Comparing the irregularity and the total irregularity of graphs

Darko Dimitrov
Institut für Informatik, Freie Universität Berlin, 14195 Berlin, Germany
Riste Škrekovski *
Department of Mathematics, University of Ljubljana, 1000 Ljubljana and Faculty of Information Studies, 8000 Novo Mesto, Slovenia

Received 9 June 2012, accepted 15 August 2013, published online 13 June 2014

Abstract

Albertson [4] has defined the irregularity of a simple undirected graph G as $\operatorname{irr}(G)=$ $\sum_{u v \in E(G)}\left|d_{G}(u)-d_{G}(v)\right|$, where $d_{G}(u)$ denotes the degree of a vertex $u \in V(G)$. Recently, in [1] a new measure of irregularity of a graph, so-called the total irregularity, was defined as $\operatorname{irr}_{t}(G)=\frac{1}{2} \sum_{u, v \in V(G)}\left|d_{G}(u)-d_{G}(v)\right|$. Here, we compare the irregularity and the total irregularity of graphs. For a connected graph G with n vertices, we show that $\operatorname{irr}_{t}(G) \leq n^{2} \operatorname{irr}(G) / 4$. Moreover, if G is a tree, then $\operatorname{irr}_{t}(G) \leq(n-2) \operatorname{irr}(G)$.

Keywords: The irregularity of graph, the total irregularity of graph.
Math. Subj. Class.: 05C05, 05C07,05C99

1 Introduction

Let G be a simple undirected graph of order $n=|V(G)|$ and size $m=|E(G)|$. For $v \in V(G)$, the degree of v, denoted by $d_{G}(v)$, is the number of edges incident to v. Albertson [4] defines the imbalance of an edge $e=u v \in E(G) \operatorname{as~imb~}_{G}(u v)=\left|d_{G}(u)-d_{G}(v)\right|$ and the irregularity of G as

$$
\begin{equation*}
\operatorname{irr}(G)=\sum_{u v \in E(G)} \operatorname{imb}_{G}(u v) . \tag{1.1}
\end{equation*}
$$

Obviously, a connected graph G has irregularity zero if and only if G is regular. In [4] Albertson presented upper bounds on irregularity for bipartite graphs, triangle-free graphs

[^0](i) This work is licensed under http://creativecommons.org/licenses/by/3.0/
and arbitrary graphs, as well as a sharp upper bound for trees. Some results about the irregularity of bipartite graphs are given in [4, 14]. Related to the work of Albertson is the work of Hansen and Mélot [13], who characterized the graphs with n vertices and m edges with maximal irregularity. Various upper bounds on the irregularity of a graph were given in [19], where K_{r+1}-free graphs, trees and unicyclic graphs with fixed number of vertices of degree one were considered. In [16], relations between the irregularity and the matching number of trees and unicyclic graphs were investigated. More results on irregularity, imbalance and related measures, one can find in [3, 5, 6, 17, 18].

Recently, in [1] a new measure of irregularity of a simple undirected graph, so-called the total irregularity, was defined as

$$
\begin{equation*}
\operatorname{irr}_{t}(G)=\frac{1}{2} \sum_{u, v \in V(G)}\left|d_{G}(u)-d_{G}(v)\right| . \tag{1.2}
\end{equation*}
$$

Other approaches, that characterize how irregular a graph is, have been proposed $[2,3,7$, $8,9,10,15]$. In this paper, we focus on the relation between the irregularity (1.1) and the total irregularity (1.2) of a graph.

In the sequel we introduce the notation used in the rest of the paper. For $u, v \in V(G)$, we denote by $d_{G}(u, v)$ the length of a shortest path in G between u and v. In this short paper the notation of the sets, that will be defined next, is always regarding the graph G we consider. By $V_{a, b}$, we denote a set of vertices of a graph with degrees in $[a, b]$, and by $V_{\geq a}$ (resp. $V_{\leq a}$), we denote a set of vertices of a graph with degrees at least a (resp. with degrees at most a). Similarly, by $V_{\geq a}^{x}$ (resp. $V_{\leq a}^{x}$), we denote a set of neighboring vertices of a vertex x with degrees at least a (resp. with degrees at most a). The corresponding cardinalities of the above mentioned sets, we denote by small v (e.g., $v_{\leq a}=\left|V_{\leq a}\right|$ or $\left.v_{\leq a}^{x}=\left|V_{\leq a}^{x}\right|\right)$.

