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Abstract
Chinese hamster ovary (CHO) epithelial cells are one of the most used therapeutic medical lines for the production of 
different biopharmaceutical drugs. They have a high consumption rate with a fast duplication cycle that makes them an 
ideal biological clone. The higher accumulated amounts of toxic intracellular intermediates may lead to lower organism 
viability, protein productivity and manufactured biosimilar, so a careful optimal balance of medium, bioreactor opera-
tional parameters and bioprocess is needed. A precise phenomenological knowledge of metabolism’s chemical transfor-
mations can predict problems that may arise during batch, semi-continuous fed batch and continuous reactor operation. 
For a better detailed understanding (and relations), future performance optimization and scaling, mechanistic model 
systems have been built. In this specific work, the main metabolic pathways in mammalian structured CHO cultures are 
reviewed. It starts with organic biochemical background, controlling associated phenomena and kinetics, which govern 
the sustaining conversion routes of biology. Then, individual turnover paths are described, overviewing standard math-
ematical formulations that are commonly applied in engineering. These are the core of black box modeling, which relates 
the substrates/products in a simplified relationship manner. Moreover, metabolic flux analysis (MFA)/flux balance anal-
ysis (FBA), that are traditionally characterizing mechanisms, are presented to a larger portion extent. Finally, similarities 
are discussed, illustrating the approaches for their structural design. Stated variables’ equations, employed for the de-
scription of the growth in the controllable environmental conditions of a vessel, the researched reaction series of prolif-
erating dividing CHO population, joint with the values of maximal enzymatic activity, and solutions are outlined. Pro-
cesses are listed in a way so that a reader can integrate the state-of-the-art. Our particular contribution is also denoted.

Keywords: Microbial cell factory; Chinese hamster ovary (CHO) cell metabolism; Bioreactor operation modeling; Bio-
chemical reaction kinetics; Metabolic flux analysis; Biopharmaceutical and biosimilar

1. Introduction
Chinese hamster ovary (CHO) cells are one of the 

most important cell lines for production of therapeutic bi-
opharmaceuticals.1,2 CHO cells are characterized by high 
consumption rates of nutrients and large amount of toxic 
intermediates, which may lead to lower cell viability and 
protein production.1,2,3 Production of recombinant pro-
teins is promoted in growth medium  with high content of 
glucose and glutamine.4,5 Further optimization of the me-
dium is needed to reduce lactate and ammonia accumula-
tion and to increase antibody yields.3,6–9 In recent years 
technology has made a remarkable impact in bioreactor 
fermentation yields using kinetic models that are com-
monly used to describe fermentation processes in indus-

trial fermentors. These models turn out to be useful at pro-
cess monitoring, acquiring and storing the data, and 
troubleshooting. In the last three decades databases of 
CHO cell metabolism have been extended, likewise the 
tracing of fluxes into biomass and byproducts, which led to 
major improvements of bioreactor models.2,5,10–17 This 
knowledge has guided the researchers to develop several 
mathematical models, which are able to describe the fluxes 
within metabolic pathways.4,18–23

Analysis of fluxes usually focuses on measuring con-
centrations of extracellular metabolites.13 Biocatalysis of 
substrates into commercially attractive products as well as 
byproducts is connected through pathways of cell metabo-
lism.13,24–26 Pathway analysis usually relies on measuring 
concentration behavior of extracellular metabolites,13 nev-
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ertheless estimates of intracellular fluxes are readily availa-
ble by using flux balance analysis (FBA) and metabolic flux 
analysis (MFA).27 In recent years genotype data have been 
also included into in silico methodologies.28 The following 
pathways of the cell metabolism are usually assumed: gly-
colysis, pentose phosphate (PPP) pathway, tricarboxylic 
acid (TCA) cycle, amino acid metabolism, protein synthe-
sis, urea cycle, nucleic acid synthesis, membrane lipid syn-
thesis, and biomass production.1–5,14–19,29–36 Glycogen5,16 
synthesis and glycosylation pathways are part of detailed 
models.29,37–41

Numerous models were developed for the purpose 
of data analysis and growth optimization in cell cultures. A 
hybrid simulation framework was proposed to predict the 
dynamics in bioreactors.42 A simplified model of central 
carbon metabolism provides the framework for analyzing 
measurements of external metabolites.29 Simulation as-

suming pseudo steady state assumption and extracellular 
metabolite concentrations accurately predicted the effects 
of process variables, temperature shift, seeding density, 
specific productivity and nutrient concentrations.43 A 
mathematical model was developed for optimization of 
batch and fed batch bioreactor.20 The kinetic model that 
jointed several phases of cell culture was capable to de-
scribe the time evolution of experimental data.16 Similar 
model was build and its correctness validated on experi-
mental data from CHO cells grown in spinner flasks.19 The 
model was assembled from submodels, where each of 
them described a separate phase of CHO cell (growth, sta-
tionary, and decline phase).33 The model was then used to 
explain the experimental data from batch cultivated CHO 
cells. In another example, the phenotype of mammalian 
cells was studied by the aims of metabolic flux analysis.5 
Fluxes were measured using 13C MFA variant and stoichi-

Figure 1: Metabolic engineering starts with the metabolic network, which comprises biochemical transformations within living cells (bottom left: 
unstructured network, top left: structured network). Then we use available experimental data together with theoretical methodologies (paradigm of 
Metabolic Flux Analysis – MFA) to estimate flux rates of biochemical transformations (top right). These insights help us to perform bioprocess op-
timization.



