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Ljubljana, June 23, 2011



Queue layouts of hypercubes∗
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Abstract

A queue layout of a graph consists of a linear ordering σ of its vertices, and a partition
of its edges into sets, called queues, such that in each set no two edges are nested with
respect to σ. We show that the n-dimensional hypercube Qn has a layout into n−blog2 nc
queues for all n ≥ 1. On the other hand, for every ε > 0 every queue layout of Qn has
more than ( 1

2 − ε)n−O(1/ε) queues, and in particular, more than (n− 2)/3 queues. This
improves previously known upper and lower bounds on the minimal number of queues
in a queue layout of Qn. For the lower bound we employ a new technique of out-in
representations and contractions which may be of independent interest.
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1 Introduction

Let σ : V (G) → {1, 2, . . . , |V (G)|} be a linear ordering of vertices in a simple undirected graph
G. Two edges uv, xy ∈ E(G) are nested (with respect to the ordering σ) if σ(u) < σ(x) <
σ(y) < σ(v), see Figure 1. A set S ⊆ E(G) is a queue if no two of its edges are nested with
respect to σ. A k-queue layout of the graph G is a pair of a linear ordering σ of V (G) and a
partition of E(G) into k queues. The queue-number qn(G) of the graph G is the minimum k
such that G has a k-queue layout. A graph G is a k-queue graph if qn(G) ≤ k.

Queue layouts were first introduced by Heath et al. [12,16]. This concept is analogous to
the concept of stack layouts, also known as book embeddings, in which no two edges in the
same set are allowed to cross. Applications of queue layouts include sorting permutations,
parallel process scheduling, matrix computations, graph drawings, and queue-based comput-
ers. See [2, 7, 22] for a comprehensive list of references. If the vertex ordering is fixed, the
optimal queue layout can be efficiently determined [7, 16]. But in general, this problem is
believed to be intractable. In particular, recognizing k-queue graphs is NP-complete even for
k = 1 [16]. The class of 1-queue graphs coincides with the class of so called arched leveled-
planar graphs [16]. Another characterization of 1-queue graphs based on track layouts is
given in [5]. Queue layouts of directed graphs [1,14,15,22], posets [13,22], and several special
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§Computer Systems Department, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia.

1

Pr
ep

ri
n

t 
se

ri
es

, I
M

FM
, I

S
S

N
 2

23
2-

20
94

, n
o.

 1
15

3,
 J

u
n

e 
23

, 2
01

1



(a) nested (b) separated (c) crossing

(d) incident

Figure 1: All possible relations between two edges in a fixed vertex ordering.

graph classes [6–12,16,18–20,23–26] have also been investigated. For other graph layouts, see
the survey [4].

The n-dimensional hypercube Qn is the graph with all binary vectors of {0, 1}n as vertices,
and edges between every two vectors that differ in exactly one coordinate. The coordinate
i ∈ [n] = {1, 2, . . . , n} in which neighbors u and v differ is called the direction of the edge
uv. A vertex of Qn is even (odd) if it contains even (odd) number of 1’s. Even and odd
vertices, respectively, form bipartite classes of Qn. A subgraph of Qn induced on vertices
with fixed n − k coordinates, where 0 ≤ k ≤ n, is called a k-dimensional subcube. A vector
w = (w1, . . . , wk) ∈ {0, 1}k is a prefix of a vector v = (v1, . . . , vn) ∈ {0, 1}n, where 0 ≤ k ≤ n,
if wi = vi for every 1 ≤ i ≤ k.

Heath and Rosenberg [16] showed that Qn has a layout into n−1 queues, that is qn(Qn) ≤
n− 1, for all n ≥ 2. Hasunuma and Hirota [11] improved it to qn(Qn) ≤ n− 2 for all n ≥ 5.
Subsequently, Pai et al. [18] showed that the same upper bound holds also for n = 4. Recently,
Pai et al. [20] further decreased it to qn(Qn) ≤ n− 3 for all n ≥ 8. On the other hand, Heath
and Rosenberg [16] showed that the queue-number of every graph is larger than half of its
density. In particular, for hypercubes it follows that qn(Qn) > n/4 [20, 21]. Interestingly,
the analogously defined stack-number (better known as the pagenumber) of the hypercube is
pn(Qn) = n− 1 for all n ≥ 2 [3, 17].

