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Abstract 
In this paper, we present implementation of the ant-

based control algorithm (ABC) for load balancing in 

connection-oriented routing in the wireless mesh 

network (WMN) using the OPNET Modeler simulation 

tool. We investigate the time required for the initiali-

zation phase of the ABC algorithm within which the 

shortest path is found as well as network topologies 

with a different number of nodes and different number 

of neighbours per node. The resuts show that the 

algorithm initialization time increases with the number 

of nodes and decreases with the number of neighbours 

per node. 

1 Introduction 

In communication networks, heuristic/agents-based 

routing algorithms can be used to implement the 

adaptive routing functionalities capable of making the 

routing aware of dynamic changes of the network rather 

than being oblivious to them [1]. In this context, several 

routing algorithms have been developed inspired by the 

behaviour of the ant colonies and most of them are 

summarized in [2, 3]. Ants are social insects that 

collaboratively perform complex tasks, which can not 

be performed by one particular ant itself. In simulations, 

ants/agents are produced in the form of packets, which 

are used for network optimization and management. 

 In this paper, we present the implementation of the 

main reference ant optimization algorithm for 

connection-oriented networks, named Ant-based control 

(ABC) [1, 4, 5], in OPNET Modeler [6] simulation 

environment with some additional functionalities that 

can be used as an option. The algorithm is implemented 

in our network coding simulation model, presented in 

[7, 8]. We demonstrate the performance of the 

simulation model through the investigation of the 

initialization phase of the algorithm in wireless mesh 

network (WMN), which represents an underlying study 

for our work on routing being aware of network coding 

opportunities in WMNs. In the initialization time, the 

algorithm has to find, as quick as possible, the shortest 

paths in the sense of the minimum hop count from all 

nodes to all nodes, as Dijkstra optimal routing algorithm 

does, which is used as a reference. Several simulation 

runs are performed with different network topologies to 

evaluate the performance of ABC algorithm. 

2 Ant Algorithm 

In [1, 4, 5], the ABC algorithm was introduced as the 

first ant optimization algorithm applied to a routing 

problem. It was used to balance the network traffic of 

telephone calls in a telecommunication network. The 

purpose of ants in the ABC algorithm is to find paths 

with little hops and nodes with spare capacity.The paths 

are then used as routes to establish new connections. 

2.1 Algorithm description   

Ants are generated and lauched from all the nodes in the 

network at every simulation time step of the simulation, 

synchronously. The destination of each ant is randomly 

selected. Ants select their next node based on the 

pheromone tables located in the nodes. In pheromone 

tables, pheromone values represent probabilities with 

which ants select the next node. Higher the probability 

is, higher the chance of the node selection. 

 When an ant traverses a link between nodes A and B 

in the direction from A to B, it “lays” on it pheromone, 

which will be used by ants moving in the opposite 

direction of the pheromone laying ant, i.e. from node B 

to A. Pheromone laying is applied in the algorithm as 

ants updating the pheromone tables. When the ant from 

source node S travelling from node A to the next node 

B, reaches node B, it updates that part of the pheromone 

table of node B that concerns ants with destination S 

travelling from node B to A. The updating is done in 

such a way that the probability of choosing node A as 

the next node by ants with destination S is increased, 

while the probabilities of choosing other possible next 

nodes from node B is decreased. The increase and 

decrease of pheromone values (applied in the form of 

probabilities) is done according to equations in [1, 4, 5]. 

In the equations, pheromone decay (which corresponds 

to the pheromone evaporation in reality) is applied as a 

function of ant hops representing the ant age. In 

correspondence to this, ants which traversed many hops, 

will deposit less pheromone resulting in lower increase 

of corresponding probabilities. It means that paths with 

more hops will be selected with lower probability as the 

routes for connections. 

 For considering the degree of node congestion, ants 

are virtually delayed at nodes as a function of the node 

spare capacity. Lower the percentage of spare capacity, 

greater the delay at the node and later the update of the 

pheromone table by ants, which has for the consequence 

that the node will be selected with lower probability as 

part of the routes for connections.  

 Routing tables are built based on the pheromone 

(ant-decision) tables. For a destination D, next node B is 

selected at node A if pheromone value for B in 

pheromone table in node A is greater than for other 

neighbours of A concerning destination D. 
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 In one type of the algorithm, there is also a minority 

group of ants which select their next node randomly to 

prevent blocking problem by extreme node congestion 

or node failure, and to keep suddenly appearing better 

routes to be discovered more rapidly. 