771Acta Chim. Slov. 2018, 65, 769–786

Gašperšič et al.:    Metabolic Network Modelling of Chinese Hamster  ...

ometric modeling.2,44 MFA was also used to estimate total 
energy production of growing CHO-320 cells.24

New metabolic information was mined from the 
models and associated simulations. Analysis of experi-
ments showed the existence of multiple steady states.17 In 
silico modeling of CHO cells allowed the identification of 
major growth-limiting factors including oxidative stress 
and depletion of lipid metabolites.45 These factors may 
lead to a better development of strategies to enhance CHO 
culture performance.45 Continuous cell lines can down-
regulate their oxidative metabolism when nutrients get 
depleted or growth rate slows.15 Flux analysis shows signif-
icant rewiring of intracellular metabolic fluxes in the tran-
sition from growth to stationary phase. Changes were no-
ticed in energy metabolism, redox metabolism, oxidative 
pentose phosphate pathway and anaplerosis.16 In station-
ary phase glycolysis is rerouted through PPP pathway – no 
lactate production is observed.2 Unusual lipogenic path-
way was discovered with modeling. Carbon from glucose 
supplies mitochondrial production of alpha-ketoglutarate 
(αKG), which is trafficked to the cytosol and used to sup-
ply reductive carboxylation by isocitrate dehydrogenase.46 
It was suggested that endogenous lactate is not being used 
for ATP production through TCA cycle when the medium 
is supplemented with galactose. It was observed that lac-
tate starts to get depleted at the same time as glucose is 
used up and cell switches to a galactose source.1 With ki-
netic model of CHO cell growth Lopez-Meza estimated 
substrate threshold below which growth is not observed 
and obtained the α and β factor from Luedeking-Piret 
equation.18 Analysis showed that CTP deficient cells use 
different central carbon metabolism, suppress pyruvate 
dehydrogenase, and induce glucose dependent anaplerosis 
through pyruvate carboxylase.46

Composition optimization of limiting amino acids in 
growth medium increased maximum cell density by 55% 
and protein titer production by 27%.3 The medium did not 
have any influence on sialic acid content. Mannose carbon 
source also improved recombinant protein productivity.47 
Glucose consumption was 5 times higher than that of glu-
tamine (13C labeled glucose, 2D-NMR spectroscopy). Er-
ror propagation of Goudar metabolic flux analysis can be 
routinely used in bioprocess development.14 Modeled effect 
of specific rate error on the flux error is a function of both 
the sensitivity of the flux with respect to the specific rate 
and relative magnitudes of the flux and the specific rate.14 
41% of glucose was channeled through PPP, while flux of 
pyruvate to lactate and to TCA cycle was evenly distributed 
55%–45%; anaplerotic conversion to oxaloacetate account-
ed to 10% of whole pyruvate conversion.14

We describe the research done in the area of bioreac-
tor modeling and contribution of our department to the 
field. Complete literature search and data collection of 
known metabolic fluxes was made to ease the design of 
future models. The improvement of models is ongoing 
with a goal to make a good theoretical framework and to 

foresee possible errors in the fermentation process. Sche-
matic illustration of the interplay between metabolic engi-
neering and bioprocess is shown in Figure 1.

2. Contribution of the Authors
Modeling brings new insights into existing prob-

lems. Great advantage of modeling is to track the problem 
at molecular, cellular level. Good hypothesis and theories 
cannot be developed without sufficiently developed mod-
el. Development of biotechnology processes is thus easier 
and cost effective. Models have many disadvantages, be-
cause they may be developed on unproven hypothesis or 
theories that yet need to be confirmed. Theories may have 
in this case erroneous core.

Complete literature search of published models and 
metabolism of CHO cells leads to a successful build of 
model of bioreactor. Review of preferred articles is includ-
ed with the emphasis on bioreactor operation equations 
and metabolic pathways of CHO cell lines.

Contribution is divided into three parts:
•	 Overview of black box models: Evolution of mathe-

matical equations used in CHO mechanistic models
•	 Overview of CHO cell metabolic pathways and the 

unique properties of CHO cell lines
•	 Overview of mechanistic models and our proposed 

approach toward solution of the problem

2. 1.  Review of Black Box Models: 
Formulation of Mathematical Equations
Protein production in a bioreactor requires perfect 

agitation and aeration to maintain a homogeneous distri-
bution of cells, substrate and oxygen throughout the biore-
actor. Extracellular medium composition analysis, cou-
pled with intracellular metabolic pathway analysis give rise 
to CHO cell bioreactor models.

2. 1. 1. Growth of Biomass
Growth of biomass is described in different ways. 

Growth is influenced by the specific growth factor (µ) and 
concentration of cells (X) as seen in Eq. (1).16,19,20

Standard biomass growth equation:

       (1)

Specific growth factor (µ) is described in different 
ways. Commonly used descriptions are Verhulst and 
Monod equations, which can be adequately modified to 
account for bioreactor conditions (Eqs. 2 and 6).

One limit substrate Monod36 kinetics  is:

       (2)
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while two limit substrates Monod24 kinetics is expressed as:

       (3)

and finally n-limit substrates Monod24 kinetics as:

       (4)

By Monod, biomass growth is influenced by limiting 
substrate (Eq. 2). Here X represents cell concentration – 
number of cells per mL; S represent substrate, µmax is the 
maximum value of growth rate, KS is the substrate satura-
tion constant. Note that specific growth rate (µ) may be 
influenced by one limiting substrate (Eq. 2),18 two (Eq. 3)37 
or more limiting substrates from the growth medium  
(Eq. 4).48

del Val38 proposed modified expression:

       (5)

By del Val, an upgraded Monod equation for contin-
uous production is utilized, where Xv is the density of via-
ble cells and αx is the specific factor (cellular carrying ca-
pacity). Viable cells represent live cell population, while 
total cells represent a sum of viable and dead cell popula-
tion. The ratio is changing through cell phases. Each equa-
tion is optimized for specific value, so it is necessary to 
take into account certain value.

Verhulst49 established the following closure:

       (6)

By Verhulst, maximum cell density of the culture 
(Xmax) is a limiting factor to cell growth. In this case sub-
strate is available in large quantities or may be fed addi-
tionally to the bioreactor. The equation is commonly used 
to describe the growth of bacterial cultures.

Equations for biomass growth that are commonly 
used in bioreactor systems are described below (continu-
ous, fed batch).

Altamirano17 and Xing3 suggested to use the follow-
ing formulation:

       (7)

By Altamirano, the specific growth rate in the con-
tinuous bioreactor is described as dilution rate (D) multi-
plied by the ratio of the total cell number (XT) and the via-
ble cell number (XV).

Goudar4 wrote the growth factor (µ) as:

       (8)

By Goudar, the specific growth rate is designed for 
perfusion systems, where V is the reactor volume, Fd is the 
discard rate, Fh is the harvest flow rate, XH

V   is the harvest 

viable cell density, and XB
V     is the density of viable cells in 

bioreactor.
Hagrot21 used the solution of first-order kinetics:

      
 (9)

By Hagrot, the specific growth rate depends upon vi-
able cell concentration before renewal (Xv) and after re-
newal (Xv0). Here t and t0 are corresponding times of sam-
pling.