A subgraph $T=v_{1} v_{2} \cdots v_{l}$ of a graph G, where v_{l} is a leaf in G, is called a tread if $d_{G}\left(v_{1}\right)=d_{G}\left(v_{2}\right)=\cdots=d_{G}\left(v_{l-1}\right)=2$, and v_{1} is adjacent to a vertex with degree at least three. Let $T_{1}=v_{1} v_{2} \cdots v_{s}$ and $T_{2}=u_{1} u_{2} \cdots u_{l}$ be two threads of a graph G with leaves v_{s} and u_{l}, respectively, and let v_{0} be the other neighbour of v_{1}. By $G^{\prime}=G\left(T_{2} \circ T_{1}\right)$ we denote a graph that is obtained from G after a concatenation of T_{2} to T_{1}, i.e., after deleting the edge $v_{0} v_{1}$ and adding an edge between u_{l} and v_{1}.

2 General graphs

Obviously, $\operatorname{irr}(G) \leq \operatorname{irr}_{t}(G)$. And, it is not hard to show that equality holds precisely when all non-adjacent vertices have same degree. Such a class of graphs are the complete k-partite graphs. More examples of graphs with equal irregularity and total irregularity can be found in [11]. Now, we give an upper bound on $\operatorname{irr}_{t}(G)$ in term of $\operatorname{irr}(G)$.

Theorem 2.1. Let G be a connected graph on n-vertices. Then

$$
\operatorname{irr}_{t}(G) \leq \frac{n^{2}}{4} \operatorname{irr}(G)
$$

Moreover, the bound is sharp for infinitely many graphs.
Proof. Let T be a spanning tree of G. Then, any two vertices a, b of G are connected by an unique path $P_{a b}=x_{1} x_{2} \cdots x_{s}$ in T, where $x_{1}=a$ and $x_{s}=b$. By the triangle inequality,
we have that

$$
\begin{align*}
\operatorname{irr}_{t}(G) & =\frac{1}{2} \sum_{a, b \in V(G)}\left|d_{G}(a)-d_{G}(b)\right| \tag{2.1}\\
& \leq \frac{1}{2} \sum_{a, b \in V(G)}\left|d_{G}\left(x_{1}\right)-d_{G}\left(x_{2}\right)\right|+\left|d_{G}\left(x_{2}\right)-d_{G}\left(x_{3}\right)\right|+\cdots
\end{align*}
$$

For an edge $u v \in E(T)$, let $n_{u}=\left\{x \mid x \in V(T)\right.$ and $\left.d_{T}(x, u)<d_{T}(x, v)\right\}$. Similarly, let $n_{v}=\left\{x \mid x \in V(T)\right.$ and $\left.d_{T}(x, u)>d_{T}(x, v)\right\}$. Each summand $\left|d_{G}(u)-d_{G}(v)\right|$ in the last sum of (2.1) occurs in the sum exactly $n_{u v}=n_{u} n_{v}$ times. Also, each summand $\left|d_{G}(v)-d_{G}(u)\right|$ occurs $n_{u v}$ times. Thus,

$$
\operatorname{irr}_{t}(G) \leq \sum_{u v \in E(T)}\left|d_{G}(u)-d_{G}(v)\right| n_{u v}
$$

As $n_{u v} \leq(n / 2)(n / 2)=n^{2} / 4$, and $\sum_{u v \in E(T)}\left|d_{G}(u)-d_{G}(v)\right| \leq \sum_{u v \in E(G)} \mid d_{G}(u)-$ $d_{G}(v) \mid$, we obtain the desired inequality.

