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Abstract. Recently, K.M.R. Audenaert (2010), R.A. Horn and F. Zhang (2010), Z.

Huang (2011) and A.R. Schep (2011) proved inequalities between the spectral radius of

Hadamard products of finite and infinite non-negative matrices that define operators on

sequence spaces and the spectral radius of their ordinary matrix product. We extend

these results to the generalized and the joint spectral radius of bounded sets of such

operators. Moreover, we prove new inequalities even in the case of the usual spectral

radius of non-negative matrices. We also obtain related results in max algebra.
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1. Introduction

In [29], X. Zhan conjectured that for non-negative n×n matrices A and B the spectral

radius ρ(A ◦B) of the Hadamard product satisfies

ρ(A ◦B) ≤ ρ(AB),

where AB denotes teh usual matrix product of A and B. This conjecture was confirmed

by K.M.R. Audenaert in [2] by proving

(1) ρ(A ◦B) ≤ ρ
1
2 ((A ◦ A)(B ◦B)) ≤ ρ(AB).

These inequalities were established via a trace description of the spectral radius. Using

the fact that the Hadamard product is a principal submatrix of the Kronecker product,

R.A. Horn and F. Zhang proved in [15] the inequalities

(2) ρ(A ◦B) ≤ ρ
1
2 (AB ◦BA) ≤ ρ(AB)
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2 ALJOŠA PEPERKO

and also the right-hand side inequality in (1). Applying the techniques of [15], Huang

proved that

(3) ρ(A1 ◦ A2 ◦ · · · ◦ Am) ≤ ρ(A1A2 · · ·Am)

for n × n non-negative matrices A1, A2, · · · , Am (see [16]). In [22] and [23], A.R. Schep

extended inequalities (1) and (2) to non-negative matrices that define bounded operators

on sequence spaces (in particular on lp spaces, 1 ≤ p <∞). In the proofs certain results

on the Hadamard product from [8] were used. In [22] it was claimed in Theorem 2.7 that

(4) ρ(A ◦B) ≤ ρ
1
2 ((A ◦ A)(B ◦B)) ≤ ρ

1
2 (AB ◦BA) ≤ ρ(AB).

However, the proof of Theorem 2.7 actually demonstrates that

(5) ρ(A ◦B) ≤ ρ
1
2 ((A ◦ A)(B ◦B)) ≤ ρ

1
2 (AB ◦ AB) ≤ ρ(AB).

It turns out that ρ(AB ◦ BA) and ρ(AB ◦ AB) may in fact be different and that (4) is

false in general. This typing error was corrected in [23].

In this paper we generalize the mentioned results to the setting of the generalized and

the joint spectral radius of bounded sets of non-negative matrices that define bounded

operators on Banach sequence spaces. Moreover, we also prove new inequalities even in

the case of the usual spectral radius of non-negative matrices. In particular, we prove

that

ρ(A ◦B) ≤ ρ
1
2 ((A ◦ A)(B ◦B)) ≤ ρ(AB ◦ AB)

1
4ρ(BA ◦BA)

1
4 ≤ ρ(AB)

and

ρ(A ◦B) ≤ ρ
1
2 (AB ◦BA) ≤ ρ(AB ◦ AB)

1
4ρ(BA ◦BA)

1
4 ≤ ρ(AB)

(see Corollary 3.9).

In the last section we also obtain related results in max algebra, which is an attractive

setting for describing certain conventionally non-linear problems in a linear fashion.

2. Preliminaries

Throughout the paper, let R denote the set {1, . . . , n} for some n ∈ IN or the set IN

of all natural numbers. Let S(R) be the vector lattice of all complex sequences (xi)i∈R.

A Banach space L ⊆ S(R) is called a Banach sequence space if x ∈ S(R), y ∈ L and

|x| ≤ |y| imply that x ∈ L and ‖x‖L ≤ ‖y‖L. Note that in the literature such a space L

is usually called a Banach function space over a measure space (R, µ), where µ denotes

the counting measure on R. The cone of non-negative elements in L is denoted by L+.

Similarly as in [9] and [21] let us denote by L the collection of all Banach sequence

spaces L satisfying the property that ei = χ{i} ∈ L and ‖ei‖L = 1 for all i ∈ R. Standard

examples of spaces from L are Euclidean spaces, the well known lp spaces (1 ≤ p ≤ ∞)

and the space c0 of all null convergent sequences, equipped with the usual norms. The
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BOUNDS ON THE GENERALIZED AND THE JOINT SPECTRAL RADIUS 3

set L also contains all cartesian products L = X × Y for X, Y ∈ L, equipped with the

norm ‖(x, y)‖L = max{‖x‖X , ‖y‖Y }.
A matrix A = [aij]i,j∈R is called non-negative if aij ≥ 0 for all i, j ∈ R. Given matrices

A and B, we write A ≤ B if the matrix B − A is non-negative.

By an operator on a Banach sequence space L we always mean a linear operator on L.

