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Iztok Peterin

Ljubljana, May 17, 2011



Rainbow connection and graph products
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Abstract

A path in an edge colored graph G is called a rainbow path if all its edges have
pairwise different colors. Then G is rainbow connected if there exists a rainbow
path between every pair of vertices of G and the least number of colors needed to
obtain a rainbow connected graph is the rainbow connection number. If we de-
mand that there must exist a shortest rainbow path between every pair of vertices,
we speak about strongly rainbow connected graph and the strong rainbow con-
nection number. In this paper we study the (strong) rainbow connection number
on direct, strong, and lexicographic product and present several upper bounds for
these products that are attained by many graphs. Several exact results are also
obtained.

Key words: (strong) rainbow connection number; direct product; strong product;
lexicographic product
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1 Introduction and preliminaries

Topics related to rainbow problems were first introduced in a classical paper of Erdős,
Simonovits, and Sós in 1975 [8] as a counterpart to Ramsey problems. Since then the
development went in different directions. For the latest survey see [9]. Probably the
latest one was introduced by Chartrand, Johns, McKeon, and Zhang in [6] and it is
about “rainbow connection”. More precisely, let P be a path of an edge colored graph
G. (The coloring is not necessarily a proper coloring.) Then P is called a rainbow path
if all of its edges have pairwise different colors. If there exists a rainbow path between
each pair of vertices of G, we say that G is rainbow connected and the smallest number
of colors needed for G to be rainbow connected is called the rainbow connection number
rc(G).

Similar concept, also introduced in the same paper [6], is the strong rainbow con-
nection number src(G), i.e., the smallest number of colors needed such that there exist
a rainbow colored shortest path (geodesic) between every pair of vertices. Then we
also say that, by such a coloring, G is strongly rainbow connected. The motivation for
the strong rainbow connection number is that it is clearly the upper bound for rainbow
connection number: rc(G) ≤ src(G). The trivial lower bound is obviously diam(G),

0E-mail addresses: tanja.gologranc@gmail.com (T. Gologranc), gasper.mekis@gmail.com (G. Mekǐs)
iztok.peterin@uni-mb.si (I. Peterin).
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the diameter of G, i.e., the longest shortest path of G. We will use term “(strongly)
rainbow colored” for graph G whenever a coloring of E(G) induces a (strong) rainbow
connectedness of G.

The (strong) rainbow connection number was introduced in [6], where rc(G) and
src(G) of some graph classes have been presented. The authors continued with their
work in [7] with a similar concept of rainbow connectivity of a graph that has an impli-
cation to security networks. The rainbow connection number was bounded from above
by minimum degree condition in [3, 16, 21, 22]. The discussion about the algorithmic
aspect to the topic can be found in [4]. The vertex version of the rainbow connection
number was studied in [16]. More results can be found in survey [18].

The general strategy to approach (strong) rainbow connection number seems to be
in finding coloring that is close to the trivial lower bound, since it is hard to raise the
lower bound. Here we present a tool that can be useful at least for the strong rainbow
connection number.

The distance dG(u, v) in a simple undirected graph G between vertices u, v ∈ V (G)
is the length of a shortest path between u and v in G. A geodesic interval IG(u, v) is the
set of all vertices of G that are on some shortest u, v-path. A set K ⊆ V (G) is geodesic
convex if I(u, v) ⊆ K for every pair u, v ∈ K. A subgraph H of G is geodesically
convex if V (H) forms a geodesic convex set. Hence, geodesic convex subgraphs are
closed for all shortest paths, which yields that the strong rainbow connection number
is hereditary for geodesic convex sets.

Observation 1.1 Let H be a geodesic convex subgraph of a connected graph G. Then
src(G) ≥ src(H).

Similarly, the rainbow connection number can be observed for some other convexi-
ties. Namely, a set A(u, v) is called an all-path interval between u and v if it consists
of all vertices that lie on a u, v-path. Then A is an all-path convex set whenever it is
closed for all all-path intervals A(u, v), for any u, v ∈ A, and H is an all-path convex
subgraph of G when V (H) is an all-path convex set. Again, all-path convex subgraphs
are hereditary for rainbow connection number. Unfortunately this gives nothing new,
since 2-connected components of G and their (connected) unions form all all-path con-
vex subgraphs.

There are also some related concepts as induced path convexity and Steiner convex-
ity. Hence one could define the rainbow connection number with respect to these two
convexities and obtain a chain of different invariants. For more about other convexities
see [5] and for convexities on graph products see [1, 20].

The second observation is due to the fact that the rainbow connection number is
reciprocally hereditary for spanning subgraphs.

Observation 1.2 Let H be a connected spanning subgraph of a connected graph G.
Then rc(H) ≥ rc(G).

The standard products (Cartesian, direct, strong, and lexicographic) draw a con-
stant atention of graph reserch comunity, see some recent papers [1, 2, 11, 15, 19, 20,
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23, 25]. In this paper we will consider three standard products: the direct, the strong
and the lexicographic with respect to the (strong) rainbow connection number. Every
of these three products will be treated in one of the forthcoming sections. Some results
on the Cartesian and the lexicographic product are given in [17, 18].

2 The direct product

The direct product G ×H of graphs G and H has the vertex set V (G) × V (H). Two
vertices (g, h) and (g′, h′) are adjacent if the projections on both coordinates are adja-
cent, i.e., gg′ ∈ E(G) and hh′ ∈ E(H). It is clearly commutative and associativity also
follows quickly. For more general properties we recommend [12]. The direct product is
the most natural graph product in the sense of categories. But this also seems to be
the reason that it is, in general, also the most elusive product of all standard products.
For example, G × H needs not to be connected even when both factors are. To gain
connectedness of G×H at least one factor must additionally be nonbipartite as shown
by Weichsel [24]. Also, the distance formula

dG×H((g, h), (g′, h′)) = min{max{de
G(g, g′), de

H(h, h′)},max{do
G(g, g′), do

H(h, h′)}}

for the direct product is far more complicated as it is for other standard products.
Here de

G(g, g′) represents the length of a shortest even walk between g and g′ in G, and
do

G(g, g′) the length of a shortest odd walk between g and g′ in G. The formula was first
shown in [14] and later in [10] in an equivalent version. There is no final solution for
the connectivity of the direct product, only some partial results are known (see [2, 11]).

In this section we will construct diferent upper bounds for the rainbow connection
number of the direct product with respect to some invariants of the factors that are
related to the rainbow connection number of the factors. The similar concept as for
the distance formula is used and is due to the rainbow odd and even walks between
vertices (and not only rainbow paths) and is thus, in a way, related with the formula.
We will show that this bound is tight for some family of graphs, but also that it can
be arbitrarily bad.