Now, we show that the bound $n^{2} / 4$ is sharp. Let a, b be two distinct integers, say $a<b$. Consider a graph G_{a} whose all vertices are of degree a, with exception of one vertex u which is of degree $a-1$. Similarly, consider a graph G_{b} whose all vertices are of degree b, with exception of one vertex u which is of degree $b-1$. Let G^{*} be the graph obtained from G_{a} and G_{b} by connecting u and v. Let $n_{a}=\left|V\left(G_{a}\right)\right|$ and $n_{b}=\left|V\left(G_{b}\right)\right|$. Observe that $\operatorname{irr}\left(G^{*}\right)=b-a$ and $\operatorname{irr}_{t}\left(G^{*}\right)=(b-a) n_{a} n_{b}$. Choosing $n_{a}=n_{b}=n / 2$, we obtain

$$
\frac{\operatorname{irr}_{t}\left(G^{*}\right)}{\operatorname{irr}\left(G^{*}\right)}=n_{a} n_{b}=\frac{n^{2}}{4}
$$

In order to show that such graphs G_{a} and G_{b} exist, one may use the theorem of ErdősGallai [12] which states that a sequence $d_{1} \geq d_{2} \geq \cdots \geq d_{n}$ of non-negative integers with even sum is graphic (i.e., there exist a graph with such a degree sequence) if and only if

$$
\begin{equation*}
\sum_{i=1}^{r} d_{i} \leq r(r-1)+\sum_{i=r+1}^{n} \min \left(r, d_{i}\right) \tag{2.2}
\end{equation*}
$$

for all $1 \leq r \leq n$.
So, fix a, b, and $n_{a}=n_{b}$ to be odd numbers with $n_{a} \gg \max \{a, b\}$. We will show the existence of the graph G_{a}. In a similar way, one can show the existence of the graph G_{b}. As $\left(n_{a}-1\right) a+(a-1)$ is even, the parity condition of the theorem of Erdôs-Gallai is satisfied. So, we need to show only (2.2). For this we consider three cases regarding r and a :

- $r \leq a-1$. Then, (2.2) can be written as $r a \leq r(r-1)+\left(n_{a}-r\right) r$. It obviously holds since $a \ll n_{a}-r$.
- $r=a$. In this case, (2.2) can be written as $r a \leq r(r-1)+\left(n_{a}-r\right) r-1$, which holds for a similar reason as the previous case.
- $r \geq a+1$. Similarly, (2.2) can be written as $r a \leq r(r-1)+\left(n_{a}-r\right) a-1$, and it holds as $r a \ll r(r-1)$.

3 Trees

In this section, we give an upper bound on $\operatorname{irr}_{t}(G)$ in term of $\operatorname{irr}(G)$, when G is a tree. To show the bound, we will use the following lemma.

Lemma 3.1. Let G be a tree, x a vertex of degree $d \geq 3$ incident with threads T_{1} and T_{2}, and let $G^{\prime}=G\left(T_{2} \circ T_{1}\right)$. Then,
(a) $\operatorname{irr}_{t}(G)-\operatorname{irr}_{t}\left(G^{\prime}\right)=2 v_{2, d-1}$;
(b) $\operatorname{irr}(G)-\operatorname{irr}\left(G^{\prime}\right)=2\left(d-v_{\geq d}^{x}-1\right)$.

Proof. Let $T_{1}=a_{1} a_{2} \cdots a_{s}$ and $T_{2}=b_{1} b_{2} \cdots b_{l}$. We consider the identities separately.
(a) Notice that all other vertices except x and b_{l} have the same degree in G and G^{\prime}. Hence, it holds that

$$
\begin{aligned}
\operatorname{irr}_{t}(G)-\operatorname{irr}_{t}\left(G^{\prime}\right)= & \sum_{u \neq b_{l}}\left(\left|d_{G}(x)-d_{G}(u)\right|-\left|d_{G^{\prime}}(x)-d_{G^{\prime}}(u)\right|\right) \\
& +\sum_{u \neq x}\left(\left|d_{G}(u)-d_{G}\left(b_{l}\right)\right|-\left|d_{G^{\prime}}(u)-d_{G^{\prime}}\left(b_{l}\right)\right|\right) \\
& +\left|d_{G}(x)-d_{G}\left(b_{l}\right)\right|-\left|d_{G^{\prime}}(x)-d_{G^{\prime}}\left(b_{l}\right)\right|
\end{aligned}
$$