2.2 Initialisation 

Before network operation begins and connection 

requests are placed in the network, routes from each 

source node to each destination node in the network 

have to be discovered by ants in the initialization phase.  

 At the beginning, all the pheromone tables are 

initialized with equal probabilities for neighbour nodes, 

meaning that each first ant in each node will select its 

next node among the neighbours with equal probability. 

Ants are not virtually delayed, as there is still no 

connection traffic in the network. The only influence on 

the routing are thus pheromone tables in the nodes. As 

pheromone tables are updated by ants as described 

above, the shortest paths (i.e. the minimum hop count) 

from sources to destinations will be discovered. As 

shown in [4], this scheme really tends to produce the 

shortest paths and gives a good enough result within the 

fixed period of the initialization phase time compared to 

a deterministic optimal algorithm as Dijkstra.  

3 Implementation of the Ant Algorithm in 

OPNET   

The ABC algorithm was implemented as ANT module 

in OPNET Modeler [6] simulation environment [7, 8] 

with all the algorithm functionalities. The state diagram 

of the implementation is presented in Figure 1. In 

addition, different types of the algorithm were 

introduced, which are desribed in Section 3.1. 

 

In the ANT module, the red state represents the idle 

state, where the module waits for one of the interrupts. 

There are six main transitional states: (i) init state takes 

care of the algorithm parameters initialisation at the start 

of the simulation run; (ii) New ANT state creates and 

lauches new ants; (iii) Route ANT state receives ants 

coming from neighbouring nodes, updates pheromone 

tables based on the received ants pheromone 

information, virtually delays ants based on the 

percentage of the node’s spare capacity, and selects the 

next node for ants; (iv) Update Route state updates 

routing tables based on pheromone tables every time 

pheromone tables are updated; (v) Write Hops state 

computes the instantaneus shortest paths from sources 

to destinations based on routing tables created by ants 

every time step during the algorithm initialisation phase; 

(vi) Hops Dijkstra state compares the shortest paths (i.e. 

optimal paths) found by Dijkstra to the corresponding 

shortest paths found by ants during the algorithm 

initialisation phase. 

3.1 Propagation delay and ants dying 

In our simulation, the ant movement from node to node 

is not determined by the simulation time steps. The time 

an ant is sent from a node to its neighbour is determined 

by the time the ant is waiting in the node’s queue. In 

addition, we add to the present ABC algorithm some 

other functionalities as optional representing different 

types of the original algorithm. 

 In the first type of the ABC algorithm, we consider 

that an ant dies if it has performed a specific number of 

hops on the path. It means that ants which do not find 

their destination within a predefined number of hops are 

eliminated from the network. These ants are inefficient 

and do not really contribute to finding the shortest paths. 

All other functionalities are preserved from the ABC 

algorithm, presented above. We denote this type of the 

ABC algorithm as ABCdie. 

 In the second type of the ABC algorithm, besides all 

the ABC algorithm functionalities, we consider also 

propagation delay on the links between the nodes. This 

type of ABC algorithm considers the real network 

scenario case, where ants require the propagation time 

to travel on wireless links. We denote this type as 

ABCprop. The main property ABCprop introduces is 

that shorter links are preferable than longer links. On 

longer links, packets require more time to propagate 

through wireless medium and, therefore, there is more 

chance that they get lost, and vice versa. 

 The third type of the ABC algorithm comprises all 

the ABC algorithm functionalities and all additional 

functionalities introduced in ABCdie and ABCprop. It is 

denoted as ABCdie&prop. 

4 Performance Evaluation of the 

Initialization Phase  

We conduct several simulation runs of ABC algorithm 

in OPNET simulation model of WMN, presented in [7, 

8]. In this section, we present selected parameters in 

simulations and simulation results. In particular, we are 

interested in the time required by the initialization phase 

of the ABC algorithm to find the shortest paths which 

correspond to the shortest paths found by Dijkstra in the 

number of hops on the paths. In [1, 4, 5], the time 

required for the initialization is assumed to be fixed. In 

ABC paper [4], authors only test if the initialization 

phase of the algorithm finds paths close to the minimum 

number of hops as Dijkstra does. Moreover, they 

 

Figure 1. The state diagram of ABC OPNET Implementation. 
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performed simulation runs for a synchronized wired 

telecommunication network while, in our case, 

simulated networks are configured to present 

nonsynchronized WMNs. 