It is essential for the model of bioreactor to select 
the mathematical formulation that suits type of the biore-
actor and the cell culture. To get the best formulation we 
need to compare numerical simulations with experimen-
tal data and choose the best fitting curve. For that we 
need a set of sensor concentration data of products, sub-
strates, and biomass in bioreactor throughout fermenta-
tion process.

2. 1. 2. Final Product Formation
Final product formation is described in connection 

with the cell concentration (X) or viable cell concentration 
(Xv) multiplied by product growth factors (r or α) (Eq. 10 
and 11).20,33

Standard equation to describe product formation:

                            (10)

Naderi20 and Provost19 wrote down the following 
closure:

                            (11)

while Ludeking-Piret35 suggested additional term:

                            (12)

By Ludeking-Piret, two coefficients α and β describe 
the product formation, both are product specific. Further, 
P is the concentration of glycosylated product, and dX/dt 
is the slope of biomass increase.

Xing3 and Berrios47 suggested two formulations:

                            
(13)

                            (14)

By Xing, product growth is described by the ratio of 
concentration difference of product (Ci) between two time 
points. Xv is the viable cell density, and D is the dilution 
factor (Eq. 13). By Berrios concentration difference of the 
product (ci) was divided by the corresponding difference 
of integral viable cell density (IVCD) (Eq. 14).
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Zamorano24 proposed linear relationship:

                            (15)

By Zamorano, the r factor (Eq. 10) was substituted 
by multiplication of stoichiometric matrix for final prod-
uct (Np) and metabolic flux (v(t)).

Goudar4 utilized the extended closure:

                            (16)

By Goudar, the product growth consists of two 
terms. Here XB

V  is viable cell density, and Fm is the flow rate. 
The equation is used to describe perfusion systems.

del Val38 used the following expression:

                            (17)

By del Val, the expression describes product growth 
as a yield of product per substrate (YPIS) multiplied by the 
substrate consumption (qS).

The formula for product growth must be devel-
oped for each individual product and is based on the ob-
servable physical and biochemical strain characteristics 
and the type of bioreactor. Reviewed models are opti-
mized to describe formation of secondary metabolites – 
end products.1–5,15,17,19,21, 24,29,30,31,37,38,40,43,45,46,50 For 
production of antibodies post translational glycosilation 
should be taken into account as well.37,38,40 Formation of 
primary metabolites – important for growth and main-
tenance of cell were most precisely described in Quek’s 
model with thorough description of nucleotide and lipid 
synthesis.5

2. 1. 3.  Mathematical Description of Substrate 
Consumption

Substrate consumption is dependent upon cell den-
sity (X) and specific uptake rate (vS) as follows:17,24,33

                            (18)

Jedrzejewski37 proposed the formulation with two 
terms:

                            (19)

By Jedrzejewski substrate consumption is influenced 
by number of cells, steady state consumption of substrate 
(mglc), and biomass growth coefficient (Yglc).

Goudar4 and Xu6 suggested another equation:

                            (20)

By Goudar and Xu specific substrate consumption 
rate depends upon perfusion rate Fm, difference of sub-

strate concentration (starting minus current) (Sm–S), bio-
reactor volume (V), and viable cell density (XB

V).
del Val38 extended the Michaelis-Menten kinetics as:

                            (21)

By del Val, YX/S is the yield coefficient from substrate, 
S represents concentration of substrate, Km is constant spe-
cific for each substrate.

Ahn16 introduced another expression:

                            (22)

By Ahn, decomposition of substrate k is independent 
of biomass. S represents substrate concentration, X repre-
sents cell concentration, and qs is a substrate consumption 
per cell concentration unit.

2. 1. 4. Oxygen Consumption
Oxygen consumption is traditionally described as 

follows:5,17,50

                            (23)

                            (24)

Oxygen concentration is dependent upon oxygen 
transfer rate (OTR) between gas and liquid phase and ox-
ygen consumption rate (OCR) of biomass.29,51 OTR is de-
pendent upon KLa (bioreactor specific) and dissolved oxy-
gen concentration (DO). Note that saturated oxygen (DO*) 
is temperature dependent.29

Jorjani52 used the following expression:

                            (25)

By Jorjani, OCR is dependent upon qO2
0 and temper-

ature,52 while qO2
0 is cell culture and clone specific. It de-

pends mostly on the number and condition of mitochon-
dria (origin of respiratory chain). It is also dependent upon 
availability of substrate with which cell and later mito-
chondria are fed.53

Nyberg29 proposed two terms:

                            (26)

By Nyberg, the formula accounts for the continuous 
bioreactor, where oxygen uptake rate (OUR) is dependent 
upon OTR as (KLa (C*–CR)), dilution rate (D), and the dif-
ference between oxygen concentrations (feed minus reac-
tor) as (CF–CR). C* represents saturated oxygen concentra-
tion at operating temperature.

Oxygen is consumed in the respiratory chain. H2O is 
the byproduct of the respiratory chain reactions.54 Oxygen 
that is incorporated in waste CO2 comes from glucose or 
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other substrates. Since metabolism is affected by pH value, 
O2 consumption (metabolism) is pH dependent.55

2. 1. 5. CO2 and NH3 Waste Production
CO2 production is integrated into models to address 

reactions in TCA cycle.5,45,50 CO2 is mostly produced in 
Krebs cycle, while NH3 is produced during metabolism of 
glutamine and other amino acids.5,17,33,56

                            (27)

CO2 concentration is dependent upon CO2 transfer 
rate (CO2TR), and CO2 production from biomass  
(CO2PR). CO2 importantly influences cell growth and pro-
ductivity.57 Free CO2 can be recycled together with amino 
group during fixation into carbamoyl phosphate and later 
integrated into arginine (urea cycle). Dissolved CO2 
(DCO2) partially transforms into HCO3

– ions, which serve 
as a regulator of pH in the cell. CO2 is generated during 
pyruvate, isocitrate and oxoglutarate degradation (TCA cy-
cle). It is also generated in lysis of lysine and glycine as well 
as in formation of ribose-6-phosphate from glucose-6-phos-
phate. RCO2 represents rate of CO2 production.

