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Agent teaming and autonomy are foundational themes in multi-agent systems. Agents may work as
singletons or they may work in environments where other agents exist. In multi-agent systems, agents
may form teams by sharing common goals with other agents. Cooperation is essential for any
collaborative, group activity. Beyond coordination and judicious role assignment, cooperation enables
members of a team to be aware and account for collection of their goals as well as the performance of
agents on individual goals. This paper presents a general model of cooperation and illustrates how it
may enhance group performance. In this paper, we present results of an application of the concept of
cooperation in a simulated swarm of reconnaissance urban UAVs that are tracking vehiclesin an urban

environment.

Povzetek: Opisan je splodni model sodelovanja agentov.

1 Introduction

An agent is defined as an autonomous, problem-
solving computational entity capable of effective
operation in dynamic and open environments (Luck and
Griffiths, 2003). A multi-agent system is a system of
agents that exhibit socia rationality, normative patterns,
and vaues, among themselves within an environment
(Hexmoor, 2003).

Typically, each agent in a multi-agent system
possesses incomplete information for solving a problem
with limited global knowledge. Therefore, agents interact
with one another to gather information, act upon that
information, and hence collectively solve a problem.
Collaborative, behavior-coordinated activity involves
participants to work jointly with each other to satisfy a
shared goal that often yields more than the sum of
individual actions (Grosz and Sidner, 1990). The
mentioned type of activity may be distinguished from
both interaction and simple coordination in terms of the
commitments agents make to each other (Grosz and
Kraus, 1996).

A theory of collaboration must therefore account for
not only intentions, abilities, and knowledge about
actions of individua agents, but aso for their
coordination in group planning and group acting.
Furthermore, it must account for the manner in which
plans may be incrementally formed and executed by the
participants.

Agents may have different beliefs concerning the
methods for performing an action or those for achieving
a desired state. Pollack argued for a view of plans as
purely data-structures (Pollack, 1990) i.e., a plan is more
appropriately viewed as a set of partially ordered actions

that, when performed under appropriate conditions, lead
to a specified new state of the world. She has argued for
a view of plans as mental states that are necessary for
plan interference. Having a plan does not merely require
the know-how to perform a behavior, but it also includes
possessing the intention to perform the actions entailed.

To adequately model cooperation, it is necessary to
accommodate differences among beliefs of individual
participants as well as to distinguish between knowledge
about action performance and the intention to act. Agents
may differ not only in their beliefs about the strategies to
perform an action and the state of the world, but also in
their assessments of the ability and willingness of an
individual to perform an action.

The shared plan formalization provides mental state
specifications of both shared plans and individua plans.
Shared plans are constructed by groups of cooperative
agents and include subsidiary shared plans formed by
subgroups as well as subsidiary individual plans formed
by individual participants in the group (Lochbaum,
1994). The formalization distinguishes between complete
plans in which al the requisite beliefs and intentions
have been established and partia plans. In addition to the
propositional attitude of intending to perform an action, it
introduces the attitude of intending that a proposition be
held.

Agents can enhance their fitness by mutual help
rather than by competition, as is observed in nature
(Benton, 2001). This assumes that resources adequate for
both agents exist, or are created by interacting and
sharing their information. This enhances both, the
process of working together toward a common goa as
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well as the process of sharing effort, expertise and
resources to achieve mutually desirable outcome.

Collaboration

Fole Assigment Cooperation

Figure 1. Collaboration subsumes Cooperation and
Cooperation subsumes both Coordination and Role
assignment. [Inspired by (Tuomela, 2000)]

Figure 1 illustrates that the coordination process and role
assignment are subsets of the process of cooperation. The
later, in turn, is a part of the collaboration process.

Agents need to organize themselves in a manner that
permits them to perform their tasks efficiently. A
malformed organization will affect the entire multi-agent
system. When multi-agent systems change state, the
agents in the system should be able to organize
themselves accordingly by sharing information amongst
them. When this is not accomplished, cooperation should
be adapted in order to avoid disruption in the multi-agent
system.

