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The model of deformation for isotropic metallic materials aimed at obtaining an increased accuracy for forecasting their
behavior during complex cyclical loading, in particular cyclic loading where a significant creep role is played in the processes
of creep, was developed. As with the majority of models, this new model has applicability limitations and the reliability of use
for calculations is acceptable only for cases of small differences in loading from the proportionality.
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Razvit je bil model o deformaciji izotropnih kovinskih materialov s ciljem, da bi se dosegla ve~ja natan~nost pri napovedi
vedenja pri kompleksni cikli~ni obremenitvi, {e posebej v primeru pomembne vloge procesov lezenja. Kot pri ve~ini modelov
ima tudi novi model omejitve pri uporabi in zanesljivost uporabe izra~unov je sprejemljiva samo za primer, ko se obremenitev
malo odmika od proporcionalnosti.
Klju~ne besede: kovinski material, cikli~na obremenitev, deformacija z lezenjem, modeliranje, zanesljivost, natan~nost

1 INTRODUCTION

Several models have been developed so far 1, and
some of them are in commercial use as software
packages, for example, ANSYS, MARC, NASTRAN,
ABAQUS, LUSAS, LS-DYNA, COSMOS, ALGOR.
However, these models fail to adequately describe the
case of complex cyclic loading, when creep processes
also play an important role.

In analyzing the lines of access to the development of
a theoretical explanation for the straining under cyclic
non-isothermal loading, which is necessary for practical
calculations of the strain-stressed state (SSS), the authors
stood at a crossroads. It was possible to use structural
and physical models, which made it possible to describe
a wide range of peculiarities of a material’s behaviour
under complex loading using a rather small number of
experimental material parameters 2. It is worth noting
that the deformation and the instantaneous plastic
deformations are not separated and their interconnection
is included as a property of the developed model. Analo-
gous models have not provided sufficient reliability for a
quantitative calculation since the monotonic change in
the material properties differs from the experimental
values. It was also clear that a modification of the
traditional models for plastic flow and the different creep
theories, as applied to specific loadings to achieve good
accuracy with the calculation, would require a large
number of basic experiments to obtain an acceptable fit
for a description of real material behaviour. We chose
the first solution because of its obvious advantages.

The model of deformation for isotropic metallic
materials was designed to make a very accurate
prediction of their behavior. This article looks at the case
of complex cyclical loading.

2 THEORY

1. The variations in non-isothermal theories of plastic
flow and of the theory of work hardening during creep
will be included in the analysis 3, allowing us to consider
the mutual effect of the two forms of deformation within
the framework of the traditional approach. In rating the
correctness of these proposals, we will start from the
necessity of fulfilling the following requirements:
a) a description on a non-isothermal cyclic deformation;
b) a consideration of the cyclic instability of the mate-

rial properties;
c) a description of the conditions of deformation for

complex loading, in particular of alternating sign;
d) a consideration of the mutual influence of time-

dependent and time-independent deformation.
The approach based on the separation of irreversible

deformation into time-dependent and time-independent
has a physical basis.

2. We will assume that the total material deformation
consists of the elastic deformation rij, the creep defor-
mations pij, and the plasticity �ij, 4, thus:

eij = rij + pij + �ij (1)

In the formulation of the rules of deformation we will
consider the effect of accumulated plastic deformation
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on the creep and of the temperature-time prehistory on
the elasto-plastic properties. Although the assumption
that only the second invariant of the tensor of stresses
enters into the relationship for the increase of the defor-
mation and stresses, it is only a special case of the
relationship recommended for the description of the
complex stressing of bodies 5. At present this is a
traditional approach. This conclusion is related to the
fact that with comparatively small plastic deformations,
it provides, as a rule, quite good agreement with experi-
mental data for many cases when plastic deformation
occurs during stress that is not very different from the
uniaxial.

