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Abstract

We consider edge colourings, not necessarily proper. The distinguishing index D′(G)
of a graphG is the least number of colours in an edge colouring that is preserved only by the
identity automorphism. It is known that D′(G) ≤ ∆ for every countable, connected graph
G with finite maximum degree ∆ except for three small cycles. We prove that D′(G) ≤
d
√

∆e+ 1 if additionally G does not have pendant edges.
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1 Introduction and main result
We use standard graph theory terminology and notation [3]. In particular, the circumference
of a graphG, denoted by c(G), is the length of a longest cycle ofG. A graph that contains a
Hamiltonian path, i.e. a path that visits each vertex of the graph, is called traceable. A finite
tree is called symmetric (respectively, bisymmetric) if it contains a central vertex v0 (resp.
a central edge e0), all leaves are at the same distance from v0 (resp. e0) and all vertices that
are not leaves have the same degree. An infinite path P∞ is an infinite connected 2-regular
graph.

We consider edge colourings, not necessarily proper. Such a colouring breaks an auto-
morphism ϕ ∈ Aut(G) if there exists an edge that is mapped into an edge with a different
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colour. A colouring is called distinguishing, if it breaks all non-trivial automorphisms. The
minimum number of colours in a distinguishing colouring of a graph G is called the dis-
tinguishing index of G and is denoted by D′(G). Obviously, the distinguishing index is
defined only for graphs without K2 as a component and with at most one isolated vertex.
In this paper, we exclusively consider connected graphs, hence in the sequel, we assume
that each graph in question is of order at least 3.

The following general upper bound for the distinguishing index of finite connected
graphs was proved in [5].

Theorem 1.1 ([5]). If G is a finite, connected graph of order n ≥ 3, then

D′(G) ≤ ∆(G)

unless G is C3, C4 or C5.

This result was improved by the third author who characterized all connected graphs
with the distinguishing index equal to the maximum degree.

Theorem 1.2 ([9]). Let G be a finite, connected graph of order n ≥ 3. Then

D′(G) ≤ ∆(G)− 1

unless G is a cycle, a symmetric or a bisymmetric tree, K4 or K3,3.

For infinite graphs, a sharp upper bound was proved by Pilśniak and Stawiski in [10].

Theorem 1.3 ([10]). Let G be a connected, infinite graph with finite maximum degree
∆(G). Then

D′(G) ≤ ∆(G)− 1

unless G is an infinite path P∞ with D′(P∞) = ∆(P∞) = 2.

However, D′(G) ≤ 2 if G belongs to some classes of graphs, e.g. G is a traceable
graph of order at least 7 ([9]), G is any Cartesian power of a graph unless G = K2

2 ([4]), or
G is a countable graph every non-identity automorphism of which moves infinitely many
vertices ([6]).

Pilśniak [9] formulated the following conjecture.

Conjecture 1.4 ([9]). If G is a 2-connected graph, then

D′(G) ≤
⌈√

∆(G)
⌉

+ 1.

We prove this conjecture in a bit stronger form.

Theorem 1.5 (Main result). If G is a connected, countable graph with minimum degree
δ(G) ≥ 2, then

D′(G) ≤
⌈√

∆(G)
⌉

+ 1.

In view of Theorem 1.3, the claim obviously holds for countable graphs with infinite
∆(G). Hence, from now on, we assume that the maximum degree of any graph G in
question is finite.
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This result is tight for complete bipartite graphs K2,r2 since D′(K2,r2) = r + 1 for
any integer r ≥ 2. Indeed, there are r2 internally disjoint paths of length two between the
two vertices u, v of maximum degree in K2,r2 , and they have to be coloured with distinct
ordered pairs of colours. With r colours, we have r2 distinct pairs, but if all of them are
used, we can transpose u and v and permute the other vertices to obtain an automorphism
preserving this colouring. There are also some small graphsG withD′(G) = d

√
∆(G)e+

1, e.g. Kn, Cn for n ∈ {3, 4, 5}, and K3,3. We conjecture that the only connected graphs
of order at least seven satisfying this equality are complete bipartite graphs K2,r2 .

The proof of the Main result for 2-connected graphs is given in Section 2 (Theorem 2.2).
In Section 3, we prove it for graphs of connectivity 1 (Theorem 3.5).

We believe that the following much stronger claim is true1.

Conjecture 1.6. If G is a connected, countable graph with finite minimum degree δ ≥ 2,
then

D′(G) ≤
⌈

δ
√

∆(G)
⌉

+ 1.

Moreover, for graphs of order at least seven, the equality holds if and only if G = Kδ,rδ ,
for some positive integer r.