Nyberg29 suggested another expression:

                            (28)

By Nyberg, expression accounts for carbon dioxide 
evolution rate. Here ng is molar gas flow rate to the reactor, 
VR is liquid volume of the reactor, VR is mole fraction of 
CO2 in reactor headspace, yR

CO2 is mole fraction of CO2 in 
the feed gas. CR

A is concentration of CO2 and bicarbonate 
in the liquid phase, CF

A is concentration of CO2 and bicar-
bonate in the liquid feed phase.

                            (29)

In Eq. (29), concentration of NH3 has similar math-
ematical dependence as CO2 in Eq. (27). Note that KLa is 
different for each gas and varies with the reactor and tem-
perature. Ammonia production is highly dependent upon 
lysis of amino acids that can be biomass dependent and/or 
independent (catalytic degradation in water medium de-
pendent upon temperature). Ammonia is produced from 
the amino acids and transferred into gas phase. Then, it is 
recycled during formation of carbamoyl phosphate.

2. 1. 6. Temperature, pH Optimum
Temperature and pH are important process parame-

ters that influence optimal growth of CHO cell lines.58–64 

Normal operating temperature for the growth of mamma-
lian cells is 37 °C.65 At 33 °C a remarkable decrease in spe-
cific growth rate is observed. At 30 °C, growth of cells 
starts to stagnate. Mammalian cells grow in the range from 
35 to 38 °C.55,66 On the other hand, production rate of 
product (unspecified recombinant protein) is increased at 
33 and 30 °C. Lower temperatures (below 37 °C) inhibit 
cell growth, but enhance cellular productivity of the re-
combinant protein, maintain high cell viability, suppress 
consumption of nutrients from medium, and suppress re-
lease of waste products from the cells.67,68

CHO cells have been reported to grow best at pH 
7.1.55 Maximum product concentration (recombinant pro-
tein) was achieved at pH 6.8; 1.8-fold higher than at pH 
7.1.55 Regardless of the culture temperature, the highest 
specific growth rate was observed in the range of pH from 
7.0 to 7.4.34

2. 1. 7.  Cell Phases of CHO Cell Lines in 
Bioreactor

When cells are transferred to a new bioreactor batch, 
they need time to reach stable operation (lag phase). Dur-
ing lag phase cells adapt to new environment and multiply 
enzymes that are needed to catalyze biochemical reactions.

Initially, concentrations of glucose and other amino 
acids are falling, while lactate and glutamate (byproducts) 
concentrations are rising in the medium. After glucose is 
depleted, lactate starts to get consumed. When substrates 
are depleted, biomass stops to grow and uses internal re-
serves to maintain cell functions. Reserve glycogen and li-
pids are used to supply the cell with the energy. The nutri-
ents from dead cells can be recycled and reused as the 
energy source. Most commonly used substrate is glucose. 
If substrate is switched for example to galactose, specific 
enzymes must be multiplied to reach optimal concentra-
tions, before cells can re-adapt. In the presence of large 
concentrations of substrates inside cells, mitochondria di-
vide rapidly and supply the cells with large amounts of en-
ergy (ATP). Until mitochondria sufficiently multiply, the 
excess flux of glucose is diverted to lactate or other metab-
olites, such as alanine.

In the growth phase cells multiply with ease. The lac-
tate does not accumulate anymore and is used up by cells 
as a substrate. Cells stop to grow when they reach maxi-
mum cell density or when they have used up all substrates. 
Then, cells start to use nutrients from energy storage: gly-
cogen and lipid molecules. When cells run out of the sub-
strates and nutrients from energy storage they enter an 
atypical cell death due to starvation.

The viable CHO cells are in G1, S, G2/M (part of the 
interphase) or apoptotic phase.69,70 The production of pro-
tein is usually phase specific.69,66 In apoptosis cell enter 
programmed cell death. After certain number of duplica-
tions, cells die off. At that time significant amount of bio-
mass in the bioreactor belongs to dead cells.
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2. 2.  Overview of Important Metabolic 
Pathways
In the past two decades much research has been done 

on CHO cell metabolism. At modeling, cell metabolism is 
described using kinetic laws, equilibrium equations and as-
sociated parameters. Table 1 shows metabolic pathways, 
which were included in the models published in the litera-
ture. The following pathways were reviewed: (i) substrate 
intake, (ii) glycolysis, (iii) glutaminolysis, (iv) pentose 
phosphate pathway (PPP), (v) UDP-monosaccharides pro-
duction, (vi) nucleotide synthesis, (vii) amino acid metab-
olism, (viii) tricarboxylfic acid cycle (TCA), (ix) lipid me-
tabolism, (x) glycogen synthesis, (xi) lipid synthesis, (xii) 
DNA duplication, (xiii) RNA transcription and protein 
translation, (xiv) glycosylation, and (xv) feedback loops.

2. 2. 1.  Substrate Intake (Part of Metabolic Flux 
Pathway Analysis)

High influxes of substrates contribute to high osmot-
ic pressure.71 The cell regulates its pressure with fast con-
version into more favorable intermediates and products. 
Other regulatory mechanisms are passive and active trans-
port. One of the major metabolites is glycogen, which 
serves as energy storage.72 Glucogenic amino acids may 
transform into glucose and then into glycogen, while keto-
genic amino acids transforms into ketone bodies that may 
be stored through acetyl CoA in fatty acids (Figure 2).73 
Mathematical descriptions (Eqs. 18–22) of substrates’ con-
sumption are selected in accordance with phenotype, 
while associated constants are substrate specific. Majority 
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Figure 2: Biochemical reactions associated with mitochondria: deg-
radation pathway of keto- into glucogenic amino acids.45 Glucogen-
ic amino acids are transformed into acetylCoenzyme A (AcCoA), 
while keto amino acids are transformed to glutamate that is further 
transformed into alpha-ketoglutarate (αKG). Three letter amino 
acid code is standard. From “A structured, dynamic model for ani-
mal cell culture systems,” by C. S. Sanderson, J. P. Barford, and G. W. 
Barton, Biochem. Eng. J., 1999, 3, 203–211. Reprinted with permis-
sion.
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of the models include glucose intake, lactate, ammonia, 
CO2 and oxygen. More precise models include also trans-
port of glutamine and glutamate.