For an edge colored graph G (it needs not to be a proper coloring) we say that
G is odd-even rainbow connected if there exists a rainbow colored odd walk and a
rainbow colored even walk between every pair of (not necessarily different) vertices of
G. Clearly, on such a walk a fixed edge can appear only once. The odd-even rainbow
connection number of a graph G, oerc(G), is the smallest number of colors needed for
G to be odd-even rainbow connected and it equals infinity if no such a coloring exists.
A bipartite graph has either only even or only odd walks between two fixed vertices,
thus there is no odd-even rainbow coloring of such a graph. On the other hand, let G
be a graph in which every edge lies on some odd cycle. Then oerc(G) is finite since
coloring every edge with its own color produces an odd-even rainbow coloring of G. An
odd cycle is an example where this coloring is optimal. In this case, if we would have
two consecutive edges of the same color, then there is no even rainbow walk between
the diametrical endvertices of these two edges, and in the case of two nonincident edges
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of the same color there is no even rainbow walk between endvertices of any different
colored edge. An example with oerc(G) < |E(G)| is on Figure 1 (a). It is also easy to
see that oerc(Kn) = 3, n ≥ 3. Namely, if we denote V (Kn) = {0, 1, . . . , n− 1} and for
n > 3 and i, j ∈ {0, 1, . . . , n − 1}, i < j we color the edge ij with color j − i(mod 3),
we get an odd-even rainbow coloring. It is obvious that for every i ∈ {0, 1, . . . , n − 1}
there exists odd rainbow i, i-walk of length three and for every pair of different vertices
i, j ∈ {0, 1, . . . , n− 1} there exists rainbow i, j-path of length two.

1 2

5 3
2 1

4

(a) (b) (c)

Figure 1: (a) A graph with odd-even rainbow connection number less than number of
edges; (b) 3-coloring of K2 ×K4; (c) 2-coloring of K3 ×K3.

LetG be a graph. We splitG into two spanning subgraphsOG andBG, where the set
E(OG) consists of all edges of G that lie on some odd cycle of G, and the set E(BG) =
E(G)\E(OG). Clearly, OG and BG are not always connected. Let OG

1 , O
G
2 , . . . , O

G
k

and BG
1 , B

G
2 , . . . , B

G
` be components of OG and BG, respectively, each one containing

more than one vertex. Denote o(G) = oerc(OG
1 ) + oerc(OG

2 ) + . . . + oerc(OG
k ) and

b(G) = rc(BG
1 ) + rc(BG

2 ) + . . .+ rc(BG
` ). Note that o(G) is finite since it is defined on

nontrivial components OG
i , i ∈ {1, 2, . . . , k}. Now we can formulate our first result for

the direct product that is also the most general result of this section.

Theorem 2.1 Let G and H be nonbipartite noncomplete connected graphs. Then

rc(G×H) ≤ min{rc(H)(o(G) + b(G)), rc(G)(o(H) + b(H))}.

Proof. Without loss of generality, rc(H)(o(G) + b(G)) ≤ rc(G)(o(H) + b(H)). Denote
with cH , cBG, and cOG an optimal rainbow coloring of H, of components of BG, and
an optimal odd-even rainbow coloring of the components of OG, respectively. If e ∈
E(G ×H) projects on G to e′ ∈ BG, we set c(e) = (cBG(e′), cH(e′′)), and if e projects
on G to e′ ∈ OG, we set c(e) = (cOG(e′), cH(e′′)), where e′′ ∈ E(H) is the projection of
e on H. This way we get a coloring of E(G×H) with rc(H)(o(G) + b(G)) colors and
it remains to show that this is a rainbow coloring of G×H.

Let (g, h) and (g′, h′) be arbitrary vertices from G×H. Let P = g0g1 . . . g`, g0 = g
and g` = g′, be a shortest rainbow g, g′-path in G induced by cBG and cOG and let
Q = h0h1 . . . hk, h0 = h and hk = h′, be a shortest rainbow h, h′-path in H induced by
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cH . If g = g′ or h = h′ then P or Q is a trivial one vertex path. We distinguish two
cases.
Case 1. Suppose that ` and k have the same parity. If h = h′ let hk−1 be an arbitrary
neighbor of h and if g = g′ let g`−1 be an arbitrary neighbor of g. Then

(g0, h0)(g1, h1) . . . (gk, hk)(gk+1, hk−1)(gk+2, hk) . . . (g`, hk)

is a rainbow (g, h), (g′, h′)-path in G×H whenever ` ≥ k and

(g0, h0)(g1, h1) . . . (g`, h`)(g`−1, h`+1)(g`, h`+2) . . . (g`, hk)

is a rainbow (g, h), (g′, h′)-path in G×H whenever ` < k.
Case 2. Let now ` and k have different parity. If there exists a gi, gj-subpath of P
in OG

p we can replace this subpath by a rainbow gi, gj-subpath of different parity to
obtain a rainbow path P ′. If this is the case then |E(P ′)| and k have the same parity
and we can use Case 1. Otherwise, note that P is contained in one component BG

q .
Let gi ∈ P be a vertex that is closest to any component OG

p of G and let v1 ∈ OG
p

be the closest to gi. Let R = gig
′
i+1 . . . g

′
i+r, g′i+r = v1 be a shortest gi, v1-path. From

the definition of odd-even rainbow coloring we know that there exists an odd rainbow
v1, v1-walk C = v1v2 . . . vpv1 in OG

p . Now we insert a closed walk that follows RCR
from gi into a path P to obtain a g, g′-walk

(W = g0g1 . . . gig
′
i+1 . . . g

′
i+rv2v3 . . . vpv1g

′
i+r−1g

′
i+r−2 . . . gigi+1 . . . g`

= u0u1 . . . u`+p+2r

of length t = `+ 2r+p. W is clearly not a rainbow walk since some edges appear twice
on W . Note that t and ` have different parity since p is an odd number and thus t and
k have the same parity. If k ≥ t we can again use the same approach as in Case 1 for
W and Q, since every edge of Q has a different color. Similarly, we can use Case 1 if
t > k ≥ i+2r+p since then the edges of W with the same color receive a different color
of Q. It remains to check the case when t ≥ i + 2r + p > k. As H is not a complete
graph, we have rc(H) ≥ diam(H) ≥ 2. Since Q is a shortest rainbow path we obtain
three possibilities: Q is a one vertex path, Q is an edge hh′, the last two edges of Q
have different colors.

