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Abstract

Understanding the water balance-modifying effects of urban forests is important for mitigating the impacts of
climate change and urbanization. We established a paired plot-based hydrological research area in the
Botanical Garden of the University of Sopron as part of a Slovenian—Hungarian OTKA project. The research
area is designed for a paired plot examination of water balance (interception, transpiration, groundwater
dynamics, infiltration, and runoff) with a forested plot and a grass-covered (control) parcel. Since the plots are
located in the university's botanical garden, the proximity allows for diverse and frequent data collection and
continuous monitoring. Long-term hydrological measurements offer significant opportunities for studying the
water balance in forested areas (as is required for assessing the regime). The monitoring results based on only
two years as the observational period can illustrate peculiarities and indicate the significant variability that
must be captured, along with the factors required when designing such monitoring. The study presents a
monitoring framework that provides insights into the complex water dynamics under the black pine canopy
and compares the soil moisture and groundwater dynamics between grass and forest plots.
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Izvlecek

Razumevanje uéinkov, ki jih imajo drevesa na spremembe padavin, je pomembno za ublazitev posledic
podnebnih sprememb in urbanizacije. V okviru slovensko-madzarskega projekta OTKA smo v botani¢nem
vrtu Univerze v Sopronu vzpostavili hidrolosko raziskovalno obmoéje na parnih ploskvah. Raziskovalna
ploskev je zasnovana za primerjavo vodne bilance (prestrezanje, transpiracija, dinamika podzemne vode,
infiltracija in odtok) med povrsino v gozdu in povrSino na travniku (kontrola). Ker se ploskvi nahajata v
botani¢nem vrtu univerze, blizina omogoca raznoliko in pogosto zbiranje podatkov ter stalno spremljanje.
Dolgoro¢ne hidroloSke meritve ponujajo pomembne moznosti za preucevanje vodne bilance v gozdovih, ki so
pomembne za oceno stanja. Predhodni rezultati, ki temeljijo na dveh letih meritev, lahko ponazorijo posebnosti
in nakazujejo na precej$njo spremenljivost, ki jo je treba zajeti, ter potrebne dejavnike pri nacrtovanju
spremljanja parnih ploskev. Predstavljene meritve ponujajo izhodis¢e za zasnovo meritev, ki omogocajo
vpogled v kompleksno dinamiko vode pod kro$njami ¢rnega bora ter primerjavo dinamike vlage v tleh in
podtalnice med travnatimi in gozdnimi povrSinami.

Kljuéne besede: vodna bilanca, padavine, prepusene padavine, prestrezanje, vlaga v tleh, nivo podzemne
vode, urbani gozd, borovci.

1. Introduction comparison. The proximity to educational facilities
allows for frequent measurements, regular
equipment maintenance, and the involvement of
students in practical research.

The strategic planting and proper management of
trees in urban environments play a crucial role in
influencing hydrological processes. Therefore,

studying these factors is essential for mitigating the A dedicated research area was established in the
impacts of climate change and urbanization. The botanical garden, which provides an ideal
primary goal of the study was to gain a better framework for investigating these issues. This
understanding of the complexities of water balance article introduces the dedicated specialized
(Figure 1) within the research site under the black monitoring of water balance processes in an urban
pine tree canopy. forest and illustrates the usefulness of collecting

such data in the preliminary analysis of the initial

Hydro-meteorological measurements have been
two years of measurement results from the two

conducted at the University of Sopron Botanical

Garden since 1925. This hydrometeorological study plots.

dataset was recently homogenized by Lili

Murakozy. This new reconstruction paved the way 1.1.  Water balance and its changes in urban
for wvarious meteorological and hydrological forests under a changing climate

analyses (Murakdzy et al., 2025). Nevertheless, the
ongoing climate changes in the region also stress
the need to introduce new monitoring programs.
Nevertheless, the ongoing climate changes in the
region also stress the need to introduce new
monitoring programs.

Temperatures will rise in all European areas at a
rate that exceeds global mean temperature changes;
however, observations have both regional and
seasonal patterns (IPCC, 2022). Droughts are
becoming more frequent and severe, with impacts
on agriculture, ecosystems, etc. At the same time,

As part of an international Slovenian—Hungarian more intense precipitation events are causing flash
OTKA project, a paired-plot hydrological floods in some areas (Janosi et al., 2023).
experiment was established in the botanical garden.