In this paper we show that the n-dimensional hypercube Qn has a layout into n−blog2 nc
queues for all n ≥ 1. This is the first non-constant improvement. As a corollary, we obtain
also an improved upper bound on the queue-number of 2k-ary hypercubes. Furthermore, we
improve also the lower bound by showing that for every ε > 0 every queue layout of Qn has
more than (1

2 − ε)n − O(1/ε) queues, and in particular, more than (n − 2)/3 queues. For
the lower bound we employ a new technique of out-in representations and contractions which
may be of independent interest.

We believe that the lower bound can be further improved. The upper bound indicates
that qn(Qn) could asymptotically behave as follows.

Question 1. Is it true that qn(Qn) = n−Θ(log2 n) ?

2 A queue layout with inserted vertices

Heath et al. [12] noticed that qn(G ¤ K2) ≤ qn(G) + 1 for every graph G (where ¤ denotes
the cartesian product defined below), hence qn(G ¤ Qk) ≤ qn(G) + k for every k ≥ 1. In this
section we show that a queue layout of G ¤ Qk for k ≥ 2 can be constructed (with the same
additional cost of k queues) from a queue layout of G−A for every set A of k−1 independent
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vertices of G. More precisely, the vertices of A and all incident edges are ‘inserted’ in the
previous known layout of (G − A) ¤ Qk into qn(G − A) + k queues. This is the key idea in
our improvements. It then only suffices to find a feasible set A such that qn(G−A) < qn(G).

Our construction is inspired by the construction of Pai et al. [20] where only the vertex
1 = (1, 1, . . . , 1) was removed from G = Qn−2 and it was shown that qn(Qn) = qn(Q2 ¤
Qn−2) ≤ qn(Qn−2−{1})+2. To describe our construction, let us first recall some definitions
and introduce some additional notations.

The cartesian product G¤H of graphs G and H is the graph with vertex set V (G¤H) =
{(u, v); u ∈ V (G), v ∈ V (H)} with edges of two types:

• G-edge: (u, v)(w, v) ∈ E(G¤H) for every edge uw ∈ E(G) and every vertex v ∈ V (H),

• H-edge: (u, v)(u,w) ∈ E(G¤H) for every vertex u ∈ V (G) and every edge vw ∈ E(H).

We say that (u, v) is a copy of u that corresponds to v. For the rest of the paper, let us write
uv instead of (u, v), and let Gn denote the n-th cartesian power of the graph G. Note that
Qn can be viewed as Kn

2 .
Assume that H = Qk and recall that V (Qk) = {0, 1}k. In this case we can extend our

notation as follows. For every u ∈ V (G), w ∈ {0, 1}k−i, 0 ≤ i ≤ k, and a set S ⊆ V (G) let

uw = {uv ∈ V (G ¤ Qk); v ∈ {0, 1}k has prefix w}, Sw =
⋃

u∈S

uw.

If i = k then w is the empty string, denoted by λ, and uw contains all copies of the vertex u.
Note that in general, we have |uw| = 2i and uw induces a subcube of dimension i in G ¤ Qk.
Moreover, uw = uw0 ∪ uw1 if w is of length smaller than k.

Let [uw] denote the ordering of uw with respect to the lexicographic ordering of the indices.
That is, for every uv1 , uv2 ∈ uw where v1, v2 ∈ {0, 1}k, we have uv1 < uv2 if and only if v1 < v2

lexicographically.
For orderings σ(A) = (a1, a2, . . . , ak) and σ(B) = (b1, b2, . . . , bl) of two disjoint sets A and

B, let σ(A) ◦ σ(B) denote the concatenated ordering of A ∪ B, and if k = l, let σ(A) • σ(B)
denote the interlaced ordering of A ∪B; that is,

σ(A) ◦ σ(B) = (a1, a2, . . . , ak, b1, b2, . . . , bl),
σ(A) • σ(B) = (a1, b1, a2, b2, . . . , ak, bk) if k = l.