2. 2. 2. Glycolysis and Glutaminolysis (AA Lysis)
Glycolysis is one of the most important pathways in 

the metabolism of cells and is therefore included in major-
ity of the models (Table 1).1–5,15,17,19,21,24,29–31,43,45,46,50

In the growth phase cells extensively use glucose and 
glutamine. Apart from normal cells, the phenomenon is 
enhanced in mutated, cancerous cells.74 Due to osmotic 
pressure, excess glucose and glutamine are diverted into 
glycogen,71 lactate, glutamate, and lipids.1,16,43,75

Glucose enters tricarboxylic acid (TCA) cycle 
through pyruvate (Figure 3). Lactate is a waste product of 
surplus pyruvate produced during glycolysis that cannot 
enter TCA cycle due to unavailable mitochondria machin-
ery. Lack of oxygen produces similar effect (Figure 3). Lac-
tate is removed from the cell into the cell medium and lat-

er reused.1,18 Two molecules of ATP and two molecules of 
NADH are generated in the process. When pyruvate enters 
mitochondria it is converted into 3 molecules of CO2. In 
this process three molecules of NADH, one molecule of 
FADH2 and one molecule of GTP are produced per mole-
cule of pyruvate. Each molecule of NADH produces three 
molecules of ATP through electron transport chain; each 
molecule of FADH2 produces two ATP molecules due to 
lower proton energy. If lactate is produced, one molecule 
of NADH is consumed, and recycled when lactate is being 
converted back. High concentration of lactate may lead to 
lower pH. Note that pH is regulated with NH3 release dur-
ing glutamate metabolism. Lysis of amino acids gives huge 
amount of ATP due to independent enzymatic pathways to 
TCA cycle (Figure 4). In degradation pathways of isoleu-
cine three NADH molecules, one acetyl CoA and one suc-
cinyl CoA molecule are generated. ATP is further generat-
ed through electron transport chain.

Metabolic models comprise metabolic steps of glyc-
olysis pathway into lumped reactions due to less impor-

Figure 3: Overview of metabolic pathways in the cytosol: Precise metabolic pathway of catabolism and anabolism in CHO mammalian cell cytosol. 
Pathways of glucose conversion into pyruvate, glycogen and other monosaccharide’s are presented. Formation of nucleotides, lipids, nucleotide 
monosaccharide’s is presented together with cytosolic amino acid synthesis reactions. Amino acids are colored in blue; phosphate rich molecules are 
colored in green; ADP, NADH in red; gases in orange.1–5, 13, 15, 17, 19, 21, 29, 30, 45, 46, 50, 76
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tant, short half-life intermediates.1–4,17,21,29,46 In simplified 
models, fluxes are diverted directly to stable intermediates. 
Complete lysis of amino acids shows that amino acids re-
generate intermediates of TCA cycle much faster com-
pared to glycolysis due to independent enzyme machinery 
of each amino acid. Enormous energy comes from 
branched chain amino acids (BCAA), i.e. valine, isoleu-
cine, and leucine (Figure 4).

2. 2. 3.  Pentose Phosphate Pathway and  
UDP-Monosaccharides Stock

Like glycolysis, pentose phosphate pathway (PPP) is also 
included in several models (Table 1).1,2,4,5,15,17,19,30,45,46,50 
An alternative route for glucose is generation of different 
monosaccharides (Figure 3). From glucose-6-phosphate 
cell produces ribulose-5-phosphate, xylulose-5-phosphate, 
erythrose-4-phosphate, fructose-6-phosphate sedoheptu-
lose-7-phosphate and ribose-5-phosphate.33 Ribose-5- 
phosphate enters synthesis of nucleotides.5 Monosaccha-

rides from PPP can be transformed into glyce  raldehyde-3-
phosphate and fructose-6-phosphate, which again enters 
glycolysis pathway (Figure 3).

Few models also include generation of UDP-mono-
saccharides (Figure 3).37,38,40 In excess of UTP, different 
nucleotide sugars are generated, including GDP-mannose, 
UDP-galactose, UDP-glucose, UDP-N-acetyl glucosamine 
(GlcNAc), and CMP-sialic acid. Nucleotide sugars are in-
cluded in the models, which describe glycosylation pattern 
of proteins (Figure 3).29,37–39 Nucleotide sugars are trans-
ported into the endoplasmic reticulum (ER) and the Golgi 
apparatus (GA), where they get concentrated and ready to 
be attached to proteins (Figure 3). The attachment is car-
ried out through covalent bond between sugar residue and 
protein through N-phospho-glycosylation.37,77

2. 2. 4. Glycogen Synthesis
Glycogen synthesis is included only in a few models 

(Table 1),5 despite its important role in glucose homeosta-

Figure 4: Metabolic pathways within mitochondria: TCA cycle is the major metabolic pathway. Fatty acids are pre-metabolized in beta oxidation 
cycle (purple). Amino acids (blue) enter TCA cycle through oxoglutarate, fumarate, and succinyl CoA. Oligosaccharides enter TCA cycle through 
PPP and glycolysis pathway. Gases are colored in orange, while phosphate rich energy molecules are colored in green.1–5,15,17,19,21,24,29–31,43,45,46,50
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sis. In the excess of ATP, cell transfers extra glucose into 
glycogen that is used as energy source, when glucose is run 
out from the medium or cytosol. One molecule of glyco-
gen can store up to 30000 molecules of glucose. This con-
tributes to lower osmotic pressure and thus removes 
harmful effects of high glucose content. Glucose is readily 
available, if there is a demand on energy or carbon source 
(Figure 3). The path described above is ATP controlled. 
Glucose is transformed into glucose-1-phosphate; in this 
process one molecule of ATP is consumed. UTP molecule 
binds to glucose-1-phosphate, leading to production of 
UDP-glucose. UDP-glucose attaches itself to glycogen, 
leading to release of UDP.

2. 2. 5. Lipid Synthesis
Lipid synthesis is included in several models (Table 

1). They used simplified pathways13,15,17,50,76 or very pre-
cisely defined pathways.5

During cell division, lipid synthesis is enhanced to 
simulate assembly of membrane. Phosphoglycerides, tri-
glycerides, phosphatidylserine, phosphatidyllecithine, 
cholesterol, sphingomyelin, and geranyl pyrophosphate 
are synthesized (Figure 3). Successive enzymatic pathway 
starts wih the acetyl-CoA and leads to complex lipid mol-
ecules (Figure 5). Different glycerides are synthesized with 
the addition of fatty acids and other groups to glycerol.