Having accepted the hypothesis of work hardening
that, in particular, means the neglecting of processes of
the reverse elastic secondary effect and assuming that the
recurrence of loading and preliminary plastic defor-
mation affects only the scalar properties, we may write
the equation for creep rate for cyclic loading with an
alternating sign:
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Here, Sij are the components of the deviator of the
stresses, σ is the intensity of the stresses, and ε ( )n and
p n( ) are the intensities of the plastic deformation and the
creep deformation determined from the equations
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where n is the number of the half cycle

p pij ij∆ ≥ 0 (5)

Experiments relating to uniaxial stressing 6 showed
that by counting the creep deformations during cyclic
loading from the start of a half cycle, the curves of the
irreversible deformations accumulated during the
non-steady creep are similar to the creep curves for the
initial condition. In general, the coefficient of similarity
depends on the number of the half cycle, the time, the
amount of creep deformation accumulated per half cycle,
and the temperature. The rate of steady creep is virtually
independent of the number of half cycles.

Comparatively small previous creep and instanta-
neous plastic deformations 0.2–5.0 % may have a sub-
stantial influence on the creep rate. Plastic deformations
of the opposite sign accelerate the creep of high-tempe-
rature materials of different classes (the Bauschinger
effect in creep), while plastic deformations of the same
sign can accelerate or retard creep, depending upon their
size and the type of material.

In cases when the material is submitted to elasto-
plastic steady-stage creep the deformation of the opposite
sign, further creep, as a rule, starts with the non-steady
stage.

An analysis of the experimental data on cyclic creep
makes it possible to select two variations of the concre-
tization of Eq. (2).

The first approach is based on the use of the graph in
Figure 1, based on the assumption that the effect of
plastic deformations on the creep rate may be considered
with an appropriate change of the value of creep defor-
mation in the relationship �p = f(p,�). In this case, in the
plastic deformation �pl for the total deformation p,
corresponding to the point k, we have a creep rate that
corresponds to the point b, the point d, and not to the
point b. For p = 0 the value of p corresponds to the point
e.

The material cyclic creep instability will be
considered with the use of the function � of the number
of cycles 5. In this case

� ( ~, )p f p= σ (6a)

Here

[ ]~ ~
(

~
( ) ( ,

� �
p p n p p� �

�
= + − −

1 � �

�ψ ε ψ ε ϕ−)

where pn is the intensity of the creep deformation accu-
mulated as a result of non-steady creep; ψ1 , ψ2 , and ε
are functions taking into consideration the effect of
plastic deformations and the number of cycles and
satisfying the following conditions: for ε+ = 0

~
ψ� 1= ;

for ε− = 0
~
ψ � 1= ; for n = 1 ~ϕ = 1. ε+ and ε− are the sum
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Figure 1: Graph for taking into consideration the effect of plastic
deformation on the creep rate: OL is the creep curve p = f(�); OM is
the tangent to the creep curve at � = 0; a, b are the relations between
the creep rate and the accumulated creep deformation; ae is the
tangent to the curve ab at the point a; pn is the creep deformation in
the non-steady stage. The arrows show the method of determining the
effect of �pl on �p.
Slika 1: Grafikon za upo{tevanje vpliva plasti~ne deformacije na
hitrost lezenja. OL-krivulja lezenja p = f(�); OM-tangenta na krivuljo
lezenja v to~ki � = 0; a, b-odnos hitrosti lezenja in nakopi~ene defor-
macije z lezenjem; ae-tangenta na krivuljo ab v to~ki a; pn-defor-
macija z lezenjem v nestabilnem stanju. Pu{~ice prikazujejo metodo
dolo~itve vpliva �pl na �p.



of the intensities of the plastic deformations in those
half cycles where ∆ε ij

n
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The problem of the use of Eq. (6a) is related to the
correctness of the extrapolation of the relationship �p =
f(p,�) in the area of negative values of p.