We have applied the just mentioned concept to a
simulated swarm of reconnaissance Unmanned Aria
Vehicles (UAVS) that are tracking vehicles in an urban
environment with details discussed in Section 3.

This paper offers an approach to adapt cooperation
in multi-agent systems. The main focus will be
particularly on the cooperation among agents who are
working together for a particular task while using the
plan sharing techniques to enhance the cooperation.
Rudimentary metrics are developed to gauge the effect of
collaboration on system performance.

The novelties of this paper are in the following
areas:

e Developing superior strategies for a given set of

agents to work together

e Devising a process by which the agents are

integrated into ateam, regulated to achieve team
goals

e Increasing agents' performance to contribute to

a high functioning system.

e Evaluating agents during the process of

cooperation.

e Quantifying the effect of cooperation on the

goals and the system performance.
In the remainder of this paper, Section 2 contains related
work in the area of cooperation between the agents and
also the application of the cooperation in multi UAV
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interactions. In this section, issues related to cooperation,
necessity of cooperation, and plan sharing among the
agents are discussed. Application of cooperation and
collaboration in our implemented UAV swam is
presented in section 3. Section 4 outlines a novel,
generalized cooperation agorithm. We describe the
importance of cooperation by illustrating how agent plan
sharing enhances the cooperation process. Section 5
briefly describes incorporation of collaboration in our
UAV swarm. We then present experiments and results in
section 6. Section 7 provides concluding remarks and
suggestions for future work.

2 Reated Work

Since there is a growing demand for robust and
intelligent multi-agent systems, a vast body of work is
available in the area of group activity (Hexmoor, 2003).

According to Alonso, two agents may depend on one
another in one of sixteen ways (Alonso, et. al., 1999).
Sharing a goal achievement is central to forming agent
teams (Cohen, etal., 1997). Agents that want to
maximize their gain may consider cooperation in order to
lower their workload and temporal penalties (Beer €t. d,
1999). Hexmoor extended the explorations for teaming
(Hexmoor and Duchscherer, 2001).

An understanding of collaboration is essentia to
modeling the intentional context of discourse and its
structure (Grosz and Sidner, 1990; Lochbaum, et.a.,
1990 and Lochbaum, 1995, 1998). As a theoretical
framework for modeling collaboration (Grosz and Kraus,
1996), it is evident that collaborative activities require a
complex set of parameters that must be taken into
account. The primary focus while attempting to achieve a
goal is on understanding the states of mind of the
individuals who participate in collaboration, and on
properties of the group. An overview of the model
designed by Grosz provides a setting in which to
examine the roles of parameters of agents on
collaborative plans and activities (Grosz, 1999).

In this process, the mutual beliefs of the discourse
participants, the amount of knowledge that each
individual participant or all participants should have,
which was discussed in (Clark and Richard, 1981;
Cohen, 1981) as well as differences in beliefs among
participants in a discourse are important (Pollack, 1990).

Partial, individual plans are expanded to more
complete plans through means-ends reasoning about
intended goals. Cooperation mirrors this reasoning
process, i.e., plan-collaboration process. However, their
expansion requires communication and negotiation as
well as means-ends reasoning about the way in which to
perform the group action (Grosz and Kraus, 1999).

By and large, communication and collaboration are
digoint; yet interdependent activities. Communication is
inherently a collaborative activity (Grosz and Sidner,
1990; Korta, 1995 and Arrazola, 1996). An agent
communicates to achieve a purpose. The motivations
underlying communication provide structure for an
agent’s discourse (Mataric, 1993). Collaboration, in turn,
requires communication. Both communication and
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collaboration can be used parametrically in agent design.
As a result, theories and models of collaboration are
essential to understand and model intentional states and
the intentional attributes of discourse (Grosz and Sidner,
1990; Lochbaum, Grosz and Sidner, 1990 and
Lochbaum, 1995, 1998), which use the Shared Plans
formalization of collaboration, as the basis of a
computational model for recognizing the intentional
structure of disclosure.

