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Abstract

In this work, the eigenspaces of unitary Cayley graphs and certain Hamming graphs are
considered. It is shown that these graph classes are closely related and admit particularly
simple eigenspace bases for all eigenvalues, namely bases containing vectors only with
entries from the set {0, 1,−1}. A direct consequence is that the considered graph classes
are integral.
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1 Introduction
Graph eigenspaces with particularly simple structure have excited some research interest
lately [1], [5], [10], [12], [13], [14]. In this work we are interested in the eigenspaces of
certain Cayley graphs and Hamming graphs. Cayley graphs are usually defined in terms of
groups, encoding their structures, whereas Hamming graphs are related to codes. We show
that, for all eigenvalues, the graphs we consider admit corresponding eigenspace bases that
consist only of vectors with entries 0, 1,−1. We call such bases simply structured. Clearly,
the associated eigenvalues are all integers.

Cayley graphs have been an object of study in algebraic graph theory for some time
now. They are closely linked to groups, encoding their structures. To be precise, the Cayley
graph Cay(G,C) for a given group G and a subset C ⊆ G has vertex set G and edges
exactly between those vertices g, h for which g−1h ∈ C, cf. [3].

In this paper we are interested in the unitary Cayley graphs Cay(Zn, Un), where Un
denotes the set of units of Zn. Such a graph has vertex set {1, . . . , n} and an arc between
vertices i and j exactly if gcd(i − j, n) = 1. Some results on unitary Cayley graphs in
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particular can be found in [2], [7] and [11]. Note that the unitary Cayley graphs are not to
be confused with the coprime graphs of integers, which have a very similar definition. Two
vertices i, j are adjacent exactly if gcd(i, j) = 1, cf. [9].

The notion of Hamming graphs has evolved over time so that in today’s literature the
term “Hamming graph” is used for the original class but also for many of the possible
generalizations.

The traditional Hamming graph is defined to model the 1-distance relation in a Ham-
ming scheme. It means that, given an alphabet ofm letters, all possible words with r letters
from this alphabet are formed. Some definitions even restrict themselves to a binary alpha-
bet. Each of the mr words is associated with a graph vertex. Two vertices are joined by an
edge if their Hamming distance is one, i.e. if their associated words differ in exactly one
letter position.

Two immediate generalizations come to mind. Firstly, one can allow each letter po-
sition to use its own private alphabet. Secondly, one can model alternative distance re-
lations in the Hamming scheme by joining edges if the Hamming distance is one from a
given list K. Our definition of the class of Hamming graphs includes both extensions.
We write HG(m1, . . . ,mr;K) where the respective alphabet sizes are m1, . . . ,mr and K
a list of positive Hamming distances. We consider the eigenspaces of Hamming graphs
HG(p1, . . . , pr; 1, . . . , d) for distinct primes p1, . . . , pr.

2 Basics and notation
We define the r-th distance power G(r) of a given graph G as the graph with the same
vertex set as G and two vertices adjacent if and only if their distance in G is at most r. By
G we denote the complement of G.

2.1 Graph eigenspaces

The adjacency matrix A = (aij) of a graph with vertices v1, . . . , vn is defined by setting
aij to 1 when vi is adjacent to vj and to 0 otherwise. The eigenvalues of a graph are
the eigenvalues of its associated adjacency matrix. For an undirected graph this matrix is
symmetric so that the eigenvalues of a graph are real numbers. Further basic results of
algebraic graph theory can be found in [3] and [8].

The entries of the adjacency matrix depend on the vertex order, and so do the entries
of the eigenvectors of the adjacency matrix. A notion of graph eigenvectors that does
not depend on vertex order can be obtained by considering every eigenvector as a map
V → R so that the i-th vertex of the graph is assigned the value of the i-th component of an
eigenvector. Thus, the equation Ax = λx that must hold for an adjacency matrix A and a
potential eigenvector x for eigenvalue λ of A can be checked directly on the graph itself. It
translates to the requirement that for every vertex the sum over the values of its neighbors
must equal λ times its own value.