2. 2. 6. Amino Acid Synthesis
Amino acid degradation is described in most mod-

els, but usually only partial set of amino acids is integrated 
in a model (Table 1).1–5,15,17,19,21,24,29–31,43,45,46,50 Altamira-
no et al17 includes synthesis of alanine, aspartate and glu-
tamine in highly interconnected metabolic network. Quek 
et al5 describes precise metabolic network with intercon-
nected synthesis of amino acids: alanine, glutamate, aspar-
agine, proline, serine, glycine, aspartate. Provost et al19 in-
cludes synthesis of alanine into the model.

Essential amino acids cannot be synthesized de novo 
(from scratch) by the organism, therefore must be supple-
mented from the medium. There are nine amino acids that 
humans cannot synthesize: phenylalanine, valine, threo-
nine, tryptophan, methionine, leucine, isoleucine, lysine, 
and histidine (single letter abbreviations in the order they 
appear: F, V, T, W, M, L, I, K, and H). Other amino acids 
are synthesized from essential amino acids and other cell 
intermediates (Figure 6).

2. 2. 7.  DNA Duplication, RNA Transcription and 
Protein Translation

Nucleotides are synthesized through PPP. In a few 
models nucleotide synthesis is incorporated.5,19 Provost et 
al19 describes highly simplified model. Quek et al5 de-
scribes precise metabolic pathway, where glucose is trans-
formed into ribose, which is further converted to IMP (in-
osine monophosphate-purine precursor) and UMP 
(uridine monophosphate-pyrimidine precursor). These 
precursors are then transformed into ATP, CTP, UTP, GTP, 
dATP, dCTP, dTTP, and dGTP (Figure 3).

Duplication of DNA and translation of RNAs take 
place in the cell nucleus. mRNA is transported to the cyto-
sol and rRNA takes position in ribosome, while mRNA is 
translated into protein by the aid of tRNA. Nucleotide 
triphosphates (NTPs) are used as an energy source during 
transcription. For each amino acid, codon is assembled 
from three NTPs. mRNA is assembled of: 5’ cap, 5’ and 3’ 
untranslated region (UTR), sequence for signal peptide, 
coding region, and poly AAA end. mRNA exits the nucle-
us and enters a ribosome, where the protein is translated 

Figure 5: Synthesis of fatty acids from acetyl-CoA: Complex enzy-
matic pathway leads to different lipid molecules that assemble into 
membrane bilayer. The saturated fatty acids and unsaturated fatty 
acids of the n-3, n-6, n-7 and n-9 series can be synthesized from 
myristic acid (C14) and palmitic acid (C16), produced from ACC 
and FASN. Long-chain fatty acids of n-6 and n-3 series can also be 
synthesized from precursors obtained from dietary precursors to 
elongation (ELOVL) and desaturation (FADS) steps as indicated in 
the pathways. Lipids marked red and green are “up” and “down” reg-
ulated in our analysis, respectively. Increase in enzyme activities is 
framed in red whereas a decrease is framed in green. ACC: acetyl-
CoA carboxylase; ELOVL: elongase of very long chain fatty acid; 
FASN: fatty acid synthase; FADS: fatty acid desaturase; SCD: stea-
royl-CoA desaturase.78 From “Metabolism dysregulation induces a 
specific lipid signature of nonalcoholic steatohepatitis in patients,” 
by F. Chiappini, A. Coilly, H. Kadar, P. Gual, A. Tran, C. Desterke, D. 
Samuel, J. C. Duclos-Vallée, D. Touboul, J. Bertrand-Michel, A. 
Brunelle, C. Guettier, and F. Le Naour, Sci. Rep., 2017, 7, 1–17. Re-
printed with permission.

http://medical-dictionary.thefreedictionary.com/inosine+monophosphate+(IMP)
http://medical-dictionary.thefreedictionary.com/inosine+monophosphate+(IMP)
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by the help of amino acid-bearing tRNA (AA-tRNA). One 
ATP molecule is used to create AA-tRNA bond (Figure 7). 
Transcription and translation are usually not integrated 
into the models, due to unavailability of data of complex 
interaction between DNA, amino acids and enzymes.

2. 2. 8. Glycosylation
Glycosylation is the attachment of a glycan unit to a 

protein after translation. Commonly, it is modeled sepa-
rately from the rest of the cell metabolism.37,38,40 Peptide or 
protein can enter ER, if signal sequence is in front of pro-
tein. Inside ER, specific glycans assembled from monosac-
charides are attached to the protein through amino residue 
of the asparagine. Glycan part of the protein is additionally 
glycosilated in the ER and at the end of this process con-
sists of two N-acetyl glucosamine and nine mannose resi-
dues. Afterwards, the glycosylated protein enters the GA 
where the glycan part of the protein is additionally modi-
fied by the help of specific enzymes. N-acetyl glucosamine, 
galactose, sialic acid, and fucose might be added to final 
glycan structures. The final products then leave the GA 
(Figure 7).77,79 The destination of the glycosylated protein 
isoforms is determined by a signal peptide in the protein 
sequence. Glycosylated proteins can be excreted from the 
cell, incorporated into membrane or transported to other 
places inside the cell (Figure 7).77,79

Availability of glycosylation machinery relative to 
cellular secretory capacity plays a crucial role in protein 
glycosylation.38 A modeling platform is able to predict the 

distribution of different glycoforms based on extracellular 
conditions37 likewise the form of glycan, when expression 
of the protein is elevated.40

2. 2. 9. Feedback Loops
The catabolism is regulated by ATP. High concentra-

tion of ATP inhibits conversion of glucose-6-phosphate 
into ribulose-5-phosphate, fructose-6-phosphate into 
glycerate-3-phosphate, phosphoglycerate into phosphoe-
nolpyruvate, pyruvate into acetylCoA (glycolysis), glu-
tamine into glutamate, and glutamate into alpha-ketoglut-
arate (glutaminolysis).50 ATP also inhibits Krebs cycle in 
two places: (i) conversion of alpha-ketoglutarate into suc-
cinyl CoA, and (ii) oxaloacetate into citrate.50

High concentration of ATP slows down catabolism 
and transfers excess glucose into glycogen. ATP is used for 
biomass and production of final product. High ATP con-
centration stops glutaminolysis; glutamine is converted 
into other amino acids. Glucose is metabolized into nucle-
otide monosaccharides that are transported into ER and 
GA. The pathway of glycolysis is highly regulated to sus-
tain sufficient concentration of ATP (Figure 8). In rapidly 
dividing cells glucose and glutamine consumptions are 
major steps for energy supply. Both pathways are ATP reg-
ulated by negative feedback loop.