Building directly on Lochbaum's use of Shared
plans, others have constructed a collaborative graphical
interface for atravel planning system. These applications
use the logical specification provided by shared plans to
constrain utterance generation and interpretation, e.g.,
(Rich and Sidner, 1994) and (Sidner and Rich, 1997).

Furthermore, in a collaborative  activity,
collaboration commonly occurs within the process of
planning. Each agent may have incomplete or incorrect
beliefs. Furthermore, their beliefs about each other's
beliefs and capabilities to act may be incorrect. As a
result, a collaborative act cannot be modeled simply by
aggregating plans of individual agents.

Therefore, rather than modeling plan recognition,
what must be modeled is the augmentation of beliefs
about the actions of multiple agents and their intentions.
Thus, Grosz and Sidner modified and expanded the
Shared plan model of collaborative behavior originaly
proposed in (Grosz and Sidner, 1990), to present an
algorithm for updating an agent’s beliefs about a partial,
shared plan, and describe an initial implementation of
this algorithm in the domain of network management for
augmenting an evolving jointly-held plan.

For a multi-agent collaborative control, Chandler and
Pachter conclude that decision making through planning
and management are the essence of the autonomous
control problem (Chandler and Patcher, 1998).

To improve teamwork, we need to better understand
the nature of coordination and its ramifications. This is
explained with in-depth analysis of the coordination that
isrequired to carry on a conversation.

For investigation of cooperative control of multiple
UAVs, a simulator is offered (Chandler and Rasmussen,
2001). Thisisimplemented in a hierarchal manner where
inter-vehicle communication is explicitly modeled.
During the construction of a UAV swarm, issues
concerning memory usage and functional encapsulation
were aso considered. This simulation has been
instrumental in evaluating cooperative control strategies
for UAVs.

Control Automation and Task Allocation (CATA),
which is a multiple-vehicle/multi-agent simulation was
developed at the Boeing Corporation. This simulation
has been used in several early cooperative control
studies, such as in (Chandler and Rasmussen, 2001).
Since CATA was relatively large and written in C++, it
proved to be difficult for widespread use.

A number of other UAV simulations exist. Their
payload weight carrying capability, their
accommodations (volume, environment), their mission
profile (atitude, range, duration) and their command,
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control and data acquisition capabilities vary
significantly; for abrief survey, See (Lua, €t. a., 2003).

Recent military operations have showcased the
abilities of UAVs where they provide intelligence,
surveillance, reconnaissance, command, and control
information to commanders in real-time or near real-time
format. The success of UAV's has raised questions about
future roles for UAVs in the military operation. These
roles include arming UAVs and using UAVs for target
designation; these missions are commonly grouped under
the title of Unmanned Combat Aerial Vehicles (UCAVS),
see (Raymond, 2000).

The ability to control many remote entities with
minimal user intervention has many military and
commercial  applications. Current techniques for
controlling UAVs, which rely on centralized control and
on the availability of global information, are not suited to
the control of UAV swarms owing to the complexity that
arises from the interactions between swarm elements
(Stover and Gibson, 1997).

Traditional, centralized approaches, frequently lead
to exponential increases in communication bandwidth
requirements and in the size of the controlling swarm. In
contrast, swarms of simple biological or artificial
organisms exhibit rich, emergent behaviors, without the
need for centralized control or global communication
(Boanabeau, et.al., 1999). Controlling UAV swarms via
human supervision is of great interest to the US military.