We require the following basic result on regular graphs [3]:

Lemma 2.1. Let G be a k-regular graph on n vertices with eigenvalues λ1, . . . , λk.
Then the eigenvalues of G are n− k − 1 and all numbers −λi − 1 where λi 6= k. The

eigenspace for eigenvalue n− k − 1 is spanned by the all ones vector. The eigenspace for
eigenvalue −λi − 1 of G is the same as the eigenspace for eigenvalue λi 6= k of G.
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2.2 Graph products

We need to define two graph constructions on the Cartesian product of graph vertex sets.
For i = 1, 2, let V (Gi) denote the vertex set of graph Gi. The sum G1 +G2 (terminology
follows [4]) of two graphsG1 andG2 is defined as the graph with vertex set V (G1)×V (G2)
in which the vertices (x1, x2) and (y1, y2) are adjacent if and only if either x1 = y1 and x2

is adjacent to y2 in G2 or if x2 = y2 and x1 is adjacent to y1 in G1. Similarly, we define
the left strong product G1 . G2 as the graph on vertex set V (G1) × V (G2) in which the
vertices (x1, x2) and (y1, y2) are adjacent if and only if either x1 is adjacent to y1 in G1

and x2 is adjacent to y2 inG2, or if x2 = y2 and x1 is adjacent to y1 inG1. Both definitions
can be readily extended to an arbitrary finite number of terms. We write rG for the r term
sum G+ . . .+G. Note that the sum commutes (G+H ' H +G) whereas the left strong
product need not. Finally, observe that for regular graphs G1, G2 the graphs G1 +G2 and
G1 . G2 are regular as well.

We denote the Kronecker product of vectors x, y by x ⊗ y. It is formed by replacing
each entry xi of x with the block xiy.

The eigenvalues and eigenvectors for the sum and the left strong product of graphs
follow readily by well known results on the so-called p-sums of graphs (see [4], Theo-
rem 2.3.4):

Theorem 2.2. Given two graphs G1, G2 on s and t vertices, respectively, let λ1, . . . , λs
and µ1, . . . , µt be their respective eigenvalues.

1. The eigenvalues ofG1+G2 are λi+µj for i = 1, . . . , s and j = 1, . . . , t. Given such
an eigenvalue λ+µ ofG1 +G2 let x1, . . . , xα be an eigenspace basis for eigenvalue
λ of G1 and let y1, . . . , yβ be an eigenspace basis for eigenvalue µ of G2. Then the
vectors xi ⊗ yj , i = 1, . . . , α, j = 1, . . . , β, form a set of st linearly independent
eigenvectors of G1 +G2.

2. The eigenvalues of G1 . G2 are λi(µj + 1) for i = 1, . . . , s and j = 1, . . . , t. Given
such an eigenvalue λ(µ + 1) of G1 . G2 let x1, . . . , xα be an eigenspace basis for
eigenvalue λ of G1 and let y1, . . . , yβ be an eigenspace basis for eigenvalue µ of
G2. Then the vectors xi ⊗ yj , i = 1, . . . , α, j = 1, . . . , β, form a set of st linearly
independent eigenvectors of G1 . G2.

Corollary 2.3. If the eigenvalues of G1 and G2 are integer, then also the eigenvalues of
G1 +G2 andG1.G2 are integer. If for every eigenvalue ofG1 andG2 there exists a simply
structured eigenspace basis, then this property also holds for G1 +G2 and G1 . G2.

3 Isomorphisms of Hamming and Cayley graphs

In the 1-distance relation Hamming graph the notions of graph theoretical distance and
Hamming distance coincide. Therefore, its r-th distance power is isomorphic to an 1, . . . , r-
distance relation Hamming graph.

It is not difficult so see that this graph is isomorphic to the sum rKm, where Km is the
complete graph on m vertices. The following results are derived just as easily:
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Lemma 3.1. Let 1 ≤ d ≤ r. Then,

HG(m1, . . . ,mr; 1) ' Km1 + . . .+Kmr ,

HG(m1, . . . ,mr; 1, . . . , d) ' (Km1 + . . .+Kmr
)(d),

HG(m1, . . . ,mr; r) ' HG(m1, . . . ,mr; 1, . . . , r − 1).

Theorem 3.2. Let n be the product of distinct primes p1, . . . , pr. Then,

Cay(Zn, Un) ' HG(p1, . . . , pr; r).

Proof. Let n = p1 . . . pr be a square-free product of primes. We first establish a bijection
between the vertex sets of Cay(Zn, Un) and HG(p1, . . . , pr; r). Associate with every x ∈
Zn = {0, 1, . . . , n − 1} the vector (x1, . . . , xr) such that each entry xi is the residue of x
modulo pi. This mapping is injective because otherwise the Chinese Remainder Theorem
would be contradicted.