Let first Q = h = h′. We can find a path hxy or whz that contains two colors. In
the case of hxy a path

(u0, h)(u1, x)(u2, y)(u3, x) . . . (ui+r+p−1, a)(ui+r+p, b)(ui+r+p+1, c)(ui+r+p+2, d) . . .
. . . (ui+2r+p, h),

where a = y, b = x, c = h, d = x if i + r is even and a = x, b = h, c = x, d = h if
i+ r is odd, is a rainbow path since edges that project on G to a part of W from ui to
ui+r (edges of R) have second color cH(xy) and edges that project on G to a part of
W from ui+r+p to ui+2r+p (again the edges of R) have second color cH(xh) 6= cH(xy).
Similarly, in the case of whz a path

(u0, h)(u1, w)(u2, h) . . . (ui+r+p−1, a)(ui+r+p, b)(ui+r+p+1, c)(ui+r+p+2, d) . . . (ui+2r+p, h),
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where a = w, b = h, c = z, d = h if i + r is odd and a = h, b = z, c = h, d = z if
i+ r is even, is a rainbow path since edges projecting on G to R receive the first time
second color cH(hw) and the second time color cH(hz) 6= cH(hw).

The second possibility is Q = hh′. Again, there is a path hh′x (or xhh′ by sym-
metry) in H with cH(hh′) 6= cH(h′x) since H is not a complete graph. We have a
path

(u0, h)(u1, h
′)(u2, h) . . . (ui+r+p−1, a)(ui+r+p, b)(ui+r+p+1, c)(ui+r+p+2, d) . . . (ui+2r+p, h

′),

where a = h′, b = x, c = h′, d = x if i+ r is odd and a = h, b = h′, c = x, d = h′ if
i+r is even, that is a rainbow path since the first part that projects on G to R receives
second color cH(hh′) and the second part that projects on G to R receives second color
cH(h′x).

Finally, let hk−2hk−1hk be the last part of Q. The path

(u0, h0) . . . (uk−1, hk−1)(uk, hk−2)(uk+1, hk−1) . . .
. . . (ui+r+p−1, a)(ui+r+p, b)(ui+r+p+2, c) . . . (ui+2r+p, hk),

where a ∈ {hk−1, hk−2}, b, c ∈ {hk, hk−1} depends on the parity of k and i+ r, is again
a rainbow path by the same reason as above and the proof is completed. �

Let H be a bipartite graph. Then o(H) = 0 and we can not use the coloring from
the proof of Theorem 2.1 with rc(G)(o(H)+b(H)) colors since there is no rainbow path
between (g, h) and (g′, h), gg′ ∈ E(G). However, we can use the symmetric coloring
with rc(H)(o(G) + b(G)) colors. Hence we obtain

Corollary 2.2 Let G and H be noncomplete connected graphs, where G is nonbipartite
and H a bipartite. Then

rc(G×H) ≤ rc(H)(o(G) + b(G)).

It remains to study rc(G × Kn), n ≥ 2, to complete the upper bounds for the
direct product. We also skipped (up to here) the strong rainbow connection number
for the direct product. The reason for this is that we would need much more detailed
information about the factors to construct a strong rainbow coloring. Namely, we need
the information which odd cycle is closest to a fixed vertex and has, in addition, the
shortest length. In other words, we need to know the shortest closed odd walk from
every vertex. To fill a part of that gap we give an exact result for both rc(Kn ×Km)
and src(Kn ×Km). The notation V (Kn) = {0, 1, . . . , n− 1} will be used.

Theorem 2.3 Let n,m ≥ 3.

(i) rc(Kn ×Km) = 2 = src(Kn ×Km).

(ii) rc(K2 ×Km) = 3 = src(K2 ×Km).
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Proof. It is easy to see that diam(K2 ×Km) = 3 and diam(Kn ×Km) = 2, n,m ≥ 3.
Hence, rc(K2 ×Km) ≥ 3 and rc(Kn ×Km) ≥ 2. We also know [6], that for a graph G,
rc(G) = 2 if and only if src(G) = 2.

(i) We distinguish two cases with respect whether both m and n are even or not.
Case 1. Suppose first that at least one, say m, is odd. Define a 2-coloring as follows.
For every u ∈ V (Kn), an edge (u, v)(u + 1, v′) is colored with color 1 if v′ = v + 2k −
1(modm) for some k, 1 ≤ k ≤ m−1

2 , otherwise, if v′ = v + 2k(modm) for some k,
1 ≤ k ≤ m−1

2 , the edge (u, v)(u+ 1, v′) is colored with color 2. Every edge of the form
(u, v)(u′, v′) with u′ − u ≥ 2 is colored with the same color as the edge (u, v)(u+ 1, v′)
if u′ is odd and with different color otherwise. This way all edges are colored. (See
Figure 1 (c) for 2-coloring of K3 ×K3.)

Fix a vertex (u, v) ∈ V (Kn×Km). We need to find a rainbow path of length 2 from
(u, v) to every vertex of the form (u, v′) or of the form (u′, v), as these are exactly the
nonadjacent vertices of the vertex (u, v).

First, fix a vertex (u, v′). If v and v′ are of the same parity, then the edges
(u,min{v, v′})(u + 1,min{v, v′} + 1) and (u + 1,min{v, v′} + 1)(u,max{v, v′}) are of
different color. If u = n− 1 then take the vertex (u− 1,min{v, v′}+ 1). And if v and
v′ are of different parity, then the path via the vertex (u + 1,max{v, v′} + 1(modm))
(if u = n− 1, take (u− 1,max{v, v′}+ 1(modm))) is a rainbow path.

Second, fix a vertex (u′, v). Suppose |u − u′| = 1. If max{u, u′} is odd, then the
path via the vertex (max{u, u′}+ 1(mod n), v + 1(modm)) is a rainbow path. And if
max{u, u′} is even, then take the path through the vertex (min{u, u′} − 1, v + 1(mod
m)). Next, suppose |u − u′| > 1. If max{u, u′} is odd, then the path via the vertex
(min{u, u′}+ 1, v+ 1(mod m)) is a rainbow path, and in the even case take the vertex
(max{u, u′} − 1, v + 1(modm)).
Case 2. Both n and m are even. Define a 2-coloring as follows. For every u ∈ V (Kn),
an edge (u, v)(u + 1, v′) is colored with color 1 if v′ = v + 2k − 1(modm) for some
k, 1 ≤ k ≤ m

2 − 1. If v′ = v + 2k(modm) for some k, 1 ≤ k ≤ m
2 − 1, the edge

(u, v)(u + 1, v′) is colored with color 2. The edges of the remaining matching, where
v′ = v−1( mod m), are colored with color 2. Similarly as above, every edge of the form
(u, v)(u′, v′) with u′ − u ≥ 2 is colored with the same color as the edge (u, v)(u+ 1, v′)
if u′ is odd and with different color otherwise.

