forces on this interface except those located at bedrock and 
intake/unit interface; 

• Intake/Unit: all nodal forces on this interface except those located at bedrock; 
• Rock/Intake & Rock/Unit: all nodal forces on these interfaces. 

 

Table 17. Results at the interfaces of power unit #12 

Interface X (MN) Y (MN) Z (MN) 
Intake 11-12 (purple) X X X 
Intake 12-13 (cyan) X X X 
Intake/Unit (orange) X X X 
Unit 11-12 (brown) X X X 
Unit 12-13 (red) X X X 
Rock/intake (green) X X X 
Rock/unit (pink) X X X 
Sum left bank X X X 
Sum right bank X X X 
Sum rock-concrete X X X 

 Resultant forces at the interface time histories 
Participants shall present the time-history resultant forces at the seven proposed interfaces of 

power unit #12 for the entire result range (from July 1, 1932 up to January 1, 2067) in the provided 
file. 
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 Reservoir drawdown 

Figure 19.  Illustration of the forces at the interfaces - power unit #12 
 

As the stiffness of the dam changes according to the progression of the alkali-aggregate 
reaction, it is proposed to compare the upstream/downstream displacements at the crest of the 
dam (topographic point 1250L160) between two states. Sustained variation (including reversible 
creep) of a 5-meter water drawdown will allow comparison of the stiffness of the participants 
models after a swelling analysis over a defined period. For comparison purposes, this same 
variation in water level should be applied to a model not taking into account the alkali-aggregate 
reaction in order to compare with the initial stiffness of the dam. In summary, the following four 
steps are required: 

• Define Y1: steady analysis with an upstream water level of 46.10 m and a downstream level 
of 21.4 m; 

• Define Y2: reduction of the upstream level by 5 m (41.10 m); 
• Define Y3: transient swelling analysis until January 1, 2017 with a water level of 46.10 m 

upstream and a downstream level of 21.4 m; 
• Define Y4: reduction of the upstream level by 5 m (41.10 m). 

To recover the effect of a reservoir drawdown level on the dam movements (step 2 and 4), it 
is recommended to continue the analysis for a period of 10 years by applying an instantaneous 
reduction in the water level on January 2, 2017. This period extension is carried out with the aim 
of recovering the displacements considering reversible and irreversible creep effects (if 
considered). 

Figure 12 gives an example of the two analyses required to compute the stiffness change. Prior 
to AAR, the hydrostatic and body loads are applied on July 1, 1932. These loads are left constant 
until the displacement has reached an asymptotic value (creep). Thereafter the upstream water 
level is lowered by 5 m and creep recovery occurs until asymptotic value is reached. Both 
asymptotic values are recorded (values 𝑌𝑌1 and 𝑌𝑌2). 

After the time-history analysis is performed between July 1, 1932 and January 1, 2017, the 
crest displacement is recorded (value 𝑌𝑌3). On January 2, 2017, the water is lowered by 5 m and 
the crest displacement is recorded after 121 days (value 𝑌𝑌4). The difference 𝑌𝑌3

𝑌𝑌1
 and 𝑌𝑌4

𝑌𝑌2
 gives 

respectively instantaneous and sustained stiffness variation. 
  

X
Y

Z
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 Qualitative results 
Another data that can be used in order to qualitatively compare the different models is to 

compare the computed cracks. Therefore, it is recommended that participants identify the 
principal cracks, comment and explain them through different plots. It is recommended to 
perform an interpretation of the cracks as well as the possible failure mechanisms associated with 
them. Since it is not trivial to analyze damage or plasticity plots by a member unfamiliar with the 
constitutive model used by the participants, this analysis phase must be carried out with rigour 
by the analysis team. Without being limited to the variables associated with damage/plasticity, 
cracks openings can be presented in order to facilitate understanding and allow comparison with 
those of the other participants. It is also suggested to provide thermal (summer/winter) and 
hygral (steady state) distribution at a cross section located at the centre of power unit #12. 
Examples are given in Figure 13, where cracks openings, reinforcement bars yielding, thermal and 
hygral distribution are displayed. 

 
Figure 21 Effect of AAR on model stiffness (computation example) 
 

 
(a) (b) 

  
(c) (d) 
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Figure 20.  (a) Crack opening, (b) Reinforce-ment bars yielding, (c) Thermal distribution section cut 
(X=901.36 m), (d) Hygral distribution section cut (X=901.36 m) 
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 Summary of the requested results for each proposed task 
Table 9 gives a summary of the requested results for each proposed task. 
 

Table 18. Requested results for each task 

   Result description section 
Task 4.2 4.3 4.4 4.5 4.6 4.7 

Static Linear Initial X - X - - - 

Time- 
History 

Non- 
Linear 

A Xa X Xa X X Ob 

B Xa X Xa X O Ob 
C Xa X Xa X O Ob 
D Xa X Xa X O Ob 

X: Mandatory 
O: Optional 
a for January 1, 2017 
b for January 1, 2017 and/or January 1, 2067 

 

 List of supplied files: Model geometry 
The geometry of the three power units including the foundation is given in STEP and Parasolid 

file formats. These are provided to participants if, for the purposes of the envisaged analysis, a 
refinement of the provided finite element mesh is required. 

 

 Finite element mesh 
The mesh of the three power units was generated to reproduce the in-situ structure as 

accurately as possible. The model was not developed to assess the dam foundation. Thus, the 
foundation is formed by a mesh of coarse tetrahedral elements. Finally, the fineness of the mesh, 
with elements of approximately 1 m x 1 m x 1 m, was defined so that the computation time for a 
simulation period of 135 years, using a reasonable time step with an implicit finite element model, 
can be achieved within the range of one working day. Trilinear form of elements is provided; 
hence it is recommended to use enhanced strain (or incompatible mode) formulation. The mesh 
was generated favouring hexahedral elements, however, degenerated elements such as wedge, 
pyramidal and tetrahedral elements were also generated. The nodal definition of the elements 
are given in Figure 14. 

Figure 22.  Element shape nodal definition 
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The finite element mesh includes a total of 271,164 elements and 114,674 nodes. It is required 
to link certain concrete components together at the interfaces using linear methods (constraint 
equations, multi-point constraints, bounded contacts, etc) or non-linear methods (contact 
elements with Mohr-Coulomb formulation, etc.). Taking into account that the nodes at the 
interfaces do not necessarily coincide, these links shall be applied to the interfaces between the 
intakes and the generator units and those in the transverse interfaces between the different 
power units. The interface mesh at the rock/concrete interface is made by making sure that the 
nodes coincide. 

The mesh nodal boundaries, the nodal definitions and the elements topology are distributed 
in different files according to the following hierarchy: 

 
The mesh is separated in two files. The file Model.node contains the list of nodes and is defined 

as follows: 
[Model.node] 
 

Node number  X coordinate Y coordinate Z coordinate 
1 922.9344482000 1244.778198000 11.54189873000 
... ... ... ... 

{ }

{ } { }

{ } { }



Roth, Miquel 
EVALUATION AND PREDICTION OF THE BEHAVIOUR OF THE BEAUHARNOIS DAM - Description and Synthesis of Theme B 

300 
 

The file Model.elem contains the list of elements and is defined as follows: 
[Model.elem] 
 
i j k l m n o p Mesh group number 

934 6003 933 933 24431 24431 24431 24431 1 
... ... ... ... ... ... ... ... ... 
 
The mesh group number corresponds to the different power-units geometry as defined in 

Table 10. 
 

Table 19. Mesh group number 
 

Number Description 
1 Foundation 
2 Intake #11 
3 Power unit #11 
4 Intake #12 
5 Power unit #12 
6 Intake #13 
7 Power unit #13 

 
The files in the folder Interface with the extension .txt are the mesh nodal boundaries given in 

the form of a list of nodes. The name of the boundaries and their corresponding definition are 
displayed in Figure 15 and Figure 16. 
  

Figure 23.  Nodal boundaries definitions 
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(a) (b) 
  

(c) (d) 

Figure 24.  Nodal boundaries definitions (cont.) 
 

 Concrete reinforcement 
For each power unit, the IGES CAD file containing the reinforcements represented by curves 

and lines is given with the following hierarchy: 
 

  

{ }

{ } { } { } { }

{ } { } { } { }
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Where: 
• {Group number} is the power unit number; 
• {Diameter} is the bar diameter in inches; 
• {Shape} is the bar shape (r:round, c:square); 
• {Steel grade} is the steel grade (refer to section 2.6). 

 Temperature boundary conditions data 
The temperature data for the four defined zones is given in the file Temperature.xlsx. They are 

given on a daily average temperature basis. It is assumed that these temperatures can be 
repeated each year. 

 Topographic data 
The available data for the monitoring points identified as 1250D160, 1295Q099, 1250U097 are 

given in the file Topographic Displacements.xlsx. The topographic auscultation system was 
implemented in 1973, therefore the first 40 years of data was not recorded. To calibrate the 
model, it is suggested to shift the data to match the total displacement computed on the first day 
of acquisition. 
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ABSTRACT: The paper describes the contribution to the AAR benchmark of the Spanish team 
formed by Principia Consulting Engineers, Iberdrola Generación, and Eduardo Torroja Institute 
for Construction. The Beauharnois Generating Station is a large hydropower facility, with 
generating units spread out about a kilometre. The dam, constructed in 1932, is experiencing an 
expansion process caused by an AAR chemical reaction. Displacements measured at some points 
during the period 1973-2018 were provided by the organisers and were used to calibrate the 
expansion model using the general-purpose finite element program Abaqus. First, a thermal 
simulation was carried out to determine the periodic temperature oscillation during a 
representative year. The steady-state degree of saturation was also computed based on the 
available data. Then, mechanical models were constructed with different levels of approach. The 
expansion law was calibrated as a function of temperature, adopting an Arrhenius’ law. The 
vertical displacements were used to determine an isotropic expansion rate, and the horizontal 
displacements to validate it. No creep was explicitly included in the models, and a crude plasticity 
model was defined for the concrete. The hygral conditions were assumed to eliminate the 
expansion when the saturation was lower than a certain threshold. The resulting displacement 
field appears to be reasonable for both the vertical and horizontal directions. Conservatively, the 
same expansion rate was assumed for the future time of interest. 
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1 INTRODUCTION 

 Description of the dam 
The dam has an overall length of about 1400 m. Although the cross-section does not vary much 

along the length, the region being studied is specifically that of power unit #12 and the two 
adjacent units. A representative cross-section is shown in Figure 1. 

Upstream from the dam the water levels may vary between 44.5 m and 46.5 m; those 
downstream vary between 20.461 m and 23.012 m. The calculations have been made with 46.1 
m and 21.4 m, as suggested by the organisers. 

The dam is made of reinforced concrete. The basic characteristics of the concrete are a 
compressive strength of 30 MPa, a Young’s modulus of 26 GPa, and a Poisson’s ratio of 0.21. The 
ground under the dam is rock, characterised by a Young’s modulus of 30 GPa. 

In the calculations described in the paper, the domain being studied, spanning the three units 
mentioned, is assumed to be bounded by symmetry planes on both sides. 

 Problem statement 
For calibrating the models used in the analyses, the only information available consisted in 

histories of vertical displacements at three points and horizontal displacements at two of them; 
the locations of those points are marked on Figure 1. The displacements were obtained by 
topographic surveys conducted after 1973.  

 

Figure 1.  Representative section of a power unit 

2 MODELLING APPROACH 

 Geometry reconstruction 
It was found that neither the geometry nor the finite element mesh provided by the organisers 

were ideal for the calculations. The geometry had many undefined entities when importing it into 
Abaqus [5], and 20% of the mesh elements were of poor quality.  

In this situation it was decided to reconstruct the geometry of the power unit with CATIA 
3DEXPERIENCE [1]; the reconstructed geometry is shown in Figure 2. Also, tetrahedral meshes 
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were generated for dealing with the different problems; examples are shown in Figure 3 for the 
global mesh and Figure 4 for more detailed views of the intake and power units. First-order 
elements were used for the thermal and hygral calculations, while second-order elements were 
employed in the mechanical calculations. 

 Methodology 
The calculations have proceeded in several steps. The first one consisted in performing thermal 

analyses in order to develop a stable thermal cycle along a standard year. The hygral calculations 
were conducted to determine the saturation conditions at each location.  

Finally, the mechanical analyses were carried out, again in several steps. In a preliminary phase, 
calculations were performed for only the hydrostatic and gravity loads. Already with concrete 
expansion, the expansion was initially assumed to be uniform and homogeneous. Then, in a 
second phase, the influence of temperature was incorporated and, in the final one, both 
temperature and moisture conditions were taken into account. The mechanical analyses included 
both linear and non-linear calculations. 

 
Figure 2.  Reconstructed geometry 

3 ENVIRONMENTAL SIMULATIONS 

 Thermal analysis 
The object of the thermal analyses was to determine the evolution of the temperatures at each 

location during the year. 
The mesh utilised in the thermal analyses included both the dam and the ground; it consisted 

of about 1.6 million nodes and 1.1 million first-order elements. 
The analyses were performed with adiabatic boundary conditions at the ends and thermal 

exchanges across other surfaces with sinusoidally-varying ambient temperatures of the type 
(Figure 5): 

 
𝑇𝑇(𝑑𝑑) = 𝑇𝑇0 + 𝑀𝑀 ∙ cos(𝜔𝜔𝑑𝑑) + B ∙ sin(𝜔𝜔𝑑𝑑), ∙ where 𝜔𝜔 = 2𝜋𝜋/365        (1) 

 



Lacoma, Rodríguez, Martí, Martín, Menéndez 
ASSESSMENT OF THE EXPANSION OF BEAUHARNOIS DAM 

308 
 

The analyses were conducted for a time span of 50 years to ensure a stable yearly temperature 
cycle at all locations. Figure 6 presents some results, namely the temperature distributions in 
January and July. 

Figure 3.  Representative finite element mesh 
 

Figure 4.  Detailed views of the intake and power-unit finite element meshes 

Figure 5.  Harmonic fit of the season temperature for convection boundary conditions 
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Figure 6.  Temperature distribution in January (left) and July (right) 

 Moisture analysis 
The mesh used for studying the moisture conditions is similar to that used in the thermal 

calculations, except that it only includes the body of the dam; first order elements are again used. 
The boundary conditions are specified in terms of pore pressures. 

Capillary pressures arise when extracting particles to an unsaturated environment. The 
equivalent negative pressures (Pc) are approximated assuming that the ideal gas law applies, the 
process is isothermal, and, in equilibrium, the fraction of particles exchanged with the 
environment is a function of its relative humidity; more specifically, it is inversely proportional to 
the number of interactions between particles: 

𝑃𝑃𝑡𝑡 = −𝜌𝜌𝑀𝑀𝑇𝑇
𝑀𝑀

ln ℎ,                          (1) 

where ρ is the liquid density, R is the gas constant, M is the molar mass, T is the absolute 
temperature; and h is the relative humidity. 

It is also assumed that the head loss is linear along the conduit across the dam. Concrete is 
characterised with its hydraulic conductivity and the capillary pressure law, both a function of the 
degree of saturation (Figure 7). 

According to Mualem’s model, as described in [2], the relative hydraulic conductivity (or 
permeability for Darcy’s law) depends on the degree of saturation (Θ) and the tortuosity, the 
latter being a function of the pressure and the water content (h(x)): 

𝐾𝐾𝑎𝑎 = Θ1/2 �∫ 1
ℎ(𝑥𝑥)

d𝑒𝑒/Θ
0 ∫ 1

ℎ(𝑥𝑥)
d𝑒𝑒1

0 �
2

                    (2) 

The phenomenological retention law is assumed to hold (with a logistic “S” shape) 

Θ = � 1
1+(αℎ)𝑛𝑛

�
𝑚𝑚

                           (3) 

Conveniently m = 1 – 1/n and the conductivity can be integrated explicitly, yielding 

𝐾𝐾𝑎𝑎 = Θ1/2 �1 − �1 − Θ1/𝑚𝑚�
𝑚𝑚
�
2

.                    (4) 

When the problem is analysed, using the previous hypotheses, the resulting distribution of the 
degree of saturation is that shown in Figure 8. 
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Figure 7.  Suction pressure and permeability as a function of the degree of saturation  

Figure 8.  Distribution of the degree of saturation 

4 MECHANICAL ANALYSIS 

 Estimation of the expansion rate 
A first mechanical analysis was conducted to determine the displacements that would result 

from a given uniform expansion at the locations where its evolution was known. This was done 
using a mesh with about 740,000 second-order elements, 1.1 million nodes and 3.4 million dof’s, 
provided with displacement boundary conditions. 

The problem is linear, and a 0.1% uniform expansion was used. The annual displacement rate 
calculated for the homogeneous expansion is shown in Figure 9. The results allowed calibrating 
the expansion using the vertical displacement rates derived from the measurements: 0.984 
mm/yr at the “Crest”, 0.567 mm/yr at the “Turbine floor” and 0.479 mm/yr at the “Turbine pit”. 
The estimated linear (not volumetric) expansion rate is 2.8·10-3 %/year. 

 Evolution of the expansion 
The chemical reaction is affected by temperature. Consistently, a steady-state, isotropic 

expansion model was established including the temperature dependence. The mechanical model 
did not incorporate creep, as it is difficult to separate from the expansion on the basis of the 
information available; also, as suggested by the benchmark organisers, thermal expansion was 
not considered in the calculations. 
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It was assumed that the annual rate of chemical expansion is a function of the yearly temperature 
cycle. The instantaneous rate was taken to be proportional to exp(T/U) with a factor f: 

𝜀𝜀ȦAR = 𝑓𝑓 exp(𝑇𝑇/𝑈𝑈),                        (5) 

where U is an activation energy; the value given was 5400 K, taken from Larive [3] for the 
characteristic reaction time. The expansion tends to homogeneous as this value grows. An 
additional analysis was performed with 9400 K, given by Larive for the latency time, but the results 
were less satisfactory. 

The simulation was carried out using the temperatures, updated every 15 days, in an Abaqus 
subroutine. The factor multiplying the exponential function was calibrated to achieve an annual 
expansion rate that coincides with the average rate recorded (written at the end of the previous 
section 4.1), and the result was f = 11.4 day-1. 

With the calibrated expansion model, the evolution was simulated for a period of 115 years 
(the total period of analysis required by the organisers is 2067 - 1932 = 135 year but no expansion 
is assumed during the first 20 years). The analysis times could be reduced by using in subsequent 
years information produced in the first year of expansion. The initial evolution of the dam is not 
well known, as the displacement records start in 1973, some 40 years after construction. A 
latency time of 20 years was assumed, based on the authors’ experience on other dams. 

A crude von Mises model was used to approximate some of the effects of plasticity. This should 
improve the accuracy of the reactions calculated between the various blocks and the foundation. 
The calculated distribution of the expansion rate appears in Figure 10. The reactions were 
calculated with an Abaqus tool that integrates the nodal forces. 

 Effect of the degree of saturation 
To incorporate the effects of moisture, the strategy adopted consisted in eliminating the 

expansion when the degree of saturation is below 0.3. Figure 11, coming from a different project, 
shows representative stereomicroscopic images of the gel in concrete pores. In the images the 
porous are filled with a vitreous gel and surrounded by an aqueous gel; a value of 0.3 may be 
representative of the ratio of both volumes, and it is deemed reasonable as a threshold of the 
saturation degree to supress the macroscopic expansion. The factor multiplying the temperature-
dependent exponential function (f) was still considered appropriate and was not recalibrated. The 
expansion distribution is also shown in Figure 10. 

The comparison of the displacement histories, considering the effects of temperature and 
saturation, is provided in the next two figures: Figure 12 for the vertical displacements and Figure 
13 for the horizontal ones. Notice that only the vertical displacements had been used for 
calibration purposes; also, since the origins are not known, the experimental curves were 
arbitrarily shifted for comparison purposes. 

Figure 9.  Annual displacement increment (m) for homogeneous expansion of 2.8·10-3 %/year 
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Figure 10.  Distribution of the expansion rate without (left) and with dependence on the saturation degree 
 
 

  
Figure 11.  Representative stereomicroscopic images 
 
 

 
Figure 12.  Histories of vertical displacements of the control points (moisture dependent) 
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Figure 13.  Histories of horizontal displacements of the control points (moisture dependent) 

5 DISCUSSION AND CONCLUSIONS 

State-of-the-art simulation tools have been used to analyse the state of a dam affected by 
chemical expansion. Additional experimental information, regarding both the material 
characterisation (e.g., according to [6]) and the structure, would be required for more conclusive 
results and to validate possible strategies and remedial measures; in any case, the exercise 
proposed by the organisers is deemed very useful for illustrating the different analysis 
methodologies. 

With the available information, it is difficult to predict the future evolution of the expansion 
rate, which has been assumed to remain constant after a latency time following construction; this 
is typically a conservative assumption. The temperature dependence is introduced via an 
Arrhenius’ law, using published activation energies of AAR. 

Based only on displacement information, the creep and chemical effects cannot be decoupled. 
Conveniently, a viscoelastic model is not defined, and an effective expansion is calibrated.  

There is no consensus about how to consider the effect of the degree of saturation; moreover, 
there are large uncertainties its value in concrete affected by AAR. Our approach consisted in 
simply supressing the expansion when the value is below 0.3; this threshold is considered 
reasonable, based on both micromechanics and sensitivity considerations. 

The calibration was only based on the vertical displacements, but the computed horizontal 
displacement rates also turned out to be consistent with the data. A stress-dependent anisotropic 
expansion model could be assessed for improving the simulation. 

It is possible to model the rebars, typically with truss elements embedded in the solid domain, 
characterised with a concrete inelastic model. But, in the context of the present exercise, this 
would not be expected to improve significantly the predictive capabilities of the model. 

The rest of the information requested by the benchmark organisers has also been provided. 
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ABSTRACT: The paper presents a study carried out to analyze the behavior of a concrete power 
station affected by AAR, the Beauharnois power plant. A step-by-step method is proposed to 
integrate the physics aspects affecting the swelling reaction, in particular: reaction kinetics, 
temperature field and degree of saturation. The calibration of the numerical model is performed 
on the basis of the displacement measurements that are available at three different measuring 
points. The calibrated model is furtherly used to provide a prediction of the future dam behavior 
in the next 50 years. This calculation exercise was proposed in the frame of the 16th International 
Benchmark Workshop on Numerical Analysis of Dams. 
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1 INTRODUCTION 

The Theme B of the 16th International Benchmark Workshop on Numerical Analysis of Dams 
concerns the numerical modelling of the alkali-aggregate reaction (AAR) in the Beauharnois Dam 
(only the single power unit 12 with its two neighboring units will be considered, see Figure 1). 

Due to the complexity of AAR, a step-by-step method is adopted, characterized by the 
progressive introduction of the different parameters influencing the swelling reaction: the 
development of the chemical reaction, the influence of temperature, and the influence of 
humidity. The objective of the analysis is to reproduce the observed behavior of the dam and to 
estimate the progress for the next 50 years. 

The paper presents the main aspects of the numerical model that was prepared, the swelling 
model that was chosen to reproduce the behavior of the AAR reaction and its results. Some 
comments on the general behavior of the dam are also presented. 

Figure 1.  Beauharnois Dam, with position of the Power unit 12 (Benchmark formulation document, 2021). 

2 AAR MODEL 

The proposed AAR model includes four of the main known factors affecting the magnitude and 
spatial distribution of the AAR-induced concrete expansion: the reaction kinetics, the 
temperature effects, the dependency on the stress state and the influence of humidity. 

The dependency of the structure stiffness on the progression of the alkali-aggregate reaction 
is not included in the model. 

 Reaction kinetics 
The AAR expansion model adopted is based on the work of Capra & Bournazel 1998. This model 

assumes that AAR follows a first-order kinetic law, described by: 
 
𝑑𝑑𝐴𝐴
𝑑𝑑𝑡𝑡

= 𝑘𝑘 ⋅ (1 − 𝑀𝑀) (1) 
 
where A represents the percentage of alkali that have reacted and measures the advancement 

of the reaction varying between 0 and 1; k is the kinetic constant, i.e., the reaction velocity at 
time t = 0 (hence A = 0). 

In addition, the model assumes that the chemical reaction and the concrete expansion are 
dissociated: the concrete expansion starts occurring only when the cracks, which are initially 
generated within the aggregates, also propagate in the cement paste. To dissociate the reaction 
and the expansion, a parameter A0 is defined. When the reaction advance exceeds A0, the 
macroscopically observable expansive phenomenon begins. The link between the AAR induced 
concrete expansion (εAAR) and the reaction advance (A) is therefore defined by the following bi-
linear law (Figure 2). 

 

𝜀𝜀𝐴𝐴𝐴𝐴𝑀𝑀 = �
0 𝑐𝑐𝑒𝑒 𝑀𝑀 < 𝑀𝑀0

𝐴𝐴−𝐴𝐴0
1−𝐴𝐴0

⋅ 𝜀𝜀∞ 𝑐𝑐𝑒𝑒 𝑀𝑀 > 𝑀𝑀0
 (2) 

 
where ε∞ is the AAR induced concrete expansion at infinite time. 
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Figure 2.  Relationship between normalized expansion (εAAR/ε∞) and reaction advancement (A). 

 Temperature 
For all chemical reactions, temperature causes a change in the reaction velocity. In the 

considered model, the temperature influences the kinetic constant (k) of the chemical reaction 
according to the Arrhenius equation: 

 

𝑘𝑘 = 𝑘𝑘0 ⋅ 𝑒𝑒
𝐸𝐸𝑚𝑚
𝑀𝑀 ⋅�

1
𝜃𝜃0
−1𝜃𝜃� (3) 

 
where k0 = reaction rate at the reference temperature θ0; Ea = activation energy, a typical 

activation energy of 45 kJ/mol is used for the alkali-aggregate reaction (Gimal et al., 2010; 
Morenon et al., 2021); R = gas constant (8.31 J/mol/K); θ = temperature at which the reaction 
rate k is to be determined (temperatures are in Kelvin degrees). 

According to Arrhenius' law, the relationship between temperature and reaction rate is 
nonlinear, characterized by a doubling of the reaction rate every 10°C for an activation energy Ea 
of 45 kJ/mol. 

 Stress state 
It is known that the stress state within a concrete structure influences the AAR induced 

expansion. A compressive state of stress limits the expansion. To account for the effect of the 
stress state on the development of the reaction, reference is made to the formulation proposed 
by Saouma & Perotti, 2006. According to this approach, weights varying between 0 and 1 are 
assigned to each principal direction depending on the stress state. The higher the compression in 
a direction, the lower is the weight assigned to that direction. When the compression reaches a 
value of σu, the swelling in that direction is totally inhibited Figure 3 shows some examples of 
weight assignment. 

In all possible combinations, the sum of the weights is always equal to 1, meaning that the 
expansion is redistributed in the three principal directions keeping the volumetric expansion 
constant, as shown in experimental studies by Multon & Toutlemonde, 2006.  

Figure 3. Weights for the redistribution of volumetric expansion (Saouma & Perotti 2006). 
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 Humidity 
Humidity plays an important role in determining the AAR. Since AAR needs water to occur, a 

low humidity hinders the development of the reaction. The most relevant parameter for 
considering the effect of the humidity on the AAR is the saturation ratio (Sr) inside the structure. 
The model proposed by Poyet et al., 2004 considers a coupling between the saturation ratio and 
the reaction kinetics by introducing two parameters: 

 
𝑑𝑑𝐴𝐴
𝑑𝑑𝑡𝑡

= 𝑘𝑘 ⋅ 𝛼𝛼 ∙ (𝛽𝛽 − 𝑀𝑀) (4) 
 
where 𝛼𝛼 modifies the velocity of the reaction; and 𝛽𝛽 modifies the maximum reaction 

advancement. 
Based on several laboratory tests Poyet et al., 2004 conclude that the relationship between 

the two parameters and the saturation ratio is linear with 𝛼𝛼 =  𝛽𝛽 = 𝑁𝑁𝑎𝑎.  

3 MONITORING DATA 

The construction of the dam took place in three phases between 1932 and 1961. The dam is 
equipped with a topographic auscultation system since 1973. Measurements of displacements in 
the y-direction (upstream-downstream, positive if towards downstream) and z-direction (vertical 
direction, positive if upwards) at three different points were available. The behavior of the dam 
in the first 40 years is not recorded. The measured values will therefore refer to relative and not 
to total displacements. The three points are defined according to their position: Crest at the top 
of the dam, Turbine pit located in the turbine chamber and Turbine floor located further 
downstream. The position of the three points is represented in Figure 4. The measured 
displacements that were available for model calibration are represented in Figure 5. 

No other information was available, that could be useful in the interpretation of the behavior 
of the structure, such as laboratory tests, crack pattern in the structure, stress measurements, 
direct expansion measurement within the structure by means of extensometers. 

Figure 4.  Position of the three points: Crest (a), Turbine pit (b) and Turbine floor (c) (Benchmark formulation 
document, 2021). 
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Figure 5.  Topographic displacements for the three points (period 1974-2018). 

4 NUMERICAL MODEL 

 Geometry 
The numerical analyses proposed in this paper were carried out using FLAC3D vers. 7.0 (Itasca 

Consulting Group Inc. 2016), which implements the finite-difference method (FDM) and allows 
performing mechanical analyses in the linear and nonlinear domains. The model reproduces the 
geometry of three power units (11 to 13) including the foundation. The water intake part has a 
height of approximately 21.5 m and includes the penstocks, the upstream gates and the busbar. 
The power plant is approximately 24 m high and includes the generator unit, the scroll case, the 
draft tube, the tailrace and the downstream gates. A cold joint separates the water intake part 
from the power plant. The mesh (Figure 6) is composed mainly of hexahedral elements with a 
size of approximately 1 m for the dam body, while the foundation is formed by a coarser mesh 
with variable size from 1 to 20 m. 
 

Figure 6. (a) Three-dimensional view of dam-rock system with displacement boundary conditions, (b) Finite 
element mesh of the Power unit 12, longitudinal section (y-z plane) (Benchmark formulation document, 2021). 

 Interfaces 
The interfaces between the water intake part and the power plant, or between the different 

power units, have been modelled whit a non-linear behavior (except for static linear elastic 
analysis where the connection is bonded). The interfaces between the rock and the power unit 
have been kept bonded. Table 1 shows the main interface parameters introduced in the 
numerical model. 
 

a) b) 
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Table 1. Interfaces parameters. 

Properties Interfaces 
rock/concrete 

Interfaces 
concrete/concrete 

Shear stiffness [kPa/m] 1.0E+08 1.0E+08 
Normal stiffness [kPa/m] 1.0E+08 1.0E+08 
Cohesion [kPa] elastic 3.0E+02 
Tensile strength [kPa] elastic 1.0E+01 
Friction angle [°] elastic 45 

 Material properties 
Linear elastic behavior was assumed for the concrete and the foundation materials. Physical 

and mechanical properties are listed in Table 2. It is important to note that thermo-mechanical 
effects are not considered in the analysis, since a nil coefficient of thermal expansion is assumed.  

All creep and relaxation influence on the stress state induced by AAR strains are neglected. 
Also, any computation of crack initiation was not performed. The presence of reinforcements 
within the structure is neglected. 

 
Table 2. Material properties. 

Properties Concrete Foundation 
Density [t/m3] 2.36 2.62 
Poisson’s ratio [-] 0.21 0.20 
Young Modulus [GPa] 26 - 
Deformation Modulus [GPa)] - 30 
Specific heat [J/ kg °C] 917 800 
Thermal conductivity [W/ m °C] 2.9 4.3 
Coef. of thermal expansion [°C-1] 0 0 
Reference temperature [°C] 10 4 

 Boundary conditions 
For determining the thermal state within the structure, the thermal boundary conditions 

shown in Figure 7 have been applied to the model. Temperatures at boundaries were available 
on a daily average basis, and it was assumed that these temperatures can be repeated each year. 
Hygral boundary conditions, necessary to calculate the saturation within the model, have been 
provided by the formulators in the form of capillary pressure and relative humidity as shown in 
Figure 8. 

 

Figure 7.  Thermal boundary conditions (Benchmark formulation document, 2021). 
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Figure 8.  Hygral boundary conditions (Benchmark formulation document, 2021). 

5 CALCULATION STEPS 

 Introduction 
The simulation of the AAR effects in a structure is a complex task, because of the number of 

parameters influencing the swelling reaction. For this reason, a step-by-step procedure is 
implemented by progressively introducing each parameter of the model.  

The steps listed in Table 3 are performed.  
 

Table 3. Performed calculations. 

Task Stress redistribution Thermal effects Hygral effects 
0 (calibration) - - - 

A x - - 
B x x - 
C x x x 

 
For the tasks A to C it is required to compute the stress field within the structure. The loading 

conditions considered in the analyses account for: 
• Gravity loads; 
• Hydrostatic water pressure. The hydrostatic load computation assumes an upstream water 

level at 46.10 m and a downstream water level at 21.4 m; 
• Induced load caused by the concrete expansion. 

 
In order to properly reproduce the effects of the seasonal temperature variation within one 

year, calculations are carried out with a 1-month timestep, starting in 1932 until 2017 (calibration 
period). The prediction of the model is computed until 2067 to consider a prediction period of 50 
years. 

 Task 0: First calibration of the AAR model 
In the lack of specific laboratory tests on concrete, a calibration of the numerical model has 

been performed to fit the field measurements. The two parameters that must be calibrated are: 
• ε∞ = AAR induced concrete expansion at infinite time 
• k0 = reaction rate at the reference temperature θ0 

 
The method of thermal analogy was used to estimate the initial parameters of the AAR model. 

This method consists in linking a thermal expansion to the volumetric deformation given by the 
swelling due to the alkali-aggregate reaction. Assuming an isotropic distribution of the expansion 
induced the AAR (no redistribution based on stress state), a constant temperature field equal to 
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the reference temperature (no thermal effects), and neglecting the hygral effects, a uniform 
expansion in the whole structure is obtained. Therefore, it is possible to calculate the dam elastic 
response in terms of displacements of the monitored points for a unitary expansion applied to 
the whole dam and then use this information to calibrate the model outside the numerical 
software. 