Two vertices (x1, . . . , xr) and (y1, . . . , yr) in HG(p1, . . . , pr; r) are adjacent if and
only if xi − yi 6= 0 for all i = 1, . . . , r. Viewing the entries as residues we see that this
means exactly that pi - xi − yi for all i = 1, . . . , r. According to the Chinese Remainder
Theorem, this is equivalent to pi - x − y. Consequently, we arrive at gcd(x − y, n) = 1,
which is the condition for adjacency in Cay(Zn, Un).

Theorem 3.3. Let m = pα1
1 · . . . · pαr

r such that the pi are the distinct prime divisors of m.
Let n = p1 . . . pr and s = m

n . Then,

Cay(Zm, Um) ' Cay(Zn, Un) . Ks.

Proof. Let us revisit the proof of Theorem 3.2. We can choose x e.g. from n, . . . , 2n − 1
without any impact since the equations are read modulo pi. Consequently, x and y are
adjacent in Cay(Zm, Um) if and only if for every choice of j, k ∈ {0, . . . , s − 1} the
vertices x+ jn and y+ kn are adjacent. So we can extend Cay(Zn, Un) to Cay(Zm, Um)
by forming the product Cay(Zn, Un).Ks and identifying each vertex (u, v) of the product
with the vertex u + vn of Cay(Zm, Um). Note here that the left strong product with a
complete graph Ks in effect means splitting each vertex of the left hand operand graph
s− 1 times (including neighborhood).

Corollary 3.4. Use the same definitions for m, pi, s as in Theorem 3.3. Then,

Cay(Zm, Um) ' (Kp1 + . . .+Kpr
)(r−1) . Ks.

Proof. This follows from Theorem 3.3 together with Theorem 3.2 and Lemma 3.1.

4 Eigenspace structure
We are now concerned with obtaining real basis vectors for eigenspaces, in particular with
entries from the set {0, 1,−1} only. Such a basis we call simply structured. We will show
the existence of such bases for all eigenspaces of Cay(Zn, Un).

Theorem 4.1. Let G be a graph on n vertices and assume that for some positive integer
d the adjacency matrices of the distance powers G(1), G(2), . . . , G(d) are simultaneously
diagonizable by the eigenvectors v[1], . . . , v[n].
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Then for every positive integer m and every linearly independent set of m eigenvectors
w[j] of Km the adjacency matrices of the distance powers H(1), H(2), . . . ,H(d) with H =
G + Km are simultaneously diagonizable by the eigenvectors v[i] ⊗ w[j] for i = 1, . . . , n
and j = 1, . . . ,m.

Proof. According to Theorem 2.2 we only need to assert that every vector u = v[i] ⊗ w[j]

is also an eigenvector of H(q) for every 1 ≤ q ≤ d. In order to test this we can conduct
the multiplication of the adjacency matrix of H(q) with a vector u on the graph itself. We
assign the k-th component of u as a weight to the k-th vertex of H(q). Then we require that
some λ exists such that for every vertex the sum over the weight of its neighbors is equal
to λ times its own weight.

Up to isomorphism, the graph H is formed by taking s copies of G and joining all
vertices that represent the same vertex in G.

Now fix a pair of vectors v = v[i0], w = w[j0]. When applying the vector v ⊗ w to
the vertices of H the vertices of the k-th copy of G are assigned the respective values of v
multiplied with the k-th component of w.

Let 1 ≤ q ≤ d and pick a vertex x of H(q). Let y be a neighbor of x and consider
a shortest path P from x to y in H . Since the corresponding vertices of the copies of G
are mutually connected we may assume that P starts with a number of edges joining the
copies of G and then a number of edges within a single copy, altogether forming a path of
length d. This yields two segments P1 and P2 of P . Clearly, the length of P1 must be 0 or
1 because it cannot exceed the diameter of Km.

So the set of neighbors of x in H(q) consists of the neighbors of x in G(q) (referring
to the copy of G that x belongs to), the siblings of x in the other copies of G, and the
neighbors of the vertices corresponding to x in G(q−1) (referring to all the other copies of
G in H). By assumption v is an eigenvector for the distance powers G(q) and G(q−1). Let
the respective eigenvalues be µ and ν.

We may assume that x lies in the first copy of G in H . Further, let m ≥ 2 because the
case m = 1 is trivial.

Let the weight of x be non-zero. Without loss of generality we may assume that it
equals one. Subsequently, the choice of w can be limited to the vectors (1, . . . , 1) and
(1,−1, 0, . . . , 0) because these vectors can be extended to a set of linearly independent
eigenvectors ofKm such that the added vectors all vanish on x. Let Σ denote the respective
sum over the weights of the neighbors of x. Then we have Σ = µ + (m − 1)(ν + 1) if
w = (1, . . . , 1) and Σ = µ− ν − 1 if w = (1,−1, 0, . . . , 0).