For coordination, as explained earlier, allocation of
tasks to the UAV during their flight is one of the criteria
for achieving the joint activity. Work for optimizing the
task alocation problem for a fleet of Unmanned Aerial
Vehicles with tightly coupled tasks and rigid relative
timing constraints is available in (Alighanbari, et.a.,
2003). The overall objective is to minimize the mission
completion time for the fleet, and the task assignment
must account for differing UAV capabilities and no-fly
Zones.

For many vehicles, obstacles, and targets, fleet
coordination is a complicated optimization problem and
the computation time increases rapidly with the problem
size (Pachter, et.al, 2002 and Richards, et.al., 2001).

Work on particle swarms (Parker, 1993), cultural
algorithms (Reynolds and Chung, 1996), and bacterial
chemo taxis algorithms (Muller, et. a., 2002) has
generalized the idea for abstract, n-dimensional cognitive
spaces that make up self-organizing particle systems.

Interactions between particles result in complex
global behavior which emerges from the joint actions and
relatively simple behaviors of the individual particles,
thereby exhibiting self-organization. These properties
have been used in applications in computer graphics
(Reynolds, 1987, 1999), multi-robot team control (Balch
and Arkin, 1998; Freddund and Matartic, 2002; Winder
and Reggia, 2004; Vail and Veloso, 2003), and numerical
optimization (Parker, 1993). We have implemented an
Urban UAYV test bed, described in the following section.
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3 An Urban UAV survelllance
system

UAVs in our simulation are modeled as powered
aerial vehicles sustained in flight by aerodynamic lift and
guided without an onboard crew. In general, a UAV may
be expendable or recoverable, and can fly autonomously
or be piloted remotely. When working together as a
group, UAVs resemble a multi-agent system. UAVs
interact with other UAVs and perform their tasks
collectively.

Figure 2. Snapshot of our UAV simulation screen

Figure 2 depicts atypical flight pattern of a swarm of
UAVSs tracking terrestrial vehicles. The “white” circles
depict cloud cover. Vehicles may temporarily disappear
from UAV view when they are traveling below the
randomly appearing clouds. This makes tracking them
more challenging. UAVs need to interact to improve
their collective tracking capability. Vehicles as well as
cloud patches appear randomly in our simulation for a
measure of realism. The system maintains the track
quality, i.e., the number of cycles tracked, for each target,
which is described in more detail as the Performance list
and denoted as Perf [] in Section 4. Upon entry of a
UAV in the theater, it determines a number of targets,
i.e., vehicles, to track largely based on proximity. Thisis
caled a UAV Preference list denoted as Pref [], aso
described in Section 4.

Elsewhere, (Hexmoor, et. a., 2005) we have
described how a human supervisor may guide and alter
interactions among UAVs to improve system tracking.
This is achieved primarily via parameters that affect a
UAV social personadity. These consist of four

parameters.

e Dedication parameter determines  how
committed the UAVs are to reacquire lost
targets.

e Sociability  parameter  determines  how

gregarious UAVs will be. A UAV with a
positive sociability will tend to operate in
proximity to other UAVs. Conversaly, a UAV
with negative sociability (i.e., anti-social) will
make the UAV shun others and operate
independently.
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e Conformity parameter determines how quickly
the UAV reacts to operator suggestions.

e Finaly, Disposition parameter determines how
quickly a UAV will become frustrated with the
negotiation process.

In contrast, herein we focus on a single parameter of
Cooperation level, denoted as CL, further described in
Section 4. This parameter is used to adjust the level of
collaboration among UAVs. We have explored setting
CL at four levels. The results of a set of experiments are
presented in Section 6.

4 A Proposed Cooperation Model

Although we used the same collaboration model, in this
section we describe our collaboration model in abstract
terms and we will not refer to UAVs or target tracking.
Our model chiefly concentrates on how agents team up to
form a collaborative pattern to achieve their goals.

Upon entry, an agent determines its own intentions
for a plan to achieve its goal. Each agent has its own
individual plan for achieving its goals. The common goal
refersto the collective set of agent goals to be achieved.