The second possible approach to the treatment of
existing data provides, as a solution of Eq. (2), the
following expression

[ ]� � ( , , (( )
min

( )
minp p n t p p pn n= + −−ϕ 1

0 (6b)

where �
minp is the steady-stage creep rate; �

minp = f(σ,T);
�p0 is the initial creep rate of the material, calculated

according to the theory of work hardening; �p0 = f(σ,T,p);

�(n,t,p(n–1) is a function considering the effect of the
number of cycles on the non-steady creep; ψ ε τ+

1 ( , ) and
ψ ε τ−

2 ( , ) are functions considering the effect of plastic
deformations; t and � are the times counted from the
start of the cycle and the moment of the start of the
plastic deformation.

The form of the functions �
minp and �p0 may be deter-

mined in creep tests under conditions of the uniaxial
stressed condition at constant values of the stresses and
the temperature.

In Equations (2) and (6) the effect of the temperature
at which the instantaneous plastic deformation was
accumulated on creep rate is neglected. Such an effect is
possible; however, the existing experimental results
indicate that it is insignificant.

3. We will describe the instantaneous plastic defor-
mations for non-isothermal cyclic deformation of alter-
nating sign with the incremental theory of thermo-
plasticity with a piecewise-spherical surface 3, modified
by applying a relationship for the accumulated creep
deformation. Let us assume that the original material is
isotropic in the space of the deviators of stresses and it
has the paths of the cyclic load for each point of the body
given by the cone with a small spatial angle � (Figure
2). The area where the vector deviator of stresses during
the whole load cycle must be found is cross-hatched.

For the k-th half cycle we have
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where the plastic work hardening does not depend on
the temperature prehistory. As for creep, the number of
the half cycle is increased per unit with a breakdown in
the condition

ε εij ij∆ ≥ 0 (9)

where

∆ ∆ε =
2

3
εij

ijS

R
(10)

∆ε is the intensity of the increase in deformations.
A determination of the radius of the surface of flow R

is significantly easier, applying for the material and
temperature T, the generalized diagrams of cyclic defor-
mation representing the relationships between the
increases in stresses and deformations counted from the
start of a given half cycle and independent of the
amplitude of the cycle deformation.

If we assume that between the increase of stresses
and the accumulation of plastic deformation in a given
half cycle at a given temperature and constant values of
p a single relationship exists, we can determine the value
of the radius of the surface of flow as an algebraic sum
of its value in the zero half cycle and its increase in the
subsequent half cycles:

R R Rk
i

k

i= +
=
∑0

1

∆ (11)

The treatment of the results of the experiments made
for uniaxial stressing showed that a small creep
deformation increases the yield strength of a material in
cases when the directions of deformation coincide
(Figure 3), and decrease it when the directions of
deformation in creep and in instantaneous elastoplastic
deformation are opposite.

We can assume that the creep deformation p influ-
ences the value of the radius of the surface of flow by an
additional plastic deformation of ~ ( / )ε ε ε= p

� �
, where

ε c and ε t are the deformation capacity of the material for
creep and short-term tension. In this case, the expression
for the surface of flow is written in the form:
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Figure 2: Graph of the surface of flow during cyclic loading: f)
original surface of flow; fk, fk+1) parts of the surface after the k-th and
the (k+1)-th half cycles; R'k+1 and R''k+1) radius of the surface of flow
in the (k+1)-th half cycle with the related increase of stresses in the
k-th half cycle.
Slika 2: Grafikon za povr{ino lezenja pri cikli~ni obremenitvi: f)
izvirna povr{ina lezenja; fk, fk+1) deli povr{ine po k in (k+1) polo-
vi~nem ciklu; R'k+1 in R''k+1) polmer povr{ine lezenja pri (k+1)
polovi~nem ciklu z od njega odvisnim pove~anjem napetosti pri k
polovi~nem ciklu
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A comparison of the calculated curve (the dashed
line in Figure 3) with the experimental (the solid lines)
confirms the acceptability of this assumption. (The
calculated curve for p = 0,5 % was obtained from the
curve for p = 0 by replacement to the left by the value �
= (p/�c)�t.)