High production of lipids from AcCoA and nucleo-
tides from ribose-5-phosphate and glutamine leads to 
anabolism in CHO cells. DNA is duplicated by the aid of 
DNA polymerase. Proteins are synthesized in a more com-

Figure 6: AA synthesis of non-essential amino acids.1, 5, 19 Synthesis of amino acids from essential amino acids, glycolysis intermediates, carbamoyl 
phosphate and 5-phosphoribosyl 1-phosphate. Essential amino acids are colored in light green, amino acids in blue, and gases in orange. Energy 
molecules are colored in green (if produced) or in red (if consummated).
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plex way; first transcription of mRNA is needed, followed 
by translation of proteins by the aid of mRNA, tRNAs, and 
ribosomes.

2. 3. Mechanistic Models
In addition to black box models, mechanistic models 

have gained increasing interest in a detailed description of 
mammalian cell metabolism. Mechanistic models start 
with a set of metabolites linked up with biochemical reac-
tions, which organize metabolites in the metabolic net-
work. Metabolic network comprises intracellular transfor-
mations of metabolites and the membrane transport, 

Figure 7: Transcription of DNA takes place in the nucleus, while 
translation of mRNA takes place in the cytosol. Glycan attachments 
are done in ER, while associated modifications take place in GA.5, 19, 

37, 38, 40, 77, 79 RNA and DNA are colored in purple, polypeptides are 
colored in blue. Monosaccharides are labeled with colored square, 
blue square represents N-acetyl glucosamine unit, red square man-
nose unit, green fucose, yellow galactose, and orange xylose unit 
(not added to glycan backbone in CHO cells).

Figure 8: Glycolysis and Glutaminolysis.5, 50 Molecules colored in 
green are generated, while molecules in red are used in the transfor-
mations. High concentration of ATP stops conversion of pyruvate 
into acetyl CoA, alpha-ketoglutarate (oxaloacetate) into citrate and 
oxoglutarate into succinyl CoA.
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which couples the cell interior with the cell medium. Met-
abolic network modeling is commonly associated with the 
metabolic flux analysis (MFA), flux balance analysis (FBA), 
and other derived methodologies.80 MFA considers exper-
imental data to estimate flux rates for biochemical reac-
tions within a metabolic network, while FBA assumes ob-
jectives and constraints to tailor the solution space of flux 
rates. These methods originally provide static insights into 
metabolic routes, what allows to study cell cultures at a 
state of particular interest. Even though several extensions 
were proposed to include extracellular dynamics in the 
framework of MFA and FBA,81 precise mathematical rep-
resentation of reaction kinetics and regulation mecha-
nisms remains a challenge. See the review for a concise 
overview of metabolic models.82

Several attempts have been made to address dynamic 
behavior of mammalian cell cultures. Nolan et al used the 
metabolic network with 34 reactions to describe CHO cell 
metabolism.43 They used MFA to estimate reactions’ flux 
rates, which were further rationalized by optimization 
protocols. To imitate the distribution of co-factors they as-
sumed two types: co-factors, which are located within the 
mitochondria and others within the liquid part of a cyto-
plasm. They defined the redox variable as the ratio be-
tween the rate of generated NADH and the transport rate 
of NADH from cytosol to mitochondria. The redox varia-
ble took place in the kinetic expressions and it was envis-
aged that governs dynamics of lactate.

Provost et al19 and later Zamorano et al24 used MFA 
and the associated concept of elementary flux modes 
(EFMs) to recognize probable metabolic routes (macro re-
actions). They obtain three sets of macro reactions (three 
submodels), each for the corresponding phase of the cell 
culture: growth, stationary, and decline phase. Macro reac-
tions were modeled by the Monod kinetic law (Eq. 4). Fi-

nally, they assume the interplay between submodels to de-
scribe transitions through phases of the cell culture.

In another approach Hagrot et al21 used the metabol-
ic network with 30 reactions and enumerate the whole 
EFM spectrum. Then, they used several experimental sets 
to estimate maximal flux rates of EFMs. Dynamic behavior 
of EFMs was induced by additional terms that described 
substrate saturation, product inhibition, and metabolite in-
hibition. The so-called Poly-pathway model simulated mul-
tiple metabolic stages of CHO cell metabolism and thus 
addresses the diversity seen from experiments. However, 
the dissemination of the approach toward metabolic net-
works of larger extent remains a challenge due to time-con-
suming of EFM enumeration. An example of such models 
are the genome-scale metabolic models (GEMs), which 
treat the metabolic network in a more detail together with 
enzymatic activity and the genome, which encodes en-
zymes of biochemical reactions in the metabolic net-
work.45,83 GEMs are phenotype-specific and requires large 
amount of data and computer facilities. For further read-
ing, see the excellent review of genome-scale approaches.84

Mechanistic models have been applied also to study 
post-translational modifications (glycosylation) of anti-
bodies within mammalian cell cultures.34,41,85,86 These 
processes are modeled by three types of kinetic laws, which 
describe interplay among enzymes and glycoforms: (i) 
Michaelis-Menten kinetics with competitive and product 
inhibitions, (ii) Sequential-order Bi-Bi with competitive 
and product inhibitions and (iii) Random-order Bi-Bi 
with competitive and product inhibitions. In a greatly ac-
cepted approach, authors assume continuous plug flow 
reactor (PFR) model to represent maturation of glyco-
forms along the Golgi apparatus.85 Coupled with the mass 
balances for nucleotide sugar donors, byproducts, and 
transport proteins, the PFR model provides a mechanistic 
explanation for glycosylation profiles of commercial anti-
bodies. Recently, Hutter et al41 proposed glycosylation flux 
analysis (GFA) as an MFA analogue to apply con-
straint-based modeling of the glycosylation network by 
using a pseudo steady state assumption. Using the GFA, 
the authors were able to elucidate dynamical changes of 
glycoforms, caused by media variations.

In our recent work, we proposed a simple metabolic 
network with 103 biochemical reactions, to investigate 
transitions between cell phases in mammalian CHO cell 
cultures.87,88 Figure 9 shows schematic representation of 
the metabolic pathways.

