

Also available at http://amc-journal.eu ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.) ARS MATHEMATICA CONTEMPORANEA 9 (2015) 45–50

Comparing the irregularity and the total irregularity of graphs

Darko Dimitrov

Institut für Informatik, Freie Universität Berlin, 14195 Berlin, Germany

Riste Škrekovski *

Department of Mathematics, University of Ljubljana, 1000 Ljubljana and Faculty of Information Studies, 8000 Novo Mesto, Slovenia

Received 9 June 2012, accepted 15 August 2013, published online 13 June 2014

Abstract

Albertson [4] has defined the *irregularity* of a simple undirected graph G as $\operatorname{irr}(G) = \sum_{uv \in E(G)} |d_G(u) - d_G(v)|$, where $d_G(u)$ denotes the degree of a vertex $u \in V(G)$. Recently, in [1] a new measure of irregularity of a graph, so-called the *total irregularity*, was defined as $\operatorname{irr}_t(G) = \frac{1}{2} \sum_{u,v \in V(G)} |d_G(u) - d_G(v)|$. Here, we compare the irregularity and the total irregularity of graphs. For a connected graph G with n vertices, we show that $\operatorname{irr}_t(G) \leq n^2 \operatorname{irr}(G)/4$. Moreover, if G is a tree, then $\operatorname{irr}_t(G) \leq (n-2)\operatorname{irr}(G)$.

Keywords: The irregularity of graph, the total irregularity of graph. Math. Subj. Class.: 05C05, 05C07,05C99

1 Introduction

Let G be a simple undirected graph of order n = |V(G)| and size m = |E(G)|. For $v \in V(G)$, the degree of v, denoted by $d_G(v)$, is the number of edges incident to v. Albertson [4] defines the *imbalance* of an edge $e = uv \in E(G)$ as $imb_G(uv) = |d_G(u) - d_G(v)|$ and the *irregularity* of G as

$$\operatorname{irr}(G) = \sum_{uv \in E(G)} \operatorname{imb}_G(uv).$$
(1.1)

Obviously, a connected graph G has irregularity zero if and only if G is regular. In [4] Albertson presented upper bounds on irregularity for bipartite graphs, triangle-free graphs

^{*}Partially supported by Slovenian ARRS Program P1-00383 and Creative Core - FISNM - 3330-13-500033. *E-mail addresses:* dimdar@zedat.fu-berlin.de (Darko Dimitrov), skrekovski@gmail.com (Riste Škrekovski)

and arbitrary graphs, as well as a sharp upper bound for trees. Some results about the irregularity of bipartite graphs are given in [4, 14]. Related to the work of Albertson is the work of Hansen and Mélot [13], who characterized the graphs with n vertices and m edges with maximal irregularity. Various upper bounds on the irregularity of a graph were given in [19], where K_{r+1} -free graphs, trees and unicyclic graphs with fixed number of vertices of degree one were considered. In [16], relations between the irregularity and the matching number of trees and unicyclic graphs were investigated. More results on irregularity, imbalance and related measures, one can find in [3, 5, 6, 17, 18].

Recently, in [1] a new measure of irregularity of a simple undirected graph, so-called the *total irregularity*, was defined as

$$\operatorname{irr}_{t}(G) = \frac{1}{2} \sum_{u,v \in V(G)} |d_{G}(u) - d_{G}(v)|.$$
(1.2)

Other approaches, that characterize how irregular a graph is, have been proposed [2, 3, 7, 8, 9, 10, 15]. In this paper, we focus on the relation between the irregularity (1.1) and the total irregularity (1.2) of a graph.

In the sequel we introduce the notation used in the rest of the paper. For $u, v \in V(G)$, we denote by $d_G(u, v)$ the length of a shortest path in G between u and v. In this short paper the notation of the sets, that will be defined next, is always regarding the graph G we consider. By $V_{a,b}$, we denote a set of vertices of a graph with degrees in [a, b], and by $V_{\geq a}$ (resp. $V_{\leq a}$), we denote a set of vertices of a graph with degrees at least a (resp. with degrees at most a). Similarly, by $V_{\geq a}^x$ (resp. $V_{\leq a}^x$), we denote a set of resp. $v_{\leq a}$), we denote a set of neighboring vertices of a vertex x with degrees at least a (resp. $v_{\leq a}^x$), we denote a set of the above mentioned sets, we denote by small v (e.g., $v_{\leq a} = |V_{\leq a}|$ or $v_{\leq a}^x = |V_{\leq a}|$).