The calibration of the model is performed by minimizing the difference between the measured 
displacements and the displacements obtained by the model in the calibration period (1974-
2018). 

 Task A: Constant temperature, fully saturated 
The effect of the chemical reaction is computed by adopting a constant and uniform 

temperature of 10 degrees (equal to the reference temperature, no thermal effects then). Also, 
the concrete is considered as completely saturated. The effect of the stress state is accounted for 
in this task. 

 Task B: Introduction of thermal effects 
In a second stage of simulation, the effect of temperature on the development of the reaction 

is introduced.  
Based on the temperature boundary conditions, which consist of daily temperature 

measurements over a year, a thermal conductivity analysis is performed. After 7 years all 
transient effects were found to be negligible. The thermal state in the dam is known at any 
moment during the year after this procedure.  

However, for simplicity, the choice was made to compute an equivalent temperature for each 
point in the dam, to be kept constant over the entire period of simulation of the AAR reaction 
propagation. The equivalent temperature is defined as the temperature for which the total 
progress of the AAR reaction is the same as the one computed considering the daily variation of 
the temperature. The equivalent temperature was computed as the temperature that satisfy this 
condition over a period of 100 years. The final thermal field that was computed is represented in 
Figure 9. It is worth noting that the equivalent temperature is higher than the yearly average 
temperature, since the expansion increase due to the temperatures above the average exceeds 
the expansion reduction due to the temperatures below the average, because of the non-linearity 
of the expansion-temperature relationship. 

 

 
Figure 9.  Equivalent temperature distribution used for calculation.  
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 Task C: Introduction of hygral effects 
The last case studied includes the effects generated by humidity. As described in section 7.29, 

humidity plays an important role in determining the AAR. Since AAR needs water to occur, a low 
humidity hinders the development of the reaction. The most relevant parameter for considering 
the effect of the humidity on the AAR is the saturation ratio (Sr) inside the structure. 

To compute a saturation distribution inside the power plant, the software FEFLOW vers. 7.3 
(Diersch 2014) was used, adopting the Mualem model (Van Genuchten 1980) with the following 
parameters: a = 18.6 MPa and m = 0.44. 

The distribution of saturation that was computed (Figure 10) has been considered constant 
over the entire calculation period. 

 

 
Figure 10.  Saturation ratio (Sr) in the power unit 12.  

6 RESULTS AND DISCUSSION 

 Displacement induced by the AAR expansion 
The results of the model in terms of displacements of the monitored points, are shown in 

Figure 12 for the period 1940-2067. The calibrated set of parameters for the AAR model are listed 
in Table 4 for the four calibration steps. The parameter A0 was not calibrated but was defined in 
order to reproduce a latency time, i.e., a period without concrete expansion after the chemical 
reaction start, of approximately 10-15 years. 

The results obtained by considering only the reaction kinetics (Task 0) are remarkably 
satisfactory. The time evolution of the displacements is well reproduced for all the monitored 
points. A little overestimation is obtained for the horizontal displacement of the Crest and for the 
vertical displacement of the Turbine Floor, while a little overestimation is obtained for the vertical 
displacement of the Crest and for the horizontal displacement of the Turbine Floor. The concrete 
expansion at infinite time obtained by the calibration is 3900 µm/m, which seems to be plausible 
if compared with other structures (Amberg et al, 2013). The value is kept constant for the other 
tasks. 

The introduction of the effect of the stress state (Task A) and of the temperature (Task B) 
produce minor changes in the predicted displacements, except for the vertical displacement of 
the Turbine Floor, which is overestimated by the model in the calibration period. This is supposed 
to be the result of the swelling redistribution due to the stress state. The concrete expansion in 
the x-direction is hindered by the presence of the adjacent blocks, leading to higher compressive 
stress in that direction that cause a redistribution of the expansion in the other less-compressed 
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directions. The same effect, though minor, is visible also in the predicted vertical displacements 
for the Crest and the Turbine Pit. 

The best agreement between the measured displacements and the predicted ones is obtained 
with the introduction of the effect of the saturation (Task C). The displacements of all the points 
are correctly reproduced by the model, except the vertical displacement of the Turbine Floor. It 
has to be noted that the best result in the calibration process was obtained by neglecting the 
effect of the saturation ratio on the final advance of the reaction. Therefore, the parameter β has 
been taken equal to 1. 

The good superposition of the curves for most of the points, indicates that, the proposed 
model provides a correct description of the AAR phenomenon. However, the increase of 
complexity in the model does not produce substantial improvements in the approximation of the 
curves. On the basis of the limited information available regarding the behavior of the dam, the 
introduction of other effects than the reaction kinetics seems not justifiable. A more 
comprehensive understanding of the behavior of the dam supported by stress measurements, 
crack pattern layout or direct measurement of the concrete expansion would be needed, in the 
opinion of the authors, to support the introduction of further elements and complexity in the 
model. 

The prediction for the next 50 years, indicates that the displacement velocity would decrease 
in the future without, however, reaching a full stabilization phase in the next 50 years. This is 
compatible with field observations for other structures in which the full stabilization phase is not 
yet observed. The deceleration visible in the displacement is compatible with the reaction 
advance predicted by the model. Figure 11 shows, for the Task C, that the reaction advance in 
most of the dam has already reached in 2017 a level of more than 80-90 per cent, in particular in 
the regions with higher temperatures. The zones with a lower reaction advance are located in the 
less saturated zones. 

 
Table 4. AAR model parameters. 

Parameters Task 0 Task A Task B Task C 
ε∞ [µm/m] 3.9E+03 3.9E+03 3.9E+03 3.9E+03 
k0 [1/day] 4.1E-05 4.1E-05 4.1E-05 6.0E-05 
θ0 [°C] 10°C 10°C 10°C 10°C 
Ea [kJ/mol] - - 45 45 
A0 [-] 2.0 E-02 2.0 E-02 2.0 E-02 2.0 E-02 
α [-] - - - Sr 
β [-] - - - 1 
σu [MPa] - 10 10 10 

 

Figure 11.  Level of reaction (A) in 2017, which represent the advancement of the reaction. 
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 Stresses induced by the AAR expansion 
Concrete expansion produces stresses in the structure. The evolution of these stresses, 

computed over the surfaces represented in Figure 13, is presented in Figure 14 for the period 
1937-2067. For the calculation of the average stresses, the resultants acting on the unit 12 are 
considered. For the Intake/Unit surface, the resultants acting on the Unit are considered. Figure 
15 shows the resultant forces in 2067. Only the forces at the contact between the structure and 
the rock and in the Intake/Unit contact are shown. The sum of the vertical and horizontal forces 
at the concrete/rock interface, besides some imprecision due to some difficulties that were met 
while reading the forces acting on interfaces with the FLAC software, equilibrate vertically the 
structure weight and horizontally the hydrostatic force, respectively. 

A relevant compressive stress develops in the X direction. The compressive stress in the X 
direction reaches 10 MPa in 2067, which is the value that inhibits the expansion according to the 
adopted model. A compression develops also in the Y direction, reaching approx. 8 MPa 
(approx.1150 MN) over the Intake/Unit interface, caused by the concrete expansion restrained 
by the rock foundation. The compressive force is transmitted to the rock by means of a sort of 
compressed arch, causing relatively high shear stresses in the concrete/rock interface of about 
1.5-2.0 MPa (approx. 1500-1600 MN). The shear forces at the foundation are higher than the 
normal forces. Tensile stresses are computed over the Rock/Intake interface. The shear stresses 
arising at the concrete/rock interface are not a concern for the dam stability since they are self-
equilibrating stresses. However, they could cause slippage and thus damage at the concrete/rock 
interface, reducing the capacity of the foundation to resist to the external forces (i.e., the 
reservoir force).  
  

Figure 12 (part 1).  Time-history displacements for the three monitored points. 
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Figure 12 (part 2).  Time-history displacements for the three monitored points. 
 

 

 
Figure 13.  Definition of the surfaces in the model (Benchmark formulation document, 2021). 

 

 
Figure 14.  Average stress in the interfaces for the Task C. 
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Figure 15.  Resultant forces in 2067 for the Task C. 

7 CONCLUSIONS 

The behavior of the Beauharnois Dam affected by AAR is evaluated by means of a numerical 
model accounting for the effects of the reaction kinetics, of the temperature, of the stress state 
and of the humidity. This calculation exercise was proposed in the frame of the 16th International 
Benchmark Workshop on Numerical Analysis of Dams. 

The model is calibrated on the measured displacement in 5 points in the dam in the period 
1974-2018. A prediction for the next 50 years is also performed. The best agreement between 
the model and the measurements is obtained by including in the model all the above listed 
effects. However, a remarkable satisfactory result is also achieved by considering the reaction 
kinetics only. In other words, the addition of complexity in the model does not produce 
substantial improvements in the approximation of the actual behavior. A more comprehensive 
understanding of the actual behavior of the dam in terms of stress state (in situ stress test, crack 
pattern layout) and expansion distribution (by means of direct expansion measurements) would 
be needed, in the opinion of the authors, for supporting the introduction in a reliable way of 
further effects in the model.  

Some general conclusions regarding the behavior of the dam can be drawn from the results of 
the model. A compressive stress state arises in the X direction, its magnitude being affected by 
the assumptions of the model, though. Also, in the upstream-downstream direction compressive 
stress develop, which are transferred to the rock foundation by relevant shear stresses, which 
could lead to slippages in the rock-concrete interface. 

As stated before, these general considerations must be supported by further data for defining 
properly a possible rehabilitation work. According to the obtained dam behavior, a possible 
intervention can be the realization of vertical slot cuts between units (YZ plane) and between 
intakes and units (XZ plane) in order to relief the compressive stress in the X direction and in the 
Y direction, respectively. 
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1 INTRODUCTION  

In total, embankment dams represent over 80% of all dams built in the world (Wrachien, 2009).  
Additionally, most of the dams were built in previous decades. Unlike concrete dams, 
embankment dams can accommodate a wide variety of foundation conditions and construction 
materials are usually available close to the dam site. During the construction and commissioning, 
embankment dams are exposed to various loading conditions. Internal erosion is a common 
problem in embankment dams. For example, approximately 40% of all embankment dam failures 
have been attributed to soil instability due to uncontrolled seepage through the dam body or its 
sub-base (ICOLD Committee on Embankment Dams, 2017). Moreover, the dams were more or 
less built in the past, considering different safety, design and construction standards (United 
States Society on Dams, 2010). Additionally, we are often faced with a lack of data, and need to 
adopt different modelling assumptions to perform numerical analysis. The main purpose of this 
topic is to present a case from Slovenia. We prepared a case of an embankment dam with an 
interesting history and design. The dam is monitored, but there is still a lack of data that requires 
engineering judgement that can be described using various modelling approaches. 

In this document you can find information on the dam and foundation, historical data, 
description of the provided data in separate files, the description of the tasks and subtasks, and 
the expected outcomes. In the theme, the geometry, material properties, and monitoring data 
are provided by the Formulators. Some aspects of the numerical modelling are intentionally not 
defined so that the participants could make their own assumptions and choose suitable 
approaches to solve the problem. In particular, the participants may select the analysis approach 
they think is appropriate for the case at hand. Thus, by comparing the different solutions, it will 
be possible to draw conclusions regarding how different assumptions and approaches affect the 
results. 

In case the participants will express their interest in a technical visit to the dam, in the scope 
of the BW in Ljubljana, the visit can be organized (*in case the BW will be held in physical form 
and not in virtual form due to COVID-19 restrictions). 

2 BASIC INFORMATION ABOUT THE DAM 

The identity of the dam in this topic is confidential. The downstream view of the dam is shown 
in Figure 1. The following subchapters present the main features of the dam including its 
structure, material description, chronological description of construction and operation, detailed 
description of leakage, and available monitoring data. 

The dam was built in 1989 for agricultural (irrigation) and flood protection purposes. The 
reservoir provides seasonal water storage, where excess rainwater is collected during the cold 
part of the year, when the inflows are high, while in the spring and summer months the water 
from the reservoir is mainly used for irrigation. 

The dam site lies on an impermeable Eocene flysch. During the design phase, the geological 
conditions at the site were estimated as very good. However, this assessment was based on the 
performance of only basic geological and hydrological investigations. Moreover, excavations 
during construction revealed zones with permeable limestone deposits. To ensure lower 
permeability in the foundation, the permeable zones were grouted with a single-row grout 
curtain (cement-bentonite suspension), which was used to seal the permeable zones and reduce 
the permeability of the dam foundations. The depth of the grouting in the foundation is 68 m (the 
grouting reached the ground up to the elevation level 34 m asl). Grouting was done 
simultaneously with the dam construction, but the precise locations of the grouting are not 
known. 

The construction of the dam lasted about a year and was completed in the late 1980s. The 
reservoir was fully impounded about 18 months after the completion of the construction works 
(details of the first impoundment are presented in the chapter Loads). After 20 years of operation, 
during regular maintenance, wet spot was noticed on the downstream slope of the dam (see 2.5). 
Rehabilitation works on the dam were finished in 2022 and the dam is now again fully operational. 
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3 DESIGN OF THE DAM 

The main technical data of the dam are: 
• Dam height above the foundation: 34.6 m 
• Elevation of the dam crest: 102.00 m asl 
• Elevation of the foundation: 67.40 m asl 
• Crest width: 5 m 
• Base width: 120 m 
• Crest length: 174 m 
• Elevation of the normal water level: 98.8 m asl 

The dam under investigation is a zonal earthfill dam with a clay core. Typical cross-section of 
the dam is shown in Figure 2. The main zones in the dam structure are: (A) impermeable clay 
zone, (B) rockfill zone, (C) mix of limestone and sandstone blocks, (D) impermeable rock 
foundation, and (E) filter. On the upstream side of the filter, the dam consists of rockfill material 
(B). The upstream slope has an inclination of 1:1.5 and has intermediate berms. The core of the 
dam contains clay-silty materials, obtained mostly in the area of the reservoir. The impermeable 
core is protected with a two-layer filter (on upstream and downstream side). Figure 2 shows the 
cross-section of the dam, where we can see that the impermeable clay zone (A) and zone (C) are 
not divided vertically. The blocks of limestone and sandstone in zone (C) are sealed by the 
impermeable clay material, while the filter is installed at the boundary. The formulators are 
unfamiliar with the justifications for such design. The downstream slope has an inclination of 1:2. 
The embankment dam is 35.40 m high and 174 m long, while the width of the dam is 5.0 m at the 
crest and 120 m at the toe. The total projected volume of the reservoir is 8.0 hm3 of water, of 
which 6.8 hm3 (84.5% of the volume) is intended for irrigation, and the remaining 1.2 hm3 (15.5% 
of the volume) for flood water retention. 

. 

 
Dam structure: 
(A) clayey-silty material 
(B) rockfill material 
(C) limestone and sandstone blocks 
(D) impermeable rock base  
(E)  filter material 

Hydrotechnical structures: 
(1)     intake tower  
(2)     intake structure 
(3)     bottom outlets 
(4)     irrigation pipeline  
 

 
Reservoir levels:  
(6)     Maximum reservoir level (100.5 m asl) 
(7)     Minimum operating level (80.0 m asl) 
(8)     Normal operating level (98.8 m asl) 
(9)     Depleted operating level (92.0 m asl) 

 
Crest elevation 102.00 m asl 
Foundation elevation 67.40 m asl 
 

 
Figure 25.  Typical cross-section of the embankment dam. 
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In order to prevent breaching of the dam during extreme flood events, an emergency spillway 
is situated at the right abutment of the dam. The spillway is designed to evacuate a flood with a 
1000-year return period. The bottom outlet with a capacity of 14 m3/s consists of two steel pipes 
with a diameter of 120 cm, which are protected with a concrete cover. One of the pipes is used 
for abstraction of water for irrigation, while the other for emergency evacuation of water from 
the reservoir. Bottom outlet (number 3 on Figure 1) is regulated by a Howell-Bunger valve 
installed on the left downstream side of the dam, meaning that the pipes are filled with water 
even when the valves are closed. The RC intake structure for the bottom outlet is on Figure 1 
marked with a number (2). 

Additionally, the intake tower (number 1 on Figure 2) is equipped with 4 hydraulic gates that 
enabled abstraction of irrigation water at various elevations. The steel pipeline (number 4 on 
Figure 1) from the intake tower, which is protected with a concrete cover, has 100 cm in diameter 
and leads toward the outlet structure downstream of the dam. Since the leakage detection, this 
irrigation pipeline has been sealed and intake tower is no longer in operation. The disposition of 
the bottom outlet, the intake tower, the irrigation pipes and the bottom conduits is marked on 
the Figures 1 and 2.  

 

 
Figure 26.  Plan view of the discussed dam. 
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 MATERIAL PROPERTIES 

 Dam 
The material properties are presented in Table 1.  
 

Table 1. Material properties (w [%] – Soil moisture; γ [kN/m3] – Specific gravity; cu [kPa] – Undrained 
shear strength; c [kPa] – Effective cohesion; Eoed [MPa] – Oedometric modulus; E [MPa] – Elastic 
modulus; ν [-] – Poisson coefficient; k [m/s] - Water permeability). 

Filter characteristics are unknown. 

 Foundation 
Assume homogenous foundation, with the coefficient of water permeability: k = 10- 9 m/s.  

  LOADS 
The following loads have to be considered: dead weight and hydrostatic pressure according to 

the reservoir water level. Water is considered to have a unit weight of 1000 kg/m3 and 
compression wave velocity of 1439 m/sec. Main reservoir levels are:   

• Maximum reservoir level: 100.5 m asl 
• Minimum operating level: 80.0 m asl 
• Operational (normal) reservoir level: 98.8 m asl 
• Lowered (emergency) reservoir level: 92.0 m asl 
Additionally, reservoir levels for the period 1988–2020 are provided in an Excel spreadsheet. 

First filling: First filling started about 12 months after the completion of construction works and 
lasted 722 days, with an average increment of 2.3 cm/day. The zero level of the reservoir was at 
81.84 m asl and the final level of 98.34 m asl was reached at the end of the first impoundment. 
Time series of the first filling are provided as an input data. 

Figure 27.  Time series of the first filling of the reservoir. 

Zone Description 
w 

[%] 
γ 

[kN/m3] 
cu 

[kPa] 
φ 
[°] 

c 
[kPa] 

Eoed 
[MPa] 

E 
[MPa] 

ν 
[-] 

k 
[m/s] 

A 

Top layer of the dam 
(top 3 m from the 

crest) dolomite gravel 
mixed with silt or clay 

13 21 / 36 36 15 / 0.4 10-6 

A Clayey silt to silty clay 26 19.5 75 / / 5 / 0.5 10-9 

B Rockfill  
(limestone blocks) / 24 / 38 / 50 / 0.3 10-3 

C Blocks of limestone 
and sandstone / 24 / 38 / 50 / 0.3 10-4 

D Flysch / 25 / 39 32 / 620 0.25 10-9 
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Filling of the reservoir after completion of the remediation work: When the reservoir will be 

impounded again, the following rules have to be considered: until the reservoir reaches the level 
of 90 m asl maximum daily rise of reservoir level may be 0.5 m/day, afterwards reservoir level can 
rise for only an additional 0.3 m/day until the final level of 98.8 m asl However, based on the 
hydrology data, the formulators estimate that an average rise of 5 cm per day should be 
considered by the participants who are solving theme C. Time series of the filling of the reservoir 
after remediation works are provided as an input data (see Fig. 4). 

Figure 28.  Filling of the reservoir after completion of the remediation works. 
 
Seismic load: For the seismic analysis the participants were asked to consider horizontal peak 

acceleration of 0.3 g and vertical accelerations to be 0.67 of the horizontal. 

 MONITORING 
The dam monitoring system was designed during the design phase. The basic monitoring 

system of the dam was already established during construction and immediately after the 
construction of the dam.   Regular technical monitoring consists of the following measurements 
and inspections: 

• Deformation measurements (vertical and horizontal displacements, inclinations) 
• Visual inspections (structural, geotechnical) 
• Groundwater measurements (seepage in the dam body (i.e., drainage outflow, piezometric 

levels), seepage in the foundation of the dam and in the abutments, pore pressure in the 
clay core and in the foundations) 

• Measurements of external loads on the dam (hydrostatic pressure, earthquake). 
Geodetic measurements of vertical and horizontal displacements are performed once a year 

on 16 measuring points on the downstream slope of the dam: 7 points are located on the crest, 
5 points on the fourth berm, 3 points on the third berm and one point on the second berm (see 
Figure 3). The vertical inclinometer casings were installed when the dam was already in operation, 
measurements are regularly performed on 4 inclinometers - 3 of them are installed on the crest 
of the dam and 1 is located on the upper berm. 
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 THE APPEARANCE OF THE WET ZONE 
On October 24, 2007, during a regular visual inspection of the dam, a wet zone was observed. The 

wet spot was located at the downstream toe of the dam in the central part, close to the axis of the dam 
(the location is shown on Figure 2). Moreover, the presence of surface water was observed at the 
downstream toe of the dam, between the stilling basin of the spillway channel and outlet structure of 
the bottom outlet. Furthermore, the extensive vegetation in the central part of the embankment dam 
indicated that the wet zone extended to the downstream slope of the dam above the wet spot. An 
emergency investigation revealed that the excess water on the downstream slope originated from the 
reservoir. It was suspected that the cause of the leakage was a damaged irrigation pipeline. After 
emptying the reservoir and inspecting the irrigation pipeline, this hypothesis was confirmed. Air bubbles 
were observed in several places under the silty layer deposited on the walls of the pipeline. The corrosion 
of the steel pipeline (the holes were a few cm to a few 10 cm in diameter) enabled seepage of water 
into the layer between the concrete cover and the steel pipe. Although the irrigation pipeline was 
emptied, the wet zone still existed. Therefore, the emergency investigations were also extended to the 
conduits of the bottom outlet pipeline, which can only be closed on the downstream side, so in the case 
of the damaged pipeline, the seepage into the dam body was possible. Detailed investigations revealed 
similar damage on the bottom outlet pipeline as in the previous case of the irrigation pipeline. 
Geotechnical investigations of the foundations (i.e., water permeability tests and coring) showed that 
there was only minimal (practically negligible) amount of seepage in the foundation layer under the dam, 
so piezometer levels showed no changes in the water level. In summary, the seepage was confined to 
the dam body in close proximity to both, the irrigation pipeline, and the bottom outlet pipeline. 

 REMEDIATION WORKS 
In 2008, the reservoir level was lowered to a maximum of 93.6 m asl, and the irrigation pipeline 

was filled with the concrete. The space between the irrigation pipeline and the concrete cover 
was grouted with the cement grout. After this emergency remediation, the operating reservoir 
level was additionally lowered to a 92.0 m asl Operation of the reservoir is recorded in Excel file, 
where you can observe the reservoir drawdown. The reservoir operated in the lowered condition 
for more than 10 years. 

During the time of the BW the reservoir was completely emptied, and remediation works were 
underway. During the works, the bottom outlet and irrigation pipes were be sealed with concrete filling. 
A new outlet building, and outlet tunnel were constructed in the left abutment and all the conduits in 
the dam body were permanently sealed. After all the above mentioned the works were completed, the 
reservoir water level was raised back to the original nominal level at 98.8 m asl  
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4 PROVIDED DATA 

Participants are provided with the following data: geometry (.DWG file), reservoir levels, 
piezometric levels, projected reservoir levels for filling the reservoir after the remediation works, 
and geodetic measurements. The description of each data set can be found below:  

• Geometry  
Data format: *.dwg 
Description: Three layers are provided: DAM GEOMETRY (cross-section), WATER LEVELS 
(maximal operating level: 100.5 m asl, minimal operating level: 80.0 m asl, normal 
operating level: 98.8 m asl and depleted operating level: 92.0 m asl) and BOTTOM 
OUTLETS. The geometry is positioned at the actual elevation. 

• Monitoring data – geodetic measurements 
Data format: Excel spreadsheet 
Description: The data is stored on the Spreadsheets in the document: 
- Direction Z: settlements (settlements have a negative value)  
- Direction Y: displacement in the upstream-downstream direction; positive value “+” 

represents displacement in the upstream direction 
- Direction X: cross-valley displacement; “+” represents displacement toward the right 

bank side.  
- Units: [mm] 

 

 
Figure 29.  Positive directions in the coordinate system for geodetic measurements. 

 
 
Positive directions are graphically presented on the Fig. 5. 

Figure 30.  Time series of the measured settlements. 
 
 
Locations of the geodetic points (VH5, VH10, VH14, and VH16) are marked on the Fig. 7. 
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• Data: Piezometers  
Data format: Excel spreadsheet 
Description: Raw data of the seepage level measured in piezometers. The data file contains 
piezometric water level in m asl The date format is mm/dd/yyyy. There are no empty cells 
in the data set. Data are for each piezometer is in a separate column. Measurements are 
taken manually and have an uneven frequency. Recorded data has been under some basic 
pre-processing but there may still be some faulty data in the data set. 
 

Table 2. Piezometer lengths. 

Piezometer K2 K3 
Length [m] 30.5 20.7 

Elevation on the top [m asl] 102.30 91.50 
 
Location of the piezometers is presented on Fig. 9 and 10. 

Figure 31.  Locations of the geodetic points (VH5, VH10, VH14 and VH16). 
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Figure 32.  Time series of the piezometric levels of piezometers K2 and K3. 

Figure 34.  Location of the piezometers K2 and K3 in the plan view. 

Figure 33.  Location of the piezometers K2 and K3 in the cross-section. 
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• Reservoir levels from 1988–2020  
Description: The data of the reservoir levels are presented in the column and are 
presented as m above sea level. The date format is mm/dd/yyyy. 

 

• Rising of the reservoir level  
Description: The data of the reservoir levels are presented in the column and are 
presented as m asl (above sea level). The date format is mm/dd/yyyy. 

5 SIGN CONVETION 

To provide consistency among the results, the sign convention of the tension was POSITIVE 
« + » and for compression NEGATIVE « - ». The displacement in the downstream direction was 
POSITIVE « + » and in the upstream direction NEGATIVE « - ». 

6 TASKS AND CASES 

The embankment shape and geometry are very complex. The participants were asked to 
consider 2-D analyses as obligatory and 3-D analysis as optional. In the analysis, the consideration 
of the foundation layer is obligatory, and the material properties of the foundation layer are 
provided. During the geotechnical investigations it was estimated that the foundation is almost 
impermeable, some permeable zones were grouted and are now considered almost 
impermeable. The participants may decide of which constitutive laws and material models for the 
foundation rock will be used. For the ground, we asked the participants to assume the ground as 
homogenous. The participants were asked to describe their modelling assumptions in detail in 
the paper. The theme is divided in 4 cases which are presented in Table 3 and described in the 
chapters below. In the analysis, we assumed that all participants would use the same geometry, 
material properties, and basic loads. In case when participants decided to use different 
parameters, they were asked to explain their decision.  

 
  

Figure 35.  Changing the reservoir level over time. 
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Table 3. Division of the tasks. 

Case Tasks 

Case 1 
(Mandatory,  
Optional) 

Task 1: Construction of a 2D model. Calibrate the model using dam surveillance. 
Estimate the as-built characteristics of the dam. 
Task 2: Evaluate the initial state after the reservoir is filled to the nominal level. 
Estimate the dam condition before the detection of leakage. 
Task 3 (Optional): Using calibrated data of 2D model, build a quasi-3D FE model  
(20 m wide section of the dam).  

Case 2 
(Mandatory,  
Optional) 

Task 1: Consider the wet stain using 2D or quasi 3D model.  
Task 2: No action after the appearance of the wet stain. 

Case 3 
(Mandatory) 

Task 1: Consider remedial works of the dam, consider long period of reservoir draw-
down and its effect of the clay core. 
Task 2: Consider elevation of the reservoir back to nominal level according to the 
assumed filling times. Evaluate the safety of the dam under the final water level 
condition of the reservoir. 

Case 4 
(Optional) 

Task 1: Seismic analysis. 

Finalisation 
(Mandatory) 

Task 1: Preparation of the technical paper. 
Task 2: Preparation of the presentation and presentation at the workshop. 

* As an optional case the participants can build a full 3D model and perform the required analysis. 

 DETAILED DESCRIPTIONS OF TASKS AND CASES 

 Case 1: Creation of a 2D model. 
In Case 1 a preparation of a 2D numerical model was considered (geometry in .dwg file). The 

participants were asked to prepare the model that captures and represents the initial operating 
conditions in the dam and foundation as realistically as possible. Soil characteristic data from the 
design phase and monitoring data of the operation of the dam before the leakage were provided 
in the data. Boundary conditions were defined and justified by the participant.  

 
Task 1 (Mandatory) 
While creating 2D model, the participants were asked to use the geometry from the references 

and soil data from design phase, and to consider suitable material properties for the dam and the 
foundation. The participants were provided with reservoir levels from 1988–2020, piezometric 
data, geometry (.DWG file), and geodetic measurements. Provided data should be used for 
creation and calibration of the numerical model. During the calibration process, any of the soil 
properties and constitutive laws could be modified, e.g., Mohr-Coulomb, Hardening Soil (i.e., 
back-analyses should be performed).  

For the initial state analysis, the participants were asked to consider a fully constructed dam 
and empty reservoir, while the groundwater level is at the surface elevation. After performing 
the stability analysis of the dam, they were asked to estimate the as-built characteristics of the 
dam, settlements at the end of construction and before the first filling of the reservoir and 
provide for the critical sliding plane, deformation and stress state of the dam. 

 
Task 2 (Mandatory) 
In this task first filling of the reservoir was considered. The schedule of the filling of the 

reservoir was provided as the input data. The participants were asked to evaluate the data and 
include the process of the reservoir filling in the FE model, to describe the assumption on the 
inclusion of the reservoir in the FE model. In this scope of this task the consolidation process over 
the years was evaluated as well. The participants were provided with the data on reservoir and 
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piezometer fluctuations and asked to perform numerical analysis of the dam and evaluate stress 
and steady seepage state for representative situation until the year 2006. Additionally, they were 
asked to elaborate on any additional changes in the numerical model of the dam and to perform 
stability and seepage analysis of the dam. 

 
Task 3 (Optional) 
For this task participants ware ask to build a quasi-3D model using calibrated data from 2D 

model of the dam by adding thickness to the 2D dam section and assuming plane strain boundary 
condition on the lateral boundaries of the model. The thickness of the model should be 20 m. 

 Case 2: Appearance of the wet zone (2D and/or quasi 3D)  
This case was devoted to the analysis of the wet zone. First, we asked the participants to 

elaborate on the reasons for the appearance of the wet stain and to explain modelling 
assumptions to consider this extraordinary event. Mandatory part of this task was to analyse the 
effect of the lowering of the reservoir.  

 
Task 1 (Mandatory) 
The participants were asked to consider the observed wet stain and different possibilities of 

occurrence. Moreover, to evaluate monitoring data and use the data in the model based on their 
engineering judgement. For the quasi-3D model, they were asked to consider the location of the 
wet zone to be in the centre of the segment and to perform stability and stage seepage analysis 
of the dam.  

 
Task 2 (Optional) 
In this task a scenario that after the appearance the wet stain was considered, the water level 

remained at the operational level of 98.8 m asl for 20 years. The participants were asked to 
perform stability and seepage analysis; to estimate the safety of the dam and to provide yearly 
safety assessment for 20 consecutive years. 

 Case 3: Remedial works (2D and/or quasi 3D)  
This case was devoted to the analysis of the long-term drawdown of the reservoir and its effect 

on the dam body (i.e., clay core). As can be observed from the monitoring documentation the 
reservoir was operating at the lowered elevation for over 10 years. At the time of the workshop 
the reservoir was emptied, and after the completion of the remedial works the maximum 
reservoir level was then restored. In the analysis the participants considered the effect of long-
term drawdown of the reservoir on the clay core and modify the FE model. In this task it was 
assumed that bottom outlet and irrigation pipelines have been permanently sealed. 

 
Task 1 (Mandatory) 
Participants were asked to analyse the long-term drawdown of the reservoir, to modify the 

material properties if they assumed material changes were needed, for example changes in core 
permeability. And finally, they were asked to perform steady seepage and stability analysis of the 
dam after a yearlong drawdown period (until the last record of the reservoir levels in 2020). 

 
Task 2 (Mandatory) 
The task was devoted to the analysis the future state of the dam, after the reservoir is again 

filled to the maximum level. The level in the reservoir should be gradually risen during the analysis 
(by following the filling timetable provided as an input by the formulators). The participants were 
asked to perform seepage and stability analysis of the dam. 

 Case 4: Seismic analysis (Optional) 
 

In this task a basic seismic analysis of the dam, after the remediation works should be 
performed. The participants were asked to decide on to consider the mass of the foundation for 
the dynamic analysis or not. Water in the reservoir should be considered to have a unit weight of 
1000 kg/m3 and compression wave velocity of 1439 m/sec. The instruction was to perform linear 
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on non-linear dynamic analysis for various reservoir levels at the following elevation of the 
reservoir: empty, operational low, normal operational, maximum and to consider horizontal peak 
acceleration of 0.3g and vertical accelerations to be 0.67 of the horizontal. Moreover, the 
participants were asked to explain the consideration of the hydrodynamic effect in the reservoir, 
the reservoir length is 500 m, to estimate natural frequencies for dam-foundation-reservoir 
system, at the following elevation of the reservoir: empty, operational low, normal operational, 
maximum and to present the first 6 natural frequencies of the model and mode shapes.  

7 SUBMISSION 

The participants were asked to provide the following results to the formulators of the theme 
via the Excel template file:  

• Properties of the model after the calibration 
• Estimation of the as-built characteristics of the dam 
• Deformation of the dam along the dam centre line in the cross-section (vertical and 

horizontal displacements) 
• Safety factors for the upstream and downstream slope 
• Prediction of the settlements 
• Phreatic line 
• Estimation of the time used to solve the tasks. 