If true, this would imply that D′(G) ≤ 2 for every regular graph G of order at least
seven. Observe that for vertex-transitive graphs this result would be also implied by the
famous Lovász Conjecture [8] that every vertex-transitive graph is traceable since, as it
was already mentioned, D′(G) ≤ 2 for every traceable graph of order at least 7. Let us add
that recently Lehner, Pilśniak and Stawiski [7] proved thatD′(G) ≤ 3 for every connected,
regular graph G, finite or infinite.

2 2-connected graphs
In the proof of the Main result, we colour the edges of a graph G with colours from the set
Z = {0, 1, . . . , d

√
∆e}. Observe that we always have at least three colours at our disposal.

Given a vertex a of a graph H , by Aut(H)a we denote the stabilizer of a vertex a, i.e.
Aut(H)a = {ϕ ∈ Aut(H) : ϕ(a) = a}. For two vertices a, b, we denote Aut(H)a,b =
Aut(H)a ∩Aut(H)b.

In this section, we prove the Main result for 2-connected, countable graphs. The fol-
lowing lemma plays a key role in the proof.

Lemma 2.1. Let a, b be two vertices of a graph H of finite maximum degree at most ∆,
such that

dist(a, v) + dist(v, b) = dist (a, b)

for every vertex v ∈ V (H). ThenH admits an edge colouring with d
√

∆e colours breaking
every automorphism of Aut(H)a,b.

Proof. For r ∈ {0, 1, . . . ,dist(a, b)}, let

Sr(a) = {v ∈ V (H) : dist(a, v) = r}
1Actually, this conjecture was earlier posed by Pilśniak and Woźniak, and the first part of it was independently

formulated by Alikhani and Soltani in [1]. The latter authors claimed a proof therein but we found two errors and
a few gaps that we cannot fix.
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be the r-th sphere centered at the vertex a. Thus, for r < dist(a, b), every vertex v ∈ Sr(a)
has at least one and at most ∆ − 1 neighbours in Sr+1(a). For r ≥ 1, denote Hr =
H [S0(a) ∪ · · · ∪ Sr(a)]. We recursively colour the edges between Sr(a) and Sr+1(a)
with d

√
∆e colours such that for each r the following two conditions are satisfied:

(1) Sr(a) is fixed pointwise by every automorphism ϕ ∈ Aut(H)a,b preserving the
colouring of Hr+1, whenever Sr+1(a) is fixed so;

(2) if A ⊆ Sr+1(a) is a set of vertices such that there exists a cyclic permutation of A
that can be extended to an automorphism ϕ ∈ Aut(H)a,b preserving the colouring
of Hr+1, then |A| ≤ d

√
∆e.

2 Ars Math. Contemp. x (xxxx) 1–x
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Figure 1: Colouring of edges between subsequent spheres centered at the vertex a
breaking all automorphisms of Auta,b(H)

Figure 1: Colouring of edges between subsequent spheres centered at the vertex a breaking
all automorphisms of Auta,b(H).

First we partition the set of edges incident to a into at most d
√

∆e subsets of cardinality
at most d

√
∆e, and we colour edges in each subset with the same colour.

Suppose that we have already defined an edge colouring f of Hr satisfying the above
two conditions for r − 1 instead of r. Let A = {v1, . . . , vp}, with p ≥ 2, be a set of
vertices of Sr(a) such that there exists a cyclic permutation of A that can be extended to
an automorphism ϕ ∈ Aut(H)a,b preserving the colouring f . By assumption, 1 ≤ |A| ≤
d
√

∆e. Each vertex vi of A has the same number k ≤ ∆ − 1 of incident edges joining it
to Sr+1(a), and let aj denote the number of those of them that will obtain the colour j, for
j ∈ Z \ {0}.

Every vertex vi ∈ A, for i ∈ {1, . . . , p}, can be assigned a distinct sequence (a1, . . . ,
ad
√

∆e), where aj ≤ d
√

∆e for every j. Indeed, take a vertex vi ∈ A for some i ∈
{1, . . . , p}. If k ≤ d

√
∆e, then we put ai = k and aj = 0 for j ∈ Z \ {0, i}. If

k > (d
√

∆e − 1)d
√

∆e, then we put ai = k − (d
√

∆e − 1)d
√

∆e, and aj = d
√

∆e for
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j ∈ Z \ {0, i}. Otherwise, d
√

∆e+ 1 ≤ k ≤ (d
√

∆e − 1)d
√

∆e. If this case, ai = 0, and
for j 6= i we put aj > 0 such that |aj − k

d
√

∆e−1
| ≤ 1. Thus, ai 6= aj for j 6= i, whence

the vertices of A are distinguished.
Moreover, this way we produce at most d

√
∆e vertices in Sr+1(a) that can be inter-

changed by an automorphism preserving the colouring of Hr+1 because at most d
√

∆e
edges joining any vertex of A to Sr+1(a) have the same colour.