Fix a vertex (u, v). Firstly, find a rainbow path to the vertex (u, v′). Suppose
that v and v′ are of the same parity. If u < n − 1 then the edge (u,min{v, v′})(u +
1,max{v, v′} − 1) has color 1 and the edge (u + 1,max{v, v′} − 1)(u,max{v, v′}) has
color 2. If u = n − 1 then take the path via the vertex (0,min{v, v′} + 1). Suppose
next, v and v′ are of different parity. Suppose additionally that |v − v′| = 1. If
u < n − 1 take the vertex (u + 1,max{v, v′} + 1(modm)), otherwise take the vertex
(u−1,min{v, v′}−1( mod m)). And in the case of |v−v′| > 1, take (u+1,min{v, v′}+1)
if u < n− 1, and take (u− 1,max{v, v′} − 1) otherwise.

Secondly, find a rainbow path to the vertex (u′, v). Suppose |u − u′| = 1. If
max{u, u′} is even, then take the vertex (min{u, u′} − 1, v + 1(mod m)). If max{u, u′}
is odd, then the vertex (max{u, u′}+ 1, v + 1(mod m)) takes care of the issue unless if
max{u, u′} = n− 1, then we can take the vertex (min{u, u′} − 2, v + 1(modm)).
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Last case, suppose |u − u′| > 1. If max{u, u′} is even, take one of the vertices
(max{u, u′} − 1, v ± 1) (it may exist only one if v ∈ {0,m− 1}) and we get a rainbow
path, otherwise take one of the vertices (min{u, u′}+ 1, v ± 1).

(ii) First, the graph K2 × K3 is a cycle on six vertices, hence [6] src(K2 × K3) =
rc(K2 ×K3) = 3.

For m ≥ 4 define a 3-coloring of a graph K2 × Km similar as in (i). For every
v ∈ V (Km) the edge (0, v)(1, v′) is colored with 1 if v′ = v + 2k − 1(modm) for some
k, 1 ≤ k ≤ dm2 e − 1, and it is colored with 2 if v′ = v + 2k(modm) for some k,
1 ≤ k ≤ bm2 c − 1. The edges of the remaining matching, where v′ = v− 1(mod m), get
color 3. (See Figure 1 (b) for 2-coloring of K3 ×K3.)

Fix a vertex (u, v) ∈ V (K2 × Km). Without loss of generality, u = 0. The same
arguments as those used in (i) imply that we have a rainbow path (which is a shortest
path) on two different colored edges between (0, v) and (0, v′) for all v′ 6= v. And
for the vertex (1, v), the path (0, v), (1, v + 2(modm)), (0, v + 1(modm)), (1, v) is a
rainbow path, which is also a shortest path. Thus, src(K2 ×Km) = rc(K2 ×Km) = 3.
�

With respect to the theorem above we would like to note that, already, deciding
whether rc(G) = 2 for a given graph G is a NP-Complete problem, the same holds also
for checking whether a given coloring is a rainbow coloring [4].

Next we consider a general bound for G×K2. It is easy to see that the coloring of
Theorem 2.1 is not a rainbow coloring for G ×K2. This is due to the fact that for a
bipartite graph B we have two components in B ×K2 both isomorphic to B, see [13].
Thus if we wish a path from one component to the other we must visit some OG

i .

Theorem 2.4 Let G be a nonbipartite connected graph. Then rc(G × K2) ≤ o(G) +
2b(G).

Proof. Let cOG be an optimal odd-even rainbow coloring of the components of OG and
let cBG be an optimal rainbow coloring of the components of BG (for both cases it holds
that no color appears in two different components). We will construct an edge coloring
c of G × K2 using cOG and cBG as follows. Color both component of BG

i × K2 (which
are isomorphic to BG

i ) optimal with 2rc(BG
i ) for every i = 1, 2, . . . , `. For this we use

2b(G) colors. Both edges of G×K2 that project on G to an edge e of OG receive color
cOG(e). For the introduced coloring o(G) + 2b(G) colors are used and we need to show
that c is a rainbow coloring of G×K2.

Let V (K2) = {k1, k2}. Let (g, h) and (g′, h′) be arbitrary vertices from G×K2. Let
P = g0g1 . . . g`, g0 = g and g` = g′, be a rainbow g, g′-path in the rainbow coloring of
G induced by cOG and cBG. We distinguish two cases.
Case 1. Let ` and dK2(h, h′) have the same parity. Without loss of generality we may
assume that h = k1. Then h′ = k1 if ` is even number and h′ = k2 otherwise. Thus
(g0, k1)(g1, k2)(g2, k1) . . . (g`, h

′) is a rainbow (g, h), (g′, h′)-path in G×K2.
Case 2. Let ` and dK2(h, h′) have different parity. Suppose first that P has a nonempty
intersection with some OG

p and let gi be the first and gj the last vertex of P in OG
p .
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Then we can find a rainbow gi, gj-walk in OG
p with length of different parity as gi, gj-

subpath of P in OG
p . Replacing this walk with gi, gj-subpath of P in OG

p we obtain
a g, g′-rainbow walk of the same parity as dK2(h, h′) and we continue as in Case 1.
Suppose now that P has an empty intersection with every OG

p , p = 1, 2, . . . , k. Then P
is contained in BG

q for some q and (g, h) and (g′, h′) are in different components (BG
q )1

and (BG
q )2 of BG

q ×K2, respectively. Since G is nonbipartite there exists g′′ ∈ BG
q ∩OG

p

for some i. Let {hr, hs} = {k1, k2}. Take a rainbow path from (g, h) to (g′′, hr) in
(BG

q )1, a rainbow odd path from (g′′, hr) to (g′′, hs) in OG
p , and a rainbow path from