The formulators analyzed the data provided in the Excel spreadsheets and the papers prepared 
by the participants and provided synthesis of the results. 

8 DESCRIPTION OF THE PARTICIPANTS TO THE THEME C 

 Statistics 
In total, 5 teams participated in theme C from 5 countries: North Macedonia, Switzerland, 

Republic of Serbia, Canada, and Italy. 3 groups have already participated in previous BW, while 2 
groups participated for the first time. The motivation to participate was in 40% to gain new 
experience and learn from others, in 40% to share expertise, and in 20% to test computational 
methods and compare the results with the results of the other teams. All teams have previous 
experience with modelling of embankment dams, in average 3 authors collaborated in a team 
that provided a contribution. By composition, 2 teams were from the university, the authors of 2 
teams were from combined affiliations (university and dam owner), and one team was from a 
consultancy background.  

The participants were asked to report how much time did they spent per author and per task, 
in average teams spent 43 days to solve the theme, and cases 1 and 2 were the ones that were 
the most time consuming. The theme consisted of mandatory and optional tasks, 4 cases with in 
total 8 tasks, in average 6 tasks were solved by each team and only one team solved all the tasks.  

 
Figure 36.  Number of tasks solved per participating teams. 
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To solve the tasks the participants used different software and constitutive models, all 
participants used commercially available software: 

• Geo-slope 
• Plaxis 3D 
• Geo-studio 2015 
• Abaqus 
• Flac 2D and Flac 3D.  
 

The following material models were considered:  
• elastoplastic (variable E) 
• elastoplastic (w/PWP change) 
• Mohr-Coulomb 
• HS (small). 

 
The basic assumptions, the constitutive models, and the methods of analysis of the 

contributors are presented in their individual papers. Material characteristics of the dam zones 
were provided based on the design values and laboratory test performed on the built-in material 
in the dam.  The table below summarizes the used material parameters in the modelling of the 
dam that were provided by the formulators. The red values in brackets are the variations of the 
material properties that were used by the participants in their models. 

 
Table 4. Material properties. 

Zone Description cu [kPa] f [°] c' [kPa] E 
[MPa]* 

n [-] k [m/s] 

A       
(top 3 m) 

Dolomite gravel 
mixed with silt 

and clay 

 36 36 9 0.4 
(0.3-0.5) 

10-6 

A Clayey silt to 
silty clay 

75 
(70-150) 

- 
(20 or 30) 

0 
(10 or 35) 

2 0.5 
(0.25-0.45) 

10-9 
(10-11; 10-8) 

B Rockfill  38        
(45) 

0 37 0.3 10-3 

C Blocks of 
limestone and 

sandstone 

 38 0 37 0.3        
(0.28) 

10-4 

D Flysch  39 32 620 0.25       
(0.3) 

10-9 

 

9 EVALUATIONS OF THE RESULTS FROM THE CONTRIBUTORS TO THE THEME C 

In this chapter a synthesis of the provided results is provided. The results are kept anonymized, 
while the contributions are marked with indexes C1-C5 in a random order. The comparisons of 
the results for stresses, displacements, and pore pressure for each analysis stage are prepared. 
Some of the analysis results are also compared with the measurements, which were not revealed 
to the participants in advance. Participants were provided with monitoring data, which enabled 
them to construct a finite element model, but some of the settlements were only revealed at the 
benchmark in April 2021. 

 Initial state after building the dam (Case 1, Task 1) 
Comparisons of the initial stresses are presented on Fig. 14 and 15, where vertical and 

horizontal stresses with respect of the depth from the dam crest are presented. The results are 
displayed for a dam center line, as indicated with the red line on the Fig. 13.  
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Figure 37.  Center line of the dam.  
 
The graphs on Fig. 14 and 15 show the comparison of the computed total stresses (vertical and 

horizontal). It can be seen from the graphs that the calculated initial stresses in the dam are more 
or less similar for all participants. 

Figure 38: Vertical total stresses - initial state. 
 

Figure 39: Horizontal total stresses - initial state. 
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However, when the results for the settlements at the end of construction of the dam and 
before the first filling of the reservoir are compared, the substantial differences in the results are 
observed. The differences in initial vertical displacements are probably based on whether the 
displacements during the construction phase of the dam were included or excluded. Participants 
C2 and C4 probably included vertical displacement during construction, while participant C3 
excluded those displacements. Unfortunately, the data about the settlements during the 
construction, and in the time of the first filling of the reservoir due to consolidation, were 
n[Pritegnite pozornost bralca z odličnim citatom iz dokumenta ali pa izkoristite ta prostor, da 
poudarite ključno točko. Če želite premakniti to polje z besedilom na katero koli drugo mesto na 
strani, ga preprosto povlecite.] 

ot available. For the horizontal displacements it looks like that the participant C4 used different 
sign convention. So, the initial horizontal displacements could be between 20 and 30 cm in the 
downstream direction. Also in this case, the data of the horizontal displacements due to the 
construction and consolidation of the material before first filling of the reservoir, were not 
disposed.  

Figure 40.  Vertical displacements - initial state. 

Figure 41.  Horizontal displacements - initial state. 
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 First filling of the reservoir (Case 1, Task 2) 
For the first filling of the reservoir participants were provided with the data series from piezometers 

and reservoir head, and settlements measured on 4 locations on the dam after the construction until 
recently. The figures below present the obtained results, however, only 3 teams provided us with the 
requested results, and only their results were then analyzed. The computed vertical total stresses are 
for all 3 participants similar (see Fig. 18). However, when we compare the results for pore water 
pressure, the situation is not so unified. On Fig. 20 the results for the pore pressure are provided for the 
dam center line, and the provided results are the following. For the participants from the team C2 
negative values of pore pressure start to develop at the depth 20 m depth below the crest level and then 
with the next 15 m of increasing depth develop to the 210 kPa, similarly for the team C3 negative pore 
pressure develops at the depth 25m below the crest and then with depth it gradually reaches the final 
value of -170 kPa. However, the model C4, provides different results, and this result also responds well 
to the measured values, the negative pore pressure develops in the dam at depth of 10 m under the 
crest level and then it gradually develops (in 25 m) to reach -210 kPa at the foundation level. However, 
we must note that, based on the results from monitoring, after the first filling of the reservoir the level 
of the ground water in the dam, behind the sealing curtain, was around 20-22 m below the crest level. 
Two examples of the pore pressure distribution in two different models are presented on Figures 21 and 
22, by looking at the contour plot we can observe how the behavior of the dam is captured in the center 
line. Also it can be seen that in the center line the differences in pore pressure are maximal, through 
both embankments of the dam there can be observed comparable distribution of pore pressure in this 
two different calculations. 

Figure 42.  Vertical total stresses.  

Figure 43.  Horizontal total stresses. 



Žvanut, B. Likar, Ž. Likar, Selan, Klun  
BEHAVIOUR OF THE EMBANKMENT DAM – Description and Synthesis of Theme C 

348 
 

Figure 44: Pore water pressures. 

Figure 45: Contour plot – team C4. 
 
 

Figure 46: Contour plot – team C2. 
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Figure 47.  Vertical displacements. 
 
The vertical displacement results correspond well to the results of pore pressures. However, 

the displacement of the participant C2 are in better agreement with the real situation on the dam 
(comparison with measured data). Moreover, it should be noted that the measured data, which 
was also provided in the formulation data files, are obtained at the surface of the dam (on crest 
and berms) and not in the center line of the dam (where the data from the numerical is obtained 
from). When comparing the results for the vertical displacement, the situation is not so unified 
anymore. The data provided by the participants required additional post-processing, and again it 
should be assumed that some of the participants considered a different sign convention.  

Figure 48.  Horizontal displacements. 
 
The computed horizontal displacements vary substantially between the participants. 

Moreover, it was realized again that some of the participants assumed a different sign 
convention, the positive direction was considered in the downstream direction, and changed the 
sign, where based on the paper and other results it was evident this is the case. It should be noted 
that the difference in the results on the crest displacement among the teams is substantial. 
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 Appearance of the wet stain (Case 2, Task 1)  
When comparing the stresses, the results of all 4 participants are similar (see Fig. 25 and 26). 

The differences appear when we review the results for pore pressures (Fig. 27), however it 
appears the reason is in the location of the limit line in the dam between the suction and negative 
pore pressures. While the participants C5 calculated that the whole dam is under negative pore 
pressures, the participants C4 calculated the limit line in the depth of 10 m under the crest level 
and the participants C2 and C3 in the depth of 20-25 m under the crest level. From the monitoring 
data the formulators believe that the participants C2 and C3 calculated a more credible situation.  

Figure 49.  Total vertical stresses. 
 

Figure 50.  Total horizontal stresses. 
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Figure 51.  Pore water pressures. 
 
Similarly, when comparing the computed displacements for this Case, it can be expected that 

results can be quite different from participant to participant, since already the results for the pore 
pressures vary from one team to another. On Fig. 28 we can see the results for the vertical 
displacement, we can observe a substantial difference in the results, however, the opinion of the 
formulators is the following, the results of the team C2 only provided the results of the 
settlements for this Case, while for example team C3 provided the total settlements, therefore 
this figure is best interpreted if we look at it together with the Fig. 23. If we consider this fact we 
can observe that the results of the both teams are very similar.  

 

Figure 52.  Vertical displacements. 
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The results for the displacements in the horizontal direction also vary, however we consider 
the total and relative values (in a similar manner as for vertical displacements), team C2 calculated 
small displacements in the downstream direction and if we look at the red dashed line on Fig. 29, 
where the relative values if the displacement for the team C3 are presented, we can see that 
there is about 10 cm of a difference in the calculated horizontal displacements between both 
teams at the crest level. If we compare the results with the monitored data, we can also observe 
that team C3 fits better the measured data than the other team. 

Figure 53.  Horizontal displacements. 

 Refilling the reservoir (Case 3, task 1) 
This case is devoted to the analysis of the dam after the reservoir is again filled to the maximum 

level.  If we first observe the stresses, we received the results form 3 participating teams. Roughly 
we can conclude that their results are in the same magnitude and show similar behaviour of the 
dam (see Fig. 30 and 31). Immediately after refilling, we can observe suction in the first 10 to 20 
m of the dam under the crest level and then lower.  The computed pore water pressures are 
represented on Fig. 32 and reach up to the values between 150 and 270 kPa at the bottom of the 
dam. Vertical displacements are presented on Fig. 33. 

Figure 54.  Total vertical stresses. 
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Figure 55.  Total horizontal stresses. 

Figure 56.  Pore water pressures  

Figure 57.  Vertical displacements. 
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 Long term behavior of the dam after the filling of the reservoir (Case 3, task 2) 
The evaluation of the long-term behavior of the dam after the filling of the reservoir was done 

by 3 of the participating teams. Below we are summarizing their results for vertical and horizontal 
total stresses, for pore water pressures and for settlements in the vertical direction.  

 

Figure 58.  Total vertical stresses. 
 

Figure 59.  Total horizontal stresses. 
 

Figure 60.  Pore water pressures. 
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Also, in the results of this task we observed, that the computed stresses for all 3 participants 
who submitted their results are comparable and show similar trend, while the results for the pore 
pressures are more variable. The results from C2 and C3 are comparable, the C4 calculated a lot 
higher values of pore pressure (about 50 kPa). 

Figure 61.  Vertical displacements. 
 
The vertical settlements that will appear after refilling the reservoir reach values between 10 

and 20 mm. The predicted settlement will be quite similar through the depth of the dam. For the 
horizontal displacement both participants, who submitted the results didn’t predict large 
movements (less than 40 mm). 

 Comparison of the measured data to the models 
We must note that some of the submitted models were good in matching the monitored 

parameters. Anyone interested in detail, we are suggesting reading the papers submitted by the 
participants. In this chapter we are only providing the general comparison on the vertical and 
horizontal displacements and pore pressures during the operation of the dam. We can observe 
that for the vertical and horizontal displacements teams C2 calculate lover values as the 
measured ones, while team C3 calculated larger settlements and displacements as observed in 
the monitoring. The results for the pore pressures are also very interesting, for example we can 
observe that the team C4 describes the actual pore pressures.  

Figure 38.  Vertical displacements at VH5. 
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Figure 62: Horizontal displacements at VH5. 
 

Figure 63: Pore pressures at K2. 
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Figure 41.  Pores pressures at K3. 

 Earthquakes  
Only two teams performed the seismic analysis, their results are very well presented in the 

submitted papers, here we provide only some general remarks. One of the teams estimated the 
strong earthquake horizontal displacement of 2,0 m and vertical settlements 1,2 m, and the other 
estimated the horizontal displacement to be at 0,8 m. Both teams concluded that strong 
earthquake may damage the dam, but it won’t reflect in a sudden release from the water from 
the reservoir.  

 Pore pressure distribution  
In this chapter we are only demonstrating the differences in the approaches of the participants 

to the theme C. For example, on the Figure below there are 6 models showing the pore water 
pressure, which we received form the 5 participating teams. We would like to emphasize that by 
using various software and modelling assumptions the pore pressure results will be very different 
from team to team and that this will then reflect also in the computed deformations. However, 
on a large scale all models show similar behavior and us (the formulators) are not so sure we were 
able to compare them fairly, however, we observed that some models reflected better the 
measured data on the dam, while we recommend the readers to read the papers sent by the 
participants, while a lot of information remains there for the cautious reader. 

Figure 64.  Pore pressure distribution for various models. 
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 Safety factors 
 

The participants were also asked to provide us with the safety factors. Below we are 
demonstrating their results for the safety factors at the first filling and after the refilling of the 
reservoir. 

 
Figure 65.  Safety factors after the first filling of the reservoir. 

 

 
Figure 66.  Safety factors after refilling of the reservoir and after long-term full accumulation. 

 
Table 5.  Comparison of the safety factors. 

Team Case 1 Case 2 Case 3 
 upstream downstream upstream downstream upstream downstream 

C1 1,33 > 2 1,37 > 2 1,60 > 2 
C2 1,44 1,66 - - 1,42 - 
C3 1,42 (1,41) 2,19 (2,28) 1,42 2,28 (2,19) 1,20 (1,34) 1,79 (1,72) 
C4 1,67 (1,25) 2,20 (1,76) 2,10 1,75 1,25 1,77 
C5 - - - - - - 
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For safety factors of the dam after the first filling and after remediation, all safety factors are 

above 1,25 for the upstream slope and for downstream slope we could say calculations show SF 
in range 1,7. In the design documentation we also found the design SF (see Fig. below), which is 
1.7 in the downstream and 1.6 in the upstream, but in the upstream calculation it is visible that 
designer considered additional embankment which was not executed on the site.  

 

  
Figure 67.  Safety factors from the original design. 

 

10  CONCLUSIONS 

The dam investigated as part of this theme was constructed in late 80s and very limited 
information is available about the construction. All available information was provided to the 
participants. As part of the safety measures, monitoring of the dam performance is performed 
regularly, so also some valuable results were provided to the participants, which were asked to 
perform the parameter fitting based on the monitoring results, since this method is often used 
to calibrate the model.  

The results obtained were very scattered. One of the reasons for this may be in the fact that 
different material models were used. Especially the most precise models require large number of 
input parameters, so participants had to make assumptions that greatly affected the numerical 
model behaviour. Another important reason for such scattered results can be the fact that in the 
clay core with very low permeability open standpipe piezometers are installed. While they play 

Fupstream = 1.6 
 
 

 

Fdownstream = 1.7 
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crucial role in the safety monitoring, the parameter fitting based on their results is very 
challenging task since they have quite large phase lag due to the volume of the piezometers. 

Although no uniform picture about the dam behaviour, additionally to the monitoring results, 
can be obtained from the results of analyses, still an important lesson can be learned from this 
task. For the analysis of the embankment behaviour, a wide variety of very powerful 
computational models can be used, requiring a large list of input parameters which as a result 
provide colourful and very convincing results. Yet, the accuracy greatly depends on the input 
parameters and the engineering knowledge about the behaviour of the material used. Sometimes 
material models used require much greater number of input parameters that is obtained from 
the investigation. In such cases missing parameters are estimated based on the experience and 
engineering judgment. Despite taking great care in this process, this kind of parameter selection 
at the end of the day is just a good or bad guess. Therefore, although the parameters determined 
with investigation might be precise there is still enough space for making an error and 
consequently obtaining misleading results. Since the embankment dams are vulnerable 
structures with serious consequences in case of failure, all embankment dam designs shall 
undertake a revision and thorough discussion at all stages, i.e. investigation, design, construction 
and operation. 
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ABSTRACT: In the static analysis of the earth zoned dam in Slovenia, for the state of rapid filling 
of the reservoir and lowering of the level for remediation of the dam, up to the state of long-term 
maintenance at normal level, which is a pre-earthquake state, an elastoplastic model with 
variable modulus of elasticity was used, for the local materials in the dam body. The analysis was 
performed in drained conditions with effective stresses, using combined mechanical and seepage 
analysis in the time domain. Criterion for calibration of nonlinear elastic material parameters is 
the condition that the horizontal displacements in the dam crest, for the condition of the first 
filling of the reservoir, are approximately the same with the measured values, i.e. about -120 mm 
in the downstream direction. The key conclusion from the static analysis is that the embankment 
dam, with the adopted geometry and composition of materials, possesses satisfactory static 
stability. In the analysis of the dynamic response of the dam, a nonlinear model is applied 
(equivalent linear analysis with inelastic material parameters), where the local materials are 
approximated with a variable maximum shear modulus. Permanent displacements during seismic 
excitation are determined by dynamic deformation analysis, where from the difference of the 
effective stresses in two successive time steps, incremental forces are determined, which result 
in corresponding deformations. The dynamic analysis confirms the seismic resistance of the 
embankment dam in the action of a design earthquake with PGA of 0.30 g, i.e. there is no danger 
of rapid and uncontrolled reservoir emptying, because the crest settlements from dynamic 
inertial forces for the duration of the earthquake are 1.1 m, apropos are much lower than the 
height above the normal level in the reservoir till dam crest, which is 3.2 m. 
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1 MODEL OF THE DAM AND MATERIAL PARAMETERS FOR STRUCTURAL ANALYSIS 

 Basic characteristics of the analyzed dam 
The representative cross-section, the parameters of the local materials for the embankment 

dam in Slovenia and the measured values from the dam monitoring are taken from the available 
data base [1]. The earth zoned dam with a clay core was built in 1985. It is founded on a rock 
foundation of Eocene flysch, which is practically waterproof and with high stiffness. The basic 
geometric characteristics of the dam and reservoir, Figure 1, are the following: crest elevation at 
102.0 m.a.s.l., elevation of rock foundation 67.4 m.a.s.l., structural height 34.6 m, crest width 5.0 
m, elevation at normal level 98.8 m.a.s.l. and elevation at minimum level 80.0 m.a.s.l. 

 

 
Figure 1.  Representative cross-section of the earth dam. 

 Basic geomechanical parameters of the materials 
The basic geomechanical parameters of the local materials are systematized in Table 1. The 

values from the available database are with a yellow background, and the other values are 
determined or assumed, according to the description of the materials. 

 
Table 1. Material parameters.  

Zone   A1 A2 B C D Comment  

dam 
structure   

top of 
dam core 

upstrea
m part 

downst
ream 
part 

bedrock   

material   
gravel, 

silt 
clayey 

silt 
rockfill 

rockfill 
and 
sand 

Flysch  

γspec kN/m3 21.0 19.5 24.0 24.0 25.0 specific unit weight 

γdry kN/m3 16.4 12.8 21.0 20.0 24.0 dry unit weight 

n   0.219 0.344 0.125 0.167 0.040 void 

e   0.280 0.523 0.143 0.200 0.042 void ratio 

ωsat % 13.1 26.3 5.8 8.2 1.6 saturated wetness 

ω < ωsat % 13.0 26.0 3.0 7.0 1.5 natural wetness 

γsat kN/m3 18.5 16.2 22.2 21.6 24.4 saturated unit weight 

γ kN/m3 18.5 16.1 21.6 21.4 24.4 natural unit weight 

φ o 36.0 0.0 38.0 38.0 39.0 angle if internal friction 

c or cu kN/m2 36.0 75.0 0.0 0.0 32.0 cohesion 

k_s m/s 1.0E-06 
1.00E-

09 
1.0E-03 1.0E-04 1.0E-09 

coefficient of 
permeability - secondly 
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k_d m/d 8.6E-02 8.6E-05 
8.6E+0

1 
8.6E+0

0 
8.6E-05 

coefficient of 
permeability - daily 

Ko(φ)    0.41 1.00 0.38 0.38 0.37 
at-rest earth pressure 
coefficient 

ν(Ko)    0.29 0.50 0.28 0.28 0.27 Poisson coefficient 

ν   0.35 0.45 0.30 0.30 0.25 Poisson coefficient 

Mv  kN/m2 15,000 5,000 50,000 50,000  
modulus of 
compressibility 

mv   
6.67E-

05 
2.00E-

04 
2.00E-

05 
2.00E-

05  
coefficient of 
compressibility 

E  kN/m2 9,346 1,318 37,143 37,143 620,000 Young's modulus of 
elasticity 

 Mathematical model of the dam 
In the mathematical model for simulating the behavior of the earth dam during the filling of 

the reservoir and the earthquake action, Figure 2, four different local materials are provided in 
the body of the dam, while the rock foundation at the base below the dam is adopted as non-
deformable zone (due to the large difference in the stiffness properties) and also waterproof (due 
to the low coefficient of permeability). The justification for such approximation is confirmed by 
comparing models with and without rock foundation, for the state of reservoir filling, whereby a 
negligible difference in the state of stresses and deformations in the dam body is ascertained. 
Therefore, in order to avoid the bulkiness of the numerical model and the possible negative 
impact in the numerical experiments, all further analyzes are conveyed with a mathematical 
model where the rock foundation is not included. 

 

 
Figure 2.  Mathematical model of the dam, discretized with 1,229 nodes и 1,147 elements. 

2 SIMULATION OF DAM BEHAVIOR IN EXPOLOITATION PERIOD 

 Stages of earth dam loading 
The behavior of the dam in the service period is simulated with a mathematical model in real 

time domain, appropriate to the measured values from the technical monitoring. This ensures 
that the initial load state in the current load state is taken over from the previous stress state. 
The analyzes were performed using the effective stresses, apropos by tracking the increase and 
dissipation of the pore pressure with a coupled mechanical and hydraulic response with non-
steady seepage in drained conditions. 

The loading stages of the earth dam are systematized in Table 2. The monitoring of the dam 
behavior is simulated in a period of 33.54 years, from the beginning of the first filling of the 
reservoir, until the state of long-term maintenance at a normal level. 
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Table 2. Stages of loading of the earth dam. 

Stage 
No. 

description from 
 

to 
 

dZ Dt dZ/Dt Dt 

  
m asl yyyy-

mm-dd 
masl yyyy-

mm-dd 
m days m/d years 

1 first filling 81.84 1988-
04-25 

98.34 1990-
04-17 

16.50 722 0.023 1.977 

2 to normal 
level 

98.34 1990-
04-17 

98.80 1990-
04-27 

0.46 10 0.046 0.027 

3 normal level 98.80 1990-
04-27 

98.80 2008-
01-01 

0.00 6,458 0.000 17.68
1 

4 to emergency 
level 

98.80 2008-
01-01 

92.00 2008-
05-17 

-6.80 137 -0.050 0.375 

5 emergency 
level 

92.00 2008-
05-17 

92.00 2018-
05-17 

0.00 3,652 0.000 9.999 

6 to remediation 
level 

92.00 2018-
05-17 

82.00 2018-
12-06 

-10.00 203 -0.049 0.556 

7 remediation 
level 

82.00 2018-
12-06 

82.00 2019-
12-06 

0.00 365 0.000 0.999 

8 to normal 
level 

82.00 2018-
12-06 

98.80 2019-
11-08 

16.80 337 0.050 0.923 

9 normal level 98.80 2019-
11-08 

98.80 2020-
11-07 

0.00 365 0.000 0.999 

10 earthquake 98.80 2020-
11-07 

98.80 
  

12,249 
 

33.54 

 Initial stress state prior to the first filling 
The data from the monitoring of the dam are given for the first filling of the reservoir from 

elevation 81.84 m. Therefore, the initial stress state is determined for steady seepage through 
the dam for water level elevation dam at 81.84 m.a.s.l., Figure 3, by application of Seep/W 
program [2]. For this state of seepage pore pressure, the distribution of effective stresses in the 
dam body is determined, Figure 4, by application of Sigma/W program [3]. The coefficient of slope 
stability of the upstream slope is calculated with the realized stresses by application of program 
Slope/W [4] and is F = 1.33, apropos it is greater than the required 1.3, for temporary load. 

 

 
Figure 3.  Initial state prior to the filling of the reservoir, distribution of pore pressure for steady seepage. 
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Figure 4.  Initial state prior to the filling of the reservoir, distribution of vertical effective stress with 
coefficient of slope stability on the upstream slope F=1.33. 

 First filling of the reservoir and calibration of nonlinear material parameters 
The first filling (or Stage 1) is simulated in 722 linear increments over a period of 722 days, 

according to the dynamics of the registered values from the technical monitoring, Figure 5. 
 

 
Figure 5.  Dynamics of first filling of the reservoir, in m asl. 

 
In the static analysis, for the local materials in the dam body, an elastoplastic model with 

variable modulus of elasticity E = E (σy ’), Figure 6, with calibrated elastic parameters, is applied. 
Criterion for calibration is the condition that the horizontal displacements in the dam crest, for 
the state of the first filling of the reservoir, to be approximately same with the measured values, 
figure 7, i.e. about -120 mm in the downstream direction. 

 

 
Figure 6.  Calibrated values for variable elasticity modulus Е=Е(σy’) for the local materials in the dam body. 

   150   

   200      400   

   4
50

   

   4
00

   

   
45

0  
 

1.333

Distance m
-10 10 30 50 70 90 110 130 150 170 190 210 230 250

El
ev

at
io

n 
m

 a
sl

40

50

60

70

80

90

100

110

Y-Effective Stress

≤ 0 - 50 kPa
50 - 100 kPa
100 - 150 kPa
150 - 200 kPa
200 - 250 kPa
250 - 300 kPa
300 - 350 kPa
350 - 400 kPa
400 - 450 kPa
450 - 500 kPa
500 - 550 kPa
550 - 600 kPa
≥ 600 kPa

A1

A2

B

C

E
ffe

ct
iv

e 
E

-M
od

ul
us

 (k
Pa

)

Y-Effective Stress (kPa)

0

20,000

40,000

60,000

80,000

100,000

120,000

0 100 200 300 400 500 600 700 800



Petkovski, Mitovski, Panovska  
BEHAVIOUR OF EARTH DAM DURING RESERVOIR FILLING AND EARTHQUAKE ACTION, DAM IN SLOVENIA 

367 
 

 
Figure 7.  Comparison of calculated and measured horizontal displacements in mm (- downstream 
direction), in the dam crest (measuring point V5) during the first filling of the reservoir. 

 
In all materials for construction of embankment dams, there is a dependence between 

stresses, deformations and time. That is, the materials show viscous behavior, and long-term 
loads on the viscous materials cause significant deformations called "creep" of the material. 
Figure 7 also shows the secondary horizontal displacements calculated by method of Dyck (1961). 
The following expression is used to calculate the secondary displacements at the embankment 
dams after the construction of the dam and the filling of the reservoir: 

𝑊𝑊 = εtH
100

  (1) 

𝜀𝜀𝑡𝑡 = 𝜀𝜀𝑎𝑎 + 𝛼𝛼 ln 𝑡𝑡  (2) 

Whereas, (W) is displacement in meters, (t) past period in years, (H) is height of dam above 
terrain, and coefficients (εo) and (α) depend on the type of dam and type of displacement. 

Horizontal secondary displacements in the direction of the action of hydrostatic pressure are 
correlated with settlements caused by creep and, according to some authors, their value is about 
50% of vertical displacements. Thus, if the mechanical response with the FEM and the empirical 
concept obtained horizontal displacements in the downstream direction of about 120 mm, the 
vertical settlement would be approximately 240 mm. For the values of the vertical rising in the 
crest obtained by the mechanical response with FEM of +150 mm, Figure 8, summed with the 
vertical creep settlement of -240 mm, we obtain approximately -90 mm, i.e. approximately to the 
measured settlement of around -100 mm. 

 

 
Figure 8.  Comparison of calculated and measured vertical displacements in mm (+ elevation, - settlement), 
in the dam crest (measuring point V5) during the first charge of the reservoir. 
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 Variation of the water level in the reservoir 
The dam states during the variations of the water level in the reservoir from stage 2 to stage 9 

(Table 2) are simulated in the time domain of the following numerical experiments: 
• Stage 2, raising to normal level with 10 linear increments over a period of 10 days; 
• Stage 3 maintenance of normal level with 60 exponential increments over a period of 6,458 

days; 
• Stage 4 lowering to emergency level with 20 linear increments in a period of 137 days; 
• Stage 5 maintenance of emergency level with 30 exponential increments in a period of 

3,652 days; 
• Stage 6 lowering to remediation level with 30 linear increments over a period of 203 days; 
• Stage 7 maintenance of remediation level with 15 exponential increments for a period of 

365 days; 
• Stage 8, raising to normal level with 30 linear increments over a period of 337 days and 
• Stage 9 maintenance at a normal level with 15 exponential increments over a period of 365 

days. 
 

The comparison of the estimated (with FEM model and empirical) and the measured horizontal 
and vertical displacements in the dam crest are shown in Figures 9 and 10. 

 

 
Figure 9.  Comparison of calculated and measured horizontal displacements in mm (- downstream), in the 
dam crest (measuring point V5), during Stage 1 to Stage 9. 

 

 
Figure 10.  Comparison of calculated and measured vertical displacements in mm (+ elevation, - settlement), 
in the dam crest (measuring point V5), during Stage 1 to Stage 9. 
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By extrapolating the displacements in the crest until 2027, under the proper behavior of the 
dam, a horizontal downstream displacement of 300 mm and a settlement of approximately 300 
mm can be treated. 

The stress state in the final stage or stage 9, Figure 11, is the initial pre-earthquake state. The 
coefficient of slope stability of the upstream slope is calculated with the realized stresses with 
value of F = 1.6, i.e. it is greater than the required 1.5, for permanent load. 

 

 
Figure 11.  Initial state before earthquake action, distribution of vertical effective stresses, with coefficient of 
slope stability of the upstream slope F = 1.6. 

3 DYNAMIC RESPONSE OF THE DAM 

 Dynamic material parameters and model for permanent displacements 
In the dynamic analysis, a nonlinear model with variable maximum shear modulus is applied for 
the materials in the dam body, Figure 12. Dynamic analysis is performed with equivalent linear 
analysis (ELA) with inelastic dynamic parameters of local materials, Figures 13 and 14. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12.  Variable maximum shear modulus Gmax = G (σy’) for local materials in the dam body. 
 
 
 
 
 
 

   100   

   150   

   
35

0 
  

   400   

   350   

   400   

1.600

Distance m
-10 10 30 50 70 90 110 130 150 170 190 210 230 250

El
ev

at
io

n 
m

 a
sl

40

50

60

70

80

90

100

110

Y-Effective Stress

≤ -50 - 0 kPa
0 - 50 kPa
50 - 100 kPa
100 - 150 kPa
150 - 200 kPa
200 - 250 kPa
250 - 300 kPa
300 - 350 kPa
350 - 400 kPa
400 - 450 kPa
450 - 500 kPa
500 - 550 kPa
550 - 600 kPa
≥ 600 kPa



Petkovski, Mitovski, Panovska  
BEHAVIOUR OF EARTH DAM DURING RESERVOIR FILLING AND EARTHQUAKE ACTION, DAM IN SLOVENIA 

370 
 

Figure 13.  Reduction of the shear modulus with increase of tangential strains for local materials using an 
equivalent linear model. 

Figure 14.  Increase in damping coefficient with increase in tangential strains for local materials using an 
equivalent linear model. 

 
The approach applied in the present analysis for determination of the permanent deformations 

during the seismic excitation, for any node within the fill dam, is the method of "Dynamic 
Deformation Analysis" (DDA), which is successive non-linear redistribution of the stresses [2]. By 
such method, for geo-medium discretized by finite elements, are calculated deformations caused 
by forces in nodes, calculated by the incremental stresses in the elements. Thus, by application 
of non-linear model, for each time step of the dynamic response of the structure [6] is obtained 
new state of the total stresses and pore pressure. By the differences of the effective stresses in 
two successive time steps are obtained incremental forces, resulting in deformations, in 
accordance with the chosen constitutive law for dependence stress - strain. So, for each loading 
case during the dam’s dynamic response are produced elastic and eventual plastic strains. If 
dynamic inertial forces cause plastic strains, then in the geo-medium will occur permanent 
deformations. The permanent displacements, at any point in the dam and at the end of the 
seismic excitation, are cumulative sum of the plastic deformations. 

 Eigen periods of the dam 
To determine the eigen periods for a certain level of inelastic response of the embankment 

dam, a dynamic excitation of synthetic harmonic vibration with continuous change of frequencies 
was used, i.e. with evenly represented frequencies in the interval f1 ÷ f2 = 0.4 ÷ 10.0 [H1] = 2.5 ÷ 
0.1 [s]. This harmonic has a maximum amplitude Ao = 0.001 g, a total duration St = 12 [s], a time 
increment in the accelerometer dt = 0.01 [s], Figure 15. Spectra of excitation response and 
response, spectral acceleration Sa [g] for damping coefficient DR = 0.05, is given in Figure 16 for 
full reservoir. The dynamic response of the dam is determined using the Quake / W program [3]. 
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Figure 15.  Time history of horizontal accelerations of harmonic vibration with evenly represented 
frequencies f1 ÷ f2 = 0.4 ÷ 10.0 [Hz], scaled with Ao = 0.001 g. 