Lemma 1. Let A be an independent set of vertices in a graph G and k = |A|+ 1 ≥ 2. Then,

qn(G ¤ Qk) ≤ qn(G−A) + k.

Proof. Let G = (V, E) and A = {a1, a2, . . . , ak−1}. For every w ∈ {0, 1}k−i, 0 ≤ i ≤ k we
define a set of vertices

Uw
i =





V w \Aw = (V (G−A))w if i = 0,

Uw0
0 ∪ Uw1

0 if i = 1,

Uw0
i−1 ∪ Uw1

i−1 ∪ aw
i−1 if 1 < i ≤ k.

Note that the index i in Uw
i is redundant as w is of length k− i, but we keep it for the sake

of clarity. For i = k we have w = λ and Uλ
k = V λ = V (G ¤ Qk). See sets Uw

i on Figure 2(b)

3

Pr
ep

ri
n

t 
se

ri
es

, I
M

FM
, I

S
S

N
 2

23
2-

20
94

, n
o.

 1
15

3,
 J

u
n

e 
23

, 2
01

1



a
000

2

a
010

2
a
011

2

a
001

2

a
000

1

a
010

1 a
011

1

a
001

1

a
100

2

a
111

2

a
100

1
a
101

1

a
111

1

a
101

2

a
110

2

a
110

1

U
000

0

U
010

0
U

011

0

U
001

0

U
100

0
U

101

0

U
111

0
U

110

0

(b)

U
01

1

U
11

1

U
10

1

U
00

1

U
0

2
U

1

2
U

λ
3

a
000

2

a
010

2
a
011

2

a
001

2

a
000

1

a
010

1
a
011

1

a
001

1

a
100

2

a
111

2

a
100

1
a
101

1

a
111

1

a
101

2

a
110

2

a
110

1

H
000

0

H
010

0
H

011

0

H
001

0

H
100

0
H

001

0

H
111

0
H

110

0

(c)(a)
000 001

011010

110

100

111

101

Figure 2: (a) The hypercube Q3. (b) A scheme of sets Uw
i containing vertices of G ¤ Q3.

(c) A scheme of edges of G ¤ Q3. The inner edges are not shown. The thick (red and blue)
lines represent sets of (star and cartesian) edges. The normal (blue and green) lines represent
(cartesian and lower) edges.

for an illustration in case k = 3. For each vertex u ∈ {0, 1}3, the corresponding copy of G
has the vertex set V u = Uu

0 ∪ {au
1 , au

2}. The sets Uw
i for every w ∈ {0, 1}3−i and i = 0, 1, 2, 3

are drawn with black, blue, red, and green color, respectively.
Let Hw

i denote the subgraph of G ¤ Qk induced by the set Uw
i . For two subsets A,B of

vertices of a graph H let EH(A,B) denote the set of edges of H between a vertex of A and a
vertex of B. The edges of Hw

i can be recursively partitioned by

E(Hw
i ) =





(E(G−A))w if i = 0,

E(Hw0
i−1) ∪ E(Hw1

i−1) ∪ C(Hw
i ) if i = 1,

E(Hw0
i−1) ∪ E(Hw1

i−1) ∪ C(Hw
i ) ∪ S(aw

i−1) ∪ L(aw
i−1) if 1 < i ≤ k,

where we denote

C(Hw
i ) = EHw

i
(Uw0

i−1, U
w1
i−1), S(aw

i−1) = EHw
i
(aw

i−1, U
w0
i−1∪Uw1

i−1), L(aw
i−1) = EHw

i
(aw

i−1, a
w
i−1).