Since $d_{G^{\prime}}(x)=d_{G}(x)-1=d-1$ and $d_{G^{\prime}}\left(b_{l}\right)=d_{G}\left(b_{l}\right)+1=2$, further we have

$$
\begin{align*}
\operatorname{irr}_{t}(G)-\operatorname{irr}_{t}\left(G^{\prime}\right)= & \sum_{u \neq b_{l}}\left(\left|d-d_{G}(u)\right|-\left|d-1-d_{G}(u)\right|\right) \\
& +\sum_{u \neq x}\left(\left|d_{G}(u)-1\right|-\left|d_{G}(u)-2\right|\right)+2 \tag{3.1}
\end{align*}
$$

If $u \in V_{\leq d-1}$, then $\left|d-d_{G}(u)\right|-\left|d-1-d_{G}(u)\right|=1$, otherwise $\left|d-d_{G}(u)\right|-$ $\left|d-1-d_{G}(u)\right|=-1$. Hence, the first sum in (3.1) is equal to $v_{\leq d-1}-1-v_{\geq d}$. Similarly, if $u \in V_{\geq 2}$, then $\left|d_{G}(u)-1\right|-\left|d_{G}(u)-2\right|=1$, otherwise $\left|d_{G}(u)-1\right|-$ $\left|d_{G}(u)-2\right|=-1$. Thus, the second sum in (3.1) is equal to $v_{\geq 2}-1-v_{1}$. Applying these observations, we have

$$
\begin{aligned}
\operatorname{irr}_{t}(G)-\operatorname{irr}_{t}\left(G^{\prime}\right) & =v_{\leq d-1}-1-v_{\geq d}+v_{\geq 2}-1-v_{1}+2 \\
& =v_{\leq d-1}-v_{1}+v_{\geq 2}-v_{\geq d} \\
& =2 v_{2, d-1} .
\end{aligned}
$$

(b) Let $e_{1}=x a_{1}, e_{2}=x b_{1}, e_{3}=b_{l-1} b_{l}$ and $E_{1}=\left\{e_{1}, e_{2}, e_{3}\right\}$. Denote by E_{2} the set of edges incident to x that are different from e_{1} and e_{2}. Notice that every edge not in $E_{1} \cup E_{2}$ contributes zero to the difference $\operatorname{irr}(G)-\operatorname{irr}\left(G^{\prime}\right)$. So, we can infer

$$
\begin{aligned}
\operatorname{irr}(G)-\operatorname{irr}\left(G^{\prime}\right)= & \sum_{u v \in E_{2}}\left(\operatorname{imb}_{G}(u v)-\operatorname{imb}_{G^{\prime}}(u v)\right) \\
& +\sum_{u v \in E_{1}}\left(\operatorname{imb}_{G}(u v)-\operatorname{imb}_{G^{\prime}}(u v)\right)
\end{aligned}
$$

Notice that the first sum is equal to $-v_{\geq d}^{x}+\left(v_{\leq d-1}^{x}-2\right)$ (we have -2 as the edges e_{1} and e_{2} are excluded in this sum). In $G^{\prime \prime}$, the edge $e_{1}=x a_{1}$ does not exist anymore, but there is a new edge $e_{1}^{\prime}=b_{l} a_{1}$. Observe that after the concatenation $T_{2} \circ T_{1}$ all other edges preserve their end-vertices. First, we consider the contribution of e_{1} and $e_{1}^{\prime} \operatorname{in} \operatorname{irr}(G)-\operatorname{irr}\left(G^{\prime}\right)$. There are two possibilities regarding the length of T_{1} :

- $s=1$: Then, $\operatorname{imb}_{G}\left(e_{1}\right)=d-1$ and $\operatorname{imb}_{G^{\prime}}\left(e_{1}^{\prime}\right)=1$;
- $s \geq 2$: In this case, $\operatorname{imb}_{G}\left(e_{1}\right)=d-2$ and $\operatorname{imb}_{G^{\prime}}\left(e_{1}^{\prime}\right)=0$.