A subgraph $T = v_1 v_2 \cdots v_l$ of a graph G, where v_l is a leaf in G, is called a *tread* if $d_G(v_1) = d_G(v_2) = \cdots = d_G(v_{l-1}) = 2$, and v_1 is adjacent to a vertex with degree at least three. Let $T_1 = v_1 v_2 \cdots v_s$ and $T_2 = u_1 u_2 \cdots u_l$ be two threads of a graph G with leaves v_s and u_l , respectively, and let v_0 be the other neighbour of v_1 . By $G' = G(T_2 \circ T_1)$ we denote a graph that is obtained from G after a *concatenation* of T_2 to T_1 , i.e., after deleting the edge $v_0 v_1$ and adding an edge between u_l and v_1 .

2 General graphs

Obviously, $\operatorname{irr}(G) \leq \operatorname{irr}_t(G)$. And, it is not hard to show that equality holds precisely when all non-adjacent vertices have same degree. Such a class of graphs are the complete *k*-partite graphs. More examples of graphs with equal irregularity and total irregularity can be found in [11]. Now, we give an upper bound on $\operatorname{irr}_t(G)$ in term of $\operatorname{irr}(G)$.

Theorem 2.1. Let G be a connected graph on n-vertices. Then

$$\operatorname{irr}_t(G) \le \frac{n^2}{4}\operatorname{irr}(G).$$

Moreover, the bound is sharp for infinitely many graphs.

Proof. Let T be a spanning tree of G. Then, any two vertices a, b of G are connected by an unique path $P_{ab} = x_1 x_2 \cdots x_s$ in T, where $x_1 = a$ and $x_s = b$. By the triangle inequality,

we have that

$$\operatorname{irr}_{t}(G) = \frac{1}{2} \sum_{a,b \in V(G)} |d_{G}(a) - d_{G}(b)|$$

$$\leq \frac{1}{2} \sum_{a,b \in V(G)} |d_{G}(x_{1}) - d_{G}(x_{2})| + |d_{G}(x_{2}) - d_{G}(x_{3})| + \cdots$$
(2.1)

For an edge $uv \in E(T)$, let $n_u = \{x \mid x \in V(T) \text{ and } d_T(x, u) < d_T(x, v)\}$. Similarly, let $n_v = \{x \mid x \in V(T) \text{ and } d_T(x, u) > d_T(x, v)\}$. Each summand $|d_G(u) - d_G(v)|$ in the last sum of (2.1) occurs in the sum exactly $n_{uv} = n_u n_v$ times. Also, each summand $|d_G(v) - d_G(u)|$ occurs n_{uv} times. Thus,

$$\operatorname{irr}_t(G) \leq \sum_{uv \in E(T)} |d_G(u) - d_G(v)| n_{uv}.$$

As $n_{uv} \leq (n/2)(n/2) = n^2/4$, and $\sum_{uv \in E(T)} |d_G(u) - d_G(v)| \leq \sum_{uv \in E(G)} |d_G(u) - d_G(v)|$, we obtain the desired inequality.

Now, we show that the bound $n^2/4$ is sharp. Let a, b be two distinct integers, say a < b. Consider a graph G_a whose all vertices are of degree a, with exception of one vertex u which is of degree a - 1. Similarly, consider a graph G_b whose all vertices are of degree b, with exception of one vertex u which is of degree b - 1. Let G^* be the graph obtained from G_a and G_b by connecting u and v. Let $n_a = |V(G_a)|$ and $n_b = |V(G_b)|$. Observe that $\operatorname{irr}(G^*) = b - a$ and $\operatorname{irr}_t(G^*) = (b - a)n_an_b$. Choosing $n_a = n_b = n/2$, we obtain

$$\frac{\operatorname{irr}_t(G^*)}{\operatorname{irr}(G^*)} = n_a n_b = \frac{n^2}{4}.$$

In order to show that such graphs G_a and G_b exist, one may use the theorem of Erdős-Gallai [12] which states that a sequence $d_1 \ge d_2 \ge \cdots \ge d_n$ of non-negative integers with even sum is graphic (i.e., there exist a graph with such a degree sequence) if and only if

$$\sum_{i=1}^{r} d_i \le r(r-1) + \sum_{i=r+1}^{n} \min(r, d_i),$$
(2.2)

for all $1 \leq r \leq n$.