. In Hungary, the countrywide average temperature
The research area, located under black pine trees has increased by 1.2 °C from 1901 to 2020,

(Pinus nigra Arnold) near the main building,
allows for detailed studies of water dynamics under
the tree canopy. In close proximity to the pine trees,
an open-air plot was designated as a control for

However, in the region of Sopron (the location of
the study area), the average temperature rise is
higher (1.6 °C), with the majority of the increase
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mostly detectable in the last forty years (Murakdzy
et al., 2024). Summers were the most affected by
warming, namely by 1.3 °C. Precipitation changes
are less clear, with a slight decrease of 4% in the
annual amount for the same investigation period.
The seasonal pattern is projected to show more
extreme precipitation events with larger variation
within a year (Bartholy and Pongracz, 2017). The
seasonal sum increased in winter and summer, but
a significant decrease was observed in spring
(Lakatos et al., 2021, llona et al., 2022). The
changes in precipitation patterns can either help or
hinder the recharge of underground water supplies
(Keszeilova et al., 2022).

Due to the warming, the atmosphere will have a
higher energy potential, and the resulting
intensification of driving forces will influence the
hydrological cycle (IPCC, 2022). The Carpathian
Basin is a particularly vulnerable area to the
changing water cycle, as it has many different
climate factors that change over time and place (it
is a mix of continental and temperate influences,
with temperature and precipitation patterns varying
significantly across the region and throughout the
year), along with various local conditions and flow
processes that occur during the different seasons
and over events. Because of this complexity, it is
hard to create general explanations for how certain
weather patterns and events develop (Szolgay et
al., 2020). Janosi et al. (2023) pointed out an
increasing trend in the Penman—Monteith reference
evapotranspiration (ET) on a daily scale, with an
average of 0.868 mm/year in Hungary from 1961
to 2010, resulting in a 42.5 mm mean increase of
reference ET during these five decades. On the
other hand, groundwater table declines indicate a
mean value of approximately —5.7 mm/year (which
is higher than the Western, Central, and Eastern
Europe averages of —1.5 mm/year) (Xanke and
Liesch, 2022).

Rising average temperatures are accompanied by
significant changes in forest water use (Tolgyesi et
al., 2020) and increasing water demand in general.

Trees in urbanized areas contribute to reducing air
pollution (as well as CO, concentrations) (Chen,
2015, Abhijith et al., 2017), and they can lessen
urban stormwater runoff through canopy
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interception loss and water uptake (Berland et al.,
2017; Nordman et al., 2018).

The redistribution of rainfall as throughfall and its
spatial wvariability can be crucial for soil and
understory vegetation wetting, soil erosion, and the
potential for runoff generation. The temporal delay
in reaching the ground due to throughfall compared
to open rainfall may also be of importance for the
timing of stormwater’s peak flows (Asadian and
Weiler, 2009; Ossola et al., 2015). Much work is
needed to understand the complex interactions
between transpiration, interception loss, climate,
and soils in urban areas (Carlyle-Moses et al.,
2020). Hydrological measurements, especially
those conducted on paired plots, offer essential data
for analyzing the effects of different land covers.
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Figure 1: Water balance of the tree-covered area
(Gribovszki et al., 2019).

Slika 1: Vodna bilanca povrsine, porasle z drevesi
(Gribovszki et al., 2019).

Trees (as any type of vegetation) nevertheless alter
the amount and spatial distribution of precipitation
that without them reaches the impervious surfaces
or permeable bare soil below. By canopy
interception, a portion of the precipitation received
by a tree canopy can be stored on the foliage and
evaporated from that without reaching the ground.
The portion of rainfall that reaches the ground can
be throughfall (rainfall that passes directly through
canopy gaps, or falls to the ground by either
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dripping or splashing from canopy surfaces) or
stemflow (the drainage from the canopy that
reaches the ground by flowing down the tree
trunk). Stemflow is a concentrated input of water,
being delivered to the proximal area around the tree
base, whereas throughfall is a diffuse input being
transported over a much larger area under the tree
canopy and, occasionally, extending beyond the
canopy area (Carlyle-Moses et al., 2020).