We say that a non-negative matrix A defines an operator on L if Ax ∈ L for all x ∈ L,

where (Ax)i =
∑

j∈R aijxj. Then Ax ∈ L+ for all x ∈ L+ and so A defines a positive

operator on L. Recall that this operator is always bounded, i.e., its operator norm

‖A‖ = sup{‖Ax‖ : x ∈ L+, ‖x‖ ≤ 1}

is finite. Also, its spectral radius ρ(A) is always contained in the spectrum. For the theory

of Banach function spaces, Banach lattices and positive operators we refer the reader to

the books [28], [17] and [1].

Given non-negative matrices A = [aij]i,j∈R and B = [bij]i,j∈R, let A◦B = [aijbij]i,j∈R be

the Hadamard (or Schur) product of A and B and let A(t) = [atij]i,j∈R be the Hadamard

(or Schur) power of A for t ≥ 0. Here we use the convention 00 = 1.

Let Σ be a bounded set of bounded operators on L. For m ≥ 1, let

Σm = {A1A2 · · ·Am : Ai ∈ Σ}.

The generalized spectral radius of Σ is defined by

(6) ρ(Σ) = lim sup
m→∞

[ sup
A∈Σm

ρ(A)]1/m

and is equal to

ρ(Σ) = sup
m∈IN

[ sup
A∈Σm

ρ(A)]1/m.

The joint spectral radius of Σ is defined by

(7) ρ̂(Σ) = lim
m→∞

[ sup
A∈Σm

‖A‖]1/m.

It is well known that ρ(Σ) = ρ̂(Σ) for a precompact set Σ of compact operators on L (see

e.g. [25], [26]), in particular for a bounded set of complex n×n matrices (see e.g. [5], [10],

[24], [7]). This equality is called the Berger-Wang formula or also the generalized spectral

radius theorem (for a new elegant proof in the finite dimensional case see [7]). However,

in general ρ(Σ) and ρ̂(Σ) may differ even in the case of a bounded set Σ of compact

positive operators on L as the following example from [24] shows. Let Σ = {A1, A2, . . .}
be a bounded set of compact operators on L = l2 defined by Akek = ek+1, (k ∈ IN) and

Akej = 0 for j 6= k. Then (Ai1Ai2 · · ·Aik)2 = 0 for arbitrary k ∈ IN and any subset

{i1, i2, . . . , ık} ⊂ IN. Thus ρ(Σ) = 0. Since

AmAm−1 · · ·A1e1 = em+1, m ∈ IN,

AmAm−1 · · ·A1ej = 0, j 6= 1,
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4 ALJOŠA PEPERKO

we have ρ̂(Σ) ≥ lim supm→∞ ‖Am · · ·A1‖1/m = 1 and so ρ(Σ) 6= ρ̂(Σ).

In [13], the reader can find an example of two positive non-compact weighted shifts A

and B on L = l2 such that ρ({A,B}) = 0 < ρ̂({A,B}).
The theory of the generalized and the joint spectral radius has many important ap-

plications for instance to discrete and differential inclusions, wavelets, invariant subspace

theory (see e.g. [5], [7], [27], [25], [26] and the references cited there). In particular,

ρ̂(Σ) plays a central role in determining stability in convergence properties of discrete

and differential inclusions. In this theory the quantity log ρ̂(Σ) is known as the maximal

Lyapunov exponent (see e.g. [27]).

We will frequently use the following well known fact that

ρ(ΨΣ) = ρ(ΣΨ) and ρ̂(ΨΣ) = ρ̂(ΣΨ),

where ΨΣ = {AB : A ∈ Ψ, B ∈ Σ}.

3. Results on the generalized and joint spectral radius

Before proving our main results, let us first state some results that we will need in our

proofs. The following result was proved in [8, Theorem 3.3] and [19, Theorem 5.1 and

Remark 5.2] using only basic analythic methods and elementary facts.

Theorem 3.1. Given L ∈ L, let {Aij}k,mi=1,j=1 be non-negative matrices that define opera-

tors on L. If α1, α2,..., αm are positive numbers such that
∑m

i=1 αi ≥ 1, then the matrix(
A

(α1)
11 ◦ · · · ◦ A

(αm)
1m

)
. . .
(
A

(α1)
k1 ◦ · · · ◦ A

(αm)
km

)
also defines an operator on L and satisfies

the inequalities

(8)(
A

(α1)
11 ◦ · · · ◦ A

(αm)
1m

)
. . .
(
A

(α1)
k1 ◦ · · · ◦ A

(αm)
km

)
≤ (A11 · · ·Ak1)(α1) ◦ · · · ◦ (A1m · · ·Akm)(αm),

(9)∥∥∥(A(α1)
11 ◦ · · · ◦ A

(αm)
1m

)
. . .
(
A

(α1)
k1 ◦ · · · ◦ A

(αm)
km

)∥∥∥ ≤ ‖A11 · · ·Ak1‖α1 · · · ‖A1m · · ·Akm‖αm

and

(10)

ρ
((
A

(α1)
11 ◦ · · · ◦ A

(αm)
1m

)
. . .
(
A

(α1)
k1 ◦ · · · ◦ A

(αm)
km

))
≤ ρ (A11 · · ·Ak1)α1 · · · ρ (A1m · · ·Akm)αm .