So, fix a, b, and $n_a = n_b$ to be odd numbers with $n_a \gg \max\{a, b\}$. We will show the existence of the graph G_a . In a similar way, one can show the existence of the graph G_b . As $(n_a - 1)a + (a - 1)$ is even, the parity condition of the theorem of Erdős-Gallai is satisfied. So, we need to show only (2.2). For this we consider three cases regarding r and a:

- r ≤ a − 1. Then, (2.2) can be written as ra ≤ r(r − 1) + (n_a − r)r. It obviously holds since a ≪ n_a − r.
- r = a. In this case, (2.2) can be written as $ra \le r(r-1) + (n_a r)r 1$, which holds for a similar reason as the previous case.
- $r \ge a + 1$. Similarly, (2.2) can be written as $ra \le r(r-1) + (n_a r)a 1$, and it holds as $ra \ll r(r-1)$.

3 Trees

In this section, we give an upper bound on $\operatorname{irr}_t(G)$ in term of $\operatorname{irr}(G)$, when G is a tree. To show the bound, we will use the following lemma.

Lemma 3.1. Let G be a tree, x a vertex of degree $d \ge 3$ incident with threads T_1 and T_2 , and let $G' = G(T_2 \circ T_1)$. Then,

(a)
$$\operatorname{irr}_t(G) - \operatorname{irr}_t(G') = 2v_{2,d-1};$$

(b) $\operatorname{irr}(G) - \operatorname{irr}(G') = 2(d - v_{\geq d}^x - 1).$

Proof. Let $T_1 = a_1 a_2 \cdots a_s$ and $T_2 = b_1 b_2 \cdots b_l$. We consider the identities separately.

(a) Notice that all other vertices except x and b_l have the same degree in G and G'. Hence, it holds that

$$\operatorname{irr}_{t}(G) - \operatorname{irr}_{t}(G') = \sum_{u \neq b_{l}} (|d_{G}(x) - d_{G}(u)| - |d_{G'}(x) - d_{G'}(u)|) + \sum_{u \neq x} (|d_{G}(u) - d_{G}(b_{l})| - |d_{G'}(u) - d_{G'}(b_{l})|) + |d_{G}(x) - d_{G}(b_{l})| - |d_{G'}(x) - d_{G'}(b_{l})|.$$

Since $d_{G'}(x) = d_G(x) - 1 = d - 1$ and $d_{G'}(b_l) = d_G(b_l) + 1 = 2$, further we have

$$\operatorname{irr}_{t}(G) - \operatorname{irr}_{t}(G') = \sum_{u \neq b_{l}} (|d - d_{G}(u)| - |d - 1 - d_{G}(u)|) + \sum_{u \neq x} (|d_{G}(u) - 1| - |d_{G}(u) - 2|) + 2.$$
(3.1)

If $u \in V_{\leq d-1}$, then $|d - d_G(u)| - |d - 1 - d_G(u)| = 1$, otherwise $|d - d_G(u)| - |d - 1 - d_G(u)| = -1$. Hence, the first sum in (3.1) is equal to $v_{\leq d-1} - 1 - v_{\geq d}$. Similarly, if $u \in V_{\geq 2}$, then $|d_G(u) - 1| - |d_G(u) - 2| = 1$, otherwise $|d_G(u) - 1| - |d_G(u) - 2| = -1$. Thus, the second sum in (3.1) is equal to $v_{\geq 2} - 1 - v_1$. Applying these observations, we have

$$irr_t(G) - irr_t(G') = v_{\leq d-1} - 1 - v_{\geq d} + v_{\geq 2} - 1 - v_1 + 2$$

= $v_{\leq d-1} - v_1 + v_{\geq 2} - v_{\geq d}$
= $2v_{2,d-1}$.