 
Figure 16.  Response spectrum of absolute accelerations in the crest of the dam at full reservoir, caused by 
harmonic oscillation with low intensity PGA=0.001 g, with eigen periods T1=0.35 s, T2=0.19 s, T3=0.11 s. 

 Seismology parameters of a strong earthquake 
As a basis for generating accelerogram for synthetic earthquake, design spectra are adopted - 

spectra of elastic response to normalized accelerations from design earthquakes. In the analysis, 
the design spectra according to the Eurocodes (Eurocode 8, 2003) were used, for type A base for 
horizontal and type 1 for vertical component. Accelerogram of the horizontal and vertical 
components of a strong earthquake are given in Figures 17 and 18. 

 

 
Figure 17.  Time history of the horizontal excitation component in the rock foundation for a strong 
earthquake, PGAx = 0.3 g. 
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Figure 18.  Time history of the vertical excitation component in a rock foundation for a strong earthquake, 
PGAy = 0.2 g. 

 Dam response during a strong earthquake 
The horizontal accelerations in the dam crest at occurrence of a strong earthquake are given 

in Figure 19, and the response spectrum of the accelerations is given in Figure 20. 
 

 
Figure 19.  Time history of the horizontal component of the response in the crest of the dam with PCE = 
0.671 g, under the action of a strong earthquake with PGA = 0.3 g. 
 

 
Figure 20.  Response spectrum for the accelerations in the base and in the crest of the dam (with T1 = 0.55 
s) during the action of a strong earthquake. 
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The relative displacements in the crest of the dam during the action of this earthquake are 
given in Figure 21. 

 

 
Figure 21.  Time history of relative horizontal displacements in the dam crest during a strong earthquake. 

 
The realization of the permanent horizontal and vertical displacements in the crest of the dam 

during the action of this earthquake are given in Figures 22 and 23, and after the action of the 
earthquake the permanent XY displacements in the body of the dam are given in Figure 24. 

 

 
Figure 22.  Permanent horizontal displacements in the dam crest (measuring point V5) during a strong 
earthquake. 
 

 
Figure 23.  Permanent vertical displacements in the dam crest (measuring point V5) during a strong 
earthquake. 
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Figure 24.  Permanent XY displacements in the dam after the action of a strong earthquake, XYmax=2.3 m. 
 

4 CONCLUSION 

The behavior of the dam during the filling of the reservoir, during the variation of the levels in 
the reservoir in the service period, and during the seismic excitation is simulated with only one 
model for structural analysis [6]. This ensures the transfer of the stress state in the analysis, as 
the initial state for each subsequent load case. The analyzes were performed using the effective 
stresses, i.e. by simulating of the increase and dissipation of the pore pressure in the drained 
conditions, with a coupled mechanical and hydraulic response with non-steady seepage. 

In the static analysis, for the local materials in the body of the dam, an elastoplastic model with 
variable modulus of elasticity is applied, with calibrated elastic parameters. Criterion for 
calibration is the horizontal displacements in the crest of the dam, for the condition of the first 
filling of the reservoir, to be approximately the same with the measured values, i.e. about -120 
mm in the downstream direction. 

By extrapolating the displacements in the crest by 2027, under the proper behavior of the dam, 
a horizontal downstream displacement of 300 mm and a settlement of approximately 300 mm 
can be treated.  

The stability of the dam is analyzed through the coefficient of slope stability (F) with the 
realized stresses, determined by the FEM model. The determination of coefficient F is performed 
only for the upstream slope, because with the adopted geometry and layout of the materials, it 
is obvious that the downstream slope has F>2 for any load case. For the initial condition before 
the first filling is obtained F = 1.33> 1.3, required for temporary load. For the state of full reservoir 
is obtained F = 1.6> 1.5, required for permanent load. For the condition of rapid drawdown of the 
level to remediation elevation (82.0 m.a.s.l.), by applying the Limit Equilibrium Method, a safety 
coefficient Kc = 1.373> 1.3, required for temporary load, is obtained. For this state, we emphasize 
that due to the high normal stresses (generated by the hydrostatic load during filling), the safety 
coefficient F calculated with the realized stresses is extremely higher. The key conclusion from 
the static analysis is that the embankment dam, with the adopted geometry and composition of 
the materials, possesses satisfactory static stability. 

The dam's Eigen Periods are determined by the response spectrum when it is excited by 
harmonic vibration, with equal frequencies from 0.4 to 10.0 Hz, for the initial stress state at full 
reservoir. For low excitation intensity with PGA = 0.001 g, eigen periods T1 = 0.35 s, T2 = 0.19 s, 
T3 = 0.11 s are obtained. For higher excitation in a strong earthquake with PGA = 0.3 g the 
response of the embankment dam is nonlinear, the stiffness of the local materials decreases with 
the increased inelastic deformations, which causes an increase of the period of the eigen tone T1 
= 0.55 s [7]. The values for the base tone (T1), determined in the analysis, match the measured 
values for dams exposed to strong earthquakes in Japan [8,9], which is the best confirmation of 
the correctness of the adopted dynamic material parameters for nonlinear dynamic analysis. 

The values for Dynamic Amplification Factor, where DAF = PCA / PGA, where PGA - Peak Ground 
Acceleration (in the horizontal direction), and PCA e Peak Crest Acceleration in the horizontal 
direction) are: 0.671 / 0.3 = 2.24 for a strong earthquake. The response in the crest of the dam 
corresponds to the registered data on the degree of dynamic amplification of this type of 
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structures under the action of strong earthquakes, [10] and the time history of relative 
displacements are the key indicator for the correctness of the dynamic analysis. 

The permanent settlements in the dam crest, caused by the dynamic inertial forces for the 
duration of the earthquake, determined by the method of Dynamic Deformation Analysis (DDA), 
is Y = - 1.1 m for a strong earthquake. Regardless of the fact that the subject analysis does not 
take into account the settlements from additional compaction and reduced stiffness of materials 
exposed to cyclic action, the total settlement cannot exceed the height of the dam crest (102 
m.a.s.l.) to the normal level in the reservoir (98.8 m.a.s.l.). 

The key conclusion from the dynamic analysis is that the embankment dam, with the adopted 
geometry and layout of the materials, has satisfactory seismic resistance. That is, there is no 
violation of the water resistance of the waterproof body (wide clay core), nor is there a danger of 
rapid and uncontrolled emptying of artificial lake, because the settlement during the design 
earthquake with PGA 0.3 g does not overcome the protective height of 3.2 m. 
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ABSTRACT: The publication deals with an embankment dam located in Slovenia, which was 
constructed and impounded at the end of the 1980’s. The dam is a zoned rockfill dam with a clay 
core, with a height of almost 35 m and crest elevation at 102 m asl (Fig. 1). The earthfill core 
extends to the downstream face in the upper part of the dam. The upstream and downstream 
dam shells mainly consist of rockfill. The dam is based on a mainly impermeable foundation, which 
was grouted as needed. An irrigation pipeline and two bottom outlet pipelines are leading 
through the embankment dam in its central part, close to the foundation. The pipelines corroded 
during the years and got leaky, leading to water infiltration from the reservoir into the dam body. 
A wet spot and surface water at the downstream dam face was noticed in 2007, after about 20 
years of operation. As a consequence, the operating level of the reservoir was lowered in several 
steps and the irrigation pipe was sealed. Currently, the reservoir is completely empty and the 
bottom outlet pipes are getting sealed. This publication deals with the numerical modelling of the 
dam, covering the entire period from dam construction until today, including the pipe leakages 
and the remediation measures. A fully coupled 3D finite element (FE) model is developed and 
calibrated on the basis of monitoring data (geodetic settlement points and piezometers). The 
stability of the dam is calculated at various moments in time. A hypothetical scenario without 
reservoir lowering is also investigated, and a prognosis is made for reservoir refilling (envisaged 
for 2023). The analysis is a contribution to the 16th International Benchmark Workshop on 
Numerical Analysis of Dams. 
 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 1.  Downstream and upstream face of the embankment dam. 
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1 INTRODUCTION 

This publication is a contribution to the 16th International Benchmark Workshop on Numerical 
Analysis of Dams, which is organised by the ICOLD Committee A on “Computational Aspects of 
Analysis and Design of Dams”. It covers Theme C “Behaviour of the Embankment Dam”, 
formulated by the Slovenian National Building and Civil Engineering Institute, Geoportal d.o.o., 
Elea iC d.o.o. and the University of Ljubljana, Faculty of Civil and Geodetic Engineering (Žvanut et 
al., 2021). Theme C comprises 4 cases, each case consisting of 1 to 3 tasks. 

2 BASIC INFORMATION ON THE DAM 

 Purpose and operation 
The dam was built in the late 1980’s for agricultural purposes (irrigation) and flood protection. 

Operated in a seasonal pattern (usually filled during winter times when the river discharges are 
high), the reservoir provides seasonal storage with a total volume of 8.0 million m3. About 6.8 
million m3 or 84.5% of the reservoir volume is used for irrigation during the spring and summer 
months, while the remaining 1.2 million m3 or 15.5% is reserved for flood water retention. 

Dam design, geometry and material parameters 
The dam has a height of almost 35 m with the crest elevation at 102 m asl, while the crest 

width is 5 m. Slope inclinations are 1V:2H upstream between four berms, and 1V:1.5H 
downstream between three berms. The normal reservoir operating level is at 98.8 m asl. The 
salient features and the main elevations of dam and reservoir are summarised in Table 1. 

The dam is a zoned rockfill dam with clay core. A typical cross-section of the dam is shown in 
Fig. 2, while the provided material properties are summarized in Table 2. The earthfill core (zone 
A) extends to the downstream face in the upper part of the dam, entirely covering the 
downstream face. The upstream embankment dam body mainly consists of rockfill material (zone 
B). The lower part of the downstream embankment dam body consists of a mix of limestone and 
sandstone blocks. Two filter layers (zone E) are located between the earthfill core (zone A) and 
the rockfill zones B and C. No information regarding the filter material parameters is provided. 
The very top portion of the dam (i.e., the upper 3 m at the dam crest) consists of dolomite gravel 
mixed with silt or clay (also named zone A’ in Table 2).  

The dam is founded on Eocene flysch. The material was assumed to be impermeable, but 
during construction zones with permeable limestone deposits were encountered. The permeable 
zones were grouted with a single-row grout curtain down to an elevation of 34 m asl, resulting to 
a depth of 68 m. 

 
 

 
 
 

 
 
 
 
 

 
Figure 2.  Typical cross-section of the dam with piezometers K2 and K3: (1) intake tower and (2) intake 
structure at the upstream dam toe, and (3) the two bottom outlet pipes and (4) the irrigation pipeline 
along the dam foundation. 
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Table 1. Main elevations and salient features of the dam. 
 

Dam crest 102.0 m asl 
(5) Maximal reservoir level 100.5 m asl 
(7) Normal operating level 98.8 m asl 
(8) Lowered operating level 92.0 m asl 
(6) Minimal operating level 80.0 m asl 
(3) Dam foundation 67.4 m asl 
Dam height 34.6 m 
Crest width 5 m 
Base width 120 m 
Crest length 174 m 

 
Table 2. Material parameters provided by the theme formulators. 
 

Zone A A' B C D 

Description Clayey silt 
to silty 

clay 

Top layer of the dam (top 3 m 
from the crest) dolomite gravel 

mixed with silt or clay 

Rockfill 
(limeston
e blocks) 

Blocks of 
limestone 

and 
sandstone 

Flysch 

w [%] 26 13 / / / 
γ [kN/m3] 19.5 21 24 24 25 
cu [kPa] 75 / / / / 

φ [°] / 36 38 38 39 
c [kPa] / 36 / / 32 
Eoed [MPa] 5 15 50 50 / 

E [MPa] / / / / 620 
v [-] 0.5 0.4 0.3 0.3 0.25 
k [m/s] 10-9 10-6 10-3 10-4 10-9 

 Appurtenant structures 
The bottom outlet consists of two steel pipes, each 1.2 m in diameter. The intake of the bottom 

outlet at the upstream dam toe and its alignment are shown in Figs. 2 and 3, respectively. Each 
of the bottom outlet pipes is regulated with a Howell-Bunger valve, located at the downstream 
dam toe. Thus, the pipes are always filled with water and are always under pressure. The bottom 
outlet pipes are protected with a concrete cover. In addition there is an intake tower at the 
upstream dam toe (Fig. 2), which serves for water withdrawal for irrigation purpose. The 
discharge through the irrigation pipe is controlled by the four hydraulic gates of the intake tower. 
The alignment of the steel pipeline is shown in Fig. 3. Designed to evacuate a design flood with a 
return period of 1,000 years, the emergency spillway is located at the right abutment.  

3 OPERATION PERIOD 

 Construction and first filling of the reservoir 
The dam was constructed in a period of about 1 year. No additional information is provided 

regarding the construction sequence and the specific timeline. First filling of the reservoir started 
in April 1988 at elevation 81.84 m asl. It was carried out with an average increment water level 
raise of 2.3 cm/day. After a period of about two years, the reservoir level reached about 98.5 m 
asl. The reservoir filling from the base (67.4 m asl) to the elevation of 81.84 m asl is not reported. 
In an effort to visualise and unify the time history of dam construction, its height and the recorded 
reservoir level, along with other milestones are illustrated in Fig. 4. 
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 Incident in 2007 
After about 20 years of operation, on the 27th of October 2007, a wet spot was noticed at the 

downstream toe in the central part of the dam (Fig. 3). Extensive vegetation on the central part 
of the embankment dam indicated that the humid zone extends to the downstream slope above 
the wet spot. Furthermore, surface water was observed at the downstream toe of the dam, 
between the stilling basin of the spillway and the outlet structure of the bottom outlet. 

Investigations revealed that the water originated from the reservoir. The steel pipe of the 
irrigation pipeline was corroded, having holes ranging from a few centimetres to a few decimetres 
in diameter. The holes enable water to flow into the layer between the concrete cover and the 
steel pipe. Although the irrigation pipeline was emptied, the wet zone remained. 

Further investigations revealed that the bottom outlet pipes had suffered similar damage than 
the irrigation pipeline, confirming that the seepage discharge at the downstream dam toe 
originated also from the two bottom outlet pipes. 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 3. (a) Layout plan of the dam with appurtenant structures; (b) location of the geodetic points VH5, 
VH10, VH14 and VH16; (c) location of the piezometers K2 and K3; and (d) location of the wet stain. 

 Remediation works, lowering and refilling of the reservoir 
In 2008, the reservoir level was lowered to a maximum elevation of 93.6 m asl and the irrigation 

pipeline was filled with concrete (Fig. 4, I). The space between the irrigation pipeline and the 
concrete cover was grouted with cement. After this emergency remediation, the reservoir 
operational level was further lowered to elevation 92.0 m asl. The reservoir operated under the 
lowered condition for more than 10 years (Fig. 4, II). Reservoir levels are provided until 
30.10.2020 (with a general resolution in the range of one to several days). 

Currently the reservoir is completely emptied and remediation works are underway (Fig. 4, III). 
As part of the remediation, the bottom outlet pipes will be sealed with concrete filling. A new 
outlet building and outlet tunnel will be constructed in the left abutment. After the completion 
of the remediation works, the refilling of the reservoir from 82 m asl to 98.8 m asl is envisaged 
for 2023. The refilling is foreseen with a continuous reservoir level raise of 5 cm/day, 
corresponding to a filling period of 337 days (Fig. 4, IV). 

 
 



Kassas, Anastasopoulos, Ehlers 
BEHAVIOUR OF THE EMBANKMENT DAM, THEME C OF THE 16TH INTERNATIONAL BENCHMARK WORKSHOP  

ON NUMERICAL ANALYSIS OF DAMS 
 

380 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.  Dam height, recorded and modelled reservoir level. 

 Monitoring instruments and provided monitoring data 
For dam surveillance, visual inspections are carried out in regular intervals. In addition, the 

behaviour of the dam is monitored with instruments. Displacements are recorded at Geodetic 
points VH5, VH10, VH14 and VH16 (Fig. 3). Furthermore, two piezometers record the piezometric 
head (Figs. 2, 3). The recorded displacements are illustrated in Fig. 5, while the sign convention 
can be found in Fig 2. The first day of dam construction is considered as time equal to zero. It is 
worth noting that in the horizontal direction, the dam is deformed towards the upstream shell 
(Fig. 5b).   

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
Figure 5.  Monitoring data: (a) Settlement; and (b) horizontal displacement measured at the geodetic 
points VH5, VH10, VH14 and VH16. 
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4 NUMERICAL MODELLING 

The problem is analyzed through coupled hydromechanical numerical analysis, employing the 
FE code PLAXIS3D, version 2017.1.0.0 (Plaxis, 2019). A 50 m slice of the dam is modelled, as shown 
in Fig. 6. Since the geometric characteristics and the material properties of the filter layers (E) are 
not provided, they are not considered in the numerical analysis. Nevertheless, their influence is 
not expected to affect significantly the results. Furthermore, the bottom outlet and irrigation 
pipelines and the related intake structures are also not modelled. The recorded variation of the 
reservoir level with time is considered as shown in Fig. 4. In the absence of detailed information 
regarding the construction sequence of the dam, its construction is modelled in 7 steps to get 
accurate stress conditions within the dam body. After each step, a consolidation analysis is 
conducted allowing for excess pore pressures dissipation. Overall, the construction is modelled 
to last 365 days, while the reservoir is considered empty.  

 
 
 
 
 
 
 
 
 
 
 

 
Figure 6.  Outline of the numerical model. 

 Constitutive models and material parameters 
 

The foundation layer is modelled with an elasto-plastic Mohr-Coulomb (MC) model. This is a 
simplification with negligible influence on the analyses results, as the stiffness of this layer is one 
order of magnitude larger than that of the dam zones. 

For the dam zones, the Hardening Soil Small Strain Model was used (HS-small). The model 
realistically reproduces soil deformations, with a hyperbolic 𝜎𝜎 − 𝜀𝜀 relation, accounting for the 
dependence of stiffness on confining stresses and loading history. Moreover, as the formulation 
of the HS-small model incorporates two hardening mechanisms, it is suitable for modelling both 
domination of shear plastic strains, which can be observed in granular soils and in over-
consolidated cohesive soils, as well as domination of compressive plastic strains, which is typical 
for soft soils. However, the model cannot capture strain softening, which can be significant for 
the core material. Finally, the model accounts for the increased stiffness at small strain amplitude. 
More details on the model can be found in Schanz et al. (1999) and Brinkgreve et al. (2014). 

Such constitutive models (as HS-small) can capture some of the key aspects of complex soil 
response, but require well-documented and reliable experimental data (preferably element tests) 
for model calibration. In the absence of such data (as is the case here), material parameters can 
only be estimated through back analysis, using the recorded displacements and pore pressures. 
However, this is not a trivial task, as the displacements are affected from both stiffness and 
strength parameters, and from the permeability. To that end, the given material parameters 
(Table 2) were adopted for the dam foundation and the rockfills, while the stiffness of the core 
material (Zone A) was estimated from back-analysis, based on the measured dam settlements 
during the first filling of the reservoir (Fig. 9). The estimated material parameters are shown in 
Table 3. 

Based on the aforementioned lack of construction history and material behavior, the following 
results can be seen as a conceptual simplification of the problem, and not an accurate 
reproduction of the dam case history. 
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Table 3. Adopted material parameters of the numerical model. 

Zone A A' B C D 

Model HSsmall HSsmall HSsmall HSsmall MC 

γunsat [kN/m3] 19,5 21 24 24 25 
γsat [kN/m3] 20,9 21,9 24.9 24.9 25 
φ [°] 20 36 38 38 39 

ψ [°] 0 2 3 3 0 
c [kPa] 35 36 1 1 32 
E50

ref [MPa] 6 15 50 50 
 

Eoed
ref [MPa] 5 15 50 50  

Eur
ref [MPa] 12 30 100 100  

m [-] 1 0.5 0.5 0.5  

γ0.7 [-] 2·10-4 2·10-4 2·10-4 2·10-4  
G0.7

ref [MPa] 24 30 100 100  
k [m/s] 10-9 10-6 10-3 10-4 10-9 

 Initial state and stability analysis (0-365 days) 
As shown in the contours of maximum total displacement (𝑢𝑢) at the end of the dam 

construction (365 days) of Figure 7a, the maximum u reached 1.2 m. The latter includes the 
consolidation settlement, originating from the dissipation of excess pore water pressures (𝑒𝑒) (Fig. 
7b) during the construction period, which is compensated by the addition of material required 
for the targeted dam height to be achieved. Figures 7b and 7c illustrate the critical failure planes 
corresponding to the minimum factor of safety (FS) for the upstream and the downstream faces, 
respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7. (a) Total displacements (𝑢𝑢) after the construction of the dam (365 days); (b) pore pressures (𝑒𝑒) 
after the construction of the dam; (c) and (d) critical failure planes and factors of safety for the 
downstream and upstream faces, respectively. 

 First fill of the reservoir (365 – 1460 days) 
The first filling of the reservoir was modelled according to the provided data (Fig. 4). For the 

period between days 365 and 730, for which no data was provided, it is assumed that the 
reservoir level was increasing with an average increment of 2.3 cm /day, similar to the recorded 
data (730-1460 days). 
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Figure 8a depicts the total displacement at the end of the first filling (1460th day / 4th year), due 
to the mechanical loading from the water pressure and the consolidation of the core material 
(zone A). Figure 8b illustrates the pore water pressures. It can be seen that the excess pore 
pressures at the base of the core have been dissipated. 

The numerical model was calibrated on the basis of settlement measurements (geodetic points 
VH5, VH10, VH14 and VH16) during the 3 years of the first reservoir filling. The adequacy of the 
settlement calibration is illustrated in Fig. 9, which compares the calculated to the measured 
settlement (deformation in direction 𝑚𝑚). In general, the numerical prediction is reasonable for 
geodetic points VH5 and VH10, which correspond to the higher part of the dam. For geodetic 
points VH14 and VH16, which are located closer at the dam toe, above the stiff zone C (blocks of 
limestone and sandstone), the monitored deformations cannot be reproduced. 

For all geodetic points, positive horizontal displacement towards the upstream shell of the dam 
was recorded, despite the direction of the mechanical loading from the reservoir, the shear stress 
direction and the stiffness asymmetry of the dam (upstream shell is stiffer than the downstream 
shell). The numerical model does not reproduce the horizontal displacements, which are 
calculated positive towards the downstream shell for all the cases. 
 

 
 
 
 
 
 
 
 

 
Figure 8. (a) Total displacements (𝑢𝑢) after the construction of the dam (365 days); (b) pore pressures (𝑒𝑒) 
after the construction of the dam. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 9. Model calibration: Numerically-predicted compared to measured settlement. 

 The appearance of the wet zone (1461-7851 days) 
The wet spot is a result of pipeline leakage. In the numerical model, the leakage discharge is 

modelled as a constant discharge of water infiltrating from the well (leaking pipeline) into the 
dam body, illustrated in Fig. 6 with a blue line. The wet spot was observed on 24/10/2007 (7851th 
day). The time initiation of the leakage and the corresponding flow is unknown. To that end, it 
was assumed that the pipe leakage started on the 5000th day, while the water volume leaked per 
day (𝑞𝑞) was in the range of 0.1 to 1.5 m3/day. 

 Figure 10a compares the predicted piezometric head at K3 to the corresponding monitoring 
results (red line). The black line shows the piezometric head for 𝑞𝑞 = 0 m3/day. The piezometric 
head is under-predicted by 1 m, and the same applies to its evolution with time. To that end, the 
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calculation was repeated for a higher core permeability equal to 𝑘𝑘 = 4·10-9 m/s (Fig. 10b). In this 
case, the piezometric head inclination is better predicted, indicating that the core permeability 
may actually be higher than the value considered. 

The pipeline leakage leads to an increase of the piezometric head in the dam body (zone C). As 
expected, the increase is faster for higher water discharges. However, when the piezometric head 
reaches a critical height of 75 m (Fig. 10c,d), the failure mechanism on the downstream shell is 
triggered (Fig. 7c). Hence, in the hypothetical scenario where the reservoir level had not be 
lowered (remaining constant at 98.8 m asl elevation), the continuous water infiltration through 
the leakages in the pipelines would lead to a continuous increase of the phreatic line within the 
dam body, leading the dam to an unavoidable failure. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 10.  Monitored and calculated piezometric head at K3 for: (a) 𝑘𝑘 = 10-9 m/s; and (b) 𝑘𝑘 = 4 x 10-9 m/s. 
Predicted total displacement at VH18 versus calculated piezometric head at K3 for: (c) 𝑘𝑘 =10-9 m/s; and 
(d)  𝑘𝑘 = 4 x 10-9 m/s. 

 Remedial works and future reservoir level to the maximum level 
(7852-13461 days) 

The reservoir level after the appearance of the wet zone is considered in accordance to Fig. 4. 
Seepage and stability analysis was carried out, assuming that the pipe leakage terminated after 
the filling of the irrigation pipe with concrete. The phreatic line within the dam body, along with 
the horizontal displacement, are illustrated in Fig. 11 for the time when: (I) the wet zone spotted; 
(II) the reservoir was lowered to 92 m asl; (III) the reservoir was lowered to 82 m asl; and (IV) the 
reservoir was refilled to the maximum level of 98.8 m asl. 

Figure 12 illustrates the vertical profile of the calculated horizontal displacement (ux) at the 
core when: (I) the wet zone was spotted; (II) the reservoir was lowered to 92 m asl; (III) the 
reservoir was lowered to 82 m asl; and (IV) after the final refill of the reservoir to the maximum 
level of 98.8 m asl. It is observed that with the depletion of the reservoir (I to III), the dam deforms 
towards the upstream shell (negative direction) and the direction of displacement becomes 
positive again (towards the downstream shell) with the final refill of the reservoir (IV). 
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Figure 11.  Calculated horizontal displacement (𝑢𝑢𝑥𝑥) and phreatic line at the time when: (I) the wet zone 
spotted; (II) the reservoir was lowered to 92 m asl; (III) the reservoir was lowered to 82 m asl; and (IV) 
after the refill of the reservoir to the maximum level of 98.8 m asl.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
Figure 12.  Vertical profile of the calculated horizontal displacement (𝑢𝑢𝑥𝑥) at the core when: (I) the wet 
zone spotted; (II) the reservoir was lowered to 92 m asl; (III) the reservoir was lowered to 82 m asl; and 
(IV) after the refill of the reservoir to the maximum level of 98.8 m asl. 

5 CONCLUSIONS 

A 35 m high embankment dam located in Slovenia was considered. The dam is a zoned rockfill 
dam with a clay core and is based on a mainly impermeable foundation, which was grouted as 
needed. The irrigation pipeline and two bottom outlet pipelines, which are leading through the 
embankment dam in its central part corroded during the years and got leaky. In an emergency 
response, the operating level of the reservoir was lowered to allow for remediation work to take 
place; its refilling is planned in the future. 

The behaviour of the dam throughout a period of 36 years is analysed employing a fully coupled 
hydromechanical numerical analysis. A 3D numerical model of the dam was developed in the 
finite element program PLAXIS3D and seepage and stability analyses were carried out. The dam 
soil zones were modelled with the Hardening Soil Small Strain Model, which can reproduce many 
of the key aspects of nonlinear soil response, but cannot capture soil softening. This is undeniably 
a limitation, but considering the lack of experimental data required for accurate model 
calibration, it is considered acceptable. In particular, considering the complexity of the problem, 
high quality information (experimental data, construction history, material information) is 
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necessary. In the absence of such data, model parameters were calibrated through back analysis 
of monitored deformation and pore pressure data. To that end, the presented results are 
considered a conceptual simplification of the problem, rather than an accurate reproduction of 
the dam case history. 
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PREDICTION OF THE FUTURE BEHAVIOUR OF THE 
EXISTING DAM, BASED ON THE RESULTS OF 
AUSCULTATION MEASUREMENTS 

Dajana Biorac 
Enegroprojekt – Hidroinženjering Consulting Engineers Co, Belgrade, Republic of Serbia 

ABSTRACT: In this paper, two-dimensional modeling of the existing dam was performed in order 
to determine the characteristics of the material from which the dam was built, as well as to assess 
the current state of the dam and to predict the behavior of the dam in the future. The material 
characteristics were adopted so that the benchmark movements and phreatic line in the dam 
body correspond to the measured in-situ values. The numerical analysis considered different 
situations during the operation of the dam and for each of them a stability assessment was 
provided. 

Key words: dam, calibrated material properties, wet strain, slope stability. 
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1 INTRODUCTION 

This paper presents numerical modeling of the behavior of the earth-fill dam, in which signs of 
wetting appeared on the downstream slope during operation. 

Namely, it is a zoned earth-fill dam, whose cross section is displayed in Figure 1. 
The dam was built in 1989 for agriculture purposes (irrigation) and flood protection. The dam 

is founded on an impermeable Eocene flysch. The construction lasted less than a year. The 
reservoir has been fully filled within about 18 (eighteen) months after construction completion. 
After 20 (twenty) years of operation, the wet spot was noticed on the dam’s downstream slope 
during regular maintenance. 

The main technical data of the dam are: 
• Dam height above foundation: 34.6 m; 
• Elevation of the dam crest: 102.00 m asl; 
• Elevation of the foundation: 67.40 m asl; 
• Crest width: 5 m; 
• Base width: 120 m; 
• Crest length: 174 m; 
• Normal Water Level: 98.8 m asl. 

2 NUMERICAL ANALYSIS 

The basic monitoring system of the dam was established already during construction and 
immediately after the construction of the dam was completed. The results of auscultation 
measurements were used in numerical analysis for model calibration. After calibration, a 
prediction of the dam’s future behavior was made. 

All calculations were performed by the finite element method using the Geo-Studio 2018 
software package, i.e., its programs: Slope / W (stability calculations), Seep / W (filtration 
calculations), Sigma / W (stress-strain analysis). 

Numerical analysis was performed for the following cases, which will be described individually 
in the following chapters: 

• case – Dam after construction 
• case – First filling 
• case – Occurrence of the wet spot 
• case – Remedial works 

Analyzes were performed on two-dimensional models. 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Typical cross-section of the dam, gde je: A – clayey silt material; B – rockfill material; C – limestone 
and sandstone blocks; D – impermeable rock base; E – filter material; 1 – intake tower; 2 – intake structure; 
3 – bottom outlets; 4 – irrigation pipeline; 6 – maximal reservoir level (100.5 m asl); 7 – minimal operating 
level (80.0 m asl); 8 – normal operating level (98.8 m asl); 9 – depleted operating level (92.0 m asl). 

3 DAM AFTER CONSTRUCTION 

In this part of the numerical analysis, the calibration of the material parameters, adopted by 
the design, was performed (Table 1) - so that the displacement values are obtained, which 
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correspond to the measured displacements of geodetic benchmarks immediately after the 
construction of the dam. 

 
Table 1. Design material properties 

Material w γ cu φ c Eoed E ν k 
 % kN/m3 kPa ° kPa MPa MPa - m/s 
A’ 13 21 - 36 36 15 - 0.4 10-6 
A 16 19.5 75 - - 5 - 0.5 10-9 
B - 24 - 38 - 50 - 0.3 10-3 
C - 24 - 38 - 50 - 0.3 10-4 
D - 25 - 39 32 - 620 0.25 10-9 

where w is soil moisture; γ – specific gravity; cu – undrained shear strength; φ – angle of internal friction; c – 
effective cohesion; Eoed – oedometric modulus; E – elastic modulus; ν – Poisson coefficient; k – 
permeability 
 

In the numerical analysis, the construction of the dam was simulated in 37 steps in the program 
GeoStudio - Sigma / W (Figure 2). The “Coupled Stress / PWP” analysis was applied, which can be 
used to determine, in addition to the primary settlement, consolidation settlement as well. 

The following boundary conditions were adopted (Figure 2):  
1) the lower limit is a fix in the X and Y directions, 2) the left and right borders are a fix in the X 
direction, 3) the piezometric level is adopted on the terrain surface. The duration of one step t1 
= 9 days was adopted, so that the total duration of the dam embankment is: t = 9 days · 37 steps 
= 333 days. 

The parameters of the material, for which the displacements at the benchmarks closest to the 
in-situ displacements are obtained, are shown in Table 2. 

 
Table 2. Calibrated material properties  

Material γ cu φ c E ν wc Mν k 
 kN/m3 kPa ° kPa MPa - - 1/kPa m/s 
A1 21 - 36 36 25 0.35 0.10 4·10-5 1·10-6 
A* 19.5 70 - - 20 0.45 0.20 5·10-5 2·10-11 
A2* 19.5 100 - - 25 0.37 0.20 4·10-5 2·10-11 
A3* 19.5 150 - - 30 0.37 0.20 3.33·10-5 2·10-11 
A4* 19.5 100 - - 20 0.39 0.20 5·10-5 2·10-11 
B 24 - 38 - 50 0.30 - 2·10-5 1·10-3 
C 24 - 38 - 50 0.28 - 2·10-5 1·10-4 
D 25 - 39 100 620 0.25 0.20 1.6·10-6 1·10-9 

where γ - is specific gravity; cu – undrained shear strength; φ – angle of internal friction; c – effective 
cohesion; E – elastic modulus; ν – Poisson coefficient; wc – saturated volumetric water content; mv – 
compressibility; k – permeability 
*Zone A (clayey silt material) is divided on to subzones: A, A2, A3 i A4 

 
 
 
 
 
 
 
 

 
 
 
Figure 2.  Calculation model, where: A – clayey silt material; B – rockfill material; C – limestone and 
sandstone blocks; D – impermeable rock base; E – filter material 
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The comparison of the results of numerical analysis with the values of the displacement of 

geodetic benchmarks at the end of the dam construction, is shown in Table 3. 
 