Canopy interception loss in various natural and
plantation forests that have near-continuous
canopy cover can account for 10-50% of rainfall
(while stemflow also varies by tree species and can
be considered as ~5% (Levia et al., 2011)),
therefore canopy interception considers the
significant ratio of the total evaporation (Sraj et al.,
2008; Carlyle-Moses and Gash, 2011). The
extrapolation of those data to urban forests can be
misleading since single, isolated tree architecture
differs from that of stand-grown trees.
Furthermore, urban microclimates are generally
relatively warmer than their surroundings and can
be characterized by more evaporative demand
(Xiao et al., 1998; Guevara-Escobar et al., 2007;
Kuehler et al., 2017).

The canopy water storage capacity of a tree, or
forest, is a function of both the canopy projection
area and the canopy density (Holder, 2013;
Fathizadeh et al., 2017). Isolated, open-grown, and
healthy street and park trees are likely to have more
voluminous canopies with greater canopy densities
per projection area and thus greater water storage
and interception loss potential compared to trees in
closed forests (Asadian and Weiler, 2009; Pretzsch
et al., 2015). However, many trees in urban forests
can be stressed and unhealthy because of restricted
infiltration, contaminated soils, vandalism,
excessive transpiration demand, air pollution,
and/or insufficient nutrient availability, wherefore,
these trees may not achieve their full potential
(Zipper et al., 2017).

The presence of coniferous cover has been
associated with greater interception loss in urban
forests in Ljubljana, Slovenia (Kermavnar and
Vilhar, 2017). Thus, the benefits of coniferous (and
broadleaved evergreen trees) may outweigh
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deciduous trees during the dormant season
(Carlyle-Moses et al., 2020).

Interception loss as a percentage of rainfall
decreases rapidly with increasing rainfall depth
until remaining quasi-constant for relatively large
events (Staelens et al., 2008; Nytch et al., 2018).
The meteorological variables that influence canopy
interception during an event (besides the rainfall
characteristics) are temperature, relative humidity,
and wind speed (Toba and Ohta, 2005; Carlyle-
Moses and Gash, 2011; Van Stan et al., 2017;
Zabret et al., 2018). However, the primary drivers
of canopy interception loss are the intensity,
frequency, and duration of rainfall, and the
throughfall, which is largely the inverse of canopy
interception loss. Zabret et al. (2018) measured
throughfall under two urban trees (pine (Pinus
nigra Arnold) and birch (Betula pendula Roth.)) in
Ljubljana, Slovenia, using troughs and tipping
gauges installed for more than three years. Their
main conclusion was that tree canopies will reduce
throughfall ~ (and  simultaneously  increase
interception) significantly in climates with more
frequent rainfall events, but with low precipitation
intensity and duration (Carlyle-Moses et al., 2020).

This study presents the design of a monitoring
framework aiming at the clarification of the
questions and problems outlined in the previous
section, suggests and describes methods that can be
applied in the data analysis, and illustrates the
usefulness of such experimental research on results
drawn from the first two years of the comparative
monitoring.

2. Methods

The study site is situated within an experimental
plot in the Botanical Garden of the University of
Sopron, located in the urban area of Sopron,
Hungary (47.40° N, 16.34° E, 228.2 m above Baltic
Sea level). The region's climate is classified as
moderately humid continental, influenced by the
Carpathian Basin's position and affected by sub-
Atlantic, subcontinental, and sub-Mediterranean
climatic elements. Based on long-term climate data
from 1989 to 2019, the area has an average annual
temperature of 11 °C and receives approximately
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730 mm of precipitation (Acs et al., 2015;
Murakdzy, 2024).

The experimental plot covers roughly 300 m?
within the urban landscape. It contains seven black
pine trees (Pinus nigra) and is bordered by a road
and buildings to the south. To the north, east, and
west, additional vegetation and trees offer limited
buffering. There is no herbaceous vegetation in the
area as undergrowth, because it is regularly
removed along with regrowth. The thickness of the
forest litter is ~1.5 cm (0.37), while the humus
layer is 30 cm.

The research area was established under black pine
trees and a weather station not far from the research
site (Figure 2).
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Figure 2: Location of the research site (Zagyvai-
Kiss et al., 2019).

Slika 2: Lokacija raziskovalne ploskve (Zagyvai-
Kiss et al., 2019).
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Figure 3: Weather station in the Botanical Garden
of the University of Sopron.

Slika 3: Vremenska postaja v Botanicnem vrtu
Univerze v Sopronu.

Figure 4: The experimental plot.

Slika 4: Raziskovalna ploskev.

Table 1. Basic data of black pine trees.

Preglednica 1. Osnovni podatki o ¢rnem boru.