The following special case of Theorem 3.1 was considered in the finite dimensional case

by several authours using different methods (for references see e.g. [9], [8], [19]).

Corollary 3.2. Given L ∈ L, let A1, . . . , Am be non-negative matrices that define opera-

tors on L and α1, α2,..., αm positive numbers such that
∑m

i=1 αi ≥ 1. Then we have

‖A(α1)
1 ◦ A(α2)

2 ◦ · · · ◦ A(αm)
m ‖ ≤ ‖A1‖α1‖A2‖α2 · · · ‖Am‖αm

and

(11) ρ(A
(α1)
1 ◦ A(α2)

2 ◦ · · · ◦ A(αm)
m ) ≤ ρ(A1)α1 ρ(A2)α2 · · · ρ(Am)αm .
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BOUNDS ON THE GENERALIZED AND THE JOINT SPECTRAL RADIUS 5

We will also need the following result.

Proposition 3.3. Given L ∈ L, let A, B, C and D be non-negative matrices that define

operators on L. Then the following inequalities hold

(12) (A ◦B)(C ◦D) ≤ (A(2)D(2))( 1
2

) ◦ (B(2)C(2))( 1
2

),

(13) (A ◦B)(C ◦D) ≤ AC ◦BD,

(14) (A ◦B)(C ◦D) ≤ AD ◦BC.

Proof. Using A = (A(2))( 1
2

) (and similarly for B, C and D) and applying (8) we obtain

(A ◦B)(C ◦D) = (A ◦B)(D ◦ C) ≤ (A(2)D(2))( 1
2

) ◦ (B(2)C(2))( 1
2

),

which proves (12) (for a simple direct proof see [22, Proposition 2.3]).

The inequality (13) is a special case of (8). We include a simple proof for completeness.

The (i, j)th entry of the matrix (A ◦B)(C ◦D) equals
∑

k∈R aikbikckjdkj and we have∑
k∈R

aikbikckjdkj =
∑
k∈R

(aikckj)(bikdkj) ≤
∑
k∈R

aikckj
∑
k∈R

bikdkj,

which proves (13).

By (13) we have

(A ◦B)(C ◦D) = (A ◦B)(D ◦ C) ≤ AD ◦BC,

which proves (14). �

Let Ψ and Σ be sets of non-negative matrices and α > 0. Then Ψ ◦Σ and Ψ(α) denote

respectively the Hadamard (Schur) product of Ψ and Σ and the Hadamard (Schur) power

of Ψ, e.g.,

Ψ ◦ Σ = {A ◦B : A ∈ Ψ, B ∈ Σ} and Ψ(α) = {A(α) : A ∈ Ψ}.

The following result on the generalized and the joint spectral radius was stated in ([19,

Corollary 5.3]) only in the case of bounded sets of n× n non-negative matrices, however

the same proof works in our more general setting by using Theorem 3.1.

Theorem 3.4. Given L ∈ L, let Ψ1, . . .Ψm be bounded sets of non-negative matrices that

define operators on L and let α1, . . . αm be positive numbers such that
∑m

i=1 αi ≥ 1. Then

we have

(15) ρ(Ψ
(α1)
1 ◦ · · · ◦Ψ(αm)

m ) ≤ ρ(Ψ1)α1 · · · ρ(Ψm)αm

and

(16) ρ̂(Ψ
(α1)
1 ◦ · · · ◦Ψ(αm)

m ) ≤ ρ̂(Ψ1)α1 · · · ρ̂(Ψm)αm .
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6 ALJOŠA PEPERKO

We are now ready to prove the following result for the generalized and joint spectral

radius, which generalizes (5).

Theorem 3.5. Given L ∈ L, let Ψ and Σ be bounded sets of non-negative matrices that

define operators on L. Then we have

(17) ρ(Ψ ◦ Σ) ≤ ρ(Ψ(2)Σ(2))
1
2 ≤ ρ((Ψ ◦Ψ)(Σ ◦ Σ))

1
2 ≤ ρ(ΨΣ ◦ΨΣ)

1
2 ≤ ρ(ΨΣ)

and

(18) ρ̂(Ψ ◦ Σ) ≤ ρ̂(Ψ(2)Σ(2))
1
2 ≤ ρ̂((Ψ ◦Ψ)(Σ ◦ Σ))

1
2 ≤ ρ̂(ΨΣ ◦ΨΣ)

1
2 ≤ ρ̂(ΨΣ).

Proof. To prove the first inequality in (17), choose A ∈ (Ψ ◦ Σ)2m. Then there exist

Ai ∈ Ψ and Bi ∈ Σ for i = 1, . . . , 2m, such that

A = (A1 ◦B1)(A2 ◦B2) · · · (A2m−1 ◦B2m−1)(A2m ◦B2m).

By (12) and (8) we have

A ≤ ((A
(2)
1 B

(2)
2 )( 1

2
) ◦ (B

(2)
1 A

(2)
2 )( 1

2
)) · · · ((A(2)

2m−1B
(2)
2m)( 1

2
) ◦ (B

(2)
2m−1A

(2)
2m)( 1

2
))

≤ B( 1
2

) ◦ C( 1
2

),

where

B = A
(2)
1 B

(2)
2 · · ·A

(2)
2m−1B

(2)
2m ∈ (Ψ(2)Σ(2))m

and

C = B
(2)
1 A

(2)
2 · · ·B

(2)
2m−1A

(2)
2m ∈ (Σ(2)Ψ(2))m.