The edges in C(Hw
i ), S(aw

i−1), and L(aw
i−1) are called, respectively, cartesian, star, and lower

edges. They are all called outer edges, whereas the edges induced by two vertices in the same
set Uw

0 for some w ∈ {0, 1}k are called inner edges. See Figure 3 for an illustration.
Note that inner and star edges are G-edges, cartesian edges are Qk-edges, and lower edges

are only Qk-edges since A is independent. Furthermore, the (cartesian) edges in C(Hw
i ) are

of direction k− i + 1 (that is, the direction i if counted from the right) since |w| = k− i. The
(lower) edges in L(aw

i−1) are of directions from k − i + 1 to k (that is, from 1 to i if counted
from the right). For 1 ≤ j ≤ i let Lj(aw

i−1) denote the set of edges of direction k − j + 1 in
the set L(aw

i−1). See Figure 2(c) for an illustration in case k = 3.
Recall that [uw] denotes the lexicographic ordering of uw and if w is of length at most

k − 2, then aw
i = aw00

i ∪ aw01
i ∪ aw10

i ∪ aw11
i for every 1 ≤ i < k. Let (u1, u2, . . . , ul) where
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Figure 3: A scheme of edges of Hw
i for i ≥ 2. The inner edges are not shown. Cartesian, star,

and lower edges are blue, red, and green, respectively.

l = |V |−k+1 be the ordering of vertices of V \A in a layout of G−A with qn(G−A) queues.
We construct an ordering σ(V (G ¤ Qk)) recursively as follows. For every w ∈ {0, 1}k−i,
0 ≤ i ≤ k,

σ(Uw
i ) =





(uw
1 , uw

2 , . . . , uw
l ) if i = 0,

σ(Uw0
0 ) ◦ σ(Uw1

0 ) if i = 1,[
aw00

i−1

] ◦ σ(Uw0
i−1) ◦

([
aw01

i−1

] • [
aw10

i−1

]) ◦ σ(Uw1
i−1) ◦

[
aw11

i−1

]
if 1 < i ≤ k.

See the ordering σ(Uλ
3 ) in the first row of Figure 4 for an illustration in case k = 3.
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Figure 4: An example of the construction in Lemma 1 for k = 3 and |Uw
0 | = |V \ A| = 2.

The original qn(G− A) queues for the inner edges are not shown. The queue E3 is depicted
schematically.

Now, we describe a partition of E(G ¤ Qk) = E(Hλ
k ) into qn(G − A) + k queues. For
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the inner edges, that is the edges of Hw
0 for all w ∈ {0, 1}k, we use qn(G − A) queues of

the (original) layout of G − A. For the outer edges of Hw
i where 1 ≤ i ≤ k we will need i

additional queues. The partition is described recursively as follows.
Assume that Ew0

1 , Ew0
2 , . . . , Ew0

i−1 and Ew1
1 , Ew1

2 , . . . , Ew1
i−1 are partitions of the outer edges

of Hw0
i−1 and Hw1

i−1, respectively, into i−1 additional queues. Then we distribute the cartesian,
star and lower edges of Hw

i into queues Ew
1 , Ew

2 , . . . , Ew
i defined by

Ew
j =





Ew0
j ∪ Ew1

j ∪ Lj(aw
i−1) if 1 ≤ j ≤ i− 2,

Ew0
i−1 ∪ Ew1

i−1 ∪ S(aw
i−1) if j = i− 1,

C(Hw
i ) ∪ Li−1(aw

i−1) ∪ Li(aw
i−1) if j = i.

See Figure 4 for an illustration in case k = 3.
It remains to verify that each set is a queue. A length of an edge uv is |σ(u) − σ(v)|.