Attribute Value
Tree age (years) 45
Tree height (m) 18
Diameter at breast 42.7

height (DBH) [cm]

Total projected crown 56
area [m?]

Leaf area index (LAI)
in leafed/leafless
period

2.73/2.23

Precipitation was measured in the open-air plot
with a Hellmann-type rain gauge, while in the
forested area, we measured the amount of
precipitation passing through the canopy
(throughfall), the stemflow (Kucsara, 1996), and
the water retention capacity of the litter layer
(Zagyvai-Kiss et al., 2019). The effect of frost and
snow was excluded from the data analyzed.
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Additionally, we monitored surface soil moisture
and groundwater levels. In complex terms, we
analyzed how precipitation events and vegetation
influenced the area’s water balance.

To determine canopy interception (the difference
between open-air precipitation and stand
precipitation), it is necessary to measure stand
precipitation. Stand precipitation consists of two
parts: throughfall and stemflow. Three collecting
troughs, collected manually after every rainfall
event, with a catching area of 0.2 m2 (0.2 m * 1.0
m), were installed to measure throughfall. For
stemflow measurements, a stem collar was placed
on a tree. Stemflow was found to be insignificant
for black pine trees, so we decided not to analyze it
in detail. Litter interception was measured by small
lysimeters (catching area of 0.08 m?). The
precipitation that was reduced by crown and litter
interception (which can therefore be found below
the litter layer) is the so-called -effective
precipitation.

Surface soil moisture (below forest litter 0-7 cm)
was measured manually with daily frequency on
five points at both locations in the plots (forest,
open air). A Fieldscout TDR (Time Domain
Reflectometry) 300 portable soil moisture meter
was used to measure the soil’s moisture content.
The calibration equation used for converting raw
data measured with the TDR probe (Nevezi, 2019):

VWC = (0.049 - Period) — 98.23 1)

Two wells were installed at the study site to
monitor groundwater levels. A 5-meter-deep well
was placed in the black pine plot in April 2023, and
a 620 cm well was set up in the control area in July
2023. Perforation was carried out at a depth of the
lower 4 meters in the open field plot's well and the
lower 3 meters in the black pine plot's well.

At the black pine and open-air plot silty clay loam
physical soil type is dominant with sandy layers up
to 10 cm thick at certain depths (determined by
finger test). The wilting point of the soil is 13% and
the field capacity is 40% (Maidment, 1993).

The period of the data collection analyzed in this
study started in July 2023 and finished in January
2024.
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3. Results

Considering the short period of available data, with
only two years, the results of this study do not offer
enough information to perform correct and
adequate statistical analysis. Therefore, the
measurements can function as illustrations of the
large variability of the process being monitored.

3.1 Precipitation

From July 2023 until the end of January 2024, a
total of 442.05 mm of precipitation (with 69
events) was recorded. Figure 5 shows the time
series of daily precipitation and daily temperature.
Initially, the temperature gradually decreased,
becoming more pronounced as the frequency of
precipitation events increased. From mid-October,
we observed a significant drop in temperature. In
January, the measurements became more difficult
because of frost and snow.

3.2 Effective and stand precipitation

The measurements of canopy and litter interception
are related to the measurements of stand and
effective precipitation. Based on the data from the
paired plots in the botanical garden, precipitation is
closely correlated with both stand (R?=0.976) and
effective precipitation (R®=0.986) (Figure 6).
According to collected results in the black pine
stand, no precipitation below 1.18 mm reaches the
litter surface, and precipitation less than 1.50 mm
does not infiltrate into the soil through the litter.
According to the aforementioned findings,
infiltration through the litter begins almost
immediately after the occurrence of throughfall
precipitation, and the utilization of the litter's
storage capacity is demonstrated by the differences
in the slopes of the data (Figure 6).
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Slika 5: Padavine
analiziranem obdobju.
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Slika 6: Razmerje med prepuscéenimi in efektivnimi
padavinami (za 37 dogodkov).

3.3 Groundwater

Forest stands can have different local effects on
groundwater levels. Therefore, the background of
the processes taking place can only be explored
based on monitoring data from several elements of
the hydrological system, rather than general
observations (Szabd et al., 2022, 2024, 2025). Due
to their large water reserves, forests generally
exhibit better resistance to short-term droughts and
provide a more favorable climate in their
surroundings (Bolla et al., 2024). The influence of
deep-rooted forests on groundwater dynamics even
shows daily characteristics in addition to seasonal
ones. The magnitude of daily fluctuations is closely
related to groundwater uptake and evaporation,
providing information on the vegetation's daily
uptake of groundwater, its extent, and the extent of
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groundwater replenishment in an area, thereby
aiding in estimating underground water resources
(Szabo et al., 2023).