By Corollary 3.2 we obtain ρ(A) ≤ ρ(B)
1
2ρ(C)

1
2 . This implies

ρ(Ψ ◦ Σ)2 ≤ ρ(Ψ(2)Σ(2))1/2ρ(Σ(2)Ψ(2))1/2.

Therefore

ρ(Ψ ◦ Σ)2 ≤ ρ(Ψ(2)Σ(2)),

since ρ(Ψ(2)Σ(2)) = ρ(Σ(2)Ψ(2)). This proves the first inequality in (17).

The second inequality in (17) is trivial, since Ψ(2)Σ(2) ⊂ (Ψ ◦Ψ)(Σ ◦ Σ).

For the proof of the third inequality in (17) take A ∈ ((Ψ ◦ Ψ)(Σ ◦ Σ))m. Then there

exist Ai, Bi ∈ Ψ and Ci, Di ∈ Σ for i = 1, . . . ,m such that

A = (A1 ◦B1)(C1 ◦D1) · · · (Am ◦Bm)(Cm ◦Dm).

By (13) we have

A ≤ (A1C1 ◦B1D1) . . . (AmCm ◦BmDm) ∈ (ΨΣ ◦ΨΣ)m,

which implies ρ((Ψ ◦ Ψ)(Σ ◦ Σ)) ≤ ρ(ΨΣ ◦ ΨΣ). The last inequality in (17) follows from

Theorem 3.4. This completes the proof of (17) and the inequalities (18) are proved simply

by replacing the spectral radius with the operator norm ‖ · ‖ in the proof above. �

If we interchange the roles of Ψ and Σ in Theorem 3.5, we obtain the following result.

Pr
ep

ri
n

t 
se

ri
es

, I
M

FM
, I

S
S

N
 2

23
2-

20
94

, n
o.

 1
16

4,
 S

ep
te

m
be

r 
28

, 2
01

1



BOUNDS ON THE GENERALIZED AND THE JOINT SPECTRAL RADIUS 7

Corollary 3.6. Given L ∈ L, let Ψ and Σ be bounded sets of non-negative matrices that

define operators on L. Then we have

ρ((Ψ ◦Ψ)(Σ ◦ Σ))
1
2 ≤ ρ(ΣΨ ◦ ΣΨ)

1
2 ≤ ρ(ΨΣ)

and

ρ̂((Ψ ◦Ψ)(Σ ◦ Σ))1/2 ≤ ρ̂(ΣΨ ◦ ΣΨ)1/2 ≤ ρ̂(ΨΣ).

The following result generalizes and sharpens the inequalities (2).

Theorem 3.7. Given L ∈ L, let Ψ and Σ be bounded sets of non-negative matrices that

define operators on L. Then we have

(19)

ρ(Ψ◦Σ) ≤ ρ(ΨΣ◦ΣΨ)
1
2 ≤ ρ((ΨΣ)(2))

1
4ρ((ΣΨ)(2))

1
4 ≤ ρ(ΨΣ◦ΨΣ)

1
4ρ(ΣΨ◦ΣΨ)

1
4 ≤ ρ(ΨΣ)

and

(20)

ρ̂(Ψ◦Σ) ≤ ρ̂(ΨΣ◦ΣΨ)
1
2 ≤ ρ̂((ΨΣ)(2))

1
4 ρ̂((ΣΨ)(2))

1
4 ≤ ρ̂(ΨΣ◦ΨΣ)

1
4 ρ̂(ΣΨ◦ΣΨ)

1
4 ≤ ρ̂(ΨΣ).

Proof. For the proof of the first inequality in (19), choose A ∈ (Ψ ◦ Σ)2m. Then there

exist Ai ∈ Ψ and Bi ∈ Σ for i = 1, . . . , 2m, such that

A = (A1 ◦B1)(A2 ◦B2) · · · (A2m−1 ◦B2m−1)(A2m ◦B2m).

By (14) we obtain

A ≤ (A1B2 ◦B1A2) · · · (A2m−1B2m ◦B2m−1A2m) ∈ (ΨΣ ◦ ΣΨ)m

and thus

ρ(A) ≤ ρ((A1B2 ◦B1A2) · · · (A2m−1B2m ◦B2m−1A2m)).

This implies the first inequality in (19).

Also AiBi+1 ◦BiAi+1 = ((AiBi+1)(2) ◦ (BiAi+1)(2))( 1
2

) for i = 1, . . . , 2m− 1 and thus we

have by (8)

(A1B2 ◦B1A2) · · · (A2m−1B2m ◦B2m−1A2m) ≤
((A1B2)(2) · · · (A2m−1B2m)(2))( 1

2
) ◦ ((B1A2)(2) · · · (B2m−1A2m)(2))( 1

2
)

By (11) we obtain

ρ((A1B2 ◦B1A2) · · · (A2m−1B2m ◦B2m−1A2m)) ≤ ρ(B)
1
2ρ(C)

1
2 ,

where

B = (A1B2)(2) · · · (A2m−1B2m)(2) ∈ ((ΨΣ)(2))m

and

C = (B1A2)(2) · · · (B2m−1A2m)(2) ∈ ((ΣΨ)(2))m.