This form of surface flow makes it possible to
explain, in particular, the phenomenon of plastic defor-
mations for a creep test cycle with alternating sign and
stresses lower than the elastic limit of the original
material 6.

Equations (1), (6), and (12), the expanded equations
of the equilibrium and the consistency of the defor-
mation of uniform medium and also the necessary
boundary conditions make it possible to calculate the
stressed-strained condition of a body in an arbitrary
program of cyclic loading and heating by a step method.
At the same time, Eq. (6) and (12) satisfy the require-
ments given earlier.

It was shown in 7 that the calculation for stresses and
deformations during the loading stage may be developed
as a solution to the problem of the deformation theory of
plasticity with varying the parameters of elasticity 4. The
process of determining successive approximations for
the stresses and deformations is carried out with the
separation of the deformation into elastic and an increase
in the instantaneous plastic deformation and creep
according to Eqs. (6) and (12) using the method of
successive approximations.

As a parameter of change of materials properties
related to its cyclic instability by a change of cyclic
loading in place of the number of semi-cycles, the path
of cyclic creep, �1, and the path of cyclic plastic
deformation �2, should be accepted. Let us assume that
the cyclic creep and its increment are determined by the
equations:
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Here, the following requirements must be met:
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> 0 at t < tk ;
∂
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τ
i
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= 0 at t > tk (15)

By satisfying conditions (14) and (15), the value of n
increases by unity.

The increments of the inelastic deformation and the
values of the intensity of the inelastic deformation are
determined from the equations:

d d dε εij pij ijpℵ = + ; ε ε εℵ ℵ ℵ= ⋅ ⋅( ) .2 3 0 5/ ij ij

4. An estimation procedure for the material characte-
ristics and design procedure of creep curves for some
typical examples of uniaxial loading with cyclic creep at
varying temperatures can be applied. The proposed
method can be used to calculate the strains at all three
stages of creep for heat-resistant steels and alloys with
an arbitrary law of change in the stress and temperature
at the working temperatures at which the material is
structurally stable. The method cannot be used for
calculations at the third stage of creep in materials that
are fractured after necking or in cases of compression or
alternating loading of materials with a highly anisotropic
initial creep resistance (in tension and compression).

The duration of the creep process during one cycle
may range from a minute to hundreds of hours. In
developing the method, we analyzed data on creep and
stress relaxation in 20 grades of heat-resistant steels and
alloys in a uniaxial stress state.

3 COVERNING EQUATIONS

The method is based on a creep theory of the
following type 8

�p = f(�,p,T,�pl,�1) (17)

where λ = −∫ ( )d dp p is the path of cyclic creep.

Tests involving a single loading are approximated
with the following analytical formula:

p = F(�,T,�pl,t) (18)
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Figure 3: Effect of creep on the resistance of 25Kh2M1F steel to
instantaneous deformation at 550 °C. Full lines are the experimental
results; dashed line is the calculated.
Slika 3: Vpliv lezenja na odpornost jekla 25Kh2M1F proti hipni
deformaciji pri 550 °C, polne ~rte – eksperimentalne meritve; ~rtkane
~rte – izra~unano



The relation for creep rate in the same tests can be
determined by differentiating Eq. (18):

�p
F

t
= d

d
= Φ(�,T,�pl,t) (19)

The behaviour of the material by complex loading
programs is assumed to be described by creep theory
(17); thus, it is obvious that the required relationship p =
f(�,p,T,�pl,�) should be obtained by excluding t from Eqs.
(18) and (19). However, this cannot be done analytically
in a general form with the present form of Eq. (19); it is
therefore proposed that in the solution of any specific
problem, the value of function 17 should be found nume-
rically by excluding t from Eqs. (18) and (19) at each
step of the integration over time. For alternating loading
and the absence of instantaneous plastic strains, the
specific form of Eq. (18) to describe the creep curves in
the first and second stages is:

[ ]p A C t B tk l m= − − +σ σ σ1 exp( ) (20)

where A,B,C,k,l,m are coefficients that are constant for a
given test temperature. To describe the third creep
stage, we replace the stresses in Eq. (20) with the ratio
�/(l – p/�f), where �f is the strain at failure.