4.1 Simulation parameters 

In this paper, only the performance of the initialization 

part of the ABC algorithm is investigated, thus only the 

simulation parameters relevant for the initialization 

phase of the algorithm are discussed in the following. 

 We performed several simulation runs and 

investigate the required initialization time of ABC 

algorithm to find paths with the minimum number of 

hops in dependence of: (i) different number of nodes 

and different number of neighbours per node, and (ii) 

different types of the algorithm used during the 

simulation runs. 

 
 We assume that all wireless network nodes are the 

same and have identical configuration, representing 

homogeneous network. Each node is given a random 

location within a given area. Node locations remain the 

same in all simulation scenarios. Neighbour selection is 

mainly based on the node positions. For the simulation 

purposes all the links are symmetrical 1Mbit/1Mbit and 

are ideal, meaning that no packets get lost during 

transmissions. In Figure 2, a network topology with 30 

nodes each having 5 neighbours is presented. All other 

generated networks look similar. Wireless connections 

established between neighbours, which are represented 

in the network topology as wireless links, are 

graphically presented with dashed lines between nodes. 

Table 1. Parameters of simulation runs. 

Task Type Parameter Attrib. 

Ant creation all Time period 0.01 s 

Ant pheromone 

laying config. 
all 

d 0.08 

c 0.005 

Ants dying 
ABCdie 

ABCdie&prop 

10-30 nodes 15 hops 

40-70 nodes 20 hops 

 

In Table 1, the used parameters for the corresponding 

task and type of ABC algorithm are summarised. The 

time period of ants creation in nodes is presented in 

seconds; this time has to be increased after the 

initialization phase to reduce the network overhead. 

This parameter is used in all types of the algorithm. 

Parameters for updating ants routing tables are 

presented without units and are also used in all types of 

the algorithm. The parameters affect equations, 

presented in [1, 4, 5], for calculating the amount of 

pheromone laying on a specific link. The number of 

hops required that an ant dies is presented in hops for 

networks with different number of nodes and is used 

only in ABCdie and ABCdie&prop. 

4.2 Simulation results 

In the following, the time required to find the shortest 

paths, in terms of the minimum number of hops, by ants 

is investigated. Four types of ABC algorithm 

implementations are investigated: (i) ABC, (ii) 

ABCprop, (iii) ABCdie, and (iv) ABCdie&prop. The 

results of the initialization time are presented for 

networks with 10, 20, 30, 40, 50, 60, and 70 nodes with 

4, 5, 6, 7, and 8 neighbours per node. All the results are 

presented in Table 2. The time is presented in seconds. 

Table 2. Times of ABC initialization phase. 

Case Neigh. 
Nodes 

10 20 30 40 50 60 70 

ABC 

4 0.8 18.4 29.5 54 77 323 352 

5 1.4 10.3 20.8 24 258 249 312 

6 1.2 16.5 30 50 62 149 142 

7 0.5 6.2 9.4 23 45 73 133 

8 0.8 9 9.9 24 38 68 167 

ABC 

die 

4 1.2 16.4 33.1 70 91 143 309 

5 1.1 6.8 19.1 48 70 123 196 

6 0.5 11.1 18.8 47 81 126 129 

7 0.5 7 14.7 32 38 98 180 

8 0.3 7.9 8.4 31 62 80 110 

ABC 

prop 

4 1.3 10.6 54 53 144 294 462 

5 2.9 11.5 15.9 56 201 113 136 

6 0.5 10.1 20.9 59 94 91 130 

7 0.5 5.5 13.6 32 55 90 105 

8 0.4 5.9 9.2 25 66 89 121 

ABC 

die& 

prop 

4 1.2 10.6 56.8 36 143 148 390 

5 1.1 8.2 30.2 34 54 127 237 

6 0.5 12.4 15.3 76 60 132 166 

7 0.3 4.8 11 27 57 85 110 

8 1.3 7.6 7.1 21 40 87 157 

 

The initialization time in dependency of the number of 

nodes in the network for different number of neighbours 

per node for the ABC algorithm is depicted in Figure 3. 

The higher the number of nodes in the network, the 

greater the initialization time (as expected), and the 

lower the number of node neighbours, the greater the 

initialization time. The latter is due to the fact that in 

networks with less node neighbours the diameter of the 

network and average hop count to other nodes are 

greater. Thus, ants need to travel more time to achieve 

the desired results. Similar conclusions can be drawn for 

other types of ABC. 