Figure 9: Metabolic network comprises Glycolysis, 
Pentose Phosphate Pathway, Nucleotide Synthesis, Tri-
carboxylic Acid cycle, Amino Acid Metabolism, Urea 
Cycle, Lipid Synthesis, Protein Synthesis Biomass Pro-
duction, and Membrane Transport. Each pathway com-
prises detailed set of biochemical reactions, which de-
scribes transformations among metabolites on the 
molecular level.
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In our approach, the biomass (density of viable cells) 
evolves as dictated by the cell metabolism, and not via the 
logistic-typed description (Eq. 1), which is traditionally 
used in mechanistic models for biomass production. Then, 
we used the interplay between FBA and MFA to impose 
constraints within the cell interior, and to estimate the re-
actions’ flux rates. We used the random sampling approach 
to calculate the set of EFMs (macro reactions), without 
precalculated EFM spectrum. Assigning Monod kinetic 
law to macro reactions is a common approach to describe 
individual phases of the cell culture. Unfortunately, the ap-
proach is not suitable to describe transitions between 
growth, stationary, and decline phase. To overcome this 
issue, we included negative terms (reversible kinetics) in 
Monod kinetic law to address inhibition phenomena and 
the possible rewiring of metabolic routes, caused by prod-
ucts in macro reactions. Description of technical details 
would be beyond the scope of this review, however we 
shall mention that after performing the model reduction 
protocol we achieved evident simplification of the kinetic 
model. Starting from 64 model parameters we finally ob-
tain 17 kinetic parameters, which turned out to be suffi-
cient to describe dynamics of metabolites in the cell medi-
um. Time evolution of the representative metabolites is 
shown in Figure 10.

Figure 10 shows characteristics of mammalian CHO 
cell cultures. At the growth phase, cells exhibit very high 
consumption rates of Glc and Gln, resulting in high secre-

tion of Lac. Amino acids are mostly depleted. The end of 
growth phase (t ≈ 90 h) is characterized by Glc depriva-
tion: to compensate it, the produced Lac is consumed as 
the carbon source instead of Glc as already mentioned.

As seen in Figure 10, the model is capable to describe 
transitions between cell phases. The important feature of 
the model turned out to be reversible nature of kinetic ex-
pressions, which allow to describe non-monotonic behav-
ior of metabolites’ concentrations by means of flux reversal 
instead of user-defined switching functions that are in 
general difficult to obtain.

3. Summary
The present review describes how the research 

should to be done from the start to successfully finish the 
bioreactor model. In the review we revise recent advances 
of bioreactor operation and CHO metabolic pathways.

Black box models describe reactor with simple equa-
tions that fits curves of growth, substrate consumption and 
product formation. These are simple formulations that de-
scribe working bioreactor with culture at given conditions. 
Mechanistic models usually describe growth through 
complex metabolic pathways together with complex oper-
ation equations. Black box equations can be also integrated 
into mechanistic models, a good example is description of 
biomass growth, where biomass depends on factors inde-

Figure 10: Metabolites’ concentration profiles as a function of time. Green points label metabolite uptake or secretion in the cell medium during the 
cultivation of CHO-320 cells.13 Purple lines apply to macro reactions, which are characterized by kinetic parameters.88
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pendent of network metabolic flows. Thorough study of 
metabolic pathways brings new ideas how to address exist-
ing problems that may arise during batch, fed batch and 
continuous bioreactor operation.

The methodologies we have presented so far are 
powerful; however there is still an ample room for im-
provements, which have to be implemented in a consistent 
way. To improve and extend the current models it is essen-
tial to estimate kinetic constants from parallel experiments 
by measuring response of cell metabolism upon addition 
of selected nutrients. We expect to gain large benefit by 
carrying out additional measurements of antibody secre-
tion, which may yield additional flux modes and thus un-
ravel other relevant pathways. Central metabolic pathways 
should be designed together with glycosylation pathways 
to form a valuable tool in biotechnology for estimating the 
quality of product titer. Some of the detailed models we 
presented have capability to be refined by including the ac-
tivity of enzymes and their sensitiveness on temperature 
and pH shifts. Improvements of current methodologies 
might aid at the development of biotechnology processes 
and consequentially to facilitate the release of products on 
the market.
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Povzetek
Epitelijske celice kitajskega hrčka (CHO) so ena izmed najbolj uporabljanih terapevtskih medicinskih linij za proizvo-
dnjo različnih biofarmacevtskih zdravil. Imajo visoko stopnjo porabe s hitrim podvajanjem, kar jih naredi idealen biolo-
ški klon. Večja količina akumuliranih toksičnih intracelularnih intermediatov lahko privede do nižje viabilnosti organiz-
ma, produktivnosti proteinov in proizvedenih bioloških zdravil, zato je potrebna optimalna izbira sestave medija ter 
bioreaktorskih operativnih parametrov za vodenje bioprocesa. Natančno fenomenološko znanje o biokemijskih transfor-
macijah v celičnem metabolizmu omogoča zaznavo težav, ki se lahko pojavijo med šaržnim, polkontinuirnim in konti-
nuirnim obratovanjem bioreaktorja. Za boljše razumevanje (in povezave), so bili izdelani mehanistični modeli, ki se 
lahko uporabijo za optimiziranje obratovanja in povečevanja skale. V tem delu je narejen pregled glavnih metabolni poti 
v strukturiranih sesalskih kulturah CHO. Pregled se začne z biokemijskim ozadjem znotraj celica, ki nadzirajo povezane 
pojave in kinetiko, ki urejajo vzpostavljene biološke poti. Nato sledi opis posamezne pretvorbene poti, preko pregleda 
standardnih matematičnih formulacij, ki se običajno uporabljajo v inženirstvu. Te formulacije sledijo principu modelira-
nja t.i. črne škatle (black box), ki povezuje substrate/produkte na poenostavljen način. Poleg tega so predstavljeni mode-
li, ki vključujejo analizo metabolnih fluksov (MFA) in analizo uteženih fluksov (FBA). Na koncu je pregled podobnosti 
med različnimi pristopi za njihovo strukturno zasnovo. Izpostavljene so enačbe s spremenljivkami, ki se uporabljajo za 
opis rasti kontroliranih pogojev v bioreaktorju, raziskane reakcijske serije rasti populacije CHO, povezane z vrednostmi 
maksimalne encimske aktivnosti. Procesi so našteti tako, da lahko bralec integrira najsodobnejši pristop. Posebej je iz-
postavljen tudi prispevek avtorjev.
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