Observe that in the last set Ew
i , every vertex of [aw00

i−1 ], respectively [aw11
i−1 ], connects exactly

to a pair of consecutive vertices in ([aw01
i−1 ] • [aw10

i−1 ]). Moreover, when we contract these pairs
of consecutive vertices in ([aw01

i−1 ] • [aw10
i−1 ]), all edges of Ew

i will be of the same length and
independent (up to multiplicity), so they are not nested in Ew

i .
In the penultimate set Ew

i−1, every two star edges are separate, crossing, or incident as
depicted on Figure 1, and no star edge can be nested with an edge of Ew0

i−1 ∪ Ew1
i−1 as every

star edge has one vertex inside an ‘adjacent’ block Uw0
i−1 or Uw1

i−1 and the other vertex outside.
Finally, for every 1 ≤ j ≤ i − 2, every lower edge from Lj(aw

i−1) is clearly separate with
every edge of Ew0

j ∪ Ew1
j , and every two lower edges from Lj(aw

i−1) are separate in different
‘blocks’ [aw00

i−1 ], ([aw01
i−1 ]•[aw10

i−1 ]), [aw11
i−1 ] or they have the same length. We conclude by induction

that every set of the partition is a queue.

3 A queue layout of the hypercube

Let us first recall the following strengthening of queue layouts that was introduced by Wood
[26] for the study of queue layouts of several graph products.

Let σ be a linear ordering of vertices in a graph G. Two edges uv, xy ∈ E(G) are
overlapping (with respect to the ordering σ) if σ(u) ≤ σ(x) < σ(y) ≤ σ(v). A set S ⊆ E(G)
is a strict queue if no two of its edges are overlapping with respect to σ. The strict k-queue
layout of the graph G is a pair of a linear ordering σ of V (G) and a partition of E(G) into k
strict queues. The strict queue-number sqn(G) of the graph G is the minimum k such that
G has a strict k-queue layout.

Note that nested edges are overlapping. Hence every strict queue is a queue, and conse-
quently, qn(G) ≤ sqn(G) for every graph G. Strict queue-numbers are useful to derive bounds
on queue-numbers of a cartesian product, as well as of several other graph products, see [26]
for details.

Proposition 1 (Wood [26]). For all graphs G and H,

qn(G ¤ H) ≤ qn(G) + sqn(H).

For the hypercube, it is easy to see that sqn(Qn) = n for all n ≥ 1. Indeed, the lexico-
graphic ordering of V (Qn) and the partition of E(Qn) by directions form a strict n-queue
layout of Qn. On the other hand, for every graph G the strict queue-number sqn(G) is at
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least the minimum degree in G [26]. Analogously, for the grid Pn
k ; that is, the n-th cartesian

power of the path Pk on k vertices, it holds sqn(Pn
k ) = n for all n ≥ 1 and k ≥ 2 [26].

Theorem 1. For all n ≥ 3,

qn(Qn) ≤ n− dlog2(n− dlog2(n− 1)e)e .

Proof. First, we assume that n = 2d−1 + d + 1 for some integer d ≥ 1. Note that d =
dlog2(n− dlog2(n− 1)e)e. Let A be the set of all even vertices of Qd and k = |A|+1 = 2d−1+1.
Thus A is independent, the graph Qd −A has no edge, and by Lemma 1, we have

qn(Qn) = qn(Qd ¤ Qk) ≤ qn(Qd −A) + k = k = n− d = n− dlog2(n− dlog2(n− 1)e)e
since qn(Qd −A) = 0. So the statement holds in this case.

Now, assume that m = 2d−1 + d + 1 < n < 2d + d + 2 for some integer d ≥ 1. Note that
d = dlog2(n− dlog2(n− 1)e)e also in this case. Indeed, we have

dlog2(n− dlog2(n− 1)e)e =

{
dlog2(n− d)e = d if 2d−1 + d + 1 < n ≤ 2d + 1,

dlog2(n− d− 1)e = d if 2d + 1 < n < 2d + d + 2.

By Proposition 1,

qn(Qn) ≤ qn(Qm) + sqn(Qn−m) ≤ n− d = n− dlog2(n− dlog2(n− 1)e)e
since qn(Qm) ≤ m− d by the first case and sqn(Qn−m) = n−m.