Each agent has knowledge of its environment in the
form of beliefs. An agent will desire to perform its
individual tasks by assessing its knowledge of the
environment. After environmental assessment and
determination of a course of action (i.e., a plan), it will
form intentions to achieve its selected goals.

Next, we outline our model in genera terms. Let
there be n agents in a given environment. Assume m
goals are to be achieved at any instant in time.

After updating beliefs, an agent compiles a list of
godls to be achieved. By default, an agent will wish to
follow the order of goals in its list. Each agent forms a
course of action.

We consider all agents to be identical in every
respect. Furthermore, agents are assumed to possess
identical capabilities and limitations. To recapitulate, in
an environment with ateam with m goals, each agent has
its own courses of actions gleaned from its own personal
observations.

Each agent may independently pursue its individual
intentions. In some circumstances, agents might be
successful in reaching their goas independently.
However, this lack of interdependence might adversely
affect the achievement of common goals.

Next, we outline a plan sharing process. Each agent
sharesits intentions, desires, and also the course of action
in which it wants to proceed. In other words, each agent
has global knowledge about other agents’ intentions and
desires, and also about al the goals which have been
already achieved. This includes updating the changed
intentions of all agents. If an agent changes its desire and
thus changes its intentions, this is shared with other
agents in the environment.

Cooperation is uniformly introduced in the process
of achieving goals. Agents are considered to have the
same cooperation level. The system level performance is
quantified as the overall cumulative performance of al
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the agents working in the system; that is, the number of
goals processed in the duration of time. The rate of goal
performance is broadcasted to other agentsin the system,
hence making it available for them to access.

During the cooperation process, each agent in each
cycle considers its preferred intentions, the performance
of each goal in the environment, and the predetermined
cooperation level in the system. Tracking information
(i.e., goa performance) is maintained locally on targets.
This phenomenon provides a way for communication
between UAV’s where each UAV can access the
tracking information on the targets. Cooperation level in
our model is a system parameter for cooperativeness,
shared by all agents. In each cycle, when agent decision
making process considers the cooperation level in the
environment, it generates a new bid order list which will
be considered as the new intention list for each agent.
enters

This new intention list is generated starting from the
preference list of the particular agent and reflects changes
to this preference list to favor the goas with low
performance levels biased with the cooperation level.

For example, if a particular agent has a preference
list of goals, say 3, 6, and 7. Assume the relative
cumulative performance levels of these goals are 9, 21,
and 11 respectively. Then without cooperation, agents
may revise their goal list by comparing their preference
list with the goal performance list. The revised list will
be 6, 7 and 3. That means, here, the goa with less
performance is given the least priority.

When cooperation is introduced in this example and
with some global value for the cooperation level, the
new, revised intention list will not only depend on the
performance of the goals but also on the cooperation
level among agents. We assume cooperation level to
encapsulate an implicit notion of benevolence where
agents tend to help one another achieve low performing
goals. With cooperation, the revised example goal list
will be 3, 7, 6. That means, here, the goal with less
performance is given the highest priority.

Assume an agent has a goa g to be achieved and it
has been trying it for along period of time. Meanwhile,
the agent concentrates only on the present goal, and by
the time it plans to achieve the goal, which is the next
one in its intention goal list, that goa might be
unavailable for the agent due to unforeseen reasons.
Here, benevolent agents might come forward to achieve
this particular goal. Agents come forward even if goa g
isless appealing duetoits lack of performance.

Cooperative agents will act out their benevolence by
striving to achieve poorly performing goals in order to
exhibit cooperation. With the largest cooperation level
values, agents will consider achieving the poorest
performing goals. The summary of our model is thus as
follows.

Consider an agent A in a given environment. It
possesses its own beliefs, desires and intentions for
achieving goals. Each agent constructs its own
preference list of goals it wants to follow along with its
individual plan. Let us denote the former as Pref[A].
Each goal in the list of goas of the environment is
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continually assessed and ascribed a performance level.
This performance level is given depending on the
number of times the goal has been attempted by agentsin
the environment. To summarize, each goal G has its
instantaneous performance value codified with Perf [G].