Table 3. The displacements of the geodetic benchmarks (mm)* 

Bench Numerical analysis  Readings in-situ 23-01-88 
Mark Y Z  Y Z 
BM5 0 0  0 0 
BM10 10.53 -22.76  -38 -22 
BM14 25.61 -17.3  -28 -20 
BM16 20.13 -8.86  -18 -7 

* The convention is adopted in the table: Y displacements are horizontal displacements positive in the 
upstream-downstream direction; Z displacements are vertical displacements positive in the down-up 
direction. 
 

The calculation of the stability of the slopes was performed by the finite element method, using 
the program GeoStudio-Slope / W. The minimum safety factors for the upstream and 
downstream slope, immediately after the completion of the dam construction are as follows: 

 
Table 4. Dam stability after construction completion 

Slope FS 
Upstream 1.416 
Downstream 2.187 

4 FIRST FILLING 

The calculation model uses water level fluctuation, based on real measurements. To calibrate the 
values of the water permeability coefficients of the material in the composition of the dam, water 
level readings on piezometers K2 and K3 were observed. In Table 2, lower values of water permeability 
coefficients for clay material were adopted in relation to the projected values (Table 1). 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
Figure 3.  Water level at piezometers K2 and K3 - results obtained by numerical analysis and values obtained 
by in-situ measurements 
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Water levels at piezometers K2 and K3, obtained by numerical analysis, align very well with 
measured values at piezometers K2 and K3. 
 
 
 
 
 
 
 

 
 

Figure 4.  Piezometric line at the end of first filling 
 

It can be noticed that piezometric line does not break through downstream slope plain at the 
end of first filling and that there is no significant change in dam stability in relation to “dam after 
construction” case. 
 
Table 5. Dam stability during first filling 

Slope FS 
Upstream 1.376 
Downstream 2.281 

5 OCCURRENCE OF THE WET SPOT 

After 20 (twenty) years of operation, the wet spot was noticed on the downstream slope of 
the dam during regular maintenance. The wet spot was located at the downstream toe of the 
dam in the central part, close to the axis of the dam. Extensive vegetation on the central part of 
the embankment dam indicated that the humid zone extends to the downstream slope of the 
dam above the wet spot. Emergency investigation revealed that excessive water on the 
downstream slope originates in the reservoir. 

The change in the reservoir water level until the moment when the wet strain is noticed, is 
displayed in Figure 6. 

The numerical model shown in Figure 2, displays correspondence of the real field conditions 
for the period after 20 years of operation, with the application of an upstream hydraulic boundary 
condition corresponding to real changes in the accumulation levels (Figure 6).  
Therefore, without changes in material parameters and without changes of boundary conditions 
in relation to the ones used for the “dam after construction” case - the piezometric line does 
break through the downstream slope plain. This means that the dam had been built using such 
materials that the wet spot on the downstream slope plain is expected to appear, without any 
additional damages (pipe corrosion or internal erosion).  

 
 
 

 
 
 

 
 
 

Figure 5.  Piezometric line in the dam after 20 years of operation 
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Figure 6. Reservoir water level up until occurrence of the wet spot 
 
The minimum safety factor for the upstream and downstream slopes, for the period up to the 

wet strain occurrence, is shown in the following table 6. 
 
Table 6. Dam stability up until the occurrence of the wet strain 

Slope FS 
Upstream 1.41 
Downstream 2.279 

6 REMEDIAL WORKS 

In 2008 the reservoir level was lowered to a maximum of 93.6 m asl and the irrigation pipeline 
was filled with the concrete. The space between the irrigation pipeline and the concrete cover 
was grouted with the cement grout. After this emergency remediation, the reservoir operational 
level was additionally lowered to a 92.0 m asl. 

It is foreseen to fill all the pipes within the dam body, with concrete during the rehabilitation 
works, after which the reservoir water level would return to 98.8 m asl. 

The value of the water permeability coefficient around the irrigation pipe was increased to k = 
10-8 m/s in the numerical analysis. This assumption was introduced due to the possible change of 
the clayey material due to the lowering of the water level in the accumulation, as well as due to 
the migration of the clayey material particles through the corroded irrigation pipe. 

In addition, due to the closure of the irrigation pipe with concrete, as well as due to the 
grouting of the zone around the pipe - the value of the water permeability coefficient in material 
C (limestone and sandstone blocks) was reduced to k = 10-8 m/s also in the zone around the pipe 
(Figure 7. and Table 7). 
 

 
 
 
 
 
 
 

Figure 7.  Construction model after remedial works 
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Table 7. Material properties after remedial works  

Material γ cu φ c E ν wc Mν k 
 kN/m3 kPa ° kPa MPa - - 1/kPa m/s 
A1 21 - 36 36 25 0.35 0.10 4·10-5 1·10-6 
A* 19.5 70 - - 20 0.45 0.20 5·10-5 2·10-11 
A2* 19.5 100 - - 25 0.37 0.20 4·10-5 2·10-11 
A3* 19.5 150 - - 30 0.37 0.20 3.33·10-5 2·10-11 
A4* 19.5 100 - - 20 0.39 0.20 5·10-5 2·10-11 
A5* 19.5 100 - - 20 0.39 0.2 5·10-5 1·10-8 
B 24 - 38 - 50 0.30 - 2·10-5 1·10-3 
C** 24 - 38 - 50 0.28 - 2·10-5 1·10-4 
C1** 24 - 38 - 50 0.28 - 2·10-5 1·10-8 
D 25 - 39 100 620 0.25 0.20 1.6·10-6 1·10-9 

where γ is specific gravity; cu – undrained shear strength; φ – angle of internal friction; c – effective 
cohesion; E – elastic modulus; ν – Poisson coefficient; wc – saturated volumetric water content; mv – 
compressibility; k – permeability 
*Zone A (clayey silt material) is divided on to subzones: A, A2, A3, A4 i A5 
**Zone C (limestone and sandstone blocks) is divided on to subzones C i C1 
 
 
 
 

 
 
 
 
 
 

Figure 8.  Piezometric line in the dam body after remedial works 
 

The minimum stability factors for the upstream and downstream dam slope, after remedial 
works, are displayed in Table 8. 
 
Table 8. Dam stability after remedial works 

Slope FS 
Upstream 1.337 
Downstream 1.719 

7 CONCLUSION 

This paper treats the two-dimensional modeling of the existing dam. The designed 
characteristics of the dam materials were calibrated based on the measured values of in-situ 
displacements. 

The values of the vertical displacements, at the end of dam construction, are quite similar to 
the measured in-situ values at the places of reference, while there are significant deviations with 
the horizontal displacements. This anomaly can be explained by the limited accuracy of the 2D 
modeling of the objects with a three-axis stress state. 

The water permeability coefficients of the dam materials were calibrated so that the water 
levels at the piezometers K2 and K3 correspond to the measured ones. 

Numerical analysis treats the following cases during the exploitation of the dam:  
1) Dam after construction, 2) First filling, 3) Occurrence of the wet spot, 4) Remedial works. 

Slope safety factors for each case are displayed in Table 9. 
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Table 9. Dam stability for different calculation cases 

Slope works Dam after construction First filling Occurrence of the wet spot Remedial 
Uprstream 1.416 1.376 1.41 1.337 
Downstream 2.187 2.281 2.279 1.719 

 
Considering the conducted detailed numerical analysis, using the available data in regards to 

the movements of the benchmarks on the dam and in regards to the phreatic line levels in the 
dam body, it can be concluded that the wetting of the lower part of the downstream slope plain 
would occur even without the additional damages in the dam (pipe corrosion and the internal 
erosion). Therefore, by using the materials of certain characteristics in a manner it has been done 
on the subject dam, it is expected after 20 years of exploitation for the raised phreatic line level 
to occur on the lower part of the downstream slope. If internal erosion is not present, dam 
stability is not compromised (table 9), and phreatic line level could be lowered with the 
construction of the vertical drainage curtain, next to the lower part of the downstream slope.  

Certainly, for the final verdict on the evaluation of the dam and effects of the applied measures, 
more results of the additional investigations are necessary: results of the laboratory tests of the 
samples from the dam body and foundations, installation and monitoring of the additional 
piezometers, acquiring data of vertical and horizontal movements inside the dam body, quantity 
and composition of the phreatic water on the springs downstream of the dam. 
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ABSTRACT: The behaviour of a zoned earthen dam is analysed by means of a finite element model 
implemented in Abaqus. The analysed dam was built in Slovenia at the end of the 1980s for 
irrigation and flood protection purposes. In 2007, detection of a wet stain on the downstream 
slope forced the drawdown of the reservoir to carry out remedial works. Transient fully coupled 
hydro-mechanical analyses under partially saturated conditions have been conducted to 
investigate the behaviour of the dam from its construction to present. Available in-situ 
measurements have been exploited to calibrate the model and to assess the reliability of the 
predictions. To address the effects of the wet stain and of the remedial works on the dam body, 
stability analyses have been performed at significant times. Future scenarios have been analysed, 
using provided information on the time schedule of the reservoir impounding after completion 
of the remedial works. The results show that the high pore water pressures measured inside the 
dam body may be explained by damage experienced by the irrigation pipelines and that remedial 
works are necessary to restore the dam functionality.  
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1 INTRODUCTION 

Embankment dams represent over 80% of dams built in the world (Wrachien & Mambretti 
2009) and approximately 40% of all embankment dam failures have been attributed to internal 
erosion due to uncontrolled seepage through the dam body (ICOLD 2017). During construction 
and operation, embankments are in a partial saturation condition, and they are subjected to 
various hydro-mechanical loads following from consolidation and from time variations of the 
reservoir water level. To properly account for all the aspects that contribute to the response of 
the system, coupled hydro-mechanical numerical analyses are necessary. The development of 
the numerical model should be supported by appropriate monitoring data. The comparison 
between numerical results and site observations will validate the approach and help in the 
calibration of the model for predictive purposes. The Formulators proposed the present 
benchmark to assess how different modelling assumptions and approaches could match the 
observations.  

To simulate this benchmark, 2D finite element numerical analyses have been run with Abaqus 
6.23 (Dassault Systèmes 2021). Fully coupled hydro-mechanical analyses in a three-phase porous 
media (Zienkiewicz et al. 1990) have been conducted to study the problem.  

The focus has been on explaining the cause of a wet stain, detected on the downstream slope 
of the dam during regular maintenance in 2007, after twenty years of operation. Back analyses 
have been performed to calibrate the numerical model (case 1), where missing information was 
managed on engineering judgement. The comparison between numerical results and monitoring 
data at relevant time instants has allowed validating the model and has suggested including a 
defect in the pipe system (case 2). Eventually, the future state of the dam has been analysed 
when subjected to the given hydraulic load history (case 3). 

2 MODEL DESCRIPTION 

 Geometry 
The dam investigated in the benchmark is a zoned earth dam, with a clay core. Figure 1 shows 

the domain assumed for the analyses: the geometry of the dam has been defined based on the 
schematic 2D cross-section provided by the Formulators (Zvanut et al. 2022), while the 
dimensions of the foundation layer have been chosen as 245x30m. In the same figure, the finite 
element mesh considered in the analyses is shown. The numerical solution has been obtained 
using fully coupled pore pressure-displacement elements with reduced integration (CPE8RP). 

 

Figure 1.  2D geometry considered in the analyses. Different colours depict the 5 materials of the model. 
Section A-A’ represents the central vertical axis of the dam, where significant quantities will be analysed in 
the following. 

 Material behaviour and properties  
An elastic-perfectly plastic Mohr-Coulomb model has been used to model the behaviour of the 

different materials. Mechanical and hydraulic properties have been defined combining 
information provided by the Formulators with results of back-analyses. The values of the relevant 
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parameters adopted in the numerical simulations are listed in Table 1, where ρd is the dry density, 
c and 𝜙𝜙 are the shear strength parameters, 𝜓𝜓 is the dilatancy angle, E is the Young modulus, ν is 
the Poisson ratio and k is the saturated hydraulic conductivity. The calibration stage has focused 
on the clay core material A. Drained values of shear strength parameters have been assumed 
starting from information on the nature and the state of the soil, while stiffness and hydraulic 
conductivity have been calibrated as described in the following paragraphs. To include the 
unsaturated response, water retention curves and hydraulic conductivity functions have been 
defined for fine and coarse materials, thus providing the relations between suction, degree of 
saturation and hydraulic conductivity, as shown in Figure 2. The choice of the specific 
relationships adopted in the analyses has been based on literature studies (Alonso et al. 2005, 
Caruso & Jommi 2005, Rossignoli & Sterpi 2021).  

 
Table 1. Material properties after the calibration.  

Zone rd c f 𝝍𝝍 E n k 
 [kg/m3] [kPa] [°] [°] [MPa] [-] [m/s] 
A 1578.0 10.0 30.0 20.0 11.0 0.30 10-8 
A2 1894.0 36.0 36.0 24.0 7.0 0.40 10-6 
B 2267.0 0.0 38.0 25.0 37.0 0.30 10-3 
C 2267.0 0.0 38.0 25.0 37.0 0.30 10-4 
D 2407.0 32.0 39.0 26.0 62.0 0.25 10-9 

 

 
Figure 2.  SWRCs (on the left) and permeability functions (on the right) assumed for fine materials (A and D, 
in red) and coarse ones (B and C, in blue). 

 Time dependent seepage analyses 
The reservoir water level at the upstream side of the dam is modelled as a time-dependent 

boundary condition enforced on the pore-pressure field. The recorded water levels as well as the 
approximate time-history simulated in the analyses are represented in Figure 3. 
 

 
Figure 3.  Time evolution of reservoir level from 1988 to 2020: recorded values (blue line) and approximate time-
history simulated in the analyses (black line). Significant dates indicated with red lines refer to Case1-Task2.  
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 Stability analyses 
The stability of the system has been assessed according to the Shear Strength Reduction (SSR) 

method (Matsui & San 1992, Griffiths & Lane 1999), by reducing c and 𝜙𝜙 until failure occurs. The 
failure mechanism is identified by a localisation of shear strains. According to this method, the 
Safety Factor FS plays the role of a shear strength reduction ratio and is evaluated as:  

𝑅𝑅𝑁𝑁 = 𝑒𝑒 𝑒𝑒𝑎𝑎 = tan𝜙𝜙 tan𝜙𝜙𝑎𝑎⁄⁄     (1) 

where 𝑒𝑒𝑎𝑎 and 𝜙𝜙𝑎𝑎 are the reduced shear strength parameters. 

3 RESULTS AND DISCUSSIONS 

 Case 1 
Case 1 simulates the construction of the dam, the first filling of the reservoir as well as its 

operating conditions before leakage is detected. Numerical results are compared with field 
monitoring data and the stability of the dam is checked at significant time instants. 

 Task 1: dam construction 
At the beginning of the analysis, the water table coincides with the ground surface and the 

geostatic effective stress state is assigned to the foundation layer. The construction of the dam is 
reproduced by a gradual growth of the gravity loading, maintaining a constant level of the water 
table. Due to capillary rise, this condition leads to partial saturation of the dam body (Fig. 4). To 
obtain realistic settlements of the whole dam body, the stiffness of material A has been calibrated 
as E=11 MPa. The horizontal and vertical displacements along section A-A’ at the end of the 
construction are reported in Figure 5a and 5b, respectively. According to the sign convention 
established by the Formulators, the horizontal displacements in the downstream direction are 
positive, while settlements are negative. The maximum settlement of about 0.80 m is observed 
slightly below the dam crest. 

Stability of both the downstream and upstream slopes of the dam before the first filling of the 
reservoir is evaluated by means of the SSR method. The results show that the FS of the 
downstream slope is greater than the one of the upstream slope (Tab. 2). The reason lies on the 
fact that the downstream mechanism crosses materials with high cohesion and that the 
downstream slope has a lower inclination with respect to the upstream one. Figure 6 reports the 
contours of deviatoric plastic strains, which indicate the predicted failure surfaces in the two 
cases.  

 

  
Figure 4.  Contour of the degree of saturation at the end of the construction. 
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(a) (b) 
Figure 5.  Horizontal (a) and vertical (b) displacement along direction A-A’ at the end of the construction.  

  
 
Figure 6.  Contour of the plastic deviatoric strain showing the sliding surfaces at upstream (on the left) and 
downstream (on the right) slope. 

 Task 2: first filling and operating conditions 
The simulation of the construction stage aims at reproducing the state of the dam before the 

filling of the reservoir, started on 25/04/1988 and lasted for 722 days. To simulate the initial 
conditions of the system, the water level is increased from the ground surface to the position 
indicated as the beginning of the filling, at around 82 m a.s.l. Since there is no information about 
the duration of this phase, a steady-state analysis is performed. 

Starting from this situation, the water level in the reservoir is gradually raised, following the 
temporal evolution shown in Figure 3. Coupled hydro-mechanical analyses under transient 
conditions are performed, to predict the variations in time of the stress – strain state as well as 
the pore water pressure regime within the dam.  

The temporal evolution of the pore pressure for two nodes is represented in Figure 7. These 
points are located at the base of the two piezometers, K2 and K3, whose data are reported as 
well. A free drainage condition was assigned to simulate the presence of drains between the clay 
core and the rockfill material, as shown in Figure 8. The calculated pore water pressures tend to 
reach values close to those recorded in piezometer K3. However, the numerical predictions 
underestimate the pore pressure in correspondence of the position of piezometer K2, although 
the same trend can be appreciated. 

To better understand the source of the difference between the predicted and the observed 
pore pressure at K2, the latter is compared in Figure 7 with the pore pressure at the same depth 
corresponding to the current hydraulic head of the reservoir. It can be observed that the two 
almost coincide, suggesting that the loss in the hydraulic head between the reservoir and the 
section of the nucleus where the pore pressure is measured is negligible. 

Notwithstanding this difference, the numerical model is able to respond appropriately to the 
enforced temporal variations in the boundary conditions, as shown over the two periods of 
decrease and increase of the water height in the reservoir reported in Figure 7. This means that 



Pontani, Rossignoli, Sterpi, Jommi 
SEEPAGE AND STABILITY ANALYSES OF A ZONED EARTH DAM SUBJECTED TO VARIABLE WATER HEADS:  

NUMERICAL SIMULATIONS WITH ABAQUS 

400 
 

the assumptions made in terms of hydraulic properties in saturated and unsaturated conditions 
are satisfactory. 

Figure 9 shows the increment of vertical displacements measured in the geodetic points and 
simulated through the numerical analyses starting from 06/06/1988. The measured 
displacements indicate that settlement occurred during the impounding of the reservoir, while 
the results of the numerical analyses show an opposite trend. This difference originates from the 
adopted constitutive model: in the numerical simulations the saturation process in the dam body 
caused by the increasing water level inside the reservoir induces an increase in pore water 
pressures and a consequent decrease of effective stresses, which results in swelling of the 
material. The result shows that the mechanical response of the dam over first impounding cannot 
be properly described using basic constitutive models, formulated enforcing the Bishop’s 
effective stress definition (Lloret & Alonso 1985, Jommi 2000). The implementation of a more 
advanced model able to describe plastic collapse upon wetting is deemed mandatory to model 
the deformational response. Therefore, benchmarking the numerical results on settlements has 
been abandoned, and no further results are reported in this contribution. 

The FS of the downstream and upstream slopes for the four representative situations indicated 
in Figure 3, are collected in Table 2. As a result of the new pore pressure distribution (Fig. 10) at 
the end of the first filling of the reservoir, i.e. 17/04/1990, the factors of safety of the downstream 
and upstream slope experience a decrease of 20% and 25% compared to the end of the 
construction, respectively. As reported in Table 2, a partial decrease of the water level in the 
reservoir, i.e. 16/12/1992, only affects the FS of the upstream slope, which increases, while the 
one of the downstream slope remains almost constant. 

 

 
Figure 7.  Comparison between pore water pressures measured at the base of piezometers K2 and K3 (solid 
lines) and results from the numerical analyses (dashed lines), from 25/04/1988 to 03/01/2006. The dotted 
red line represents the upstream pressure. 

 
 

 
Figure 8.  Mechanical and hydraulic conditions applied to simulate Case 1. 
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Figure 9.  Comparison between the increment of vertical displacements measured in the geodetic points 
VH5, VH10, VH14 and VH16 (solid lines) and calculated from the numerical analyses (dashed lines) starting 
from 06/06/1988. Details about the position of the geodetic points are reported in the Formulation 
document. 

 

 
Figure 10.  Contour map of pore water pressure inside the dam body and the foundation at the end of the 
first filling (i.e. 17/04/1990). 

 
Table 2. Factor of Safety for the upstream and downstream slope of the dam for Case 1. 

Time upstream downstream 
As built 1.67 2.20 
17/04/1990 1.25 1.76 
25/08/1992 / 1.74 
16/12/1992 1.48 1.77 
13/07/2001 1.25 1.76 

 Case 2 – Task 1: the appearance of the wet stain 
In Case 2 the attention is focused on the appearance of the wet stain, observed on October 24, 

2007, at the downstream side of the dam. As already anticipated, the data recorded by the 
piezometers K2 and K3 (Figure 7), indicate the presence of pore water pressures higher than the 
ones numerically predicted under ordinary reservoir operation. This mismatch may be originated 
by localised water losses in the dam body, due to damage experienced by the pipes, well before 
the appearance of the wet stain. The relevant settlements experienced by the axis of the two 
pipelines over the construction period (Fig. 11) suggest that damage of the pipes might have 
originated from the high differential settlements undergone by the dam even before the first 
impoundment. To evaluate the consequences of this hypothesis, water sources were added at 
some nodes located along the axis of the pipelines, as shown in Figure 11. After some calibration, 
the nodes were assigned a specific discharge of 10-7 m/s each.  
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At the same time, the appearance of a wet stain downstream suggested that drainage at the 
toe should not be constrained. To allow free flow in the dam body without any a-priori restriction 
on the flow path, the previous downstream drainage was removed. At the face of the 
downstream slope a non-linear free outflow condition was assumed. The latter allows water to 
escape from the boundary when the water pressure is above the atmospheric one, otherwise 
keeping the boundary impervious. The same condition holds between the core and the rockfill C, 
in such a way that the drain can be easily modelled as an outflow surface. 

The results in the period 25/04/1988 – 30/10/2020 are depicted in Figure 12, in terms of 
measured and predicted pore water pressures. The fluctuations measured by the piezometer K3 
could be related to water management operations, which were disregarded in the numerical 
simulation. The comparison between the two time-histories confirms that the presence of 
additional water fluxes from the pipelines could be a comprehensive explanation for the high 
values of pore water pressures measured in the piezometer K2.  

The stability of the system is evaluated after the wet stain was detected, i.e. 09/05/2008. 
Results are depicted in Figure 13 for both the downstream and the upstream slopes. The values 
of FS are reported in Table 3. 

  
Figure 11.  Settlements along the axis of the pipelines at the end of the construction. Different colours 
represent the different materials. The red marks indicate the nodes selected for the enforced flow of 10-7 
m/s. 

 

  
Figure 12.  Comparison between pore water pressures measured at the base of piezometers K2 and K3 
(solid lines) and results from the numerical analyses (dashed lines), from 25/04/1988 to 30/10/2020. The 
dotted red line represents the upstream pressure.  

 
 

 
Figure 13.  Contour of the plastic deviatoric strain showing the sliding surfaces at upstream (on the left) and 
downstream (on the right) slope after the detection of the wet stain (i.e. 09/05/2008). 
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Table 3. Factor of Safety for the upstream and the downstream slope of the dam for Case 2. 

Time upstream downstream 

09/05/2008 1.55 1.75 

 Case 3 
Due to detection of the wet stain, in 2008 the reservoir level was decreased to a maximum 

level of 93.6 m a.s.l. and the irrigation pipeline was filled with concrete. The water level was 
lowered again to 92.0 m a.s.l. and the reservoir has operated under such conditions for more 
than 10 years. In Case 3, the drawdown of the reservoir as well as its re-filling after the remedial 
works are considered. Attention is devoted also to the effects of the drawdown on the hydraulic 
properties of the dam core. 

 Task 1: the long-term drawdown of the reservoir 
The effect of the long term drawdown of the reservoir can be analysed referring to the data 

measured between 2010 and 2020, when the reservoir operated at a lowered elevation (Figure 
12). Comparing the data measured in the piezometer K2 (solid blue line) with the values 
corresponding to the upstream pressure (dotted red line), no significant changes in the overall 
hydraulic response of the clay core have been identified. Therefore, no changes in the material 
properties have been considered in the definition of the numerical model. It is worth commenting 
that the difference between these two conditions is slightly higher than the one observed in the 
previous years (i.e. 1988-2008) since the sealing of the irrigation pipeline carried out in 2008 due 
to remedial works, led to a reduction of the additional discharge inside the dam body. To 
reproduce the hydraulic loads experienced on-site by the dam, sealing of the irrigation pipeline 
has been numerically modelled by removing the water sources along the axis of the irrigation 
pipeline. The comparison between monitoring data (solid lines) and numerical results (dashed 
lines) shows that the model is able to reproduce the hydraulic response of the system. At the end 
of the considered time-window, i.e. 30/10/2020, the stability of the dam is evaluated and the 
results are collected in Table 4.  

 Task 2: filling of the reservoir after the remedial work 
After the completion of the remedial works, the reservoir will be impounded again; based on 

hydrology data the Formulators estimated that, considering an average rise of 5 cm/day, the 
normal operating level (i.e. 99 m a.s.l.) will be reached in 1 year (Zvanut et al. 2022). Figure 14 
reports the estimated time series of the reservoir level after remedial works. 

In the numerical simulations related to the analysis of the future state of the dam, to simulate 
the permanent sealing of both bottom outlet and irrigation pipelines resulting from remedial 
works, no additional water fluxes have been assigned in the domain and the seepage of water 
inside the dam body originates only from impoundment. Since the long-term drawdown of the 
reservoir could increase the permeability of the material, the hydraulic conductivity of the clay 
has been increased by one order of magnitude, according to experimental results obtained by 
Azizi et al. (2020). Particularly, to properly account for the effect of wetting-drying cycles on the 
hydraulic response of the clay core, only the hydraulic conductivity of the portion of the domain 
affected by impoundment and drawdown of the reservoir has been modified. 

Figure 15 represents the variation in time of pore water pressures at the base of piezometers 
K2 and K3, as predicted by the numerical model. The pressures inside the clay core (dashed blue 
line) will be reduced compared to the upstream pressures (dotted red line), suggesting that the 
remedial works should be effective in reducing the high pore pressures inside the dam previously 
attributed to damage to the outlet pipelines. 

The stability analyses performed at the end of the future filling of the reservoir (i.e. day 337) 
returns values of FS equal to those obtained in Case 1 (Tab. 4), for time instants characterised by 
the same hydraulic load (i.e. reservoir water level at 99 m a.s.l.). In fact, the change in the hydraulic 
conductivity of the material does not significantly affect the pore pressure distribution reached at 
the end of the re-filling process, as can be observed comparing Figure 10 and Figure 16. 
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Figure 14.  Filling of the reservoir after completion of the remedial works. 

 

 
Figure 15.  Predicted time-history of the pore pressure field at the base of piezometers K2 and K3 during the 
new re-filling of the reservoir. The dotted red line represents the upstream pressure. 

 
Table 4. Factor of Safety for the upstream and downstream slope of the dam for Case 3. 

Time upstream downstream 

30/10/2020 1.64 1.75 

Day 337 1.25 1.77 

 

 
Figure 16.  Contour map of pore water pressure inside the dam body and the foundation, at the end of the 
future filling of the reservoir (i.e. day 337). 
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4 CONCLUSIONS 

In this work a finite element model is used to describe the behaviour of the zoned earth dam 
presented in the context of the proposed benchmark. Ordinary elastic perfectly plastic 
constitutive models in 2D transient consolidation analyses under conditions of partial saturation 
prove to be able to describe some aspects of the problem, namely the seepage regime and the 
ultimate failure condition. However, an advanced mechanical modelling would be required to 
capture the complex time dependent stress-strain response in unsaturated conditions. In 
particular, the modelling of the material response under wetting and drying paths at constant 
total stress should be improved. The availability of field measurements must be emphasised, as 
they provide an essential contribution to the definition of the numerical model. Field 
measurements are essential not only in the calibration of hydraulic and mechanical properties of 
the materials, but also in the detection of an anomalous response of the system. The 
measurement of pore water pressure values higher than expected led to the conclusion that leaks 
have been taken place inside the dam body over years. The consequent additional water volumes 
may have led to a significant change in the pore water pressure distribution, resulting in a 
variation of the effective stress state. Consequently, the stability of the dam is directly affected, 
with a reduction of the safety factor calculated for the downstream slope. Furthermore, this is 
why the emergency measures put in place, such as the sealing of the original pipes, appear 
worthwhile. 

Additional improvements in the numerical modelling could include the use of a 3D domain, to 
enhance the description of the contribution of the pipes inside the dam body. Finally, 
concentrated water flow along the interfaces of heterogeneous materials should be addressed, 
as it could result in internal erosion phenomena. 
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ABSTRACT: This article is about the C theme of the 16th International Benchmark Workshop on 
Numerical Analysis of Dams Ljubljana, Slovenia Organized by the ICOLD Committee on 
Computational Aspects of Analysis and Design of Dams. It consists in studying a zoned earthfill 
dam with a clay core located in Slovenia. The dam is 34,6 m height and its crest length is of 174 
m which has exhibited atypical behavior after approximately 20 years of operation. The design of 
this structure, which incorporates pipes, suggested potential problems of internal erosion. The 
observations of erosion traces of the latter re-enforce this hypothesis.  However, analysis of the 
downstream portion of the cross-section also shows a high potential of seepage on the 
downstream face of the dam, especially if the embankment fill has some anisotropic permeability. 
2D and 3D numerical models have been built to study in more detail the behavior of this dam and 
its foundation. A series of works are proposed in the downstream area of the dam to add lines of 
defense to the design. At a minimum, the downstream filter should be raised to the top of the 
core with the objectives to lower the free water table in the upper downstream portion of the 
dam and to ensure a filtration capacity of this portion of the core which may have some 
permeability anisotropy. The dynamic analyses performed by simulating the Elazing Sivrice 
earthquake (24 January 2020) in Turkey adjusted to 0.3g indicates that the seismic stability would 
be ensured and no uncontrolled release of the reservoir is anticipated following an earthquake. 
However, it would be relevant to verify these conclusions with additional signals. After conducting 
laboratory tests to characterize the clay fill of the core and the creep model parameters, analysis 
of the creep process is recommended. 
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1 THEME C: DESCRIPTION 

Embankment dams represent in total over 80% of the dams built in the world (Wrachien, 
2009). Additionally, most dams were built in previous decades. Unlike concrete dams, 
embankment dams can accommodate a wide option of foundation conditions, construction 
material is usually available close to the dam location. During the construction and 
commissioning, embankment dams are subjected to various loading conditions. Internal erosion 
is a common issue in embankment dams. For example, approximately 40% of all embankment 
dam failures have been attributed to soil instability due to uncontrolled seepage through the dam 
body or its sub-base (ICOLD Committee on Embankment Dams, 2017). Moreover, the dams were 
less frequently built in the past considering different safety, design, and construction standards 
(United States Society on Dams, 2010). Additionally, we are often dealing with the lack of data 
and we need to adopt various modelling assumptions to perform numerical analysis.  

For this workbench, a real case of a dam experimenting erosion problems is proposed. This 
dam is located in Slovenia. It was built in 1989 for agriculture purposes (irrigation) and flood 
protection. The construction of the dam ended in the late 1980s and it lasted roughly one year.  

The reservoir provides seasonal storage of water, where the excessive rainwater is collected 
during the cold part of the year, when the inflow discharges are high; while in spring and summer 
months the reservoir water is used primarily for irrigation. The total projected volume of the 
reservoir is 8.0 million m3 of water, of which 6.8 million m3 (84.5% of the volume) is intended for 
irrigation, and 1.2 million m3 (15.5% of the volume) for flood water retention. 

Figure 1 shows a downstream view of the dam. A description of the dam and its foundation 
characteristics followed by the cross-section design and the observed problems are presented in 
section 2.  

 

  
Figure 1.  The downstream view of the dam. 

2 DAM DESCRIPTION 

Figures 2 and 3 illustrate the typical cross-section and plan view of the dam. This section first 
describes the geometric and geotechnical conditions of the dam and its foundation. Then the 
design is described, and its design feature are exposed. 
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Figure 2.  Cross-section of the dam. 
  

  
Figure 3.  Plan view of the dam. 

 Geometrical and geotechnical dam and foundation conditions 
The main technical data of the dam are:  
• Dam height above foundation: 34.6 m;  
• Elevation of the dam crest: 102.00 m asl;  
• Elevation of the foundation: 67.40 m asl;  
• Crest width: 5 m;  
• Base width: 120 m;  
• Crest length: 174 m;  
• Normal Water Level: 98.8 m asl.  
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 Dam cross-section design and foundation treatment 
The dam under investigation is a zoned earthfill dam with a clay core. The cross-section of the 

dam is presented on Figure 2. The main zones in the dam structure are: (A) impermeable clay 
zone, (B) rockfill zone, (C) mix of limestone and sandstone blocks, (D) impermeable rock 
foundation, and (E) filter. On the upstream side of the filter, the dam consists of rockfill material 
(B). The downstream slope has a slope inclination of 2H:1V while on the upstream side the slope 
is steeper 1.5H:1V. For each of these external slopes, the dam concept includes intermediate 
berms. The core of the dam contains clay-silty fill materials, obtained mostly in the area of the 
reservoir. The impermeable core is protected with a two-layer filter (on upstream and 
downstream side). The blocks of limestone and sandstone in zone (C) are contained by the 
impermeable clay material, while filter is installed on the boundary.  

The dam site is located on impermeable Eocene flysch. At the design stage the geological 
conditions at the site were estimated as very good. However, this assessment was based on the 
execution of only basic geological and hydrological investigations. Moreover, during the 
construction, the excavations revealed zones with permeable limestone deposits. To ensure the 
lower permeability in the foundation, permeable zones were grouted with a single-row of grout 
curtain (cement-bentonite suspension), which was used to seal the permeable zones and reduce 
the permeability of dam foundations. The depth of the grouting in the foundation reached 68 m 
(the grouting reached into the ground to the elevation level 34 m asl). Grouting was done 
simultaneously with the dam construction; precise locations of the grouting are not known.   