It is remarkable that Theorem 1 attains all previously [20] known bounds for 3 ≤ n ≤ 12
except qn(Q4) = 2 [18]. For n ≥ 13 we obtain better layouts. Altogether, the previously
known and new results can be simplified as follows.

Corollary 1. For all n ≥ 1,
qn(Qn) ≤ n− blog2 nc .

Proof. It is easy to see that qn(Q1) = qn(Q2) = 1 and qn(Q3) = 2. Pai et al. [18] showed
that qn(Q4) = 2. For every n ≥ 5 it holds that dlog2(n− dlog2(n− 1)e)e ≥ blog2 nc.

Moreover, from Theorem 1 we also obtain better queue layouts for 2k-ary hypercubes. A
k-ary n-dimensional hypercube Qk

n is the graph with all k-ary vectors of {0, 1, . . . , k − 1}n

as vertices, and edges between every two vectors that differ by 1 or k − 1 in exactly one
coordinate. That is, Qk

n is the n-th cartesian power of the k-cycle, denoted by Cn
k , and is also

known as an n-dimensional toroidal grid.
Pai et al. [19] previously showed that

qn(Qk
n) ≤





2n− 3 if k = 3, n ≥ 3,

2n− 2 if 4 ≤ k ≤ 8, n ≥ 2,

2n− 1 if k ≥ 9, n ≥ 1.

Corollary 2. For all n ≥ 1,

qn(Q2k
n ) ≤

{
2n− blog2 nc − 1 if k = 2,

2n− blog2 nc if k ≥ 3.
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(a) A layout of E1

(b) A layout of E2

(c) A layout of E3

H
100

0
H

101

0
H

110

0
H

111

0

Figure 5: A partition of Q5 into three leveled planar graphs with the same induced ordering.

Proof. For k = 2 we have Q2k
n ' Q2n and we directly apply Corollary 1. Now assume that

k ≥ 3. Since C2k is a spanning subgraph of the ladder P2 ¤ Pk, it follows that Q2k
n is a

spanning subgraph of (P2 ¤ Pk)n ' Qn ¤ Pn
k . Therefore, by Proposition 1, Corollary 1, and

sqn(Pn
k ) = n, we have

qn(Q2k
n ) ≤ qn(Qn ¤ Pn

k ) ≤ qn(Qn) + sqn(Pn
k ) ≤ 2n− blog2 nc .

Remark 1. Theorem 1 also provides a partition of Qn into n − dlog2(n− dlog2(n− 1)e)e
leveled planar graphs with the same induced ordering. A graph G is leveled planar [16] if it
has a planar embedding such that vertices are mapped on vertical lines and edges are mapped
to straight segments between two vertices on consecutive vertical lines. The induced ordering
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of a leveled planar graph orders its vertices by consecutive vertical lines, and from top to
bottom on each line. An example for Q5 that corresponds to Figure 4 is depicted on Figure 5.

4 Lower bound

In this section we improve the lower bound on the queue-number of the hypercube. First,
we recall general concepts of rainbows and midpoints [7,16] for establishing lower bounds on
queue-numbers. Let σ : V (G) → {1, 2, . . . , |V (G)|} be a fixed vertex ordering of a graph G.
A k-rainbow is a matching {uivi ∈ E(G); 1 ≤ i ≤ k} such that

σ(u1) < σ(u2) < · · · < σ(uk) < σ(vk) < σ(vk−1) < · · · < σ(v1).

Heath and Rosenberg [16] and then Dujmović and Wood [7] in a simpler argument showed
that the size of a largest rainbow determines the number of queues in a queue layout of G
with the ordering σ.

Lemma 2 (Heath and Rosenberg [16]). The vertex ordering σ admits a k-queue layout of G
if and only if it has no (k + 1)-rainbow.

The midpoint of an edge uv is (σ(u) + σ(v))/2. We use the following key observation.

Observation 1 (Dujmović and Wood [7]). If k distinct edges share the same midpoint, they
form a k-rainbow.