In each cycle, each agent A considers its Pref [A],
Perf [G], and Coop level. As shown in the Figure 3, a
new bid order list for each agent is generated using
performance and preference lists as input. If the
cooperation level value is large the agent will prefer the
poorest performing goals. The reordering of the agent
preference list reflects the degree of the cooperation
level.

Pref[A] — »

Cooperation

Perf[G] —»

g —— Bid[A
Environment A LA]

Coop Level —»

Pref[A] » Preference list of each agent

Perf[G] » Performance level of each Goal

Coop Level » Cooperation Lewvel
Bid[A] » Agents Bid order hst

Figur e 3. Parametric Cooperation

Figure 4 presents a pseudocode for our cooperation
algorithm, which demonstrates how an agent cooperates.
An agent A’s bid list, B[ ], isinitialized to its preference
list. CL is the cooperation level parameter set to a
constant. The reorder list is set to the size of the
preference list Pref [A]. During each iteration, reorder
list is computed using the given equation. The new
reorder list is sorted and is assigned as the agent’s new
bid list. Intuitively, lack of performance is amplified by
the cooperation level constant CL. Capability of agent
[A] isthe capability to perform the goal i.

1. B []:= Pref[A] /# ihalize bid list to preference list
2. CL = constant // cooperativeness level
3. reorder list= [ | Pref[A]|] (/the same size as Pref[A]
4. for(i=0;i< [reorder] ;i++)(
reorder of [1]=1-Perf[B[i]] *CL * Capability of (A, i)
/i capability is toward the goal

5. sort reorder [1]

6 B[i]=reerder[1]

Figure 4. Cooperation Algorithm

Suppose an agent’ s original preferencelistis[1, 2, 3]
and the respective performance list of goals are [0.2, 0.7,
0.9]. Assume the cooperation level CL to be set at 0.75.
Reorder list is computed:
For 1, reorder=1-0.2* 0.75=1-0.15=0.75
2,reorder=1-0.7* 0.75=1-0.525=0.475
3,reorder=1-0.9* 0.75=1-0.675=0.325
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After sorting, we have [0.325, 0.475, 0.75], thus the
new bid list is [3, 2, 1]. In this example we assume all
agents are equally capable toward all goals, i.e,
Capahility[A, i] = 1.0.

5 Implementation and Experiments

Our cooperation agorithm (Figure 4) was applied to the
UAV swarm system described in section 3. Here UAV's
are agents and the goals are targets. An environment with
different paradigms and parameters is used to achieve the
simulation and experiments. The Java programming
language is used to code the algorithms and the Borland
JBuilder was used as our IDE.

Initializing al the UAVs with similar capabilities
created the multi-agent system. All targets are initialized
with similar qualities as well. Each UAV has its own
preference list of targets and a performance list of all the
targets in the corresponding preference list as mentioned
in the algorithms. The initial positions of al UAVs are
randomly generated. The preference list for each UAV is
generated by the number of targets it has been able to
sense in the environment. All the targets are mobile and
keep moving.

The system is initially simulated without plan sharing
and without cooperation. Then plan sharing process is
introduced and the system is simulated at different levels
of cooperation i.e., the cooperation level (CL) shown in
the algorithm is assigned different values and then the
system performance is captured by the simulation.

6 Resultsand Discussions

6.1 UAVswith no Plan-Sharing and no
Cooperation

We used 200 UAVs for tracking, initialy placed
randomly, but then they move and values change. We
first examined the system performance behavior when
agents were not sharing plans nor cooperating with each
other as shown in Figures 5 and 6. UAV's proceed with
tasks in their preference list as they enter the system. As
there is no cooperation or plan-sharing among the UAVSs,
the targets untracked during the given time cycle are not
substantially decreased. As shown in the Figure 5, the
targets untracked reach a steady state of about 194, given
225 as the total number of targets in the system.