The second last sphere Sr(a), i.e. for r = dist(a, b)−1, has at most ∆ vertices and, due
to our construction, any of its subsets A that can be permuted, has at most d

√
∆e vertices.

We colour the edges between b and the vertices of A with distinct colours. The unique
vertex b of the last sphere is fixed by assumption, hence all spheres are fixed pointwise
with respect to any automorphism ϕ ∈ Aut(H)a,b preserving the edge colouring f of H .

Finally, we colour edges within each sphere with an arbitrary colour.

Given a cycle C of a 2-connected graph G 6= C4 and two distinct colours α, β ∈
Z \ {0}, by C0(α, β) we denote this cycle coloured such that three consecutive edges are
coloured with α, 0, β in that order, and all other edges of the cycle are coloured with 0.
Exceptionally, in case G = C4, by a colouring C0(α, β) of C4 we mean the colouring
α, β, 0, 0 of its consecutive edges.

Theorem 2.2. If G is a 2-connected, countable graph with finite maximum degree ∆, then

D′(G) ≤
⌈√

∆
⌉

+ 1.

Proof. If the circumference of G equals 3, then G = C3 and the claim holds.
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Figure 1: For a given n ≥ 5, there are exactly two non-isomorphic graphs of order
n and circumference 4 (the dashed edge may exist or not)Figure 2: For a given n ≥ 5, there are exactly two non-isomorphic graphs of order n and
circumference 4 (the dashed edge may exist or not).

Let c(G) = 4. If G ∈ {C4,K4,K4 − e}, then D′(G) ≤ 3, and the claim is true.
Suppose |V (G)| ≥ 5. Then either G = K2,∆ or G = K2,∆−1 + e, where e is an edge
between the two vertices of maximum degree ∆ ≥ 3 (see Figure 2). Indeed, let V (G) =
{u1, . . . , un} with n ≥ 5, and suppose that u1, u2, u3, u4 are consecutive vertices of a
cycle C of length 4. As G is 2-connected and c(G) = 4, all other vertices u5, . . . , un have
to be adjacent to the same pair of non-consecutive vertices of C, say u1, u3. Thus, we
get a complete bipartite graph K2,n−2. The only possible additional edge not violating the
condition c(G) = 4, is e = u1u3. As it was mentioned in the Introduction, in such a graph
G ∈ {K2,∆,K2,∆−1 + e}, we have enough colours for a distinguishing colouring of G.
It is also easy to see that we can require that colour 0 appears only in one cycle of length
four, coloured as C0(α, β).

Suppose then that G has a cycle C of length at least 5. We colour it as C0(α, β) for
some distinct α, β ∈ Z \ {0}. Moreover, we colour all chords of C with α. We can require
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that the colour 0 appears only in this cycle C. Thus each vertex of C is fixed by every
automorphism of G preserving the colouring. To see this it is enough to observe that both
endpoints of the unique edge coloured with β are fixed.

We define a colouring of the remaining edges of G recursively, as follows. Suppose
that we have already coloured the edges of an induced 2-connected subgraph F of G such
that the only automorphism of G preserving this colouring is the identity, regardless of a
colouring of the edges outside F . Thus F = G[V (C)] in the initial step. If F 6= G, then
we choose a shortest path P between any two vertices of F containing at least one vertex
outside F . Let a, b be the end-vertices of P , and let p be the length of P . As P is shortest
possible, each path of length p between a and b in G is either uncoloured or fully coloured.
Consider the subgraph H induced by the vertices of P and of all uncoloured paths between
a and b of length p. Thus, all edges of H are uncoloured yet. We colour the edges of
H with d

√
∆e colours according to Lemma 2.1. Let F ′ = G[V (F ) ∪ V (H)]. We thus

obtained a colouring of all edges of F ′ that breaks every non-trivial automorphism of G,
because the colouring of F already break them.

If F ′ 6= G, the we repeat this procedure with F ′ instead of F until all edges of G are
coloured.

Actually, we have proved the following result which we use in the next section.

Corollary 2.3. Let G be a 2-connected, countable graph with finite maximum degree ∆
and let C be a longest cycle or any cycle of length at least five in G. Then for every two
distinct colours α, β ∈ Z \ {0}, any colouring C0(α, β) of its edges can be extended to a
distinguishing colouring of G with colours from the set Z such that all edges coloured with
0 belong to the cycle C.