In both of them, we obtain $\operatorname{imb}_{G}\left(e_{1}\right)-\operatorname{imb}_{G^{\prime}}\left(e_{1}^{\prime}\right)=d-2$.
Next, we consider the contributions of e_{2} and e_{3} together. Again, consider two possibilities regarding the length of T_{2} :

- $l=1$: Then, $e_{2}=e_{3}$ and $\operatorname{imb}_{G}\left(e_{2}\right)=d-1$ and $\operatorname{imb}_{G^{\prime}}\left(e_{2}\right)=d-3$;
- $l \geq 2$: In this case, $e_{2} \neq e_{3}$, and $\operatorname{imb}_{G}\left(e_{2}\right)=d-2, \operatorname{imb}_{G^{\prime}}\left(e_{2}\right)=d-3$, $\operatorname{imb}_{G}\left(e_{3}\right)=1$ and $\operatorname{imb}_{G^{\prime}}\left(e_{3}\right)=0$.

In both cases, we obtain that $\sum_{e \in\left\{e_{2}, e_{3}\right\}}\left(\operatorname{imb}_{G}(e)-\operatorname{imb}_{G^{\prime}}(e)\right)=2$. So finally, we have that

$$
\begin{aligned}
\operatorname{irr}(G)-\operatorname{irr}\left(G^{\prime}\right) & =-v_{\geq d}^{x}+\left(v_{\leq d-1}^{x}-2\right)+d-2+2 \\
& =-v_{\geq d}^{x}+v_{\leq d-1}^{x}-2+d \\
& =2\left(d-v_{\geq d}^{x}-1\right) .
\end{aligned}
$$

Theorem 3.1. Let G be a tree with n vertices. Then

$$
\operatorname{irr}_{t}(G) \leq(n-2) \operatorname{irr}(G)
$$

Moroever, equality holds if and only if G is a path.
Proof. Let $n_{1}(G)$ be the number of vertices of G with degree one. We will prove the second inequality by induction on $n_{1}(G)$. If $n_{1}(G)=0$, then $G \simeq P_{1}, \operatorname{irr}(G)=\operatorname{irr}_{t}(G)=0$, and the equality in the theorem holds. Since G is a tree, $n_{1}(G) \neq 1$. If $n_{1}(G)=2$, then $G \simeq P_{n}$. In this case $\operatorname{irr}(G)=2$ and $\operatorname{irr}_{t}(G)=2(n-2)$, hence we obtain equality.

Now, assume $n_{1}(G)>2$. Then, it is easy to see that G has a vertex x of degree $d \geq 3$, incident with at least two threads T_{1} and T_{2}. Let $G^{\prime}=G\left(T_{2} \circ T_{1}\right)$. Since $n_{1}\left(G^{\prime}\right)=$ $n_{1}(G)-1$, we can assume that inequality holds for G^{\prime}, i.e.,

$$
\begin{equation*}
\operatorname{irr}_{t}\left(G^{\prime}\right) \leq(n-2) \operatorname{irr}\left(G^{\prime}\right) \tag{3.2}
\end{equation*}
$$

By Lemma 3.1, we have

$$
\begin{equation*}
\operatorname{irr}\left(G^{\prime}\right)=\operatorname{irr}(G)-2\left(d-v_{\geq d}^{x}-1\right) \quad \text { and } \quad \operatorname{irr}_{t}\left(G^{\prime}\right)=\operatorname{irr}_{t}(G)-2 v_{2, d-1} \tag{3.3}
\end{equation*}
$$