 Design feature 
To prevent breaching of the dam during extreme flood events, an emergency spillway is 

situated at the right abutment of the dam. The spillway is designed to evacuate a flood with a 
1000-year return period.  

A bottom outlet with a capacity of 14 m3/s crosses the dam at its base. It consists of two steel 
pipes, 120 cm in diameter, which are protected with a concrete cover. One of the pipes is used 
for abstraction of water for irrigation, while the second one is designed for emergency evacuation 
of water from the reservoir. Bottom outlet (number 3 on Figure 2) is regulated with Howell-
Bunger valve installed on the left downstream side of the dam, meaning that the pipes are filled 
with water even when the valves are closed. The RC intake structure for the bottom outlet is on 
Figure 2 marked with a number (2).  

Additionally, the intake tower (number 1 on Figure 2) is equipped with 4 hydraulic gates, that 
enabled abstraction of irrigation water at various elevations. The steel pipeline (number 4 on 
Figure 2) from the intake tower, which is protected with a concrete cover, has 100 cm in diameter, 
and leads toward the outtake structure downstream of the dam. Since the leakage detection, the 
irrigation pipeline has been sealed and the intake tower is no longer in operation. The disposition 
of the bottom outlet, the intake tower, the irrigation pipes and the bottom conduits is marked on 
the Figures 2 and 3. 

3 OBSERVATION OF AN ATYPICAL BEHAVIOR 

The construction of the dam ended in the late 1980s and it lasted roughly one year. The 
reservoir was fully impounded roughly 18 months after the completion of the construction work. 
The basic monitoring system of the dam was already established during construction and 
immediately after the construction of the dam was completed. After 20 years of operation, during 
regular maintenance wet spot was noticed on the downstream slope of the dam.  

On October 24, 2007, during a regular inspection of the dam, a wet zone was observed. The 
wet spot was located at the downstream toe of the dam in the central part, close to the axis of 
the dam (the location is shown on Figure 3). Moreover, the presence of surface water was 
observed at the downstream toe of the dam, between the stilling basin of the spillway channel 
and outlet structure of the bottom outlet. Furthermore, the extensive vegetation on the central 
part of the embankment dam indicated that the humid zone extends to the downstream slope of 
the dam above the wet spot. Emergency investigation revealed that excessive water on the 
downstream slope originated from the reservoir. There was a suspicion that the damaged 
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irrigation pipeline is the cause for the seepage. After emptying the reservoir and the inspection 
of the irrigation pipeline, this hypothesis was confirmed. Under a silty layer deposited on the walls 
of the pipeline, air bubbles were observed in several places. The corrosion of the steel pipeline 
(holes were few cm to few 10 cm in diameter) enabled seepage of water into the layer between 
the concrete cover and the steel pipe. Even though the irrigation pipeline was emptied, the wet 
zone still existed. Therefore, the emergency investigations were also extended to the conduits of 
the bottom outlet pipeline, which can be closed only on the downstream side. In the case of the 
damaged pipeline, the seepage into the dam body was possible. The detailed investigations 
revealed similar damage on the bottom outlet pipeline as in the previous case of the irrigation 
pipeline. Geotechnical investigations of the foundation (i.e. water permeability tests and coring) 
showed that there was only minimal (practically negligible) amount of seepage in the foundation 
layer under the dam, so piezometer levels did not show any changes in the water level. In 
summary, the seepage was confined to the dam body in the proximity of both the irrigation and 
the bottom outlet pipelines. 

4 REMEDIATION WORKS 

Rehabilitation works are currently underway on the dam, the reservoir has been emptied and 
it is expected to become operational in 2023. 

In 2008, the reservoir level was lowered to a maximum of 93.6 m asl and the irrigation pipeline 
was filled with the concrete. The space between the irrigation pipeline and the concrete cover 
was grouted with the cement grout. After this emergency remediation, the reservoir operational 
level was additionally lowered to a 92.0 m a.s.l. The reservoir operated under the lowered 
condition for more than 10 years.  

Remediation works are underway. During the works, the bottom outlet and irrigation pipes will 
be sealed with concrete filling. New outlet building and outlet tunnel will be constructed in the 
left abutment, so all the conduits in the dam body will be permanently sealed. It is estimated that 
after the completion of the works, the reservoir eater level will be raised back to the initial 
nominal level at 98.8 m a. sl. 

5 TECHNICAL ANALYSIS OF THE DAM DESIGN 

 Cross-section of the dam 
This section presents an engineering analysis of the zoning of a Dam cross section. 
The top of the draining zone of limestone and sandstone blocks (zone C) in the downstream 

shoulder is nearly 15 m lower than the normal operating level of the reservoir.  
Filters (zone E), the most important area with the core, are very narrow. Any local deficiency 

in this zone translates into an increased risk to prevent internal erosion of the core. Above this 
drainage zone (zone C), in the downstream part of the dam, there is no filter and the embankment 
materials are of the same nature as the core (zone A). 

Thus, there will be a drawdown of the free water table generated by the upper filter (zone E) 
and the draining fill (zone C), however, due to the impermeable nature of the clay fill (zone A) 
above these materials, the seepage flow at the top of the cross-section will tend towards the 
downstream face of the dam. This is of particular concern if the clay fill material (zone A) has 
some permeability anisotropy 

Downstream of this drainage zone (zone C) and filter (zone E), the face of the dam is covered 
by a clay fill material (zone A) with the same permeability as the dam core. Normally, in dam 
design, we adopt free draining materials, respecting the filter criteria but increasingly permeable 
in the downstream region of a dam. The presence of a clay fill material (zone A) on the 
downstream face of the dam, downstream of the draining fill materials (zone C), favors an 
increase of the pore pressures on the downstream face of the dam. 

Based on these design comments, the occurrence of humid zones on the downstream face of 
the dam was very predictable regardless of pipes passing through the dam body. With a clay fill 
material permeability of 1x10-9 m/s, and an anisotropy of 25 or a clay fill material permeability 25 
times higher, the delay to observe humid zone on the downstream face of the dam following the 
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impoundment of the reservoir can be estimated to be about 20 years, which would be consistent 
with the observations described in section 3. 

 Pipe crossing the dam 
The risks associated with piping through dams and dikes are also well documented in the 

international literature. According to this literature, nearly half of all embankment dam failures 
are caused by internal erosion of the embankment or its foundation. Approximately 30% of these 
failures are associated with pipes crossing embankment dams (Fell, R. & Foster, M., 1998). 
Therefore, this is an important issue for the safety of dams. The risks associated with pipes 
crossing dams are dependent on design and construction and increase as the pipes age. The issue 
is even more important when the latter are under pressure by a reservoir (FEMA, 2005). 

Although it is preferable to avoid a design incorporating pipes in a dam, such a design when 
adopted requires a set of lines of defense to minimize the risk of internal erosion (FEMA, 2005). 
For example, installing a barrier around the pipe to lengthen the flow path is one of the measures 
generally recommended for this type of design. In this case, very little data is available to assess 
the design of these pipes crossing the dam. However, it appears that after only 20 years, some of 
the pipes were showing signs of corrosion. This exposes deficiencies in the design. 

6 NUMERICAL MODELS 

 2D model 
The two-dimensional explicit FD program FLAC (Itasca Consulting Group Inc., 2011) was 

employed to simulate the seepage flow and evaluate the static and dynamic performance of the 
dam. Figure 4 shows the basic characteristics (i.e., dimension, boundaries, and meshing) of the 
dam. Quiet lateral boundaries were set away from the region of interest so that reflected artificial 
waves were sufficiently damped and their influence on the dam response was minimized. To 
determine an adequate width for the model, preliminary seismic sensitivity analyses were carried 
out on slope models with different model widths. To ensure an accurate representation of the 
wave transmission with each model, the spatial discretization of the mesh followed the 
recommendations of Kuhlemeyer and Lysmer (1973), who stated that the spatial element size 
(Δl) must be smaller than approximately ⅒ the wavelength associated with the highest 
frequency component (λ) of a given input wave. For instance, if Δl ≤ λ / 10, fn = 2 Hz, the shear 
wave velocity (Vs) = 200–350 m/s at the upper portion of the dam, and λ = 100 m. Therefore, for 
soil element of about 0.5 x 0.5m (Figure 4) the frequencies higher than 40 Hz should be 
considered with precaution. 

 

  
Figure 4.  2D FLAC numerical model 
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 3D model 
The three-dimensional explicit FD program FLAC3D (Itasca Consulting Group Inc., 2012) was 

employed to simulate the dynamic performance of the dam. Figures 5 and 6 shows cross-section 
and the isometric view of the dam and its valley (dimension, boundaries, and meshing). Some 
simplifications were introduced to the mesh without reducing the efficiency expected for the 
model.  The entire dam leans against the bedrock, a level value of 67.5 m was assigned to the 
base of the bedrock; at this level, the valley width is 92 m. A symmetrical rock abutment 
inclination of 1.33H:1V was allocated to the entire dam footprint, which corresponds to the 
average slope of the bedrock abutment under the dam, as indicated in Figure 2. The crest length 
is simulated to 174 m. 

 

  
Figure 5.  3D FLAC3D numerical model, Cross-section of the dam 

 

  
Figure 5.  3D FLAC numerical model, Isometric view of the dam and its simplified valley 

 
In terms of boundary conditions for static calculations, horizontal and vertical displacements 

equated to 0 for the bottom boundary of the mesh, whereas the horizontal displacements were 
valued to 0 for the lateral boundaries. In static analyses, fixed or elastic boundaries can be 
established realistically at some distance from the area of interest. However, in dynamic analyses, 
such boundary conditions reflect the outward propagating waves back into the model in use and 
do not provide the necessary energy radiation. 

Given that the bedrock under the dam is rigid, free-field conditions were used at the lateral 
boundaries of the difference-finite mesh to reduce the model domain and consequently the 
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computational time. The seismic input was represented by external velocity input waves that 
propagate upward through the underlying material. The boundary conditions at the sides of each 
model accounted for the free-field motion that existed in the absence of a structure. 

To ensure an accurate representation of the wave transmission with each model, the spatial 
discretization of the mesh followed the recommendations of Kuhlemeyer and Lysmer (1973), 
who stated that the spatial element size (Δl) must be smaller than approximately ⅒ the 
wavelength associated with the highest frequency component (λ) of a given input wave. For 
instance, if Δl ≤ λ / 10, fn = 2 Hz, the shear wave velocity (Vs) = 200–350 m/s at the upper portion 
of the dam, and λ = 100 m. Therefore, Δl was limited to 2 m although this limit is usually lower. 

 Parameter used for modelling  
Table 1 resume the material properties proposed in the current benchwork for analysis and 

the shear wave velocity retained for each zone. 
Note that the proposed oedometric modulus were not retained in the analyses because they 

are unrealistic in our opinion. Normalized shear wave velocities (Vs1) for soil were selected on the 
basis of laboratory tests performed on similar materials. Ibrahim et al. (2021) established relation 
between Vs1 and the oedometric modulus, soil small-strain shear modulus, relative density, and 
particles shape for both granular and coherent soils. For the bedrock, the Vs1 value was estimated 
based on its geological properties. 

Notice that the friction angle of 38° for riprap also appears low, especially with a density of 
24 kN/m3.  

In this study, analyses were undertaken using elastoplastic models caped with Mohr–Coulomb 
criteria. 

 
Table 1. Material properties 

Zone Description w  γ cu c’ ϕ’ υ k Vs1
*1 

% kN/m3 (kPa) (kPa) (°)  (m/s) (m/s2) 
A Top layer of the dam (3m) 13 21 -  36 0.4 10-6 320 
A Clayey silt to silty clay 26 19.5 75  - 0.5 10-9 160 
B Rockfill (Limestone Blocks) - 24 - 0 45*2 0.3 10-3 300 
C Blocks of limestone and 

sandstone 
- 24 - 0 38 0.3 10-4 300 

D Flysch - 25 - 0 39 - 10-9 800 
E Filter - 19 - 0 35 0.3 10-4 260 

*1 Normalized shear wave velocities (Vs1) for soil were selected on the basis of laboratory tests performed 
on similar materials (Ibrahim et al., 2021). For the bedrock, the value was estimated based on its geological 
properties. 
*2 Proposed friction angle for the rockfill was 38°, this value is considered too low based on the nature of 
the materials described. 

7 NUMERICAL RESULTS 

 Seepage flow net analyses 
The seepage flow net was calculated simulating the reservoir at the normal operating level of 

98.8 a.s. m.l. The permeabilities presented in Table 1 were programmed in the models. Figure 6 
shows the seepage flow nets obtained with the 2D model for isotropic permeability conditions 
and with an anisotropic permeability of 25 for the core clay fill. 

The results clearly expose the effect of a design without a downstream filter on the full height 
of the dam core. If the permeability of the clay fill is perfectly isotropic, pore pressures would be 
relatively well controlled in the upper portion of the dam by the filter (zone E) above the draining 
fill (zone C) in the lower downstream portion of the dam. However, the clay fill on the 
downstream face of the draining fill (zone C) and the filter (zone E) keeps the water table quite 
high on the lower third downstream face of the dam.  

about:blank#B21
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It is well documented that anisotropic permeability is inherent to the fill placement, particularly 
fills with a significant proportion of fine particles (silt and clay). Several factors can promote 
anisotropic permeability. Variability in material grading during dam construction, water content 
at the time of fill placement and compaction, variations in compaction energy, etc. are examples 
A seepage flow net analysis was performed by modeling an anisotropic permeability of 25 
(Figure 6b). Results show that pore pressures are significantly higher in the upper portion of the 
dam and the free water table reaches the downstream face of the structure. These latter results 
are consistent with the site observations after 20 years of operation and the technical analysis of 
the dam design presented in Section 5. 

The 2D model was modified to allow verification of the effect on the flow net if the downstream 
filter will be extended to the full height of the core while maintaining an anisotropic permeability 
of 25 for the entire dam clay core. Figure 7 shows the seepage flow net. Clearly, according to the 
state of the art, the effect of raising the downstream filter to the top of the dam clay core would 
provide a line of defense for the design of the dam. However, the clay fill placed on the 
downstream face of the draining fill (zone C) and the filter (zone E) still keeps the water table 
quite high on the lower third downstream face of the dam.  

Figure 6.  2D seepage flow net of the dam, a) Isotropic permeability for the clay core and b) Anisotropic 
permeability of 25 for the clay core 

 Figure 7.  2D seepage flow net of the dam, Anisotropic permeability of 25 for the clay core and downstream 
filter extended to the full height of the core 
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 Static stability analyses 
Static stability analyses are carried out to confirm the factors of safety of the upstream and 

downstream slopes of the dam. Table 2 presented safety factor results. The upstream slope has 
a marginal stability resulting from the angle of friction of 38° and a density of 24 kN/m3 for the 
rockfill combined with an external slope of 1.5H:1V. With a minimal friction angle of 45°, as 
expected, the safety factor is satisfactory.  

 
Table 2. Static stability analysis: Safety Factor results 

2D Model Upstream Downstream 
Isotropic permeability for the 
clay core 

1.91 1.62 

1 Retained friction angle of 45° for the rockfill  
2 The analysis was performed with the clay fill (zone A) undrained shear strength. Rigorously, the static 
stability should also be checked with the clay fill drained shear strength parameters (c’ and ϕ’) and thus 
compare the safety factors. The downstream slope has probably a marginal drained condition static slope 
stability with the actual design when considering the seepage flow net based on an anisotropic permeability 
of 25 for the clay fill core.  However, the scenario with a downstream filter extended to the full height of the 
core will improve the safety factor.  

 Dynamic analyses 
• Fundamental frequencies of vibration 

A modal analysis was carried out to establish the fundamental frequencies of vibration of the 
dam. Table 3 gathers the vibration frequencies of the first three modes calculated with the 2D 
model in the transverse and in the vertical directions. 

 
Table 3. Fundamental frequencies of vibration based on the 2D model 

Direction 1st mode, f0 (hz) 2nd mode, f2 (hz) 3rd mode, f3 (hz) 
Transverse 2.1 hz 3.7 5.5 
Vertical 3.3 4.8 6.8 

 
The vibration modes were also determined with the FLAC3D model. Table 4 gathers the 

vibration frequencies of the first modes calculated with the Flac3D model in each 3 directions. 
With the FLAC3D model, frequencies are slightly higher due to a valley effect 

 
Table 4. Fundamental frequencies of vibration based on the FLAC3D model 

Direction 1st mode, f0 (hz) 
Transverse 2.9 
Longitudinal 4.3 
Vertical 6.8 

 
• Dynamic response analyses 

Dynamic analyses were performed with 2D and 3D numerical models. In order to more 
accurately represent the soil parameters and dam conditions in this study of the dynamic 
behavior, a specific stiffness value was assigned to each material along with individual values of 
normalized shear wave velocity (Vs1), the dependence of material reduction curves on the 
effective confining pressure was specified, and the flow network in the dam was applied to the 
reservoir thrust on the upstream side. 

The constitutive model that was used is a non-linear model implemented in the FLAC and 
FLAC3D softwares (Itasca Consulting Group Inc. 2011 and 2012). During dynamic simulations, the 
shear modulus of the soils was reduced using the constitutive model “sig 4” curve-fitting built in 
the FLAC and FLAC3D software. Prior to conducting the dynamic analysis, the soil was modelled 
as an elastic material, initial in situ stresses were developed to simulate gravity, and the model 
strains and displacements were reset. 
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The damping value was calculated using the implemented “sig3” and “sig4” hysteretic damping 
function built in the FLAC and FLAC3D softwares. In many cases, seismic analyses require the 
incorporation of additional material damping to ensure stability of the numerical solution process 
at low strain levels. The predominant frequencies selected to adjust the Rayleigh damping in the 
models were the fn values of the dam. The limit of 0.2 % centered at 5 Hz was used for each zone 
except the top 3 m of zone A at the crest (adjusted to 0.4 %) to reduce the effect on the analysis 
duration. Rayleigh damping is related to stiffness-proportional damping because it dominates at 
higher angular frequencies.  

The material response to dynamic cyclic loading is quantified by a shear modulus reduction 
curve (G/Gmax) and damping ratio curve (ε). Representative curves were selected for each fill 
material to provide an accurate representation of the wave attenuation and energy dissipation 
during dynamic loading. For a large structure, it is necessary to select depth-dependent curves to 
make the simulated energy dissipation more realistic by considering the high confining stress in 
the lower portion of the dam (Oztoprak and Bolton 2013; Yang et al. 2017). Based on 
experimental test results on similar soils at the laboratory of Université de Sherbrooke, a best-fit 
functional relationship for the secant shear modulus reduction data was proposed for granular 
materials. Table 4 compiles “sig 4” curve-fitting programmed in each model which matched the 
experimental reduction curves proposed for cohesionless soils and adjusted for effective 
confining pressures of 100 kPa and 300 kPa to cover the range confining pressure applicable to 
the dam conditions, that reach 400 kPa on the downstream area. 

For placed clay fill (zone A), a degradation curve based on test results from the Université de 
Sherbrooke, was also retained (Table 5). Since the dynamic calculations are performed in effective 
stresses, these degradation curves were adjusted to fit particularly shear strain larger than 0.05 %. 

 
Table 5. Curve-fitting matching Sherbrooke laboratory test on placed fill clay, rockfill and sand. 

Shear modulus reduction curve - fitting SIG 4 fitting parameters 
a b x0 y0 

Placed clay fill, zone A 1 -0.6 -0.75 0 
0 – 100 kPa, Zones B and C 1 -0.65 -1.8 0 
100 – 300 kPa, Zones B and C 1 -0.65 -1.8 0.01 
> 300 kPa, Zones B and C 1 -0.65 -1.8 0.02 
Sand filter, Zone E 1 -0.60 -2.6 0.02 

 
Degradation curves obtained from Sherbrooke laboratory on equivalent soils 
The strain-controlled energy-based approach is used in this study to evaluate the dynamic 

behaviour of the dam during seismic loadings (Horizontal and vertical components). Over the last 
decades, the energy-based approach has been used for different types of dynamic problems (e.g. 
Green et al. 2000, Kokusho and Mimory 2015, Karray et. 2015). The major factor to consider the 
energy-based approach is reliability of the laboratory-based models (Amirpour et al., 2020). In 
this study, the energy-based functions of the constituting materials of the simulated dam are 
defined from undrained simple shear tests conducted on similar soils. 

The Fast Lagrangian Analysis of Continua in two and three-dimensions numerical platform 
(FLAC and FLAC3D) was employed to investigate the seismic response of a dam by considering 
the nonlinear “sig 4” models and the effect of generated pore pressure during earthquake 
excitation. Details of the sigmoid function (“sig 4” soil model) as well as energy-based pore water 
pressure models can be found in Karray et al. (2015).  

The typical results of cyclic strain-controlled undrained simple shear tests were adapted to 
delineate a unique relation between pore pressure (Ru) and the normalized dissipated energy 
(𝑊𝑊0.5/a) of the materials constituting the dam as follows: 

 
Placed clay fill (zone A) 
Ru=-0.0114+0.824*(W0.5/a)-0.368*(W0.5/a)2+0.08*(W0.5/a)3-0.00665*(W0.5/a)4  With a=1.5  
Rockfill (zone B) and Limestone (zone C) 
Ru=0.05+0.3754*(W0.5/a)+1.0204*(W0.5/a)2-0.5091*(W/0.5)3  With a=2 for soil C and 2 for soil B 
Filter (zone E)  
Ru=-0.005807+0.36091*(W0.5/a)+1.12725*(W0.5/a)2-0.628024*(W0.5/a)3     With a=2.5 
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The signals recorded from the station 4404 during the Elazing Sivrice earthquake on the 24th 

of January 2020, (17H 55 min) in Turkey were selected for the dynamic analysis. The input 
motions were adjusted based on the maximum acceleration from the signals, which occurs in the 
EW direction, and they were fitted proportionally to match a maximum accelerations of 0.3 g. 
Figure 8 shows the time histories of the adjusted input motion. The three signal components 
shown in this figure were applied at the base of the 2D and 3D models. 

 

 
Figure 8.  Time histories in the three directions adjusted proportionally to match a maximum acceleration of 
0.3 g in the EW direction from recorded motion at the station 4404 during the Elazing Sivrice earthquake on 
24 January 2020.  

 
Figure 9 illustrates the maximums of the shear strain, the cyclic stress ratio and the excess pore 

water pressure ratio contours calculated by applying the Elazing Sivrice earthquake (EW and V 
components) at the base of the model. Overall, results show that the maximum shear strains are 
reasonable. Although they reach 5% in the upper portion of the upstream embankment (rockfill 
zone B), they are also evaluated at less than 0.5% for the rest of the entire dam. These 
deformations in the rockfill are associated with a more significant acceleration amplification on 
the upstream slope of the dam, reaching 1g near the surface. In addition to the dam geometrical 
effects, this amplification is influenced by the angle of friction and the stiffness of the clay fill 
material. This low level of deformations is mainly due to the high undrained shear strength, a 
strength which needs to be verified and documented. On the maximum shear strains figure, it is 
interesting to note that the potential failure surfaces are visible, especially the one passing 
through the upper filter in the downstream portion of the dam. As expected, the distribution of 
cyclic stress ratio (Figure 9b) exhibits an increase in values as we approach the surface. Obviously, 
in the rockfill and in the clay fill, there are low pore pressures (Ru) generated during the 
simulation, the Ru coefficient being less than 0.3. In the upper filter and the downstream slope, 
the Ru increases but does not exceed 0.6.  
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Figure 9.  Dynamic analysis, a) Maximum shear strain b) Cyclic stress ratio and c) excess pore water pressure 
ratio contours. 
 

Figure 10 compiles cumulative transverse displacements at the top of the dam berms during 
the simulation. In relation to shear deformations, the most important transverse displacements 
occur at the surface of the rockfill on the upstream face of the dam. These could reach 0.8 m at 
the base of the dam and near 0.5 m near the upper berm. For the downstream face of the dam, 
transverse displacements are estimated between 0.1 and 0.25 m. 
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Figure 10.  Dynamic analysis, X displacement at reference locations. 

 
Overall, the dynamic analysis results show a good seismic behavior of the dam, based on this 

analysis, no uncontrolled release of the reservoir should be anticipated following an earthquake. 
However, it would be relevant to confirm the rockfill friction angle as well as the undrained 
strength of the clay fill. 

 Creep 
The available data does not allow for a precise creep analysis. Instead of performing analyses 

with hypothetical parameters and speculating on the behavior of the structure, the authors 
recommend performing a few tests on placed clay to establish creep parameters that represents 
the actual structure conditions. Analysis to model the creep process is recommended once these 
parameters are available. 

The authors are very interested to collaborate with the owner to perform accurate laboratory 
tests and to perform the appropriate analyses from a research perspective. 

8 RECOMMENDATIONS  

Based on the analyses performed, some recommendations are made to document or improve 
the robustness of this dam design: 

 Upstream portion of the dam 
Perform the required verification in order to validate the rockfill friction angle (zone B). Based 

on the description of the materials a minimum angle of 45° is anticipated. This value would be 
consistent with the proposed density and would provide satisfactory static factor of safety for the 
upstream slope of 1.5H:1V. Otherwise, reinforcement work may be required. 
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 Core of the dam 
Conduct laboratory tests to characterize the clay fill of the core and to determine the 

appropriate parameters to allow an accurate creep analysis of this dam. It would also be relevant 
to validate the undrained shear strength of this clay. Based on available data on similar materials, 
an undrained shear strength of 75 kPa seems high. However, the undrained shear strength of this 
material does not appear to be an issue. 

 Downstream portion of the dam 
After lowering the reservoir level, raising the downstream filter to the top of the core should 

be considered. Investigate the possibility of widening the future filter and thickening the existing 
upper filter on top of the draining fill (zone C) should be also considered. In general, the existing 
filters of this dam are very narrow. This design does not provide a large margin of safety in the 
event of local defects in this material. At first glance, concrete sand would be a good material for 
this filter. Downstream of this filter, an excellent transition must be provided in the areas with 
materials that meet the filter criteria. Although the use of draining material would be by far the 
best choice for this area of the dam, clay fill could be used downstream of the filter and transition 
zones. 

It would also be preferable to remove the clay fill (zone A) in place on the downstream face, 
which cover the draining fill (zone C) and the filter (zone E) and place an inverted filter on the 
existing filter (zone E), the refill on the filter must meet the filter criteria and be a free-draining 
material. 

 Pipes through the dam 
Where possible, all pipelines within the dam embankment should be decommissioned. The 

portion of each pipes between the upstream filters and the downstream filters should be injected 
with the most appropriate grout in order to ensure a permanent and sustainable sealing of the 
latter. 

9 CONCLUSION 

The embankment dam under study is an operating dam which has exhibited an atypical 
behavior after approximately 20 years of operation. The design of this structure, which 
incorporates pipes, suggested potential problems of internal erosion. The observations of erosion 
traces of the latter re-enforce this hypothesis.  However, analysis of the downstream portion of 
the cross-section also shows a high potential of seepage on the downstream face of the dam, 
especially if the embankment has some anisotropic permeability. The delay before the 
appearance of these wet zones in the slope would also be consistent with the clayey nature of 
the backfill material (zone A) above the draining fill (zone C) and the filter (zone E). 

A series of works are proposed in the downstream area of the dam to add lines of defense to 
the design. At a minimum, the downstream filter should be raised to the top of the core. 

The dynamic analyses performed indicate that seismic stability would be ensured. Based on 
this analysis, no uncontrolled release of water from the reservoir should be anticipated following 
an earthquake. However, it would be relevant to verify if the signal adjustments is consistent with 
the seismic hazard applicable to this dam region. Moreover, these results should be confirmed 
with additional signals. Finally, it is recommended to validate the rockfill friction angle (zone B) 
and the clay fill (zone A) undrained shear strength. 

After conducting laboratory tests to characterize the clay core fill and to determine the 
appropriate parameters to allow an accurate creep analysis of this dam, analysis to model the 
creep process is recommended. The authors are very interested to collaborate with the owner 
for this issue from a research perspective. 
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AMBIENT VIBRATION MEASUREMENTS: FEEDBACKS 
FROM MEASUREMENTS ON 20 CONCRETE DAMS AND 
COMPARISONS WITH FINITE-ELEMENT ANALYSES 

Emmanuel Robbe 
EDF Hydro Engineering Center, Le Bourget du Lac, France 

Nicolas Humbert 
EDF Hydro Engineering Center, Le Bourget du Lac, France 

ABSTRACT: This paper presents the use of ambient vibration measurement to adjust finite-
element analyses dedicated to seismic assessment of concrete dams. The paper describes not 
only the practical use of the recording devices and the processing of the signal but also some 
feedbacks from measurements on 20 concrete dams. In a second part, the calibration of finite-
element model on measured frequencies on concrete dams (gravity and arch dams) is presented 
and discussed. Considering the relative simplicity of ambient vibration measurements, calibration 
of the numerical models with measured frequencies should be recommended when it is possible. 
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1 INTRODUCTION 

EDF oversees the safety assessment of high number of concrete dams in France, including 
seismic safety assessment of dams located in certain areas. While engineers are used to calibrate 
numerical model with monitored displacements of the dam for static analyses, there was until 
recently no data to calibrate numerical model for dynamic analyses. That’s why several years ago, 
the authors started using ambient vibration measurements to better understand the dynamic 
behavior of concrete dams and validate the numerical model of the structure analyzed.  

The aim of this paper is to share with the dam engineers ‘community our general feedback 
with ambient vibration measurements and the  

2 AMBIANT VIBRATION MEASUREMENT 

 Why? 
For the static assessment of existing concrete dam using finite-element analyses, physical 

properties of the numerical model are usually adjusted to reproduce the monitored behavior of 
the dam. This is generally done by adjusting the Young modulus of concrete and rock to reproduce 
the monitored displacement of the dam under hydrostatic load (usually obtained by a statistical 
analyses of the monitored displacements). 

In the same spirit, for seismic assessment of concrete dams involving numerical analyses, 
dynamic properties of the materials should be calibrated to make sure the numerical model is 
reliable. Measurements and computations of the first frequencies of the structure provides an 
interesting way to perform such calibration.  

As for static, comparison with measurements at the scale of the whole structure are more 
relevant compare to measurement of the dynamic properties of the concrete on core sample for 
example due to the size effects or the behavior of the vertical joints for instance.  

 
Gravity and arch dams are relatively simple structure with 

relatively simple modal shape for the first modes (Figure 1), 
with the highest displacement located at the crest of the 
dam. That’s why dynamic measurements at the crest of the 
dam (usually easily accessible) are a very convenient way to 
evaluate the first natural frequencies. In the other hand, 
numerical modal analyses are also easy to perform with any 
finite-element analyses software, allowing multiple analyses 
to evaluate the best set of parameters to fit the value of the 
first frequencies. 

 
 

Figure1.  Modal shapes for gravity and arch dams 
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Finally, evaluation of the first frequency of a gravity dam in Japan by Kashima (2014) showed 
no clear difference between the first-order natural frequencies estimated based on seismic 
motion records and based on ambient vibration measurement records. Figure 2 shows that the 
first frequency evaluated from seismic event (recorded with permanent accelerometers) or 
ambient vibration measurements remain in the same rage. It should be reminded that the water 
level and the temperature conditions are responsible of variations of the value of the natural 
frequency (around 1 Hz). Such comparisons justify that natural frequency evaluated from ambient 
vibration measurements can be used for seismic assessment of concrete dams, at least if the dam 
remains under linear seismic behavior. 
 

    
Figure 2.  Comparison of the natural frequency estimated from seismic event or ambient vibration measurements 
(depending on the effect of the reservoir water level and the temperature). From Kashima (2014) 

 Records 
Records on dams are achieved using Tromino © velocimeter devices, during approximatively 

20 minutes. The device is positioned at the crest of the dam. The simplicity of the device allows 
for anybody to perform the measurement with a minimum knowledge of the device. Such 
measurements can be quickly done while visiting the dam for example. 

Until recently, independent records were acquired, on several location of the dam, allowing to 
eventually identify different frequencies considering the modal shapes. Synchronized records 
(with 3 devices linked by a cable) are now used to be able to better distinguish modal shapes from 
the data’s analyses (not described in this paper).  

Miquel (2019) provides interesting advices to improve the quality of the records (for example, 
to cover the sensor with an isolated box to reduce spurious noise at low frequency). 
 

     
Figure 3.  Position of the recording device on the crest of dams 
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 Method for signal processing of the records 
First analyses of the records can be performed with the software Grilla provided with the 

Tromino© devices or with the open-source software Geopsy for more precise treatment. EDF 
Hydro choses to develop its own software called ‘Modaloscope’. 

The aim of the signal processing is to perform an averaging of frequency quantities on a high 
number of samples, coming from the input signal. This process is perfectly described in Dunand 
(2005) and rests on several steps described on the Figure 4 and summarized below:  

• Filtering of the signal with a high pass filter (remove frequency content under 0.1 Hz), 
• Cutting of the signal in 20 seconds length samples, with a 10s covering, 
• Remove of the samples with standard deviation higher than the standard deviation of the 

whole signal (compare to a define criteria): this allows to remove part of the signal with 
high noise content because of a car passing nearby for example, 

• Windowing of each sample with a Hanning window 
• Computation of the power spectrum density (PSD) for each sample 
• Averaging of all the PSD computed 
• Modal identification using peak picking and evaluation of the frequency and modal 

damping. 
The use of this method will be presented in the next chapter dedicated to the feedback from 
measurements on dams. 

 

 
Figure 4.  From records to modal identification 
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 Results from measurements on dams 
During the last 4 years, EDF engineers performed measurements on approximately 20 concrete 

dams: arch dams, gravity dams, multiple arch dams and gate-structure dams. The results of these 
measurements are summarized in Table 1, mainly for arch, gravity and multiple arch dams.  