According to Fig. 7, the groundwater depth below
the forest is closer to the surface than it is under
grass cover, which is contrary to the common
trends, as forests sink the groundwater better than
herbaceous covers (To6th et al., 2014; Gribovszki et
al., 2019; Szabo et al., 2023). The explanation for
this phenomenon, which contradicts the mentioned
general rule, can be found in topography. In the
examined paired plots, the grassland plot is located
1.5 meters higher above sea level (BSL) than the
forested area.

In August, October, and at the end of December, a
rise in groundwater levels was observed in both
plots due to significant precipitation events. When
the amount of precipitation does not exceed 20-25
mm, the groundwater level changes only slightly,
while for less precipitation, the effect is negligible.
The effects are more noticeable in the black pine
plot, where the decline in groundwater levels is
slower (Figure 7). It is important to note that the
influence of the surrounding stand cannot be
disregarded in the open area plot. Figure 8 shows
that the open area responds more sensitively to
precipitation and seasonal changes than the
forested area, because trees have more buffering
capacity against the precipitation (higher value of
interception loss).

While the groundwater depth as measured from the
surface is more important in the context of ecology
due to its characterization of the groundwater
supply’s availability, a water table expressed in
elevation is rather useful in engineering, since it
represents the direction of groundwater flow.
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Figure 7: Representation of groundwater depths
illustrating the effects of antecedent precipitation
(measured from the well rims).

Slika 7: Nivo gladine podzemne vode glede na
vpliv predhodnih padavin (merjeno od roba
vodnjaka).
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Figure 8: Groundwater levels illustrating the
effects of antecedent precipitation (BSL).

Slika 8: Nivo podzemne vode, ki kaze ucinek
predhodnih padavin (izrazeno v m od nivoja
povrsine).

Szabo et al. (2019) have studied the effects of
forests on groundwater levels and soil ion transport
at 108 sites since 2012, employing one-time soil

sampling, measurements of forest stands, and
groundwater monitoring.

There is no direct link between the amount of water
trees uptake from groundwater and the observed
decline in groundwater levels. This shows that
local factors—such as topography, hydrological
conditions, soil type, and the different water uptake
methods of various tree species—play a crucial
role. Therefore, a single measurement of
groundwater level changes caused by increased
evapotranspiration from forest stands is not enough
to accurately determine the groundwater usage of

46

trees. Instead, continuous groundwater monitoring
over several growing seasons is needed to draw
more reliable conclusions.

3.4. Case study (examples) of the data use —
API analysis

An important parameter calculated from
precipitation can be the antecedent precipitation
index, which can serve as an independent variable
in the analysis of various relationships from a
hydrological perspective.

The Antecedent Precipitation Index (API) is a
hydrological index for the quantification of the soil
moisture in a specific area or a catchment. The
definition is based on the amount of precipitation
that has occurred over a certain period of time,
typically from a few days to a few weeks, before a
specific event. Consequently, API is defined as a
weighted summation of daily precipitation
amounts. This index is particularly useful if soil
moisture data are unavailable (Kontur et al. 2003).
Higher values of API indicate more saturated soil,
on which less precipitation tends to be absorbed
(and thus this moisture contributes to the surface
runoff). Therefore, this index can be applied to
predict the possibility of flooding or landslides
(Xie and Yang, 2013).

The calculation that was used to determine the X-
day antecedent precipitation index, based on
Kontur et al. (2003), is as follows:

APL, = Y7 p;* h; = 1.00 * hy + 0.95 * h, + 0.90 *
h; +0.85 % hy + -+ p, * h, ),

...where hy, hy,..., hx represent the precipitation that
occurred on the first, second,... xth day preceding
the precipitation event, multiplied by linearly
decreasing weighting factors.

Using the antecedent precipitation index as a
variable allows for the estimation of surface soil
moisture conditions (Figure 9). The slopes are
steeper for the open-air plot compared to those
under the tree stand, which can be explained by the
forest's significant interception that delays and
reduces infiltration.
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Figure 9: Relationship between Soil Moisture and
10 days Antecedent Precipitation Index (API 10).