As Dujmović and Wood [7] noticed, Observation 1 together with Lemma 2 immediately
implies the following lemma, originally proved by Heath and Rosenberg [16]. Indeed, if we
denote m = |V (G)|, all midpoints are in a set {3

2 , 4
2 , . . . , 2m−1

2 }, which is of size 2m− 3.

Lemma 3 (Heath and Rosenberg [16]). Every k-queue graph on m vertices has at most
k(2m− 3) edges.

Recall that the density of a graph G is η(G) = |E(G)|/|V (G)|.
Corollary 3 (Heath and Rosenberg [16]). For every graph G,

qn(G) > η(G)/2.

For the hypercube we obtain qn(Qn) > n/4 as |V (Qn)| = 2n and |E(Qn)| = n2n−1, which
was mentioned by Pai et al. [20]. Our improvement in Proposition 2 and Theorem 2 is based
on two tools.

The first tool is the following representation of a linear layout of the graph G which is
equivalent regarding nesting of edges. Let G′ denote the graph obtained from G by replacing
every vertex u with a pair of vertices uout, uin, and every edge uv with the edge uoutvin if
σ(u) < σ(v). Furthermore, let σ′ be the vertex ordering of G′ given by

σ′(uout) = σ(u), σ′(uin) = σ(u) + m

for every u ∈ V (G). We say that the pair (G′, σ′) is an out-in representation of (G, σ). See
Figure 6(a)-(c) for an illustration.

Observation 2. Two edges of G are nested (with respect to σ) if and only if their corre-
sponding edges of G′ are nested (with respect to σ′).
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(a) an ordering

1 6

57

4

3

8

2

1 2 3 4 5 6 7 8

(b) the linear layout

(c) the in-out representation

[1, 2]out 1in 2in 3in 4in 5in 6in 7in 8in[3, 4]out [5, 6]out [7, 8]out

(d) the contraction

1out 2out 3out 4out 5out 6out 7out 8out 1in 2in 3in 4in 5in 6in 7in 8in

Figure 6: (a) An example of an ordering σ of Q3, (b) the linear layout of Q3 with respect
to σ, (c) the out-in representation Q′

3 and σ′, (d) the contraction Q∗
3. The colors distinguish

edges from distinct out vertices.

Note that the midpoints of edges of G′ are in a set {m+3
2 , m+4

2 , . . . , 3m−1
2 }, which is, again,

of size 2m− 3. In particular, note that the first and last possible midpoints are not m+2
2 and

3m
2 , respectively, as the vertices 1in and mout are isolated.

The second tool is the contraction of consecutive vertices. Let G∗ be a multigraph obtained
by contractions of some pairwise-disjoint sets of consecutive vertices of G. Here consecutive
means with respect to the ordering σ. Furthermore, let σ∗ be the vertex ordering of G∗

inherited from σ. See Figure 6(d) for an illustration. Note that G∗ may contain loops in
general (even with higher multiplicity), but in Theorem 2 this will not be the case.

Observation 3. If G∗ contains a k-rainbow (with respect to σ∗), then G contains a k-rainbow
(with respect to σ).

To improve the lower bound, the key idea is to contract large number of consecutive
vertices in order to decrease the number of midpoints, but at the same time, to have only a
small number of multiple edges. Our preliminary lower bound is as follows.

Proposition 2. For every n ≥ 1,

qn(Qn) > (n− 2)/3.

Proof. Let σ be a vertex ordering of Qn in a layout into qn(Qn) queues. Our aim is to
show that Qn contains a rainbow of size more than (n − 2)/3. Let (Q′

n, σ′) be the out-in
representation of (Qn, σ), and let Q∗

n be the graph obtained from Q′
n by contraction of the

following 2n−1 pairwise-disjoint pairs of consecutive out-vertices

(uout, vout) such that σ′(uout) = 2i− 1, σ′(vout) = 2i for every 1 ≤ i ≤ 2n−1.