Velocity amplitudes range from 0.0001 mm/s for exceptionally low noise dam site to 0.03 mm/s 
for dam with loud noise, because of windy conditions, working powerhouse, or other reasons 
nearby. For such dam site, measurements do not allow to pick peaks corresponding to natural 
frequencies of the structure. Figure 5 shows the example of the frequency content at the crest of 
Sautet dam, with a working powerhouse nearby: sharp peaks with low damping (<1%) are 
characteristics of mechanical noise, covering the natural frequencies of the structure. Figure 6 
shows the frequency content at Plan d’aval dam: a pipe of water near the crest of the dam also 
generated some noise at the frequency range of the structure. 

Generally, velocities amplitudes lower than 0.005 mm/s provide clear results in the frequency 
domain, allowing to underline natural frequencies. Figure 7 shows the frequency content 
obtained for Gnioure 72m high gravity dam: first frequency at 5.4 Hz can clearly be seen. For arch 
dams, the first two frequencies are generally very close: symmetrical and anti-symmetrical modes 
are described in Figure 8 for Vouglans dam. Records at the center of the dam only shows the 
symmetrical 2nd mode at 2.8 Hz while records near the abutment only show the first anti-
symmetrical mode at 2.7 Hz. In between, records show the two peaks simultaneously. 

 
Table 1. Synthesis of the measurement and frequencies 

 
 

 
Figure 5.  Frequency content at Sautet dam (effect of the working powerhouse) 

Dam Type of dam Height (m)

average velocity 
amplitude 

(mm/s)
first mode 

frequency (Hz) comments
Tech Arch 33 0.025 lot of noise (wind)
Gage Arch 41.75 0.002 measured at the abutment, first mode not clear

Plan d'aval Arch 43.46 0.03 noise du to water pipe crossing the dam
Lanoux Arch 45.2 0.001 4.5 & 4.78 small noise due to steps or wind - 2 first modes visible

Grangent Arch 55.6 0.003 4.4
Saint Guerin Arch 70 0.002 3.76-3.93
Couesque Arch 70 0.001 measured at the abutment, first mode not clear

Chaudanne Arch 73.9 0.025 powerhouse working
Sainte Croix Arch 95 0.001 4.18

Castillon Arch 100 lot of noise (cars, pedestrian, wind)
Sautet Arch 126 0.006 powerhouse working (maybe 11.6 Hz)

Vouglans Arch 130 0.005 2.7 - 2.8
Roselend Arch - buttress 150 0.002 3.09 & 3.47
Migoellou Buttress 44 0.001 6.8 on buttress (+ low frequency content)

Girotte Buttress 48.5 0.0003 several modes depending on the location
Pinet Gravity 40 0.004 difficult to pick up the first modes

Plan d'amont Gravity 50 0.0015 6.7
Guerledan Gravity 54.6 0.002 6.5 smothening might be useful

Eguzon Gravity 61.1 0.007 6.8
Gittaz Gravity 66 0.0001 8.6 smothening might be useful

Gnioure Gravity 72 0.002 5.4
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Figure 6.  Frequency content at Plan d’aval dam (effect of a water pipe nearby) 

 

 
Figure 7.  Gnioure gravity dam frequency content 
 

Figure 8.  Vouglans frequency content: 2 first modes very close (2.7 & 2.8 Hz) 
 

For the measured arch dams, first frequencies go from 2.7 to 4.5 Hz, depending on the height, 
the shape of the valley and how fin is the arch. Water level and thermal conditions are also 
responsible of variation of the frequencies. 
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For the fourth measured gravity dams (50 to 72m high) values go from 5.4 to 8.6 Hz. Table 2 
presents some comparison between: 

• Measured frequencies for each gravity dams (Guerledan, Eguzon, Gittaz and Gnioure) 
• Computed frequency from Lokke & Chopra (2013) considering the dam-water-foundation 

interaction. For this method, the frequency relies on the moduli of elasticity of the concrete 
and the foundation. 3 sets of parameters will be used here: soft materials with Ec=20GPa, 
Ef=15 GPa, medium materials with Ec=30GPa, Ef=25 GPa, stiff materials with Ec=35GPa, 
Ef=35 GPa. For the water interaction, the reservoir is supposed full (almost the case during 
the measurements) and the wave reflection coefficient is set to 1. 

• Computed frequency from Tardieu (1993) formula for the full reservoir: 𝑁𝑁 = 0.17 ∗ 𝐻𝐻
𝐻𝐻

 
where S is velocity of the shear wave computed from the modulus of elasticity and the 
density of concrete, and H the height of the dam. 3 assumptions are considered with 
moduli of elasticity at 20, 30 and 40 GPa. 

 
The comparison shows that frequency computed by Chopra are underestimated, even with 

the assumption of stiff materials. This is probably because the method was developed with the 
assumption of a 2D shape while some 3D effect tends to stiffen the structure. This is particularly 
the case for Gittaz, Eguzon and Gnioure dams that are curved. Tardieu formula, that doesn’t 
consider the stiffness of the foundation, provide for that reason higher frequencies. In any case, 
with uncertainty of the stiffness of the materials, the gap between measured and computed 
frequency can be quite important, between 1 and 2 Hz, even higher for gravity dams in a narrow 
valley. 
 
Table 2. Comparison between frequencies measured and computed from Chopra and Tardieu formulas 
with several assumptions (Ec=concrete modulus, Ef=foundation modulus) 

 

3 COMPARISON WITH FINITE-ELEMENT ANALYSES 

Seismic assessment of concrete dams requires to deal with a lot of uncertainties: seismic 
hazard evaluation, accelerograms selection for time-history analyses, introduction of the seismic 
load in the numerical model, non-linear behavior of the structure, dam-water-foundation 
interaction model, selection of the damping value, dynamic properties of the materials (concrete 
and foundation). The knowledge of the measured first natural frequencies of the dam allows to 
reduce the uncertainty relative to this last assumption.  

Without frequencies measurements on dams, dynamic moduli of elasticity are generally 
considered from sample core tests. Doing this, ratio between static and dynamic moduli of 
elasticity have been summarized in the ICOLD bulletin 2009, reminded in Table 3. In the engineer 
practice, the dynamic/static ratio of 1.25 is very often considered but it should be reminded that 
such value is valid for sample core tests only. 

 
  

Ec20/Ef15 Ec30/Ef25 Ec35/Ef35 Ec20 Ec30 Ec40
Guerledan 46.8 6.5 2200 4.9 5.8 6.1 7.1 8.7 10.0

Eguzon 62.1 6.8 2300 3.8 4.5 4.8 5.2 6.4 7.4
Gittaz 66 8.6 2400 3.6 4.2 4.5 4.8 5.9 6.8

Gnioure 72 5.4 2400 3.2 3.7 4.0 4.4 5.4 6.2

Frequency computed from 
Chopra (Hz)

Frequency computed 
from Tardieu (Hz)

Dam Height(m)

Frequency 
measured 

(hz)
Density 
(kg/m3)
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Table 3. Results from investigations for seismic moduli of elasticity (ICOLD Bulletin 2009) 

  
For the static assessment of arch dams, the French guidelines (CFBR 2018) recommend 

calibrating the finite-element model with the monitored displacement of the dam. This is usually 
done with the following steps:  

• Statistical analyses of the monitored displacements to evaluate the displacement due to 
the hydrostatic load only (using HST or HSTT analyses for example), 

• Finite-element analyses of the dam with increasing hydrostatic load and computation of 
the displacements at the location of the displacement monitoring devices, 

• Calibration of the static moduli of elasticity of concrete and foundation for the finite-
element model to correctly reproduce the radial and tangential displacements of the arch 
for hydrostatic load only. 

For the seismic assessment of concrete dams, the dynamic moduli of elasticity could also be 
adjusted compare to the measured natural frequencies of the dam, based on ambient vibration 
measurements, with the following steps: 

• Calibration of the concrete and foundation moduli of elasticity as previously described 
• Modal analyses of the dam considering fluid-structure and soil-structure interaction to 

evaluate the first frequencies (at least 1st frequency for a gravity dam, and 1st and 2nd 
frequency for arch dams) 

• Evaluation of the ratio rsd such 𝑀𝑀𝑑𝑑𝑦𝑦𝑛𝑛 = 𝑒𝑒𝑠𝑠𝑑𝑑𝑀𝑀𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡  with Edyn and Estat the dynamic and static 
moduli of elasticity. This ratio is supposed identical for concrete and foundation. 

 
In the engineering practice, this ratio rsd is considered at 1.25, misguided by the reference of 

the ratio proposed by ICOLD 2009 from core sample tests. The static moduli adjusted from the 
monitoring behavior are actually different from the static moduli from sample core tests: such 
moduli take into account the effect of the vertical contraction joint and some creep component 
coming from the time scale (weeks / month) of the hydrostatic loads change. 

The following chapters describe the calibration process of finite-element model for the seismic 
assessment of gravity and arch dams.  

 Gnioure gravity dam 
Gnioure dam is a 72m high gravity dam, with a curved part near the left abutment (Figure 9). 

A 2D finite-element model is developed (Figure 10). The static elastic moduli of the concrete and 
the foundation are calibrated to reproduce the monitored radial displacement of the crest and 
the toe of the dam as shown in Figure 11. The moduli of concrete and foundation are respectively 
27.5 GPa and 50 GPa. The static modulus of foundation is particularly high, probably du the 
narrow shape of the valley at the bottom of the dam involving 3D effect. 

Figure 12describes the several steps to adjust the finite-element model on the 5.4 Hz first 
frequency measured (Table 2) on the dam at almost full water level by gradually increasing the 
stiffness of the concrete and foundation by a constant ratio:  

• With Westergaard added masses for the fluid-structure interaction, a dynamic/static ratio 
of 1.85 is required to reach the targeted frequency 

• With acoustic fluid element for the fluid-structure interaction, the increase of the stiffness 
materials does not allow to reach the targeted frequency due to the 2D reservoir frequency at 
 𝑓𝑓𝑎𝑎 = 𝑒𝑒

4𝐻𝐻� = 1440
4 × 72� = 5.1 𝐻𝐻𝑚𝑚 
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• A 3D more realistic finite-element model of the reservoir shows that frequency of the 
reservoir is at 6.8 Hz 

• The 2D finite-element model is artificially improved by considering a more realistic level of 
the foundation under the reservoir and slightly reducing the velocity of the wave in the 
fluid to get a more realistic reservoir frequency in 2D. 

• Finally, a similar dynamic/static ratio of 1.85 is obtained for the finite-element model with 
fluid elements. 

 
Despite the limitation of the representation of a 3D problem with a 2D finite-element model, 

the analysis shows that an important increase of the stiffness must be considered to adjust the 
dynamic elastic moduli from the static moduli. For gravity dams, this result need to be confirm 
with other examples. 

 
Figure 9. Gnioure gravity dam 

 

  
Figure 10.  2D finite-element model of Gnioure dam (initial and with raise foundation elevation in the reservoir 

 

 
Figure 11.  Calibration of the static moduli compared to monitored displacement at the crest and at the toe 
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Figure 12.  Evaluation of the dynamic / static ratio for Gnioure gravity dam 

 Vouglans arch dam 
Vouglans dam is a 130m high arc dam with a normal reservoir level at 427m. Two sets of 

measurement were carried out, allowing to evaluate the first frequencies as previously 
presented:  

• 9/03/2021, reservoir at 416.5, first frequencies are 2.7, 2.8, 3.7 Hz, 
• 5/10/2021, reservoir at 420.2, first frequencies are 2.6, 2.75, 3.6 Hz. 

A static finite-element analysis of the dam with an increasing hydrostatic load allows to 
calibrate the static moduli for concrete and foundation based on the monitored displacement of 
the arch. 

Modal analyses with fluid element (mesh and modal shapes on Figure 13) are performed with 
an increasing dynamic/static ratio for elastic moduli assumptions. Figure 14 presents the 
evolution of the frequency computed and measured, function of the water level: when dynamic 
moduli are equal to static moduli, the frequencies are underestimated. A dynamic / static ratio of 
1.5 allows to adjust measured and computed frequencies (the 2nd frequency become slightly 
overestimated). 

With such assumptions for the dynamic moduli of elasticity, if the fluid elements are replaced 
by Westergaard added masses, these masses should be reduced by a factor 2 to keep similar 
frequencies under modal analyses.  

 

6  
Figure 13.  Mesh of Vouglans dam and shape of the first two modes 

 

Measured frequency 5.4 Hz 

72m high reservoir frequency 5.1 Hz 
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Figure 14.  Evaluation of the dynamic / static ratio for Vouglans dam 

 Other arch dams 
Similar analyses and comparison were performed on other arch dams. Table 4 describes the 

main results of the comparison based on the frequencies measurements. There are no constant 
rules that can be defined bases on the 4 dams studied nevertheless, on 3 cases, the 
dynamic/static ratio for elastic modulus is higher than 1.5. Such value would not have been 
considered without ambient vibration measurements. 

Comparison between fluid-structure interaction based on Fluid elements or Westergaard 
added masses shows that an important reduction of the added masses is mandatory for arch 
dams to remain in a similar range of frequencies. 

 
Table 4. Results from calibration on arch dams 

 
(*) specific assumptions are considered due to the orthotropy of the foundation 
(**) value with usual Westergaard added masses 

4 CONCLUSION 

This paper describes some practical advices for simple evaluation of the first natural 
frequencies of concrete dams using ambient vibration measurements. At the crest of the dams 
with one or few devices, performing a record is quite simple and can be done by non-specialist, 
during a routine visit of the dam. It’s recommended to avoid all conditions that can generate 
disturbing noises: working powerhouse, wind conditions, pipe with running water nearby. Short 
duration noises such as cars or pedestrians crossing nearby can be removed from records and do 
not disturb the results. Processing the signal to extract the natural frequencies is a more complex 
task but fully documented and the authors chose to develop their own tools considering the 
number of dams managed by EDF. Results of measurements on 20 concrete dams are 
summarized. 

Comparison between frequencies measured and computed (from simplified formula or FE 
analyses) shows significant gaps: comparison for gravity and arch dams shows that from a 

concrete foundation
Lanoux 4.5 & 4.8 20 (*) 1.75 0.6

Roselend 3.0 & 3.5 35 25, 12 & 8 1.8(**)
Saint Guerin 3.8 & 3.9 32.5 15 1 0.5

Vouglans 2.7 & 2.8 38.5 32.5 1.5 0.5

Dam

modulus from static 
calibration(GPa)

first mode 
frequency (Hz)

Dynamic / 
static ratio from 

frequency 
calibration

reduction of 
Wstg added 

masses
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dynamic point of view, dams are stiffer than expected at first. If the static elastic moduli for 
concrete and foundation were calibrated compare to monitored displacement under hydrostatic 
load, dynamic/static ratio reaches 1.8 for several dams. Considering the first frequencies of dams 
are generally lower than the peak of the design spectrum (for relatively high dams), 
underestimation of the dam frequency leads to an underestimation of the dam’s response under 
earthquake. For arch dam, analyses also show that Westergaard added masses should be reduced 
to correctly fit the measured frequencies. 

 From the authors ‘point of view, seismic assessment of dams is already full of uncertainty 
(seismic hazard definition, accelerograms selection, seismic loading on the numerical model, 
mechanical behavior of the structure (linear, non-linear, damping). Considering the relative 
simplicity of ambient vibration measurements, calibration of the numerical models with 
measured frequencies should be recommended when it is possible. 
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ABSTRACT: Buttress (both solid or hollow) or multiple arch/slab dams are a type practically 
abandoned internationally, even if there are some relatively recent examples of the 70s-80s (e.g., 
Haen dams, 1963 and Storfoss, 1982, in Norway). In the Italian context there are numerous 
examples of this type of works built between the two World Wars and immediately after the II 
World War. A total of 37 dams are in operation (40% buttress, 30% hollow gravity, 30% multiple 
arch/slab). The problems of these structures are known: cracks (generally caused by phenomena 
of thermal origin, differences of the buttresses height, expansive chemical reactions, etc.), 
degradation associated with environmental conditions (e.g., due to corrosion of the 
reinforcement bars when present), phenomena of aging and degradation. To these problems 
some critical issues are added related to compliance with current legislation which requires the 
verification of more stringent conditions not foreseen in the design phase (e.g., higher seismic 
loads or more up-to-date criteria on the evaluation of uplift pressures). The verification of these 
structures has highlighted the need to systematize the knowledge of the phenomena that gave 
rise to the problems mentioned above, to deepen the evolutionary dynamics of decay and 
cracking states, to share the experiences on rehabilitation interventions. Numerical modelling has 
certainly contributed significantly to the understanding of the phenomena and to the evaluation 
of the structural behaviour depending on the applied actions. Some of the above-mentioned 
problems were topics of the Benchmarks proposed by the ICOLD Technical Committee 
“Computational Aspects of Analysis and Design of Dams”. This article presents an overview of the 
problems concerning this type of dams and highlights the support that numerical models can 
offer for the evaluation of their safety and to identify the most effective interventions for long-
term safety conditions.  
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1 INTRODUCTION  

The construction of large dams is closely related to the development of the hydroelectric sector 
which was the backbone of the industrialization process in many European countries since the 
last part of the nineteenth century and the beginning of the twentieth.  

The need to exploit the water resource for energy purposes leads to a great development of 
the dams; just think that Italy went from about a dozen dams at the end of the nineteenth century 
to almost 400 only in the first half of the twentieth century.  

As in all industrial processes, the necessity to increase the hydroelectric production and 
development necessarily led to the need to maximize benefits above all by reducing the costs and 
construction times of dams. The goal was to achieve the maximum manufacturing economy while 
still ensuring an adequate degree of safety.  

These are the principles, combined with the socio-economic context that characterized those 
years, which led to the evolution of the construction techniques of the dams.  

At the base of this process there are then some fundamental elements such as:  
• the evolution of material and labour costs; 
• progress in geological and geotechnical investigations and in the treatment of foundation 

soils; 
• advances in the static assessment of structures; 
• the knowledge acquired on the basis of the monitoring of the although still few works in 

operation; 
• advances in the material technology, in the construction machinery and equipment and in 

the entire production process. 
Already at the beginning of the twentieth century there was a trend towards the optimization 

of the shape of dams marked by an economy of volume.  
The first constructions based on this evolutionary trend, focused on a decisive saving of volume 

and therefore of materials, occurred in the first twenty-five years of the 1900s with concrete 
buttress dams connected by slabs or vaults. However, the collapse of the Gleno Dam, belonging 
to this type of construction, on 1st December 1923 effectively sanctioned the end of this type of 
dams [Barbisan, 2007]. Figure 1 shows two images of the Gleno Dam before and after the 
collapse.  

  

 
Figure 1.  Gleno Dam before (left) and after (right) the collapse.  
  

From the investigations conducted to identify the responsibilities, it appears that the cause of 
the collapse was attributable to the poor execution of the massive gravity foundation pad that 
blocked a gorge in the central part of the work.  

This event generated a sense of mistrust towards "lightened" dams in general, which in the 
years immediately following led to the prevalence of more massive structures that found 
development in Italy until the early 1960s.  

Subsequently, the increase in the cost of labour, having a much greater impact for these works 
than for gravity dams, no longer found compensation in the reduction of volumes. The evolution 
of construction machinery has also contributed to the abandonment of “lightened” gravity dams,  
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favouring the evolution of more massive gravity structures and, more recently, with a reduced 
cement content (this is the case of Rolled Compacted Concrete dams).  

Figure 2, Figure 3 and Figure 4 show the three different types of dams that are the subject of 
this report: buttress, hollow gravity, multiple arch/slab dams, respectively.  

  

  
Figure 2. Buttress dam.  

  
  

 
Figure 3.  Hollow gravity dam.  

  
  

 
Figure 4.  Multiple arches dam.  
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2 MAIN PROBLEMS AND RESTORATION INTERVENTIONS  

To systematize the knowledge relating to the behaviour of these structural types and the most 
appropriate criteria for assessing their safety, ITCOLD has set up the Working Group "Behaviour, 
problems, rehabilitation of hollow gravity, buttress and multiple arch/slab dams" and assigned the 
following Terms of Reference:  

• Reconnaissance of the construction aspects. 
• Reconnaissance on problems associated with this dam types. 
• Reconnaissance of the remediation works. 
• Methodologies of investigation. 
• Monitoring methodologies. 
• Criteria and methodologies for safety re-evaluation. 

Figure 5 shows the trend of the construction of dams in Italy and the progression of 
rehabilitation interventions since the 1970s.  
  

 
Figure 5.  Progress of the construction of dams in Italy and the progression of rehabilitation interventions 
since the 1970s.  

 
Before addressing the specific problems of this type of dams, it is appropriate to recall what is 

reported in the ITCOLD Bulletin [ITCOLD, 2018] regarding the various criticalities encountered in 
the dams of any type in operation and the related remediation interventions that mainly 
concerned structural deficiencies and inadequacy of the outlet works. Over 60% of the reports 
refer to:  

• Structural problems.  
• Insufficient impermeability of the dam body and of the grout cut off.  
• Inadequate response to external or internal actions.  

 
Over 30% of the reports belong to the category of inadequacy of the outlet works:  
• Insufficient dimensioning of the outlet works.  
• Inadequacy of the interception organs.  
• Inadequate response to external actions (floating or sedimented material).  

Table 1 shows the list of 37 Italian dams of this type indicating their main characteristics and 
whether rehabilitation works have been carried out.  
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Table 1. Italian multiple arch/slab, buttress and hollow gravity dams.  

Dam  
name 

Year of 
construction 

Type Hight 
(m) 

Volume of  
reservoir (Mm3) 

Rehabilitation 
works 

Alto Temo 1984 Buttress 54.1 91.1  

Ancipa 1952 Hollow gravity 104.4 30.4 YES 

Bau Muggeris 1949 Hollow gravity 58.7 61.4 YES 

Bau Pressiu 1972 Buttress 52.9 8.5  

Brugneto 1964 Buttress 22.5 0.95  

Casoli 1958 Buttress 47.0 21.0  

Combamala     1916 Multiple slabs 35.0 0.4 Decommissioned 

Corbara       1963 Buttress 52.0 192.0 YES 

Fedaia         1954 Buttress 63.9 16.7  

Fontanaluccia   1928 Multiple arches 40.0 2.7  

Gioveretto       1956 Buttress 81.4 19.98 YES 

Lago di Trona   1942 Hollow gravity 53.0 5.35 YES 

Lago Eugio     1959 Buttress 48.5 4.95 YES 

Lago Inferno     1944 Hollow gravity 37.0 4.17 YES 

Lago Venina     1926 Multiple arches 44.5 11.19 YES 

Liscia         1962 Hollow gravity 65.0 105.13  

Lomellina       1910 Buttress 19.9 0.25 YES 

Malga Bissina   1957 Hollow gravity 81.0 61.0  

Malga Boazzo   1956 Hollow gravity 53.5 12.26  

Molato      1928 Multiple arches 52.6 8.24 YES 
Montagna 
Spaccata2 

1958 Buttress 14.4 9.05  

Ozola 1029 Multiple arches 27.5 0.09  

Pantano 
D’Avio      

1952 Hollow gravity 59.0 12.67 YES 

Pavana 1925 Multiple arches 52.0 0.9  

Pian Sapeio  1926 Multiple arches 17.5 0.22 YES 

Poglia 1950 Hollow gravity 49.4 0.5 YES 

Ponte Vittorio 1956 Hollow gravity 36.0 0.53  

Rio Lunato 1920 Multiple arches 24.0 0.11 YES 

Sa Cantoniera  1996 Buttress 93.2 748.2  

Sabbione  1953 Hollow gravity 61.0 44.12  

San Domenico 1927 Multiple arches 28.9 1.16  

San Giacomo  1950 Hollow gravity 83.5 64.0 YES 

Scais  1939 Hollow gravity 60.0 9.06 YES 

Sos Canales 1959 Buttress 47.0 4.34  

Valgrosina  1959 Hollow gravity 51.5 1.34 YES 

Veneracolo 1958 Hollow gravity 26.9 2.55 YES 

Vinchiana  1952 Buttress 22.2 0.12  
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3 THE CONTRIBUTION OF NUMERICAL MODELING TO THE ASSESSMENT OF 
STRUCTURAL SAFETY  

The buttress, hollow gravity and multiple arch/slab dams were a clear example of an approach 
to structural optimization: the “lightened” shape was obtained, in fact, from a simple but 
somewhat articulated evaluation between the resistance of the material (concrete or reinforced 
concrete) and the real work rate of the same in operating conditions.  

Also, for this typology of dams, the conceptual calculation model used in the past to carry out 
the regulatory assessment was traced back to a triangular static scheme that recalled the much 
better-known scheme adopted for massive gravity dams.  

The possibilities offered by numerical modelling - and of the Finite Element Method (FEM) in 
particular - have allowed, since the early 1990s, to deal with the study of the behaviour of these 
structures in a particularly effective way, both in the design phase and in the verification of 
behaviour in different operating conditions or to analyse exceptional or extreme conditions such 
as seismic actions.  

Already in the first Benchmark Workshops organized by the ICOLD Technical Committee 
“Computational Aspects of Analysis and Design of Dams” topics concerning this type of dams 
were proposed. The salient aspects of the three cases examined between 1994 and 2005 are 
summarized below.  

 Benchmark Workshop # 3 - Theme A2: Evaluation of critical uniform temperature 
decrease for a cracked buttress dam (2D analysis) - Gennevilliers, France, 29th -30th 
September 1994.  

Theme A2 proposed in the BW3 [ICOLD TCA, 1994] concerned the numerical evaluation of a 
uniform temperature decrease capable to give rise to the propagation of a pre-existing cracks in 
an idealized 2D buttress dam.  

With regard to numerical modelling of cracking phenomena, different methods can be adopted 
according to the kind of problem to be solved, namely: initiation, stability or growth of cracks. In 
Theme A2, a crack stability problem was proposed.  

The participants were asked to evaluate the critical uniform temperature decrease which gives 
rise to a critical stress state at the tip of the crack that leads to the propagation of the crack itself. 
This temperature initial state has been conventionally assumed to correspond to a uniform 
temperature of 0º C. A uniform thermal distribution in the dam (both slab and webs) is to be 
considered. The foundation is assumed to remain at constant average temperature (0º C).  

The temperature value capable to gives rise to a critical stress state at the tip of the crack was 
required to be defined for five different crack lengths: 0.5 m; 2.0 m; 10.0 m; 20.0 m; 40.  m.  

The analyses were executed for two different foundation scenarios: rigid and deformable 
foundation. For both cases, a plane (2D) analysis (plane stress for the buttress and plane strain 
for the foundation) was required.  

The main geometrical data are reported in Figure 6.   
The Finite Element (FE) meshes relevant to both rigid and deformable foundation were given 

by the formulators to the participants. However, considering that for this type of problems the 
adopted FE meshes are tightly connected with the algorithm adopted in the analyses, the 
proposed FE meshes were considered just as a suggestion.  
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Figure 6. Geometrical data of the ideal case proposed in the BW3.  
  

The contributors provided a selected set of results for both foundation schemes (rigid and 
deformable) and for the five defined crack lengths. In addition, contour maps of horizontal and 
vertical displacements were requested.  

The results presented by the participants showed generally good agreement. The observed 
discrepancies were attributed to the use of different meshes and interpolations methods. Some 
results provided by the participants are presented in Figure 7 and Figure 8.  

 
 

Figure 7. Rigid foundation. Relationship between crack length and the associated critical temperature (left). 
Maximum openings relative to different crack length (right).  
  
  

  
Figure 8.  Flexible foundation. Relationship between crack length and the associated critical temperature 
(left). Maximum openings relative to different crack length (right).  

 Benchmark Workshop # 4 - Theme A2: Evaluation of stress intensity factor KI 
along the tip of the crack in a buttress dam under thermal gradient effects (3D 
analysis). - Madrid, Spain, 25th -27th September 1996.  

The Theme proposed in the BW4 [ICOLD TCA, 1996] concerns the application of a thermal 
gradient across the thickness of a buttress dam, using a three-dimensional analysis. The 
geometrical data of the idealized dam are reported in Figure 9.  
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Figure 9.  Buttress dam: a) cross section with vertical crack close to foundation; b) 3D illustration of 
computational references points along the crack surfaces and tip.  

  
No FE mesh was provided since a suitable mesh for Stress Intensity Factor (SIF) evaluation is 

tightly connected with the algorithm adopted by each participant. Nevertheless, in order to allow 
the comparison of the results, SIF results were requested at nine points along the crack tip.  

The crack tip develops into a line across the thickness of the buttress. For sake of simplicity, 
the crack tip follows a straight path across the thickness of the buttress, normal to the external 
surface.  

The analysis followed two steps: a first step with time-constant temperature loading, varying 
per surface, for complete opening of the crack surfaces and a second step with a periodic time 
history for temperature, which generates opening-closing cycles of the crack surfaces. The main 
challenges were:   

• the temperature field evaluation as a function of time for the assigned boundary 
conditions;  

• the stress field evaluation (3D static non-linear structural analysis, with non-linearities 
arising from the unilateral behaviour of the crack surfaces interaction, i.e., joints);  

• the Stress Intensity Factor KI evaluation across the thickness of the buttress as a function 
of the position along the crack tip for each time considered.  

 
The contributors provided detailed results of temperature and SIF along the crack tip, as well 

as displacements at selected points, for both the time-constant scenarios and two temperature 
time histories (winter and summer conditions).  

SIF distributions along the crack front for one of the exercises proposed (# A2.2) provided 
insight on the effect of contact modelling (Figure 10).  

The results are considered satisfactory in terms of validation needs, taking into account that 
the solutions provided are characterized by the use of different codes, different methods of 
calculating the stress intensity factors, and use of different type of contact elements. Hence, it 
was concluded that different modelling approaches were able to provide a consistent and narrow 
band of solutions for the engineering problem.  
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Figure 10.  KI variation along the crack tip.  

  Benchmark Workshop # 8 - Theme A: Evaluation of alkali-aggregate reaction 
effects on the behaviour of an Italian hollow gravity dam. - Wuhan, China, 23rd -30th 
October 2005.  

The Poglia Dam is a large concrete hollow gravity structure, located in the northern part of 
Italy, for the purpose of hydroelectric power generation. The dam is 50 m high and the crest is 
137 m long. The construction works took place in 1949-1950. The dam (Figure 11, left) consists 
of four  

hollow diamond-head buttresses and two solid lateral gravity shoulders.   
Since the seventies, hence roughly twenty years after its construction, the dam started to 

exhibit a drift in the displacements (detected by plumblines, collimation and levelling systems). 
In particular, in the main block the drift was estimated to be 1 mm per year in the vertical direction 
and 0.2 mm per year in the upstream-downstream direction. After a thorough investigation (i.e., 
laboratory tests and in situ investigations), the Alcali Aggregate Reaction (AAR) expansion 
phenomenon was recognized to be the cause of this drift.  

Due to the non-straightness of the crown of the dam, the problem was particularly complex to 
establish BW parameters. Hence, for the sake of simplicity, in the benchmark the effects of AAR 
were only assessed for the main hollow gravity block for the evaluation of the stability against 
sliding. The provided geometry consisted of the block and a portion of the rock. The dam-
foundation interface was included as well.  

The aim of the proposed Theme [ICOLD TCA, 2005] was the evaluation of AAR effects on the 
operational and ultimate stability of the main block of the dam. Thus, the results of two loading 
paths had to be compared, with and without the AAR expansion:  

• Dead weight + hydrostatic and uplift pressure.  
• Dead weight + AAR expansion + hydrostatic and uplift pressure.  

 
In both cases, two water levels were considered: the operational (630 m a.s.l.) and the ultimate 

reservoir elevation, which had to be found by participants (Figure 11, right). The presence of the 
drainage system was not considered.  
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Figure 11.  Downstream view of Poglia Dam (left) and geometry of the main block and water heights to be 
considered (right).  

  
The total vertical drift displacement at the top of the main block was provided to allow the 

calibration of the AAR expansion phenomena.   
In order to evaluate the AAR effects on the global behavior of the dam, the results related to 

the analyses with and without the AAR expansion had to be compared in terms of curves 
evaluated considering the water height vs the horizontal displacement at the top of the block.  

The limited number of participants did not allow to carry out an extensive comparison of results 
obtained through different methodologies or models. Anyway, some interesting comparisons 
relative to the application of two computer codes (the general purpose ABAQUS and the in-house 
CANT-SD) have been possible. Figure 12 shows the comparison of results obtained with the two 
codes considering or neglecting the effects of AAR.  

The different computed behavior is due to the different characteristics of the joint model 
adopted by CANT-SD and ABAQUS. In fact, the ABAQUS joint model did not consider cohesion, 
while CANT-SD did.  

Some general considerations can be drawn:  
• self-balanced actions such as AAR does not seem to influence sliding limit equilibrium 

condition provided that the stresses in the dam body do not give rise to the formation of 
(local or global) mechanisms caused by damages in the dam body;  

• with reference to the statement described just above, different limit states relevant to the 
concrete strength capacity (tensile strength, in general) require the use of suitable models 
capable to keeping into account smeared or discrete crack formation and propagation or, 
at least, of damage models;  

• the complexity level of the models used to carry out numerical analyses has to be adequate 
to the data completeness and quality. This last statement, in spite of its apparent 
obviousness, is sometime underestimated by numerical analysts.  
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Figure 12.  Comparison of displacements at the dam crest computed with CANT-SD and ABAQUS.  

 Innovative methods to simulate crack propagation: the eXtended Finite Element 
Method  

The eXtended Finite Element Method (XFEM) is a numerical technique especially designed for 
modelling crack growth without remeshing [Moës et al., 1999]. A standard displacement-based 
approximation is enriched by local functions in conjunction with additional degrees of freedom 
to model cracks. This approach allows to simulate the crack propagations without modifying the 
mesh: a crack can develop inside a finite element (Figure 13, left).  