This implies

ρ(ΨΣ ◦ ΣΨ) ≤ ρ((ΨΣ)(2))
1
2ρ((ΣΨ)(2))

1
2 ,

which proves the second inequality in (19).
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8 ALJOŠA PEPERKO

The third inequality in (19)is trivial, since (ΨΣ)(2) ⊂ ΨΣ ◦ΨΣ.

The fourth inequality in (19) follows from Theorem 3.4 since

ρ(ΨΣ ◦ΨΣ)
1
4ρ(ΣΨ ◦ ΣΨ)

1
4 ≤ ρ(ΨΣ)

1
2ρ(ΣΨ)

1
2 = ρ(ΨΣ).

The inequalites (20) are proved by replacing the spectral radius with the operator norm

‖ · ‖ in the proof above. �

The following result complements Theorems 3.5 and 3.7.

Proposition 3.8. Given L ∈ L, let Ψ and Σ be bounded sets of non-negative matrices

that define operators on L. Then we have

(21) ρ((Ψ ◦Ψ)(Σ ◦ Σ)) ≤ ρ(ΨΣ ◦ΨΣ)
1
2ρ(ΣΨ ◦ ΣΨ)

1
2

and

(22) ρ̂((Ψ ◦Ψ)(Σ ◦ Σ)) ≤ ρ̂(ΨΣ ◦ΨΣ)
1
2 ρ̂(ΣΨ ◦ ΣΨ)

1
2 .

Proof. By Theorem 3.5 we have

ρ((Ψ ◦Ψ)(Σ ◦Σ)) = ρ((Ψ ◦Ψ)(Σ ◦Σ))
1
2ρ((Σ ◦Σ)(Ψ ◦Ψ))

1
2 ≤ ρ(ΨΣ ◦ΨΣ)

1
2ρ(ΣΨ ◦ΣΨ)

1
2 ,

which proves (21). The inequality (22) is proved similarly. �

The following result follows from Theorem 3.5, Theorem 3.7 and Proposition 3.8 by

taking Ψ = {A} and Σ = {B}.

Corollary 3.9. Given L ∈ L, let A and B be non-negative matrices that define operators

on L. Then we have

(23) ρ(A ◦B) ≤ ρ
1
2 ((A ◦ A)(B ◦B)) ≤ ρ(AB ◦ AB)

1
4ρ(BA ◦BA)

1
4 ≤ ρ(AB)

and

(24) ρ(A ◦B) ≤ ρ
1
2 (AB ◦BA) ≤ ρ(AB ◦ AB)

1
4ρ(BA ◦BA)

1
4 ≤ ρ(AB).

The following example shows that ρ(AB ◦ AB), ρ(BA ◦ BA) and ρ(AB ◦ BA) may in

fact be different.

Example 3.10. Let A =

[
0 2
3 3

]
and B =

[
0 1
3 3

]
. Then AB =

[
6 6
9 12

]
, BA =[

3 3
9 15

]
and so

AB ◦ AB =

[
36 36
81 144

]
, BA ◦BA =

[
9 9
81 225

]
, AB ◦BA =

[
18 18
81 180

]
.

It follows ρ(AB ◦AB) = 18(5 + 3
√

2)
.
= 166.368, ρ(BA ◦BA) = 9(13 + 3

√
17)

.
= 228.324

and ρ(AB ◦ BA) = 9(11 + 3
√

11)
.
= 188.549. We see that ρ(AB ◦ AB) < ρ(AB ◦ BA) <

ρ(BA ◦ BA) and thus in general neither of the inequalities between ρ(AB ◦ AB) and
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BOUNDS ON THE GENERALIZED AND THE JOINT SPECTRAL RADIUS 9

ρ(AB ◦ BA) hold. This fact was independently observed by A. Schep ([23] and private

communication).

Remark 3.11. The previous example also shows that the second inequality in (24) may

be strict. This is also true for the second inequality in (23), since ρ((A ◦ A)(B ◦ B)) =

9(7 + 3
√

5)
.
= 123.374.

On the otherhand both of the mentioned inequalities are sharp (take e.g. A = B =

I or 0).

The following result follows from Theorem 3.5.

Proposition 3.12. Given L ∈ L, let Ψ and Σ be bounded sets of non-negative matrices

that define operators on L. Then we have

(25) ρ(ΨΣ ◦ ΣΨ) ≤ ρ(Ψ2Σ2) and ρ̂(ΨΣ ◦ ΣΨ) ≤ ρ̂(Ψ2Σ2).

Proof. By Theorem 3.5 applied to ΨΣ and ΣΨ we have

ρ(ΨΣ ◦ ΣΨ) ≤ ρ(ΨΣΣΨ) = ρ(Ψ2Σ2),

which proves the first inequality in (25). The second inequality in (25) is proved similarly.