See Figure 6(d) for an illustration.
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It is well-known that every two vertices of Qn have 0 or 2 neighbors in common. Hence,
there are at most 2 multiple edges from each contracted vertex. Thus, the number of distinct
edges of Q∗

n is at least (n− 2)2n−1. On the other hand, all midpoints of edges of Q∗
n are in a

set {2n−1+3
2 , 2n−1+4

2 , . . . , 2n+1

2 }, which is of size 3 · 2n−1 − 2. Note that the smallest midpoint
cannot be 2n−1+2

2 as the in-copy of the first vertex is isolated in Q∗
n. Hence by Observation 1,

the graph Q∗
n contains a rainbow larger than (n − 2)/3. By Observations 2 and 3 it follows

that also Qn contains a rainbow larger than (n− 2)/3. Therefore, the statement follows from
Lemma 2.

In what follows we extend the above approach by contracting more vertices together
instead of pairs. We define the multiplicity index of a vertex v in a multigraph G to be the
number of edges incident with v minus the number of neighbors of v. The multiplicity index
m(S) of a set S of vertices is defined as the multiplicity index of the vertex obtained by
contraction of S.

Lemma 4. For every d ≥ 2, n ≥ 1, and every d-set S of vertices in Qn it holds m(S) ≤ 2
(
d
2

)
.

Proof. Every pair of vertices of S contributes by at most 2 to m(S) as they have at most two
common neighbors. As there are

(
d
2

)
pairs, the bound follows.

Let us define c(d) to be the maximal multiplicity index of a d-set S of vertices in some
Qn (with at least d vertices). We have shown that c(d) ≤ 2

(
d
2

)
. On the other hand, consider

the set S consisting of d neighbors of a single vertex v. After their contraction, there will
be d edges to v from S. Moreover, each pair of vertices of S has another distinct common
neighbor. Thus we have m(S) =

(
d
2

)
+ d− 1 = d2+d−2

2 .

Question 2. Is it true that c(d) = d2+d−2
2 for every d?

Now we employ the idea of contracting every d consecutive out-vertices together.

Lemma 5. Let σ be a vertex ordering of Qn and d = 2k, 1 < k < n. Then σ contains a
rainbow larger than dn−2c(d)

2d+2 .

Proof. Similarly as in the proof of Proposition 2, we take the out-in representation and we
contract every d consecutive out-vertices. Thus we get 2n−k contracted out-vertices, and
2n + 2n−k − 2 midpoints: 2n−k+3

2 , 2n−k+4
2 , . . . , 2n−k+1+2n

2 . On the other hand, the number of
distinct edges is at most n2n−1− 2n−kc(d). Hence by Observation 1, in the contracted out-in
representation there exists a rainbow of size at least

n2n−1 − 2n−kc(d)
2n + 2n−k − 2

>
n2k−1 − c(d)

2k + 1
=

dn− 2c(d)
2d + 2

.

By Observations 2 and 3 it follows that also σ contains a rainbow larger than dn−2c(d)
2d+2 .

Since c(d) is bounded independently on n by Lemma 4, we obtain an improved lower
bound. It shows that we can get arbitrarily close to the factor 1/2 instead of 1/3 in Proposi-
tion 2.

Theorem 2. For all ε > 0, for every sufficiently large n,

qn(Qn) >

(
1
2
− ε

)
n−O(1/ε).
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Proof. Let σ be the vertex ordering in an optimal queue-layout of Qn (where n is large) and

d = 2dlog2( 1
2ε
−1)e,

so d = O(1/ε). Then by Lemma 5, the ordering σ contains a rainbow larger than

dn− 2c(d)
2d + 2

≥
(

1
2
− ε

)
n− 2c(d)

2d + 2
.

Since c(d) = O(d2) by Lemma 4, the statement follows by Lemma 2.

Remark 2. One of the anonymous referees suggested generalizations of the lower bounds in
Proposition 2 and in Theorem 2 that might be applicable to other graph classes. We leave
his suggestion as a possible direction for further research.
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