(b) Let e₁ = xa₁, e₂ = xb₁, e₃ = b_{l-1}b_l and E₁ = {e₁, e₂, e₃}. Denote by E₂ the set of edges incident to x that are different from e₁ and e₂. Notice that every edge not in E₁ ∪ E₂ contributes zero to the difference irr(G) - irr(G'). So, we can infer

$$\begin{split} \operatorname{irr}(G) - \operatorname{irr}(G') &= \sum_{uv \in E_2} (\operatorname{imb}_G(uv) - \operatorname{imb}_{G'}(uv)) \\ &+ \sum_{uv \in E_1} (\operatorname{imb}_G(uv) - \operatorname{imb}_{G'}(uv)). \end{split}$$

Notice that the first sum is equal to $-v_{\geq d}^* + (v_{\leq d-1}^* - 2)$ (we have -2 as the edges e_1 and e_2 are excluded in this sum). In $\overline{G'}$, the edge $e_1 = xa_1$ does not exist anymore, but there is a new edge $e'_1 = b_l a_1$. Observe that after the concatenation $T_2 \circ T_1$ all other edges preserve their end-vertices. First, we consider the contribution of e_1 and e'_1 in $\operatorname{irr}(G) - \operatorname{irr}(G')$. There are two possibilities regarding the length of T_1 :

- s = 1: Then, $\operatorname{imb}_{G}(e_1) = d 1$ and $\operatorname{imb}_{G'}(e'_1) = 1$;
- $s \ge 2$: In this case, $\operatorname{imb}_G(e_1) = d 2$ and $\operatorname{imb}_{G'}(e'_1) = 0$.

In both of them, we obtain $\operatorname{imb}_G(e_1) - \operatorname{imb}_{G'}(e'_1) = d - 2$.

Next, we consider the contributions of e_2 and e_3 together. Again, consider two possibilities regarding the length of T_2 :

- l = 1: Then, $e_2 = e_3$ and $\operatorname{imb}_G(e_2) = d 1$ and $\operatorname{imb}_{G'}(e_2) = d 3$;
- $l \ge 2$: In this case, $e_2 \ne e_3$, and $\operatorname{imb}_G(e_2) = d 2$, $\operatorname{imb}_{G'}(e_2) = d 3$, $\operatorname{imb}_G(e_3) = 1$ and $\operatorname{imb}_{G'}(e_3) = 0$.

In both cases, we obtain that $\sum_{e \in \{e_2, e_3\}} (imb_G(e) - imb_{G'}(e)) = 2$. So finally, we have that

$$\begin{split} \operatorname{irr}(G) - \operatorname{irr}(G') &= -v_{\geq d}^x + (v_{\leq d-1}^x - 2) + d - 2 + 2 \\ &= -v_{\geq d}^x + v_{\leq d-1}^x - 2 + d \\ &= 2(d - v_{\geq d}^x - 1). \end{split}$$

Theorem 3.1. Let G be a tree with n vertices. Then

$$\operatorname{irr}_t(G) \le (n-2)\operatorname{irr}(G).$$

Moroever, equality holds if and only if G is a path.

Proof. Let $n_1(G)$ be the number of vertices of G with degree one. We will prove the second inequality by induction on $n_1(G)$. If $n_1(G) = 0$, then $G \simeq P_1$, $irr(G) = irr_t(G) = 0$, and the equality in the theorem holds. Since G is a tree, $n_1(G) \neq 1$. If $n_1(G) = 2$, then $G \simeq P_n$. In this case irr(G) = 2 and $irr_t(G) = 2(n-2)$, hence we obtain equality.