�

Corollary 3.13. Given L ∈ L, let A and B be non-negative matrices that define operators

on L. Then we have

(26) ρ(AB ◦BA) ≤ ρ(A2B2).

The inequality (26) is not weaker than the inequality (24) as the following example

from [23] shows.

Example 3.14. Let A =

[
0 0
1 0

]
and B =

[
0 1
0 0

]
. Then AB = AB ◦ AB = (A ◦

A)(B ◦ B) =

[
0 0
0 1

]
, BA = BA ◦ BA =

[
1 0
0 0

]
, while AB ◦ BA = A2 = B2 = 0.

Therefore ρ(AB ◦BA) = ρ(A2B2) = 0, while ρ(AB) = ρ((A◦A)(B ◦B)) = ρ(AB ◦AB) =

ρ(BA ◦BA) = 1.

This example also illustrates that in (26) we can not replace AB ◦BA by (A◦A)(B ◦B)

or AB ◦ AB.

To conclude this section we prove the following generalization of the inequality (3).

Theorem 3.15. Given L ∈ L, let Ψ1,Ψ2, . . . ,Ψm be bounded sets of non-negative matrices

that define operators on L. Then we have

(27) ρ(Ψ1 ◦Ψ2 ◦ · · · ◦Ψm) ≤ ρ(Ψ1Ψ2 · · ·Ψm)

and

(28) ρ̂(Ψ1 ◦Ψ2 ◦ · · · ◦Ψm) ≤ ρ̂(Ψ1Ψ2 · · ·Ψm).
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10 ALJOŠA PEPERKO

Proof. Take A ∈ (Ψ1 ◦Ψ2 ◦ · · · ◦Ψm)mk. Then A = A1A2 · · ·Ak, where

Ai = (Ai 1 1 ◦ Ai 1 2 ◦ · · · ◦ Ai 1m) (Ai 2 1 ◦ Ai 2 2 ◦ · · · ◦ Ai 2m) . . . (Aim1 ◦ Aim2 ◦ · · · ◦ Aimm)

for some Ai j 1 ∈ Ψ1, . . . , Ai j m ∈ Ψm and all j = 1, . . . ,m, i = 1, . . . , k. Then

Ai = (Ai 1 1 ◦ Ai 1 2 ◦ · · · ◦ Ai 1m) (Ai 2 2 ◦ · · · ◦ Ai 2m ◦ Ai 2 1) . . . (Aimm ◦ Aim 1 ◦ · · · ◦ Aimm−1) .

By (8) we have

A = A1A2 · · ·Ak ≤ B1 ◦B2 ◦ · · · ◦Bm,

where

B1 =
k∏
i=1

Ai 1 1Ai 2 2 · · ·Aimm ∈ (Ψ1Ψ2 · · ·Ψm)k,

B2 =
k∏
i=1

Ai 1 2Ai 2 3 · · ·Aim 1 ∈ (Ψ2Ψ3 · · ·Ψ1)k,

· · · · · · · · ·

Bm =
k∏
i=1

Ai 1mAi 2 1 · · ·Aimm−1 ∈ (ΨmΨ1 · · ·Ψm−1)k.

By Corollary 3.2 we have

ρ(A) ≤ ρ(B1)ρ(B2) · · · ρ(Bm),

which implies

ρ(Ψ1 ◦Ψ2 ◦ · · · ◦Ψm)m ≤ ρ(Ψ1Ψ2 · · ·Ψm)ρ(Ψ2Ψ3 · · ·Ψ1) · · · ρ(ΨmΨ1 · · ·Ψm−1) =

= ρ(Ψ1Ψ2 · · ·Ψm)m.

This proves (27) and the inequality (28) is proved similarly. �

4. Related results in max algebra

In this final section we prove some related results in max algebra. The algebraic system

max algebra and its isomorphic versions provide an attractive way of describing a class of

non-linear problems appearing for instance in manufacturing and transportation schedul-

ing, information technology, discrete event-dynamic systems, combinatorial optimisation,

mathematical physics, DNA analysis, ...(see e.g. [4], [6], [3], [21] and the references cited

there). Max algebra’s usefulness arises from a fact that these non-linear problems be-

come linear when described in the max algebra language. Moreover, recently max algebra

techniques were used to solve certain linear algebra problems (see e.g. [11], [12]).

The max algebra consists of the set of non-negative numbers with sum a⊕b = max{a, b}
and the standard product ab, where a, b ≥ 0. The operations between matrices and vectors

in the max algebra are defined by analogy with the usual linear algebra. For instance,

the product of n × n non-negative matrices A and B in the max algebra is denoted by
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BOUNDS ON THE GENERALIZED AND THE JOINT SPECTRAL RADIUS 11

A⊗B (not the Kronecker product), where [A⊗B]ij = maxk=1,...,n aikbkj. The notation A2
⊗

means A⊗A, and Ak⊗ denotes the k-th max power of A. If x = [xi] ∈ IRn is a non-negative

vector, then the notation A⊗ x means [A⊗ x]i = maxj=1,...,n aijxj. The usual associative

and distributive laws hold in this algebra. The role of the spectral radius in max algebra

is played by the maximum circuit geometric mean.