Figure 6 shows the cumulative number of traces
achieved, which is climaxed at about 332.

These results motivated us to introduce plan-Sharing
and Cooperation as discussed in Section 5.
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6.2 UAVswith Plan-Sharing but no
cooper ation

Next, we first introduced Plan-Sharing among UAVs
where they share their preference list with every other
UAYV present in the system. Although there is no explicit
cooperation, plan sharing helps UAVs account for a
larger number of targets. An implicit style of cooperation
takes place by targets that are tracked independently by
multiple UAVs.
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The decrease in the total number of untracked targets
can be observed in Figure 7, at about 174, which is lower
than that without plan-sharing. The enhancement in the
system performance can also be observed as the total
number of traces that increased up to 1248 in the Figure
8.
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Figure 8. Total number of traces over time with
Plan-Sharing but no cooperation (plan sharing is
introduced at about cycle number 950, at “the knee of the
curve’)

6.3 UAVswith Plan-Sharing and with the
lowest level Cooperation

Next, we introduced plan sharing as well as the lowest
level cooperation. UAVs work together and generate
their own bid list as explained in the algorithm in section
5. Here the cooperation level threshold is set to the
lowest level. Theresults are depicted in Figures 9 and 10.
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Figure 9. Untracked Targets over time with Plan-
Sharing and with the lowest level cooperation

As shown in Figure 9, the total number of untracked
targets is reduced to about 139. The system performance
is shown in Figure 10 where the total number of
collective system traces has increased to 2896.
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“the knee of the curve”)

6.4 UAVswith Plan-Sharing and medium
level cooperation

Here, the cooperation level is turned up to the medium
level. With UAV bid list revised due to cooperation,
performances are shown in Figures 11 and 12.
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Figure 11. Untracked Targets over time with Plan-
Sharing and medium level cooperation

Total number of untracked targets has further
decreased to 79 as shown in figure 11. System
performance as the total number of traces has increased
to 3445.
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Figure 12. Total number of traces over time with
Plan-Sharing and with medium level cooperation

6.5 UAVswith Plan-Sharing and medium
high level of cooperation

At the medium high cooperation level, UAV bid lists
were more seriously revised and the results are shown in
Figures 13 and 14.
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Figure 13. Untracked Targets over time with Plan-
Sharing and at medium high cooperation level

The total number of untracked targets is further
decreased to about 45 as shown in figure 13. Figure 14
shows an increase in the system performance to 4194.
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Figure 14. Total number of traces over time with
Plan-Sharing and at medium high level cooperation
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6.6 UAVswith Plan-Sharing and with the
highest level cooperation

Finally, we increased the cooperation level to the highest
level and the results are shown in Figures 15 and 16.

The total number of untracked targets, shown in
Figure 15, is reduced to 14. The system performance,
shown in Figure 16 reached 5353 traces.
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Figure 15. Untracked Targets over time with Plan-
Sharing and at the highest cooperation level

It is observed that system performance increases by
increasing level of cooperation.
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Figure 16. Total number of traces over time with
Plan-Sharing and the highest cooperation level

7 Conclusions and Futurework

The primary focus of this paper was on an implicit
sense of plan sharing where agents modify their plansin
light of other agents plans. Communication is a key
form of interaction in multi-agent systems, where
multiple agents collaborate to attain a common goal .

The concept of collaboration was elaborated in a
strategy for cooperation. Certain cooperation techniques
are better suited for our experiments. Plan sharing and
collaborative plan refinements clearly demonstrated
improved performance.
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Further work will consider agents with different
capabilities as well as plan and goa priorities. Along
with deontological notions of request and permission for
collaboration, we will explore overlaps between
collaboration, autonomy, and benevolence (Hexmoor,
2003).
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