Slika 9: Razmerje med viaznostjo v tleh in 10-
dnevnim predhodnim padavinskim indeksom (API
10).

The results suggest that smaller and medium
precipitation events have a greater impact on soil
moisture in the open grass plot compared to the
forested plot. The evapotranspiration from grass
reduced near-surface soil moisture more
significantly in the open-air plot, while only slight
reductions were observed in the forested plot.

The sensitivity of the antecedent precipitation
index (API) can vary depending on the length of
the observation period. When examining surface
soil moisture, the 10-day antecedent precipitation
index showed the closest correlation in the case of
the open-air plot, while for the forest plot it was the
40-day index (Figure 8).

The weighing factors can also take into account
real moisture depleting processes (Jakeman &
Hornberger, 1993).

According to Kontur et al. (2003), the 20-day API
is recommended in Hungary for small catchments.
However, in our study, we applied APl1, due to the
highest R? value for it in the open plot, while for
the forest plot R?is constantly increasing with API
values.

Measured throughfall in the urban black pine forest
accounted for 87% of open field precipitation.
Basically, we could compare our results with pines
due to the lack of available studies about exactly
black pine. Lishman et al. (2015) found a similar
value of 87.7 % for throughfall compared to open
field precipitation (associated with 38 rainfall
events, from May to October 2010) for 9 juvenile
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lodgepole pine trees at the Mayson Lake
hydrological research area (Canada). Llorens et al.
(2018) studied the hydrological processes in the
Vallcebre Research Catchments from 1988 to 2018
and found a 75% ratio of throughfall of open field
precipitation for Scots pine. Wei et al. (2017) focus
on the factors that control throughfall from 36
rainfall events in Pinus tabulaeformis plantations
at the Mulan Forestry Management Bureau in the
Hebei Province (China). The throughfall rate
increased with increasing rainfall, but the rate of
increase gradually decreased, with the average
ratio of throughfall/precipitation at 79%. Zabret
and Sraj (2018) investigated throughfall in an open
plot under a single black pine tree, with results of
56% of the rainfall for 30 analyzed events. In order
to compare the data precisely, the precipitation
distribution and the LAI must be known.

De Moraes et al. (2024) calculated API in
estimating soil moisture in order to determine
thresholds based on landslide occurrences in Serra
da Mantiqueira (Brazil). The moisture sensors are
EnviroScanTM type capacitive sensors distributed
along three meters inserted into the soil. The
correlation coefficient reached a value of 0.89 at a
depth of 50 cm, with APl, while in our case, at the
top soil (07 cm depth), the highest value was 0.74
for the open-air plot of APlo, but 0.84 for APl4 at
the pine plot.

Zabret et al. (2025) used API to analyze how long
the preceding rainfall period best estimates the soil
moisture values in the open and under the pine trees
in the urban park in Ljubljana. They reported 10 to
20 days of API values to correlate the best with soil
moisture values under the trees, while in the open
site, shorter periods between 5 and 10 days were
the most relevant.
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Figure 10: R? values of the relationships between
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Slika 10: Koeficient determinacije med vlago v
tleh in indeksom API.

Regarding the results due to the water retention by
interception, soil moistening begins later from the
onset of precipitation events. Surface wetting,
followed by soil saturation, lasts longer in forest
soil compared to a grass-covered open-air plot. On
the other hand, the amount of captured water can
vary greatly depending on the characteristics of the
tree stand (Hewlett, 1982).

4., Conclusion

Hydrological measurements based on paired plots
have been shown to be useful in comparing the
water balance of various surface cover types.
However, the results of this study can only be used
to illustrate the variability of the processes without
the ambition to arrive at conclusive statements on
the regime and its changes, considering the short
(only two years long) observation period. Our
research has demonstrated that the tree canopy,
through the process of rainfall interception may
significantly influence the distribution of
precipitation both spatially and temporally, as well
influence the dynamics of the soil moisture and
groundwater level. Nevertheless, this experiment
serves educational and demonstrative purposes.
The future potential work (besides database
extension) is the automation of measurements for
litter interception. During the writing of this article,
the automation of the throughfall is in progress,
while for the groundwater measurements, it has
already been completed.
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Applying longer observational periods in a future
study, the results may offer a deeper understanding
of urban forests’ (as nature-based solutions)
hydrology (with the contribution to urban water
management) and may provide a basis for
sustainable urban and green infrastructure planning
efforts.
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