 However, there are also cases where the 

initialization time for the network with more nodes is 

 

Figure 2. Network topology with 30 nodes and 5 neighbours 

per node. 
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smaller than for the network with fewer nodes. Similar, 

the initialization time for the network with fewer 

neighbours per node can be in some cases smaller than 

for the network with more neighbours per node. This is 

because of the reinforcement learning algorithm used by 

ants, which comprises also the random part of 

pheromone laying. An ant selects the next hop (i.e. one 

of the neighbours of the node at which the ant is located 

at the moment) based on the probabilities in the 

pheromone table; higher the probability value of the 

neighbour, higher the chance to be selected as ant’s next 

hop. But this also means that the node’s neighbours with 

lower values in the pheromone table can be also 

selected as next hop, only that with lower probability. 

Thus, this randomness which is introduced through the 

probabilities is the cause of deviation in some cases 

from the expected behaviour. 

 
 Similar as above, initialization time in dependency 

of the number of neighbours per node in the network for 

all four types of ABC algorithms for the network with 

20 and 70 nodes is investigated in Figure 4. Please note 

different time scales in both graphs. It can be seen that 

times change when ABCprop is used compared with 

ABC. In the first case, ants require the propagation time 

to travel from a node to a node, while in the second case 

it is assumed that the time for travelling on links 

between nodes is zero. There is no tendency of the 

simulation time to be greater or lower in one of the 

cases. When ABCdie algorithm is used, times tend to be 

smaller compared with ABC, as the ants which are not 

efficient and do not find their destinations after 15 or 20 

hops are eliminated from the network. However, there 

are also cases when ABCdie does not perform better. 

Again, this is because of some randomness of the 

reinforcement learning algorithm. In some cases, it is 

better to leave all ants in the network to learn but it is 

difficult to predict which cases are these. 

5 Conclusion and future work 

In this paper, we have described the implementation of 

the ABC [1, 4, 5] algorithm in the OPNET Modeler [6] 

simulation environment. We have implemented the 

algorithm in our network coding simulation model [7, 8] 

for WMNs. The time of the initialization phase required 

to find the shortest paths by ants, in terms of the 

minimum number of hops, is investigated for different 

types of ABC algorithm. The required initialization time 

increases with the number of nodes in the network and 

decreases with the number of neighbours per node, as 

expected. However, the additional functionalities of the 

ABCdie and the ABCprop tend to decrease the 

initialization time, which is favourable for routing. 

As a further work, we will adapt the ABC algorithm 

for adaptive and dynamic routing that is aware of 

network coding opportunities in WMNs. 

Literature 

[1] R. Schoonderwoerd, “Collective intelligence for 

network control,” M.S.c Thesis, Delft University of 

Technology, May 1996. 

[2] M. Dorigo, G. Di Caro, L. M. Gambardella, “Ant 

Algorithms for Discrete Optimization,” Artificial Life, 

5(2), pp. 137-172, 1999. 

[3] M. Farooq, G. A. Di Caro, “Routing Protocols for Next 

Generation Networks Inspired by Collective Behaviors 

of Insect Societies: An Overview,” Swarm Intelligence 

(Natural Computing Series), Springer, pp. 101-160, 

2008.  

[4] R. Schoonderwoerd, O. Holland, J. Bruten, “Ant-Like 

Agents for Load Balancing in Telecommunication 

Networks,” in Proceedings of the First Int. Conf. on 

Autonomous Agents, pp. 209-216, ACM Press, 1997.  

[5] R. Schoonderwoerd, O. Holland, J. Bruten, L. 

Rothkrantz, “Ant-based load balancing in 

telecommunications networks,” Adaptive Behavior, 

5(2), pp. 169–207, 1996. 

[6]  OPNET web page, available at http://www.opnet.com/, 

retrieved July 2012. 

[7] K. Alic, E. Pertovt, and A. Svigelj, “Simulation 

Environment for Network Coding,” IEEE Jordan 

Conference on Applied Electrical Engineering and 

Computing Technologies 2011 (AEECT 2011) Amman, 

Jordan, 2011. 

[8] K. Alic, E. Pertovt, A. Svigelj, “Network coding 

simulation model in OPNET Modeler,” OPNETWORK 

2012,  Washnigton, NW, USA, August 2012. 

 

 

Figure 4. Initialization time in dependency of the number of 

neighbours per node for different types of ABC algorithm with 

20 and 70 nodes in the network. 
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Figure 3. Initilization time in dependency of the number of 

nodes in the network for different number of neighbours per 

node for ABC algorithm. 
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