(g′′, hs) to (g′, h′) in (BG
q )2. Then this is a rainbow (g, h), (g′, h′)-path in G×K2 since

we have used different colors for (BG
q )1, (BG

q )2, and OG
p . �

To illustrate the above theorem let G be a graph obtained from an odd cycle C2k+1,
k ≥ 1, amalgamated by one endvertex of a path Pn. Then rc(G×K2) = o(G)+2b(G) =
2k + 1 + 2(n − 1). For this just note that diam(G × K2) = dG×K2((g, k1), (g, k2)) =
2k + 2n − 1, where g is the vertex of G with deg(g) = 1 and V (K2) = {k1, k2}. Even
more, if we take 2k + 1 arbitrary trees with an arbitrary fixed vertex and amalgamate
one by one of these 2k + 1 vertices by 2k + 1 vertices of C2k+1 to obtain graph G, we
have rc(G×K2) = o(G)+2b(G). On the other hand, it is easy to see that we need only
2k + 2`+ 3 < 2k + 2`+ 4 = o(G) + 2b(G) colors for a graph G obtained by connecting
C2k+1 and C2`+1 with an edge. In this case we can use only one color for edges that
project themselves to the bipartite component of G. Even more, if G has more bipartite
components BG

i “between” two components OG
j and OG

k we can lower the upper bound
of Theorem 2.4 for each such component BG

i by 1. The details are left to the reader.
It remains to study rc(G×Kn), n ≥ 3, to complete the upper bounds for the direct

product. One possibility is to use the coloring from the proof of Theorem 2.1 with
rc(G)(o(Kn) + b(Kn)) = rc(G)o(Kn) = 3rc(G) colors whenever G is not complete.

3 The strong product

The strong product G�H of graphs G and H has the vertex set V (G)× V (H). Two
vertices (g, h) and (g′, h′) are adjacent whenever gg′ ∈ E(G) and h = h′ or g = g′ and
hh′ ∈ E(H) or gg′ ∈ E(G) and hh′ ∈ E(H). Hence there are three types of edges. If an
edge of G�H belongs to one of the first two types, then we call such edge a Cartesian
edge and edge of the last type is called a noncartesian edge. (The name is due to the fact
that if we consider only first two types we get a Cartesian product of graphs – a fourth
standard product not considered in this work.) The vertex set Gh = {(g, h)|g ∈ V (G)}
for some fixed vertex h of H is called a layer of graph G or simply a G-layer (through
h). Similar is gH = {(g, h)|h ∈ V (H)} an H-layer (through g). It is not hard to
see that any G-layer induces a subgraph of G � H that is isomorphic to G and any
H-layer induces a subgraph of G�H that is isomorphic to H. The strong product is
connected whenever both factors are and the vertex connectivity of the strong product
was solved recently by Špacapan in [23], but we are not aware of any result concerning
edge connectivity of the strong product.
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In [17] authors used the fact that the Cartesian product is a spanning subgraph
of the strong one and they noted that the strong product has the same upper bound
for the rainbow connection number as the Cartesian one. Unfortunately this bound is
not tight. Even more, for the nontrivial strong product (both factors different from
K1) it is never reached. We will show a much better upper bound, which is tight for
many graphs and is, as expected, related to the distance formula for the strong product,
which states

dG�H((g, h), (g′, h′)) = max{dG(g, g′), dH(h, h′)}.

Theorem 3.1 Let G and H be connected graphs. Then

(i) rc(G�H) ≤ max{rc(G), rc(H)},

(ii) src(G�H) ≤ max{src(G), src(H)}.

Proof. Without loss of generality, rc(G) ≤ rc(H). Let cG : E(G)→ {1, 2, . . . , rc(G)}
be a rainbow coloring of G and cH : E(H) → {1, 2, . . . , rc(H)} a rainbow coloring
of H. A simple edge coloring of G � H is constructed as follows. Every edge of the
form (g, h)(g′, h) receives color cG(gg′) and any other edge (g, h)(g′, h′) is colored with
cH(hh′). We will show that this coloring is a rainbow coloring of G�H.

Let (g0, h0) and (gk, h`) be arbitrary vertices of G � H. Let P = g0g1 . . . gk and
Q = h0h1 . . . h` be rainbow paths in G and H, respectively. If k ≤ `, the path

(g0, h0)(g1, h1) . . . (gk, hk)(gk, hk+1) . . . (gk, h`)

is a rainbow path since no edge on this path lies in any of the G-layers and Q is a
rainbow path.

Next, let k > `. Denote p = k − ` and suppose that there are r pairwise different
colors that appear on both paths P and Q, 0 ≤ r ≤ `. We will construct a rainbow
(g0, h0), (gk, h`)-path with exactly ` noncartesian edges and p Cartesian edges that lie
only in G-layers. Take any ` − r ≥ 0 edges of P with colors that do not appear on Q
and add the r edges of P with colors that appear on both paths P and Q. Denote the
obtained edges with gi1gi1+1, gi2gi2+1, . . . , gi`gi`+1, where i1 < . . . < i`. Then

(g0, h0)(g1, h0) . . . (gi1 , h0)(gi1+1, h1)(gi1+2, h1) . . . (gi2 , h1)(gi2+1, h2)(gi2+2, h2) . . .
. . . (gi` , h`−1)(gi`+1, h`)(gi`+2, h`) . . . (gk, h`)

is a rainbow path since every color that appears on both P and Q appears on this path
only on a noncartesian edge. (This path, roughly speaking, traverses P in the Ghj -layer
from gij+1 to gij+1 and then switches with a noncartesian edge (gij+1 , hj)(gij+1+1, hj+1)
to the Ghj+1-layer for j = 0, 1, . . . , `− 1.)

The proof of (ii) is analogous, here we take P and Q to be shortest rainbow paths.
�

This upper bound is sharp for many pairs of graphs but it can also be arbitrarily
larger than the rainbow connection number of the strong product. Both options will
be discussed till the end of this section as well as some particular results.
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Corollary 3.2 Let G and H be connected graphs with rc(G) ≤ rc(H) = diam(H).
Then

rc(G�H) = diam(H).

Proof. Since diam(G) ≤ rc(G), we have diam(G�H) = max{diam(G),diam(H)} =
diam(H). Using the trivial lower bound and Theorem 3.1 we have diam(H) ≤ rc(G�
H) ≤ max{rc(G), rc(H)} = diam(H) and the equality holds. �

Corollary 3.3 For every connected graph G there exists n0 ∈ N, such that rc(G�Pn) =
n for every n > n0.

Proof. Let n0 = rc(G). For n > n0 we then have rc(G) ≤ rc(Pn) = diam(Pn) and
Corollary 3.2 ends the proof. �

Clearly, both corollaries have an analogue version with respect to the strong rainbow
connection number. In the remainder of this section we concentrate us on the opposite
direction, namely, we present some examples for which the above upper bound is not
exact.

Proposition 3.4 For m,n, p, q ∈ N with n, q > 1 we have 2 ≤ rc(Km,n �Kp,q) ≤ 3.