The change of the creep curve is, for the case of
plastic deformation, accounted for by replacing (20) with
the expression:

[ ]{ }p A C t t S B t tk l
a

m
a= − − − + −σ σ ε σ1 exp ( ( ) ( ) ( )pl

(21)

where ta is the time to the last plastic deformation. Here,
we have in mind, not creep that is accompanied by a
continuous change of instantaneous plastic strain, but
the effect of discrete instantaneous plastic strain at the
moment of the application of the plastic deformation �pl.

When the plastic strain �pl is accumulated under
stress in creep tests, the effect of �pl is automatically
accounted for with the coefficients A,B,C,k,l,m.

The values of the function S, describing the effect of
plastic strain on creep, depend on the sign of �pl. The
form of the function S(�pl) describing the effect of plastic
strain on creep rate, dependent on the sign of �pl, is
determined from a series of tests with different values of
�pl and is either specified exactly or given by the appro-
ximating function:

S h q( )ε εpl pl= +1 (22)

It has been established that the values of the material
parameters h and q are slightly dependent on the stress
level. The dependence of �p on the sign of the stresses is
taken into account as follows:

� ( )p f= σ σsign (23)

The effect of cyclic loading on the creep rate is con-
sidered with inclusion of the function f1(�) in Eq. (19) as
a multiplier:
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where ta is the time to the last plastic deformation or to
the last change in the stress sign.

The function f1(�) is determined from tests in cyclic
loading with constant cycle parameters: under these
conditions, f1(�) = f2(k), where k is the number of the
cycle. For k = 1, f2(k) = f1(�) = 1.

Thus, with the chosen test temperatures, Ti (i = 1 ...
N), we have the following expressions for p and �p:
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To find �p with a known value of p at each step of the
integration in accordance with (17), it is necessary to
exclude the parameter t – ta from these equations.

The value of �p with an arbitrary temperature T is
determined by interpolating the values of �p, found using
the above-described method with several of the nearest
values of Ti.

As an additional material parameter we consider the
limiting temperature T0: at �T T≤ 0 , p = 0.

If the calculations are performed with a change of
sign for the stress � at any number of times (i.e., when
the continuous function � passes through zero), the value
of �p changes as follows.

Instead of (17) we have

�p = f(�,p – a,T,�pl,�1) (17a)

where a is the creep accumulated up to the moment of
the change in the sign of the stresses.

We should additionally assume that for a complex
stress state the cyclic loading and the preliminary plastic
deformation affects only the scalar properties of the
materials. Then, instead of (17) we can write 9
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Here, Sij are the components of the stress deviator; σ
is the stress intensity; p n( ) and ε ( )n are the intensities of
the creep strain and (non-creep) plastic strain:
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where n is the number of half-cycles.
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4 METHOD OF DETERMINING THE
MATERIAL’S CHARACTERISTICS

The system of equations (18–20) contains several
material constants

A B C k l m t h q

A B C k l m t h q
p

p

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

ε

ε
1

2

( )

( )

. . . . . . . . .

( )A B C k l m t h qN N N N N N pN N Nε

T0 and the functions S[�pl, sign(�pl,�)], f1(�).
The constants Ai,Bi,Ci,ki,li,mi are determined from an

analysis of the creep data for uniaxial stress in the first
and second stages at N temperatures Ti and several (at
least six) stresses.

We select three numbers, a, b and c, determining the
first and second creep stages for each experimental creep
curve (Figure 4).

The data on a, b and c for different values of � and T
= const are used to find the values of A, B, C, k, l, m,
applying the method of least squares and the basis of the
following power relations:

a A b B c Ck k l= = =σ σ σ; ; (29)

The parameters hi and qi of the function S(�pl) are
determined with the analysis of the results of creep tests
at n temperatures Ti, one stress for each value of Ti, and
several values of preliminary plastic strain �pl within the
range from –3 % to –5 % to +3 % to + 5 % (at least three
values �pl < 0, three values �pl > 0, and �pl = 0).