Proof. The claim follows directly from the proof of Theorem 2.2 unless |G| = 4. In
the latter case, Z = {0, 1, 2}, and G contains a cycle C4, which we colour as C0(1, 2)
(recall that this means a colouring α, β, 0, 0 of consecutive edges if G = C4, and α, 0, β, 0
otherwise). This is clearly a distinguishing colouring of G = C4. If G = K4, then the
other two edges get distinct colours 1, 2. Otherwise, G = K4− e, and the chord of C4 gets
colour 1.

3 Graphs of connectivity 1

Observe that it follows from Theorem 1.2 and Theorem 1.3 that Theorem 1.5 is true for
graphs of maximum degree ∆ ≤ 5 satisfying the conditions of the Theorem. This fact did
not matter in the proof for 2-connected graphs, but it facilitates a bit our proof for graphs
with cut vertices. From now on, assume that G is a countable graph of finite maximum
degree ∆ ≥ 6 and connectivity 1. Hence, we have at least four colours 0, 1, 2, 3 at our
disposal.

Two edge colourings f1, f2 of a graph H are called isomorphic with respect to a group
Γ ⊆ Aut(H) if there exists an automorphism ϕ ∈ Γ such that f1(uv) = f2(ϕ(u)ϕ(v)) for
every edge uv ∈ E(H). Furthermore, f1, f2 are called isomorphic if they are isomorphic
with respect to Aut(H).

Lemma 3.1. Let u0 be a vertex of a 2-connected, countable block H0 of finite maximum
degree at most ∆, where ∆ ≥ 6. Then H0 admits at least d

√
∆e edge colourings with

colours from the set Z, breaking all non-trivial automorphisms of Aut(H0)u0
, which are

pairwise non-isomorphic with respect to Aut(H0)u0
, and do not contain C0(1, 2).
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Proof. First observe that if H0 is a 2-connected, countable graph and c(H0) ≥ 5, then
every vertex of H0 belongs to a cycle of length at least five. This easily follows from the
fact that every vertex outside a given cycle C of length at least five is the origin of two
internally disjoint paths to two vertices of C, which partition the cycle C into two paths,
one of which is of length at least three.

We choose a longest cycle C inB passing through the vertex u0 ifB is finite, or a cycle
of length at least five ifB is infinite. It is easy to see thatC is a longest cycle inGwhenever
|C| ≤ 4. We colour C as C0(α, β), for {α, β} 6= {1, 2}. By Corollary 2.3, regardless
of location of colours α and β on C, this colouring can be extended to a distinguishing
colouring ofH0 using colours from Z \{0}. We have

(d√∆e
2

)
−1 choices for the set of two

colours {α, β} 6= {1, 2}. For a given colouring C0(α, β), there are at least three possible
placements for u0 (actually, there are more possibilities if |H0| > 3). Hence, there are
at least L = 3(

(d√∆e
2

)
− 1) edge colourings of H0 that are pairwise non-isomorphic with

respect to Aut(H0)u0 . The inequalityL ≥ d
√

∆e, equivalent to 3(d
√

∆e)2−5d
√

∆e−6 ≥
0, holds whenever d

√
∆e) ≥ 3.

Lemma 3.2. Let H0 be a graph of finite maximum degree at most ∆, with ∆ ≥ 6, con-
sisting of s ≥ 2 copies of a 2-connected block B sharing a common cut vertex u0. Then
H0 admits at least d

√
∆e pairwise non-isomorphic distinguishing edge colourings with

colours from the set Z, such that C0(1, 2) does not appear in any of these colourings.

Proof. LetH0 be a graph satisfying the assumptions. Observe that Aut(H0) = Aut(H0)u0

for s ≥ 2. Clearly, s ≤ b∆
2 c.

As we have shown above, the block B admits at least L = 3(
(d√∆e

2

)
− 1) colourings

which are pairwise non-isomorphic with respect to Aut(H0)u0
. To colour the graph H0,

we select s of them. Hence, we have at least
(
L
s

)
pairwise non-isomorphic colourings of

H0. Clearly,
(
L
s

)
≥ L, when 1 ≤ s ≤ b∆

2 c ≤ L−1, which is the case for ∆ ≥ 6. We know
that L ≥ d

√
∆e, hence there are at least d

√
∆e non-isomorphic distinguishing colourings

of H0.