Plugging (3.3) in (3.2), we obtain

$$
\begin{equation*}
(n-2) \operatorname{irr}(G) \geq \operatorname{irr}_{t}(G)-2 v_{2, d-1}+2(n-2)\left(d-v_{\geq d}^{x}-1\right) \tag{3.4}
\end{equation*}
$$

As $d(x)=d \geq 3$ and x is incident with two threads, we infer $v_{\geq d}^{x}+2 \leq d$, and so $2\left(d-v_{\geq d}^{x}-1\right) \geq 2$. Observe also that $v_{2, d-1} \leq n-3$. Hence $2(n-2)\left(d-v_{\geq d}^{x}-1\right)>$ $2(n-3) \geq 2 v_{2, d-1}$. This together with (3.4) gives $(n-2) \operatorname{irr}(G)>\operatorname{irr}_{t}(G)$.

References

[1] H. Abdo, S. Brandt and D. Dimitrov, The total irregularity of a graph, Discrete Math. Theor. Comput. Sci. 16 (2014), 201-206.
[2] Y. Alavi, A. Boals, G. Chartrand, P. Erdős and O. R. Oellermann, k-path irregular graphs, Congr. Numer. 65 (1988) 201-210.
[3] Y. Alavi, G. Chartrand, F. R. K. Chung, P. Erdős, R. L. Graham and O. R. Oellermann, Highly irregular graphs, J. Graph Theory 11 (1987) 235-249.
[4] M. O. Albertson, The irregularity of a graph, Ars Comb. 46 (1997) 219-225.
[5] F. K. Bell, A note on the irregularity of graphs, Linear Algebra Appl. 161 (1992) 45-54.
[6] Y. Caro and R. Yuster, Graphs with large variance, Ars Comb. 57 (2000) 151-162.
[7] G. Chartrand, P. Erdős and O. R. Oellermann, How to define an irregular graph, Coll. Math. J. 19 (1988) 36-42.
[8] G. Chartrand, K. S. Holbert, O. R. Oellermann and H. C. Swart, F-degrees in graphs, Ars Comb. 24 (1987) 133-148.
[9] L. Collatz and U. Sinogowitz, Spektren endlicher Graphen, Abh. Math. Sem. Univ. Hamburg 21 (1957) 63-77.
[10] D. Cvetković and P. Rowlinson, On connected graphs with maximal index, Publications de l'Institut Mathematique (Beograd) 44 (1988) 29-34.
[11] D. Dimitrov, T. Réti, Graphs with equal irregularity indices, Acta Polytech. Hung. 11 (2014), 41-57.
[12] P. Erdős and T. Gallai, Graphs with prescribed degrees of vertices, (in Hungarian) Mat. Lapok. 11 (1960) 264-274.
[13] P. Hansen and H. Mélot, Variable neighborhood search for extremal graphs 9. Bounding the irregularity of a graph, DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 69 (1962) 253-264.
[14] M. A. Henning and D. Rautenbach, On the irregularity of bipartite graphs, Discrete Math. 307 (2007) 1467-1472.
[15] D. E. Jackson and R. Entringer, Totally segregated graphs, Congress. Numer. 55 (1986) 159165.
[16] W. Luo and B. Zhou, On the irregularity of trees and unicyclic graphs with given matching number, Util. Math. 83 (2010) 141-147.
[17] D. Rautenbach and I. Schiermeyer, Extremal problems for imbalanced edges, Graphs Comb. 22 (2006) 103-111.
[18] D. Rautenbach and L. Volkmann, How local irregularity gets global in a graph, J. Graph Theory 41 (2002) 18-23.
[19] B. Zhou and W. Luo, On irregularity of graphs, Ars Combin. 88 (2008) 55-64.

[^0]: *Partially supported by Slovenian ARRS Program P1-00383 and Creative Core - FISNM - 3330-13-500033.
 E-mail addresses: dimdar@zedat.fu-berlin.de (Darko Dimitrov), skrekovski@gmail.com (Riste Škrekovski)