For materials with the function S(�pl) depending on
the stress level, it is better if the results of the determi-
nation of S(�pl) are obtained using exact specifications
for the values of S(�pl,�).

The function f1(�) is found with the analysis of results
of the creep tests with alternating loading in the program
shown in Figure 5 and the determination of the depen-
dence on the cycle (the creep strain accumulated within a
half-cycle) Figure 6.

5 EXAMPLES OF THE CALCULATION

The values of the coefficients in Eqs. (25) and (26)
for the alloy KhN70VMYuT (EI765) are shown in Table
1.

The creep strain that occurs with an arbitrary law of
change of stress, temperature, and instantaneous plastic
strain is determined by the numerical integration of Eqs.
(17) and (17a) using the fourth-order Runge-Kutt
method and a computer algorithm. The algorithm can be
obtained without a computer by using a simple law of
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Figure 6: Method for determining the function f1 (�) from cyclic
creep curves.
Slika 6: Metoda za dolo~itev funkcije f1 (�) iz krivulje cikli~nega
lezenja

Figure 4: Creep curve
Slika 4: Krivulja lezenja

Figure 5: Diagram of loading of the specimens
Slika 5: Diagram obremenitve preizku{ancev



the change in stress �(t), temperature T(t), and plastic
strain �pl(t).

As examples of the calculation, the following va-
riants were analysed 6,10: creep during the first and third
stages (� = const, T = const); for a temperature change (�
= const); for an alternating stress (T = const); for
conditions of cyclic plastic deformation (� = const, T =
const); for cyclic creep with alternating plastic strain;
with plastic strain and a changing stress (T = const); for
alternating stress during a changing temperature. Also,
the stress relaxation with �0 < �y; with �0 > �y and addi-
tional preliminary plastic deformation; with additional
loadings and cyclic plastic strain were examined.

The analysis of the agreement for theoretical and
experimental data for twenty different grades of steels
and alloys showed that the proposed creep model and the
method of determining its parameters were valid (see
Figure 7, for example).

The studies 11,12 proposed variants of the above
method for calculating the creep to determine the
stress-strain state of blades (uniaxial stress state) and
disks (complex stress state) with multiple starts of
gas-turbine engines.

6 CONCLUSION

The variations in aniso-thermal theories of plastic
flow and of the theory of work hardening in creep with
structural parameters have been considered, making it
possible to include the mutual effect of two forms of
deformations within the framework of the traditional
approach.
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Table 1: Parameters of the creep resistance of the alloy EI765
Tabela 1: Parametri odpornosti proti lezenju za zlitino E1765

Temp.,
T/°C

�n/% �p/% h1 l1 f2(15) �y/
(kg/mm2)

Stress
level –lg A –lg B –lg C k0 l0 m

650 8 17 – – – – � < �y 22,3 37,9 12,96 10,3 7,63 18,75

700 8-14 14 26 0,5 – 64,5
� < �y 13,62 16,3 9 5,56 5,92 7,41
� > �y 27,7 39,2 9 13,33 5,92 20

750 13-15 16 350 1,3 4 55,6
� < �y 5,8 16,62 2,8 1,14 2,68 8,33
� > �y 18,4 28,9 2,8 8,33 2,68 15,38

Figure 7: Experimental (full lines) and theoretical (dashed lines)
curves describing the effect of cyclic plastic deformation on the creep
resistance (a) and the relaxation (b) for the alloy EI765 at 700 °C
Slika 7: Eksperimentalne (cele ~rte) in teoreti~ne (~rtkane ~rte)
krivulje, ki opisujejo vpliv cikli~ne plasti~ne deformacije na odpornost
proti lezenju (a) in relaksacijo (b) pri 700 °C za zlitino EI765