The weighted directed graph D(A) associated with A has a vertex set {1, 2, . . . , n} and

edges (i, j) from a vertex i to a vertex j with weight aij if and only if aij > 0. A path of

length k is a sequence of edges (i1, i2), (i2, i3), . . . , (ik, ik+1). A circuit of length k is a path

with ik+1 = i1, where i1, i2, . . . , ik are distinct. Associated with this circuit is the circuit

geometric mean known as (ai1i2ai2i3 . . . aiki1)
1/k. The maximum circuit geometric mean in

D(A) is denoted by µ(A). Note that circuits (i1, i1) of length 1 (loops) are included here

and that we also consider empty circuits, i.e., circuits that consist of only one vertex and

have length 0. For empty circuits, the associated circuit geometric mean is zero.

There are many different descriptions of the maximum circuit geometric mean µ(A)

(see e.g. [18] and the references cited there). It is known that µ(A) is the largest max

eigenvalue of A. Moreover, if A is irreducible, then µ(A) is the unique max eigenvalue

and every max eigenvector is positive (see e.g. [4, Theorem 2], [6], [3]). Also, the max

version of Gelfand formula holds, i.e.,

µ(A) = lim
m→∞

‖Am⊗‖1/m

for an arbitrary vector norm ‖ · ‖ on IRn×n (see e.g. [18] and the references cited there).

Thus µ(Ak⊗) = µ(A)k for all k ∈ IN.

Let Ψ be a bounded set of n× n non-negative matrices. For m ≥ 1, let

Ψm
⊗ = {A1 ⊗ A2 ⊗ · · · ⊗ Am : Ai ∈ Ψ}.

The max algebra version of the generalized spectral radius µ(Ψ) of Ψ, is defined by

µ(Ψ) = lim sup
m→∞

[ sup
A∈Ψm

⊗

µ(A)]1/m

and is equal to

µ(Ψ) = sup
m∈IN

[ sup
A∈Ψm

⊗

µ(A)]1/m.

Also the max algebra version of the Berger-Wang formula holds, i.e.,

µ(Ψ) = lim
m→∞

[ sup
A∈Ψm

⊗

‖A‖]1/m

for an arbitrary vector norm ‖ · ‖ on IRn×n (see e.g. [18]). The quantity log µ(Ψ) measures

the worst case cycle time of certain discrete event systems and it is sometimes called the

worst case Lyapunov exponent (see e.g. [3], [20], [14] and the references cited there).

It is not difficult to see that

(29) A
(t)
1 ⊗ · · · ⊗ A(t)

m = (A1 ⊗ · · · ⊗ Am)(t)
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12 ALJOŠA PEPERKO

for all n×n non-negative matrices A1, . . . , Am and t > 0. This implies that µ(Ψ(t)) = µ(Ψ)t

for all t > 0 (see also [18]). We also have µ(Ψ⊗ Σ) = µ(Σ⊗Ψ), where

Ψ⊗ Σ = {A⊗B : A ∈ Ψ, B ∈ Σ}.
For proving the max algebra analogues of the results from the previous section we

will need the following result, which was essentially proved in [19]. It follows from [19,

Theorem 5.1 and Remark 5.2] and (29).

Theorem 4.1. Let {Aij}k,mi=1,j=1 be n× n non-negative matrices and let α1, α2,..., αm be

positive numbers. Then we have(
A

(α1)
11 ◦ · · · ◦ A

(αm)
1m

)
⊗ . . .⊗

(
A

(α1)
k1 ◦ · · · ◦ A

(αm)
km

)
≤ (A11 ⊗ · · · ⊗ Ak1)(α1) ◦ · · · ◦ (A1m ⊗ · · · ⊗ Akm)(αm)

and

µ
((
A

(α1)
11 ◦ · · · ◦ A

(αm)
1m

)
⊗ . . .⊗

(
A

(α1)
k1 ◦ · · · ◦ A

(αm)
km

))
≤ µ (A11 ⊗ · · · ⊗ Ak1)α1 · · ·µ (A1m ⊗ · · · ⊗ Akm)αm .

The following result on the max version of the generalized spectral radius was already

stated in [19, Corollary 5.3].

Corollary 4.2. Let Ψ1, . . .Ψm be bounded sets of n × n non-negative matrices and let

α1, . . . αm be positive numbers.

(30) µ(Ψ
(α1)
1 ◦ · · · ◦Ψ(αm)

m ) ≤ µ(Ψ1)α1 · · ·µ(Ψm)αm .

In contrast with the linear algebra case, we also have the following result.

Corollary 4.3. If Ψ is a bounded set of n× n non-negative matrices, then

(31) µ(Ψ ◦Ψ) = µ(Ψ)2.

Proof. Since Ψ(2) ⊂ Ψ ◦Ψ, we have

µ(Ψ(2)) ≤ µ(Ψ ◦Ψ) ≤ µ(Ψ)2,

where the second inequality follows from (30). Since also µ(Ψ(2)) = µ(Ψ)2, the result

follows. �

By replacing the sums with maxk=1,...,n in the proof of (13) and (14), we obtain the

following result.