If the weight of x is zero, then without loss we may assume w = (0, 1,−1, 0, . . . , 0).
It is easily seen that the sum over the weights of the neighbors of x equals zero.

As we see, the result is independent of the particular choice of x.

Let us merge the previous results into our main theorem:

Theorem 4.2. Both Hamming graphs HG(p1, . . . , pr; 1, . . . , d) and the unitary Cayley
graphs Cay(Zn, Un) admit simply structured bases for all eigenvalues.

Proof. From Corollary 3.4 and Lemma 3.1 it follows that Cay(Zn, Un) and HG(p1, . . . , pr;
1, . . . , d) can be constructed from complete graphs by a number of certain graph opera-
tions. We only need to assert that Km has a simply structured eigenspace basis for every
eigenvalue and that this property is preserved by each applied graph operation of only the
original graphs have this property.
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Consider the graph Km. Its eigenvalues are −1 and m. The eigenspace for eigenvalue
−1 is spanned by the vectors

(1,−1, 0, . . . , 0), (1, 0,−1, 0, . . . , 0), . . . , (1, 0, . . . , 0,−1)

whereas the other eigenspace is spanned by the all ones vector.
Because of Corollary 2.3 the simple basis structure property is preserved for the sum

and the left strong product. Lemma 2.1 asserts this for the complement of a regular graph.
Theorem 4.1 guarantees that taking the distance power of a sum of complete graphs also
preserves the property. Note that regularity of (Kp1 +. . .+Kpr

)(r−1) follows from Lemma
3.1 and Theorem 3.2.

As a consequence of Theorem 4.2 we see that considered graphs have only integer
eigenvalues. For the unitary Cayley graphs this also follows from a result of W. So since
the adjacency matrix of Cay(Zn, Un) is a circulant, i.e. it can be obtained from its first
column by repeated downward rotation [6]. In [16] he characterizes the integral circulant
graphs as those circulants on n vertices whose indices (less than n) of ones in the first row
of the associated adjacency matrix can be partitioned into complete sets of numbers that
have same greatest common divisor with n. This condition is trivially fulfilled for unitary
Cayley graphs. It is interesting to note that integral circulants play a role in quantum physics
[15].
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[5] D. Cvetković, P. Rowlinson and S. K. Simić, Graphs with least eigenvalue −2: The star com-
plement technique, J. Algebr. Comb. 14 (2001), 5–16.

[6] P. J. Davis, Circulant matrices, John Wiley & Sons, New York-Chichester-Brisbane, 1979.

[7] I. J. Dejter and R. E. Giudici, On unitary cayley graphs. J. Combin. Math. Combin. Comput. 18
(1995), 121–124.

[8] C. Godsil and G. Royle, Algebraic graph theory, Graduate Texts in Mathematics 207, Springer-
Verlag, New York, 2001.

[9] R. L. Graham, M. Grötschel and L. Lovász (eds.) Handbook of combinatorics, vol. 1–2, Else-
vier, North-Holland, 1995.

[10] F. Hazama, On the kernels of the incidence matrices of graphs, Discrete Math. 254 (2002),
165–174.



T. Sander: Eigenspaces of Hamming graphs and unitary Cayley graphs 19

[11] W. Klotz and T. Sander, Some properties of unitary Cayley graphs, Electron. J. Combin. 14
(2007), #R45.

[12] M. Nath, and B. K. Sarma, On the null-spaces of acyclic and unicyclic singular graphs, Linear
Algebra Appl. 427 (2007), 42–54.

[13] J. W. Sander and T. Sander, On simply structured bases of tree kernels, AKCE J. Graphs.
Combin. 2 (2005), 45–56.

[14] T. Sander, On certain eigenspaces of cographs, Electron. J. Combin. 15 (2008), #R140.

[15] N. Saxena, S. Severini and I. Shparlinski, Parameters of integral circulant graphs and periodic
quantum dynamics, Int. J. Quantum Inf. 5 (2007), 417–430.

[16] W. So, Integral circulant graphs, Discrete Math. 306 (2006), 153–158.


	Introduction
	Basics and notation
	Graph eigenspaces
	Graph products

	Isomorphisms of Hamming and Cayley graphs
	Eigenspace structure
	Acknowledgement