Lemma 3.3. Let H0 be a graph satisfying the assumptions of Lemma 3.1 or of Lemma 3.2.
Let T be a symmetric tree of order at least 3 with a central vertex v0. A graphH is obtained
by attaching a copy of the graph H0 to every leaf of T in such a way that each pendant
edge of T is incident to the same vertex u0 of H0. If the maximum degree of H is at most
∆ and ∆ ≥ 6, then there exists a distinguishing colouring of H with colours from the set
Z, and without C0(1, 2).

Proof. We colour the edges of T with d
√

∆e colours similarly as in the proof of Lemma 2.1.
That is, at most d

√
∆e edges incident to the central vertex v0 of T get the same colour. Then

recursively, at each level of T , any set A of vertices that can be cyclically permuted by an
automorphism ofH preserving the hitherto defined colouring, has at most d

√
∆e elements.

For each vertex v of A, we choose a distinct colour i ∈ Z such that the number of edges
joining v to the next level of T and coloured with i, is different from the number of such
edges coloured with any other colour. We arrive at the leaves of T with a colouring such
that every set A of leaves that can be cyclically permuted by an automorphism of T pre-
serving the colouring of T has at most d

√
∆e elements. It follows from Lemma 3.1 or

Lemma 3.2 (depending on the structure of H0) that each copy of H0 attached at a leaf
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Figure 1: Example of a 4-colouring of a graph H of Lemma ?? with ∆ = 9, where
a graph H0 consisting of four triangles sharing a cut vertex u0 is attached to every
leaf of a tree T = K1,9

Figure 3: Example of a 4-colouring of a graphH of Lemma 3.3 with ∆ = 9, where a graph
H0 consisting of four triangles sharing a cut vertex u0 is attached to every leaf of a tree
T = K1,9.

belonging to the same set A has a distinct colouring satisfying our assumptions. Thus we
obtain a desired colouring of the whole graph H .

The following result of Broere and Pilśniak [2] will be useful in the next proof.

Theorem 3.4 ([2]). If T is an infinite tree without leaves, then D′(T ) ≤ 2.

We are now ready to prove Theorem 1.5 for graphs with cut vertices.

Theorem 3.5. Let G be a countable graph of connectivity 1 and without pendant edges. If
G has finite maximum degree ∆, then

D′(G) ≤
⌈√

∆
⌉

+ 1.

Proof. Recall that we may assume that ∆ ≥ 6, whence the set Z contains at least four
colours. If G is a tree, then it has no leaves, so D′(G) ≤ 2 by Theorem 3.4.

Suppose then that G contains a 2-connected block B0. Let C be a longest cycle of
B0, if it exists, or any cycle of length at least five of B0. Colour it with C0(1, 2). By
Corollary 2.3, there is a distinguishing edge colouring of B0, where colour 0 is used only
on the cycle C. In our colouring of the whole graph G, we ensure that C0(1, 2) does not
appear again, therefore each vertex of B0 is fixed by every automorphism of G preserving
the colouring of B0. We recursively extend this colouring in such a way that every vertex
with at least one coloured incident edge is fixed as well.

Now, we set any ordering v1, v2, . . . of all cut vertices of G. We recursively consider
the first vertex vi in this ordering that belongs to an already coloured block, as well as to an
uncoloured one. Hence, vi is already fixed by every ϕ ∈ Aut(G) preserving the existing
partial colouring. We proceed with vi in four stages.
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1. Let B1, . . . , Bl be pairwise non-isomorphic, uncoloured 2-connected blocks con-
taining vi. For each j ∈ {1, . . . , l}, we consider a maximal subgraph H0 of G
that consists of s ≥ 1 copies of Bj sharing the cut vertex vi. Taking u0 = vi, by
Lemma 3.1 if s = 1, or by Lemma 3.2 if s ≥ 2, there is a distinguishing colouring
of H0 with colours from the set Z, not containing C0(1, 2).

2. We consider every uncoloured maximal subgraph H satisfying the assumptions of
Lemma 3.3. We colourH distinguishingly according to the conclusion of Lemma 3.3.
Consequently, all 2-connected blocks containing vi are now coloured.

3. If some components of G − vi are uncoloured infinite trees, then we consider the
infinite tree T containing all those components and the vertex vi, and we colour the
edges of T with two colours, by Theorem 3.4.

4. We colour every yet uncoloured edge e incident to vi arbitrarily. Note that both
endpoints of e are already fixed by any ϕ ∈ Aut(G) preserving the existing partial
colouring, because uncoloured components of G− vi are pairwise non-isomorphic.

This recursive procedure yields a distinguishing colouring of G with d
√

∆e + 1 colours,
which completes the proof of Theorem 3.5, and thus of Theorem 1.5.
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