Proposition 4.4. Let A, B, C and D be n× n non-negative matrices. Then we have

(32) (A ◦B)⊗ (C ◦D) ≤ A⊗ C ◦B ⊗D and (A ◦B)⊗ (C ◦D) ≤ A⊗D ◦B ⊗ C.
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BOUNDS ON THE GENERALIZED AND THE JOINT SPECTRAL RADIUS 13

Remark 4.5. It is easy to verify that

(33) A⊗ C = (A(2) ⊗ C(2))( 1
2

)

for n× n non-negative matrices A and C. Thus the max version of (12) is only a restate-

ment of (32).

By applying Theorem 4.1 an Corollary 4.2 we can now prove the following max algebra

version of Theorem 3.15. We omit the proof, since it is similar to the proof of Theorem

3.15.

Theorem 4.6. If Ψ1,Ψ2, . . . ,Ψm are bounded sets of n× n non-negative matrices, then

µ(Ψ1 ◦Ψ2 ◦ · · · ◦Ψm) ≤ µ(Ψ1 ⊗Ψ2 ⊗ · · · ⊗Ψm)

Moreover, applying Proposition 4.4 and Corollary 4.2 we can also prove the following

max algebra analogue of Theorem 3.7 and Proposition 3.12. The proof is similar as in

the previous section and we omit the details.

Theorem 4.7. If Ψ and Σ are bounded sets of n×n non-negative matrices, then we have

µ(Ψ ◦ Σ) ≤ µ(Ψ⊗ Σ ◦ Σ⊗Ψ)1/2 ≤ µ(Ψ⊗ Σ)

and

µ(Ψ⊗ Σ ◦ Σ⊗Ψ) ≤ µ(Ψ2
⊗ ⊗ Σ2

⊗).

For single matrices we obtain the following result.

Corollary 4.8. Let A1, . . . , Am, A,B be n×n non-negative matrices. Then the following

inequalities hold:

µ(A1 ◦ · · · ◦ Am) ≤ µ(A1 ⊗ · · · ⊗ Am),

(34) µ(A ◦B) ≤ µ(A⊗B ◦B ⊗ A)1/2 ≤ µ(A⊗B),

(35) µ(A⊗B ◦B ⊗ A) ≤ µ(A2
⊗ ⊗B2

⊗).

Remark 4.9. Let Ψ and Σ be bounded sets of n× n non-negative matrices. In contrast

with the linear algebra case, we have the following

(36)

µ(Ψ(2)⊗Σ(2))
1
2 = µ((Ψ◦Ψ)⊗(Σ◦Σ))

1
2 = µ(Ψ⊗Σ◦Ψ⊗Σ)

1
2 = µ(Σ⊗Ψ◦Σ⊗Ψ)

1
2 = µ(Ψ⊗Σ).

Indeed, similarly as in the proof Theorem 3.5 (and using (31)) one can prove

µ(Ψ(2) ⊗ Σ(2))
1
2 ≤ µ((Ψ ◦Ψ)⊗ (Σ ◦ Σ))

1
2 ≤ µ(Ψ⊗ Σ ◦Ψ⊗ Σ)

1
2 = µ(Ψ⊗ Σ).

However, by (33) we have Ψ⊗ Σ = (Ψ(2) ⊗ Σ(2))( 1
2

) and this implies (36).

Of course, we also have

µ(Ψ⊗ Σ) = µ((Ψ⊗ Σ)(2))
1
4µ((Σ⊗Ψ)(2))

1
4 = µ(Ψ⊗ Σ ◦Ψ⊗ Σ)

1
4µ(Σ⊗Ψ ◦ Σ⊗Ψ)

1
4 .
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14 ALJOŠA PEPERKO

We conclude the paper with some examples, showing that the inequalities in (34) and

(35) may be strict. All these inequalities are also sharp (take e.g. A = B = 0 or I).

Examples 4.10. (i) Let A =

[
1 1
0 0

]
and B =

[
0 0
1 1

]
. Then A ⊗ B = A2

⊗ = A,

B ⊗A = B2
⊗ = B and so A ◦B = A⊗B ◦B ⊗A = 0 and A2

⊗ ⊗B2
⊗ = A⊗B = A. Thus

µ(A◦B) = µ(A⊗B ◦B⊗A) = 0 < µ(A⊗B) = µ(A2
⊗⊗B2

⊗) = 1. So (35) and the second

inequality in (34) may be strict.

(ii) Let A =

[
1 2
1 1

]
and B = I. Then A ◦ B = I, A ⊗ B = B ⊗ A = A and so

A⊗ B ◦ B ⊗ A = A(2). Thus µ(A ◦ B) = 1 < µ(A⊗ B ◦ B ⊗ A)
1
2 = µ(A⊗ B) =

√
2. So

also the first inequality in (34) may be strict.

(iii) Let A and B be from Example 3.14. Then µ(A ◦ B) = µ(A ⊗ B ◦ B ⊗ A) =

µ(A2
⊗ ⊗B2

⊗) = 0 < µ(A⊗B) = 1. Thus (35) is not weaker than the second inequality in

(34).
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