To facilitate the evaluation of the enrichment functions and their derivatives, in most XFEM 
codes the Level Set Method (LSM) is employed. According to this method, surfaces are not 
represented explicitly but level set functions are used instead. In general, two levels set functions 
are considered, Φ and Ψ (Figure 13, right).  

The nodal value of the function Φ represents the distance of the node from the crack face: the 
value is assumed positive on one side of the crack face and negative on the opposite face. The 
set of points for which the function Φ is zero describes the crack surface.  

The nodal value of the function Ψ represents the distance of the node from an almost-
orthogonal surface passing through the crack tip: the values of function are assumed negative on 
the side towards the crack. The intersection of the two levels sets gives the crack front.  

Making reference to the example in Figure 13, the value of the function Φ in nodes 1 and 2 is 
respectively equal to 0.25 and -0.25; whereas the value of function Ψ in nodes 1 and 2 is 
respectively -1.5 and -1.0.  

To model the crack propagation, different techniques can be used such as the cohesive 
segment approach or the Linear Elastic Fracture Mechanics (LEFM)-based approach.  

The XFEM could be usefully applied to study the crack initiation and propagation in concrete 
dams. In Figure 14. a first XFEM application on a concrete buttress dam is provided [Frigerio, 
2020]. Buttress dams exhibit a particular crack pattern generally due to the thermo-mechanical 
phenomena occurring during construction while further propagation of a crack is mainly related 
to the ambient temperature variation.  
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Figure 13.  An arbitrary crack on a uniform mesh (left) and the two-levels set functions generally used in 
XFEM to describe a crack and tracking its motion (right).  

  
The thermo-mechanical analysis has been carried out by means of ABAQUS which provides the 

XFEM, simulating a three-years period of seasonal temperature variation. In Figure 14. (left 
picture) the geometric model of the buttress is shown, whereas the contour (right picture) is 
related to the STATUSXFEM parameter which describes the status of an enriched element. This 
parameter is equal to 1.0 if the element is completely cracked and 0.0 if the element contains no 
crack. If the element is partially cracked, the value of STATUSXFEM lies between 1.0 and 0.0. A 
crack initiation surface was inserted a priori into the geometric model along the foundation 
interface (Figure 14., left), because this type of fractures takes place during construction but, in 
this test case, the thermal phenomena occurring during the casting sequence have not been 
modelled. The numerical results show how the crack propagates towards the upper part of the 
buttress due to temperature variation: the rate of propagation is greater in the first year and it 
slows down in the following ones.  

  

  
Figure 14.  XFEM applied to model the crack propagation in a concrete buttress dam: geometric model with 
the crack initiation surface (left) and contour of the STATUSXFEM parameter (right).  

 The seismic behaviour of buttress, hollow gravity, multiple arch/slab dams  

Strong earthquakes can cause major damage to all types of structures. Modern FEM numerical 
calculation methods allow today to face seismic analysis of dams with much greater reliability 
than in the past, even if further research and development activities are necessary due to the 
(fortunately!) limited number of dams that have suffered earthquakes of strong intensity.  

The dams, in fact, have shown over time to be rather resilient structures with regard to seismic 
actions. On the other hand, to date, there is no information on dams that have suffered an 
earthquake of an intensity comparable to MCE (Maximum Credible Earthquake).  

In 2011 an interesting article was published [Nuss et al., 2011] in which the performance of 19 
concrete dams that have suffered earthquakes of medium-high seismicity with a PGA greater 
than 0.3g was reported. The survey included arch, gravity and buttress dams.  
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Of the 19 examined dams, only 5 had sustained significant damage. In 4 of these cases the 
damage was repaired, and the dam returned to normal service. The fifth case refers to the great 
river crossing of Shih Kang (Taiwan) built on a fault that suffered so severe damage that it was put 
out of service.  

From the investigation conducted by Nuss et al., two buttress dams were damaged by 
earthquakes: the Hsinfengkiang Dam (China) and Sefid Rud Dam (Iran).  

In both cases the cracks that formed in the structures were horizontal and were highlighted in 
the upper part of the dams where there is the variation of the profile of the downstream face, as 
can be clearly seen in Figure 15 and Figure 16, where there is a sudden change in stiffness in the 
geometry of the dams.  

 

  
Figure 15.  The downstream view of the Sefid Rud Dam (left) and cracks after the earthquake (right).  

  
  

  
Figure 16.  The Hsinfengkiang Dam after the earthquake.  

  
  
In the case of the Sefid Rud Dam (and probably also in the case of the Chinese Hsinfengkiang 

Dam), the cracks in both faces created a substantial sub-horizontal rupture plane without 
associated significant sliding, probably due to the high value of the shear strength in concrete due 
to the roughness of the surface and the effect of the overlying weight.  

A situation somewhat similar to the two described above is that relating to the well-known 
case of the Koyna Dam, in India (Figure 17).  
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Figure 17.  The Koyna dam after the earthquake.  

  
In this case, the cracks that appeared on the two upstream and downstream sides in the upper 

part of the dam fortunately did not manage to create a rupture surface. In any case, the position 
of the cracks caused by the earthquake is substantially similar to what has been observed in the 
two cases of the aforementioned buttress dams.  

The article by Nuss et al. cited above briefly describes some interesting cases of buttress dams 
that have been the subject of reinforcement interventions to cope with the expected stresses on 
the basis of the seismic re-evaluation of the sites where the works are located. Here below two 
cases are briefly described.  

The Big Bear Dam (a multiple arches structure built in 1912, 28 m high, with a 110 m crest 
length) was rehabilitated in 1989 for a project earthquake with a PGA of 0.71 g. The adaptation 
project was necessary both for fear of seismic actions (the work is located just 16 km from the 
San Andreas fault in the S. Bernardino mountains, 80 km east of Los Angeles) and for the need to 
adaptation of outlets.  

The structure was reinforced with the partial filling of the compartments by means of the 
massive concrete casting which substantially reduced the extension of the buttresses. The 
intervention involved the execution of completion castings to ensure the monolithic behaviour 
between the old and new structure (Figure 18). It is interesting to note that in 1992, at one day 
from each other, there were two events estimated with magnitudes equal to 7.3 and 6.6 located 
respectively at 28 and 9 miles from the dam site.  

The estimated PGA at the dam site was 0.35 g. The inspection carried out immediately after 
the earthquakes did not show any damage to the structure.  

The second case refers to the Littlerock Dam, California (a multiple arch structure built in 1924, 
53 m high, with a crown of 219 m), rehabilitated in 1994 for a project earthquake with a PGA of 
0.70 g. The dam is located just 1.5 miles from the San Andreas Fault.  

The studies conducted for the evaluation of the safety conditions of the work had highlighted 
its potential vulnerability with regard to transversal actions. Therefore, it was decided to reinforce 
the structure with the partial filling of the compartments according to the scheme illustrated in 
Figure 19.  
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Figure 18.  The Big Bear Dam: vertical section of the structure being filled with massive concrete.  
  
  

  
Figure 19.  The Littlerock Dam: a) the structure seen from the mountain; b) vertical section of the 
intervention with partial filling of the rooms with concrete (RCC).  

4 CONCLUSIONS  

Water is an indispensable resource for human life and its use must primarily be aimed at 
satisfying human needs (water supply for drinking and irrigation purposes). A company must pay 
attention to the rational use of this strategic resource reconciling all these needs with the 
objectives of industrial development, energy production and environmental protection that each 
Country has to foster within the framework of a common European policy.  

However, in Italy the construction of new dams is experiencing a very unfavourable phase both 
at the political level and in the public opinion due to numerous factors:  

• Financial constraints (due to the persistent critical phase of public finance and the low 
propensity of the private one to long-term investments). 

• Intense anthropization of the Italian territory. 
• Reduction of favourable sites from a geo-morphological point of view. 
• Administrative and legislative constraints (e.g., regional constraints on the Minimum Vital 

Outflow). 
• Competition between the “multiple uses” of the water resource. 
• Widespread hostility from pressure groups. 

 
The managers of hydro and hydroelectric plants therefore have to face complex problems 

related to the safety of infrastructures that in some cases have also exceeded what is considered 
their design service life.  

Dams are the product of the application of successive design and construction criteria. A 
further aspect to take into account when considering dam safety concerns the fact that the safety 
levels of the structures are inevitably not homogeneous due to the evolution of the construction  
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technologies, the investigation techniques, the calculation methods that took place over 
almost a century.  

The dams covered by this article are fully part of this context and, taking into account their 
average life, in several cases close to a century, they require continuous surveillance and, in some 
cases, maintenance interventions (ordinary and, sometimes, extraordinary).  

To this end, the modern calculation methods available today are able to offer operators 
responsible for dam management the necessary elements for a reliable assessment of structural 
safety.  
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ABSTRACT: In the context of monitoring the operation of large dams, it is necessary to pay due 
attention to the various processes that affect the reliability of their operation. In addition to the 
monitoring the stability of high dams, it is also important to monitor the hydrological and 
hydraulic conditions that determine the filling and emptying of reservoirs during the performance 
of dam functions. This is particularly important due to recent changes in hydrologic conditions, 
which have been influenced primarily by climate change and changes in runoff. In addition to that 
hydraulic conditions may also be affected by a change in maintenance regime (vegetation) at 
various elements of the dam and reservoir system. Modelling results are also influenced by the 
use of advanced tools for modelling of both phenomena, as advanced modelling techniques and 
tools were not available at the time the dam and system were designed. The paper presents a re-
modelling of the hydrological and hydraulic conditions for the operation of the large dam - the 
Drtijščica reservoir in the Lukovica municipality - and identifies the deviations from the design 
condition. The identified deviations lead to the need to study the modification of some elements 
and procedures that are crucial for the safe and reliable operation of the dam: Operating Rules, 
Contingency Plan in case of dam failure, Maintenance Program for the dam and its associated 
system, etc. We assume that the remodeling of the hydrological and hydraulic conditions that 
determine the operation of high dams would also be necessary for all other similar facilities, since 
the parameters and tools used at the time of their design may already differ significantly from 
the actual situation. 
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1 INTRODUCTION	

In accordance with national (OG, 2008) and EU legislation ‐ the Floods Directive (EU, 2007) ‐ a 
comprehensive  flood modelling of  the main  flood‐prone areas  in  the Municipality of Lukovica 
(Lukovica) was carried out. The modelling requirements are based on the Slovenian regulation, 
which is in line with the EU requirements and prescribes the development of flood risk and flood 
management  plans  focused  on  prevention,  protection  and  preparedness.  As  a  result,  a 
comprehensive  flood  hazard modelling with  flood  hazard maps,  theoretical  and  actual  flood 
waves with return periods of 10, 100 and 500 years, and proposals for the necessary mitigation 
measures for the planned urban development was carried out. 

What makes  the  flood  hazard mapping  very  specific  for  the  addressed municipality  is  the 
existence  of  the  Drtijščica  dam/reservoir,  which  was  built  in  2002  as  part  of  the mitigation 
measures for flood retention related to the construction of the Ljubljana ‐ Maribor highway, which 
otherwise would have had serious negative impacts on the flood hazard in the addressed area.  

The resulting hydrological and flood hydraulic modelling shows significant deviations from the 
design parameters of the dam/reservoir and the operation of the complex flood control system. 
The modelling  and  the  resulting  preparation  of  flood  hazard maps were  contracted  by  the 
Lukovica municipality and reviewed by the Slovenian Water Authority (DRSV). The results lead to 
quite restrictive conditions for the desired urban development in the studied area, but also to the 
need to review the operating parameters of the Drtijščica dam/reservoir. 

2 BASIC	DESCRIPTION	

 Area	description	

Lukovica is a medium‐sized municipality in central Slovenia with 5,907 inhabitants, northeast 
of the capital Ljubljana. The entire area is hilly, with floodplains typically located in the valleys of 
the Radomlja and Drtijščica rivers, which are narrow and steep. In the 2000s, the construction of 
the Ljubljana  ‐ Celje highway significantly changed the hydraulic characteristics of the area, as 
well as the large‐scale land reclamation works completed before the highway construction.  

The  Gradiško  Lake  behind  the  Drtijščica  Reservoir  attenuates  the  Drtijščica  River  near  its 
confluence with  the Radomlja River and was created as a compensatory measure  to  improve 
flood  conditions. As part of  the Drtijščica Reservoir,  a 935 m  long diversion  tunnel  from  the 
Radomlja River was built to divert flood flows of up to 30 m3/s from the Radomlja River and allow 
them to flow directly into the Drtijščica Reservoir. 

Figure 1.  Addressed water retention system with diversion tunnel and Drtijščica reservoir. 

DAM /          
RESERVOIR  Diversion 

 tunnel 
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 Drtijščica	dam	and	reservoir	

The dam  is  located  in  the central part of Slovenia and  is managed by  the Slovenian Water 
Agency (DRSV). Basic data about the dam can be found in the following table. Its main function is 
to retain water and thus improve flood safety in the Radomlja river valley, which is achieved by 
reducing flood peaks. There are two main tributaries to the reservoir ‐ the Drtijščica River (with 
33.2 km2 watershed) and the Radomlja River (which is partially diverted through gates through 
the tunnel to the reservoir). Several discharge measurements are carried out in the Drtijščica and 
Radomlja rivers to regulate the automatic inflow/outflow gates of the reservoir. 
 
Table 1. Main characteristics of the Drtijščica dam 

Dam height (m)  18.2 
Dam length (m)  256 
Permanent reservoir wetted area (ha)  29 
Constant retention volume (mil m3)  0.8 
Max. retention volume (mil m3)  6.7 
Diversion tunnel length (m)  965 
Max intake diversion tunnel (m3/s)  30 
Discharge return period safety (years)*  10000* 
Critical volume Qn100 (mil m3)*  3.13* 

*estimated in original hydrology (VGI, 1996) 
 
The diversion tunnel is operated according to operational rules (Table 2). The rules are based only 
on the measured discharges of the Radomlja River. The water levels and thus the free volume of 
the reservoir is not taken into account in the operating rules. 
 
Table 20. Operational rules of the diversion tunnel based upon the 1996 baseline analysis  

Rules  
(m3/s) 

Flow through the tunnel  
(m3/s) 

Flow in Radomlja river 
(m3/s) 

QR <= 6  0  QR 
6 < QR <=36  6 < QT <= 30  6 
QR > 36  30  QR ‐ 30 

* QR is flow in Radomlja river 
** QT is flow in the diversion tunnel 

3 HYDROLOGY	

 Baseline	hydrology	

Design phase of the Drtijščica dam began in the 1990’s and at that time the 0D hydrological 
model HEC‐1 was a state‐of‐the‐art approach to hydrologic modeling. Due to several numerical 
limitations of that model, designers had to perform extensive manual calculations as well.  

To calculate rainfall losses, the SCS Curve method (SCS CN) was used, where the excess surface 
runoff is estimated as a function of runoff potential, antecedent soil moisture and land use. Flood 
wave  propagation  was  calculated  based  on  SCS  unit  hydrograph.  Calculation  assumed  that 
precipitation with a given return period causes surface runoff with the same return period.  

Precipitation  values  were  defined  based  on  a  probabilistic  analysis  of  daily  measured 
precipitation at multiple ombrograph stations around the modeled area and increased by 15% as 
a  precaution  measure  to  measurements  inaccuracies.  The  rainfall  curves  were  further 
determined on the basis of the correlation of the rainfall curve (obtained by Gumbel probabilistic 
analysis and regression of the hourly rainfall) and the previously determined 24‐hour rainfall.  

Hydraulic calculations  in  terms of planning aid were performed only  for  the main hydraulic 
structures, flood propagation and inundation calculations of Radomlja and Drtijščica rivers were 
not carried out. 

Elevation – volume chart (E‐V) of the accumulation was calculated on the basis of topographical 
maps TTN5 of resolution 1:5000 which are to date still widely used in Slovenia. 
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Figure 2.  Results of hydrological modelling from baseline analysis (1996) 

 Hydrology	revised	

 Radomlja	watershed	and	methods	used	for	the	revised	analysis		
All hydrological calculations were performed from scratch. Modeling was done in HEC‐HMS 4.7.1 
which is a late successor of HEC‐1 and offers combination of 0D, 1D and even 2D modeling. The 
same calculation method was used as  in original hydrology,  that  is SCS CN method, as  it  is a 
method that is widely used in Slovenia and usually performs reasonably well for our climatologic 
and topographic conditions. 

Precipitation data were used from calculated family of precipitation curves (Vertačnik et. al, 
2019/2020) that was published by ARSO in 2020 and defines intensity‐duration‐frequency (IDF) 
curves for 22 duration intervals ranging from 5 minutes to 120 hours. Calculation was based on 
multi‐parameter Generalized Theory of extreme values  (GEV), which uses Fréchet’s  instead of 
Gumbel's distribution. The result  is a spatial distribution of extreme rainfall events with spatial 
interpolation of  the GEV  distribution parameters. Analysis  considered both,  the  geographical 
locations of the measurement sites as well as the lengths of the measurement arrays, where the 
input data were rainfall height measurements from the pluviographic stations measured at five‐
minute intervals. 

 

Figure 368.  Pluviographic stations used for long rainfall intervals (left) and calculated 10‐minute rainfall with 
100 years return period (right), (Vertačnik et. al. 2019/2020) 

 
Modeled part of Radomlja watershed  covers approx. 160 km2. Using modern GIS  tools, all 

necessary hydrological parameters have been calculated, like average slopes, delineation areas, 
reach  lengths,  CN  values  etc,  and  the whole modeled  area was  subdivided  into  83  smaller 
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watersheds  in order to achieve the scope of the project. Wave transformation was calculated 
using Muskingum – Cunge method, which uses stream geometry defined by eight points and a 
uniform longitudinal slope within a reach. 
 

Figure 4.  Comparison between original and new duration – precipitation curves for two measurement sites 
 
Comparison  of precipitation datasets  between  original  and new hydrology  reveals  significant 
deviation  as  new  datasets  show  increase  from  27%  to  44%.  Cause  of  that  increase  can  be 
different‐  weather  in  usage  of  more  sophisticated  methods  where  suspicious/erroneous 
precipitation datasets were omitted, as well as  in climate changes. 30 years between the two 
studies is enough time to be able to statistically detect an increasing precipitation trend over the 
modeled area. 
 

Figure 5.  Radomlja watershed and location of the dam/reservoir 

 Hydrological	model	calibration	
Hydrological  model  was  calibrated  to  event  that  occurred  in  2010,  which  clearly  revealed 
unsatisfactory dam retention volume. Estimated return period of the event was 100 years, which 
means that accumulation should have accumulated all of the peak hydrograph without the need 
of activating emergency release. During the event water level in the dam reached critical value, 
so that emergency release had to be activated. That caused severe flooding downstream, and all 

DAM /           
RESERVOIR SITE 
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safety dam mechanism were put to a test including civil protection and firefighters being in full 
operative alert. 

Model results for the 2010 event provide reasonably accurate predictions that follow actual 
course of events.  
 

Figure 6.  Elevation – volume table (left) and calculated inflow/water levels of the dam (right) for the 2010 
event 
 

Figure 7.  Flooded highway downstream of the dam (left) and ground discharge of the dam (right) for the 
2010 event 

4 HYDRAULICS	

The whole area of interest has been model with full 2D hydraulic model HecRas 6.0. Calculation 
method  is based on  the  finite volume method using depth‐averaged shallow water equations 
(SWE). 2D geometry is defined by mesh elements (unstructured and structured) characterized by 
a detailed sub‐grid bathymetry. Mesh density was modified according  to  the needs or spatial 
circumstances. Due to a very large modeled area, two independent hydraulic models were made, 
covering each other to the extent that possible boundary effects were diminished. 

Sub‐grid bathymetry in the flood plains was made from 1x1m DEM (ARSO, 2014), bathymetry 
inside  streams was made  from 0.1x0.1m DEM based  on  Lidar point  cloud  (ARSO, 2014)  and 
updated with terrestrial land surveys.   

Results show,  that area  is prone  to a significantly greater  flood  risk  than  in calculated  in  in 
original studies in year 2000. The dam can not provide sufficient safety against flood risk during 
long‐lasting events, (e.g., Q100_24h precipitation and longer). 
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Figure 8.  Hydraulic model mesh (left) and validation results (right) 

5 CONCLUSIONS	

Changes  in  hydrologic  and  hydraulic  conditions  require  periodic  reassessment  of  design 
parameters that include impact of changed IDF curves, land cover, land use, topography changes 
etc.  All  these  changes  induce  changes  in  the  runoff  and  consequently  changes  in  flooding 
conditions at the area of interest. 

LIDAR‐based 2D hydraulic models provide a much better understanding of flood phenomena 
than 1D or 0D models made 30 years ago. 

Hydraulics  is  also  affected  by  the  actual  maintenance  practices  (in‐stream  vegetation), 
Therefore, operating rules, contingency plans, etc. need to be updated, based upon the results 
of the revised analysis of hydrological and hydraulic conditions. Re‐assessment should become a 
regular practice for large, but also for small dams and other critical hydraulic structures. 

Re‐assessment is also one of the basic prerequisites of the climate proofing procedures for key 
infrastructure following the EC Technical guidance on the climate proofing of infrastructure in the 
period 2021‐2027. A systematic implementation of these this guidance document on a national 
level  should  be  obligatory  in  order  to  gradually  adapt  all  key  hydraulic  structures  of  high 
importance to the target climate pathways, having in mind the defined long term time horizon.  
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• Monitoring is a vital tool to detect anomalies in the dam behaviour 
and thereby minimize the risk of catastrophic failures. 

• To assess the measured behaviour and classify it as normal or 
unexpected, a prediction model is required. For this purpose, 
different types of models are available, based on finite element 
methods or data-based mathematical approaches.
‒ Measurement prediction is becoming more and more common today 

and is something that all dam engineers are encountered with.

• Vast developments have occurred in the field of prediction models 
over the recent years, especially regarding machine learning and 
numerical modelling. 



Background
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• 20 years ago, prediction of the measured behaviour of the Schlegeis dam was a theme in the 
6th ICOLD BW. 

• In the 14th ICOLD BW 2017, a theme was focused on predicting 
the dam behaviour, including cracking, caused by seasonal 
temperature variations. 

• For the 2021 ICOLD Benchmark Workshop, we want to build from these experiences and see 
how modern tools can help in the prediction of dams

It is time to analyse the capabilities of the prediction models

Formulating team
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• Collaboration between two ICOLD Committees 
‒ Com. A (COMPUTATIONAL ASPECTS OF ANALYSIS AND DESIGN OF DAMS)
‒ Com. Q (DAM SURVEILLANCE)

• The formulating team has experience in working with prediction models from different roles in the 
dam engineering field (universities, research institutes, dam owners, consultants, etc.) 



Theme; Concrete arch dam
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• As the case study, a concrete arch dam has been selected which has been extensively 
monitored for more than 30 years. 
‒ 40 m high
‒ 150 m crest length

• Monitoring
‒ Displacements

˃ Along the crest
˃ Half dam height
˃ In the foundation 

‒ Uplift pressure
˃ Several points near 

the concrete rock 
interface

‒ Leakage
‒ Temperature
‒ Water level

Theme formulation 
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• Contributors will be given
‒ Measured data for 20 years (air temperature, water level, displacements, uplift pressure and 

leakage)
‒ Measured input data for the prediction period (temperature, water level)
‒ CAD geometry model and FE mesh
‒ Material properties

• All types of models are welcome to use (statistical, hybrid, deterministic, machine 
learning, finite element modelling) from the simplest to the most complex ones. 

• For all cases, the formulators will provide excel templates that the contributors should use 
for submittal of their results



Cases
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• The theme consists of three subcases

• Case A – Model calibration
‒ Develop a calibrated model that accurately can capture the provided measurement period 

(training period)

• Case B – Short term prediction
‒ Short term predictions (3 months) to predict the dam behaviour without influence of time 

dependent effects

• Case C – Long term prediction
‒ Long term predictions (5 years) to predict the dam behaviour including influence of time 

dependent effects

Tasks
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• For each case, the contributors should perform
‒ Predictions
‒ Define warning levels
‒ Interpret the influence of external 

parameters (water level, 
air temperature, time dependent 
effects)

• For the different output variables
‒ Displacements 
‒ Uplift pressures
‒ Leakage

• Six tasks are mandatory while the 
remaining are optional

Mandatory Optional

Case A:
Calibration

Case B: 
Short term

Case C: 
Long term

Predictions

Displacements Mandatory Mandatory Mandatory

Uplift pressure

Leakage

Warning levels

Displacements Mandatory Mandatory

Uplift pressure

Leakage

Interpretation

Displacements Mandatory

Pore pressure

Leakage



Overall view of the theme
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• The theme has been developed to be a realistic case study similar to what the analysts 
normally encounters when predicting the measured dam behaviour. 
‒ The results of the contributors will be assessed regarding the accuracy of their predictions. 
‒ The contributors defined of warning levels will be assessed in terms of classification accuracy 

(precision, recall)

• Several different type of models are expected to be used in this theme
‒ The contributors can chose their level of engagement, depending on the number of tasks that they 

perform and also depending on which type of model/models they use. 
‒ The required effort will be quite low for those contributors using regression models and hence 

making the theme accessible for many contributors. 

• This theme is expected to attract both data analysists (such as surveillance experts) and 
FE analysists (numerical experts) to participate

Expected outcomes
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• Improve our understanding of dam behaviour and the applicability of theoretical methods 
and models compared to the real response of a dam.  

• Highlight the development that has undergone within the industry especially in data-based 
models over the last 20 years (since Schlegeis, 2001)

• Evaluate the pros and cons of different type of models for dam behavioural analyses. 

• Make the link between the FEA and data-based models. In dam prediction models both 
types of methods are vital for evaluation of dams.

• Discuss and evaluate methods to define warning thresholds from predictions.
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Past ICOLD AAR benchmarks workshops

• 2011 - Valencia, Spain

• Case: Kariba dam (arch dam)
• Exercise: Determining the adequate swelling law and parameters which allow the best identification 

with both horizontal and vertical movements of the dam vs time.

• Number of participants: 9

• Only one participant presented damage plots

• 2005 - Wuhan, China

• Case: Poglia dam (hollow gravity dam)

• Exercise: Structural behaviour of a large hollow gravity dam, with special reference to the ultimate 
strength against the hydrostatic load

• Number of participants: 2

• 2001 - Salzburg, Austria

• Case: Pian Telessio dam (arch dam)
• Exercise: Forecast on stress-strain state generate by AAR

• Number of participants: 
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• Presentation at the RILEM comitee revealed that a new benchmark case 
would be of interest;

• Evolution in the FE software industry (inclusion of damage and swelling
laws) opens up perspectives to have a number of participants:

• Merlin, Diana, Code_Aster, Atena, Grizzly, etc.

• The case should be formulated in a way that there is a number of steps to 
achieve with feedback and comparison with others before the workshop;

• Curve fitting of displacements is not enough for dam owners: damage 
plots, crack opening, seepage analysis, uplift pressure and potential
failure modes should be given. Ideally safety factors would be nice to 
compute, but this is still a complex task with AAR affected dams;

After 10 years: What is the added value of formulating a new case?
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After 10 years: What is the added value of formulating a new case?

• The benchmark will be used to discuss the type of physics required to 
correctly simulate AAR :

• Creep, saturation, thermal effects, presence of reinforcements, uplift
pressure evolution, two-way coupling, etc.

+ + +

Chemical reaction Temperature Saturation Reinforcement
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• Contributors will be given

• Measured data for 85 years (air temperature, water level, 
displacements, hygral conditions)

• CAD geometry model and FE mesh
• Material properties
• Reinforcements

• All types of models are welcome to use (thermal analogy, poroelasticity, 
multi-physic, chemo-mechanical model) from the simplest to the most 
complex ones. 

• For all cases, the formulators will provide excel templates that the 
contributors should use for submittal of their results

Theme formulation
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Theme formulation 

Power house 1
Power house 2

Power house 3

To be realistic in the 
context of a benchmark, 
analysis of this section 
(3 groups with symetric
boudary conditions)
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The formulators will provide common set of basic boundary conditions

Boundary conditions
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Consideration of reinforcement

The formulators will provide the reinforcement bars (discrete geometry, any modeling 
method is welcome)
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• Monitoring results will be available to calibrate the swelling kinetic (displacements and 
rates)

• Mechanical properties from:
• Lab test (modulus, strength, …);
• Ambient or vibration tests;
• Slot testing.

Depending on 
data availability
(postponed by 
COVID)

Model parameters and calibration
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The theme consists of four subcases and include calibration (covered by the 
instrumentation records) + Prediction of damage for a period of 50 years

• Case A – Chemical reaction only

• Case B – Chemical reaction + Temperature effects

• Case C – Chemical reaction + Temperature effects + Hygral effects

• Case D – Chemical reaction + Temperature effects + Hygral effects + 
Reinforcement

Cases
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• For each case, the contributors should perform:

• Displacement calibration/prediction (50 years period)
• Define damage level (crack opening) at two time points
• Interpret the effect of physic consideration
• Loading (integration in different cross sections) and sliding safety 

analysis at end of prediction period
• For two different water levels, provide the displacement differences at a 

specific location at the end of the 50 year period to compare the 
difference in stiffness with an intact structure

• Plot different output variables:

• Hygral and thermal distribution at specific locations, rebar state 
(damage, plasticity)

Tasks
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• Give a complete benchmark case for improving the validation in the V&V process 
applied to complex multiphysic AAR model;

• Improve our understanding on the effect of physic integration to model AAR on full 
scale problems;

• Highlight the development that has undergone within industry, academic and 
commercial softwares to model AAR and damage;

• Compare simple and complex models on a full scale problem;

• Discuss and evaluate methods to asses the performance criteria of AAR affected 
structures (failure modes, safety factors).

Expected outcomes
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Introduction

• Embankment dam is the most common dam type in the world, 
since they represent over 60% of all constructed dams 
worldwide.

• Seepage control plays an important role in embankment dam 
safety.

• The most common causes of embankment dam failures are 
associated with internal erosion.



Theme: The embankment dam

• The theme is devoted to the analysis of a zoned embankment dam 
in Slovenia.

• The dam is regularly monitored:
• Geodetic measurements (vertical and horizontal displacements);
• Vertical inclinations (4 inclinometers);
• Water level, temperature and specific electrical conductivity (piezometers);
• Drainage outflow, chemical analysis of water;
• Water level in reservoir, ground accelerations, meteorological parameters;
• Geological inspection.

Basic information on the dam

Zoned embankment dam with a clay core.
35 m high, crest length 177 m.



The story of the dam
• The dam is over 30 years old.
• In 2007 during regular maintenance a wet stain was spotted. 

Moreover, one of the piezometer indicated rising levels of water in 
the dam body.
• The reservoir level was depleted from 98.8 m a.s.l. to 92 m a.s.l.
• There are three conduits passing through the body of the dam, 

irrigation pipeline and two bottom outlets. The origin of leakage was 
recognised to be the irrigation pipeline crossing the dam body. The 
irrigation pipeline was later filled with concrete.
• The reservoir has been drawdown for over 10 years, and after the 

remedial works, the owner expects to raise the reservoir level back 
to the nominal level.

K3 piezometer

Location of wet stain

Bottom outlet pipelines

New irrigation 
pipeline and two 
bottom outlets

pipelines (under 
construction)

Irrigation pipeline



Cross-section of the dam

Theme formulation

• Contributors will receive:
• CAD geometry model;
• Measured monitoring data since construction;
• Design material properties for the dam and foundation.

• Participants will be asked to:
• Built a 2D and a simplified 3D models of the dam (full 3D optional);
• Consider monitoring data;
• Perform mandatory and optional tasks.



Monitoring data
Example of the piezometer measurements

• Rising water level in 
piezometer K3 was 
observed after 6 years of 
operation.

Tasks

* as an optional case the participants can build a full 3D model and perform the required analysis.

Case Tasks

Case 1
(Mandatory, 

Optional)

Task 1: Construction of a 2D model. Calibrate the model using dam surveillance. Estimate the as-built characteristics of 
the dam.
Task 2: Evaluate the initial state after the reservoir is filled to the nominal level. Estimate the dam condition before the 
detection of leakage.
Task 3 (Optional): Using calibrated data of 2D model, build a quasi 3D FE model 
(20 m wide section of the dam). 

Case 2
(Mandatory, 

Optional)

Task 1: Consider the wet stain using 2D or quasi 3D model. 
Task 2: No action after the appearance of the wet stain.

Case 3
(Mandatory)

Task 1: Consider remedial works of the dam, consider long period of reservoir draw-down and its effect of the clay core.
Task 2: Consider elevation of the reservoir back to nominal level according to the assumed filling times. Evaluate the 
safety of the dam under the final water level condition of the reservoir.

Case 4
(Optional) Task 1: Seismic analysis.

Finalisation
(Mandatory)

Task 1: Preparation of the technical paper.
Task 2: Preparation of the presentation and presentation at the workshop.



Outcomes and conclusions

• We expect that the results of this theme will improve our understanding of the dam 
behaviour, especially water seepage through the dam body and show the applicability of 
theoretical methods and models compared to the real response of a dam.

• The ageing dams will encounter various conditions in their life-time including longer 
periods of low-reservoir levels.

• Seepage is a complex phenomenon affected by various parameters; studies have shown 
that with careful evaluation of monitoring data, accidents and failures can be prevented.

• FEM provides a strong tool in hands of a qualified engineer, while such a complex 
phenomenon as seepage in an embankment dam can be studied using different modeling 
assumptions. BW provides a unique opportunity for dam experts to discuss various 
modelling approaches and assess their formulation on the final results.

• The formulators will provide templates for the participants to submit their results.
• The participants will be asked to describe their modelling approaches in detail. Based on 

comparison of various approaches, results and monitoring data, we will be able to 
improve our understanding of the seepage phenomena in embankment dams. 

You are kindly invited to 
participate.

See you in Ljubljana in 2022.
Express your interest in the topic and get in touch with the formulating team.
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