Obzornik mat. fiz. 55 (2008) 2 Vesti p x 1 x k A 1 A k 2×2 p(x 1 ,...,x k ) = det k X i=1 x i A i ! . k k 2 p |p(z)| ≤ 2 z p f:R→R c > 0 cf f f C f: C → C f(x) ≤ f(y) x ≤ y p∈ C f(p) = p Obzornik mat. fiz. 55 (2008) 2 Štirinajsto mednarodno tekmovanje študentov matematike p(x) = ax 2 a A 1 =  1 0 0 a  p(x,y) = ax 2 +by 2 +cxy p(x,y) = x by −y ax+cy , A 1 =  1 0 0 a  A 2 =  0 b −1 c  k ≥ 3 p(x 1 ,...,x k ) = k P i=1 x 2 i x 1 x k Obzornik mat. fiz. 55 (2008) 2 Vesti p(x 1 ,...,x k ) = det  k P i=1 x i A i  2× 2 y 1 y k y 1 A 1 + ... + y k A k  0 0  det(y 1 A 1 + ... + y k A k ) = 0 p(y 1 ,...,y k ) = y 2 1 +...+y 2 k 6= 0 1+z p(z) = a n z n +...+a 0 p z p −p a 0 > 0 q(z) = a 1 z +...+a n−1 z n−1 q = 0 w 0 w n−1 a n w k n = |a n | w k = ( e 2kπi/n , a n > 0; e (2k+1)πi/n , a n < 0. n−1 X k=0 q(w k ) = n−1 X k=0 q  w 0 e 2kπi/n  = n−1 X j=1 a j w j 0 n−1 X k=0  e 2jπi/n  k = 0. e 2jπi/n  k n p w k 1 n n−1 X k=0 p(w k ) = 1 n n−1 X k=0 (a 0 +q(w k )+a n w n k ) = a 0 +|a n |, 2≥ 1 n n−1 X k=0 |p(w k )|≥ 1 n n−1 X k=0 p(w k ) = a 0 +|a n |≥ 2. a 0 =|a n | = 1 |p(w k )| =|2 +q(w k )| = 2 k q(w k ) |z− (−2)| = 2 Obzornik mat. fiz. 55 (2008) 2 Štirinajsto mednarodno tekmovanje študentov matematike q(w k ) = 0 k q n− 1 n q = 0 p(z) = a 0 +a n z n |a 0 | 2 +···+|a n | 2 = 1 2π 2π Z 0 |p(e it )| 2 dt≤ 1 2π 2π Z 0 4dt = 4. ±1 ce x = e x+logc f(x) = e x f(x)6= x x∈ C [a,b] C C a,b ∈ C f C f(a) > a f(b) < b p = sup{x∈ C; f(x) > x}. C f f(p) ≥ p f(p) > p x∈ C p f(x) < x f(f(p)) < f(p) f  Obzornik mat. fiz. 55 (2008) 2