Proof. The lower bound follows from the trivial lower bound. For the upper bound we
introduce the following edge coloring of Km,n�Kp,q using three colors. All noncartesian
edges get color 1, all edges that belong to some Km,n-layer get color 2, and all edges
that belong to a Kp,q-layer get color 3. To show that this is a rainbow coloring we split
Km,n�Kp,q into four parts AC, AD, BC and BD that correspond to Cartesian product
of their bipartition sets. So suppose that V (Km,n) = A ∪ B and V (Kp,q) = C ∪ D,
where A = {a1, a2, . . . , am} and B = {b1, b2, . . . , bn} form a bipartition of Km,n, and
C = {c1, c2, . . . , cp} and D = {d1, d2, . . . , dq} a bipartition of Kp,q. Every vertex of
AC is adjacent to every vertex of BD, the same holds for AD and BC. Hence, we
have to find a rainbow path between any two vertices of BD as well as between any
vertex of BD and BC (or AD). All other paths can be found symmetrically. The path
(bi, dj)(a1, dj)(a1, c1)(bk, d`) is a rainbow path between two arbitrary vertices of BD.
The path (bi, dj)(a1, dj)(bk, c`) is a rainbow path between vertices from BD and BC.
The last case, the path (bi, dj)(bi, c1)(ak, d`) is a rainbow path from a vertex from BD
to a vertex from AD. �

In [6] it is shown that rc(Km,n) = min{d m
√
ne , 4} for 2 ≤ m ≤ n. Hence, the

Proposition 3.4 is no surprise. Combining the latter result with Theorem 3.1 we get:

Corollary 3.5 Let 2 ≤ m ≤ n ≤ 2m and 2 ≤ p ≤ q ≤ 2p. Then rc(Km,n �Kp,q) = 2.

However, Proposition 3.4 also allows that m and p are equal to 1. If this is the
case, then we are dealing with stars K1,n, K1,q, and their rainbow connection number
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equals n and q, respectively. Hence, the upper bound of Theorem 3.1 equals max{n, q},
but we have a rainbow 3-coloring by Proposition 3.4. Thus, the difference between the
upper bound of Theorem 3.1 and the rainbow connection number of the strong product
can be arbitrarily large. It seems that, in general, this upper bound behaves good if
the graph for which the bound max{rc(G), rc(H)} is obtained has diameter close to its
rainbow connection number. We end this section with the exact result for stars. For
this recall that rc(G) = 2 is equivalent to src(G) = 2 [6].

Corollary 3.6 Let n, q ≥ 3. Then rc(K1,n �K1,q) = 3 and src(K1,n �K1,n) = n.

Proof. We will use the same notation as in the proof of Proposition 3.4. Note that
there is only one vertex (a1, c1) in AC, but there are at least 9 vertices in BD. If we
would have a 2-rainbow coloring of K1,n�K1,q, then this coloring would also be a strong
rainbow coloring. It is not hard to see that the set {(a1, c1), (b1, d1), (b2, d2), (b3, d3)}
is convex in K1,n � K1,q and this set induces a K1,3. By Observation 1.1 we have
src(K1,n �K1,q) ≥ src(K1,3) = 3. Hence, rc(K1,n �K1,q) ≥ 3 and by Proposition 3.4
the equality holds.

For the second part, the set {(a1, c1)} ∪ {(bi, di)|i ∈ {1, 2, . . . , n}} is convex in
K1,n �K1,n. Moreover, it induces a convex subgraph K1,n and by Observation 1.1 we
obtain src(K1,n �K1,n) ≥ n. Theorem 3.1 concludes the proof. �

4 The lexicographic product

The lexicographic product G ◦ H of graphs G and H is the graph with V (G ◦ H) =
V (G) × V (H). Two vertices (g, h), (g′, h′) are adjacent if gg′ ∈ E(G) or if g = g′ and
hh′ ∈ E(H). The lexicographic product is not commutative and is connected whenever
G is connected. Again G- and H-layers are isomorphic to G and H, respectively.

In [17] authors proved that the upper bound for the rainbow connection number of
G◦H is the rainbow connection number of G if H is complete and one more otherwise.
It is easy to see that the rainbow connection number of G is a good upper bound for
all graphs G, with rc(G) ≥ 2 and every H with at least three vertices.

Theorem 4.1 Let G and H be graphs with |V (G)| ≥ 2, |V (H)| ≥ 3, and let G be
connected. Then

rc(G ◦H) ≤ max {rc(G), 2} and src(G ◦H) ≤ max {src(G), 2}.

Proof. First note that we need two colors in the case when G is complete and H is
not. Suppose now that G is not complete and that G is rainbow connected with colors
0, 1, . . . , rc(G)− 1. For every h ∈ H color the G-layer Gh the same as G. By this way,
any two vertices (g, h)(g′, h) ∈ V (G ◦H) are connected by a rainbow path. Every edge
of the form (g, h)(g′, h′) gets color k + 1(mod rc(G)), where gg′ ∈ E(G), h 6= h′, and
k is the color of the edge gg′ in G. Finally, color edges from H layers arbitrarily. Let
(g, h), (g′, h′) ∈ V (G ◦ H) and h 6= h′. Suppose first g = g′. Then (g, h)(g1, h′)(g, h′)
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is a rainbow (g, h), (g, h′)-path in G ◦ H for gg1 ∈ E(G). Suppose now that g 6= g′.
Let gg1 . . . gkg

′ be a rainbow g, g′-path in G and let h1 be an arbitrary vertex in H
different from h and h′. Then (g, h)(g1, h1)(g2, h)(g3, h1) . . . (gk, u)(g′, h′) is a rainbow
(g, h), (g′, h′)-path, where u = h if k is even and u = h1 otherwise.

Note that the same arguments hold if we start with a strong rainbow coloring of G.
In the case g = g′ the above path works only when h and h′ are not adjacent. But if
they are adjacent there is nothing to prove. �

There are many examples which show that this upper bound is not the best possible.
For instance, if H is connected with at least two vertices then rc(K1,n ◦ H) ≤ 3.
The coloring that realizes the latter upper bound is obtainable as follows. The edges
(gi, h)(gj , h) get color 1, color 2 is given to edges of the form (gi, h)(gj , h

′), where gigj ∈
E(K1,n) and h 6= h′. Every edge inside an H-layer gets color 3. It is straightforward
to check the rainbow connectedness. (Note that this is not a strong rainbow coloring.)
This case shows that the difference between the upper bound from Theorem 4.1 and the
rainbow connection number of lexicographic product can be arbitrarily large. However,
this coloring provides a surprising relation with some other invariant. Denote with
β(G) the minimum cardinality of a vertex cover S ⊆ V (G), i.e., S contains at least one
endvertex of every edge.