Now, assume $n_1(G) > 2$. Then, it is easy to see that G has a vertex x of degree $d \ge 3$, incident with at least two threads T_1 and T_2 . Let $G' = G(T_2 \circ T_1)$. Since $n_1(G') = n_1(G) - 1$, we can assume that inequality holds for G', i.e.,

$$\operatorname{irr}_t(G') \le (n-2)\operatorname{irr}(G'). \tag{3.2}$$

By Lemma 3.1, we have

$$\operatorname{irr}(G') = \operatorname{irr}(G) - 2(d - v_{\geq d}^x - 1)$$
 and $\operatorname{irr}_t(G') = \operatorname{irr}_t(G) - 2v_{2,d-1}$. (3.3)

Plugging (3.3) in (3.2), we obtain

$$(n-2)\operatorname{irr}(G) \ge \operatorname{irr}_t(G) - 2v_{2,d-1} + 2(n-2)(d-v_{\ge d}^x - 1).$$
 (3.4)

As $d(x) = d \ge 3$ and x is incident with two threads, we infer $v_{\ge d}^x + 2 \le d$, and so $2(d - v_{\ge d}^x - 1) \ge 2$. Observe also that $v_{2,d-1} \le n-3$. Hence $2(n-2)(d - v_{\ge d}^x - 1) > 2(n-3) \ge 2v_{2,d-1}$. This together with (3.4) gives $(n-2)\operatorname{irr}_{d}(G) > \operatorname{irr}_{t}(G)$. \Box

References

- H. Abdo, S. Brandt and D. Dimitrov, The total irregularity of a graph, *Discrete Math. Theor. Comput. Sci.* 16 (2014), 201–206.
- [2] Y. Alavi, A. Boals, G. Chartrand, P. Erdős and O. R. Oellermann, k-path irregular graphs, Congr. Numer. 65 (1988) 201–210.
- [3] Y. Alavi, G. Chartrand, F. R. K. Chung, P. Erdős, R. L. Graham and O. R. Oellermann, Highly irregular graphs, J. Graph Theory 11 (1987) 235–249.
- [4] M. O. Albertson, The irregularity of a graph, Ars Comb. 46 (1997) 219–225.
- [5] F. K. Bell, A note on the irregularity of graphs, Linear Algebra Appl. 161 (1992) 45-54.
- [6] Y. Caro and R. Yuster, Graphs with large variance, Ars Comb. 57 (2000) 151-162.
- [7] G. Chartrand, P. Erdős and O. R. Oellermann, How to define an irregular graph, *Coll. Math. J.* 19 (1988) 36–42.
- [8] G. Chartrand, K. S. Holbert, O. R. Oellermann and H. C. Swart, F-degrees in graphs, Ars Comb. 24 (1987) 133–148.
- [9] L. Collatz and U. Sinogowitz, Spektren endlicher Graphen, *Abh. Math. Sem. Univ. Hamburg* 21 (1957) 63–77.
- [10] D. Cvetković and P. Rowlinson, On connected graphs with maximal index, *Publications de l'Institut Mathematique (Beograd)* 44 (1988) 29–34.
- [11] D. Dimitrov, T. Réti, Graphs with equal irregularity indices, *Acta Polytech. Hung.* 11 (2014), 41–57.
- [12] P. Erdős and T. Gallai, Graphs with prescribed degrees of vertices, (in Hungarian) *Mat. Lapok.* 11 (1960) 264–274.
- [13] P. Hansen and H. Mélot, Variable neighborhood search for extremal graphs 9. Bounding the irregularity of a graph, DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 69 (1962) 253–264.
- [14] M. A. Henning and D. Rautenbach, On the irregularity of bipartite graphs, *Discrete Math.* 307 (2007) 1467–1472.
- [15] D. E. Jackson and R. Entringer, Totally segregated graphs, *Congress. Numer.* 55 (1986) 159– 165.
- [16] W. Luo and B. Zhou, On the irregularity of trees and unicyclic graphs with given matching number, Util. Math. 83 (2010) 141–147.
- [17] D. Rautenbach and I. Schiermeyer, Extremal problems for imbalanced edges, *Graphs Comb.* 22 (2006) 103–111.
- [18] D. Rautenbach and L. Volkmann, How local irregularity gets global in a graph, J. Graph Theory 41 (2002) 18–23.
- [19] B. Zhou and W. Luo, On irregularity of graphs, Ars Combin. 88 (2008) 55-64.