Theorem 4.2 Let G be a connected graph and H a graph without isolated vertices with
|V (H)| ≥ 2. Then

rc(G ◦H) ≤ 2β(G) + 1.

Proof. Let S be a vertex cover of minimum cardinality. We can cover V (G) with
{NG[si]|si ∈ S}. Color the edges in H-layers with color 1. We color edges in

〈
NG[s1]

〉
◦

H with color 2 if they belong to a G-layer and with color 3 if they do not belong to
a G-layer nor to a H-layer (as the latter ones are already colored). Inductively, we
continue with

〈
NG[si]

〉
◦ H, i > 1, where all yet uncolored edges that belong to a

G-layer receive color 2i and other uncolored edges not in an H-layer get color 2i + 1.
Finally, set color 1 to all edges from an H-layer. Hence all edges are colored and we
have used 2β(G) + 1 colors. Clearly, (g, h)(g′, h)(g, h′) is a rainbow (g, h), (g, h′)-path.
For g0 6= gk let P = g0g1 . . . gk be a shortest g0, gk-path in G. Then a path in G◦H that
projects to P and follows the sequence of edges Cartesian-noncartesian-Cartesian-. . .
or vice versa with possible last edge in a H-layer is a rainbow (g0, h), (gk, h

′)-path as
can be easily seen. �

Our next goal is to prove that rc(T ◦ H) ≤ diam(T ) + 1, where T is a tree and
the graph H has enough vertices. We need to order the vertices in G. For this we use
breadth-first search (BFS), a graph search algorithm that begins at the arbitrary vertex
and explores all the neighboring vertices. Then for each of those nearest vertices, it
explores their unexplored neighbors, and so on, until there are no vertices left to explore.

Lemma 4.3 Let i ∈ {0, 1, . . . , n}. Then i can be written as a sum of n different num-
bers from {0, 1, . . . , n} with respect to module n+ 1.
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Proof. Let j ∈ {0, 1, . . . , n} be such that

j ≡ 0 + 1 + . . .+ (n− 1) (mod n+ 1). (1)

If i = j we are done. If i > j, then we replace n − (i − j) in (1) with n (adding i − j
on both sides of (1)), that is

i ≡ 0 + . . .+ (n− (i− j)− 1) + n+ (n− (i− j) + 1) + . . .+ n− 1 (mod n+ 1).

If i < j, then we replace j − i− 1 in (1) with n, that is

i ≡ 0 + . . .+ (j − i− 2) + n+ (j − i) + . . .+ (n− 1) (mod n+ 1).

�

Corollary 4.4 Let i ∈ {0, 1, . . . , n}. Then i can be written as a sum of k different
numbers from {0, 1, . . . , n} with respect to module n+ 1, where 1 ≤ k ≤ n.

Theorem 4.5 Let T be a tree with diam(T ) > 2 and H a graph with |V (H)| ≥⌈
diam(T )

2

⌉
. Then

diam(T ) ≤ rc(T ◦H) ≤ diam(T ) + 1.

Proof. Note first that diam(T ) is the trivial lower bound for rc(T ◦H), since diam(T ◦
H) = diam(T ) > 2.

Let g1, g2, . . . , g|V (T )| and 0, 1, . . . , |V (H)|−1 be the vertices of T andH, respectively,
ordered by BFS. Let n = diam(T ) and let c : E(T ◦H)→ {0, 1, . . . , n} denote a coloring
of T ◦H with n+ 1 colors defined as follows. For i < j let

c((gi, k)(gj , k
′)) = k′ − k (mod n+ 1),

where gigj ∈ E(T ). The remaining edges can be colored arbitrarily as they will play

no role later. Note that we have exactely n + 1 colors since |V (H)| ≥
⌈

diam(T )
2

⌉
. We

need to prove that any two vertices of T ◦ H are connected by a rainbow path. Let
(gi, k), (gj , k

′) ∈ V (T ◦H) and (gi, k) 6= (gj , k
′). If i = j, there exists a (gi, k), (gi, k

′)-
path of length four, colored with colors 0, n, 1, 2 for an arbitrary neighbor g` of gi if
k ≡ k′ (mod n + 1), and, otherwise, a (gi, k), (gi, k

′)-path of length two, colored with
colors k′− k (mod n+ 1) and 0. Hence we can assume, without loss of generality, that
i < j. If |k − k′| > n, then there is a rainbow (gi, k), (gj , k

′)-path containing the same
colors as a rainbow (gi, k), (gj , k

′′)-path, where |k − k′′| < n and k′′ ≡ k′ (mod n+ 1).,
thus we may assume that |k − k′| < n. We distinguish two cases.
Case 1. For every vertex gk from the gi, gj-path (which is unique as we are dealing
with a tree) holds i < k < j with respect to the ordering of T . Let h be a number from
{0, 1, . . . , n} such that h ≡ k′ − k (modn + 1). From Corollary 4.4 it follows that h
can be written as a sum of dT (gi, gj) different numbers from {0, 1, . . . , n} with respect
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to the module n + 1. The definition of the coloring c assures that these numbers are
exactly the different colors of a (gi, k), (gj , k

′)-path in T ◦H (the order of the colors is
not important, with any permutation of these colors we can come from the start to the
end).
Case 2. Next, there exists a vertex gk on the gi, gj-path with k < i < j with respect to
the ordering of T . Let gk be chosen such that k is as small as possible. Suppose first that
dT (gi, gj) = 2. Clearly, then gk is the common neighbor of gi and gj . We would like to
find a rainbow (gi, k), (gj , k

′)-path. If k 6≡ k′( mod n+1) then (gi, k), (gk, k), (gj , k
′) is a

(gi, k), (gj , k
′)-path colored with colors 0, k′ − k (mod n+ 1). If k ≡ k′ (mod n+ 1) we

distinguish three possible cases with respect to the position of another vertex gp ∈ V (T )
different from gk, gi, gj , which does exist as diam(T ) ≥ 3.

(i) If gk has a neighbor gp different from gi, gj then (gi, k), (gk, k), (gp, k+ 1), (gk, k+
2), (gj , k

′) is a rainbow path with colors 0, n, 1, n − 1 if gp < gk and with colors
0, 1, n, n− 1 if gk < gp.

(ii) If gi has a neighbor gp different from gk then i < p, otherwise T is not a tree.
The path (gi, k), (gp, k+1), (gi, k+2), (gk, k), (gj , k

′) is a rainbow path with colors
1, n, 2, 0.

(iii) If gj has a neighbor gp different from gk then j < p and (gi, k), (gk, k), (gj , k +
1), (gp, k + 3), (gj , k

′) is a (gi, k), (gj , k
′)-path colored with colors 0, 1, 2, 3.

Now let dT (gi, gj) > 2. For start, we search for a (gi, k), (gj , k
′)-path colored with

different colors, where k ≡ k′(mod n + 1). We distinguish three cases with respect to
the parity of dT (gk, gi) and dT (gk, gj).

(i) Let dT (gk, gi) and dT (gk, gj) be odd. If dT (gk, gj) = 1 then we have a (gi, k), (gk, k+
1)-path with colors 0, 1, n − 1 and pairs of colors i, n + 1 − i. The edge (gk, k +
1), (gj , k

′) has color n. If dT (gk, gj) > 1 then there is a (gi, k), (gk, k + n)-path
with colors 1, 3, n− 2, 4, n− 3, . . . It remains to show that there exists a (gk, k +
n), (gj , k

′)-path colored with colors that did not appear on the (gi, k), (gk, k+n)-
path. That is clear, since we can use colors 0, 2, n and pairs of colors `, n+ 1− `,
which have not been used on the (gi, k), (gk, k + n)-path.

(ii) Let dT (gk, gi) be odd and let dT (gk, gj) be even. Then there is a (gi, k), (gk, k)-
path with colors 0, 1, n, 2, n − 1, . . .. It remains to show that there exists a
(gk, k), (gj , k

′)-path with colors that did not appear on the (gi, k), (gk, k)-path.
This is not a problem, since we can use the pairs of colors `, n+ 1− `, which have
not been used in the (gi, k), (gk, k)-path.

(iii) Let dT (gk, gi) be even. Then there is a (gi, k), (gk, k)-path with colors 1, n, 2, (n−
1), 3, (n−2), . . . It remains to show that there exists a (gk, k), (gj , k

′)-path colored
with colors that did not appear on the (gi, k), (gk, k)-path. This is true, since we
can use color 0 and pairs of colors `, n + 1 − `, which have not appeared on the
(gi, k), (gk, k)-path. Of course, the color 0 is used just in the case when dT (gk, gj)
is odd.
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It remains to prove that there exists a rainbow (gi, k), (gj , k
′)-path, where k 6≡

k′(mod n+ 1). We will do only the case where dT (gk, gi) and dT (gk, gj) are even, other
three possibilities are similar. Since module is n+ 1, without loss of generality, we can
assume that 1 ≤ k′−k ≤ n. We will transform the rainbow (gi, k), (gj , k)-path P into a
rainbow (gi, k), (gj , k

′)-path. The aim is to increase the sum of the colors on gk, gj-path
for ` and decrease the sum of the colors on gk, gi-path for `′, where `+ `′ = k′ − k. Of
course, if we are able to do that for dT (gi, gj) = n, then we are also able to do it for
smaller distances between gi and gj . Therefore we can assume that P has n edges. The
coloring of P is the following. Let i = dT (gk,gi)

2 . Colors used in coloring of gk, gi-path
of P are 1, 2, . . . , i, (n+ 1− i), (n+ 2− i), . . . , (n− 1), n and those that are used in the
coloring of gk, gj-path of P are (i+ 1), (i+ 2), . . . , n

2 ,
n+2

2 , . . . , (n− i− 1), (n− i).

1. If j = k′−k ≤ i then we use colors 0, 1, . . . , j−1, j+1, . . . , i instead of 1, 2, . . . , j, j+
1, . . . , i in P .

2. If j = k′ − k ≤ 3i we can switch n − ` for some ` ∈ {0, 1, . . . , i} in coloring
of gk, gi-path in P with n − i in coloring of gk, gj-path in P and use 1. if it is
necessary.

It remains to study the case when j = k′ − k > 3i. It is obvious that dT (gk,gi)
2 =

i < n − 2i = dT (gk, gj). Hence, for 1 ≤ ` ≤ i we can switch n − i + ` in coloring of
gk, gi-path in P with i + ` in coloring of gk, gj-path in P and use 1. if it is necessary.
Since 2i(n− 2i+ 1) ≥ n, we solve every j = k′ − k, where 3i < j ≤ diam(T ). �

Altogether, under the assumptions of Theorem 4.5 we have diam(T ) ≤ rc(T ◦H) ≤
diam(T ) + 1, since diam(T ◦ H) = diam(T ). The ideas from the above proof give us
also a motivation for another general result.

Corollary 4.6 Let G and H be graphs with diam(G) > 2 and |V (H)| ≥ diam(G) and
let G be connected. Then

rc(G ◦H) ≤ 2diam(G) + 1.

Proof. Order the vertices of G and H with BFS and use the coloring of G ◦ H
from the proof of Theorem 4.5 with module 2diam(G) + 1, instead of diam(G) + 1. Let
L1, L2, . . . , Lk be the levels of BFS ordering of G.

Every pair of vertices gi ∈ La, gj ∈ Lb, i < j satisfies one of the following properties.

1. There exists gk from gi, gj-path with gk ∈ Lc for c < a, b and k < i < j (we can
choose the smallest k) and d(gk, gi), d(gk, gj) ≤ diam(G).

2. If gk is on gi, gj-path with d(gi, gk) + d(gk, gj) = d(gi, gj) then gi < gk < gj .

Thus we can use the arguments from the proof of the Theorem 4.5 to complete the
proof. �
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[2] B. Brešar, S. Špacapan, On the connectivity of the direct product of graphs, Aus-
tralas. J. Combin. 41 (2008) 45–56.

[3] Y. Caro, A. Lev, Y. Roditty, Z. Tuza, R. Yuster, On rainbow connection, Elec-
tron. J. Combin. 15 (2008) #R57.

[4] S. Chakraborty, E. Fischer, A. Matsliah, R. Yuster, Hardness and Algorithms for
Rainbow Connection, J. Comb. Optim. 3 (2011) 330–347.

[5] M. Changat, H. M. Mulder, G. Sierksma, Convexities related to path properties
on graphs, Discrete Math. 290 (2005) 117–131.

[6] G. Chartrand, G. L. Johns, K. A. McKeon, P. Zhang, Rainbow connection in
graphs, Math. Bohem. 133 (2008) 85–98.

[7] G. Chartrand, G. L. Johns, K. A. McKeon, P. Zhang, The rainbow connectivity
of a graph, Networks 54 (2009) 75–81.
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